APPENDIX 1: CULTURAL AND HISTORIC RESOURCES

1-A: Correspondence with NJHPO

- 1 Section 106 Consulting Parties Initiation Letters
- 2 NJHPO Concurrence of Adverse Effects Letter: April 3, 2017
- 3 Draft Programmatic Agreement Transmittal Letter to NJHPO: April 5, 2019
- **1-B: Programmatic Agreement**
- **1-C: Cultural and Historic Resources**
- 1-D: Phase 1A Archaeological Documentary Study

Appendix 1 – A CORRESPONDENCE WITH NJHPO

Appendix 1 – A – 1 SECTION 106 CONSULTING PARTIES INITIATION LETTERS

1200 New Jersey Avenue, SE. Washington, D.C. 20590

Federal Railroad Administration

NOV 5 2015

Mr. Daniel Saunders Deputy State Historic Preservation Officer Mail Code 501-04B New Jersey Department of Environmental Protection Historic Preservation Office, PO Box 420 501 East State Street, 4th Floor Trenton, NJ 08625-0420

Re: Sawtooth Bridges Replacement Project, Hudson County, NJ Section 106 Initiation

Dear Mr. Saunders:

The National Railroad Passenger Corporation (Amtrak) is proposing the replacement of Amtrak Bridge No. 7.80 and Amtrak Bridge No. 7.96. These bridges, collectively known as the "Sawtooth Bridges," are located in the Town of Kearny, Hudson County, New Jersey along a critical segment of the Northeast Corridor between Newark, New Jersey and New York, New York (see Attachment A, Figure 1). The Federal Railroad Administration (FRA) is serving as the lead federal agency for the preparation of a Categorical Exclusion in accordance with the National Environmental Policy Act (NEPA). Amtrak is the owner and operator of the Sawtooth Bridges.

The Sawtooth Bridges are located along the New Jersey and National Register (S/NR)-eligible Pennsylvania Railroad New York to Philadelphia Historic District (Northeast Corridor, Pennsylvania to New York, see Attachment A, Figure 2). FRA is writing to initiate consultation for the aforementioned undertaking in accordance with Section 106 of the National Historic Preservation Act (NHPA) of 1966 (as amended); Section 4(f) of the United States Department of Transportation (USDOT) Act; and NEPA. Per Subpart A, Section 800.2(a)(3) and 800.2(c)(4) of 36 CFR, FRA is authorizing Amtrak (the project sponsor), as an applicant for federal approvals, to prepare information and analyses regarding Section 106 consultation for the referenced project.

In accordance with 36 C.F.R. §800.3, FRA is providing Attachment B, "Cultural Resources Methodology," to afford your office the opportunity to review 1) the proposed delineation of the Area of Potential Effect (APE), 2) the cultural resources impacts assessment criteria, and 3) an initial list of interested and consulting parties for this project. Further consultation with your office is anticipated regarding the identification and evaluation of effects to cultural resources.

If you have any questions or need further clarification about the proposed project, please contact Michelle Fishburne, FRA Environmental Protection Specialist, at (202) 493-0398 or

michelle.fishburne@dot.gov, or John Brun, Amtrak's Project Manager, at (215) 349-3070 or brunj@amtrak.com.

Please note that FRA has authorized Amtrak to consult with your agency on behalf of FRA for the purposes of this project. We request that you please copy Amtrak's Senior Historic Preservation Specialist on your response; a mailing address and email address are provided below.

We look forward to working with you on this important rail infrastructure project.

idl.h.h Sincerely,

cc:

David Valenstein Division Chief, Environment and Planning

> John Brun, Amtrak Project Manager Johnette Davies, Amtrak Senior Historic Preservation Specialist (2955 Market Street, Mailbox 55, Philadelphia, PA 19104; <u>johnette.davies@amtrak.com</u>) Michelle Fishburne, FRA Environmental Protection Specialist Leslie Mesnick, AKRF, Vice President

Attachment A

Figures

SAWTOOTH BRIDGES REPLACEMENT PROJECT

Project Site Figure 1

0 1,000 FEET

Architectural APE and Known Architectural Resources Figure 2

SAWTOOTH BRIDGES REPLACEMENT PROJECT

Historic Districts

I __ I Study Area

Attachment B:

Cultural Resources Methodology

A. PROJECT DESCRIPTION

The National Railroad Passenger Corporation (Amtrak) is proposing the replacement of Amtrak Bridge No. 7.80 and Amtrak Bridge No. 7.96. These bridges, collectively known as the "Sawtooth Bridges," are located in the Town of Kearny, Hudson County, New Jersey along a critical segment of the Northeast Corridor (NEC) between Newark, New Jersey and New York, New York (see Attachment A, Figure 1). The Federal Railroad Administration (FRA) is serving as the lead federal agency for this environmental review, being conducted in accordance with the National Environmental Policy Act (NEPA) and Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended. The Sawtooth Bridges are located along the New Jersey and National Register (S/NR)-eligible Pennsylvania Railroad New York to Philadelphia Historic District (NEC, Pennsylvania to New York).

The Sawtooth Bridges Replacement Project (the "Proposed Project") will include construction of new bridges along the NEC, decommissioning and removal of the existing Sawtooth Bridges, necessary modifications to adjacent interlockings and crossovers, and other related improvements. The Proposed Project will be constructed within existing rail right-of-way. Property acquisition from Conrail will be required, along with a number of utility and other easements.

B. PROPOSED ARCHAEOLOGICAL AND ARCHITECTURAL RESOURCES ANALYSIS METHODOLOGIES

PROPOSED AREA OF POTENTIAL EFFECT (APE)

A required step in the Section 106 process is determining the Area of Potential Effect (APE), which is defined as "the geographic area or areas within which an undertaking may directly or indirectly cause alterations in the character or use of historic properties, if such properties exist" (36 CFR § 800.16[d]). The APE is influenced by the scale and nature of an undertaking. The project will have one APE. However, to facilitate the analysis of effects, the APE will be subdivided to indicate the area in which the Proposed Project could cause potential direct effects and the area in which the Proposed Project could cause indirect effects. The area in which potential direct effects could occur may also be known as the "project site" or the archaeological resources APE. The area in which potential indirect effects could occur may also be known as the architectural resources APE. The proposed APE is described below. As engineering for the Proposed Project progresses, if changes to the APE boundaries are required, the proposed changes will be submitted to NJHPO for review and concurrence.

APE FOR ARCHAEOLOGICAL RESOURCES

The area of potential effect for archaeological resources includes all areas that could experience ground disturbance under the Proposed Project. The archaeological APE is shown in Attachment A, Figure 2.

Potential in-ground disturbances may result from the construction of a new bridge. Modifications and/or additions to existing railroad tracks, embankments, and other railroad infrastructure could occur throughout the archaeological APE. Staging areas or temporary access roads could also be required during the construction phase.

APE FOR ARCHITECTURAL RESOURCES

In general, potential effects to architectural resources can include both direct physical effects (e.g., demolition, alteration, or damage from construction on nearby sites) and indirect contextual effects, such as the isolation of a property from its surrounding environment, or the introduction of visual, audible, or atmospheric elements that are out of character with a property or that alter its setting. The APE for architectural resources (shown in Attachment A, Figure 2) is, therefore, larger to account for any potential impacts that may occur where proposed construction activities could physically alter architectural resources or be close enough to them to potentially cause physical damage or visual or contextual impacts.

The APE for architectural resources for this project is defined as the area surrounding the project site within visual range of the project site. It also accounts for potential construction-related impacts. The APE for architectural resources extends 750 feet from the project site. These boundaries have been delineated to account for potential visual impacts of proposed construction activity along the Northeast Corridor.

Architectural resources may be impacted by elements of the Proposed Project alternatives including, removal of the existing Sawtooth Bridges; and modifications and/or additions to existing railroad tracks, embankments, and other railroad infrastructure throughout the project site.

IDENTIFICATION OF HISTORIC PROPERTIES

ARCHAEOLOGICAL RESOURCES

Archaeological studies will be undertaken to determine whether significant (S/NR-eligible) archaeological resources are present within the archaeological APE. First, the archaeological APE will be assessed for areas that may be sensitive for archaeological resources through the preparation of a Phase I Archaeological Documentary Study ("Phase I"). The Phase I will be prepared in accordance with New Jersey Historic Preservation Office Guidelines for Phase I Archaeological Investigations. It will involve a combination of comprehensive documentary research and field investigation of the project corridor. Background research efforts will include the development of a prehistoric and historic context, a discussion of the evolution of land use patterns based on historic cartographic sources and soil surveys, and an inventory of all previously recorded archaeological sites within the vicinity of the APE such as archaeological sites on file at the NJSM. Documentary research will be conducted to identify areas where prehistoric or historic-period activities may have occurred and resulted in archaeological resources. For each area where prehistoric or historic-period activities may have left archaeological remains, construction activities and other ground disturbances that occurred later on the site will be evaluated in order to identify locations where any archaeological resources, if originally present, may have survived. If background research identified areas of potential archaeological sensitivity, archaeologists will conduct field investigations (such as the excavation of shovel test pits and/or test units) to determine the presence or absence of potentially significant archaeological resources in the APE. If it is determined that additional survey is needed, the project team will coordinate with the NJHPO to determine the appropriate next steps in order to comply with Section 106. If warranted, a Phase II survey may be

undertaken to determine the boundaries and evaluate the significance of any archaeological deposits identified.

ARCHITECTURAL RESOURCES

Once the APE is determined, an inventory of officially recognized architectural resources within the APEs will be compiled based on the files of the NJHPO and the New Jersey State Museum (NJSM). This inventory will include properties or districts listed on the National Register of Historic Places (NR) and/or the New Jersey State Register (SR), or determined eligible for such listing; and National Historic Landmarks (NHLs).

Any potential architectural resources (i.e., properties that may be eligible for listing on the S/NR) within the architectural APE will also be identified based on field surveys by an architectural historian conducted in accordance with 36 CFR § 800.4 of the National Historic Preservation Act of 1966 (as amended). Research will be conducted on any potential architectural resources to identify pertinent historical information, such as date of construction and alterations, builder, architect, and relevant historic context(s). If appropriate, an architectural historian will prepare and submit a Historic Resources Inventory Form documenting any potential resources and submit such forms to NJHPO for review.

PROPOSED IMPACTS ASSESSMENT CRITERIA

Once the archaeological and architectural resources in the APEs are confirmed, the effects of the project on those resources will be assessed through application of the criteria of adverse effect as set forth in 36 CFR 800.5. The effects analysis will be based on the proposed construction and the anticipated effects it may have on archaeological and architectural resources. In order to assess the potential effects of project construction on archaeological resources, areas of archaeological sensitivity will be compared to the vertical and horizontal extent of the proposed disturbance to determine the potential for impacts. The assessment of the potential effects of project construction on architectural resources) and indirect effects (such as visual or contextual changes that would diminish the historic integrity of architectural resources). A determination of adverse effect would be made if the analysis concludes that the Proposed Project would alter the characteristics of cultural resources that qualify them for inclusion in the NR.

C. SECTION 106 CONSULTING PARTIES

In accordance with 36 CFR 800.2, the lead federal agency, the Advisory Council on Historic Preservation (ACHP), other consulting parties, and the public are identified as participants in the Section 106 process. Consulting parties may include: the project sponsor, the New Jersey State Historic Preservation Officer (NJHPO); the Tribal Historic Preservation Officer (THPO); federally recognized Indian tribes that attach religious and cultural significance to historic properties that may be affected by an undertaking; and representatives of local governments. Consulting parties may also include other individuals and organizations with a demonstrated interest in the proposed federal undertaking.

As a part of the Section 106 consultation requirements for the Sawtooth Bridges Replacement Project, FRA will invite the ACHP to participate in the Section 106 consultation. The ACHP may elect not to participate and instead rely on the NJHPO to provide comments and concurrence. Other potential consulting parties that will be invited to participate in this project include:

Sawtooth Bridges Replacement Project

- Absentee-Shawnee Tribe of Oklahoma
- Advisory Council on Historic Preservation
- Anthracite Railroads Historical Society, Inc.
- Cherokee Nation of New Jersey
- Consolidated Rail Corporation
- The Delaware Nation
- Delaware Tribe Historic Preservation Office
- Eastern Delaware Nation
- Eastern Lenape Nation of Pennsylvania Office and Cultural Center
- Hudson County
- Hudson County Division of Cultural Affairs & Tourism
- Hudson County Division of Planning
- Meadowlands Museum
- Nanticoke Association
- Nanticoke Lenni-Lenape Indians of New Jersey
- New Jersey Meadowlands Commission/MRC
- New Jersey Turnpike Authority
- New York Chapter, Railway and Locomotive Historical Society
- New Jersey Dept. of Environmental Protection: Historic Preservation
- North Jersey Chapter, National Railway Historical Society, Inc.
- The Oneida Indian Nation
- Passaic River Coalition
- Pennsylvania Railroad Technical and Historical Society
- Powhatan Renape Nation Rankokus Indian Reservation
- Rail-Marine Information Group
- Ramapough Lunaape Community Center
- Roebling Chapter Society for Industrial Archeology
- Shawnee Tribe of Oklahoma
- Society of Industrial Archaeology
- Stockbridge-Munsee Band of Mohican Indians
- Thomas Flagg
- Town of Harrison Mayor's Office
- Town of Kearny Mayor's Office
- Tri-State Chapter, National Railway Historical Society
- United Railroad Historical Society of New Jersey

Periodically throughout the Section 106 process, FRA and Amtrak will provide the public with information about the undertaking and its effects on historic properties. The public will be given

opportunities to provide input on the potential effects of the project, as well as any resolution of adverse effects on historic resources that may result from the project. It is assumed that, in accordance with 36 CFR § 800.2(d)(3), the procedures utilized for public involvement under NEPA will also satisfy the requirements of the Section 106 process.

SAWTOOTH BRIDGES REPLACEMENT PROJECT POTENTIAL CONSULTING PARTIES AND INDIAN TRIBES

Proposed Consulting and Interested Parties

Reid Nelson Director of Federal Agency Programs Advisory Council on Historic Preservation 401 F Street NW, Suite 308 Washington, DC 20001 -2637

John K. Enright Consolidated Rail Corporation 1717 Arch Street, Suite 1310 Philadelphia, PA 19103

Thomas A. DeGise Hudson County Executive Justice Brennan Court House 583 Newark Ave. Jersey City, NJ 07306

Jamie Fox, Chairman New Jersey Turnpike Authority P.O. Box 5042 Woodbridge, NJ 07095

William (Bill) LaRosa, Director of Cultural Affairs & Tourism Hudson County Division of Cultural Affairs & Tourism, Brennan Courthouse 583 Newark Avenue Newark, NJ 07306

Massiel M. Ferrara, PP, AICP, Division Chief Hudson County Division of Planning Meadowview Complex, Bldg. 1, Floor 2 595 County Avenue Secaucus, NJ 07094

Michael Ferguson , Chairman New Jersey Meadowlands Commission 1 Dekorte Park Plaza P.O. Box 640 Lyndhurst, NJ 07071

James A. Fife, Mayor Town of Harrison Mayor's Office 318 Harrison Avenue Harrison, NJ 07029 Alberto G. Santos, Mayor Town of Kearny Mayor's Office 402 Kearny Avenue Kearny, NJ 07032

Daniel Saunders, Deputy SHPO Mail Code 501-04B NJ Dept. of Environmental Protection Historic Preservation PO Box 420 501 East State Street 4th Floor Trenton, NJ 08625-0420

Anthracite Railroads Historical Society, Inc. P.O. Box 519 Lansdale, PA 19446

John E. Barth, President North Jersey Chapter, National Railway Historical Society, Inc. 54 Poplar St Closter, NJ 07624-1036

John Teichmoeller, Coordinator Rail-Marine Information Group 12107 Mt. Albert Rd Ellicott City, MD 21042

Michael Del Vecchio, President Tri-State Chapter, National Railway Historical Society P.O. Box 1217 Morristown, NJ 07962-1217

Kate Kelleher, Administrative Assistant Passaic River Coalition 330 Speedwell Avenue Morristown, NJ 07960

Gilda Healy, Interim Director Meadowlands Museum 91 Crane Avenue, Rutherford, NJ 07070

Ed Swain, Public Relations Manager Pennsylvania Railroad Technical and Historical Society 6469 Winter Hazel Drive Middletown, OH 45044-8351 Joe Macasek, President Roebling Chapter Society for Industrial Archeology 19 Budd Street Morristown, NJ 07960

Larry Gross, President United Railroad Historical Society of New Jersey PO Box 711 Clark, NJ 07066

Society of Industrial Archaeology National Headquarters c/o Department of Social Sciences Michigan Tech 1400 Townsend Dr Houghton, MI 49931-1295

Thomas Flagg SUNY College of Optometry 33 West 42nd St New York, NY 10036

Tommy Meehan, Membership/Chapter Chairman New York Chapter, Railway and Locomotive Historical Society 42 Portland Pl FL 2, Yonkers NY 10703-2206

Non-Federally Recognized Tribe List

Tony Powell Ramapough Mountain Indians Ramapough Lunaape Community Center 189 Stag Hill Road Mahwah, NJ 07430

C.W. Longbow, Principal Chief Cherokee Nation of New Jersey 182 Ellery Ave. Newark NJ, 07106

Corrine Remington, Secretary Eastern Delaware Nation Boro Line Road Dushore, Pa 18614

Eastern Lenape Nation of Pennsylvania Office and Cultural Center P.O. Box 43 Saylorsburg, PA 18353

William H. Daisey, Chief Nanticoke Association 27073 John J. Williams Highway Millsboro, DE 19966

Mark Gould, Tribal Chairperson Nanticoke Lenni-Lenape Indians of New Jersey 18 East Commerce Street Bridgeton, NJ 08302

Powhatan Renape Nation Rankokus Indian Reservation P.O. Box 2353 Riverton NJ 08077

Federally Recognized Tribe List

Nekole Alligood Cultural Preservation Director The Delaware Nation Cultural Preservation Office PO Box 825 31064 State Highway 281 Anadarko, Oklahoma 73005

Jodi Hayes, Tribal Administrator Shawnee Tribe of Oklahoma P.O. Box 189 29 S Hwy 69A Miami, Oklahoma, 74354 shawneetribe@shawnee-tribe.com 918.542.2441

Joseph Blanchard, THPO Absentee-Shawnee Tribe of Oklahoma 2025 South Gordon Cooper Drive Shawnee, Oklahoma 74801 Phone: 405-275-4030 ext. 303 Joseph.blanchard@astribe.com

Sherry White Tribal Historic Preservation Officer Stockbridge-Munsee Community Band of Mohican Indians N8476 Moh He Con Nuck Road Bowler, Wisconsin 54416 Phone: 715-793-3970 | Fax: 715-793-4836 Email: <u>sherry.white@mohican-nsn-gov</u>

Mr. Jesse Bergevin Tribal Historic Preservation Officer The Oneida Indian Nation 1256 Union Street P.O.Box 662 Oneida, New York 13421-0662 Phone: (315) 829-8463 Fax: (315 829-8473 jbergevin@oneida-nation.org

Dr. Brice Obermeyer Delaware Tribe Historic Preservation Office Roosevelt Hall, Rm 212 1200 Commercial St. Emporia, Kansas 66801 Telephone 918-335-7026 bobermey@emporia.edu

January 26, 2016

Mr. Daniel Saunders Deputy State Historic Preservation Officer Mail Code 501-04B New Jersey Department of Environmental Protection Historic Preservation Office, PO Box 420 501 East State Street, 4th Floor Trenton, NJ 08625-0420

Re: Sawtooth Bridges Replacement Project, Hudson County, NJ Section 106 Initiation: Additional Information

Dear Mr. Saunders:

Thank you for confirming your receipt of the Section 106 initiation letter for the Sawtooth Bridges project. As described in that letter, National Railroad Passenger Corporation (Amtrak) is proposing the replacement of Amtrak Bridge No. 7.80 and Amtrak Bridge No. 7.96 in the Town of Kearny, Hudson County, New Jersey along a critical segment of the Northeast Corridor (NEC) between Newark, New Jersey and New York, New York (the Proposed Project). The Federal Railroad Administration (FRA) is serving as the lead federal agency for the preparation of an environmental review in accordance with the National Environmental Policy Act (NEPA), Section 106 of the National Historic Preservation Act (NHPA) of 1966 (as amended), and other legislation. Amtrak is the owner and operator of the Sawtooth Bridges. As noted in FRA's original letter, Amtrak is authorized to continue Section 106 consultation on the behalf of FRA.

The previous letter initiated the Section 106 consultation process and provided a "Cultural Resources Methodology," which included 1) the proposed delineation of the Area of Potential Effect (APE), 2) the cultural resources impacts assessment criteria, and 3) an initial list of interested and consulting parties for this project. Following a telephone conversation between me and Patricia Chrisman of your office, this letter provides additional detail regarding specific aspects of the cultural resources methodology, including the location and appearance of the Sawtooth Bridges and the proposed methods of coordinating with consulting and interested parties.

SAWTOOTH BRIDGES LOCATION AND DESCRIPTION

As noted previously, Amtrak Bridge No. 7.80 and Amtrak Bridge No. 7.96, collectively known as the "Sawtooth Bridges," are located along an approximately 1.1-mile long segment of Amtrak's NEC, north of the Passaic River between Amtrak MP 8.3 (Hudson Interlocking) and MP 7.2 (Swift Interlocking) in the Town of Kearny, Hudson County. The Sawtooth Bridges are within the New Jersey and National Register (S/NR)-eligible Pennsylvania Railroad New York to Philadelphia Historic District (NEC, Pennsylvania to New York) and for the purposes of the environmental review are being considered elements that contribute to the historic character of the Historic District. The bridges' name "Sawtooth" is derived from their sawtooth-like appearance in plan, which is the result of the decking that supports the bridges as they cross over other rail lines. Included with this letter is a map illustrating the specific locations of the Sawtooth Bridges (Figure 1). Also included are photographs showing detailed views of the Sawtooth Bridges (Figures 2-5).

As part of the Proposed Project, four new multiple span bridges would be constructed along the NEC, including a single-track viaduct to carry Morris & Essex Line Track 5; a two-track viaduct to carry NEC Tracks 3 and 4; and two two-track viaducts to carry NEC Tracks 1 and 2. The proposed new multiple span bridges would not differ substantially from the existing Sawtooth Bridges in terms of height or alignment. Based on conceptual engineering, it is expected that two replacement multiple span bridges for NEC Tracks 1 and 2 will be located on the existing bridge alignment, the new multiple span bridge for NEC Tracks 3 and 4 will be just to the north of the existing bridge alignment, and the new multiple span bridge for Track 5 will be located on a new northern alignment (still within the railroad right-of-way). It is anticipated that the elevation of the proposed structures would change from the existing elevation by a maximum of six feet. Graphics depicting the proposed location of the new bridges are being prepared as part of the NEPA documentation. It should be noted that another existing railroad bridge, NJ Transit's Br. 0.35 Harrison Connection (also known as the "Red Bridge") is located immediately south of the Sawtooth Bridges, limiting the visibility of the existing and proposed structures from the south.

CONSULTING AND INTERESTED PARTIES

FRA's previous correspondence presented proposed consulting and interested parties to be invited to participate in the Section 106 process. In general, in accordance with 36 CFR 800.2, in addition to the lead federal agency and the Advisory Council on Historic Preservation (ACHP), other consulting parties may include (1) the State Historic Preservation Officer (NJHPO); (2) federally recognized Indian Tribes or Native Hawaiian organizations (as applicable); (3) representatives of local governments with jurisdiction over the area that may be affected by the undertaking; (4) other involved agencies, such as those providing assistance, permits, licenses, and other approvals. Finally, (5) other consulting parties, also known as interested parties, are individuals or organizations with a demonstrated interest in the undertaking "due to the nature of their economic or legal relation to the undertaking or affected properties, or their concern with the undertaking's effect on historic properties."

The list of proposed consulting parties and interested parties provided below is repeated from FRA's previous correspondence and the list of potential participants is unchanged; however, it has now been divided into potential consulting parties (including the first four categories listed above) and potential interested parties (the fifth category listed above):

POTENTIAL CONSULTING PARTIES

Federally Recognized Indian Tribes

- Absentee-Shawnee Tribe of Oklahoma
- Cherokee Nation of New Jersey
- The Delaware Nation
- Delaware Tribe of Indians
- The Oneida Indian Nation
- Eastern Shawnee Tribe of Oklahoma
- Stockbridge-Munsee Band of Mohican Indians

State Recognized Indian Tribes

- Nanticoke Indian Association
- Powhatan Renape Nation Rankokus Indian Reservation
- Ramapough Lunaape Community Center
- Nanticoke Lenni-Lenape Indians of New Jersey

2

Other Tribal Organizations

- Eastern Delaware Nation
- Eastern Lenape Nation of Pennsylvania Office and Cultural Center

Local Governments and Other Involved Agencies

- Hudson County
- Hudson County Division of Cultural Affairs & Tourism
- Hudson County Division of Planning
- New Jersey Turnpike Authority
- New Jersey Dept. of Environmental Protection: Historic Preservation
- Town of Harrison Mayor's Office
- Town of Kearny Mayor's Office

Potential Interested Parties

- Anthracite Railroads Historical Society, Inc.
- Consolidated Rail Corporation
- Meadowlands Museum
- New Jersey Meadowlands Commission/MRC
- New York Chapter, Railway and Locomotive Historical Society
- North Jersey Chapter, National Railway Historical Society, Inc.
- Passaic River Coalition
- Pennsylvania Railroad Technical and Historical Society
- Rail-Marine Information Group
- Roebling Chapter Society for Industrial Archaeology
- Society of Industrial Archaeology
- Thomas Flagg
- Tri-State Chapter, National Railway Historical Society
- United Railroad Historical Society of New Jersey

Outreach to potential consulting and interested parties will initially be made through a letter inviting the parties to participate in the Section 106 process for the project. A separate letter will be sent to federally recognized tribes from the FRA. The letters will provide the potential consulting and interested parties with information regarding the proposed Project and will provide appropriate Project team contact information. Those parties that respond positively to the invitation to participate will be provided with important project information as the Section 106 process progresses, including information regarding the identification of historic properties in the APE; the potential effects of the proposed project on historic properties; and, if adverse effects would occur, proposed measures to resolve any such effects. Indian tribes will be provided with this information even if they did not respond positively to the initial outreach. Consulting and interested parties, effects, and measures to avoid, minimize, or mitigate adverse effects, as appropriate. One or more meetings may be held if requested by any of the consulting or interested parties. A separate meeting for federally recognized Indian tribes will be offered if any of the tribes express an interest in attending a meeting.

If you have any questions or need further clarification about the proposed project, please contact me at (215) 349-1354 or johnette.davies@amtrak.com or John Brun, Amtrak's Project Manager, at (215) 349-3070 or brunj@amtrak.com. We look forward to working with you on this important rail transportation project.

Sincerely,

Johnette Davies Senior Historic Preservation Specialist Amtrak

cc: John Brun, Amtrak Michelle Fishburne, FRA Leslie Mesnick, Calladium Group

Enclosures: Figures 1-5

Photograph View Direction and Reference Number

1,000 FEET

SAWTOOTH BRIDGES REPLACEMENT PROJECT

ð

Project Site Figure 1

View of one of the Sawtooth Bridges (Amtrak Bridge No. 7.80) facing east

View of one of the Sawtooth Bridges (Amtrak Bridge No. 7.80) facing west 2

View of one of the Sawtooth Bridges (Amtrak Bridge No. 7.96) facing southwest 3

View of one of the Sawtooth Bridges (Amtrak Bridge No. 7.96) facing south 4

View of one of the Sawtooth Bridges (Amtrak Bridge No. 7.96) to the left and the NJ Transit Br. 0.35 Harrison Connection to the right, facing northeast

View from underneath one of the Sawtooth Bridges (Amtrak Bridge No. 7.80) facing west

View of one of the Sawtooth Bridges (Amtrak Bridge No. 7.80) facing southwest

View of one of the Sawtooth Bridges (Amtrak Bridge No. 7.80) facing west

Site Photographs Figure 5

HPO Project No. 16-0476-2 HPO-D2016-071

State of New Jersey

MAIL CODE 501-04B DEPARTMENT OF ENVIRONMENTAL PROTECTION NATURAL & HISTORIC RESOURCES HISTORIC PRESERVATION OFFICE P.O. Box 420 Trenton, NJ 08625-0420 Tel. (609) 984-0176 Fax (609) 984-0578

BOB MARTIN Commissioner

April 11, 2016

David Valenstein Division Chief, Environmental and Planning Federal Railroad Administration 1200 New Jersey Ave., SE Washington, D.C. 20590

Dear Mr. Valenstein:

As Deputy State Historic Preservation Officer for New Jersey, in accordance with 36 CFR 800: Protection of Historic Properties, as published in the Federal Register on December 12, 2000 (65 FR 77698-77739) and amended on July 6, 2004 (FR 40544-40555), I am providing **Initial Consultation Comments** for the following proposed project:

Kearny Town, Hudson County Sawtooth Bridges Replacement Project National Railroad Passenger Corporation (AMTRAK) Federal Railroad Administration (FRA)

The proposed project consists of the replacement of Amtrak Bridge No. 7.80 and Amtrak Bridge No. 7.96 - known collectively as the "Sawtooth Bridges". The existing bridges will be decommissioned and removed and new bridges will be constructed.

800.3 Initiation of the Section 106 Process

I concur that the Federal Rail Administration (FRA), the National Railroad Passenger Corporation (Amtrak), and the New Jersey Historic Preservation Office (HPO) are the appropriate parties for the initiation of consultation. Public involvement activities may identify additional consultation parties and resource organizations. As described in the submitted materials, FRA and Amtrak will provide the public with information regarding the project. The public will be given the opportunity to provide input.

800.4 Identification of Historic Properties

CHRIS CHRISTIE Gavernor

KIM GUADAGNO Lt_Governor I agree with the Area of Potential Effects (APE) for architectural history and archaeology as delineated on the submitted maps The proposed APE appears to include all the properties that would by physically and visually impacted by the proposed project.

I agree that the list consulting parties, identified in your January 26, 2016 consultation letter, are organizations with a potential interest in and knowledge of historic properties within the APE and should be considered information resources for the pending cultural resources evaluation. However, please be aware that the Cherokee Nation of New Jersey is not a federally recognized Indian tribe and should be listed under other tribal organizations.

Archaeology

Regarding the identification of archaeological resources, please clarify whether the HPO will have the opportunity to review the results of a Phase I survey, whether or not Amtrak feel that there are historic resources present.

Additional Comments

Please note that materials sent to the Delaware Tribe should not be sent to Dr. Obermeyer; rather, they should be addressed to:

Delaware Tribe Historic Preservation Representative Ms. Susan Bacho Ms. Blair Fink P.O. Box 64 Pocono Lake, PA 18347 temple@delawaretribe.org

The HPO looks forward to continued consultation on the above project and any more detailed data as the project as it is developed to understand any necessary modifications to adjacent interlockings, crossovers, or other related improvements. If you have any questions regarding historic architecture, please contact Patty Chrisman of my staff at (609) 984-0850 or at <u>Patty.Chrisman@dep.nj.gov</u>. For questions regarding archaeology, please contact Vincent Maresca at (609) 633-2395 or at <u>Vincent.Maresca@dep.nj.gov</u>. Please refer to project number 16-0476 in any future emails, telephone calls or written correspondence in order to expedite our review and response.

Sincerely,

Daniel D. Saunders Deputy State Historic Preservation Officer

c. Michelle Fishburne, FRA John Brun, Amtrak Johnette Davies, Amtrak

DDS/VM

Appendix 1 – A – 2 NJHPO CONCURRENCE OF ADVERSE EFFECTS LETTER: APRIL 3, 2017

HPO Project 16-0476-4and -5 HPO-D2017-004 Page 1 of 4

State of New Jersey

MAIL CODE 501-04B DEPARTMENT OF ENVIRONMENTAL PROTECTION NATURAL & HISTORIC RESOURCES HISTORIC PRESERVATION OFFICE P.O. Box 420 Trenton, NJ 08625-0420 Tel. (609) 984-0176 FAX (609) 984-0578

BOB MARTIN Commissioner

April 3, 2017

Marlys Osterhues Chief, Environmental & Corridor Planning Division Office of Railroad Policy and Development Federal Railroad Administration U.S. Department of Transportation 1200 New Jersey Avenue, SE Washington, D.C. 20590

Dear Marlys Osterhues:

As Deputy State Historic Preservation Officer for New Jersey, in accordance with 36 CFR 800: Protection of Historic Properties, as published in the Federal Register on December 12, 2000 (65 FR 777698-77739) and as amended on July 6, 2004 (69 FR 40544-40555), I am providing Continuing Consultation Comments for the following proposed project:

Kearny Town, Hudson County Sawtooth Bridges Replacement Project (Amtrak Bridges 7.80 and 7.96) National Railroad Passenger Corporation (AMTRAK) Federal Railroad Administration (FRA) Section 106

Summary: The HPO finds that the demolition of Amtrak Bridges 7.80 and 7.96, also known as the Sawtooth Bridges, will have **an adverse effect** to the National Register eligible Pennsylvania Railroad New York to Philadelphia Historic District.

Thank you for providing the Historic Preservation Office (HPO) with the opportunity for review and comment on the above referenced undertaking. This letter is in response to a cover letter, "Attachment C- Cultural and Historic Resources", which is the cultural resources section from the Draft Categorical Exclusion worksheet carried out in conjunction with the National Environmental Policy Act (NEPA), and the following Phase IA archaeological report received at our office on March 3, 2017:

CHRIS CHRISTIE Governor

KIM GUADAGNO Lt. Governor Meade, Elizabeth D., and Molly R. McDonald

August 2016 Phase IA Archaeological Documentary Study: Sawtooth Bridges Replacement Project, Kearny, Hudson, New Jersey. Prepared for National Railroad Passenger Corporation (Amtrak), Philadelphia, PA. Prepared by AKRF, Inc., New York, NewYork.

800.4 Identification of Historic Properties

Architecture

The above referenced report entitled "Attachment C- Cultural and Historic Resources" identifies five previously identified historic properties within the Area of Potential Effects (APE) which are listed on the National Register of Historic Places or have been determined eligible for listing on the National Register of Historic Places, as follows:

- Pennsylvania Railroad New York to Philadelphia Historic District (SHPO Opinion October 2, 2002, updated January 14, 2015)
- Old Main Delaware, Lackawanna and Western Railroad Historic District (SHPO Opinion September 24, 1996)
- Substation 4 (Amtrak Substation 41) (SHPO Opinion September 12, 1994)
- Hudson Tower (February 6, 1997)
- Pennsylvania Railroad New York Bay Branch Historic District (April 22, 2005)

The HPO concurs with this list of historic properties located within the APE.

The HPO also concurs with the consultant that the Amtrak Bridges 7.80 and 7.96, also known as the Sawtooth Bridges, are contributing resources to the Pennsylvania Railroad New York to Philadelphia Historic District. The Amtrak Bridges 7.80 and 7.96, also known as the Sawtooth Bridges, were originally constructed in 1907 as part of the early electrification of the Pennsylvania Railroad between the Manhattan Transfer, through the Hudson Tunnel and ultimately arriving directly at the newly constructed Penn Station in Manhattan. Both bridges were constructed within the period of significance of the Pennsylvania Railroad New York to Philadelphia Historic District (which begins in 1835 and continues indefinitely until 50 years from the current date), share the significance of, and are located within the boundary of the Pennsylvania Railroad New York to Philadelphia Historic District. Therefore, both Amtrak Bridge 7.80 and 7.96 are considered contributing resources to the Pennsylvania Railroad New York to Philadelphia Historic District. Therefore, both Amtrak Bridge 7.80 and 7.96 are considered contributing resources to the Pennsylvania Railroad New York to Philadelphia Historic District.

The HPO would additionally like to request the reevaluation of the end date of the Period of Significance for the Pennsylvania Railroad New York to Philadelphia Historic District. The HPO would like to come to a mutually agreed upon end date with FRA in order to incorporate the clarification of the SHPO Opinion of Eligibility for the National Register of Historic Places in future correspondence regarding this historic district. The HPO thanks the federal agencies for this consideration.

HPO Project No. 16-0476-4and -5 HPO-D2017-004 Page 3 of 4

Archaeology

The above referenced report states that the project area is filled tidal wetlands with the potential for deeply buried Pre-Contact period archaeological resources below the marsh at depths greater than 10 to 30 feet below present grade. The report recommends once detailed construction methods are developed, any ground disturbance to any deeply buried sand layers should be evaluated for the need for archaeological monitoring during construction. *The HPO concurs with this assessment. Please be aware, the HPO would not recommend monitoring for any pile-driven construction methods.*

800.5 Assessment of Adverse Effects

The undertaking, as proposed, would demolish and replace Amtrak Bridges 7.80 and 7.96, also known as the Sawtooth Bridges, which are contributing resources to the Pennsylvania Railroad New York to Philadelphia Historic District. Therefore, the HPO concurs with the consultant's finding in the Cultural and Historic Resources Report, that this project, as proposed, is not in conformance with the Secretary of the Interior's Standards for the Treatment of Historic Properties, and therefore will have an adverse effect to the Pennsylvania Railroad New York to Philadelphia Historic District. The HPO also concurs with the consultant's finding that the undertaking, as proposed, will not have an adverse effect, either directly or indirectly, on the other historic properties located within the APE, namely the Old Main Delaware, Lackawanna and Western Railroad Historic District, Substation 4 (Amtrak Substation 41), Hudson Tower, nor the Pennsylvania Railroad New York Bay Branch Historic District, which have been determined eligible for listing on the National Register of Historic Places. However, the HPO does concur with the consultant's recommendation that a Construction Protection Plan be developed in consultation with the HPO, in order to avoid the potential for accidental damage to both the Substation 4 (Amtrak Substation 41) and the Hudson Tower, due to the close proximity to the proposed demolition and construction activity of these National Register eligible historic resources.

In consequence, additional consultation between the Federal Railroad Administration, HPO, and any consulting parties will be necessary for developing ways to avoid, minimize and/or mitigate project effects on the Pennsylvania Railroad New York to Philadelphia Historic District. Pursuant to 36 CFR 800.6 (Resolution of Adverse Effects) the agency shall notify the Advisory Council for Historic Preservation (ACHP) of the adverse effects finding and provide the Council documentation as specified in 36 CFR 800.11. The agency shall also involve consulting parties and the public to develop and evaluate alternatives to avoid, minimize and mitigate adverse effects to historic properties, as stipulated in 36 CFR 800.6.

Additional Comments

Thank you again for providing the opportunity to review and comment on the potential for the above-referenced undertaking to affect historic properties. Please reference the HPO project number 16-0476 in any future calls, emails, submission or written correspondence to help expedite your review and response. If you have any questions, please feel free to contact Jenna

HPO Project No. 16-0476-4and -5 HPO-D2017-004 Page 4 of 4

Solomon of my staff at (609) 984-0850 or jenna.solomon@dep.nj.gov with questions regarding historic architecture, historic districts or historic landscapes or Vincent Maresca of my staff at (609) 633-2395 or <u>vincent.maresca@dep.nj.gov</u> with questions regarding archaeology or archaeological survey.

Sincerely,

Katherine J. Marcque

Katherine J. Marcopul Deputy State Historic Preservation Officer

CC: Advisory Council for Historic Preservation Laura Shick, FRA Johnette Davies, Amtrak Brandon Bratcher, FRA John Brun, Amtrak Molly McDonald, AKRF Leslie Mesnick, The Calladium Group Consulting Parties

KJM/MMB/JS/VM/tn

Appendix 1 – A – 3 DRAFT PROGRAMMATIC AGREEMENT TRANSMITTAL LETTER TO NJHPO: APRIL 5, 2019

U.S. Department of Transportation

1200 New Jersey Avenue, SE Washington, DC 20590

Federal Railroad Administration

April 5, 2019

Ms. Katherine J. Marcopul Deputy State Historic Preservation Officer Mail Code 501-04B New Jersey Department of Environmental Protection Historic Preservation Office, PO Box 420 501 East State Street, 4th Floor Trenton, NJ 08625-0420

Re: Sawtooth Bridges Replacement Project, Hudson County, NJ HPO Project No. 16-0476 Programmatic Agreement

Dear Ms. Marcopul:

As you know, the National Railroad Passenger Corporation (Amtrak) is proposing to replace Amtrak Bridges No. 7.80 and No. 7.96, collectively referred to as the "Sawtooth Bridges", which are critical links and existing bottlenecks on Amtrak's Northeast Corridor (NEC). The Federal Railroad Administration (FRA) is serving as the lead federal agency for the preparation of an Environmental Assessment (EA) pursuant to the National Environmental Policy Act (NEPA) of 1969, as amended, Section 106 of the National Historic Preservation Act of 1966, as amended (Section 106), and other legislation for the proposed Sawtooth Bridges Replacement Project (Proposed Project). The purpose of this letter is to continue consultation under Section 106.

Under the implementing regulations for Section 106 (36 CFR 800), FRA has determined that a Programmatic Agreement (PA), rather than a Memorandum of Agreement, is the most appropriate method to document procedures to continue the identification and evaluation of archaeological resources as well as to resolve the known adverse effects of the Proposed Project. Therefore, pursuant to 36 CFR 800.14(b), this letter transmits the enclosed draft PA for your review and comment. The PA reflects mitigation stipulations proposed by FRA and your office from prior correspondence.

Concurrent with your office's review, by copying them on this letter, FRA also invites the Section 106 consulting parties to review and comment on the draft PA. Please note that the public will also have an opportunity to review and comment on the Programmatic Agreement after SHPO and consulting party review when the Environmental Assessment is released for public review and comment.
FRA requests that your office provide comments on the draft PA within 30 days of receipt of this letter. Should you have any questions, please do not hesitate to contact Mr. Brandon Bratcher, Environmental Protection Specialist, at (202) 493-0844 or <u>brandon.bratcher@dot.gov</u> or Johnette Davies, Amtrak's Lead Historic Preservation Specialist, at 215-349-1354 or <u>Johnette.davies@amtrak.com</u>. Please copy Ms. Davies on your response.

Sincerely,

pringere

Katherine Zeringue Federal Preservation Officer Environmental & Corridor Planning Division Office of Railroad Policy and Development

Enc: Draft Programmatic Agreement

cc: Johnette Davies, Amtrak Lead Historic Preservation Specialist John Brun, Amtrak Project Manager Molly McDonald, AKRF Leslie Mesnick, Calladium Group James Bruno, Esq., Town of Kearny Chester Brooks, Chief, Delaware Tribe Kim Penrod, Delaware Nation Tonya Tipton, Shawnee Tribe of Oklahoma

Appendix 1 – B PROGRAMMATIC AGREEMENT

PROGRAMMATIC AGREEMENT AMONG THE FEDERAL RAILROAD ADMINISTRATION, THE NATIONAL RAILROAD PASSENGER CORPORATION, AND THE NEW JERSEY HISTORIC PRESERVATION OFFICER REGARDING THE SAWTOOTH BRIDGES REPLACEMENT PROJECT TOWN OF KEARNY, HUDSON COUNTY, NEW JERSEY

WHEREAS, the National Railroad Passenger Corporation ("Amtrak") is proposing the replacement of Amtrak Bridge No. 7.80 and Amtrak Bridge No. 7.96 (collectively known as the "Sawtooth Bridges"), located in the Town of Kearny, Hudson County, New Jersey (the "Project"); and

WHEREAS, the Federal Railroad Administration (FRA) has provided financial assistance to Amtrak for design and environmental analyses for the Project in compliance with the National Environmental Policy Act (42 U.S.C. § 4321 *et seq.*) (NEPA), and may provide future financial assistance to Amtrak for implementation of the Project; and

WHEREAS, FRA has determined that, should FRA provide financial assistance for implementation of the Project, it would become an "Undertaking" pursuant to Section 106 of the National Historic Preservation Act of 1966 (54 U.S.C.§ 306108) (NHPA), as amended, and its implementing regulations at 36 CFR § 800 (hereinafter collectively referred to as Section 106), and FRA would be responsible for compliance with Section 106; and

WHEREAS, should FRA provide financial assistance for implementation of the Project, FRA intends to use this Programmatic Agreement (PA) to satisfy its Section 106 responsibilities; and

WHEREAS, FRA is the lead Federal agency for the Project under NEPA and is preparing an Environmental Assessment pursuant to NEPA and FRA's Procedures for Considering Environmental Impacts (64 FR 28545, May 26, 1999) and has coordinated Section 106 compliance with the NEPA process; and

WHEREAS, Amtrak, owner and operator of the Northeast Corridor (NEC) and the existing Sawtooth Bridges, has acted as the Project designer responsible for carrying out the design in support of the NEPA process; and

WHEREAS, FRA, and Amtrak on behalf of FRA, have consulted with the New Jersey Historic Preservation Office (NJHPO) and defined the Project's area of potential effects ("APEs") (Attachment 1), and NJHPO concurred with the APEs in a letter dated April 11, 2016; and

WHEREAS, in a letter dated September 23, 2016, Amtrak, on behalf of FRA, invited potentially interested Federally-recognized Indian Tribes (Tribes) to participate in consultation for the purposes of Section 106, and FRA followed up with a letter dated March 1, 2017 to these same Tribes, attaching the APE, identification of historic properties in the APE – including the Phase 1A archaeology report, and

the determination of adverse effect, to the following invited Federally-recognized Indian Tribes: the Delaware Nation, the Shawnee Tribe of Oklahoma, the Absentee-Shawnee Tribe of Oklahoma, the Stockbridge-Munsee Community, the Oneida Indian Nation, and the Delaware Tribe; and the Delaware Tribe, the Delaware Nation, and the Shawnee Tribe of Oklahoma responded that no known cultural resources would be affected by the Project but asked to remain apprised of the Project as it moves forward; the Stockbridge-Munsee Community declined to participate; and the other Tribes did not respond; and

WHEREAS, in a letter dated September 23, 2016, Amtrak, on behalf of FRA, invited 26 organizations, institutions, governmental agencies, elected officials, other Indian Tribes, and individuals to participate as Consulting Parties for the purposes of Section 106 (see Attachment 2), and Amtrak followed up with a letter to the same parties dated March 1, 2017 attaching the APE, identification of historic properties in the APE, and the determination of adverse effect, and the Town of Kearny accepted the invitation; Thomas Flagg, a known industrial archaeologist, declined to participate; Conrail did not formally accept the invitation, but requested ongoing consultation with respect to engineering design; and the remaining entities did not respond; and

WHEREAS, FRA and Amtrak consulted with the parties that accepted the invitation to consult (the Consulting Parties); and

WHEREAS, the Sawtooth Bridges are contributing elements within the Pennsylvania Railroad New York to Philadelphia Historic District (Northeast Corridor), which was determined eligible for the National Register of Historic Places (NR) by the Federal Highway Administration in consultation with NJHPO on March 3, 2003; and

WHEREAS, FRA and Amtrak, in consultation with NJHPO, identified five (5) additional NR-listed or eligible historic properties in the Project's APE, and NJHPO concurred with this identification on April 3, 2017; and

WHEREAS, through consultation, FRA determined that the Project, if constructed, will have an adverse effect on one historic property, the Pennsylvania Railroad New York to Philadelphia Historic District and that no other historic properties would be adversely affected, and NJHPO concurred with this finding on April 3, 2017; and

WHEREAS, NJHPO requested that the reevaluation of the period of significance of the Pennsylvania Railroad New York to Philadelphia Historic District be included as a mitigation measure in this PA; however, the reevaluation of the period of significance of the Pennsylvania Railroad New York to Philadelphia Historic District was subsequently undertaken by NJ Transit and NJHPO concurred with the reevaluation on June 4, 2019; and

WHEREAS, a *Phase IA Documentary Study: Sawtooth Bridges Replacement Project* (AKRF: August 2016) prepared for the Project and submitted to NJHPO and Federally-recognized Indian Tribes on March 1, 2017, identified areas of potential archaeological sensitivity at depths between 10 and 30 feet below the ground surface in areas that have not previously been disturbed as a result of the installation of utilities, the construction of the existing bridges, or other development ("archaeologically sensitive area") and NJHPO concurred with this characterization in a letter dated April 3, 2017; and

WHEREAS, through the consultation referenced above, FRA has concluded that the Project is located in an area with low potential for pre-contact archeological resources from 0- to 10-feet below ground surface and no potential for post-contact archeological resources but that Project designs cannot be

sufficiently advanced at this time, and the identification and effects on potential deeply buried precontact archeological resources cannot be fully determined at this very early stage of Project planning and design and prior completion of FRA's NEPA process; and

WHEREAS, if the Project advances to final design and construction with financial assistance from FRA, FRA has elected to complete, in consultation with NJHPO, the final identification, evaluation, and effects assessment on archeological resources in phases, pursuant to 36 CFR § 800.4(b)(2) and 800.5(a)(3), and in accordance with the ongoing consultation process specified in this PA pursuant to 36 CFR § 800.14(b); and

WHEREAS, FRA has invited Amtrak, as the owner and operator of the NEC and the entity that would design and construct the Project, to participate in this PA as an invited Signatory with responsibilities under this PA, and Amtrak has accepted; and

WHEREAS, in accordance with 36 C.F.R. § 800.6(a)(1), on June 8, 2017 Amtrak on behalf of FRA, notified the Advisory Council on Historic Preservation (ACHP) of FRA's adverse effect determination with specified documentation via the ACHP's e106 system, and the ACHP responded to FRA in a letter dated June 21, 2017 that it has chosen not to participate in the consultation pursuant to 36 C.F.R. § 800.6(a)(1)(iii); and

NOW, THEREFORE, FRA, Amtrak, and NJHPO (each a Signatory and together the Signatories) agree that the Project, if it becomes an Undertaking, will be implemented in accordance with the following stipulations in order to avoid, minimize and mitigate adverse effects on historic properties, and that these stipulations will govern the Undertaking and all of its parts until this PA expires or is terminated.

STIPULATIONS

I. APPLICABILITY

This PA would apply to FRA's Undertaking and would only bind FRA and Amtrak if FRA provides financial assistance for the construction of the Project.

II. PROFESSIONAL QUALIFICATION STANDARDS

- . Amtrak will ensure that all historic preservation and documentation work regarding architectural properties carried out pursuant to this PA will be done by, or under the direct supervision of, a qualified professional(s) in the disciplines of architectural history who meet[s] the relevant standards outlined in the *Secretary of the Interior's Professional Qualifications Standards for Architectural Historians* (48 FR 44738-9).
- B. Amtrak will ensure that all archaeological work carried out pursuant to this PA will be done by or under the direct supervision of a qualified professional(s) in the discipline of archaeology who meet[s] the relevant standards outlined in the *Secretary of the Interior's Professional Qualifications Standards for Archaeologists* (48 FR 44738-9).

III. TREATMENT MEASURES FOR ARCHITECTURAL HISTORIC PROPERTIES

A. National Park Service (NPS) Historic American Engineering Record (HAER) Level II Equivalent Documentation

1. Amtrak will produce documentation of the Sawtooth Bridges that meets the standards of the National Park Service (NPS) Level II Historic American Engineering Record (HAER) documentation. HAER documentation narratives will describe in detail the

physical characteristics of the structures (including their engineering, design, and setting), and their history, focusing on their construction as part of the Pennsylvania Railroad in the early twentieth century. Specific attention will be afforded to interpretation of how contemporary engineering and materials science constraints and cost considerations affected the final design and construction of the structures. Primary and secondary resources will be used in the research effort, including historic engineering literature, United States Army Corps of Engineers Reports, Amtrak's files, newspapers and periodicals, library collections, historical societies, and other repositories in New York and New Jersey. Narratives will be supported by historic plans, photographs, and other documents, where available.

- 2. The HAER recordation will also include photographic documentation of the Sawtooth Bridges. Close-up and contextual views will be provided in accordance with the standards of the National Park Service (NPS) HAER Level II documentation. The documentation will consist of photographs with large-format negatives, photo key map and photo list. Photographs will include images of the original engineering plans for the Sawtooth bridges.
- 3. Digital photography files will also be provided, formatted in accordance with the current NPS Heritage Documentation Programs (HDP) photography guidelines. Amtrak will consult with NJHPO and NPS Heritage Documentation Programs on the final scope, content, format, and disposition of the documentation.
- 4. Following completion of the HAER documentation, Amtrak will distribute one (1) PDF electronic copy of the documentation to FRA, (1) hard copy and one (1) PDF electronic copy of the documentation to NJHPO, and (1) hard copy and one (1) PDF electronic copy of the documentation to NPS and up to (10) hard copies will be offered to local and regional repositories such as libraries, historical societies, and other collections, to be determined in consultation with NJHPO, as well as to FRA and NJ HPO
- 5. Amtrak will explore whether additional entities such as railroad or industrial history organizations that would be willing to post the PDF recordation documents to their publicly accessible websites. Amtrak will consult with NJ HPO to identify up to five (5) of these potential organizations and associated websites. If an organization does not wish to accept or post the file, Amtrak is not required to identify a substitute organization.

B. Construction Protection Plan

- 1. As Project planning progresses and construction limits are finalized, Amtrak will prepare and implement a Construction Protection Plan (CPP) to avoid construction-related damage to historic properties within close proximity (approximately 100 feet) of Project construction activities, likely including the Hudson Tower and/or Substation 4 (both NR-eligible). The CPP will describe the Project construction procedures in the vicinity of historic properties and measures that Amtrak will take to avoid inadvertent construction impacts to historic properties.
- 2. Amtrak will submit the CPP to NJHPO for review and comment prior to implementation in accordance with Stipulation V.
- 3. Amtrak will provide FRA with copies of all correspondence related to the CPP and a copy of the final plan.

C. Design Review

- 1. Amtrak will ensure that the preliminary and final plans and specifications for the proposed new bridges adhere to the *Secretary of the Interior's Standards and Treatments for Historic Properties* and are compatible with the historical character of the Pennsylvania Railroad Historic District.
- 2. Amtrak will consult with FRA and NJHPO to identify engineering constraints and opportunities for incorporating historically compatible design into the preliminary and final plans. Amtrak will consult with FRA and NJHPO in the development of bridge plans at the preliminary (30 percent) and pre-final (approximately 75 percent), and final (100 percent) design stages.

IV. TREATMENT MEASURES FOR ARCHAEOLOGICAL RESOURCES

- A. If FRA determines that Tribal involvement is warranted, then FRA is responsible for all government-to-government consultation with Federally recognized Tribes.
- B. When Amtrak advances the Project design and additional information is known regarding the specific location of ground disturbing activities and potential sub-surface impacts of the Project, Amtrak will ensure those design plans are reviewed by a qualified archaeologist, selected by Amtrak. The archaeologist will determine if the Project could potentially impact archaeologically sensitive areas at depths where disturbance of archaeological materials may be feasible and determine locations, if any, where monitoring will be required. In the event that Amtrak's proposed construction methodology will not allow monitoring at depths greater than 10 feet (e.g., in those locations where piles will be driven), then no archaeological monitoring will be required.
- C. In the event that soil borings are advanced within the Project site for engineering purposes, such soil borings will be reviewed by a qualified archaeologist selected by Amtrak to determine if potentially sensitive alluvial deposits, such as those observed in adjacent areas, are present within the Project site. Amtrak will prepare a borings report and associated curation and recommendations for further work, if applicable, in accordance with New Jersey State Standards and submit the report to FRA. The report and recommendations will be reviewed by FRA and, upon FRA approval, submitted to NJHPO and Tribes, as appropriate, upon completion of boring activities.

D. If Amtrak's archaeologist, in consultation with FRA and NJHPO, determines that archaeological monitoring is warranted based on the results of analyses conducted under Stipulations IV.A. or B. above, Amtrak will develop an archaeological monitoring plan in consultation with FRA and NJHPO. Any monitoring plan developed in consultation with FRA and NJHPO will include provisions for consulting with Indian Tribes, as appropriate, in the event of a discovery.

- E. If archaeological monitoring is completed, Amtrak will prepare a monitoring report and curation in accordance with New Jersey State Standards and submit the report to FRA. The monitoring report will be reviewed by FRA and, upon FRA approval, submitted to NJHPO and Tribes, as appropriate, at the completion of monitoring activities.
- F. If potentially significant archaeological resources are encountered during monitoring, Amtrak and FRA will consult with NJHPO and any other consulting parties that wish to participate pursuant to 36 CFR 800.4(b) to complete identification efforts and develop ways to avoid, minimize, and/or mitigate any project effects pursuant to 36 CFR 800.6 as defined in the archaeological monitoring work plan in IV.D.

V. DOCUMENT REVIEW

Unless otherwise stated in the stipulations, the Signatories will provide comments on the documents they review as set forth below:

- A. The Signatories will have up to thirty (30) calendar days from the date of receipt to review and provide written comments to Amtrak on documents stipulated in this PA.
- B. Tribes, when appropriate, will have up to thirty (30) calendar days from the date of receipt to review and provide written comments to FRA on documents stipulated in this PA.
- C. Amtrak and FRA will ensure any written comments received within the timeframe are considered and addressed, as appropriate.
- D. If the Signatories or Tribes, do not submit written comments to Amtrak or FRA, as applicable, within thirty (30) calendar days of receipt of any document, it is understood the non-responding Signatories or Tribes have no comments on the submittal.
- E. If the Signatories object to or recommend extensive revisions to submissions stipulated in the PA, Amtrak will work with FRA expeditiously to respond to the recommendations and resolve disputes.
- F. If FRA and Amtrak cannot resolve the disputes, and if further consultation with the Signatories is deemed unproductive by any Signatory, the Signatories will adhere to the dispute resolution procedures described in Stipulation XI.
- G. The Signatories acknowledge that the timeframes set forth in this PA will be the maximum allowed under normal circumstances. In exigent circumstances (e.g., concerns over construction suspensions or delays), all Signatories agree to expedite their respective document review and dispute resolution obligations within seven (7) calendar days.

VI. PROJECT MODIFICATION AND CHANGES

In the event of any modifications or changes to the Project scope, the following measures will be implemented through consultation among the Signatories:

- A. Amtrak, in coordination with FRA, will assess and revise the Project APE as needed to incorporate any additional areas that have the potential to affect historic properties pursuant to 36 CFR § 800.4(a); upon FRA approval, Amtrak will provide a revised APE to NJHPO for review and comment.
- B. Amtrak, in coordination with FRA, will carry out additional investigations, as needed, to identify architectural and archaeological properties that may be affected pursuant to 36 CFR § 800.4(b).
- C. Amtrak, in coordination with FRA, will evaluate and assess the Project's effect on historic properties pursuant to 36 CFR § 800.4(c)-(d) and 800.5.
- D. If a change in Project scope results in additional adverse effects to historic properties, Amtrak will consult with the other Signatories to explore measures to avoid, minimize, or mitigate effects on these properties and amend the PA in accordance with Stipulation XII and consider whether the identification of and coordination with any additional consulting parties is appropriate.

VII. UNANTICIPATED DISCOVERIES

Amtrak, in coordination with FRA, will develop an Unanticipated Discoveries Plan (UDP) to be included in construction and bidding documents and used by the Project contractor in the event

of unanticipated discoveries or if known historic properties are affected in an unanticipated manner. The UDP will incorporate procedures for interacting with the media, a chain of contact, stop-work requirements, and other appropriate provisions. Amtrak, in coordination with FRA, will submit the draft UDP to the Signatories, participating Federally-recognized Indian Tribes and participating Consulting Parties for review and comment in accordance with Stipulation V. The UDP will include the following components:

- A. In the event any previously unidentified historic architectural or archeological resource is discovered, Amtrak will require the contractor to halt all work in and secure the area of the discovery. For any discovered archeological resources, Amtrak will also halt work in surrounding areas where additional subsurface remains can reasonably be expected to be present. This includes establishing a perimeter with a radius of at least 50 feet around a discovery where there will be no excavation, operation of heavy machinery, or stockpiling. Work in all other Project areas may continue.
- B. Amtrak, in coordination with FRA, will notify the Signatories within twenty-four (24) hours of the discovery. As appropriate, FRA will also identify and invite Federally-recognized Indian Tribes and Consulting Parties to consult regarding unanticipated discoveries.
- C. Amtrak, in consultation with FRA, NJHPO, and other Consulting Parties, if appropriate, will investigate the discovery site and evaluate the resource(s) according to the professional standards and guidelines contained in Stipulation II. Amtrak will prepare and submit to FRA for review and comment: a written document containing a proposed determination of NR eligibility of the resource, an assessment of Project effects on historic properties, if appropriate, and any recommended treatment measures. Upon FRA's approval, Amtrak will submit the determination of NR eligibility, effects assessment, and/or recommended treatment measures document, if appropriate, to NJHPO, Signatories, and Consulting Parties, as appropriate, for review and comment. If the potential resource is associated with Native American prehistory or history, FRA will provide the documentation to the Tribes within five (5) business days for their review with a request for comments within five (5) business days of receipt.
- D. In the event there is an unanticipated effect to a known historic architectural resource or archaeologically sensitive area, Amtrak will notify FRA, Signatories, and participating Tribes and Consulting Parties, as appropriate, within forty-eight (48) hours of the event by providing written documentation describing the event and the potential effect to the historic property. Amtrak will propose treatment measures to FRA for review. Upon FRA's approval, and in coordination with FRA, the Amtrak will submit the recommended treatment measures document to NJHPO, Signatories, and participating Tribes and Consulting Parties as appropriate, for review and comment. The NJHPO, Signatories, and participating Tribes and Consulting Parties will respond with any comments within five (5) business days of receipt.
- E. If it is necessary to develop treatment measures in accordance with Stipulation VII.C. and VII.D., above, Amtrak, in coordination with FRA and NJHPO, implement the treatment measures approved by FRA.
- F. Amtrak will ensure ground disturbing activities within the affected area do not proceed until FRA, in consultation with the Signatories and participating Tribes and Consulting

Parties, as appropriate, determines that either 1) the located resource is not NR-eligible or 2) the agreed upon treatment measures for historic properties have been implemented.

VIII. TREATMENT OF HUMAN REMAINS

- A. If human remains are encountered during archaeological investigations or construction, Amtrak will immediately halt subsurface disturbance in that portion of the Project area and immediately secure and protect the human remains and any associated funerary objects in place in such a way that minimizes further exposure or damage to the remains from the elements, looting, and/or vandalism. A perimeter with a radius of at least 50 feet around human remains will also be established where there will be no excavation, operation of heavy machinery, or stockpiling.
- B. Amtrak will immediately notify the local police department to determine if the discovery is subject to a criminal investigation by law enforcement and notify the Signatories within twenty-four (24) hours of the initial discovery.
- C. If a criminal investigation is not appropriate, the Amtrak will apply and implement all relevant laws, procedures, policies, and guidelines concerning the treatment and repatriation of burial sites, human remains, and funerary objects.
- D. In the event the human remains encountered could be of Native American origin, whether prehistoric or historic, FRA will immediately notify NJHPO, Federally-recognized Indian Tribes, and Consulting Parties to determine the treatment plan for the Native American human remains and any associated funerary objects.
- E. If the remains are not of Native American origin, Amtrak will, as appropriate, develop a research design/treatment plan for the appropriate treatment of the remains and any associated artifacts, consistent with procedures and guidelines contained in Stipulation IV and in accordance with Stipulation V.
- F. Amtrak will not proceed with work in the affected area until FRA, in consultation with NJHPO and Tribes, as appropriate, determines that the development and implementation of an appropriate research design/treatment plan or other recommended mitigation measures are completed. However, work in all other Project areas may continue.

IX. MONITORING AND REPORTING

Once yearly, beginning one (1) year from the date of execution of this PA until it expires or is terminated, Amtrak will provide all Signatories to this PA a summary report detailing work undertaken pursuant to its terms. Such report will include any scheduling changes proposed, any problems encountered, and any disputes and objections received in FRA and Amtrak's efforts to carry out the terms of this PA. Clear evidence of advancing the completion of PA stipulations, shared with Signatories, will be considered sufficient reporting in lieu of a summary report.

X. ADOPTABILITY

In the event that another Federal agency, not initially party to this PA receives an application for financial assistance, permits, licenses, or approvals for the Project, that agency may fulfill its Section 106 responsibilities and adopt this PA by (1) stating in writing it concurs with the terms of this PA, (2) providing the Signatories an electronic copy of its written concurrence, (3) executing a signature page to this PA, and filing the signature with the ACHP, and (4) implementing the terms of this PA, as applicable.

XI. DISPUTE RESOLUTION

Should any Signatory to this PA object at any time to any actions proposed or the manner in which the terms of this PA are implemented by providing written notice of such objection to FRA, FRA will consult with such Signatory to resolve the objection. If FRA determines that the objection cannot be resolved within thirty (30) calendar days FRA will:

- A. Forward all documentation relevant to the dispute, including FRA's proposed resolution, to the ACHP (with a copy to the Signatories) and request that the ACHP provide FRA with its advice on the resolution of the objection within forty-five (45) calendar days of receiving the documentation.
- B. If the ACHP does not provide its advice regarding the dispute within the forty-five (45) calendar day time period, FRA may make a decision on the dispute and proceed accordingly. FRA will document its decision in a written response to the objection that takes into account any timely comments regarding the dispute from the ACHP and the Signatories and provide the ACHP and Signatories with a copy of such written response.
- C. The Signatories remain responsible for carrying out all other actions subject to the terms of this PA that are not the subject of the dispute.

XII. AMENDMENTS

This PA may be amended when such an amendment is agreed to in writing by all Signatories. The amendment will be effective on the date that the amendment is signed by all Signatories. FRA will file the amendment with ACHP.

XIII. TERMINATION

If any Signatory to this PA determines that its terms will not or cannot be carried out, that Signatory will immediately consult with the other Signatories to attempt to develop an amendment per Stipulation XII. If within thirty (30) calendar days an amendment cannot be reached, any Signatory may terminate the PA upon written notification to the other Signatories.

Once the PA is terminated, and prior to work initiating or continuing on the Undertaking, FRA must either (a) execute a new PA pursuant to 36 CFR § 800.6 or (b) request, take into account, and respond to the comments of the ACHP under 36 CFR § 800.7. FRA will notify the Signatories as to the course of action it will pursue.

XIV. DURATION

This PA will expire when all its stipulations have been completed or in fifteen (15) years from the effective date, whichever comes first, unless the Signatories agree in writing to an extension in accordance with Stipulation XII. Amendments.

XV. EXECUTION AND EFFECTIVE DATE

This PA will go into effect on the date that the final Signatory signs the document. Execution of this PA by the Signatories and its subsequent filing with the ACHP by FRA demonstrates that FRA has taken into account the effect of the Project on historic properties and afforded the ACHP an opportunity to comment.

APPROVAL AND SIGNATURE PAGE FOR

PROGRAMMATIC AGREEMENT

AMONG

THE FEDERAL RAILROAD ADMINISTRATION,

THE NATIONAL RAILROAD PASSENGER CORPORATION (AMTRAK),

AND

THE NEW JERSEY HISTORIC PRESERVATION OFFICER

REGARDING THE

SAWTOOTH BRIDGES REPLACEMENT PROJECT

IN HUDSON COUNTY, NEW JERSEY

FEDERAL RAILROAD ADMINISTRATION

By:____

Date:

Marlys Osterhues Division Chief, Environmental and Corridor Planning Office of Railroad Policy and Development

APPROVAL AND SIGNATURE PAGE FOR

PROGRAMMATIC AGREEMENT

AMONG

THE FEDERAL RAILROAD ADMINISTRATION,

THE NATIONAL RAILROAD PASSENGER CORPORATION (AMTRAK),

AND

THE NEW JERSEY HISTORIC PRESERVATION OFFICER

REGARDING THE

SAWTOOTH BRIDGES REPLACEMENT PROJECT

IN HUDSON COUNTY, NEW JERSEY

NEW JERSEY HISTORIC PRESERVATION OFFICER

By:

Date:

Katherine Marcopul Deputy State Historic Preservation Officer

APPROVAL AND SIGNATURE PAGE FOR

PROGRAMMATIC AGREEMENT

AMONG

THE FEDERAL RAILROAD ADMINISTRATION,

THE NATIONAL RAILROAD PASSENGER CORPORATION (AMTRAK),

AND

THE NEW JERSEY HISTORIC PRESERVATION OFFICER

REGARDING THE

SAWTOOTH BRIDGES REPLACEMENT PROJECT

IN HUDSON COUNTY, NEW JERSEY

AMTRAK

By:_____

Gerhard Williams VP Chief Engineer Date:

PA-12

ATTACHMENT 1 – AREA OF POTENTIAL EFFECTS

SAWTOOTH BRIDGES REPLACEMENT PROJECT

ATTACHMENT 2 – LIST OF INVITED SECTION 106 CONSULTING PARTIES

INVITED CONSULTING PARTIES

Federally-Recognized Indian Tribes

- Absentee-Shawnee Tribe of Oklahoma
- The Delaware Nation
- Delaware Tribe of Indians
- The Oneida Indian Nation
- Eastern Shawnee Tribe of Oklahoma
- Stockbridge-Munsee Band of Mohican Indians

State-Recognized Indian Tribes

- Nanticoke Indian Association
- Powhatan Renape Nation
- Ramapough Lenape Indian Nation
- Nanticoke Lenni-Lenape Indians of New Jersey

Other Tribal Organizations

- Eastern Delaware Nation
- Eastern Lenape Nation of Pennsylvania Office and Cultural Center
- Cherokee Nation of New Jersey

Local Governments and Other Involved Agencies

- Hudson County Executive
- Hudson County Division of Cultural Affairs & Tourism
- Hudson County Division of Planning
- New Jersey Turnpike Authority
- New Jersey Dept. of Environmental Protection: Historic Preservation
- Town of Harrison Mayor's Office
- Town of Kearny Mayor's Office

Potential Interested Parties

- Anthracite Railroads Historical Society, Inc.
- Consolidated Rail Corporation
- Meadowlands Museum
- New Jersey Meadowlands Commission
- Railway and Locomotive Historical Society, New York Chapter
- National Railway Historical Society, Inc., North Jersey Chapter

- Passaic River Coalition
- Pennsylvania Railroad Technical and Historical Society
- Rail-Marine Information Group
- Society for Industrial Archaeology, Roebling Chapter
- Society of Industrial Archaeology, National Headquarters
- Thomas Flagg, Industrial Archaeologist
- National Railway Historical Society, New York Chapter
- National Railway Historical Society, Tri-State Chapter
- United Railroad Historical Society of New Jersey

Appendix 1 – C CULTURAL AND HISTORIC RESOURCES

Appendix 1-C

Cultural and Historic Resources

This appendix considers the potential of the Proposed Project to affect historic resources in the Proposed Project's area of potential effect (APE) for architectural and archaeological resources (see Figure 3-5).

A. METHODOLOGY

In consultation with the New Jersey State Historic Preservation Office (NJHPO), APEs for architectural and archaeological resources have been delineated to take into account any direct, indirect, secondary, and cumulative impacts on these resource types. The APEs for architectural and archaeological resources and the methodologies used to assess potential impacts within the APEs are described below and shown on **Figure 3-5**.

ARCHITECTURAL RESOURCES

In general, potential effects to architectural resources can include both direct physical effects (e.g., demolition, alteration, or damage from construction on nearby sites) and indirect contextual effects, such as the isolation of a property from its surrounding environment, or the introduction of visual, audible, or atmospheric elements that are out of character with a property or that alter its setting. The APE for architectural resources (shown in **Figure 3-5**) must therefore be large enough to account for locations where proposed construction activities could physically alter architectural resources or be close enough to them to potentially cause physical damage or visual or contextual impacts.

The APE for architectural resources for this project is defined as the area surrounding the project site within visual range and to account for potential construction-related impacts. The APE for architectural resources extends approximately 750 feet from the Proposed Project site. These boundaries have been delineated to account for potential visual impacts of proposed construction activity along the NEC. The proposed structures would not differ substantially from the existing Sawtooth Bridges in terms of height or alignment. The elevation of the proposed structures would change from the existing elevation by a maximum of five feet. Further, another existing railroad bridge, NJ Transit's Bridge 0.35 (also known as the "Red Bridge") is located immediately south of the Sawtooth Bridges, limiting the visibility of the existing and proposed structures from the south.

Once the architectural APE was determined, an inventory of officially recognized historic resources within the architectural APE was compiled based on the files of the NJHPO and the New Jersey State Museum (NJSM). This inventory includes properties or districts listed on the National Register of Historic Places (NRHP) and/or the New Jersey State Register (SR), or determined eligible for such listing; National Historic Landmarks (NHL); and archaeological sites on file at the NJSM. Field surveys were also conducted to identify any potential architectural resources (i.e., properties that may be eligible for listing on the NRHP) within the architectural APE.

Once the historic resources in the architectural APE were identified, the effects of the Proposed Project on those resources were assessed. In addition to assessing direct and indirect effects (described above), Section 106 of the NHPA requires consideration of reasonably foreseeable effects that may occur later in time, be further removed in distance, or be cumulative.

ARCHAEOLOGICAL RESOURCES

The APE for archaeological resources includes the area where subsurface disturbance would occur as part of the Proposed Project—the Sawtooth Bridge Replacement Project site itself. To assess the archaeological sensitivity of the archaeological APE, a Phase 1A Archaeological Documentary Study (Phase 1A) of the project site was prepared by AKRF, Inc. in August 2016. As part of the Phase 1A, extensive documentary research was conducted to identify the development and occupation histories of the archaeological APE during both the prehistoric (Native American) and historic periods. The Phase 1A had four goals: 1) to determine the likelihood that the project locations were inhabited during the prehistoric or historic periods; 2) to determine the likelihood that archaeological resources could have survived intact on the project site after development and landscape alteration associated with the construction of the existing railroad facilities; 3) to make a determination of the project site's archaeological sensitivity; and 4) to make recommendations for additional archaeological investigations where necessary. The Phase 1A was submitted to NJHPO for review and comment and its conclusions are summarized in this appendix. The Phase 1A is included in Appendix 1-D.

B. BACKGROUND HISTORY

The development and occupation histories of the archaeological APE and surrounding vicinity are described in detail in the Phase 1A and are summarized below to provide context for the known and potential historic resources discussed later in this appendix.

ENVIRONMENTAL SETTING

The archaeological APE is located in the Hackensack Meadowlands District, the tidal and freshwater wetlands surrounding the Hackensack and Passaic Rivers in northeastern New Jersey. The modern landscape of the archaeological APE is radically different than what was seen a century ago, as landfilling has transformed the former marshlands into dry, developable land. However, until the existing rail lines were constructed, the archaeological APE was inundated marshland. An extended glacial period left the Northeast blanketed in thick ice sheets for thousands of years. The retreat of the glaciers caused sea levels to rise and New Jersey's shoreline may have been as much as 85 feet lower and 80 miles away from its present location when the first Native Americans arrived in the region (NJHPO 1997). The increase in temperatures and rise of sea levels led to the gradual formation of the Meadowlands over many thousands of years.

Soil borings completed in the vicinity of the archaeological APE suggest that the ground surface prior to inundation/marsh formation was at variable depths across the project site and surrounding vicinity (soil borings were reviewed as part of the Phase 1A, see Appendix 1-D). The presence of peat or organic silts in many of the borings likely represents what was the bottom of the marsh prior to landfilling. Alluvial soils were identified between approximately 10 and 30 feet below the ground surface (the exact depths varied greatly among the borings) and are likely similar to alluvial sonds identified as archaeologically sensitive at other nearby archaeological sites where deeply buried archaeological resources were identified at similar

depths (Langan 2012). Recommendations for additional archaeological analyses of these soils, if present, are outlined below in **Section D**, "**Probable Impacts of the Proposed Project**," **Section E: "Mitigation Measures**," and in the Phase 1A study included as Appendix 1-D.

THE PREHISTORIC PERIOD

Human populations did not inhabit the northeastern United States (including the area that is modern New Jersey) until the glaciers began to retreat more than 14,000 years ago and were settled in the area by approximately 11,500 years before present (BP). Archaeologists have divided the time between the arrival of the first humans in northeastern North America and the arrival of Europeans more than 11,000 years later into the following contextual periods: Paleo-Indian/Early Archaic (11,500-8,000 before present [BP]), Middle Archaic (8,000-6,000 BP), Late Archaic (6,000-3,000 BP), Early/Middle Woodland (3,000 BP–1,200), Late Woodland (1,200 BP to AD 1500) and European Intrusion/Contact Period (AD1500-AD 1700).¹ These divisions are based on certain changes in environmental conditions, technological advancements, and cultural adaptations, which are observable in the archaeological record. A full summary of the prehistoric occupation of the general area during these time periods is provided in the Phase 1A.

PREVIOUSLY IDENTIFIED ARCHAEOLOGICAL SITES IN THE VICINITY

As the archaeological APE and the surrounding area were inundated for many thousands of years, little evidence of Native American activity in the area has been identified. A deeply buried prehistoric archaeological site (New Jersey State Museum [NJSM] Site 28-HD-44) was identified approximately 2,000 feet east of the project site on the western shore of the Hackensack River and south of the existing Amtrak tracks (Langan 2012). Archaeological resources at that site were identified within alluvial soils located between 9 and 17 feet beneath the ground surface. The majority of the finds were from the eastern portion of the site, in close proximity to the Hackensack River (ibid).

DEVELOPMENT AND OCCUPATION OF THE ARCHAEOLOGICAL APE DURING THE HISTORIC PERIOD

Despite the undeveloped nature of the low-lying marshes, Kearny's location between the burgeoning cities of Newark and Jersey City increasingly made the township a convenient location for both industrial and commercial use as well as for residential communities. The Hackensack and Passaic rivers provided transportation opportunities to local residents and businesses, as did the multiple turnpikes, plank roads, and railroads that traversed the area. As a result of its location between the major cities of New York and Philadelphia and between New England and the southern states, transportation has been a major component of New Jersey's history since the colonial period. New Jersey also supplied products and material to nearby cities—including grain, lumber, meat, and other regional exports—and New Jersey's Atlantic coast, its many navigable rivers, and its low-lying land corridors made it possible for myriad transportation networks to develop, most of which were oriented in a northeast-southwest direction connecting New York City and Philadelphia.

¹ The date ranges for these prehistoric periods is based on the timeline presented in the "New Jersey Statewide Historic Contexts" section of the *New Jersey Historic Preservation Plan* issued by NJHPO in 1997.

As the 19th century continued, railroads came to dominate transportation and New Jersey was at the forefront of railroad construction in the United States. In 1832, the New Jersey Railroad and Transportation Company (NJRR) was incorporated to construct a direct rail line across the archaeological APE between Trenton, New Jersey and New York City via a terminal and ferry located in Jersey City (Van Winkle 1924). The New Jersey Railroad later became part of the Pennsylvania Railroad. The Morris & Essex Railroad was chartered in 1835 to connect the New Jersey cities of Morristown and Newark. In 1836, the NJRR agreed to carry Morris & Essex traffic between Newark and Jersey City. In 1868, the Delaware, Lackawanna, and Western Railroad leased the Morris & Essex Railroad, including all of its branches (Lane 1939).

Following the development of the first railroads through the area in the 1860s and 1870s, Kearny was transformed from undeveloped meadow to a center of industry. During the last quarter of the 19th century, the Kearny Meadowlands experienced rapid industrial development due in part to new transportation routes and advances in land-making technology. The Pennsylvania Railroad became one of the most powerful rail lines in the northeastern United States at the turn of the 20th century. During that time, the rail line expanded its facilities, culminating with the construction of tunnels beneath the Hudson River—eliminating the need for ferries for the first time—and Pennsylvania Station in Manhattan in 1910 (Jonnes 2007). A new "double" track was constructed across the Meadowlands to the northeast towards Weehawken, where the tunnels connected to New York's Pennsylvania Station (Couper 1912). The new tracks crossed the meadows and wound around Snake Hill on an elevated embankment and across numerous bridges, including the Sawtooth Bridges, which were completed in 1907 (ibid).

The Pennsylvania Railroad transformed train travel in the early 20th century, and by the mid-20th century, New Jersey's transportation was again transformed by the advent of highways and motor vehicle traffic. The New Jersey Turnpike was constructed through the center of the archaeological APE in the mid-20th century, as the popularity of railroads began to decline.

C. EXISTING CONDITIONS

ARCHAEOLOGICAL RESOURCES

As described previously, the archaeological sensitivity of the archaeological APE was analyzed in a Phase 1A Archaeological Documentary Study of the archaeological APE that was prepared by AKRF, Inc. in August 2016. The conclusions and recommendations of the Phase 1A are summarized below. The Phase 1A is included in Appendix 1-D. In its letter dated April 3, 2017, the NJHPO concurred with the archaeological assessment.

PREHISTORIC ARCHAEOLOGICAL SENSITIVITY

The prehistoric sensitivity of project sites in the northeastern United States is generally evaluated by a site's proximity to level slopes, water courses, well-drained soils, and previously-identified prehistoric archaeological sites. While the archaeological APE was inundated, it would not have been an ideal site for camping or hunting and gathering, or seasonal occupation during the time that it was inundated. However, prior to the rise of sea levels several thousands of years ago, the site would have been dry land that may have been inhabitable by the earliest groups of humans that occupied the region during the prehistoric period.

The Phase 1A concluded that if undisturbed prehistoric ground surfaces are present at great depths beneath the project site, they would be considered to be archaeologically sensitive.

Potential archaeological resources at the Sawtooth Bridges replacement project site would be expected to be located at deposits at depths of approximately 10 to 30 feet or more below the ground surface, given the depths of alluvial soils and peat deposits as seen in soil borings from nearby areas. Given the extent to which railroad-related disturbance likely disturbed those depths, the Phase 1A concluded that the archaeological APE has low potential to yield intact prehistoric archaeological deposits overall. However, as stated in the Phase 1A, if the soils in this area are intact, they could potentially yield archaeological resources associated with the prehistoric occupation of the project site.

HISTORIC PERIOD ARCHAEOLOGICAL SENSITIVITY

As mentioned previously, the Phase 1A determined that the project site was occupied by inundated marshland until the early 19th century when the first railroad tracks were constructed through the area. No evidence exists to suggest that the project site was occupied during the historic period (including the 17th through the 20th centuries). A single map-documented structure not associated with railroad uses was located near the project site in the early 19th century. Historic maps indicate that this structure was located within unfilled marsh and it appears that this structure may have been used for agricultural purposes. Extensive development and redevelopment has occurred within the project site as a result of the construction and reconstruction of various railroad-related structures, including bridges, berms, catenary poles, utilities, and other infrastructure. The Phase 1A concluded that the archaeological APE has no sensitivity for archaeological resources dating to the historic period.

ARCHITECTURAL RESOURCES

There are five previously identified architectural resources in the Sawtooth Bridges architectural APE, all of which have been determined eligible for the NRHP (see Table C-1 and Figure 3-5). Based on a survey of the architectural APE performed by a qualified architectural historian, no potential architectural resources (resources that have not been previously surveyed but which meet the NRHP Criteria) were identified within the architectural APE.

Pennsylvania Railroad New York to Philadelphia Historic District (Northeast Corridor, Pennsylvania to New York, within the architectural APE). The extension of the Pennsylvania Railroad, built over the first decade of the twentieth century, consisted of eight miles of electrified rail line between Midtown Manhattan and Newark, New Jersey. The same project also included the construction of New York Penn Station and a system of railroad tubes beneath the Hudson River between New York and New Jersey (completed in 1910). The Pennsylvania Railroad system also included several bridges that carry the railroad over water, marsh, and other railroads. The Sawtooth Bridges (Amtrak Bridges 7.80 and 7.96) were constructed as part of the Pennsylvania Railroad system in 1907. The Sawtooth Bridges were not specifically identified as contributing resources to Pennsylvania Railroad New York to Philadelphia Historic District in documentation describing that district on file with NJHPO. Furthermore, the historic integrity of the Sawtooth Bridges has been compromised due to several substantial repairs to the bridges during the late 20th century. However, the bridges are within the boundaries of the Historic District, were constructed during the period of significance identified for the Historic District, and relate to historical themes identified as relevant to the significance of the Historic District. As stated in NJHPO's letter dated April 3, 2017, both Amtrak Bridge 7.80 and 7.96 are considered contributing resources to the Pennsylvania Railroad New York to Philadelphia Historic District. The Pennsylvania Railroad New York to Philadelphia Historic District was determined eligible for the NRHP in 2002.

Old Main Delaware Lackawanna & Western Railroad (Morris & Essex Rail Line right-ofway from Hudson, Hoboken City, to Warren, Washington Township, and along Warren Railroad to the Delaware River; within architectural APE in Kearny). The Delaware Lackawanna & Western (DL&W) Railroad was chartered in 1815, to transport anthracite coal from Pennsylvania's Lackawanna Valley to Hoboken where it could be distributed to eastern markets. The DL&W Line later offered passenger service, allowing inhabitants of New Jersey towns and countryside to access the ferries to New York City located in Hoboken. The DL&W set standards for passenger service and safety at the turn of the century, and was the first line to use telephones rather than telegraphs for train dispatching. Suburban stations had a distinctive standardized design featuring hipped roofs and porches. The NJHPO determined the railroad eligible for the NRHP on September 24, 1996.

Ref No	Resource Name	Location	Municipality in the APE	NRHP-Listed	NRHP-Eligible
1	Pennsylvania Railroad New York to Philadelphia Historic District	Northeast Corridor, Pennsylvania to New York	Kearny & Harrison		Х
2	Old Main DL&W Railroad Historic District	Morris & Essex Railroad ROW from Hudson, Hoboken City, to Warren, Washington Twp., and along Warren Railroad to the Delaware River	Kearny		Х
3	Substation 4	Northeast Corridor (former Pennsylvania Railroad) at New Jersey Turnpike, Milepost 7.2	Kearny		Х
4	Hudson Tower	Between Northeast Corridor and Morris & Essex at eastern boundary of Harrison	Kearny		Х
5	Pennsylvania Railroad Bay Branch Historic District	Traverses NJ Turnpike and Passaic River in APE	Newark and Kearny		Х
Notes	Notes: See Figure 3-5 for reference.				

Table C-1Architectural Resources within APE

Substation 4 (Northeast Corridor at New Jersey Turnpike, Kearny). The building at Substation 4 is a two-and-a-half-story red brick structure with large round-arched windows and doorways. The New Jersey Turnpike is located almost directly above the substation building. The building has a large stone plaque set into the façade, inscribed with the words "Sub-Station 4, Pennsylvania Railroad." According to the inventory form completed for this structure, the building contains a single room on the basement and second-story levels. The first floor contains a workspace and "separate battery and wash rooms for employees."

The Meadows Division of the Pennsylvania Railroad (now the Northeast Corridor) was completed and put into service in 1910. Substation 4 was built as part of the original DC electrical transmission system and supplied electric traction power to this section of the railroad. This portion of the railroad was converted to an AC system in the early 1930s. At the time of the

NRHP eligibility assessment for the substation (1994), the structure's function had already been replaced by the fenced-in compound designated as Substation 41. NJHPO determined the Substation 4 building eligible for the NRHP on September 12, 1994.

Hudson Tower (Northeast Corridor at Milepost 7.2, Kearny). The Hudson Tower was identified as NRHP-eligible by NJHPO in 1997 as part of an evaluation of multiple interlocking towers along the Northeast Corridor. The NJHPO's evaluation of the property (on file at NJHPO's offices) noted that interlocking towers represent a "significant and increasingly endangered property type," which are "commonly under-acknowledged in the development and expansion of railroads." The Hudson Tower specifically was determined eligible under Criterion C "as an intact example of an early twentieth century railroad signal tower representing the application of the 'automatic safety principle' to railroad operations to increase reliability and safety." It was also cited as the last remaining element of the former Manhattan Transfer Station, which was the point where steam locomotives were replaced with electric locomotives for passage through the tunnel to New York's Penn Station. This complex is significant for its association with the electrification of the railroads and was part of a cultural gateway to New York City. Therefore, the Hudson Tower was also determined eligible under Criterion A for its association with this complex and cultural history.

Pennsylvania Railroad New York Bay Branch Historic District (Newark and Kearny). Built in sections between 1889 and 1904 as part of the PRR's massive and comprehensive program to reach the Port of New York, the PRR New York Bay Branch Historic District (NJHPO Opinion: 4/22/2005) was determined eligible for the NRHP under Criterion A in the area of transportation for its contribution to the state's industrial, commercial, and urban expansion. The railroad became the critical link in both local and regional rail systems, enabling the PRR to secure a dominant place in the nation's busiest port and establishing itself as the country's largest railroad during the twentieth century. The PRR New York Bay Branch Historic District is also eligible under Criterion C for its significant engineering and collection of contributing bridges, culverts, yards, and surviving overhead electrified catenary system. The railroad's period of significance extends from 1889, when two predecessor railroads of the PRR New York Bay Branch Historic District received their corporate charters, to 1945, when the railroad completed the last transfer bridge at the contributing Greenville Yard Piers. The boundaries of the eligible historic district include the historic right-of-way.

D. NO ACTION ALTERNATIVE

ARCHAEOLOGICAL RESOURCES

Absent the Proposed Project, it is assumed that the potentially archaeologically sensitive depths within the archaeological APE would remain undisturbed. Therefore, the No Action Alternative would not result in impacts on archaeological resources.

ARCHITECTURAL RESOURCES

Under the No Action Alternative, the condition of the Sawtooth Bridges would continue to deteriorate. Extensive repairs to the Sawtooth Bridges would be necessary to maintain them as safe operable structures. These repairs would likely diminish their historic integrity, possibly resulting in an adverse effect to the Sawtooth Bridges, even if they were retained rather than

demolished. Moreover, the No Action Alternative would not satisfy the Proposed Project's purpose and need.

E. PROBABLE IMPACTS OF THE PROPOSED PROJECT

ARCHAEOLOGICAL RESOURCES

As described above, an adverse archaeological effect is defined as any disturbance or damage to a significant archaeological resource. Such an effect could occur if construction were to disturb the soil at the same depth where that resource was present. As described previously, the Phase 1A determined that the archaeological APE has low sensitivity for prehistoric resources at depths ranging between 10 to 30 feet and no sensitivity for historic period resources.

As described in the Phase 1A, if undisturbed prehistoric ground surfaces exist at great depths, they may contain archaeological resources that would provide new information about the earliest occupation of the Meadowlands area before the rise of sea levels. However, because the archaeological APE is located at the confluence of several very active rail corridors, no soil borings can be advanced within the boundaries of the project site at this time. Therefore, the extent to which the alluvial soils present beneath the project site have survived the deep disturbance associated with the construction of the railroads, bridges, and their associated utilities is unknown. In those locations where deep disturbance has already occurred, such as the locations of the Sawtooth Bridges themselves, it is expected that there is little chance that archaeologically sensitive depths would remain intact. However, other areas that have not been subjected to deep disturbance, such as the portions of the rail corridor that have been built up and do not contain utilities, could contain undisturbed alluvial soils that could contain archaeological resources. As recommended in the Phase 1A, when the project design is advanced and additional information is known regarding the specific sub-surface impacts of the Proposed Project, those plans will be reviewed by a qualified archaeologist. It is expected that during the engineering phase, the project team will be able to complete a geophysical investigation of the archaeological APE that would involve a series of geotechnical borings. Upon the completion of that investigation, the archaeologists' review of soil boring logs will determine if the Proposed Project could potentially impact archaeologically sensitive depths and to determine those locations where monitoring will be required, should any exist.

If the alluvial soils are determined to be absent within the archaeological APE, no additional archaeological analysis would be required. In the event that soil borings indicate that the potentially sensitive alluvial soil layers are present, or if the results are ambiguous, the Phase 1A recommended archaeological monitoring for those areas where the construction of the Proposed Project would result in disturbance to depths ranging between 10 and 30 feet below the ground surface in previously undisturbed areas. No monitoring was recommended in those locations where deep disturbance has already occurred, such as within the footprints of the existing bridges and in locations where piles have been driven to support the existing tracks.

Finally, in the event that the proposed construction methodology would not allow an archaeologist to monitor the site at depths ranging between 10 and 30 feet below the ground surface (e.g., in those locations where piles will be driven), then no archaeological monitoring is recommended. Prior to any archaeological monitoring, an archaeological monitoring program will be developed in consultation with NJHPO to further investigate the archaeological sensitivity of those areas.

To avoid impacts on archaeological resources, Amtrak will perform additional archaeological investigation as appropriate as described above and as outlined in a Memorandum of Agreement (MOA) between FRA, NJHPO, and Amtrak.

ARCHITECTURAL RESOURCES

As described below, the Proposed Project will not affect the following architectural resources: the Old Main Delaware, Lackawanna, & Western Historic District (NRHP-eligible); Substation 4 (NRHP-eligible); Hudson Tower (NRHP-eligible); or the Pennsylvania Railroad New York Bay Branch Historic District (NRHP-eligible). None of these resources would be directly affected by project construction. Furthermore, while the context of these resources would be somewhat altered by the removal of the existing Sawtooth Bridges and the construction of new bridges carrying the Northeast Corridor, the overall context of these resources is not expected to be substantially changed. The Proposed Project would replace existing railroad-related structures with new railroad-related structures, and therefore, the use, atmosphere, and overall conditions of the resources' context would remain largely the same.

The Proposed Project would have a direct effect on the Pennsylvania Railroad New York to Philadelphia Historic District (NRHP-eligible), since it would result in the removal of the Sawtooth Bridges, which are considered a contributing element within that Historic District. As set forth in the draft MOA, ongoing consultation will be undertaken among FRA, NJHPO, and Amtrak as project engineering proceeds to minimize or mitigate the adverse effects to the Pennsylvania Railroad New York to Philadelphia Historic District.

While the Pennsylvania Railroad New York to Philadelphia Historic District retains historic integrity overall, it should be noted that the historic district in the architectural APE has undergone extensive alterations. In the 1990s, the Kearny Connection was created by linking the New Jersey Transit Morristown Line (Morris & Essex Railroad) with the NEC (Hanley 1991). Other improvements were made in the late-20th and early-21st century as part of the use and maintenance of the active rail corridor, including track work, the construction of instrument houses and other modifications to allow for high speed rail service at the Kearny Connection and the surrounding area (Railway Age 1995). The Portal Signal Tower was demolished in the mid-1990s, further altering the fabric of the historic district. In addition to these alterations, numerous 'state of good repair' projects have replaced or repaired rail, ties, ballast, catenary system components, and other physical features of the Northeast Corridor in the architectural APE. Furthermore, substantial changes were made to the Sawtooth Bridges in 1996 and in 2004, including repairs of cracked girders and encasing columns in concrete. In light of the extensive recent alterations to the fabric and appearance of the Pennsylvania Railroad New York to Philadelphia Historic District in the architectural APE, the anticipated effects of the Proposed Project would be adverse insofar as they would add to the cumulative alterations of the resource's original fabric and appearance that have occurred in the architectural APE in recent decades.

No physical changes are proposed to Substation 4 (NRHP-eligible) or the Hudson Tower; however, project-related construction could occur in close proximity to Substation 4, and therefore could result in accidental damage to the resource. Ongoing consultation will be undertaken among FRA, NJHPO, and Amtrak as project designs progress. As part of this consultation, protection measures, in the form of a Construction Protection Plan, will be developed in consultation with NJHPO, as set forth in the project's draft MOA. The

Construction Protection Plan will set forth the specific measures to be used, and specifications that will be applied, to protect these architectural resources during the construction period.

CUMULATIVE IMPACTS

A number of federally funded projects along the Pennsylvania Railroad New York to Philadelphia Historic District are underway and/or in the planning or engineering stages. Some of these projects will add to the extensive alterations of the Historic District since the time that it was determined NRHP-eligible in on October 2, 2002. The Portal Bridge Capacity Enhancement Project and other projects along the Northeast Corridor in the area would remove or alter features that contribute to the historic character of the Pennsylvania Railroad New York to Philadelphia Historic District. In combination with the impacts of these other projects, the proposed project would further diminish the integrity of the Historic District. However, notwithstanding these incremental changes to the Historic District, the property would remain NRHP-eligible. No cumulative impacts on this or other historic properties in the APE have been identified.

F. MITIGATION MEASURES

As mandated by Section 106 of the NHPA of 1966, FRA and Amtrak have participated in an ongoing consultation process with the NJHPO with respect to potential effects on archaeological and architectural resources. As part of this ongoing process, measures have been explored to avoid, minimize, or mitigate adverse effects to archaeological and architectural resources. Development of these measures is set forth in a draft MOA, to be executed by FRA, NJHPO, and Amtrak as part of this NEPA documentation. The draft MOA (see Appendix 1-B) includes the following provisions:

- Amtrak will produce documentation of the Sawtooth Bridges that is consistent with the standards of the NPS Level II Historic American Engineering Record (HAER) documentation.
- Amtrak will prepare and implement a Construction Protection Plan (CPP) to avoid construction-related damage to historic properties within close proximity to Proposed Project activities.
- Amtrak will ensure that the preliminary and final plans and specifications for the proposed new bridges adhere to the *Secretary of the Interior's Standards and Treatments for Historic Properties* and are compatible with the historical character of the Pennsylvania Railroad Historic District.
- Amtrak will consult with FRA and NJHPO in the development of bridge plans at the preliminary (30 percent) and pre-final (approximately 75 percent) design stages.
- Amtrak will reevaluate the period of significance for the Pennsylvania Railroad New York to Philadelphia Historic District.
- If Amtrak's archaeologist, in consultation with FRA and NJHPO, determines that archaeological monitoring is warranted, Amtrak will develop an archaeological monitoring plan in consultation with FRA and NJHPO. Any monitoring plan developed in consultation with NJHPO will include provisions for consulting with Indian Tribes, as appropriate, in the event of a discovery.

• If potentially significant archaeological resources are encountered during monitoring, Amtrak and FRA will consult with NJHPO pursuant to 36 CFR 800.4(b) to complete identification efforts.

G. REFERENCES

AKRF, Inc.	
2015	"Phase 1A Archaeological Documentary Study: Sawtooth Bridges Replacement Project; Kearny, Hudson County, New Jersey." August 2016. Prepared for the National Railroad Passenger Corporation (Amtrak), Philadelphia, PA.
Couper, William	
1912	History of the Engineering Construction and Equipment of the Pennsylvania Railroad Company's New York Terminal and Approaches. New York: Isaac Blanchard Co.
Grumet, Robert S	
1981	<i>Native American Place Names in New York City.</i> New York: Museum of the City of New York.
Hanley, Robert	
1991 "N	ew Jersey to Add Trains to Midtown." In, <i>The New York Times</i> . May 1, 1991: page B2. New York, NY.
Jonnes, Jill	
2007	Conquering Gotham: A Gilded Age Epic: The Construction of Penn Station and Its Tunnels. New York: Viking.
Lane, Wheaton J.	
1939	<i>From Indian Trail to Iron Horse: Travel and Transportation in New Jersey, 1620-1860.</i> Princeton, NJ: Princeton University Press.
Langan Engineer 2012	ing & Environmental Services "Archaeological Monitoring Report During Construction of the Slurry Wall for the Standard Chlorine Chemical Company Site, Interim Response Action Workplan, Town of Kearny, Hudson County, New Jersey." Prepared for Peninsula Restoration Group for submission to the United States Environmental Protection Agency and the State of New Jersey Department of Environmental Protection Historic Preservation Office.
Marshall, Stepher	n
2004	"The Meadowlands Before the Commission: Three Centuries of Human Use and Alteration of the Newark and Hackensack Meadows." In, <i>Urban Habitats</i> 2(1): pp. 4 to 27.
New Jersey Histo 1997	oric Preservation Office [NJHPO] <i>New Jersey Historic Preservation Plan.</i> Trenton: Department of Environmental Protection; Division of Parks & Forestry, Historic Preservation Office.
Railway Age 1995	"The Railway Market." In. <i>Railway Age</i> , 196(6): page 8.
Van Winkle, Dan 1924	History of the Municipalities of Hudson County, New Jersey 1630-1923. Volume I. New York and Chicago: Lewis Historic Publishing Company, Inc.

∗

Appendix 1 – D PHASE 1A ARCHAEOLOGICAL DOCUMENTARY STUDY

Phase 1A Archaeological Documentary Study:

Sawtooth Bridges Replacement Project

Kearny, Hudson County, New Jersey

Prepared for:

National Railroad Passenger Corporation (Amtrak) 30th Street Station 2955 Market Street, 5th Floor South Philadelphia, PA 19104

Prepared by:

AKRF, Inc. 440 Park Avenue South, 7th Floor New York, New York 10016

August 2016

Executive Summary

INTRODUCTION AND PROJECT DESCRIPTION

The National Railroad Passenger Corporation (Amtrak) is proposing the Sawtooth Bridges Replacement Project in the Town of Kearny and the Town of Harrison in Hudson County, New Jersey (see **Figure 1**). The project would involve the replacement of Amtrak Bridges No. 7.80 and No. 7.96, which are collectively referred to as the "Sawtooth Bridges." Amtrak Bridge No. 7.80 carries Amtrak's Northeast Corridor (NEC) over four New Jersey Transit Corporation (NJ TRANSIT) rail tracks that serve the Morris & Essex Line. Amtrak Bridge No. 7.96 carries the NEC over one Port Authority Trans-Hudson Corporation (PATH) Newark–World Trade Center (WTC) rail track and one Conrail Center Street Branch rail track. The Sawtooth Bridges are located along a critical segment of the NEC between Newark, New Jersey and New York, New York. The project site includes an approximately 1.1-mile long segment of the NEC in Harrison and Kearny, New Jersey, located roughly between mile post (MP) 8.3 on the west end (Hudson Interlocking) and MP 7.2 (Swift Interlocking) on the east end.

This document has been prepared in accordance with the National Environmental Policy Act (NEPA); the New Jersey Register of Historic Places Act (NJSA); Section 4(f) of the United States Department of Transportation (DOT) Act; and Section 106 of the National Historic Preservation Act of 1966 (as amended) and associated implementing regulations in 36 C.F.R. 800. Per Subpart A, Section 800.2(a)(3) and 800.2(c)(4) of 36 C.F.R. 800, FRA is authorizing the project sponsors, as an applicant for federal approvals, to prepare information, analyses, and recommendations regarding Section 106 consultation for the referenced project. Copies of this report will be on file at Amtrak, FRA, and NJHPO.

CONCLUSIONS

As part of the background research for this Phase 1A Archaeological Documentary Study, various primary and secondary resources were analyzed, including historic maps and atlases, historic photographs and lithographs, newspaper articles, and local histories.

PREHISTORIC ARCHAEOLOGICAL SENSITIVITY ASSESSMENT

The prehistoric sensitivity of project sites in the northeastern United States is generally evaluated by a site's proximity to level slopes, water courses, well-drained soils, and previously-identified prehistoric archaeological sites. The project site was historically inundated tidal marsh that was filled as the site was converted for rail use. The project site would therefore not have been an ideal site for camping or hunting and gathering, or seasonal occupation during the time that it was inundated. However, prior to the rise of sea levels several thousands of years ago, the site would have been dry land that may have been inhabitable by the earliest groups of humans that occupied the region during the prehistoric period. Soil borings suggest that the boundary between alluvial soils and glacial till, possibly representing the premarsh ground surface within the project site, is situated between 10 and 30 feet below the current ground surface. It is therefore possible that a precontact ground surface could have been located at that depth at one time. However, such a ground surface may have been extensively disturbed as a result of disturbances associated with driving piles and constructing deep foundations to support the rail structures within the landfill.

If undisturbed prehistoric ground surfaces are present at great depths beneath the project site, they would be considered to be archaeologically sensitive. Given the extent to which railroad-related disturbance likely disturbed those depths, the project site is determined to have low potential to yield intact prehistoric archaeological deposits at depths of approximately 10 to 30 feet or more below the ground surface. If the soils in this area were intact, they could potentially yield archaeological resources associated with the prehistoric occupation of the project site.

HISTORIC PERIOD ARCHAEOLOGICAL SENSITIVITY ASSESSMENT

The project site was occupied by inundated marshland until the early 19th century when the first railroad tracks were constructed through the area. No evidence exists to suggest that the project site was occupied during the historic period with the exception of a possibly nursery/seed production facility. Extensive development and redevelopment has occurred within the project site as a result of the construction and reconstruction of various railroad-related structures, including bridges, berms, catenary poles, utilities, and other infrastructure. The project site is therefore determined to have no sensitivity for archaeological resources dating to the historic period.

RECOMMENDATIONS

The project site has been determined to have low sensitivity for prehistoric resources at depths greater than 10 to 30 feet and no sensitivity for historic period resources. If undisturbed prehistoric ground surfaces exist at great depths, they may contain archaeological resources that would provide new information about the earliest occupation of the Meadowlands area before the rise of sea levels. However, because no soil borings can be advanced within the boundaries of the project site, the extent to which the alluvial soils present beneath the project site have survived the deep disturbance associated with the construction of the railroads, bridges, and their associated utilities is unknown. In those locations where deep disturbance has already occurred, such as the locations of the Sawtooth Bridges themselves, it is expected that there is little chance that archaeologically sensitive depths would remain intact. However, other areas that have not been subjected to deep disturbance, such as the portions of the rail corridor that have been built up and do not contain utilities, could contain undisturbed alluvial soils that could contain archaeological resources.

Archaeological monitoring is recommended for those areas where the construction of the proposed project would result in disturbance to depths greater than 10 feet below the ground surface in previously undisturbed areas. No monitoring is recommended in those locations where deep disturbance has already occurred, such as within the footprints of the existing bridges and in locations where piles have been driven to support the existing tracks. When the project design is advanced and additional information is known regarding the specific sub-surface impacts of the Proposed Project, those plans will be reviewed by a qualified archaeologist. The archaeologist will determine if the Proposed Project could potentially impact archaeologically sensitive depths and to determine those locations where monitoring will be required, should any exist. In the event that soil borings can be advanced within the project site, they should also be reviewed by an archaeologist to determine if potentially sensitive alluvial deposits such as those observed in adjacent areas are present within the project site to further clarify those locations that would require archaeological monitoring during construction. Finally, in the event that the proposed construction methodology would not allow an archaeologist to monitor the site at depths greater than 10 feet (e.g., in those locations where piles will be driven), then no archaeological monitoring is recommended. Prior to any archaeological monitoring, an archaeological monitoring program will be developed in consultation with NJHPO to further investigate the archaeological sensitivity of those areas.

Table of Contents

Executive Summary	
Chapter 1: Introduction and Methodology	1
A. Introduction	1
B. Proposed Project Description	1
C. Historic Districts Within the Project Site	2
D. Research Goals and Methodology	3
Chanter 2. Background Research	5
A Introduction	5
B Environmental and Physical Settings	5
Geology and Bedrock	5
Hydrology	5
Topography	6
Soils	7
C Regional Palecenvironment	/
D Environmental Changes During the Historic Period	8
Exploitation of Resources in the Historic Period	0
Landscape Transformation in the 19th and 20th Centuries	0
E Current Project Site Conditions	10
E. Previous Cultural Resources Investigations in the Vicinity	11
Portal Bridge	11
Access to the Region's Core (ARC)	12
Standard Chlorine Chemical Site: Archaeological Monitoring	12
Standard Chlorine Chemical Site. Arenaeological Monitornig	12
Chapter 3: Prehistoric Period	13
A. Prehistoric Context.	13
Paleo-Indian Period (11,500 to Approximately 10,000 Years BP)	13
Archaic Period (Approximately 10,000 to 3,000 Years BP)	14
Woodland Period (3,000 BP-AD 1500)	15
European Intrusion/Contact Period (AD 1500-1/00)	15
B. Previously Identified Native American Archaeological Sites	17
Chapter 4: the Historic Period	19
A. Introduction	19
B. Historical Context for the Project Site	19
The Early History of Harrison and Kearny	19
The Construction of Railroads and Rise of Industry in the 19th Century	20
Expansion and Modernization of the Railroad in the 20th Century	22
C. The Development History of the Project Site	22
Agricultural Cultivation Within the Meadows	23
Railroad Expansion	24
The Rise of Industry	25
Chapter 5: Conclusions, Interpretations, and Recommendations	27
A. Sensitivity Assessment.	27
Disturbance Assessment	27
Prehistoric Sensitivity Assessment	27
Historic Sensitivity Assessment	28
B. Recommendations	28
References	30

Figures	
Photographs	
Appendix A:	Qualifications
Appendix B:	Soil Borings Completed as Part of Previous Projects in the Vicinity of the Archaeological APE

Table 1	Project Area Soils	.7
Table 2	Previously Identified Prehistoric Archaeological Sites	17

List of Figures

List of Tables

Figure 1:	USGS Quad Maps Showing the Project Location
Figure 2:	Aerial Photograph Showing Historic Districts
Figure 3:	Ca. 1844-1845 Hassler Coastal Survey
Figure 4:	USDA Soils Map
Figure 5:	1860 Walling Map
Figure 6:	1898 USGS Map

List of Photographs

See Figure 2 for camera angle

Photograph 1:	View west from the northern side of the project site; one of the Sawtooth Bridges is
	located at the left of the photo, leading to the elevated embankment that carries the NEC
	line and south of the built-up area on which the NJ TRANSIT tracks are located.

- Photograph 2: View east from the northern side of the project site towards one of the Sawtooth Bridges (at the center of the photograph).
- **Photograph 3:** View east from a point near the western end of the project site, showing the changes in grade along the NEC (at left) and the NJ TRANSIT lines (center).
- **Photograph 4:** Looking west at the western end of the project site. The elevated embankment that carries the NEC line (at right) slopes down towards the ground surface in this location.
- Photograph 5: View south of the change in grade between the NEC and the NJ TRANSIT tracks in the vicinity of a brick and concrete drainage culvert that carries Frank's Creek to the Passaic River.
- **Photograph 6:** The northern side of the project site in the vicinity of the New Jersey Turnpike Viaduct, with Substation No. 4 visible in the background of the photograph.
Chapter 1:

Introduction and Methodology

A. INTRODUCTION

The National Railroad Passenger Corporation (Amtrak) is proposing the Sawtooth Bridges Replacement Project in the Town of Kearny and the Town of Harrison in Hudson County, New Jersey (see **Figure 1**). The project would involve the replacement of Amtrak Bridges No. 7.80 and No. 7.96 which are collectively referred to as the "Sawtooth Bridges." Amtrak Bridge No. 7.80 carries Amtrak's Northeast Corridor (NEC) over four New Jersey Transit Corporation (NJ TRANSIT) rail tracks that serve the Morris & Essex Line. Amtrak Bridge No. 7.96 carries the NEC over one Port Authority Trans-Hudson Corporation (PATH) Newark–World Trade Center (WTC) rail track and one Conrail Center Street Branch rail track. The Sawtooth Bridges are located along a critical segment of the NEC between Newark, New Jersey and New York, New York. The project site includes an approximately 1.1-mile long segment of the NEC in Harrison and Kearny, New Jersey, located roughly between mile post (MP) 8.3 on the west end (Hudson Interlocking) and MP 7.2 (Swift Interlocking) on the east end. The project is just north of a bend in the Passaic River.

The Sawtooth Bridges were constructed in 1907 and are nearing the end of their functional life. Efforts were made to rehabilitate the bridges in the 1980s, however, recent inspections have indicated that the Sawtooth Bridges continue to deteriorate and exhibit fatigue. Amtrak conducted an inspection and condition survey in 2013, which found the Sawtooth Bridges to be in poor to very poor condition with some components that might be characterized as serious and in need of replacement (Portal Partners 2013a). The increasing age of the Sawtooth Bridges, their structural condition, and their two speed-restricted tracks limit the efficiency and reliability of rail operations along the bridges and in this segment of the NEC. In addition, demand for rail service along the NEC is at record levels. The NEC cannot continue to readily accommodate this rising demand without difficulties due to infrastructure that is highly constrained and in need of repair. The replacement of the Sawtooth Bridges is critical to Amtrak and other users of the NEC as well as to adjacent railroads.

This document has been prepared in accordance with the National Environmental Policy Act (NEPA); the New Jersey Register of Historic Places Act (NJSA); Section 4(f) of the United States Department of Transportation (DOT) Act; and Section 106 of the National Historic Preservation Act of 1966 (as amended) and associated implementing regulations in 36 C.F.R. 800. Per Subpart A, Section 800.2(a)(3) and 800.2(c)(4) of 36 C.F.R., FRA is authorizing the project sponsors, as an applicant for federal approvals, to prepare information, analyses, and recommendations regarding Section 106 consultation for the referenced project. The principle investigator for this Phase 1A Archeological Documentary Study was Elizabeth D. Meade, MA, RPA (see **Appendix A**). Portions of the report were researched and written by Molly McDonald, MA, RPA and additional research assistance was provided by JoLayne S. Morneau, MS.

B. PROPOSED PROJECT DESCRIPTION

The project site is located in the Hackensack Meadowlands District in northeastern New Jersey. The area of potential effect (APE) for archaeological resources includes all areas that could experience ground

disturbance under the Proposed Project alternatives (see **Figures 1 and 2**). The project site analyzed in this Phase 1A Archaeological Documentary Study therefore includes those portions of the NEC that will be subjected to subsurface impacts as part of the Proposed Project (described below).

The Proposed Project will include the decommissioning and removal of the Sawtooth Bridges; an increase in the number of tracks from two to four; and the construction of three new bridges along the NEC to enhance its efficiency, speed, and reliability. The three new bridges will include: 1) a single-track viaduct to carry Morris & Essex Line Track 5; 2) a two-track viaduct to carry NEC Tracks 3 and 4 (and to temporarily carry NEC Tracks 2 and 3 during the construction period); and 3) a two-track viaduct to carry NEC Tracks 1 and 2. Other adjustments to various NEC railroad elements will be necessary, including the relocation of interlockings and crossovers; the realignment of Conrail's Center Street Branch; and the installation of new catenary supports and catenary poles.

Amtrak, NJ TRANSIT, Conrail, and PATH each own various parcels in the project area. The Sawtooth Bridges Replacement Project would be constructed entirely within existing railroad right-of-way. No residential or business displacements would occur. The project will require property acquisition among railroads, as well as easements across various property types, as follows:

- The relocated NJ TRANSIT Track 5 will partially be on property owned by Conrail. This property will likely be purchased from Conrail for NJ TRANSIT;
- Proposed Tracks 3 and 4 (temporary Tracks 3 and 2) will require aerial or bridge easements from NJ TRANSIT, PATH, and Conrail;
- Track alignments will pass under the New Jersey Turnpike, which has easements over the NEC;
- Two gas valving facilities owned by Williams-Transco and PSE&G will need to be relocated;
- Third-party fiber optic lines will need to be temporarily relocated, requiring a temporary construction easement from the Town of Kearny; and
- Right-of-entry permits with adjacent railroads and temporary access permits with the New Jersey Turnpike Authority will be required to access the site for construction.

There are four foundation types that were evaluated for the proposed Sawtooth Bridge replacement structures new north and south viaducts and retaining walls, including: spread footings, driven pipe piles, drilled shafts and micropiles. Spread footings may be suitable for support of some types of retaining walls. For the viaduct structure, deep foundations are a more suitable option. Micropiles are a well-suited alternative because subsurface disturbance to those facilities are minimized in comparison to drilled shafts and driven steel pipe piles.

C. HISTORIC DISTRICTS WITHIN THE PROJECT SITE

The project site is partially located within two historic districts that are eligible for listing on the State and National Registers (S/NR) of Historic Places (see **Figure 2**). The first is the Pennsylvania Railroad New York to Philadelphia Historic District, which covers the tracks of Amtrak's Northeast Corridor between Pennsylvania and New York. The 8-mile electrified rail extension of the Pennsylvania Railroad was built during the first decade of the 20th century between Midtown Manhattan and Newark, New Jersey. The development project also included the construction of New York Pennsylvania Station (PSNY) and a system of railroad tubes beneath the Hudson River between New York and New Jersey, completed in 1910, which was an engineering marvel that changed the nature of railroad operations in New York City and the surrounding region. The Pennsylvania Railroad system also included several bridges, including the Sawtooth Bridges, which carry the railroad over water, marsh, and other railroads. The Pennsylvania Railroad New York to Philadelphia District, now known as the Northeast Corridor, was determined to be S/NR-eligible by NJHPO in 2002.

The second historic district, which covers a smaller portion of the project site, is the Old Main Delaware Lackawanna & Western Rail Road (DL&WRR) Historic District on the Morris & Essex Rail Line rightof-way now operated by NJ TRANSIT. The DL&WRR was chartered in 1815 and was initially constructed to transport anthracite coal from Pennsylvania's Lackawanna Valley to Hoboken where it could be distributed to eastern markets. The portion of the DL&WRR that runs between Newark and New York City was constructed in the early 1860s and became incorporated into the DL&WRR in 1868. The DL&WRR Line later offered passenger service, allowing inhabitants of New Jersey towns and countryside to access the ferries to New York City located in Hoboken. The DL&WRR set standards for passenger service and safety at the turn of the 20th century, and was the first line to use telephones rather than telegraphs for train dispatching. Suburban stations had a distinctive standardized design featuring hipped roofs and porches. The NJHPO determined that the DL&WRR Historic District is S/NR-eligible on September 24, 1996.

D. RESEARCH GOALS AND METHODOLOGY

The following Phase 1A Archaeological Documentary Study of the Sawtooth Bridges Replacement project site has been designed to follow the guidelines and standards for archaeological investigations issued by NJHPO. The study documents the development history of the proposed project site as well as its potential to yield archaeological resources, including both prehistoric and historic cultural resources. In addition, this report documents the current conditions of the project site and previous cultural resource investigations that have taken place in the vicinity.

This Phase 1A Archaeological Documentary Study has four major goals: (1) to determine the likelihood that the project site was occupied during the prehistoric (i.e., Native American) and/or historic periods; (2) to determine the effect of subsequent development and landscape alteration on any potential archaeological resources that may have been located at the project site; (3) to make a determination of the project site's potential archaeological sensitivity; and (4) to make recommendations for further archaeological analysis, if necessary. The steps taken to fulfill these goals are explained in greater detail below.

The first goal of this documentary study is to determine the likelihood that the project locations were inhabited during the prehistoric or historic periods and identify any activities that may have taken place on the project site that would have resulted in the deposition of archaeological resources. In order to determine the likelihood of the project site's occupation during the prehistoric and historic periods, documentary research was completed to establish a chronology of the project site's development, landscape alteration, and to identify any individuals who may have owned the land or worked and/or resided there, and to determine if buildings were present on the project locations in the past.

Data was gathered from various published and unpublished primary and secondary resources, such as historic maps, topographical analyses (both modern and historic), historic photographs, newspaper articles, local histories, and previously conducted archaeological surveys. These published and unpublished resources were consulted at various repositories. Online textual archives, such as Google Books and the Internet Archive Open Access Texts, were also accessed. Information concerning known and potential archaeological resources in the project site was obtained through a review of previously conducted cultural resource investigations performed in the project site vicinity, listings of previously identified archaeological sites on file at the New Jersey Historic Preservation Office (NJHPO) and the New Jersey State Museum (NJSM). Finally, a site walkover was conducted to observe current site conditions, including any visible evidence of past disturbance.

The second goal of this Phase 1A study is to determine the likelihood that archaeological resources could have survived intact on the project site after development and landscape alteration (i.e., erosion, grading,

Sawtooth Bridges Replacement Project—Phase 1A Archaeological Documentary Study

filling, etc.). Potential disturbance associated with paving and utility installation was also considered. Historic maps documenting structures on the project location were analyzed and historic and current topographical maps were compared to determine the extent to which the project locations have been disturbed. After identifying the likelihood that archaeological resources were deposited on the project site and the likelihood that they could remain intact given subsequent development and landscape alteration, a sensitivity determination was made for the project locations for both prehistoric and historic period resources.

The third goal of this study was to make a determination of the project site's archaeological sensitivity. The "Guidelines for Phase 1 Archaeological Investigations" issued by NJHPO¹ indicate that four categories of sensitivity should be considered: No sensitivity; low sensitivity; medium/moderate sensitivity; and high sensitivity. For the purposes of this study, those terms are defined as follows:

- No Sensitivity: Those locations that have been sufficiently disturbed to the extent that archaeological resources could not survive intact.
- Low: Areas of low sensitivity are those where the original topography would suggest that Native American sites would not be present (i.e., locations at great distances from fresh and salt water resources), locations where no historic activity occurred before the installation of municipal water and sewer networks, or those locations determined to be sufficiently disturbed so that archaeological resources are not likely to remain intact.
- Medium/Moderate: Areas with topographical features that would suggest Native American occupation, documented historic period activity, and with some disturbance, but not sufficient disturbance to eliminate the possibility that archaeological resources are intact on the project site.
- High: Areas with topographical features that would suggest Native American occupation, documented historic period activity, and minimal or no documented disturbance.

As mentioned above, the fourth goal of this study was to make recommendations for additional archaeological investigations where necessary. Phase 1B testing is generally warranted for areas determined to have moderate sensitivity or higher. Archaeological testing is designed to determine the presence or absence of archaeological resources that could be impacted by a proposed project. Should they exist at the project locations, such archaeological resources could provide new insight into the prehistoric occupation of the Passaic River waterfront, the transition from Native American to European settlement, or the historic period occupation of the project site.

¹ Accessible at: http://www.nj.gov/dep/hpo/lidentify/arkeoguide1.htm.

Chapter 2:

Background Research

A. INTRODUCTION

This chapter provides a summary of background research that was completed to identify and define the environmental context and physical setting of the project site (including geology, topography, soils, and hydrology); the characteristics of the Paleoenvironment (the physical setting prior to the time of European settlement); the site's current conditions and vegetation; and a brief description of previous archaeological investigations that have taken place in the vicinity. Additional, more extensive background research was completed to identify the occupation and development histories of the project site during the prehistoric and historic periods. That information is summarized in greater detail in **Chapter 3: Prehistoric Period** and **Chapter 4: The Historic Period**.

B. ENVIRONMENTAL AND PHYSICAL SETTINGS

GEOLOGY AND BEDROCK

The project site is located within the Newark Basin portion of New Jersey's Piedmont Physiographic Province (New Jersey Department of Environmental Protection [NJDEP] 1999). This area is characterized by the Meadowlands of the Hackensack River Valley. The project site is located in a lowland area characterized by recent "beach and estuarine deposits" dating to the Holocene, beginning around 12,000 years ago, concurrent with the arrival of the first humans in the region (ibid). Also called the "Newark Basin," bedrock in the area "consists mainly of gently inclined strata of Upper Triassic red sandstones and shales, but includes interbedded green and black shales and some conglomerates" (Schuberth 1968: 14).

The Meadowlands area is surrounded by bedrock dating to the Triassic and Jurassic periods and was formed between approximately 230 to 190 million years ago (Schuberth 1968). To the north and west of the APE, bedrock is characterized by siltstone, shale, sandstone, and conglomerate sedimentary rock and to the east, the bedrock is composed of diabase (ibid). To the northeast of the site, on the eastern side of the Hackensack River, is Snake Hill, a diabase rock outcrop that is part of the Bergen Ridge. Snake Hill and a second, smaller hill known as Little Snake Hill located to the southeast, represent "two small intrusive plugs...[that] probably represent small offshoot stringers of diabasic magma that departed from the major Palisades igneous mass as it moved into the Newark Strata" (ibid: 153). The diabase intrusions stand significantly higher than the surrounding lowlands largely as a result of diabase's resistance to erosion, as compared to the sandstone of the areas to the west (ibid).

HYDROLOGY

The project site is situated on the northern shore of the Passaic River, approximately 1.5 miles north of its confluence with the Hackensack River and Newark Bay. As described above, the site is located within the Meadowlands, which were named for the thick tracts of tidally-inundated salt marsh that covered the area surrounding the confluence of the Passaic and Hackensack Rivers. The existing Cedar Creek Marsh is located to the north and south of the eastern portion of the project site. The creek that drains the marshes

into the Passaic River runs beneath the railroad tracks through a culvert in this location (Portal Partners 2013b). Additional wetlands are mapped in the vicinity of the project site to the west of the New Jersey Turnpike (ibid).

Historic maps—including the 1844-1845 Hassler coastal survey (see **Figure 3**), the 1844 and 1847 Smith maps, the 1849 Sidney map, and the 1873 Hopkins map—depict the low-lying area before landfilling dramatically changed the landscape in the vicinity. While significant portions of the marsh were filled as part of transportation projects (including rail and highway corridors), portions of the Meadowlands remain inundated, including areas to the north and south of the central and eastern portions of the project site (see **Figure 1**). Maps published in the late 19th and early 20th century (e.g., the 1891 Bien and Vermule atlas and the 1891 and 1900 USGS maps) reflect the filling of the area immediately surrounding the project site on the northern side of the Passaic River, although mid-20th century USGS maps again depict portions of that area as tidal marsh.

Maps depict two substantial creeks that drained the marshland, "Frank's Creek," near the western end of the project site, and an unnamed creek near the eastern end that is now part of the Cedar Creek Marshes. Frank's Creek was a substantial stream that extended several miles north of the Passaic River. Portions of the creek are still extant and in the vicinity of the project site, the creek runs through a culvert beneath the railroad tracks. Railroad uses in the surrounding area caused significant changes to the stream, and by the early 20th century it was:

...crossed near the mouth by a great railway grade, bearing the four regular tracks of the Pennsylvania Railroad, the two regular tracks of the Delaware, Lackawanna & Western Railroad, and a number of siding tracks. The creek penetrates this grade through a concrete culvert which has an upstream opening twelve feet wide and six feet high. In this opening are fitted two large tide gates, by means of which the water passes out at low tide...IN addition to the interference which the various grades crossing it set up...the creek is called upon to drain a very much larger area than formerly, and to make matters still worse it is expected to carry the raw sewage of Kearny from that town to the Passaic River. The natural and normal result followed—the channel of Frank Creek became filled with sediment and the sewage spread over sections of the marsh along the banks (New Jersey State Agricultural Experiment Station 1914: 412-413).

The Hackensack and Passaic Rivers originally contained a sufficient quantity of fresh water that they were used as cattle watering locations (Marshall 2004). The saline content of the rivers increased during the 19th and 20th centuries as a result of engineering projects (e.g., the construction of dams and mill ponds) that altered the rivers' course (ibid). Fresh water was further depleted after the Hackensack Water Company began pumping water from the area to neighboring cities (ibid). In the early 20th century, larger-scale dams were constructed in the Hackensack River watershed as the local population expanded and required increased water supply (ibid). The increase in salinity resulted in a change in the plant life in the area over the last two centuries; fresh-water plants, such as common reed (*Phragmities australis*), have been replaced by salt-water plants, such as cordgrass (*Spartina alterniflora*) (ibid). By the late 20th century, the Meadowlands had earned a negative reputation, as an unhealthy and largely unproductive wasteland, unusable for agriculture or development.

TOPOGRAPHY

The modern landscape of the project site is radically different than what was seen a century ago, as landfilling has transformed the former marshlands into dry, developable land. West of the New Jersey Turnpike, the tracks of Amtrak's Northeast Corridor, along the southern side of the project site, run along an artificial, elevated berm and the Sawtooth Bridges. The berm slopes down towards the adjacent grade

near the western end of the project site. To the north of these elevated tracks and passing beneath the Sawtooth Bridges, the existing tracks of the NJ TRANSIT Morris & Essex Line are located on a built-up, gravelly area that is several feet above the ground surface of the adjacent wetlands to the north. Based on comparisons with historic maps, it would appear that the project site is constructed on landfill placed in the Meadowlands in the 19th and 20th centuries as part of the construction of the existing rail line.

SOILS

The United States Department of Agriculture (USDA) National Resources Conservation Service's Web Soil Survey indicates that the project site, along with the entire Amtrak rail corridor in the project vicinity, is characterized by a single soil complex known as "Urban Land, wet substratum" ("URWETB") (see **Figure 4**). This soil type is summarized below in **Table 1**. Immediately to the north of the rail corridor, except in those locations that are underwater, soils are mapped as "Westbrook Mucky Peat," ("WectA") and "Secaucus artifactual fine sandy loam" ("SecA"). As shown in **Table 1**, the three soil types vary in terms of slope, drainage, and landform. However, the rail corridor itself does appear to be urban fill surrounded by areas of open water or deposits typical of marshland.

Table 1Project Area Soils

					0
Series Name	Soil Horizon Depth (in inches)	Texture	Slope (%)	Drainage	Landform
URWETB	M1: 0 to 6	"Material"	0 to 8	Depth to water table = 20 inches	Summit
	M 2: 6 to 20	"Material"			
	2^Cu: 20 to 79	Coarse sandy loam			
SecA	^Au : 0 to 6	Gravelly-artifactual fine sandy loam	0 to 3	Moderately well drained	Backslope
	^Cu1 : 6 to 17	Very artifactual fine sandy loam			
	^Cu2 : 17 to 35	Extremely cobbly- artifactual fine sandy loam			
	^Cu3 : 35 to 65	Extremely cobbly- artifactual fine sandy loam			
WectA	Oe : 0 to 19	Mucky peat	0 to 2	Very poorly drained	Tidal marsh
	Cg : 19 to 59	Silt loam	0 10 2		
Source: Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture: Web Soil Survey, Available online at: http://websoilsurvey.prcs.usda.gov/_Accessed_luly_2015					
Ourvey. Ave	παριό στηπιό αι. πιιμ	.,, woboonou voy.moo.uot	a.gov, Acces	500 001y, 2010.	

SUMMARY OF SOIL BORINGS FROM THE VICINITY OF THE PROJECT SITE

For the purposes of this analysis, several sets of soil boring data from the immediate vicinity of the project site were analyzed. All of the boring logs that were analyzed were included as appendices in Portal Partners' 2013 Alternatives Analysis for the Sawtooth Bridges Project (Portal Partners 2013b). Soil boring logs described in this section are included as **Appendix B**.¹

The most recent information was associated with soil borings completed between 2008 and 2012 as part of the Portal Bridge Capacity Enhancement (PBCE) Project (described in greater detail in **Section F: "Previous Cultural Resources Investigations in the Vicinity"**). These borings were completed across a portion of the project site east of the New Jersey Turnpike. The borings appear to have been located adjacent to the railroad tracks within or in the immediate vicinity of the existing marshland on both the

¹ The soil boring logs included in Appendix B originally appeared as Appendix K in Portal Partners 2013b.

north and south sides of the existing rail lines. The borings were advanced to great depths and encountered bedrock or weathered/decomposing bedrock at depths between 60 and 100 feet below the ground surface, with the depth of bedrock increasing to the east. The upper levels of each of the borings (between the ground surface and a depth of 40 feet) present a typical profile of fill or organic material at the ground surface; then a deposit of alluvium; then a very thick layer of glacial till. The threshold between the alluvial deposits and the underlying glacial till—possibly representing the ground surface before the rise of sea levels—was identified at varying depths, but was typically observed between 20 and 30 feet below the ground surface.

Additional borings were completed in 1972, 1977, and 1979 as part of various improvement projects associated with the Bellville Turnpike; the Erie Lackawanna Railroad; and the reconstruction of the Newark-Jersey City Turnpike, respectively. One boring was advanced in 1979 east of the Newark-Jersey City Turnpike and south of the railroad tracks—to the northeast of the project site—that identified a layer of organic silt between 7.5 and 9 feet beneath the ground surface. The 1977 boring program was located along the southern side of the rail line west of the New Jersey Turnpike. Three of those borings identified a thin (approximately 1 to 2 feet in thickness) layer or of peat and/or silt at varying depths of 8 to 17 feet below the ground surface. Finally, one of the borings advanced in 1972 identified a peat layer at approximately 7 to 8 feet beneath the ground surface within the location of what was then a proposed new track west of the New Jersey Turnpike and north of the Pennsylvania Railroad tracks.

The combined results of these borings suggest that the pre-inundation ground surface was at variable depths across the project site and surrounding vicinity. The presence of peat or organic silts likely represents what was the bottom of the marsh prior to landfilling. The alluvial soils identified between approximately 10 and 30 feet below the ground surface (the exact depths varied greatly among the borings) are likely similar to alluvial sands identified as archaeologically sensitive at other nearby sites (see below).

C. REGIONAL PALEOENVIRONMENT

Due to the extended glacial period that left the Northeast blanketed in thick ice sheets for thousands of years, the area was not inhabited by humans until approximately 12,500 years ago. The retreat of the glaciers caused sea levels to rise and New Jersey's shoreline may have been as much as 85 feet lower and 80 miles away from its present location when the first Native Americans arrived in the region (NJHPO 1997). With the increase in temperatures and sea levels and the formation of new waterways fed by glacial runoff, a variety of flora and fauna spread throughout the region. At this time, large open conifer forests expanded across the northeast, interspersed with open meadows and marshland (NJHPO 1997; Cantwell and Wall 2001). A wide variety of animal life could also be found, including large mammals such as mammoth, mastodon, caribou, musk ox, moose, as well as smaller mammals such as fox, beaver, hare, and many kinds of marine animals (NJHPO 1997; Cantwell and Wall 2001).

Climate changes continued to reshape the environment of the northeast as time progressed. As the climate grew increasingly warmer, jack pine, fir, spruce, and birch trees were replaced with hardwood forests of red and white pine, oak, and beech (Ritchie 1980). Furthermore, a decrease in glacial runoff resulted in the creation of small bodies of water such as lakes as well as, later on, low-lying marshes and swampy areas (NJHPO 1997). By 10,000 years ago, there was "considerable environmental diversity, with a mosaic of wetlands, oak stands, and a variety of other plant resources...[making it]...an attractive and hospitable quarter for both human and animal populations" (Cantwell and Wall 2001: 53). Warmer temperatures forced the herds of large mammals to travel north before eventually dying out. The new surroundings attracted other animals such as rabbit, turkey, waterfowl, bear, turtles, and white-tailed deer (ibid). The expanded water courses became home to a variety of marine life, and as temperatures warmed, fish became increasingly important to the local environment (ibid).

D. ENVIRONMENTAL CHANGES DURING THE HISTORIC PERIOD

The project site is situated within the area historically known as New Jersey's "Meadowlands," an area of tidal and freshwater wetlands surrounding the Hackensack and Passaic Rivers. In 1896, the total area covered by the Meadowlands was approximately 43 square miles and the wetlands covered the area from Hackensack in the north to Elizabeth in the south (Marshall 2004). The project site was situated within a region specifically known as the "Hackensack Meadows," while the southern portion of the Meadowlands on the west side of Newark Bay was historically known as the "Newark Meadows" (ibid). Extensive landfilling, extraction of natural resources, pollution, environmental factors (e.g., rising sea levels), and urban development has transformed the landscape of the Meadowlands, which now cover approximately 13 square miles (ibid).

EXPLOITATION OF RESOURCES IN THE HISTORIC PERIOD

From the prehistoric period through the late 19th century, local inhabitants used the Meadowlands as a source of shellfish, fish, foul, and other game, as well as for the various maritime resources that the wetlands provided. Newark Bay was famous for oysters, and by the late 19th century had become one of the top producers of seed oysters for surrounding areas, including New York City, as the Newark Bay oysters were found to have better survival rates after transportation (Ingersoll 1881). Though the seed oysters were sent as far as California, by the turn of the century Newark Bay and its surrounding waterways, including the Passaic River, were so polluted that shellfish harvested from the area was no longer fit for human consumption (Kurlansky 2006).

In addition to oysters, between the 1660s and the 1920s, settlers cultivated and harvested salt hay in the area. Salt hay, used for livestock feed and bedding and as a packing material, was the basis of an important industry (Teal 1969: 40). Early settlers divided the wetlands into "long, narrow lots, which were allocated to the male heads of households" who "were required to excavate small ditches (six feet wide and two feet deep) to identify property boundaries" (Marshall 2004: 7). During the last quarter of the 19th century, the harvesting of fish and game from the Meadowlands was curtailed due to pollution and diminishing water flow (ibid). Salt hay production ceased in the early 20th century as salt hay's role in the local economy was reduced (ibid).

Early settlers in the area in the historic period over-exploited the Atlantic white cedar forests that once occupied large tracts of the Meadowlands, including the Hackensack riverfront in Kearny. The wood of the trees, which reached up to 60 feet tall, was extremely rot-resistant, and was ideal for boatbuilding, road construction, and shingle manufacture (Sloane 1965). Cedar from the Meadowlands area was almost exclusively used to create the roofing shingles that were used across the nation in the 18th century (ibid). Not only were live trees extensively harvested, but preserved, fallen trees and stumps were "mined" from depths of approximately 12 feet below the water level of the wetland areas (ibid: 15). By the late 18th century, the cedar forests in the Meadowlands had been all but decimated by the heavy lumbering, and while minor resurgences of growth occurred in later years, Atlantic white cedars no longer grow in the area (ibid). However, the stumps of the former forests are visible at low tide in certain portions of the Meadowlands (Sullivan 1998: 41).

LANDSCAPE TRANSFORMATION IN THE 19TH AND 20TH CENTURIES

In the 19th and 20th centuries, approximately 30 square miles of the Meadowlands were transformed to dry upland as a direct result of human engineering, including both land reclamation—accomplished either through construction of dikes and drains—and land making—involving the deposition of fill material on wetlands (Marshall 2004). Nineteenth century projects were mainly limited to land reclamation: drained wetlands were located below the high tide line, and were intended for development as farm land rather

than residential or industrial use (ibid). The earliest known land reclamation efforts in the Meadowlands were carried out by the Swartwout family from the 1820s to the 1840s (ibid). Later, in the 1860s, engineer Spencer B. Driggs and developer Samuel Pike employed cutting edge methods, involving water pumps, tidal gates, and iron-plated dikes, to reclaim land in the same area (ibid). The iron dikes installed as part of these projects are still intact in some locations, and are visible along the Hackensack River (Sullivan 1998: 51). In the late 19th century, several similar land reclamation projects were spearheaded by Newark businessmen, politicians, and developers (Marshall 2004).

In the 20th century, as population increased and suburbanization resulted in a need for developable land, a more costly method of land making became popular, using fill to elevate made land above the water level, thus allowing its use for industrial, commercial, or residential purposes. Fill materials were often dredged from nearby navigational channels; were excavated as part of development projects in the vicinity; or were simply refuse collected from towns and cities in the area (Marshall 2004). Among the major land-makers and developers in the Meadowlands was the New Jersey Terminal Dock and Land Improvement Company, which used New York City garbage and excavation debris from the construction of Hudson River tunnels to fill over five square miles of wetland between the Hackensack and Passaic rivers (ibid). However, industrial waste and sewage were also deposited within the wetlands and illegal dumping activities—some possibly undocumented—also occurred. A nearly 94-acre landfill (now inactive) owned by the Town of Kearny and the New Jersey Department of Transportation is situated immediately to the north of the project site (Portal Partners 2013b). The landfill was not properly closed when it ceased operations in 1982, and it has, therefore, contributed to the contamination of the surrounding wetlands (ibid).

In 1968, the Hackensack Meadowlands Development Act was enacted by the New Jersey Legislature, intended to prevent illegal dumping (Marshall 2004). A year later, the Hackensack Meadowlands Development Commission was founded (ibid). The initial purpose of the group was to oversee planning and development, and to regulate garbage disposal. By the 1970s, conservation of the Meadowlands had become a more popular cause, and the Hackensack Meadowlands Development Commission (which changed its name to the New Jersey Meadowlands Commission in 2001) focused its efforts on remediation and protection of the remaining wetlands (ibid).

E. CURRENT PROJECT SITE CONDITIONS

The project site is an active rail corridor that is operated as part of the main line of Amtrak's Northeast Corridor. The ground surface of the APE has been significantly modified over the past century due to development associated with transportation, commerce, and industry. The site contains little to no vegetation with the exception of wetland grasses. The project site is entirely composed of landfill and is surrounded by salt marsh and upland areas that are both developed and undeveloped. The rail corridor is developed with numerous railroad lines at various elevations. The tracks are lined with catenary poles, and overhead wires and exiting utilities run along and in the immediate vicinity of the project site. Within the project site, electric, gas, and telecommunications lines run in the vicinity of the existing railroad tracks (Portal Partners 2013b).

The site includes the existing Sawtooth Bridges, two under-grade bridges that carry two sets of tracks. The bridges, which are in deteriorating condition, were constructed in 1907 as part of the expansion of the Pennsylvania Railroad through the Meadowlands. The railroad tracks are at grade in the eastern portion of the project site and run past wetlands and open water east of the viaducts that carry the New Jersey Turnpike over the Passaic River. The bridges have extensive subsurface foundations. As described above, west of the turnpike, the former DL&WRR railroad tracks (now part of NJ TRANSIT's Morris & Essex Line) continue on built-up areas several feet above sea level within the northern portion of the project site while the NEC tracks to the south (formerly part of the Pennsylvania Railroad) are carried at a higher

elevation across the Sawtooth Bridges and an artificial berm. To the south of the berm, outside of the project site, are tracks used by PATH trains.

An existing historic substation—Pennsylvania Railroad Substation No. 4—is located adjacent to the project site to the south of the railroad tracks beneath the viaduct that carries the New Jersey Turnpike. This structure was constructed in 1910, when the Pennsylvania Railroad expanded its operations through the Meadowlands, and is eligible for listing on the State and National Registers of Historic Places (Portal Partners 2013b). Other small maintenance/storage sheds are present along the railroad tracks within the project site and the immediate vicinity. In addition, an Amtrak representative described an allegedly 19th-century brick tunnel that runs north-south beneath the existing rail line, connecting a tide gate at the Passaic River and a concrete culvert north of the project site. This tunnel appears to be part of the drainage infrastructure built to allow Frank's Creek to flow beneath the railroad tracks out to the Passaic River.

F. PREVIOUS CULTURAL RESOURCES INVESTIGATIONS IN THE VICINITY

Two large environmental review projects have been completed in the last decade that included assessments of the archaeological sensitivity of a portion of the Sawtooth Bridges replacement project site or its immediate vicinity. These investigations are summarized below.

PORTAL BRIDGE

Amtrak and NJ TRANSIT have proposed the PBCE project to enhance the capacity and improve the operation of the Portal Bridge, a passenger rail bridge over the Hackensack River to the east of the Sawtooth Bridge project site. The existing Portal Bridge is a two-track moveable swing-span bridge between the Town of Kearny and the Town of Secaucus in Hudson County, New Jersey and is a critical infrastructure element for Amtrak and NJ TRANSIT. The existing Portal Bridge, however, poses reliability concerns, capacity constraints, and operational inflexibility. The PCBE Project would meet current and future demand, and would enable NJ TRANSIT to provide new services in the future.

The Federal Railroad Administration (FRA) and NJ TRANSIT prepared a Final Environmental Impact Statement (FEIS) and Section 4(f) Evaluation for the project in October 2008 to analyze the potential environmental impacts from the proposed project. FRA was the lead federal agency for the FEIS, which was prepared in accordance with NEPA. The Federal Transit Administration (FTA), U.S. Environmental Protection Agency (USEPA), and the USCG were cooperating agencies for the environmental review.

The FEIS included a detailed analysis of cultural resources, including archaeological resources, and was prepared in accordance with NEPA, the New Jersey Register of Historic Places Act, Section 4(f) of the United States Department of Transportation Act, and Section 106 of the National Historic Preservation Act (NHPA) of 1966 (as amended) and associated implementing regulations in 36 C.F.R. 800. The archaeological APE for the PBCE project site included a portion of the eastern end of the Sawtooth Bridges Replacement project site.

The archaeological resources analysis determined that the PBCE project site—including that portion that overlaps with the Sawtooth Bridges replacement project site—has low archaeological sensitivity overall. However, the analysis identified what is known as the Historic Cemeteries of Hudson County, a potter's field, located within and adjacent to the PBCE on the eastern side of the Hackensack River. Pursuant to Section 106, a Memorandum of Agreement (MOA) among FRA, NJHPO, Amtrak, and NJ TRANSIT was prepared to address the next steps in the event that the project was determined to affect the area that was considered to be sensitive for human remains.

Pursuant to the MOA, as the project design was advanced, NJ TRANSIT and Amtrak conducted a Phase 1B Archaeological Survey in June 2009. Archaeological field testing consisting of six backhoe trenches to determine the presence or absence of human burials or evidence of shaft features associated with the historic cemetery. No evidence of burial shafts or human remains was observed during the testing and it was determined that the PBCE project would not impact areas that were sensitive for human remains. The results of the Phase IB archaeological survey were compiled into a report, which was submitted to NJHPO on August 11, 2009. NJHPO issued a letter of concurrence with the findings on September 29, 2009. This satisfied the project sponsors' commitments regarding archaeological resources per the Section 106 process and no further measures were taken. A draft "Unanticipated Discoveries Plan for Archaeological Resources" was submitted to NJHPO and approved on January 23, 2013.

ACCESS TO THE REGION'S CORE (ARC)

In 2008, NJ TRANSIT, in partnership with the Port Authority of New York and New Jersey (PANYNJ), entered preliminary engineering for the Access to the Region's Core (ARC) project, although this project was canceled before it was constructed. The project as proposed would have included a new passenger rail terminal adjacent to New York's Pennsylvania Station and a new two-track tunnel underneath the Hudson River that would have connected with the existing NEC. Ancillary elements of ARC would have included the construction of a new Kearny Yard west of the Hackensack River, east of the Sawtooth Bridge project site. FTA served as lead agency for the environmental review that was conducted prior to the cancellation of the project. As part of the environmental review, a Draft Environmental Impact Statement (DEIS) for the ARC project was issued in February 2007 and a Supplemental Draft Environmental Impact Statement (SDEIS) was published in March 2008.

The DEIS included a detailed analysis of cultural resources, including archaeological resources, and was prepared in accordance with NEPA, the New Jersey Register of Historic Places Act, the New York State Historic Preservation Act of 1980, Section 4(f) of the United States Department of Transportation Act, and Section 106 of the NHPA. As part of the archaeological resources assessment, a Phase 1A Archaeological Documentary Study of the ARC project site was prepared by Transit Link Consultants (TLC) in 2005. A portion of the ARC project site overlapped with the PBCE project site. Several areas of archaeological sensitivity were identified throughout the ARC project site in both the New York and New Jersey portions of the APE. The area of sensitivity closest to the Sawtooth Bridges replacement project site that was identified at that time was several miles away in the location of the Hudson County potter's field, across the Hackensack River. As described above, Phase 1B archaeological testing in this area concluded that human remains were not present.

STANDARD CHLORINE CHEMICAL SITE: ARCHAEOLOGICAL MONITORING

In 2012, Langan Engineering and Environmental Services ("Langan") issued a report summarizing the results of an archaeological monitoring investigation at the Standard Chlorine Chemical Site, on the western bank of the Hackensack River approximately 2,000 feet northeast of the Sawtooth Bridges replacement project site. A Phase 1A Archaeological Documentary Study of the site had identified a sand layer beneath the depth of marsh deposits at depths ranging between 9 and 17 feet below the ground surface (Langan 2012). A total of fourteen samples were taken at a 500-foot interval along the path of a proposed slurry wall that was being constructed on the site. Archaeological resources comprising 200 lithic artifacts (including flakes, debitage, and a possible core) were recovered and identified as an archaeological site (filed with NJHPO as Site 28-HD-44). This site is described in greater detail in **Chapter 3: Prehistoric Period**.

Chapter 3:

Prehistoric Period

A. PREHISTORIC CONTEXT

Archaeologists have divided the time between the arrival of the first humans in northeastern North America and the arrival of Europeans more than 11,000 years later into the following contextual periods: Paleo-Indian/Early Archaic (11,500-8,000 before present [BP]), Middle Archaic (8,000-6,000 BP), Late Archaic (6,000-3,000 BP), Early/Middle Woodland (3,000 BP–1,200), Late Woodland (1,200 BP to AD 1500) and European Intrusion/Contact Period (AD1500-AD 1700).¹ These divisions are based on certain changes in environmental conditions, technological advancements, and cultural adaptations, which are observable in the archaeological record. Some prehistoric archaeological sites identified in New Jersey have spanned several time periods while others are shown to have been occupied for short durations only (NJHPO 1997).

PALEO-INDIAN PERIOD (11,500 TO APPROXIMATELY 10,000 YEARS BP)

Human populations did not inhabit the northeastern United States (including the area that is modern New Jersey) until the glaciers began to retreat more than 14,000 years ago, and possibly arrived as early as 12,500 years before present (Lenik 1999). The first Native American populations of the region are referred to by archaeologists as Paleo-Indians. The Paleo-Indians most likely exploited a wide variety of resources provided by their environment. It has been suggested that they did not only actively hunt the large mammals that roamed about the region (mammoths, mastodons, etc.), but they also hunted and trapped smaller animals and supplemented their diet with fish and gathered plants from the coniferdominated cold weather species that grew in the area (Cantwell and Wall 2001; NJHPO 1997). The limited growth range of plant and animal species also limited the occupation range of the Paleo-Indians (NJHPO 1997).

Archaeological evidence suggests that the Paleo-Indians were likely highly mobile hunters and gatherers who utilized a distinct style of lithic technology, typified by fluted points often made of high-quality chert. They appear to have lived in small groups of fewer than 50 individuals and did not maintain permanent campsites (Dincauze 2000). Stone quarries were a common feature of Paleo-Indian sites (NJHPO 1997).

Most of the Paleo-Indian sites were located near what were then water sources before the rise of sea levels. As a result of the close proximity of Paleo-Indian sites to the coastline, few of them have been preserved in New Jersey and neighboring coastal states, as many sites are now assumed to be submerged (Transit Link Consultants [TLC] 2005). Of the few Paleo-Indian sites that have been found in the region, many have been found on Staten Island, to the south of the project site.

¹ The date ranges for these prehistoric periods is based on the timeline presented in the "New Jersey Statewide Historic Contexts" section of the *New Jersey Historic Preservation Plan* issued by NJHPO in 1997.

ARCHAIC PERIOD (APPROXIMATELY 10,000 TO 3,000 YEARS BP)

The aforementioned environmental transformations that resulted in the submergence of Paleo-Indian landscapes also included the continued post-glacial warming trend, the extension of hardwood forests from the south, and a decrease in glacial runoff which resulted in the creation of lakes and other small bodies of water (Cantwell and Wall 2001). There was a subsequent migration of new animal and plant species into the area, while the herds of large mammals traveled north, eventually dying out. The new surroundings attracted smaller animals, such as rabbit, turkey, waterfowl, and white-tailed deer (ibid). Plants and vegetation more suited to warm weather, such as oak, hickory, beech, and chestnut trees, also flourished at this time (NJHPO 1997). This subsequently resulted in an increase in the human population and new advancements in subsistence strategies and lithic tool technology. More importantly, the geographic range of Archaic peoples expanded to follow resources, leading to the formation of a greater number of archaeological sites (ibid).

In general, archaeologists have shown that Archaic Native American sites are most often located near water sources. The abundance of food resources which arose during this period allowed the Archaic Native Americans to occupy individual sites on a permanent or semi-permanent basis, unlike their nomadic Paleo-Indian predecessors. However, Archaic sites in New York City indicate that the Native Americans there continued to hunt and forage on a part-time basis. This was most likely due to the incredibly diverse environmental niches that could be found across the region throughout the Archaic period and it is possible that the Native Americans residing across the river in New Jersey exhibited similar behavioral patterns (Cantwell and Wall 2001, Grumet 1995).

Perhaps the most important technological development at this time was the advent of fishing technology, which occurred during the Middle Archaic in response to an increasing dependence on the area's marine resources. The new technology included stone hooks and net sinkers. In addition, the influx of nut- and seed-bearing foliage resulted in the development of stone mortars and pestles as well as stone axes, used to process plant material (Cantwell and Wall 2001; NJHPO 1997).

In order to successfully hunt the smaller game animals that had established themselves in the region, narrower spear points and knives were manufactured, along with weighted spear throwers. Domestic technology was advanced as well, with the development of a wider variety of hide scrapers and, later in the period, the origin of bowls made from steatite or soapstone. Tools continued to be crafted in part from foreign lithic materials, indicating that there was consistent trade among Archaic Native American groups from various regions in North America throughout the Archaic (Cantwell and Wall 2001).

Although the rise of sea levels was in decline by this time, given the recent rapid development of the area, few Early and Middle Archaic sites have been identified in northeastern New Jersey and the New York Metropolitan Area (Boesch 1994; TLC 2005). Again, many sites from this time period have been identified on the high ground of Staten Island. An Early Archaic site, the Black Creek Site—which is listed on the National Register of Historic Places—was identified in the 1990s in the Vernon Valley in Sussex County, northwestern New Jersey (Vernon Historical Society n.d.). The site is located on a 40-acre peninsular landform within a post-glacial lake bed. Many thousands of artifacts ranging from the Early Archaic to the Contact and early historic periods were recovered including stone tools, projectile points, and pottery sherds (ibid). However, many Late Archaic sites have been found in the region, as by that time, sea levels were closer to their current locations (NJHPO 1997). Late Archaic habitation sites are often found in areas of low elevation near water courses, and temporary hunting sites are often located near sandy areas (Boesch 1994). Archaeological investigations at Late Archaic sites suggest that "increased social stratification and complexity" characterized the people of that age (NJHPO 1997: 16).

WOODLAND PERIOD (3,000 BP-AD 1500)

The Woodland period represents a cultural revolution of sorts for the Northeast. During this time, Native Americans began to alter their way of life, focusing on a settled, agricultural lifestyle rather than one of nomadic hunting and gathering. Social rituals begin to become visible in the archaeological record at this time. There have been many elaborate human and canine burial sites identified from this period. It was at this time that pottery began to be produced, which resulted in dramatic alterations to the ways of life of native populations as food storage allowed for more permanent occupation sites (NJHPO 1997).

In general, there was a greater emphasis placed on composite tools during the Woodland period. While stone scrapers, knives, and hammerstones were still in use, there was an increased use of bone, shell, and wood in tool making. Furthermore, the development of bows and arrows revolutionized hunting practices. Fishing continued to be important to the local economy and wooden boats and bone hooks were often utilized (Historical Perspectives, Inc. 2005). Many tools from this period were made from imported materials, indicating that the trade networks established earlier were still being maintained with groups from neighboring areas, including Staten Island, Long Island, the Susquehanna Valley, and what is now upstate New York (Cantwell and Wall 2001; NJHPO 1997).

Pottery was introduced into Native American society early in the Woodland period, and by the time of European contact in the 1500s, well-crafted and elaborately decorated pottery was being manufactured. The subdivision of the Woodland period into Early, Middle, and Late sections is largely dependent on the style of pottery which was produced at that time. Woodland pottery had simple beginnings; the first examples were coil pots with pointed bases, which were made with grit temper. These were replaced during the Middle Woodland period by shell-tempered vessels bearing a variety of stamped and imprinted decorations (Louis Berger Group [LBG] 2004).

Woodland-era sites across North America indicate that there was an overall shift toward full-time agriculture and permanently settled villages. There was, however, some farming of maize, beans, squash, and tobacco. The development of pottery, increasingly complex burial sites, and the presence of domesticated dogs are all consistent with sedentary societies, which have a close association with a particular territory or piece of land.

Two possible Woodland-period sites were identified within several miles of the archaeological APE. These were identified by Dr. William L. Pyle in 1936, and have been recorded in the New Jersey State Museum site files as site numbers 26-HD-7 and 26-HD-8 respectively. The sites were located in Jersey City. Site 26-HD-7 was described as being at the foot of the lake and north of the knoll in Lincoln Park, Jersey City. It was identified as a village or camp site located near a former spring. Pyle collected over 50 artifacts from the site, including projectile points, axes, pipes, and knives, with a date range estimated at 300 to 3,000 years BP. Site 26-HD-8 was located at the foot of Williams, Boyd, Virginia, and Ege Avenues, south of Lincoln Park, in Jersey City, near the Hackensack River. Little information was recorded regarding this site.

EUROPEAN INTRUSION/CONTACT PERIOD (AD 1500-1700)

The Woodland period ended with the arrival of the first Europeans in the early 1500s. Because of the short duration of the Contact Period, it can be difficult to differentiate between sites dating to the later portion of the Woodland and the Contact Period (NJHPO 1997). At that time, a division of the Delaware Indians known as the Lenni Lenape resided in northern New Jersey (ibid). A group of Munsee known as the Hackensack Indians also resided in the vicinity of the project site (Grumet 1981). The Hackensack have been described as "a numerous as well as a war-like group" whose territory extended as far inland as the Passaic River (Bolton 1975: 58). The group was friendly with their neighbors, who included the Raritan to the southeast and the Tappan to the north. It is possible that they shared their lands as far south

as Staten Island with the latter group (ibid). Giovanni de Verrazano was the first European to view New York in 1524. However, expeditions by Lord de la Warre in 1608 and Henry Hudson in 1609 marked the true beginning of European occupation in the area (NJHPO 1997).

Shortly after Hudson's men explored Staten Island and northern New Jersey, a skirmish ensued with the local Indians, resulting in the death of one of Hudson's crewmen (Lenik 1999). Because of this early incident, the Native Americans in the region were initially extremely wary of Europeans. The first attempt at a permanent settlement in the area was known as "Pavonia," located on the neck of land east of Newark Bay, in the vicinity of the modern towns of Jersey City and Bayonne; southeast of the project site. The land was granted in 1629 by the Dutch West India Company (WIC) to Michael Pauw (Paauw) (Stokes 1967). After five years of hostile encounters with the local Native Americans, Pauw sold the land back to the WIC for 26,000 guilders (ibid). Although several Dutch farmers lived in the area in the 1630s and 1640s, as seen on the Manatus Map of 1639, a successful permanent settlement was not established until 1660, when Bergen Village, near today's Jersey City, was founded (Lenik 1999).

At the start of the Contact Period, Native Americans maintained the village sites they had established near water sources. As their trade with European settlers intensified, they became increasingly sedentary and the way of life once maintained by the Native Americans was thoroughly and rapidly altered. European guns, cloth, kettles, glass beads, and alcohol soon became incorporated into the Native American economy. While at first the Natives traded furs and pelts in exchange for European goods, maize (corn) quickly became an important commodity. Most Lenape groups grew corn at the sites of their permanent habitation sites as well as at seasonal campsites, and soon Europeans began to rely on Native American agriculture (Becker 1999). Soon, maize began to "stabilize" the Native American economy and was a major factor in the increased sedentary behavior of local Indian tribes (ibid: 45).

Once the European settlers became more self-sufficient, maize was no longer an important commodity and the newly formed Native American economy suffered (Lenik 1999). In addition, the Native Americans suffered from the side-effects of European colonization: disease, alcoholism, and warfare. Fierce wars soon broke out between the Dutch and the Indians. This was most intense during the early 1640s when Dutch Director-General William Kieft ordered many ferocious and unprovoked attacks on the Native population. One of the more vicious attacks at this time occurred in 1643, when after a Dutch man was murdered by a Native American at the Pavonia settlement, the Dutch slaughtered a village of Native American refugees, including many Hackensack, in the middle of the night (Grumet 1981). While Kieft's war with the Indians continued in other parts of New Amsterdam, the Hackensack signed peace treaties in both 1643 and 1645 (ibid). The warfare was somewhat abated when Kieft was replaced by Peter Stuyvesant, who brought some stability to the area (Burrows and Wallace 1999). However, the Native Americans were no match for the growing numbers of armed European settlers. With their populations quickly decreasing and the European demand for land increasing, the natives began to sell off their land in greater quantities.

As land in the New York City region was sold to the Europeans, many displaced Native Americans joined the Hackensack in northern New Jersey. By 1700, the Hackensack and Tappan tribes had each been forced to retreat to the "upper reaches of the Hackensack and Passaic Rivers" until they had "virtually merged" (Grumet 1981: 13). They occupied the highland areas of northern New Jersey until the mid-18th century, at which time they were gradually forced further and further west (Grumet 1981: 13). The area now occupied by the 'West Hudson' towns of Kearny and Harrison, was called *Meghgecticock* by the Hackensack Indians and was named "New Barbadoes Neck" after Chief Tantaqua deeded much of the area to Captain William Sanford of Barbados in 1668 (Krasner 2000). Snake Hill, to the east of the Hackensack River, was reportedly held sacred by the Hackensack Indians that inhabited the area in the Colonial period (Van Winkle 1924).

Multiple Contact-period archaeological sites have been identified in the region. Alanson Skinner and Max Schrabisch, in their 1913 report of archaeological sites in New Jersey, recorded 11 Native American fish weirs (traps) in the Passaic River (Lutins and DeCondo 1999). Of these 11 weirs, the Fair Lawn/Paterson Fish Weir is still extant. Lutins and DeCondo, who investigated the structure in 1999, described it as a V-shaped stone wall constructed of boulders and river cobbles, spanning the entire width of the Passaic River (roughly 260 feet) north of the Fair Lawn Avenue Bridge near the city of Paterson (ibid). Contact Period sites associated with Native American villages can include the remnants of dwellings; trash middens; storage pits; hearths; and/or burials (NJHPO 1997).

B. PREVIOUSLY IDENTIFIED NATIVE AMERICAN ARCHAEOLOGICAL SITES

As described in NJHPO's 1997 State Historic Preservation Plan, prehistoric archaeological sites in New Jersey can include "large and small settlements, cemetery and other burial sites, trails, stone quarries, fish weirs, shell middens, and a wide variety of special purpose locations where specific foods and non-food resources were collected and/or processed" (NJHPO 1997: 15). Site file searches at NJHPO and NJSM indicate that one prehistoric archaeological site has been identified within one mile of the project site (see **Table 2**).

Table 2 Previously Identified Prehistoric Archaeological Sites

NJSM Site Number	Approximate Distance from Project Site	Time Period	Site Type and Information
28-HD-44	0.38 miles (2,000 feet)	Prehistoric	Deeply buried lithic tools and debitage collected through monitoring/sampling.
Source: NJSM site files: Langan 2012			

As described in the previous chapter, NJSM site 28-HD-44 was identified approximately 2,000 feet east of the project site on the western shore of the Hackensack River and south of the existing Amtrak tracks (Langan 2012). A Phase 1A of the site had determined that the site had low sensitivity for sites dating to the Woodland—when the area would have been inundated marsh—and low to moderate sensitivity at greater depths for earlier periods of occupation (ibid). A geomorphological assessment of the site concluded that the site "was a depositional setting (a combined floodplain of the Passaic and Hackensack Rivers) during a period in the Early to Middle Holocene, when much of the Hackensack River valley was subject to erosion or was a non-depositional setting" (ibid: 6). The general stratigraphy of the site included 6 to 10 feet of fill; 2 to 7 feet of marsh deposits; 3 to 8 feet of alluvial soils; and finally, glacial lake bed sediments. As described **in Chapter 2: Background Research**, soil borings indicate that a similar soil profile is present within the Sawtooth Bridges replacement project site.

The alluvial soils, located between 9 and 17 feet beneath the ground surface, were considered to be the most likely to contain archaeological resources. The "broad sandy element" was thought to be "somewhat anomalous in the Meadowlands setting...[suggesting] that as this part of the Hackensack River valley was affected by Late Holocene sea level rise and marsh formation, the area between the Passaic and Hackensack River channels formed a topographic high where inundation would have been delayed" (Langan 2012: 44). Historic maps (e.g., the 1844-1845 Hassler map, see **Figure 3**) do indeed suggest that a central portion of the landform existed between the two rivers.

As described previously, the archaeological site now known as 28-HD-44 was identified in 2011 during archaeological monitoring completed by Langan Engineering and Environmental Services during the construction of a slurry wall. In total, eight of the 21 samples collected during the investigation included

evidence of prehistoric occupation, including 146 pieces of debitage and a possible depleted core (Audin and Stiteler 2011). The majority of the finds were from the eastern portion of the site, in close proximity to the Hackensack River (ibid). Additional monitoring was recommended in this area, particularly for those areas where excavation would extend to a depth greater than 15 feet below the marsh mat surface near the Hackensack River (ibid).

Chapter 4:

The Historic Period

A. INTRODUCTION

The historic period in New Jersey began in the 16th and 17th centuries when the first European explorers arrived in the region and European settlements began. The 1997 State Historic Preservation Plan (NJHPO 1997: 18) divides New Jersey's historic period into six general historical contexts: Initial colonial settlement (between 1630 and 1775); Early industrialization, urbanization, and agricultural development (1775 to 1860); Suburban development (1860 to 1775); Immigration and agricultural, industrial, commercial, and urban expansion (1850 to 1920); Metropolitan New Jersey (1910 to 1945); and Modern New Jersey (1945 to the present). The following chapter provides general historic contexts for the Meadlowlands region of New Jersey; the Town of Kearny; and the general industrial and transportation history of the area. The chapter also includes a summary of the development of the project site during the historic period with other background information as necessary to clarify the project site's place within broader historical contextual themes that have been established for New Jersey.

B. HISTORICAL CONTEXT FOR THE PROJECT SITE

Among the earliest European explorers to land in New Jersey was Lord de la Warre, who arrived in 1608 and for whom the Delaware River was named (NJHPO 1997). Dutch settlers soon followed, establishing communities first in Hudson and Bergen Counties, closer to the heart of the main settlement of New Netherland, then located on Manhattan (ibid). As the project site was composed of marshland, little development occurred in the area during America's colonial occupation.

THE EARLY HISTORY OF HARRISON AND KEARNY

In 1719, copper was discovered in the vicinity of what is now Kearny, New Jersey in 1719, which prompted settlement and construction of new roads (Whitehead 1901; Van Winkle 1924). Initial settlement occurred on a "riser" of land located to the north and west of the project site and along the high ground on the western side of the Passaic River (Van Winkle 1924: 364). A mine operated by Arent Schuyler (1662-1730), a merchant of Dutch extraction, became one of the first successful industries in the area and was in operation into the late 19th century (Whitehead 1901; Van Winkle 1924). The copper mine is one of the only locations specifically named on a 1777 coastal survey of New Jersey produced by William Faden. The beginnings of industry and settlement in the area resulted in a need for roads. The Newark Plank Road, which ran east-west across the lower Kearny Meadowlands north of the project site, was built in 1765 (Whitehead 1901). The road appears on early historic maps (such as the 1844 Smith map and the 1844-1845 Hassler Coastal Survey) to the north of the project site. Whereas at first ferries were located at either end of the road to carry travelers over the adjacent rivers, bridges were soon constructed to allow the road to continue across the water to the mainland (Van Winkle 1924).

As mentioned in **Chapter 3: Prehistoric Period**, the portion of the Meadowlands in which the project site is situated was named "New Barbadoes Neck" in honor of Captain William Sanford of Barbados, who purchased the land from the local Native Americans in 1668 (Whitehead 1901). An 1812 coastal survey by William Watson identifies the project site by this name and also indicates that by that time, the

point of land near the confluence of the Hackensack and Passaic Rivers was known as "Sanford's Point." In 1825, "New Barbados Neck" was officially renamed "Lodi" in commemoration of Napoleon's victory in that northern Italian town in 1796 and a town in New Jersey northwest of the project site still bears this name (Scott 1922). An 1845 map of New Jersey produced by John T. Hammond identifies the project site by this name, although in 1840, the name was changed again, to Harrison, in honor of President William Henry Harrison (ibid). In 1867, the town of Kearny separated from the town of Harrison; it was named after General Philip Kearny, a commander in the Mexican and Civil wars (Krasner 2000; Van Winkle 1924). Kearny, who was killed at Chantilly during the Civil War, had established an elaborate estate in the area, which he called Belle Grove, between 1853 and 1856 (Krasner 2000).

Throughout the 18th and much of the 19th centuries, Kearny remained largely undeveloped, with the exception of the roads and railroads that traversed it. During the late 19th and early 20th centuries, "the meadows, a marsh land, were deemed worthless and…members of the Council suggested abandoning the entire tract as a common nuisance which cost the township more money to police and guard than it was worth" (Van Winkle 1924: 369). Until that time, "the entire meadow tract was as nature made it, the only exception being the two or three boat houses which had sprung up adjacent to the railroad bridges crossing the Hackensack river" (ibid: 370).

In addition, a wealth of anecdotal accounts in newspapers and local histories suggests that the Meadowlands in Kearny were the site of river pirate camps from the colonial period through the early 19th century. River pirates harassed the ships and docks of New York City and New Jersey, stealing boats and ships' cargos and engaging in smuggling operations (Van Winkle 1924). The river pirates' best known camps included the Fourth Ward of Manhattan, the Meadowlands near Bayonne, and the cedar swamps adjacent to Snake Hill in Kearny (ibid). One of the larger camps was allegedly northeast of the project site, "secreted in the tract of the Kearny meadows somewhere opposite Snake Hill which they reached by means of a tidal creek or stream" (ibid: 369). This inlet was likely to the northeast of the project site along the Hackensack River.

THE CONSTRUCTION OF RAILROADS AND RISE OF INDUSTRY IN THE 19TH CENTURY

Despite the undeveloped nature of the low-lying marshes, Kearny's location between the burgeoning cities of Newark and Jersey City increasingly made the township a convenient location for both industrial and commercial use as well as for residential communities. The Hackensack and Passaic rivers provided transportation opportunities to local residents and businesses, as did the multiple turnpikes, plank roads, and railroads that traversed the area. The industrial transformation of the Kearny Meadows began in earnest in the early 20th century (Van Winkle 1924). As a result of its location between the major cities of New York and Philadelphia and between New England and the southern states, transportation has been a major component of New Jersey's history since the colonial period. New Jersey also supplied products and material to nearby cities—including grain, lumber, meat, and other regional exports—and New Jersey's Atlantic coast. The state's many navigable rivers, and its low-lying land corridors made it possible for myriad transportation networks to develop, most of which were oriented in a northeast-southwest direction connecting New York City and Philadelphia.

One of the earliest public roads in New Jersey, authorized by the State Legislature in 1765, ran from Newark across the Meadowlands (north of the project site) to Paulus Hook (now a section of Jersey City) where travelers could get to Manhattan by ferry (Whitehead 1901). In 1790, the Legislature appointed five commissioners to oversee the construction and maintenance of toll bridges across the Hackensack and Passaic rivers. Shareholders or 'proprietors' quickly formed a joint-stock company, and claimed a monopoly on building bridges near the mouths of the two rivers. The roadway was a success, multiple stage coach lines were established, and Newark's population grew swiftly, due to the ease of travel to New York City (Lane 1939: 125). Additional turnpikes were constructed across New Jersey in the early

19th century and the roads were generally established by municipalities in order to serve local or regional transportation and trade needs. Most turnpikes in New Jersey successfully provided returns to investors, particularly where monopolies existed; however, the success of the turnpikes waned with the competition of canals. The Morris Canal, which connected the upper Delaware with Newark and Jersey City to the south of the project site, was constructed in 1831. Canals quickly superseded roadways as routes for the transport of goods, particularly anthracite coal from Pennsylvania (Lane 1939: 162).

As the 19th century continued, railroads came to dominate transportation and New Jersey was at the forefront of railroad construction in the United States. In 1832, the New Jersey Railroad and Transportation Company (NJRR) was incorporated to construct a direct rail line between Trenton, New Jersey and New York City via a terminal and ferry located in Jersey City (Van Winkle 1924). The NJRR was the third rail company to be established in the state and the construction of the line across the marshland was one of the more complicated aspects of its construction (Treese 2006). At that time, railroad lines constructed within the meadows between the Passaic and Hackensack Rivers were constructed on "embankments [built] by driving piles surprisingly deep into the muck before reaching bedrock and then hauling in tons of fill" (ibid: 110).

In a letter to stockholders written in 1841, the NJRR noted that cost overruns during the construction of the rail line were in part due to the "embankments across the meadows which settled at several placed for a considerable distance to the depth of from seventy to eighty feet" (NJRR 1841). A feature published in *Scientific American* in 1868 depicts the extensive manpower that was required to construct the dikes and dams that allowed for land to be reclaimed within the meadows and to allow for the railroad lines to be constructed and to allow for the land to be "productive of good rather than evil" (*Scientific American* 1868: 65).

The NJRR's success was enhanced when it leased the ferry operations that connected it to major cities in 1841 and subsequently purchased the ferries twelve years later (Treese 2006). The NJRR was primarily a passenger line, and earned a reputation for comfort and convenience (Lane 1939: 363). The Morris & Essex Railroad was chartered in 1835 to connect the New Jersey cities of Morristown and Newark. In 1836, the NJRR agreed to carry Morris & Essex traffic between Newark and Jersey City. In 1868, the Delaware, Lackawanna, and Western Railroad leased the Morris & Essex Railroad, including all of its branches. With the establishment of the rail lines, stage coach companies between New York and Philadelphia ceased to operate (Lane 1939: 381). The New Jersey Railroad Company and the conglomerate Camden and Amboy Railroad were consolidated as the United Canal and Railroad Companies of New Jersey in 1867. In 1871, the Pennsylvania Railroad leased the consolidated company, and thus acquired a continuous route from New York to Philadelphia (Treese 2006).

Following the development of the first railroads through the area in the 1860s and 1870s, Kearny was transformed from undeveloped meadow to a center of industry. Numerous large-scale manufacturing facilities were established in the area. Several of the largest Kearny mills had British proprietors, who recruited workers from England and Scotland. In contrast, workers for the industries of Arlington were primarily Swedes and Belgians, and the majority of those in the town of Harrison (west of Kearny) were Irish (Van Winkle 1924: 371).

During the last quarter of the 19th century, the Kearny Meadowlands experienced rapid industrial development due in part to new transportation routes and advances in land-making technology. Multiple textile and floor-covering mills were established in Kearny during the 1880s and 1890s, and the town's population exploded during this period, largely with immigrants from England and Scotland. The population continued to increase in the early 20th century, rising from 18,659 to 26,724 between 1910 and 1920 (Van Winkle 1924: 361). Kearny's downtown area was located east of Midland Avenue, to the west of the project site.

EXPANSION AND MODERNIZATION OF THE RAILROAD IN THE 20TH CENTURY

The Pennsylvania Railroad became one of the most powerful rail lines in the northeastern United States at the turn of the 20th century. During that time, the rail line expanded its facilities, culminating with the construction of tunnels beneath the Hudson River—eliminating the need for ferries for the first time—and Pennsylvania Station in Manhattan in 1910 (Jonnes 2007). The construction of the Hudson River tunnels eliminated the need for the ferry crossing at Jersey City and as a result, a new, "double" track was constructed across the Meadowlands to the northeast towards Weehawken, where the tunnels connected to New York's Pennsylvania Station (Couper 1912). The double tracks crossed the meadows and wound around Snake Hill on an elevated embankment and across numerous bridges, including the Sawtooth Bridges (ibid). The centerpiece of the "Meadows Division" of the rail line was the Manhattan Transfer, a new interchange yard located in the meadows to the west of the project site (American Society of Civil Engineers 1910). Substation Number 4 was also constructed at this time as part of the expansion of the Pennsylvania Railroad.

While the engineers who designed the bridge had anticipated problems as a result of settling, as had occurred with the original construction of the NJRR, the expanded Pennsylvania Railroad tracks experienced fewer problems associated with the meadows (Couper 1912). Some of the fill material was generated by cellar excavation and some was from the tunnel excavations and was brought up the Hackensack and Passaic Rivers by scow (ibid). The landscape was at that time described as follows:

The Meadows section of the railroad is a 5-mile continuous stretch of semi-tidal meadow swampland... The ground surface is covered with a heavy growth of reeds and the top stratum is a peaty bog from 8 to 15 feet deep, underlaid [sic] with varying strata of clay, fine sand, and mixed sand and clay for very considerable depths (American Society of Civil Engineers 1910: 351-352).

The unpredictable and highly variable subsurface conditions made it difficult to determine how deep foundations needed to be (American Society of Civil Engineers 1910). During the construction of a telegraph line along the southern side of the tracks, concrete pole foundations extended anywhere between 30 and 80 feet beneath the ground surface (ibid). The Meadows branch of the Pennsylvania Railroad is now part of Amtrak's Northeast Corridor and runs through the project site in Kearny.

The Pennsylvania Railroad transformed train travel in the early 20th century, and by the mid-20th century, New Jersey's transportation was again transformed by the advent of highways and motor vehicle traffic. In the 1930s, discussions began in support of constructing a major highway from Boston to Washington. Momentum dissipated with the advent of the Great Depression; however, then-New Jersey Governor Alfred E. Driscoll reintroduced the idea in the mid-1940s. In 1948, the State Legislature enacted the New Jersey Turnpike Authority Act, which created the New Jersey Turnpike Authority to oversee the planning, construction, and maintenance of the highway (Plant 2007). The planning and construction of the roadway were put on an accelerated timeline and when it was completed in 1952, it was "considered the cutting edge of highway construction" (ibid: 112).

C. THE DEVELOPMENT HISTORY OF THE PROJECT SITE

As described above, the project site and surrounding area remained undeveloped wetlands until the early 19th century. One of the earliest maps of the area is Hassler's ca. 1844-1845 coastal survey (see Figure 3). The only development shown in the vicinity of the project site on that map are the tracks of the NJRR, which as described above, was incorporated in 1832. The tracks crossed east-west through the Meadowlands in a nearly straight line. As such, the tracks only entered the western portion of the project site. The map depicts two small structures to the south of the tracks, in the approximate location of existing Substation Number 4. While the railroad tracks are depicted on the map as being surrounded by

marsh, a large area between the Hackensack and Passaic Rivers on either side of the tracks is depicted as filled and divided into large lots or fields. The tracks and surrounding marshland are also depicted on Smith's 1844 and 1847 map of the region, both of which suggest the presence of a structure to the south of the tracks similar to Hassler's 1844-1845 map.

AGRICULTURAL CULTIVATION WITHIN THE MEADOWS

Sidney's 1849 map depicting the area reflects the growth that had occurred in the area by the mid-19th century. That map indicates that the project site continued to be inundated wetland, however it also reflects the construction of homes and business along the Newark Plank Road to the north. A second road is depicted on that map extending south from the plank road to the railroad tracks. Two structures are depicted in the vicinity of the project site along that road. The first structure was situated immediately north of the railroad tracks on the eastern side of the road and the map does not identify its use or owner. The second structure was located on the east side of the road less than a quarter of a mile north of the tracks and its owner is identified as "[Gustine] & Lathrop."

No individual with the last name "Lathorp" was recorded as a resident of Hudson County in the 1850 Federal Census, although Samuel J. Gustin, a 34-year-old nurseryman, was recorded as a resident of the North Ward of Newark in Essex County that year. Samuel J. Gustin ran an establishment known as the "Newark Nursery" or "Nurseries," a fruit and tree farm that may have been located on or near the project site, as described below (Barry 1854; New Jersey State Legislature 1857). In 1857, Gustin was appointed "Nurseryman and Superintendent of Planting" for what was then the newly founded Central Park in Manhattan (*New York* Times 1857).

Walling's 1860 map of the area only depicts one structure in the vicinity of the project site (see **Figure 5**). That structure was the former Lathorp building which by 1860 had become the property of "G. Thorburn." No other developments are shown in the vicinity of the project site on the 1860 map with the exception of the tracks of the "New Jersey RR." The railroad tracks and the structure owned by Thorburn are both shown as located within and completely surrounded by marshland. Again, it therefore does not appear likely that this was a residential dwelling and was likely still in use for agricultural purposes as it had been when Samuel J. Gustin was identified as an owner. By 1860, census records indicate that Gustin had moved to Pennsylvania, although historic directories for Newark published in 1861 and 1862 continue to list him as a nurseryman operating a business along the "*Causeway*." However, he appears to have remained invested in the Newark Nursery through that time.

The individual identified as the owner on the Walling map may be Grant Thorburn, a horticulturalist and seed producer, who moved from New York to New Jersey in the early 19th century (Thorburn 1853). Thorburn is thought to have issued the first seed catalog in the nation in 1822 and been the first to mass-produce seeds (Robertson 2011). In 1829, Grant Thorburn wrote of the "abundance" of liverwort "on the banks of the Hackensack Rivers in New Jersey…the only herb that ever God Almighty made which has no *medical properties*" (ibid: 221). Thorburn also wrote of how he came to own property in the area in the first decades of the 19th century and how it led him to bankruptcy, and eventually jail:

A few years previous, a gardener from England, by the name of Thornly, purchased about seven acres of land near Newark Bridge, which he improved as a kitchen-garden, and for raising a few seed; but failing of success, and getting in debt, he absconded. He owed me a hundred dollars at the time; so, when he got to Philadelphia he executed a deed, whereby he constituted me owner of the soil, the first intimation of which was my receiving said deed per mail. As there was a considerable crop of seeds on the ground at the time, I resolved to gather the seeds as part payment; and as there was a mortgage for two hundred dollars on the premises, to let the land go to whomsoever had the best claim. The seeds were gathered, and the crop hardly paid the men's wages; but still I was persuaded to pay the mortgage and keep the place, as my well-intending friends all said it would do wonders under the management of an active man. It did wonders with a witness; for, after striving and toiling by sunlight and moonlight, in wet weather and dry weather, I found, at the end of five years, I had spent the whole earnings of my life and was several thousands worse than nothing (Thorburn 1853: 69-70).

Thorburn later found success as a seed merchant in New York City and resided in Queens and Connecticut after 1854, and therefore, was not living in New Jersey at the time that the 1860 Walling map was produced (Wilson and Fiske 1889). The only resident of New Jersey identified in the 1860 census with a similar name was Grant's son, George C. Thorburn. Thorburn was a resident of Newark and also a well-known horticulturalist and botanist (Thorburn 1843; Thomas 1877). George C. Thorburn died in 1860, the year the map was published, after falling into an open church vault (*New York Observer and Chronicle* 1860). Around the time of his death, he was preparing to take control of the management of George Washington's estate at Mount Vernon (ibid). A historic directory published in 1863 indicates that Thorburn's widow, Virginia, resided at 9 State Street in Newark, in close proximity to the Passaic River.

Regardless of which Thorburn may have owned the property, it was likely used for agricultural purposes only. In 1854, a man named J.M. Thorburn advertised that the Newark Nursery included "125 acres in the highest state of cultivation" (Thorburn 1854. 327). An 1860 advertisement in *The Working Farmer* was posted by Samuel C. Pitman, who had recently purchased the Newark Nurseries, which advertised "fruit and ornamental trees of every variety" in East Newark along the line of the New Jersey Railroad. The advertisement specified that orders could be placed at Thorburn's store on John Street in Manhattan. A second advertisement placed in *The Horticulturalist and Journal of Rural Art and Rural Taste* in 1860 announced that "the Newark Nursery...disposed of some 200 acres of their grounds to a Company, for a permanent 'fair ground'" and were therefore "obliged to remove the Trees from those grounds" (*The Horticulturalist*... 1860: p. 10). The advertisement indicated that orders should be placed with "Gustin & Pitman, Nurseryman, Newark, or to Messers. J.M. Thorburn & Co., 15 John Street, New York" (ibid). It therefore appears that both Gustin and Thorburn retained a stake in the nursery through at least 1860, when it appears to have been sold.

Neither Sidney's 1849 map nor Walling's 1860 map identifies the use of the structure associated with Gustin and Thorburn. Given its marshy surroundings, the property was most likely associated with the farm/nursery uses and was not used as a residence. The exact location of the nursery is not identified on historic maps. It is unclear if the marsh could have supported the nursery while inundated, and it is possible the large upland area shown on maps to the east of the project site may have been the actual location of the tree farm. It is also possible that given the landfilling that altered the landscape to allow the construction of the rail line to the south caused the area to the north to be less inundated and therefore usable farmland. If the nursery was located within the marsh area, it would be expected that drains and ditches were excavated in the area to drain the farmland and allow for the planting of trees and other vegetation.

RAILROAD EXPANSION

An 1866 coastal chart is the first to depict the tracks of the DL&WRR Railroad to the north of the New Jersey Railroad tracks. The Morris and Essex Railroad had been chartered in 1835 and was later absorbed into the DL&WRR (Hoyt 1918). The Morris and Essex line had been linked to the NJRR on the eastern shore of the Passaic River—but west of the project site—in 1855 (Couper 1912). Circa 1862-1863, the Morris and Essex line was expanded to include a new line linking the towns of Newark and Hoboken through the Meadowlands, and allowing the line to connect to New York City along an uninterrupted path

(Hoyt 1918; Couper 1912). In 1868, the line was leased by the DL&WRR (Couper 1912). In the vicinity of the project site, the Morris and Essex tracks ran parallel to and north of the tracks of the NJRR.

A coastal survey of the area created by F.H. Gerdes between 1871 and 1874 depicts the project site in greater detail, though it shows neither the road that led south from the Newark Plank Road nor the former building owned by Thorburn. The map is also among the first to reflect the construction of the Morris & Essex Rail line within the project site north of the NJRR tracks. With the exception of the railroad tracks, the project site is depicted as entirely undeveloped marshland. To the south of the railroad tracks, in the vicinity of structures seen on maps from the 1840s, was a small building situated on what may have been a small wharf built at the edge of the Passaic River. A small road led from this building to the northwest, possibly in the vicinity of the road seen on the 1849 and 1860 maps, but it is shown as terminating a short distance north of the rail line. Finally, the map depicts Frank's Creek running beneath both the Morris & Essex and New Jersey Railroad tracks, but the map is not clear as to whether the creek was running through a culvert or if the tracks passed over the creek via small bridges. Finally, the name "Thorburg" is shown on the map to the southeast of the project site, near the mouth of a creek on the northern shore of the Passaic River, possibly referencing the Thorburn property identified on previous maps.

Coastal charts published by the United States Coast and Geodetic Survey in 1889, 1906, 1912, and 1914 and USGS maps issued in 1891, 1898 (see **Figure 6**), 1900, and 1905 do not depict any buildings in or in the immediate vicinity of the project site, although some of these maps do reflect the expansion of the Pennsylvania Railroad. The 1891 Bien and Vermule topographical atlas, which does not depict building footprints, identifies the area immediately surrounding the project site to the north of the railroad tracks as fresh marsh. The marshland to the south of the railroad near the western half of the project site, adjacent to the Passaic River, and the areas to the north of the Newark Turnpike are depicted on the 1891 map as tidal marshland. It therefore appears that the project site remained relatively undisturbed at the turn of the 20th century while dramatic landscape modifications and industrial development were transforming the Meadowlands all around the site.

One of the first accurate real estate atlases of the area was published by G. Hopkins in 1909. Once again, no structures are depicted in the vicinity of the project site with the exception of the rail corridors of the "Pennsylvania Tunnel and Terminal Rail Road Company," including the Meadows Division that was under construction at the time, and the DL&WRR Railroad. The land to the north of the rail corridors and east of Frank's Creek is identified on the map as belonging to the "Newark Meadows Improvement Company." No structures or developments other than the railroad and Pennsylvania Railroad Substation No. 4 are depicted in the vicinity of the project site on that map.

THE RISE OF INDUSTRY

Coastal charts and aerial photos dating to the 1920s and 1930s reflect the increasing industrialization of the area as well as the continued landfilling and landscape transformation that took place at that time.¹ A 1925 Nautical Chart depicts dramatically reduced wetlands, with only those immediately adjacent to the railroad tracks remaining, and it also reflects dredging that occurred to deepen and regulate the Passaic River. An updated atlas published by Hopkins in 1934 reflects expansions to the railroad tracks through

¹ Coastal charts dating to the 18th, 19th, and 20th centuries were accessed through the digital Historical Map and Chart collection of the National Oceanic and Atmospheric Association (NOAA). Aerial photographs dating to 1931, 1946, 1954, 1966, 1970, 1976, 1984, 1991, 1995, 2006, and 2010 and USGS maps published in 1891, 1900, 1905, 1925, 1947, 1955m 1967, 1981, and 1995 were provided by EDR (2015a and 2015b). Other historic USGS maps, including, 1898, were examined through: http://ngmdb.usgs.gov/maps/.

and in the vicinity of the project site. However, no other development is depicted and the still-vacant area to the north of the tracks was identified as the property of the "Newark Factory Sites Company, Inc."

Subsequent maps reflect the construction of industrial complexes to the north, as well as the construction of the New Jersey Turnpike. The development of the New Jersey Turnpike spurred the development of large industrial and commercial facilities in the area. However, no maps indicate that substantial development took place within the project site during the historic period (including the 17th through the 20th centuries) with the exception of development associated with railroad usage.

In the 1990s, the Kearny Connection was created by linking the New Jersey Transit Morristown Line (Morris & Essex Railroad) with the NEC (Hanley 1991). Other improvements were made in the late-20th and early-21st century as part of the use and maintenance of the active rail corridor, including track work, the construction of instrument houses and other modifications to allow for high speed rail service at the Kearny Connection and the surrounding area (*Railway Age* 1995).

Chapter 5:

Conclusions, Interpretations, and Recommendations

A. SENSITIVITY ASSESSMENT

As part of the background research for this Phase 1A Archaeological Documentary Study, various primary and secondary resources were analyzed, including historic maps and atlases, historic photographs and lithographs, newspaper articles, and local histories. The information provided by these sources was analyzed to reach the following conclusions.

DISTURBANCE ASSESSMENT

The project site is entirely located within an area of filled marshland within the former Hackensack Meadowlands. Shallow disturbance to the project site may have been generated by dredging, channeling, and salt hay farming that occurred during the early portion of the historic period. But significant, widespread disturbance would have occurred beginning in the 19th century, when the rail lines were first constructed. That landscape modification involved filling and pile driving throughout the project site. Additional deep disturbance would have occurred during the expansion of the rail lines in the late 19th and early 20th centuries. Additional tracks, bridges, electrical systems, telegraph poles, and other railway-related structures were constructed at that time, which would also have required filling and deep support foundations. The depths to which the disturbance extended may have been more than 30 to 80 feet in certain locations.

PREHISTORIC SENSITIVITY ASSESSMENT

The prehistoric sensitivity of project sites in the northeastern United States is generally evaluated by a site's proximity to level slopes, water courses, well-drained soils, and previously-identified prehistoric archaeological sites. The project site was historically part of the Meadowlands and was inundated tidal marsh prior to the landfilling efforts that allowed for the marsh to be converted for rail use. The project site would therefore not have been an ideal site for camping or hunting and gathering, or seasonal occupation during the time that it was inundated.

However, prior to the rise of sea levels several thousands of years ago, the site would have been dry land that may have been inhabitable by the earliest groups of humans that occupied the region during the prehistoric period. Soil borings suggest that the boundary between alluvial soils and glacial till, possibly representing the pre-marsh ground surface within the project site, is situated between 20 and 30 feet below the current ground surface. It is therefore possible that a precontact ground surface could have been located at that depth at one time. However, such a ground surface may have been extensively disturbed as a result of disturbances associated with driving piles and constructing deep foundations to support the rail structures within the landfill.

If undisturbed prehistoric ground surfaces are present at great depths beneath the project site, they would be considered to be archaeologically sensitive. As described in Chapter 3: Prehistoric Period, a deeplyburied Native American site was identified in 2011 to the northeast of the project site, within another landfilled portion of the Meadowlands. As part of an archaeological investigation on that site, which was determined to have been on an anomalous rise of land within the meadows, alluvial soils situated between 9 and 17 feet below the ground surface were found to contain prehistoric archaeological resources (Audin and Stiteler 2011). Additional archaeological resources were thought to be present in that location at depths of 15 feet or more.

The Sawtooth Bridges replacement project site does not appear to have been located on a similar elevated area, and therefore, potential archaeological resources would be expected to be located at greater depths. Given the extent to which railroad-related activities likely disturbed those depths, the project site is determined to have low potential to yield intact prehistoric archaeological deposits at depths of approximately 10 to 30 feet or more below the ground surface. If the soils in this area were intact, they could potentially yield archaeological resources associated with the prehistoric occupation of the project site.

HISTORIC SENSITIVITY ASSESSMENT

As mentioned previously, the project site was occupied by inundated marshland until the early 19th century when the first railroad tracks were constructed through the area. No evidence exists to suggest that the project site was occupied during the historic period. A single map-documented structure not associated with railroad uses was located near the project site in the early 19th century. Historic maps indicate that this structure was located within the marsh and it appears that this structure may have been used for agricultural purposes. Extensive development and redevelopment has occurred within the project site as a result of the construction and re-construction of various railroad-related structures, including bridges, berms, catenary poles, utilities, and other infrastructure. The project site is therefore determined to have no sensitivity for archaeological resources dating to the historic period.

B. RECOMMENDATIONS

The project site has been determined to have low sensitivity for prehistoric resources at depths greater than 10 to 30 feet and no sensitivity for historic period resources. If undisturbed prehistoric ground surfaces exist at great depths, they may contain archaeological resources that would provide new information about the earliest occupation of the Meadowlands area before the rise of sea levels. However, because no soil borings can be advanced within the boundaries of the project site, the extent to which the alluvial soils present beneath the project site have survived the deep disturbance associated with the construction of the railroads, bridges, and their associated utilities is unknown. In those locations where deep disturbance has already occurred, such as the locations of the Sawtooth Bridges themselves, it is expected that there is little chance that archaeologically sensitive depths would remain intact. However, other areas that have not been subjected to deep disturbance, such as the portions of the rail corridor that have been built up and do not contain utilities, could contain undisturbed alluvial soils that could contain archaeological resources.

Archaeological monitoring is recommended for those areas where the construction of the proposed project would result in disturbance to depths greater than 10 feet below the ground surface in previously undisturbed areas. No monitoring is recommended in those locations where deep disturbance has already occurred, such as within the footprints of the existing bridges and in locations where piles have been driven to support the existing tracks. When the project design is advanced and additional information is known regarding the specific sub-surface impacts of the Proposed Project, those plans will be reviewed by a qualified archaeologist. The archaeologist will determine if the Proposed Project could potentially impact archaeologically sensitive depths and to determine those locations where monitoring will be required, should any exist. In the event that soil borings can be advanced within the project site, they should also be reviewed by an archaeologist to determine if potentially sensitive alluvial deposits such as those observed in adjacent areas are present within the project site to further clarify those locations that would require archaeological monitoring during construction. Finally, in the event that the proposed

construction methodology would not allow an archaeologist to monitor the site at depths greater than 10 feet (e.g., in those locations where piles will be driven), then no archaeological monitoring is recommended. Prior to any archaeological monitoring, an archaeological monitoring program will be developed in consultation with NJHPO to further investigate the archaeological sensitivity of those areas.

American Society 1910	y of Civil Engineers <i>New York Tunnel Extension: The Pennsylvania Railroad</i> . Volume 2. New York: American Society of Civil Engineers.
Audin, Michael a 2011	nd John Steitler for Langan Engineering and Environmental Services New Jersey State Museum Archaeological Site Registration Program Site Form for Site 28-HD- 44, the "SCCC Site." On file at NJSM.
Barry, P., editor 1854	The Horticulturalist and Journal of Rural Art and Rural Taste. Volume IV. Rochester: James Vick, Jr.
Becker, Marshall 1999	J. "Cash Cropping by Lenape Foragers: Preliminary Notes on Native Maize Sales to Swedish Colonists and Cultural Stability During the Colonial Period." In, <i>Bulletin of the Archaeological</i> <i>Society of New Jersey</i> 54(1): pp. 45-68.
Bien, Joseph Rud 1891	lolph & Cornelius Clarkson Vermule Newark to Paterson East. New York, New York: Julius Bien.
Boesch, Eugene 1994	Archaeological Evaluation and Sensitivity Assessment of Staten Island, New York. For: The New York City Landmarks Preservation Commission.
Bolton, Reginald 1922 1934 1975	Pelham "Indian Paths in the Great Metropolis." In <i>Indian Notes and Monographs</i> . Miscellaneous #22. New York: Museum of the American Indian, Heye Foundation. <i>Indian life of long ago in the city of New York</i> . New York: J. Graham. <i>New York City in Indian Possession</i> . Museum of the American Indian, Heye Foundation, New York.
Burrows, Edwin 1999	G. and Mike Wallace Gotham. New York: Oxford University Press.
Cantwell, Anne-N 2001	Marie and Diana diZerega Wall Unearthing Gotham: The Archaeology of New York City. New Haven: Yale University Press.
Couper, William 1912	History of the Engineering Construction and Equipment of the Pennsylvania Railroad Company's New York Terminal and Approaches. New York: Isaac Blanchard Co.
Dincauze, Dena I 2000	7. "The Earliest Americans: The Northeast." <i>Common Ground: Archaeology and Ethnography in Public Interest</i> . Washington, D.C.: National Park Service.

EDR 2015a 2015b	"The EDR Aerial Photo Decade Package: Amtrak Sawtooth Bridges, Hudson County, Kearny, NJ 07032: Inquiry Number 4350946.5; July 17, 2015." Prepared for AKRF, Inc., New York, NY. "EDR Historical Topographic Map Report: Amtrak Sawtooth Bridges, Hudson County, Kearny, NJ 07032: Inquiry Number 4350946.6; July 14, 2015." Prepared for AKRF, Inc., New York, NY.		
Faden, William 1777	The Province of New Jersey Divided into East and West and commonly called The Jerseys. Charing Cross: Wm. Faden. Facsimile produced by J. Bien, NY.		
Gerdes, F.H. 1871-1874	U.S. Coast Survey: Hackensack and Passaic Rivers and Vicinity. Washington, D.C.: United States Coastal Survey.		
Grumet, Robert S 1981 1995	5. Native American Place Names in New York City. New York: Museum of the City of New York. Historic Contact. Norman, OK: University of Oklahoma Press.		
Hammond, John 1845	T. <i>Distance Map of the State of New Jersey</i> . Available at: http://mapmaker.rutgers.edu/HISTORICALMAPS/NJ_1845.jpg.		
Hanley, Robert 1991	"New Jersey to Add Trains to Midtown." In, The New York Times. May 1, 1991: page B2. New York, NY.		
Hassler F.R. 1844-1845	Map of New-York Bay and Harbor and the Environs. United States Coastal Survey.		
 Historical Perspectives, Inc. 2005 Phase 1A Archaeological Assessment: Brooklyn Bridge Park Project; Blocks 1, 7, 16, 25, 26, 45, 199, 208, 245, 258, and Portions of Pearl, Washington, New Dock, Fulton, and Joralemon Streets and Atlantic Avenue; Bounded Roughly by Atlantic Avenue, Jay Street, and the East River; Brooklyn, Kings County, New York. For: AKRF, Inc., New York, NY. 			
Hopkins, G.M. 1873	Combined Atlas of the State of New Jersey and the County of Hudson. Philadelphia: G.M. Hopkins & Co		
1909 1934	Atlas of Hudson County, New Jersey. Philadelphia: G.M. Hopkins Co. Atlas of Hudson County, New Jersey. Philadelphia: G.M. Hopkins Co.		
Hoyt, J.K. 1918	Pen and Pencil Pictures on the Delaware, Lackawanna, and Western Railroad. New York: W.H. Cadwell.		
Ingersoll, Ernest 1881	The History and Present Condition of the Fishery Industries: The Oyster Industry. Washington, DC: Government Printing Office.		
Isachsen, Y.W., I 2000	E. Landing, J.M. Lauber, L.V. Rickard, W.B. Rogers, editors. Geology of New York: A Simplified Account. Second Edition. New York: New York State Museum Educational Leaflet 28.		
Jonnes, Jill 2007	Conquering Gotham: A Gilded Age Epic: The Construction of Penn Station and Its Tunnels. New York: Viking.		

Krasner, Barbara 2000	Images of America: Kearny. Charleston, SC: Arcadia.
Kurlansky, Mark 2006	The Big Oyster: History on the Half Shell. New York: Ballantine Books.
Lane, Wheaton J. 1939	From Indian Trail to Iron Horse: Travel and Transportation in New Jersey, 1620-1860. Princeton, NJ: Princeton University Press.
Langan Engineer 2012	ing & Environmental Services "Archaeological Monitoring Report During Construction of the Slurry Wall for the Standard Chlorine Chemical Company Site, Interim Response Action Work Plan, Town of Kearny, Hudson County, New Jersey." Prepared for Peninsula Restoration Group for submission to the United States Environmental Protection Agency and the State of New Jersey Department of Environmental Protection Historic Preservation Office.
Lenik, Edward J. 1999	Indians in the Ramapos: Survival, Persistence, and Presence. New Jersey: The North Jersey Highlands Historical Society.
Louis Berger Gro 2004 2005	 pup [LBG] Phase 1A Archaeological Assessment: Proposed Fulton Street Transit Center. Prepared for New York City Transit, New York, NY. Potter's Field Disinterment/Reinterment; Secaucus Interchange Project; Secaucus New Jersey; Technical Report. Prepared for: New Jersey Turnpike Authority, Woodbridge, New Jersey.
Lutins, Allen H. a 1999	and Anthony P. DeCondo "The Fair Lawn/Paterson Fish Weir." In, <i>Bulletin of the Archaeological Society of New Jersey</i> 54: pp. 7-11.
Marshall, Stepher 2004	n "The Meadowlands Before the Commission: Three Centuries of Human Use and Alteration of the Newark and Hackensack Meadows." In, <i>Urban Habitats</i> 2(1): pp. 4 to 27.
Mead, Peter B., e 1860	ditor The Horticulturalist and Journal of Rural Art and Rural Taste. Volume XV. New York: C.M. Saxton and Barker.
New Jersey Depa 1999	rtment of Environmental Protection, Division of Science, Research, and Technology "Geologic Map of New Jersey." Available at: http://www.state.nj.us/dep/njgs/enviroed/freedwn/psnjmap.pdf.
New Jersey Histo 1997	ric Preservation Office [NJHPO] <i>New Jersey Historic Preservation Plan.</i> Trenton: Department of Environmental Protection; Division of Parks & Forestry, Historic Preservation Office.
New Jersey Railr 1841	oad and Transportation Company [NJRR] "To the Stockholders of the N.J. Railroad and Transportation Co." February 22, 1841. In, <i>United States Commercial & Statistical Register</i> 4(11): pp. 164-166. March 17, 1841; Samuel Hazard, editor.

New Jersey State 1914	Agricultural Experiment Station Thirty-Fifth Annual Report of the New Jersey State Agricultural Experiment Station and the Twenty-Seventh Annual Report of the New Jersey Agricultural College Experiment Station for the year ending October 31st, 1914. Paterson, NJ: News Printing Co., State Printers.
New Jersey State 1857	Legislature Appendix to the House Journal for Eighteen Hundred and Fifty-Seven. Flemington, NJ: Adam Bells, Printer.
New York Archa 1994	eological Council Standards for Cultural Resource Investigations and the Curation of Archaeological Collections in New York State. The New York Archaeological Council.
New York Times 1857	"The Central Park Commissioners." In, <i>The New York Times</i> . October 1, 1857: page 1. New York, NY.
Pitman, Samuel (1860	C. "Trees!! Trees!! Trees!!" In, <i>The Working Farmer</i> 12(140): p. 191.
Plant, Jeremy F., 2007	editor Handbook of Transportation Policy and Administration. Associate editor: Van R. Johnson; Assistant editor: Cristina E. Ciociclan. Boca Raton, FL: CRC Press.
Portal Partners (C 2013a 2013b	Gannett Fleming, HNTB, and Jacobs) "Site Inspection & Condition Survey: Amtrak Sawtooth Conceptual Design." Mary 14, 2013. "Alternatives Analysis: Amtrak Sawtooth Conceptual Design." Volumes I and II. June 18, 2013.
Railway Age 1995	"The Railway Market." In, Railway Age. 196(6): page 8.
Ritchie, William 1980	A. The Archaeology of New York State: Revised Edition. Harrison, New York: Harbor Hill Books.
Robertson, Patric 2011	k Robertson's Book of Firsts: Who Did What for the First Time. New York: Bloomsbury.
Schuberth, Christ 1968	topher J. The Geology of New York City and Environs. Garden City, New York: The American Museum of Natural History, the Natural History Press.
<i>Scientific Americ</i> 1868	an "Diking and Damming the New Jersey Meadows." In Scientific American, 24 (5): pp. 65-66.
Scott, William W 1922	<i>History of Passaic and Its Environs.</i> Volume II. New York and Chicago: Lewis Historical Publishing Company, Inc.
Sidney, J.C. 1849	Sidney's Map of Twelve Miles around New-York. Philadelphia: engraved by N. Friend.
Sloane, Eric 1965	A Reverence for Wood. New York: Ballantine Books.

Soil Survey Staff n.d.	, Natural Resources Conservation Service, United States Department of Agriculture Web Soil Survey. Available online at: http://websoilsurvey.nrcs.usda.gov/. Accessed July 2015.
Smith, J. Calvin 1844 1847	Map of Long Island with the environs of New-York and the Southern part of Connecticut. New York: J.H. Colton & Co. Map of Long Island with the environs of New-York and the Southern part of Connecticut. New York: J.H. Colton & Co.
Stinson, Robert R 1915	R. Hudson County To-Day: Its History, People, Trades, Commerce, Institutions, and Industries. Union, NJ: Hudson Dispatch.
Stokes, I.N. Phelj 1967 (reprint)	os The Iconography of Manhattan Island, 1498-1909. Volumes I-VI. New York: Robert Dodd.
Sullivan, Robert 1998	The Meadowlands. New York: Doubleday.
Teal, John and M 1969	ildred Life and Death of the Salt Marsh. New York: Ballantine Books
Thomas, J.J. 1877	Rural Affairs: A Practical and Copiously Illustrated Register of Rural Economy and Rural Taste. Volume II. Albany: Luther Tucker & Son.
Thorburn, George 1843	e C. Catalogue of Kitchen Garden, Flower, Tree & Grass Seeds, Bulbous and Dahlia Roots; Greenhouse Plants; Gardening, Agricultural, and Botanical Books; Garden Tools, etc. New York: Vinten, Printer.
Thorburn, Grant 1853	Life and Writings of Grant Thorburn: Prepared by Himself. New York. Edward Walker.
Thorburn, J.M. 1854	"Fruit and Ornamental Trees." In, <i>The American Farmer</i> . April 1854 9(10): p. 327.
Transit Link Con 2005	sultants [TLC] Access to the Region's Core: Draft Environmental Impact Statement; Phase 1A Archaeological Survey Report. Version 2.0. Prepared for: New Jersey Transit. In association with: Lawler, Matuskey & Skelly, Louis Berger & Associates, K.S. Engineers, K.M. Chang, Matrix, Zetlin Strategic Communications, Robinson Aerial Surveys, Inc., In-group, Inc., Anne Strauss-Weider, Inc., Organizational Learning Associates, and A.D. Marble Company.
Treese, Lorett 2006	Railroads of New Jersey: Fragments of the Past in the Garden State Landscape. Mechanicsburg, PA: Stackpole Books.
United States Coa 1866 1889	ast and Geodetic Survey Coast Chart No. 120: New York Bay and Harbor, New York. Accessed through NOAA's Historical Map & Chart Collection: Image (CP2519C). Bay and Harbor of New York. Accessed through NOAA's Historical Map & Chart Collection (Image: 369-08-1889).

1906	<i>Coast Chart No. 120: New York Bay and Harbor, New York.</i> Accessed through NOAA's Historical Map & Chart Collection: Image (120-06-1906).	
1912	<i>Coast Chart No. 120: New York Bay and Harbor, New York.</i> Accessed through NOAA's Historical Map & Chart Collection: Image (120-07-1912).	
1914	<i>Coast Chart No. 120: New York Bay and Harbor, New York.</i> Accessed through NOAA's Historical Map & Chart Collection: Image (120-04-1914).	
1925	<i>New York Harbor</i> . Accessed through NOAA's Historical Map & Chart Collection: Image (369-09-1925).	
Van Winkle. Dan	iel. editor-in-chief	
1924	<i>History of the Municipalities of Hudson County, New Jersey 1630-1923.</i> Volume I. New York and Chicago: Lewis Historic Publishing Company, Inc.	
Vernon Historica	1 Society	
n.d.	"Black Creek Site." Accessed July 2015: http://www.vernonhistoricalsociety.com/site/Black_Creek_Site.html.	
Vinckeboons, Joa	an	
1639	"Manatvs gelegen op de Noot [sic] Riuier." [The Manatus Map]. In the Collection of the Library of Congress Geography and Map Division, Washington, DC.	
Walling, H.F.		
1860	Map of New York and its Environs. New York: S.F. Tilden.	
Watson, William		
1812	Map of the State of New Jersey. Accessible through: http://historicalcharts.noaa.gov/historicals/preview/image/853-9-1812.	
Whitehead, John		
1901	The Passaic Valley, New Jersey. New York: The New Jersey Genealogical Company.	
Wilson, James G. and John Fiske, editors		
1889	Appleton's Cyclopædia of American Biography. Volume VI. New York: D. Appleton and Company/	

Figures

USGS Quad Maps Showing the Project Location Figure 1

SAWTOOTH BRIDGES REPLACEMENT PROJECT

Historic Properties

SAWTOOTH BRIDGES REPLACEMENT PROJECT

Aerial Photograph Showing Known Historic Districts Figure 2

Note: This map was georeferenced to align the modern and historic streetbeds. Due to inaccuracies in the original map and landscape modification that has altered topographical features, the location of the Project Site should be considered approximate.

SAWTOOTH BRIDGES REPLACEMENT PROJECT

USDA Soils Maps Figure 4

Due to inaccuracies in the original map and landscape modification that has altered

topographical features, the location of the Project Site should be considered approximate.

2,500 FEET

Г

1860 Walling Map Figure 5

SAWTOOTH BRIDGES REPLACEMENT PROJECT

Project Site

Note: This map was georeferenced to align the modern and historic streetbeds. Due to inaccuracies in the original map and landscape modification that has altered topographical features, the location of the Project Site should be considered approximate.

1898 USGS Map Figure 6

SAWTOOTH BRIDGES REPLACEMENT PROJECT

Photographs

Photograph 1: View west from the northern side of the project site; one of the Sawtooth Bridges (Amtrak Bridge No. 7.96) is located at the left of the photo, leading to the elevated embankment that carries the NEC and south of the built-up area on which the NJ TRANSIT tracks are located.

Photograph 2: View east from the northern side of the project site towards one of the Sawtooth Bridges (Amtrak Bridge No. 7.80 at the center of the photograph.)

Photograph 3: View east from a point near the western end of the project site, showing the changes in grade along the NEC (at right) and the NJ TRANSIT lines (center).

Photograph 4: Looking west at the western end of the project site. The elevated embankment that carries the NEC line (at left) slopes down towards the ground surface in this location.

Photograph 5: View south of the change in grade between the NEC and the NJ TRANSIT tracks in the vicinity of a brick and concrete drainage culvert that carries Frank's Creek to the Passaic River.

Photograph 6: The northern side of the project site in the vicinity of the New Jersey Turnpike Viaduct, with Substation No. 4 visible in the background of the photograph.

Site Photographs

Appendix A: Qualifications

TECHNICAL DIRECTOR/SENIOR ARCHAEOLOGIST

Elizabeth D. Meade, a Technical Director and senior archaeologist with AKRF, holds a Master's degree in Anthropology from Hunter College of the City University of New York and is experienced in the survey and documentation of archaeological resources. She has conducted numerous cultural resources investigations including Phase 1A Archaeological Documentary Studies and Phase 1B, Phase 2, and Phase 3 archaeological testing in both New York City and New York State for agency approval pursuant to the State Environmental Quality Review Act (SEQRA) and City Environmental Quality Review (CEQR). Ms. Meade has authored archaeological assessments for environmental impact statements, Phase 1A, Phase 1B, Phase 2, and Phase 3 archaeological field testing reports, disturbance memoranda, and archaeological monitoring and/or testing plans, and has experience in conducting archaeological fieldwork and laboratory analysis. Ms. Meade also serves as AKRF's Laboratory Director.

Before joining AKRF, Ms. Meade was employed by the New York City Landmarks Preservation Commission, where she conducted extensive research for the New York City Cemetery Survey. This research served as the basis for her Master's Thesis documenting the historic cemeteries of Queens and Staten Island. In addition, Ms. Meade has authored numerous journal articles and professional papers and recently co-authored a chapter in, *Tales of Gotham: Historic Archaeology and Ethnohistory in New York City*, which was edited by Diane Dallal and Meta Janowitz and published by Springer in 2013.

Education

M.A., Anthropology, CUNY Hunter College, New York, New York, 2006

B.A., Anthropology, New York University, New York, New York, 2004

Certifications/Licenses

Register of Professional Archaeologists (RPA)

Meets Secretary of Interior's Professional Qualification Standards for Cultural Resources Professionals (36 CFR Part 61, Appendix A)

Occupational Safety and Health Administration 10-Hour Certification in Construction Safety and Health Training

Amtrak Contractor Orientation Safety Training (2015)

Professional Memberships

New York State Archaeological Association (NYSAA), Metropolitan Chapter-Member, former Secretary

Professional Archaeologists of New York City (PANYC)-Member

Society for Historical Archaeology (SHA)-Member

Council for Northeast Historical Archaeology (CNEHA)-Member

Years of Experience

Year started in company: 2006

Year started in industry: 2004

SENIOR ARCHAEOLOGIST p. 2

RELEVANT EXPERIENCE

World Trade Center Vehicular Security Center, NY

AKRF is providing the Port Authority of New York and New Jersey (PANYNJ) and the Lower Manhattan Development Corporation (LMDC) with environmental consulting services in association with the WTC Vehicular Security Center. AKRF prepared an Environmental Assessment (EA) for the WTC Vehicular Security Center and conducted extensive archaeological investigations. Ms. Meade served as the Assistant Project Manager for the project. She and her colleagues provided archaeological monitoring services during construction and documented a number of archaeological resources, including an early wood water pipe and extensive timber wharf structures. The most notable discovery, which garnered international media attention, was the wooden hull of an 18th century merchant vessel. In a compressed time period, Ms. Meade and her colleagues efficiently uncovered and documented the significant archaeological find and carefully tagged, inventoried, and removed each timber for conservation. Concurrently, AKRF conducted appropriate consultation with agencies and consulting parties in accordance with Section 106 of the National Historic Preservation Act. AKRF is currently teaming with historic ship experts and other professionals to analyze the recovered vessel timbers and associated artifacts. Ms. Meade has authored and co-authored several papers and articles describing the find and has made numerous presentations about the ship at professional conferences and professional society meetings (see below).

LMDC East River Waterfront Access Project, New York, NY

AKRF was retained by the Lower Manhattan Development Corporation (LMDC) to prepare an Environmental Impact Statement (EIS) for the City's proposed development along the East River waterfront in Lower Manhattan. The plan would improve a two-mile-long public open space connecting Whitehall Ferry Terminal and Peter Minuit Plaza to East River Park with expanded open space and recreational facilities, cultural uses, and infrastructure improvements. The waterfront, many piers and the upland area under the elevated FDR Drive, including South Street, are included within the boundaries of the project. The esplanade as well as the piers would be renovated and redeveloped. Ms. Meade authored four Phase 1A documentary studies associated with proposed development projects located along the East River waterfront at Peck Slip, Rutgers Slip, Catherine Slip, and Montgomery Street. These Phase 1A reports documented the long history of the slips and their development as well as their potential to contain archaeological resources.

Water for the Future: Delaware Aqueduct Rondout-West Branch Tunnel Repair Program, Various Locations, New York

AKRF is currently leading the environmental impact assessment and permitting efforts for the New York City Department of Environmental Protection's Water for the Future: Delaware Aqueduct Rondout-West Branch Tunnel Repair Program, in association with the Joint Venture engineering team of Hatch Mott McDonald and Malcolm Pirnie. The preparation of the EIS for the first part of the program and the related federal, state and local permits and approvals are proceeding simultaneously to ensure that the program meets a 2013 date for groundbreaking. Ms. Meade serves as the Archaeological Resources Task Project Manager for the project and has completed several archaeological assessments of the project site—including Phase 1A and Phase 1B investigations—and has managed additional archaeological investigations of the project site by sub-consultants. In addition, Ms. Meade has coordinated extensively with the New York State Office of Parks, Recreation, and Historic Preservation to assess and document the archaeological sensitivity of the project site.

Hudson Square Rezoning, New York, NY

AKRF provided strategic planning services and prepared an Environmental Impact Statement (EIS) for the rezoning of an 18-block area in the Hudson Square neighborhood of Manhattan. AKRF's services included preparing potential development scenarios under various rezoning options to help the client, Trinity Real Estate, understand the environmental issues that could affect such areas as public schools, open space, historic resources,

SENIOR ARCHAEOLOGIST p. 3

transportation and parking, pedestrian circulation, air quality, and noise. Ms. Meade prepared a Phase 1A Archaeological Documentary Study of lots within the rezoning area.

New York University Core, New York, NY

By 2031, NYU proposes to construct nearly three million square feet of new academic uses at their academic core near Washington Square Park in Manhattan. AKRF is providing a range of environmental planning services such as planning and technical support, preparation of an EIS, and post-EIS support. Ms. Meade prepared a Phase 1A Archaeological Documentary of the project site, which included a sensitivity assessment of two superblocks and in-depth documentary research of selected lots within the project site.

West 44th Street and Eleventh Avenue Rezoning, New York, NY

AKRF prepared an Environmental Impact Statement (EIS) for the West 44th Street and Eleventh Avenue rezoning project. The proposed rezoning would permit the redevelopment of the project site with new residential buildings, a new school building, and new residential uses in an existing historic school building. Ms. Meade prepared a Phase 1A Archaeological Documentary Study of the project site, completed Phase 1B field testing within the areas identified as archaeologically sensitive in the Phase 1A, and co-authored the final Phase 1B report summarizing the findings of the archaeological investigation.

Sportime Randall's Island Tennis Center Annex, New York, NY

AKRF prepared an Environmental Assessment Statement (EAS) for the proposed Sportime Randall's Island Tennis Center Annex. Ms. Meade authored a Phase 1A Archaeological Documentary Study of the site, which is in close proximity to the city's former Potter's Field, and also prepared an Unanticipated Discoveries Plan to outline the steps that should be taken in the event that human remains are encountered during construction.

CornellNYC Tech, Roosevelt Island, NY

AKRF prepared an Environmental Impact Statement (EIS) for Cornell University's proposed new applied science and engineering campus on Roosevelt Island. This project, which is proposed in response to New York City's Applied Science NYC initiative, is expected to serve as a focal point for accelerating existing sectors of NYC's economy and driving the formation of new technology businesses through close ties to customers and core industry knowledge. The EIS was completed on an aggressive time schedule, which included a commitment to submit a complete preliminary draft EIS to the lead agency within 60 days of the public scoping meeting. Ms. Meade prepared a Phase 1A Archaeological Documentary Study of the project site.

Prospect Plaza Redevelopment Plan, Brooklyn, NY

The New York City Housing Authority (NYCHA) proposes to redevelop Prospect Plaza, a vacant high-rise public housing site in Brooklyn's Ocean Hill-Brownsville neighborhood. The project would create 450 new affordable residential units, a fresh foods grocery store, a community center, and open space. The proposed development would help to address the continuing need for quality affordable housing in New York City, and return this site to use as a community asset. Ms. Meade authored a Phase 1A Archaeological Documentary Study of the project site, completed Phase 1B field testing within the areas identified as archaeologically sensitive in the Phase 1A, and co-authored the final Phase 1B report summarizing the findings of the archaeological investigation.

Seward Park Mixed-Use Development Project, New York, NY

The Office of the Deputy Mayor for Economic Development, in coordination with the New York City Economic Development Corporation and the City of New York Department of Housing Preservation & Development, are sponsoring an approximately 1.7 million gross-square-foot mixed-use development project on 9 sites located on

SENIOR ARCHAEOLOGIST p. 4

the Lower East Side of Manhattan, which form the largest underdeveloped City-owned site south of 96th Street. AKRF led the preparation of the EIS for this mixed-use proposal and prepared the ULURP application for the various street mapping actions. Ms. Meade prepared a Phase 1A Archaeological Documentary Study of the project site, which involved in-depth research of numerous historic lots across a large area.

Mercy College, Irvington and Dobbs Ferry, New York

AKRF was retained by Mercy College to provide environmental services associated with proposed improvements to the school's main campus in Dobbs Ferry and Irvington, New York. Ms. Meade served as the archaeological resources task manager for the project and completed a Phase 1 Archeological Investigation of the campus, which included in-depth documentary research and archaeological testing.

Peach Lake Sewer District: North Salem and Southeast, NY

AKRF was retained by the Towns of North Salem and Southeast, New York (in Westchester and Putnam Counties, respectively) to complete an archaeological assessment of the site of a proposed sewer district along the shores of the Peach Lake. Ms. Meade prepared the Phase 1A Archaeological Documentary Study of the site and participated in Phase 1B, Phase 2, and Phase 3 archaeological investigations of the area, which resulted in the identification of a precontact archaeological site. Ms. Meade also assisted with the laboratory processing and analysis of the collected artifacts and contributed to the report that presented the findings.

Bronx Zoo Intermodal Transportation Facility

AKRF was retained by the Wildlife Conservation Society to prepare an Environmental Assessment (EA) for the construction of a proposed Intermodal Transportation Facility within the boundaries of the New York Zoological Park in the Bronx, New York. Ms. Meade prepared a Phase 1A Archaeological Documentary Study to document the history of the site and to determine its potential to yield significant archaeological resources dating to the precontact and historic periods. Ms. Meade also completed Phase 1B Archaeological testing at the Zoo and authored a Phase 1B report summarizing the results of the investigation.

New York City School Construction Authority, Various Locations, NY

Ms. Meade serves as the Archaeological Resources Task Manager for AKRF's on-call contract with the New York City School Construction Authority (SCA). Ms. Meade has authored numerous disturbance memoranda, Phase 1A Archaeological Documentary Studies, testing protocols, and Phase 1B and Phase 2 testing reports for various SCA projects throughout the five boroughs of New York City. Ms. Meade has also participated in laboratory processing and analysis for various SCA project sites. Ms. Meade recently served as one of the Principal Investigators for Phase 2 and Phase 3 Archaeological Investigations at the SCA's Crabtree Avenue site in the Sandy Ground area of Staten Island. The site is located within a National Register of Historic Places-listed Archaeological district in one of the oldest free African-American communities in the country. Other projects include Public School 51 (New York, NY), the Crown Heights Charter School (Brooklyn, NY), 110-02 Northern Boulevard (Queens, NY), 10 East 15th Street (New York, NY), and 400 Rider Avenue Charter High School in the Bronx (Bronx, NY).

City Tech New Academic Building, Brooklyn, NY

On behalf of the Dormitory Authority of the State of New York (DASNY), AKRF prepared the environmental assessment for the City Tech New Academic Building project which involves the construction of a nine-story academic building. Ms. Meade served as the Principal Investigator for archaeological resources for this project. Ms. Meade completed a Phase 1A Archaeological Documentary Study of the project site which analyzed both the occupation and development history of the site as well as its potential to contain human remains associated with a historic church that was formerly located on the property. Ms. Meade has also authored a Phase 1B Testing Protocol for the project site and continues to coordinate upcoming archaeological testing and monitoring with

SENIOR ARCHAEOLOGIST p. 5

DASNY, the New York City Landmarks Preservation Commission (LPC), the New York State Office of Parks, Recreation, and Historic Preservation (OPRHP), and the remainder of the project team.

Spring Street Presbyterian Church, New York, NY

After the discovery of human remains at a construction site located in Manhattan, AKRF, Inc. was retained to provide cultural resources services and to prepare a plan for the recovery and analysis of the remains for the property, which was the site of an early-19th century church and burial vaults. Ms. Meade conducted site visits to assess the condition of the remains and conducted a Topic Intensive Documentary Study of the project site detailing the history of the church and its burial vaults. Ms. Meade completed additional documentary research based on the human remains and artifacts recovered from the site and has co-authored various articles based on that research (see below). Ms. Meade presented a paper based on her research of the Spring Street Church site at the Society for Historical Archaeology's 42nd Annual Conference on Historical and Underwater Archaeology, Toronto, Ontario, Canada and has authored or co-authored several published articles about the project.

SELECTED PAPERS, LECTURES, AND PUBLICATIONS

Meade, Elizabeth D.

2013

2010 "A Free Church for the People:' The History of the Spring Street Church and ifs Burial Vaults." In, Northeast Historical Archaeology 39(1): 8-18.

Meade, Elizabeth D. and Rebecca L. White

"Public Life, Personal Grief: The Contrasting Existence of a 19th Century New York Family." In, *Tales of Gotham: Historic Archaeology and Ethnohistory in New York City*. Meta F. Janowitz and Diane Dallal, editors. Pp. 313-325. New York: Springer.

Meade, Elizabeth D., A. Michael Pappalardo, Molly McDonald, and Diane Dallal

2011 "The Documentation and Analysis of Vessel Remains at the World Trade Center Redevelopment Site in New York City." In, *ACUA Underwater Archaeology Proceedings 2011*. Filipe Castro and Lindsey Thomas, editors. Pp. 187-195. Advisory Council on Underwater Archaeology.

Meade, Elizabeth D. and Diane Dallal

January 2009 "A Free Church for the People: The History of the Spring Street Church and Its Role in the Abolitionist Movement." Society for Historical Archaeology's 42nd Annual Conference on Historical and Underwater Archaeology, Toronto, Ontario, Canada.

Meade, Elizabeth D. and Nichole Doub

March 2011 "Sunk Beneath the City Streets: The Excavation, Analysis, and Care of the World Trade Center Ship." Plenary Session at the Mid-Atlantic Archaeological Conference (MAAC) 2011 Annual Meeting, Ocean City, Maryland.

Pappalardo, A. Michael, Elizabeth D. Meade, Molly McDonald, and Diane Dallal

January 2011 "The Recordation and Analysis of Vessel Remains at the World Trade Center Site in Manhattan" Society for Historical Archaeology's 44th Annual Conference on Historical and Underwater Archaeology, Austin, Texas, Canada. Presented by Elizabeth D. Meade.

Wiencek, Robert, Elizabeth D. Meade, and Rebecca White.

January 2009 "Insatiate Archer, Would Not One Suffice?" Society for Historical Archaeology's 42nd Annual Conference on Historical and Underwater Archaeology, Toronto, Ontario, Canada.

MOLLY R. MCDONALD, RPA

TECHNICAL DIRECTOR

Molly McDonald, an architectural historian and archaeologist, is experienced in the survey and documentation of cultural resources and has produced numerous cultural resource surveys and National Register nominations in compliance with federal, state, and local regulations in New York State and throughout the northeast. She has completed impacts analyses in compliance with Section 106 of the National Historic Preservation Act (NHPA), the National Environmental Policy Act (NEPA), Section 4(f) of the Department of Transportation Act, the New York State Historic Preservation Act, and other legislation, and has devised strategies for mitigating adverse effects. She has prepared Historic American Buildings Survey (HABS) and Historic American Engineering Record (HAER) documentation. She routinely serves as Principal Investigator for all phases of archaeological investigation. She has extensive experience in writing archaeological documentary studies (Phase 1As) and testing plans, and in conducting archaeological fieldwork and laboratory analysis. Ms. McDonald routinely coordinates with the New York City Landmarks Preservation Commission and the State Historic Preservation Office in New York and other northeastern states. Before joining AKRF, Ms. McDonald was employed by the Historic House Trust, and subsequently served as Monuments Coordinator for the City of New York, Department of Parks. Ms. McDonald also worked as an architectural historian and archaeologist for Earth Tech/TAMS consultants prior to joining AKRF.

BACKGROUND

Education

M.A., Historic Preservation, Cornell University, Ithaca, NY, 2002 M.A., Buildings Archaeology, University of York, York, England, 2000 B.A., History, McGill University, Montreal, Canada, 1999

Licenses/Certifications

Register of Professional Archaeologists (RPA) Meets Secretary of Interior's Professional Qualification Standards for Architectural Historians (36 CFR Part 61, Appendix A) New Jersey State Historic Preservation Office Research Training

Professional Memberships

Member, National Trust for Historic Preservation Member, Timber Framers Guild Member, New York State Barn Coalition Member, Vernacular Architecture Forum Member, Society for Historical Archaeology Member, Council for Northeast Historical Archaeology

Years of Experience

Year started in company: 2006 Year started in industry: 2000

RELEVANT EXPERIENCE

Amtrak/NJ Transit Portal Bridge Replacement Project EIS, Secaucus, NJ

MOLLY R. MCDONALD, RPA

TECHNICAL DIRECTOR

p. 2

Amtrak and NJ TRANSIT, in cooperation with the Federal Railroad Administration (FRA), plan to increase capacity on the Northeast Corridor rail line's Portal Bridge crossing over the Hackensack River. The proposed project is being reviewed under the National Environmental Policy Act (NEPA) and the National Historic Preservation Act (NHPA). Ms. McDonald serves as Historic Resources Task Manager for the on-going project. The historic resources team identified and evaluated potential impacts on historic resources in the study area, including the State Register-listed Portal Bridge itself, and multiple other bridges, railroads, and structures. Ms. McDonald prepared archaeological documentary studies for the project site, which includes a National Register-ligible historic Potter's Field and assisted in field testing for remains associated with the cemetery. Currently, Ms. McDonald is coordinating with the New Jersey Historic Preservation Office and New Jersey Historic Districts Council to identify and implement mitigation measures, which will include Historic American Engineering Record (HAER) recordation, a salvage plan, and interpretive exhibits.

Port Authority of New York and New Jersey, Greenville Yards, Hudson County, NJ

Port Authority of New York and New Jersey (PANYNJ) and Federal Highway Administration (FHWA) propose emergency restoration, maintenance, and replacement of critical system elements to meet modern rail freight standards at the Greenville Yards, a vital link in the Cross Harbor rail barge system. Ms. McDonald serves as Cultural Resources Task Leader for the project, which is subject to the National Environmental Policy Act (NEPA) and Section 106 of the National Historic Preservation Act. The project site contains a massive rail car lift bridge and other infrastructure that has been determined State and National Register-eligible both individually and as part of the Greenville Yard Historic District.

PSEG Early Site Permit Application, Salem County, NJ

AKRF performed numerous cultural resources compliance tasks associated with PSEG's Early Site Permit Application for their Salem County site. Ms. McDonald served as cultural resources task manager for this work. As part of this project, Ms. McDonald conducted extensive architectural resources field surveys and conducted extensive coordination with both the New Jersey Historic Preservation Office (NJHPO) and Delaware Historic Preservation Office (DESHPO). Ms. McDonald prepared an assessment of the potential visual effects of the proposed project on architectural resources in the study area. She also completed Intensive Level Survey Forms for multiple historic properties in the study area, including early patterned brick houses. Ms. McDonald also oversaw the completion of Phase II terrestrial archaeological and submerged cultural resources surveys (Phase II Surveys) to determine whether significant (New Jersey State Register [SR] and/or National Register of Historic Places [NR]eligible) archaeological and submerged resources are present in the project's archaeological area of potential effect (APE) in Salem County, New Jersey. The project obtained No Adverse Effects determinations from both NJHPO and DESHPO.

PSEG Site Selection, Multiple Locations, NJ

AKRF assisted PSEG with the analysis of alternative site locations for a potential new facility in multiple counties in New Jersey including Salem and Hunterdon Counties. Ms. McDonald served as the cultural resources task manager for this project. She conducted screening level archaeological analyses, including archaeological site file research at the New Jersey Historic Preservation Office (NJHPO) and New Jersey State Museum (NJSM). For architectural resources, Ms. McDonald conducted documentary studies and field surveys for four large study areas, each with a radius of ten miles. She identified hundreds of potential architectural resources in these study areas ranging from early patterned brick houses to stone barns. Ms. McDonald used this baseline data to generate a comparison of the alternative sites in terms of their potential to impact cultural resources.

Site Selection Study, Multiple Sites, New Jersey

MOLLY R. MCDONALD, RPA

TECHNICAL DIRECTOR

р. 3

Ms. McDonald serves as Cultural Resources Task Manager for a site selection study on behalf of a confidential client planning an industrial facility in New Jersey. As part of this project, Ms. McDonald has performed baseline research on cultural resources for sites in several counties in New Jersey. She has identified known architectural resources in the vicinity of these sites and has performed archaeological site file research at the New Jersey State Museum.

CZMA Consistency Determination, Outer Continental Shelf Meteorological Stations, Garden State Offshore Energy, Multiple Sites, New Jersey

The Coastal Zone Management Act (CZMA) requires that any federal actions affecting coastal resources should be consistent with the enforceable policies of a coastal state's federally approved Coastal Management Program. The proposed project involves the installation of two meteorological towers at locations approximately 20 miles off the coast of Southern New Jersey in the Atlantic Ocean. Ms. McDonald conducted baseline cultural resources data collection, visiting the New Jersey Historic Preservation Office to review files for multiple sites and synthesizing data on previous off-shore bathymetric surveys and archaeological investigations.

New Jersey Schools Construction Corporation, Historic Preservation and Mitigation Report, Union City Elementary School No. 2 – Gilmore School, Union City, Hudson County, New Jersey.

While at another firm, Ms. McDonald prepared cultural resources documentation in compliance with New Jersey Executive Order No. 215. Ms. McDonald identified a National Register-eligible historic district that would be impacted by construction of a playground. Ms. McDonald assisted project designers in devising context sensitive design for the playground that would complement the historic district, and coordinated with the New Jersey Historic Preservation Office.

New Jersey Department of Transportation, Drainage Improvement Project, US Route 30 (White Horse Pike), Winslow Township, New Jersey.

On behalf of the New Jersey Department of Transportation (NJDOT), Ms. McDonald collected cultural resources data within the area that will be impacted by the drainage improvement project. Ms. McDonald conducted an architectural resources survey to identify potential National Register-eligible resources and assessed potential impacts on cultural resources.

PAPERS AND PUBLICATIONS

Archaeological Methodology Applied to Moved Houses on the South Fork of Long Island. Master of Arts Dissertation, York University (England), Department of Archaeology, 2000.

"The Archaeology and History of Moving Houses on the South Fork of Long Island," *Vernacular Architecture*, York City Printers: York, vol. 32. 2001.

The Abandoned Structures of the Other Islands of New York City: Past, Present, and Future. Masters of Arts Thesis, Historic Preservation Planning, Cornell University, 2002.

Appendix B: Soil Borings Completed as Part of Previous Projects in the Vicinity of the Archaeological APE

BORING NO.	BW- 2
SHEET_1_C)F
DATE:START _	3/20/09
END	3/24/09
DATUM: NO	GVD29
ELEVATION:	0.3±
ELEVATION: TOTAL DEPTH:_	0.3± 76'

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PROJ	ECT N	AME _	Portal	Bridge	Capaci	ity Enha	ancem	ent Project COUNTY Hudson DATUM:	NGVD29			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MUNI		TY <u>Ke</u>	arny			N <u>Cec</u>	ar Cre	eek MarshN. 696835.1± E. 597675.8± ELEVAT	ON: 0.3±			
DRULING NUMBER UNMER Return to the Return to t	DRILLERS NAME/COMPANY C. Deigert/JBD												
CASING SIZE: 4.0° DEPTH: 290° WATER DURING DRLING: 0.0° TIME: 7:30 DATE: 3/24/99 CHECKED BY: D. Mazulian DATE: 2/2012 END OF DRLING: -0° TIME: 7:30 DATE: 3/24/99 CHECKED BY: D. Mazulian DATE: 2/2012 NOT ENCOUNTERED D NOT ENCOUNTERED D Cut WR Use State State State State State DESCRIPTION REMARKS 0.0 WR - OL wet DESCRIPTION DESCRIPTION PID = 0.0 ppm 2.0 WR - OL wet DEPOSIT DEFOSIT PID = 0.0 ppm 2.0 WR - OL wet Dark brown medium to fine(+) SAND, some Sit. PID = 0.0 ppm 4.0 - SA 1 0.7 SM wet coarse to fine, trace(+) SIt. PID = 0.0 ppm 5.4 1 0.7 - SM wet coarse to fine, t				S Mu	ud Rota	rv. NX/	NQ Cor	ina	FOUIPMENT USED Acker Skid Rig with Donut Ham	mer (on barrel float)			
CHECKED BY: D. Mazulian DATE: 22012 END OF DRILLING: <u>1.0</u> TIME: <u>1330</u> DATE: <u>32409</u> NOT ENCOUNTERED END OF DRILLING: <u>1.0</u> TIME: <u>1330</u> DATE: <u>32409</u> NOT ENCOUNTERED DESCRIPTION REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMAR	CASI	NG SIZ	E:	4.0"	DE	EPTH:	29	.0'		DATE: 3/23/09			
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CHEC	KED B	Y: D.	Mazuji	an	D	ATE: _	2/20/	12 END OF DRILLING: <u>-1.0'</u> TIME: <u>13:30</u>	DATE: 3/24/09			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
0.0 S-1 WR WR - OL wet Brown Organic SILT, frequent roots, (ORGANIC DEPOSIT). Depth to mudline 1' DEPOSIT). 2.0 WR WR - OL wet Brown Organic SILT, frequent roots, (ORGANIC Depth to mudline 1' PID = 0.0 ppm 4.0 WR WR - OL wet Brown Organic SILT, frequent roots, (ORGANIC PiD = 0.0 ppm 5.3 WH WR - OL wet Brown Organic SILT, frequent roots, (ORGANIC PiD = 0.0 ppm 6.0 1 - OL wet Brown Organic SILT, frequent roots, (ORGANIC PiD = 0.0 ppm 6.0 1 - OL wet Brown Organic SILT, frequent roots, (ALLUVIUM). PiD = 0.0 ppm 8.0 1 - Statistic - Statistic - - 8.0 1 - Statistic - Statistic - - 10.0 17 - Statistic - Statistic - - 12.0 5 12 1.5' - Statistic - - 14.0 29 -	DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0		WR						Brown Organic SILT, frequent roots, (ORGANIC	Depth to mudline 1'			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L _	S-1	WR			_	0	wot	DEPOSIT).				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L _		WR					wei		PID = 0.0 ppm			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_2.0_		WR						-	_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⊢ –		WR										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	⊢ –	S-2	WR			-	OL	wet					
4.0 1.0 15 15 15 16.0 17 0L wet 6.0 EL -5.7 PID = 0.0 ppm 8.0 1 50 - SM wet 6.0 - EL -5.7 PID = 0.0 ppm PID = 0.0 ppm 8.0 5 7 - SM wet - Ittle Silt. PID = 0.0 ppm 8.0 5 7 - SM wet Ittle Silt. PID = 0.0 ppm 9.0 17 - SM wet Ittle Silt. PID = 0.0 ppm 10.0 17 - SM wet Ittle Silt. PID = 0.0 ppm 12.0 - 5.6 $\frac{4}{11}$ 0.7' - SM wet coarse to fine, trace(+) Silt. PID = 0.0 ppm 14.0 22 1.5' - SP-SM wet coarse to fine, trace(+) Silt. PID = 0.0 ppm 16.0 22 15 1.0' - SP-SM wet red-brown, coarse to fine, trace Silt, trace medium PID = 0.0 ppm 17.8 10 50.4'' - <td></td> <td></td> <td>WR</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			WR										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.0_				15					PID = 0.0 ppm			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			wн										
6.0 1 6.0 6.0 EL5.7 8.0 5 1.0 - SM wet frequent roots, (ALLUVIUM). 8.0 5 - SM wet Iittle Silt. PID = 0.0 ppm 8.0 5 12 1.5 - SM wet Iittle Silt. PID = 0.0 ppm 10.0 17 - SM wet Iittle Silt. PID = 0.0 ppm 12.0 8 75 - SM wet Iittle Silt. PID = 0.0 ppm 12.0 8 75 - SM wet coarse to fine, trace(+) Silt. PID = 0.0 ppm 14.0 29 1.5 - SP-SM wet coarse to fine, trace(+) Silt. PID = 0.0 ppm 14.0 22 29 - SP-SM wet coarse to fine, trace(+) Silt. PID = 0.0 ppm 16.0 12 1.0* - SP-SM wet coarse to fine, trace Silt, trace medium to fine Gravel, trace(-) SIL gray-brown, coarse to fine, trace Silt, trace medium to fine Gravel, trace(-) PID = 0.0 ppm		S-3	1	0.3'		-	OL	wet					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60		1						6.0' EL -5.7'				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2		50				Dark brown medium to fine(+) SAND, some Silt,	PID = 0.0 ppm			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3	4.01					frequent roots, (ALLUVIUM).				
8.0 5 75		5-4	4	1.0		-	SM	wet					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.0		5										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L_		6		75				little Silt.	PID = 0.0 ppm			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L _	S-5	12	1.5'		_	GM	wot					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L _		15					wei		_			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0		17		35				-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⊢ –		3							– 0.0 ppm –			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⊢ –	S-6	4	0.7'		-	SM	wet					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120		8							_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	' ^{2.0}		12		75				coarse to fine, trace(+) Silt.	PID = 0.0 ppm			
$\begin{bmatrix} -3 & 5^{-7} & 22 & 1.5^{-7} & -3 & 5P-SM & wet \\ 14.0 & 29 & -3 & -3 & 5P-SM & wet \\ -4 & 5^{-8} & 12 & 0.4^{+} & -3 & SP & wet \\ -5 & 22 & -3 & -3 & SP & wet \\ -6 & 22 & -3 & -3 & SP & wet \\ -6 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & SP-SM & wet \\ -7 & -3 & -3 & -3 & -3 & -3 & -3 & -3 &$	F -	0-	18	4									
$\begin{bmatrix} 14.0 & 29 & & & & & & \\ 14.0 & 29 & & & & & & \\ 14.0 & 29 & & & & & & \\ 14.0 & 29 & & & & & & \\ 14.0 & 29 & & & & & & \\ 15.0 & 12 & 0.4' & - & SP & wet \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 16.0 & 22 & & & & & \\ 17.8 & 50.4'' & & & & \\ 12 & 15 & 1.0' & - & SP-SM & wet \\ 17.8 & 50.4'' & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 20.0 & & & & & & \\ 11 & & & & & & \\ 18 & 0.7' & & & & & \\ 20.0 & & & & & & \\ 11 & & & & & & \\ 10 & & & & & & \\ 20.0 & & & & & \\ 11 & & & & & & \\ 11 & & & &$		5-7	22	1.5		-	SP-SM	wet					
$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $	14.0		29										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L _		7		20				red-brown, some(+) medium to fine Gravel, trace(-)	PID = 0.0 ppm			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L _	S-8	12	0.4'		-	SP	wot	5III.	_			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	⊢ –		15					WGL					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.0		11		55				grav-brown coarse to fine, trace Silt, trace medium				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	├ -		12						to fine Gravel.	S-9· 7 6%<#200			
17.8 $50/4"$ a	├ -	S-9	15	1.0'		-	SP-SM	wet					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17.8		50/4"							_			
S-10 18 12 0.7' - SP wet 20.0 11 - SP wet -	-18.0-		10		35				Gray coarse to fine SAND, (ALLUVIUM).	PID = 0.0 ppm			
S-10 12 0.7 - SP wet - 20.0 11 - SP wet -	F -		18	·									
20.0 11(continued on next page).	Γ -	5-10	12	0.7		-	SP	wet					
	20.0		11						(continued on next page).				

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO.	BW- 2
SHEET_2_C	DF
DATE:START _	3/20/09
END	3/24/09
DATUM: NO	GVD29
ELEVATION:	0.3±
TOTAL DEPTH:	76'

MUNI	CIPALI	TY _K	earny	LO	CATIO	N <u>Ce</u>	dar Cre	ek MarshN. <u>696835.1±</u> E. <u>597675.8±</u> ELEVAT	ION: 0.3±				
INSPECTORS NAME/COMPANY M. Tekin/YU & Associates, Inc. TOTAL DEPTH: 76'													
DRILL		IAME/C		NY <u></u>	. Deige		rina		omer (on barrel float)				
CASI	JING M NG SIZ	ETHOD F'	4.0"		PTH'	29	9.0'	WATER' DURING DRILLING' 0.0' TIME' 7:30	DATE 3/23/09				
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE:	2/20/*	12 END OF DRILLING: -1.0' TIME: 13:30	DATE: 3/24/09				
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS				
22.0	S-11	10 15 18 31	0.8'	40	-	SP	wet	(continued from previous page). Gray brown coarse to fine SAND, (ALLUVIUM). 22.0' EI21.7'					
 24 0	S-12	11 15 13 11	1.5'	75	PP 1.60	CL	moist	Gray SILT & CLAY, (GLACIOLACUSTRINE DEPOSIT).					
26.0	S-13	10 13 18 20	1.2'	60	PP 1.00	CL	moist	Gray-brown varved Clayey SILT and Silty CLAY, alternating 3/4"± clayey silt, 3/4"± silty clay, (GLACIOLACUSTRINE DEPOSIT).					
 27.0 	U-NR	P U S H	0.0'	0	-			No recovery.	Undisturbed sampling attempted with a piston sampler				
	S-14	25 45 40 42	0.9'	45	PP 3.50	ML	moist	Gray Clayey SILT, little(-) fine Sand, (GLACIOLACUSTRINE DEPOSIT).	Advanced 4" casing to 29' – –				
32.0 	S-15	11 13 19 20	1.0'	50	PP 1.50	CL	moist	Gray CLAY & SILT, (GLACIOLACUSTRINE DEPOSIT).					
	S-16	11 11 15 12	2.0'	100	PP 1.50	CL	moist	Gray-brown Silty CLAY varved with Clayey Silt, alternating 1/2"± silty clay, 1/4"± clayey silt, (GLACIOLACUSTRINE DEPOSIT).					
37.0_ 39.0_	U-NR	P U S H	0.0'	0	-			No recovery.	Undisturbed sampling attempted with a piston sampler				
F -	1	11				CL	moist	(continued on next page).	_				

BORING NO.	BW- 2
SHEET_3_C	F_4
DATE:START _	3/20/09
END	3/24/09
DATUM: NG	SVD29
DATUM: NG	0.3±
DATUM: NG ELEVATION: TOTAL DEPTH:	0.3± 76'

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enh	anceme	ent Project COUNTY Hudson DATUM:	NGVD29
MUNICIPALITY Kearny LOCATION Cedar Creek Marsh								ek Marsh N. 696835.1± E. 597675.8± ELEVATI	ON: 0.3±
INSPE	ECTOR	S NAM	E/CON		M. Te		l & Ass	ociates, Inc.	DEPTH: 76'
DRILL	ERS N	IAME/C		NY <u>C</u>			rina		mer (on barrel float)
			<u>4 0"</u>		ту, імл і :ртн.	29	1111 <u>9</u> 9 0'		DATE: 3/23/09
CHEC	KED B	∟. γ· D .	Mazuii	an DL	ר דיד. עם		2/20/1	12 END OF DRILLING: -1.0' TIME: 13:30	DATE: 3/24/09
OHLC				-					B/(12
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
L_	S-1/	9	2.0'		-	~		(continued from previous page).	
41.0		10				CL	moist	Gray-brown Silty CLAY varved with Clayey Silt,	
								alternating 1/2"± silty clay, 1/4"± clayey silt,	
42.0								(GLACIOLACUSTRINE DEPOSIT).	
		Р		65					Undisturbed sample
		υ	1.01		PP				collected using a
	U-1	s	1.3		0.40	CL	moist		
44 0		н							_
		8		100				Grayish brown Silty CLAY, (GLACIOLACUSTRINE	_
		10			DD			DEPOSIT).	_
	S-18	12	2.0'		1.50	CL	moist		_
46 0		13							_
40.0		0		75					_
		10							—
+ -	S-19	12	1.5'		PP N/A	CL	moist		_
+		14			1.177				_
48.0		17		100				frequent silt seams	_
		4_						nequent sitt seams.	_
	S-20	/ °	2.0'		PP N/A	CL	moist		_
		0			IN/A	-			_
50.0				90					_
⊢ –		8		00				occasional sin seams.	_
	S-21	11	1.8'		PP	CI	moist		_
⊢ _					1.00	95			_
52.0		11		100					_
⊢ _		WR		100				BIOWN SIITY CLAY VARVED WITH Clayey Silt, alternating	_
⊢ _	S-22	WH	2.0'		PP	CI	moiet	DEPOSIT)	_
⊢ _		3			0.70	0L	linoist		_
54.0		4							_
L _									_
55.0									
		Р		U				No recovery.	Undisturbed
L_		U	0.0'		_				with a piston
L_		S	0.0		-				sampler
57.0		H							
Ľ		9		100					_
Γ -	0.00	3	0.01		PP				_
	5-23	3	2.0		0.90	CL	moist		_
59.0	1	3							_
		3		50				Brown Clayey SILT, trace(+) medium to fine Sand,	(continued on
		17			PP	ML	moist	(GLACIOLACUSTRINE DEPOSIT).	next page) —

BORING NO.	BW- 2
SHEET_4_O	F_4
DATE:START _	3/20/09
END	3/24/09
DATUM: NG	VD29
ELEVATION:	0.3±
ELEVATION: TOTAL DEPTH:_	0.3± 76'

CIPALI ECTOR LERS N LING M NG SIZ CKED B	TY <u>Ke</u> IS NAM IAME/C ETHOD E: Y: D .	earny E/CON OMPA S <u>Mu</u> 4.0'' Mazuji	LO /IPANY .NY <u>C</u> ud Rota	CATIOI <u>M. Te</u> <u>Deigen</u> ry, NX/	N <u>Ce</u> kin/YU rt/JBD	dar Cre & Ass	ek MarshN. <u>696835.1±</u> E. <u>597675.8±</u> ELEVAT ociates, IncTOTAL D	ION: <u>0.3±</u> DEPTH: <u>76'</u>								
ECTOR LERS N LING M NG SIZ XED B	IS NAMI IAME/C ETHOD E: Y: _ D .	E/CON OMPA os <u>Mu</u> 4.0'' Mazuji	/IPANY .NY <u>C</u> ud Rota DE	<u>M. Te</u> Deige Iry, NX/	kin/YU rt/JBD	& Ass	ociates, Inc. TOTAL D	DEPTH: 76'								
LERS N LING M NG SIZ KED B	IAME/C ETHOD E: Y: _ D.	OMPA S <u>Mu</u> 4.0" Mazuji	.NY <u>C</u> ud Rota DE	. Deige ry, NX/	rt/JBD											
LING M NG SIZ CKED B	ETHOD E: Y: _ D.	S <u>Mu</u> 4.0" Mazuji	u d Rota DE	ry, NX/												
	E: Y: _ D.	4.0 Mazuji	DE													
	Y: <u>D.</u>	iviazuji	on	EPTH:	25	2/20/4	WATER: DURING DRILLING: <u>0.0</u> TIME: <u>7:30</u>	DATE: 3/23/09								
NO/ RUN			an	D#	AIE: _	2/20/1	<u>END OF DRILLING: -1.0</u> TIME: <u>13.30</u>	DATE: <u>3/24/09</u>								
NO./							NOT ENCOUNTERED									
SAMPLE N	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) tad (%)	POCKET PENT/ TORVANE (TSF)	NSCS	AMPLE MOISTURE	DESCRIPTION	REMARKS								
S-24	13	1.0'		0.40	N/I	/S	(continued from previous page).									
	13				ML	moist										
S-25	11 15 19 21	2.0'	100	PP 2.00	ML	moist	Brown Clayey SILT, trace(+) medium to fine Sand, (GLACIOLACUSTRINE DEPOSIT). 63.0' EL -62.7'	-								
S-26	25 13 13 13	0.4'	20	-	ML	moist	Brown SILT, some coarse to fine Sand, little(+) medium to fine Gravel, (GLACIAL TILL).	S-26: 61.2%<#200 								
S-27	5 15 20 23	0.8'	40	-	ML	moist		-								
S-28	27 50/4"	0.4'	48	-	ML	moist		-								
-								-								
S-29	25 37 44 50/4"	1.0'	55	-	ML	moist	71 or Top of Rock at 71.0 feet.									
			63 /				Brown SILTSTONE, moderately to slightly weathered.	_								
C-1		3 2'					medium strong, very closely to closely spaced fractures, (WEATHERED PASSAIC FORMATION).	-								
1			18				76.0' FL -75.7'	_								
-							Bottom of borehole at 76 feet. <u>Notes:</u> 1. Boring tremie grouted using 2x94-lb bags of portland cement, 1/2x50 bags of bentonite, potable water.									
	S-24 S-25 S-26 S-27 S-28 S-29 C-1	Non-standard 13 S-24 13 S-24 13 11 15 15 19 21 25 S-26 13 S-27 25 S-28 50/4" S-28 27 S-29 27 S-28 37 44 50/4" C-1 1	Name Laston Name Name S-24 13 1.0° S-24 13 1.0° S-24 13 1.0° S-25 15 2.0° S-26 13 0.4° S-27 20 23 S-28 27 0.4° S-29 37 1.0° S-29 37 1.0° C-1 3.2°	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Non-Ward $\frac{1}{10}$ $\frac{1}{13}$ $\frac{1}{10}$ <td>Name Lag Name Lag Name Solution Solution</td> <td>Organ Description Description S-24 13 1.0' 0.40 ML moist S-24 13 1.0' 0.40 ML moist S-25 11 1.0' PP 2.0' ML moist S-26 13 0.4' - ML moist Brown Clayey SLT, trace(+) medium to fine Sand, (GLACIOLACUSTRINE DEPOSIT). S-26 13 0.4' - ML moist Brown SILT, some coarse to fine Sand, little(+) S-26 13 0.4' - ML moist Brown SILT, some coarse to fine Sand, little(+) S-27 15 0.8' - ML moist S-28 504* 0.4' 8 - ML moist S-29 37 4 0.5' - ML moist - S-29 37 4 1.0' - ML moist - S-29 37 4 1.0' - ML mo</td>	Name Lag Name Lag Name Solution Solution	Organ Description Description S-24 13 1.0' 0.40 ML moist S-24 13 1.0' 0.40 ML moist S-25 11 1.0' PP 2.0' ML moist S-26 13 0.4' - ML moist Brown Clayey SLT, trace(+) medium to fine Sand, (GLACIOLACUSTRINE DEPOSIT). S-26 13 0.4' - ML moist Brown SILT, some coarse to fine Sand, little(+) S-26 13 0.4' - ML moist Brown SILT, some coarse to fine Sand, little(+) S-27 15 0.8' - ML moist S-28 504* 0.4' 8 - ML moist S-29 37 4 0.5' - ML moist - S-29 37 4 1.0' - ML moist - S-29 37 4 1.0' - ML mo								

ENGINEERS FIELD BORING LOG	BORING NO BW- 4 SHEET1OF4
	DATE:START 3/17/09
Tray to Sur	END 3/19/09
PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson	DATUM: NGVD29
MUNICIPALITY Kearny LOCATION Cedar Creek Marsh N. 696916.5± E. 597950.8±	ELEVATION:O.4±
INSPECTORS NAME/COMPANY N. DelGrosso/ M. Tekin/YU & Associates, Inc.	_ TOTAL DEPTH: 75'
DRILLERS NAME/COMPANY C. Deigert/JBD	_
DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED Acker Skid Rig with	Donut Hammer (on barrel float)
CASING SIZE: DEPTH: WATER: DURING DRILLING: TIME:	DATE:
CHECKED BY: D. Mazujian DATE: 2/20/12 END OF DRILLING: -1.0' TIME:	DATE:

٢

		-							
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
				[Depth to mudline 1'
									Drilled through soft
									solis to 4
									_
									_
L _									
4.0				25				Plack Organia SILT come Cravel frequent plant	
		5		20				matter. (ORGANIC DEPOSIT).	
	S-1	2	0.5'		-	OL	wet		–
		1							
0.0		11		35				no Gravel, frequent decomposed plant matter.	
		5							–
	S-2	2	0.7'		-	OL	wet		
8.0		1						8.0' EI8.4'	-
		7		35				Dark brown medium to fine(+) SAND, little(-) Silt,	_
	S_3	6	0.7'					(ALLUVIUM).	
	0-0	7	0.7			5P-5M	wet		_
10.0		8		50				-	_
L –		4		50					_
	S-4	10	1.0'		-	SP-SM	wet		
		11							
-12.0		10		90				gray-brown, coarse to fine, trace fine Gravel, trace	S-5: 4.2%<#200 —
		12						Silt.	
	S-5	16	1.8'		-	SP	wet		
14.0		19							
		3		50					
ΓL	S-6	7	1 0'		-	<u>е</u> р	wot		
	00	11	1.0			J.	wei		_
16.0		15		70				-	_
\vdash \dashv		24		10					–
\vdash \dashv	S-7	26	1.4'		-	SP	wet		–
		20							–
10.0		8		100				brown-gray, some fine Gravel. little Silt.	–
\vdash \dashv	5-8	12	1 7'		_				-
	0-0	27	1.7			SIVI	wet		-
-19.7- 20.0		50/2"						(continued on next page).	
			_	_	_		_		

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

	BORING NO BW- 4
	SHEET_2_OF_4
	DATE:START 3/17/09
	END 3/19/09
COUNTY Hudson	DATUM: NGVD29
N. 696916.5± E. 597950.8±	ELEVATION: -0.4±
ciates, Inc.	TOTAL DEPTH: 75'
UIPMENT USED Acker Skid Rig with D	Oonut Hammer (on barrel float)

ſ

MUNI		aivie <u>i</u> tv K e	arnv			N Ce	dar Cre	ek Marsh N 696916 5+ F 597950 8+ FLEVAT	ION: -0.4±			
INSPECTORS NAME/COMPANY N. DelGrosso/ M. Tekin/YU & Associates, Inc.												
DRILLERS NAME/COMPANY C. Deigert/JBD												
DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED Acker Skid Rig with Donut Hammer (on barrel float)												
CASI	NG SIZ	E:	4.0"	DE	EPTH:	25	5.0'		DATE:			
CHEC	KED B	Y: <u>D.</u>	wazuji	an	D.	ATE: _	2/20/1	IZEND OF DRILLING:TIME:	. DATE:			
			1		4							
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCDVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS			
L_		10		90				(continued from previous page).	_			
22 0	S-9	13 23 24	1.8'		-	SP	wet	Gray coarse(+) to fine SAND, some(+) fine Gravel, (ALLUVIUM).				
Ε.												
[_								23.5'EI23.9'				
L _												
⊢ –									_			
25.0				70				Gray, Clavey SILT, some fine Sand	Advanced 4" casing			
⊢ –		11						(GLACIOLACUSTRINE DEPOSIT).	to 25'			
	S-10	23	1.4'		-	ML	wet		-			
27 0		29							_			
									_			
L_									_			
L _									_			
⊢ –									_			
30.0				70				trace fine Sand	S-11: mc=23.6%			
⊢ –		14							LL=23, PI=5			
	S-11	20	1.4'		2.10	CL-ML	moist		-			
32 0		25							-			
[-			
L _												
⊢ –												
L35.0		10		100					_			
⊢ –		16						DEPOSIT).	-			
⊢ -	S-12	18	2.0'		1.80	CL	moist		-			
37.0		20							-			
									–			
Γ.												
L _												
⊢ –								(continued on payt page)				
40.0								(continued on next page).				

BORING NO.	BW- 4
SHEET_3_0	F_4
DATE:START _	3/17/09
END	3/19/09
DATUM: NG	VD29
DATUM: NG	VD29 -0.4±
DATUM: NG ELEVATION: TOTAL DEPTH:	VD29 -0.4± 75'

PROJ MUNIO INSPE	ECT N CIPALI ECTOR	AME <u>I</u> TY <u>Ke</u> S NAMI	Portal earny E/CON	Bridge LO 1PANY	Capaci CATIO <u>N. De</u>	ty Enha N Cea IGross	anceme dar Crea so/ M. To	Int Project COUNTY Hudson DATUM: ek Marsh N. 696916.5± E. 597950.8± ELEVAT ekin/YU & Associates, Inc. TOTAL I	NGVD29 ION: -0.4± DEPTH: 75'
	ERS N ING M	FTHOD	oivipa Is M I	ud Rota	rv. NX/	NQ Co	rina	FOUIPMENT USED Acker Skid Rig with Donut Han	nmer (on barrel float)
CASIN	IG SIZ	E:	4.0"	DE	EPTH:	25	5.0'	WATER: DURING DRILLING: TIME:	DATE:
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE: _	2/20/1	2 END OF DRILLING: TIME:	_ DATE:
								NOT ENCOUNTERED	
L)	D./ RUN	FT ER	~	RY(%)	NT/ SF)		TURE		
DEPTH (F ⁻	SAMPLE NO TYPE/CORE I	BLOWS/0.5 ON SAMPLE	RECOVER (FT)	RQD (%)	POCKET PE TORVANE (T	NSCS	SAMPLE MOIS	DESCRIPTION	REMARKS
		17		100				(continued from previous page).	
	S-13	17 19	2.0'		PP 1.50	CL	moist	Gray CLAY & SILT, (GLACIOLACUSTRINE DEPOSIT).	_
42.0		22							_
⊢ −									-
									_
									-
45.0				100					
		11		100				Gray-brown Silty CLAY varved with Clayey Silt,	_
L _	S-14	15	2.0'		PP	CI	moist	(GLACIOLACUSTRINE DEPOSIT)	_
L		13			1.00	-			_
47.0									_
									-
									_
50.0				100					_
		10		100				Brown Silty CLAY, (GLACIOLACUSTRINE	_
L _	S-15	10	2.0'		-	CI	moist	DEPOSIT).	_
		11				-			_
52.0									-
\vdash –									-
\vdash \dashv									-
									-
									1
55.0				100					
		25		100				Brown CLAY & SILT, (GLACIOLACUSTRINE	
L _	S-16	15	2.0'		-	CI	moist		
		0 8				22			
57.0									-
⊢ −									-
									-
\vdash \dashv									-
									-
60.0								(continued on next page).	_
_									

PROJECT NAME _ Portal Bridge Capacity Enhancement Project ____ COUNTY _ Hudson

	BORING NO. BW- 4
	SHEET4 OF4
	DATE:START 3/17/09
	END <u>3/19/09</u>
_	DATUM: NGVD29
	ELEVATION: -0.4±
_	TOTAL DEPTH: 75'
D	Oonut Hammer (on barrel float)
	D 4 7 5

ſ

MUNI	CIPALI	TY <u>Ke</u> S NAMI	earny E/CON	LO //PANY	CATIO N. De	N <u>Ce</u> elGross	dar Cre so/ M. T	wek Marsh N. 696916.5± E. 597950.8± ELEVAT rekin/YU & Associates, Inc. TOTAL	ION: <u>-0.4±</u> DEPTH: 75'		
DRILL	ERS N	AME/C	OMPA	NY _C	. Deige	rt/JBD					
DRILL	ING M	ETHOD	s <u>M</u> u	ud Rota	ary, NX/	NQ Co	ring	EQUIPMENT USED Acker Skid Rig with Donut Han	mer (on barrel float)		
CASI	NG SIZ	E:	4.0"	DE	EPTH:	2	5.0'		DATE:		
CHEC	KED B	Y: <u>D.</u>	wazuji	an	D/	ATE: _	2/20/	IZ END OF DRILLING: -1.0 TIME:	DATE:		
	1		1		/	1					
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS		
L _	10 10(continued from previous page).										
	S-17	13 7 8	2.0'		-	CL	moist	Red-brown CLAY & SILT, (GLACIOLACUSTRINE DEPOSIT).			
<u>⊢</u> –									_		
63.0 	U-1	P U S	2.0'	100	_	CL	moist		Undisturbed sample collected using a Shelby tube		
65.0		10		40				65.0' El65.4'	_		
	S-18	22 25	0.7'		-	ML	moist	coarse to fine Sand, (GLACIAL TILL).			
66.8		50/3"							-		
<u>⊢</u> –									-		
F -									-		
F -									_		
70.0				00				70.0' Top of Rock at 70 feet. EI70.4'	_		
L _				83				Brown SILTSTONE, moderately weathered, medium	_		
 								(WEATHERED PASSAIC FORMATION).			
<u>⊢</u> –									_		
<u>⊢</u> –	C-1		4.2'	/					-		
<u>⊢</u> –									-		
<u>⊢</u> –				/					-		
F -				/					_		
75.0				42				75.0' EI75.4'			
								Bottom of borehole at 75 feet.			
								Notes: 1. Boring tramin grouted using 2x04 lb bags of			
L _								portland cement, 10 lbs of bentonite notable water			
⊢ –											
⊢ –									_		
⊢ −									-		
<u>⊢</u> –									-		
F -									-		
F -											

BORING NO.	BW- 5
SHEET_1_O	F_4
DATE:START _	3/6/09
END	3/9/09
DATUM: NG	SVD29
ELEVATION:	-0.5±
TOTAL DEPTH:_	70'

MUNICIPALITY Kearny LOCATION Salerno (off Amtrak ROW) N. 696772.5± E. 598224.3± ELEVATION: -0.5± INSPECTORS NAME/COMPANY S. Calabretta/YU & Associates, Inc. TOTAL DEPTH: 70' DRILLERS NAME/COMPANY L. Ramos/JBD TOTAL DEPTH: 70' DRILLING METHODS Mud Rotary, NX/NQ Coring EOUIPMENT LISED CME-55 ATV with Automatic Hammer	_										
INSPECTORS NAME/COMPANY S. Calabretta/YU & Associates, Inc. TOTAL DEPTH: 70' DRILLERS NAME/COMPANY L. Ramos/JBD TOTAL DEPTH: 70' DRILLING METHODS Mud Rotary, NX/NQ Coring FOUNDMENT LISED CME-55 ATV with Automatic Hammer											
DRILLERS NAME/COMPANY L. RAMOS/JBD											
DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED CME-55 ATV with Automatic Hammer											
CACING VIET 1005 100 100 100 100 100 100 100 100 10	/∩0										
CASING SIZE. <u>-3.0</u> DEPTH. <u>30.0</u> WATER. DURING DRILLING. <u>0.0</u> TIME. <u>11.00</u> DATE: <u>$3/1$</u> CHECKED BY: D MAZUIIAN DATE: $2/20/12$ END OF DRILLING: $0.0'$ TIME: $13:00$ DATE: $3/1$	/09										
	REMARKS										
Drilled through	soft										
L											
	_										
	_										
	_										
	_										
	_										
4.0	_										
WH 25 Black Organic SILT, frequent roots, (ORGANIC PID = 0.0 ppn	_										
$\square = S_1 WH 0.5' DEPOSIT).$	_										
	_										
6.0 WH											
6 21 Dark brown PEAT, occasional plant matter, PID = 0.0 ppn											
$ S_2 3 04' 000 $											
8.0 WH EL8.5											
Brown medium to fine SAND, little(-) Silt, (ALLUVIUM). PID = 0.0 ppn											
	_										
$\begin{bmatrix} 3 \end{bmatrix}$ $\begin{bmatrix} 63 \\ 63 \end{bmatrix}$ $\begin{bmatrix}brownish gray, coarse to fine, trace(+) fine Gravel. PID = 0.0 ppn$	_										
	_										
	_										
PID = 0.0 ppn											
PID = 0.0 ppn											
- $ -$											
3 1/5 Brown-gray medium to fine SAND, (ALLUVIUM). PID = 0.0 ppn											
$\begin{vmatrix} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $											
PID = 0.0 ppn											
$\begin{vmatrix} - S_{2}B \end{vmatrix} = \begin{vmatrix} 3 \\ 17' \end{vmatrix} = \begin{vmatrix} 2D \\ maint \end{vmatrix}$											
20.0 6 20.0 EI20.5											

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO.	BW- 5
SHEET 2	_OF 4
DATE:START	3/6/09
END _	3/9/09
DATUM:	NGVD29
ELEVATION:_	-0.5±
TOTAL DEPT	H: <u>70'</u>

MUNI	CIPALI	TY Ke	arny	LO	CATIO	N <u>Sa</u> l	lerno (o	<u>f Amtrak ROW) _{N.} 696772.5±</u> E. 598224.3±	ELEVAT	ION: -0.5±	-
INSPECTORS NAME/COMPANY S. Calabretta/YU & Associates, Inc.											-
DRILL	ERSN	AME/C		NY <u>L</u> .					Itomatic H	ammor	
DRILL	ING M		S <u>IVIL</u> 1/0"		гу, NA /	NQ 00 30	<u>ring</u> החי		11.00		
		⊏ ∨·D.	Hazuii	D⊑ an	.г і п. D/		2/20/1	Prince Drilling: 0.0' TIME: _	13:00	DATE: 3/9/09	
		1				···				DATE	
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION		REMARKS	
		3		92				Light gray varved CLAY & SILT and Clayey SILT,		PID = 0.0 ppm	
	S-9	6 6	1.8'		-	CL	moist	alternating 1/5"± clay & silt, 1/5"± clayey silt, (GLACIOLACUSTRINE DEPOSIT).			_
22 0		11									_
											-
											-
											_
											_
25.0											
		3		100				Light gray varved CLAY & SILT and Silty CLAY,			
	S-10	4	2 0'		PP	0		alternating 1/8"± clay & silt, 1/8"± silty clay,			
	0-10	4	2.0		2.00	CL	wet	(GLACIOLACUSTRINE DEPOSIT).			_
27.0		5									_
L _											_
28.0				50							
L _		Р		50						collected using a	ie
<u> </u>	U-1		1.0'		PP	CL	wet			Shelby tube	_
		н			2.00					LL=30 and 48,	_
30.0		2		75				brownish light gray, trace fine Sand.		PI=10 and 26	-
		3			DD					Advanced 4" casi	ום
	S-11	4	1.5'		1.50	CL	wet			to 30'	-
32.0		4									
$\lfloor $											
L _											
L _											_
35.0				100							_
		WH									_
	S-12	2	2.0'		PP 1 50	CL	wet				_
		3			1.50						_
31.0											-
											\neg
											-
											-
40.0								(continued on next page).			
							. 1				

BORING NO.	BW- 5
SHEET 3	DF
DATE:START_	3/6/09
END	3/9/09
DATUM: N	GVD29
ELEVATION:	-0.5±
TOTAL DEPTH:	70'

PROJ	ECT N		Portal	Bridge	Capaci	ty Enha	anceme	ent Project	C(OUNTY _	Hudse	on		DATUM:	NGV	<u>529</u>
MUNI		TY <u>Ke</u>	arny			N <u>Sal</u>	erno (c	off Amtrak R	OW) _N	696772.5±		E. <u>598</u>	8224.3±		ION:	0.5±
DRILL		S NAM	E/COIV	$\frac{1}{NY} L.$	Ramo	s/JBD	a/10 &	ASSOCIATES,	, п.с.					TOTALL	EPTH:	
DRILL	ING M	ETHOD	S Mu	ud Rota	ry, NX/	NQ Cor	ing		EQUIPM	IENT USE	ED CM	E-55 A	TV with Au	itomatic Ha	mmer	
CASIN	IG SIZ	E:	4.0"	DE	PTH:	30	.0'	WATER:	DURING	DRILLIN	IG:	0.0'	_ TIME: _	11:00	DATE: _	3/6/09
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE: _	2/20/1	12	END OF	DRILLIN	G:	0.0'	_ TIME: _	13:00	DATE:	3/9/09
									NOT EN	ICOUNTE	RED					
DEPTH (FT) SAMPLE NO/ TYPE/CORE RUN BLOWS/0.5 FT ON SAMPLER RECOVERY (FT) POCKET PENT/ TORVANE (TSF) USCS SAMPLE MOISTURE								DESCRIPTION REMARK						ARKS		
		wн		100				(cor	ntinued fro	om previou	us page	e).				
 42.0	S-13	WH 1 2	2.0'		PP 1.70	CL	wet	Brown DEPO	varved S SIT).	ilty CLAY,	, (GLA	CIOLA	CUSTRINE	-		-
45.0																_
=-0.0		wн		100											S-14: mc	=37.6%
	S-14	WH WH WH	2.0'		PP 1.00	CL	wet								LL=47, P	=28 — — —
<u> </u>																_
																_
																_
50.0								_								
L _		WН		38				Brown	SILT & C	CLAY, (GL	_ACIO	LACUS	TRINE			_
	S-15	WH WH	0.8'		PP 0.50	CL	wet	DEI O	011).							_
52.0		WH														_
																_
⊢ −																_
																_
55.0																
		4		75				Browni	ish red S		, little(-) fine S אדו	and,			
	S-16	5 3	1.5'		PP 1.50	CL	wet		JOLACO			, i i <i>j</i> .				_
57.0		2														_
58.0																_
	U-NR	P U S			-			No rec	overy.						Undisturb sampling with a pis sampler	ed attempted ton
60.0		H						60.0'						EI60.5'		

BORING NO	BW- 5
SHEET 4	OF
DATE:START	3/6/09
END	3/9/09
DATUM:	NGVD29
ELEVATION:	-0.5±
TOTAL DEPTH	1: 70'

PROJ	ECT N	AME F	Portal	Bridge	Capaci	ty Enha	anceme	ent Project	COUNTY	Huds	on		DATUM:	NGVI	029
MUNI		TY Ke	arny	LO	CATIO	N Sal	erno (c	off Amtrak RC	DW) _N 696772.5:	±	⊢ 59	8224.3±	ELEVATI	ION:	0.5±
INSPE	CTOR	S NAM	E/CON	IPANY	S. Ca	labrett	a/YU &	Associates,	Inc.		L			EPTH:	70'
DRILLERS NAME/COMPANY L. Ramos/JBD															
			s Mu	ud Rota	rv. NX/	NQ Cor	rina		FOUIPMENT US		IE-55 A	TV with Au	utomatic Ha	mmer	
CASIN	JG SIZ	Ennob E	4.0"	DF	PTH [.]	30).0'	WATER	DURING DRILLIN	NG [.]	0.0'	TIME	11:00	DATE	3/6/09
CHEC			Mazuii	an		ATE	2/20/1	12		IG:	0.0'		13:00		3/9/09
ONEO				-										DATE: -	
									NOTENCOUNT	ERED					
	Ę	1		%) /			E E								
(L	°i0/	ER 3	≿	R. /	IN IS		STL								
4 (F	ЦЩ	/0.5 MPI	ΞĹ		ц Ц Ц Ц Ц Ц	cs	Į		DECODI						
PTF	ЪГ О́	WS SAN	<u></u> ВЕ) СЦ СЦ	AN AN	SN	≥ Ш		DESCRIP	TION				REIVI	ARKS
DE	PE	N	RE	R/ Q	SR SR		L L								
	‴ ≿	ШО		/ 22	ΔĔ		SAN								
	C 17	100/6"	0.51	100				Brownie	sh red Silty CLAY	/ some	(_) fine	Gravel			
60.5	5-17	100/6	0.5		-		wet	(GLACI		, 301110	(-) IIIC	Olavel,			_
L _									/ () /						_
L _															_
															_
Ll															
															_
															_
															_
65 0								GE O'	Top of R	ock at (65 feet.				_
05.0				93				Red-bro		mode	rately to	o slightly	EI05.5		_
				/				weathe	red medium stror	na verv	v closel	v to closely	v		_
				/				spaced	fractures. (COMF	PETEN	T PAS	SAIC	,		_
L –								FORMA	TION).						_
L _								_	- /						_
L _	C-1		4.7'												_
L _															_
L _															_
				/											
				/											
70.0				55				70.0'					EI70.5'		
									Bottom of bo	orehole	at 70 f	eet.			
								Notes:							_
								1. Borir	g tremie grouted	using 1	1x50-lb	bag of gra	nular		_
								bentoni	te, potable water						_
\vdash –								2. Undi	sturbed sample m	noisture	e conter	nts noted in	ו		-
								Remar	ks" reflect an ave	rage of	f all mo	isture cont	ents		_
\vdash –								determi	ned for the sampl	le.					_
\vdash –															_
⊢ ⊣															_
- _															_
															_
L _															_
L _															
															-
\vdash \dashv															_
\vdash \dashv															_
\vdash –															_
⊢ –															_
- _															_

PROJECT NAME _ Portal Bridge Capacity Enhancement Project ____ COUNTY _ Hudson

BORING NO. BW- 6								
SHEET1_OF4								
DATE:START								
END 3/12/09								
DATUM: NGVD29								
ELEVATION: 0.1±								
TOTAL DEPTH: 76'								
Donut Hammer (on barrel float)								

ſ

MUNICIPALITY Kearny LOCATION Cedar Creek Marsh N. 697059.7± E. 598313.1± ELEVATION: 0.1± INSPECTORS NAME/COMPANY N. DelGrosso/YU & Associates, Inc. TOTAL DEPTH: 76'										
DRILLERS NAME/COMPANY C. Deigert/JBD										
CASING SIZE: 4.0"/3.0" DEPTH: 25.0'/70.0' WATER: DURING DRILLING: TIME: DATE:										
CHECKED BY: D. Mazujian DATE: 2/20/12 END OF DRILLING: -2.0' TIME: DATE:										
NOT ENCOUNTERED										
	_			(% /			Щ			
F	RUN	타麗	~	RY(NT/ SF)		TUF 1			
Ľ I	Žш	/0.5 1PLI	Ler C	N /		SS	OIS			
L F	APL \CO	WS.	юĘ		AN	nsc	E E E	DESCRIPTION	REMARKS	
B	SAN	ON	RE	B) O	0C OR		MPL			
	ŕ			ĭ	<u>ш</u> –		SAI			
									Depth to mudline 2'	
									Drilled through soft	
									_	
									_	
									_	
4.0				25						
		WН		25				Black brown PEAT, occasional wood, (ORGANIC	PID = 0.0 ppm	
	S-1	WH	0.5'		-	рт	wot	DEPOSIT).	_	
	•	WH	0.0			FI	wei		_	
6.0		WH		67						
\vdash \dashv		2		07				Light brown fine SAND, little Silt, (ALLUVIUM).	PID = 0.0 ppm	
\vdash \dashv	S-2	2	1.3'		-	SM	wet		_	
\vdash $-$		3				0			_	
8.0		-		67				-		
		8								
\vdash \dashv	S-3	20 19	1.3'		-	SM	wet		—	
		30							—	
-10.0		22		100				some Silt.	PID = 0.0 ppm	
		17								
\vdash –	S-4	28	2.0'		-	SM	wet		—	
12 0		24							_	
		24		100					_	
	0 -	20	0.01						_	
	5-5	26	2.0		-	SM	wet		_	
14.0		27							PID = 0.0 ppm	
Ll		21		100				Dark brown coarse to fine SAND, trace(-) Silt, trace		
	S-6	22	2 0'		_	00	wet	tine Gravel, (ALLUVIUM).	S-6: 3.5%<#200	
	00	20	2.0			JF	wei		_	
16.0		32		01				-		
	S-7	42	0.8'	191	-	SP	wet		Advanced 4" casing to 20'	
16.9		100/5"						-	PID = 0.0 ppm	
$\left - \right $								17.5'El17.4'.	_	
18.0				84				Light gray Silty CLAY varyed with Clavov Silt		
\vdash \dashv		11						alternating 1"± silty clay. 1/4"± clayey silt	- 0.0 ppill	
\vdash \dashv	S-8	13	1.7'		PP 1.50	CL	wet	(GLACIOLACUSTRINE DEPOSIT).	_	
20 0		20						(continued on next page).	_	

BORING NO BW- 6	
SHEET_2_OF_4	
DATE:START 3/9/09	
END 3/12/09	
DATUM: NGVD29	
ELEVATION: 0.1±	
TOTAL DEPTH: 76'	

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	nt Project COUNTY Hudson DATUN	I: NGVD29				
MUNI	CIPALI	TY Ke	earny	LO	CATIO	N Ceo	dar Cre	ek MarshN. <u>697059.7±</u> E. <u>598313.1±</u> ELEVA	TION: 0.1±				
INSPE	VSPECTORS NAME/COMPANY N. DEIGROSSO/YU & ASSOCIATES, INC. TOTAL DEPTH: 76' TOTAL DEPT												
DRILL													
DRILL	ING M	ETHOD	S <u>IVII</u> 0"/3 0		ry, NA /	25 0'	'ing /70.0'						
CHEC	KFD B	∟. <u> </u>	Mazuii	ian	:г і п. D		2/20/1	2 END OF DRILLING: -2.0' TIME: 	DATE:				
ONLO				-	0,								
				<u> </u>			ш						
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURI	DESCRIPTION	REMARKS				
		22		59				(continued from previous page).					
22.0	S-9	24 32 34	1.2'		PP 1.50	CL	wet	Light gray-brown varved Silty CLAY and Clayey SILT, alternating 1/4"± silty clay, 1/4"± clayey silt, (GLACIOLACUSTRINE DEPOSIT).					
		13		92									
	S_10	25	1.8'		PP								
	0-10	28	1.0		1.00	IVIL	wet						
24.0		35		50									
L _		37		50				Light gray Clayey SILT, trace fine Sand,					
L _	S-11	37	1.0'		PP	м	wet	(GLACIOLACUSTRINE DEPOSIT).					
L _		40			>4.5	IVIL	wet						
26.0		42		34					S 12: mo=19.0%				
		WH							LL=23, PI=3				
	S-12	32	0.7'		PP >4.5	ML	wet						
200		36											
20.0		37		50									
		50			PP								
	S-13	30	1.0'		>4.5	ML	wet						
30.0		30											
		22		100				Light gray varved Silty CLAY and Clayey SILT,					
	S-14	24	2 0'		PP	0	wat	alternating 1/8"± silty clay, 1/8"± clayey silt,					
L _	0-14	24	2.0		1.00	CL	wet	(GLACIOLACUSTRINE DEPOSIT).					
32.0		26		100									
⊢ –		24											
⊢ −	S-15	20	2.0'		PP 1.50	CL	wet		-				
		16			1.00								
34.0		11		100					-				
\vdash –		17			pD				-				
	S-16	18	2.0'		1.50	CL	wet						
36.0		15							1				
		14		100					1				
ĽI	S-17	16	2 0'		PP								
L _	0-17	15	2.0		1.75		wet						
38.0		18		100									
		9											
<u>⊢</u> –	S-18		2.0'		PP	CL	wet						
		15			1.00			(continued on next nade)					
40.0		11						(continued on next page).					

BORING NO.	BW- 6
SHEET_3_O	F_4
DATE:START	3/9/09
END	3/12/09
DATUM: NG	VD29
	0.4+
ELEVATION:	U.1I
ELEVATION: TOTAL DEPTH:_	76'

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	ent Project COUNTY Hudson DATUM	NGVD29
MUNI	CIPALI	TY Ke	arny	LO	CATIO	N Ceo	dar Cre	ek MarshN. <u>697059.7±</u> E. <u>598313.1±</u> ELEVAT	TION: 0.1±
INSPECTORS NAME/COMPANY N. DelGrosso/YU & Associates, Inc. TOTAL DEF									
DRILL	ERS N	AME/C	OMPA	NY <u>C</u>	. Deige	rt/JBD			
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ Cor	ing	EQUIPMENT USED Acker Skid Rig with Donut Hai	nmer (on barrel float)
CASIN		E: <u>4</u> .	0 /3.0 Mazuii	DE	PIH:	23.01	2/20/4	_ WATER: DURING DRILLING: TIME:	_ DATE:
CHEC	NED D	r. <u>D.</u>	mazaji	an	D/	AIE	2/20/		_ DATE
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
		11		100				(continued from previous page).	
42.0	S-19	14 12 10	2.0'		-	CL	wet	Brown varved Silty CLAY and Clayey SILT, alternating 1/8"± silty clay, 1/8"± clayey silt, (GLACIOLACUSTRINE DEPOSIT).	
		10		100					
	S-20	12	2 0'		_	~			
	0-20	15	2.0		-	CL	wet		
44.0		17		100					_
		9		100					
	S-21	10	2.0'		-	CI	wot		
	• - ·	12				OL	wei		
46.0		15		100					_
\vdash \dashv		10		100					_
\vdash \dashv	S-22	19	2.0'		-	CI	wet		_
\vdash \dashv		13				02	wet		
48.0		10		100				alternating 1/4"+ cilty clay 1/4"+ clayov cilt	_
⊢ −		WH						occasional fine sand seams.	_
\vdash \dashv	S-23	WН 6	2.0'		-	CL	wet		
		6							-
50.0									-
51 0									-
-51.0-		D						No recovery.	Undisturbed —
									sampling attempted
	U-NR	S			-				sampler
53.0		н							' -
F									-
									1
									1
									1
									7
56.0									
		5		100				Red-brown Silty CLAY, (GLACIOLACUSTRINE	Advanced 4" casing
	S-24	11	2.0'		PP	<u></u>	wot		
$\mid \mid \mid \mid$	~ _ /	8			1.25	OL	wei		
58.0		12		67					
$\mid - \mid$		5		01				ittle(+) coarse to fine Sand.	
$\mid - \mid$	S-25	16	1.3'		PP	СІ	wet		
\vdash \dashv		22			1.50				
60.0		20						60.0' El59.9	

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO. BW- 6	
SHEET4 OF4	
DATE:START 3/9/09	
END 3/12/09	
DATUM: NGVD29	
FLEVATION 0.1±	
TOTAL DEPTH: 76'	

MUNI	CIPALI	TY Ke	earny	LO	CATIO	N <u>Ce</u>	dar Cre	ek Marsh N. 697059.7± E. 598313.1± ELEVAT	ION: 0.1±			
INSPE	INSPECTORS NAME/COMPANY N. DelGrosso/YU & Associates, Inc. TOTAL DEPTH: 76'											
		ETHOD ⊑∙ 4 .	.0"/3.0		пу, ічл і Іртні	25.0	/70.0'					
CHECKED BY: D. Mazujian DATE: 2/20/12 END OF DRILLING: -2.0' TIME: D/												
0												
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS			
62.0	S-26	9 10 16 15	0.5'	25	PP 1.50	CL	wet	Red-brown Silty CLAY, little coarse to fine Sand, trace coarse to fine Gravel, (GLACIAL TILL).	Advanced 3" casing to 76'			
 64.0	S-27	15 33 36 40	0.7'	34	-	CL	wet	little coarse to fine Sand, trace fine Gravel.				
66.0	S-28	15 25 40 22	1.0'	50	-	CL	wet					
68.0	S-29	53 76 100/4"	1.0'	50	-	ML	wet	Red-brown Clayey SILT, little coarse to fine Sand, trace coarse to medium Gravel, (GLACIAL TILL).	-			
 	S-30	8 28 20 21	0.8'	40	-	SP	wet	Red-brown coarse to fine SAND, and coarse to fine Gravel, (GLACIAL TILL).	Hard drilling at 68' to 71' 			
									Advanced 3" casing			
71.0								71.0' Top of Rock at 71.0 feet. EI70.9'	to 70' —			
	C-1		2.6'	52				Red-brown CLAYSTONE, moderately weathered, medium strong, very closely to closely spaced fractures, (WEATHERED PASSAIC FORMATION).	Rotary bit refusal at 71' 			
 				47				76.0' El75.9'	-			
								Notes: 1. Boring tremie grouted using 3x50-lb bags of bentonite, potable water				

PROJECT NAME Portal Bridge Capacity Enhancement Project

ENGINEERS FIELD BORING LOG

COUNTY Hudson

BORING NO	BW- 7
SHEET_1	OF
DATE:START	3/10/09
END	3/11/09
DATUM: N	GVD29
ELEVATION:	-0.2±
TOTAL DEPTH:	80'

MUNI		TY <u>Ke</u> S NAMI	earny E/CON	LC	CATIO S. Ca	N Sal	erno (c a/YU &	off Amtrak ROW) N. 696930.1± E. 598574.3± ELEVAT Associates, Inc. TOTAL				
DRILL	DRILLERS NAME/COMPANY L. Kamos/JBD											
DRILL	ING M		S <u>M</u>		Iry, NX	NQ Cor	ing o'					
CASIN		E:	<u>4.0</u> Mazuii	Dt ian	-PIH:		.u 2/20/1		_ DATE:			
CHEC	NED D	T D.	muzuji		U	AIE	2/20/		_ DATE			
					1	<u> </u>			1			
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS			
									"O.G.Elevation" refers to top of temporary work platform. Depth to mudline is 4' 			
4 0								4 0' FL -4 2	, –			
		WR		0				No recovery.	PID = 0.0 ppm			
	S-1	WR	0.0'		-							
5.3		WR/4"										
6.0				9				Plack Organic SILT (OPCANIC DEPOSIT)				
\vdash $-$		WH		Ŭ				BIACK OIGAINC SILT, (ORGANIC DEPOSIT).				
	S-2	WH	0.2'		-		wot					
	-	WH	0				wei					
8.0		WH										
		wн		21				Black Organic CLAY, frequent plant matter,	S-3: mc=94.8%			
		wн						(ORGANIC DEPOSIT).	LL=89, PI=49			
	S-3	WН	0.4'		-	ОН	wet					
		2							, –			
-10.0		0		38				Bluish gray coarse to fine SAND some(-) Silt				
\vdash $-$		3						(ALLUVIUM).				
\vdash $-$	S-4	5	0.8'		-	SM	wet					
\vdash $-$		5							_			
<u> </u> 12.0		5		34				light grov little() Silt				
\vdash \dashv		4						iiyiit yiay, iittie(-) oiit.				
	S-5	3	0.7'		-		wot					
		6				51 -510	wei					
14.0		6		05								
		4		25				Light brown medium to fine SAND, (ALLUVIUM).	PID = 0.0 ppm			
L 1	6 6	5	0 51						7			
Γ 1	3-0	4	0.5		-	SP	wet		Advanced 4" casing			
16.0		6							to 15'			
		4		29				Brown coarse to fine SAND, little(-) Silt, (ALLUVIUM).	1			
\vdash \dashv	_	3							-			
\vdash \dashv	S-7	3	0.6'		-	SP-SM	wet		-			
		4							-			
+10.U		•		0				No recovery				
\vdash \dashv		3										
\vdash \dashv	S-8	4	0.0'		-							
\vdash \dashv		4										
20.0		0						20.0' El20.2				

BORING NO	BW- 7
SHEET_2_OF	5
DATE:START	3/10/09
END3	/11/09
DATUM: NG	/D29
ELEVATION:	-0.2±
TOTAL DEPTH:	80'

PROJ	ECT N	AME <u></u>	Portal	Bridge	Capaci	ty Enha	inceme	nt Project COUNTY Hudson DATUM	NGVD29		
MUNIC	IUNICIPALITY Kearny LOCATION Salerno (off Amtrak ROW) N. 696930.1± E. 598574.3± ELEVATION: -0.2±										
INSPE	ASPECTORS NAME/COMPANY										
DRILL	ERSN	AME/C		NY <u>L</u> .			ina		ammor		
DRILL			<u>4 0"</u>		гу, ічл і сты	15	111 <u>9</u> 0'				
CHEC		∟ ∨·D.	Mazuii	an	.ר ו ו. ח		2/20/1	2 END OF DRILLING: TIME:			
OHLO		··		-			-				
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS		
		2		42				Grayish brown CLAY & SILT varved with Silt & Clay,	PID = 0.0 ppm		
22 0	S-9	3 2 1	0.8'		PP 1.50	CL	wet	little(-) fine Sand, (GLACIOLACUSTRINE DEPOSIT).			
 	U-1	P U S H	1.0'	50	PP 1.25 TV 0.15	CL	wet	Grayish brown SILT & CLAY varved with brown Clay & Silt, trace (-) Sand, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a piston sampler U-1: mc=25% LL=27 and 33, PI=7		
26.0	S-10	1 1 1 2	1.8'	90	PP 2.00	CL	wet	Brownish gray SILT & CLAY varved with brown Clay & Silt, alternating 1/8"± to 5/8"± silt & clay, 1/8"± clay & silt, (GLACIOLACUSTRINE DEPOSIT).	and 15 — 98%<#200 _ _		
28.0	S-11	WH WH WH WH	0.7'	34	PP 0.05	CL	wet				
 30.0	S-12	WH WH WH WH	1.6'	80	PP 0.05	CL	wet	Brownish gray SILT & CLAY, (GLACIOLACUSTRINE DEPOSIT).	-		
32.0	S-13	WH WH WH WH	1.5'	75	PP 0.05	CL-ML	wet		S-13: mc=22.4% LL=25%, PI=7% 99.2%<#200 		
 34.0_	S-14	WH WH WH WH	2.0'	100	PP 0.05	CL	wet				
36.0	S-15	WH 1 1 1	1.8'	90	PP 1.50	CL	wet				
	S-16	1 2 1 1	1.5'	75	PP 1.50	CL	wet	Brownish gray varved Silty CLAY, 1/5"± varves, (GLACIOLACUSTRINE DEPOSIT).			
	S-17	1 1 1 1	2.0'	100	PP 1.50	CL	wet	(continued on next page).			

BORING NO.	BW- 7
SHEET_3	OF <u>5</u>
DATE:STAR1	3/10/09
END _	3/11/09
DATUM:	NGVD29
ELEVATION:_	-0.2±
TOTAL DEPT	H: <u>80'</u>

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	nt Project COUNTY Hudson DATUM	NGVD29	
MUNIC	CIPALI	TY Ke	earny	LO	CATIO	N Sal	erno (o	ff Amtrak ROW) _{N. 696930.1± E. 598574.3±} ELEVAT	ΓΙΟΝ: <u>-0.2±</u>	
INSPE	NSPECTORS NAME/COMPANY S. Calabretta/YU & Associates, Inc. TOTAL DEPTH: 80'									
DRILL	ERS N	AME/C	OMPA	NY <u>L</u> .	Ramo	s/JBD				
DRILL	ING M	ETHOD	S_Mu	ud Rota	ry, NX/	NQ Coi	ring	EQUIPMENT USED CME-55 ATV with Automatic H	ammer	
CASIN	IG SIZ	E:	4.0"	DE	PTH:	15	5. 0'	WATER: DURING DRILLING: TIME:	_ DATE:	
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE: _	2/20/1	2 END OF DRILLING: TIME:	_ DATE:	
								NOT ENCOUNTERED		
	_			8			Щ			
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(30D (%)	POCKET PENT/ TORVANE (TSF)	NSCS	AMPLE MOISTUF	DESCRIPTION	REMARKS	
				100			Ś	(appliqued from averticute apple)		
	S-18	2 3 3 4	2.0'	100	PP 1.50	CL	wet	(continued from previous page). Red-brown varved Silty CLAY, 1/2"± varves, (GLACIOLACUSTRINE DEPOSIT).		
42.0 	S-19	3 4 3	2.0'	100	PP 1.25	CL	wet	Red-brown varved SILT & CLAY, 1/2"± varves, (GLACIOLACUSTRINE DEPOSIT).		
44.0	S-20	2 3 5 4	2.0'	100	PP 1.25	CL	wet	Red-brown Silty CLAY, (GLACIOLACUSTRINE DEPOSIT).		
_46.0 	S-21	3 2 2 2 2	1.5'	75	PP 1.50	CL	wet			
50.0	S-22	2 2 1 1	2.0'	100	PP 0.75	CL	wet	Brown varved Silty CLAY and SILT & CLAY, alternating 1/2"± silty clay, 1/2"± silt & clay, (GLACIOLACUSTRINE DEPOSIT).		
 52.0	S-23	1 2 1 1	2.0'	100	PP 0.75	CL	wet			
 54.0	U-2	P U S H	2.0'	100	PP 1.00 TV 0.15	CL	wet	Light brown SILT & CLAY varved with dark brown Clay, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a piston sampler U-2: mc=37% LL=32 and 66,	
 	S-24	2 3 3 2	2.0'	100	PP 0.75	CL	wet	Light brown SILT & CLAY varved with dark brown Clay, alternating 1/16"± to 1/2"± silt & clay, 1/8"± to 1/4"± clay, (GLACIOLACUSTRINE DEPOSIT).	PI=10 and 41 100%<#200 	
	S-25	3 2 1 1	2.0'	100	PP 0.75	CL	wet	Red-brown SILT & CLAY, (GLACIOLACUSTRINE DEPOSIT).		
	S-26	1 1 WH WH	2.0'	100	PP 0.50	CL	wet	Red-brown CLAY varved with Silt & Clay, alternating 1"± to 2"± clay, 1"± silt & clay, (GLACIOLACUSTRINE DEPOSIT). (continued on next page).		

PROJECT NAME Portal Bridge Capacity Enhancement Project

ENGINEERS FIELD BORING LOG

COUNTY Hudson

BORING NO.	BW- 7
SHEET 4	_ OF
DATE:STAR	T 3/10/09
END_	3/11/09
DATUM:	NGVD29
ELEVATION:_	-0.2±
TOTAL DEPT	H: 80'

MUNI	CIPALI	TY <u>Ke</u>	arny	LO	CATIO	N Sal	erno (c	ff Amtrak ROW) 696930.1± E. 598574.3± ELEVA	TION: -0.2±
INSPE DRILL	ECTOR	S NAMI	E/CON	1PANY NY L .	S. Ca	s/JBD	a/ 10 &	Associates, Inc.	DEPTH: 80
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX/	NQ Cor	ing	EQUIPMENT USED CME-55 ATV with Automatic H	lammer
CASI	NG SIZ	E:	4.0"	DE	PTH:	15	5. 0'	WATER: DURING DRILLING: TIME:	_ DATE:
CHEC	KED B	Y: D.	Mazuji	an	D.	ATE: _	2/20/1	2 END OF DRILLING: TIME:	_ DATE:
								NOT ENCOUNTERED	
DEPTH(FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
 62.0_	S-27	WH WH WH WH	2.0'	100	PP 0.50	CL	wet	(continued from previous page). Red-brown CLAY & SILT, (GLACIOLACUSTRINE DEPOSIT).	
 64.0_	S-28	WH WH WH WH	2.0'	100	PP 0.50	CL	wet		
66.0	S-29	WH WH WH WH	2.0'	100	PP 0.50	CL	wet		
 68.0	S-30	WH WH WH WH	0.0'	0	-			No recovery. 68.0' El68.2	
68.5	S-31	100/6"	0.1'	20	-	GP	wet	Red-brown coarse to fine GRAVEL, (GLACIAL TILL).	
									_
L_									
L _									_
<u>⊢</u> –									_
									_
									_
									_
									_
75.0								75.0' Top of Rock at 75.0 feet. EL -75.2	Rotary bit refusal at
[100				Red-brown MUDSTONE, moderately weathered,	75'
[/				medium strong, very closely to moderately spaced	1
				/				tractures, (COMPETENT PASSAIC FORMATION).	
L I				/					
L _	C-1		5 0'	/					
L _			0.0	/					
⊢ _				/					
⊢ –				/					
				52					, –
00.0		L		<u> </u>				I80.2	•

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO	BW- 7
SHEET_5	OF
DATE:START	3/10/09
END	3/11/09
DATUM: N	GVD29
ELEVATION:	-0.2±
TOTAL DEPTH	: 80'

MUNI	CIPALI	TY K	earny	LO	CATIO	N Sal	erno (c	ff Amtrak ROW) 696930.1± E. 598574.3± ELEVA	ΓΙΟΝ: <u>-0.2±</u>
INSPE	CTOR	S NAM	E/CON	1PANY	<u>S. Ca</u>	labrett	a/YU &	Associates, Inc. TOTAL	DEPTH: <u>80'</u>
DRILL	ERS N	AME/C	OMPA	NY L	. Ramo	s/JBD			
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	iry, NX/	NQ Col	ring	EQUIPMENT USED CME-55 ATV with Automatic H	ammer
CASI		=:	4.0 Mozuli	DE	=PIH:	10	0.U 2/20/4		_ DATE:
CHEC	KED B	Y: <u>D.</u>	iviazuji	an	D.	AIE: _	2/20/	END OF DRILLING: TIME:	_ DATE:
								NOT ENCOUNTERED	1
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS
								Bottom of borehole at 80 feet.	
								Notes: 1. Boring tremie grouted using 3x94-lb bags of	_
F -								portiand cement, 3/4x50-lb bag of bentonite, potable water	
								 Undisturbed sample moisture contents noted in "Remarks" reflect an average of all moisture contents 	_
								determined for the sample.	
<u>⊢</u> –									_
⊢ –									_
⊢ –									_
<u>⊢</u> –									_
⊢ −									_
<u>⊢</u> –									_
									_
⊢ –									_
									_
									_
<u>⊢</u> –									-
									-
									_
									_
Γ -									
Γ –									
Ε.									
L I									
L I									
L_									
L_									
L _									
L _									
L _									
L _									
L _									
L _									
L _									
⊢ –									
1									

BORING NO.	BW- 8
SHEET_1_OF	5
DATE:START	2/19/09
END	3/4/09
DATUM: NG	/D29
ELEVATION:	-0.3±
TOTAL DEPTH:	90.5'
Oonut Hammer (on	barrel float)

PROJ MUNI INSPE	ECT N CIPALI ECTOR	AME <u></u> TY K E S NAMI	Portal earny E/COM	Bridge LO 1PANY	Capaci CATIO A. Fy	ity Enha N <u>Cec</u> vodorov	incemo lar Cre a/YU 8	ent Project COUNTY Hudson DATUM: sek Marsh N. 697163.6± E. 598549.4± ELEVAT & Associates, Inc. TOTAL TOTAL TOTAL TOTAL	NGVD29 ION: -0.3± DEPTH: 90.5'
DRILL	ERS N	AME/C	OMPA	NY C	. Deige	rt/JBD			
DRILL	ING M	ETHOD	s <u>M</u> u	ud Rota	ry, NX/	NQ Cor	ing	EQUIPMENT USED Acker Skid Rig with Donut Ham	mer (on barrel float)
CASI	NG SIZ	E: <u>4</u> .	<u>.0"/3.0'</u>	" DE	PTH:	23.0"	/84.0'	_ WATER: DURING DRILLING: TIME:	DATE:
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	D.	ATE: _	2/20/	12 END OF DRILLING: <u>-1.0'</u> TIME:	DATE:
								NOT ENCOUNTERED	
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) ROD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	AMPLE MOISTURE	DESCRIPTION	REMARKS
				0 -			Ś	Dark brown Organic SILT (ORGANIC DEPOSIT)	Depth to mudline 1
 2.0	S-1	WR WR WR WR	0.0'		-	OL	wet	Dark blown Olganic Sien, (OKGANIC DEPOSIT).	
	S-2	WR WR WR WR	0.0'	0	-	OL	wet	No recovery.	-
4.0_		0		55				Brown fibrous PEAT. (ORGANIC DEPOSIT).	PID = 0.0 ppm
		1			סס			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	S-3: mc=402.0%
F -	S-3	0	1.1'		< 0.25	PT	wet		Non-plastic -
		1						6 0' EL _6 3'	_
L0.0								Light brown fine SAND, little Silt, (ALLUVIUM).	Logged from drill
F -									cuttings from 6' to 8
					-	SM	wet		_
8.0									
		6		85				green-brown coarse to fine, little(-) Silt.	PID = 0.0 ppm
	~ 4	12	4 71						
	5-4	17	1.7		-	SP-SM	wet		
10.0		14							
		4		55				yellow-brown medium to fine, some(-) Silt.	Advanced 4" casing
L_	S-5	7	1 1'		_	<u></u>			
L_	0-0	7			_	SIVI	wei		_
12.0		12		100					
L _		6		100				Gray-brown coarse to fine SAND, little(-) Silt, trace(-)	PID = 0.0 ppm
L _	S-6	5	2.0'		-	SP-SM	wet		
		6					wet		to 13'
14.0		12		100				trace Silt	_
⊢ −		4							_
⊢ −	S-7	6	2.0'		-	SP-SM	wet		_
		12							—
16.0	S-8A	4		65	-	SP_SM	wot	4	Bentonite
	,	4 5					Wel		introduced at 16'
<u>⊢</u> –	S-8B	14	1.3'		-	ML	wet	Gray SILT, below 16.6', (ALLUVIUM).	—
18 0		16			2.25			18 0' EI 19 2'	—
^{10.0} _		12		50				Gray and red-brown varved Clayey SILT, 1/8"± varves,	PID = 0.0 ppm
F -		13			PP			(GLACIOLACUSTRINE DEPOSIT).	
F -	S-9	15	1.0'		3.25	ML	wet		—
200		19						(continued on next page).	—

ENGINEERS F	IELD BORING LOG	BORING NO. <u>BW- 8</u> SHEET <u>2</u> OF <u>5</u> DATE:START <u>2/19/09</u> END <u>3/4/09</u>
PROJECT NAME Portal Bridge Capacity Enhancement Project MUNICIPALITY Kearny LOCATION Cedar Creek Marsh INSPECTORS NAME/COMPANY A. Fyodorova/YU & Associates	COUNTY <u>Hudson</u> N. <u>697163.6± E. 598549.4±</u> s, Inc.	DATUM: NGVD29 ELEVATION: -0.3± TOTAL DEPTH: 90.5'
DRILLERS NAME/COMPANY C. Deigen/JBD DRILLING METHODS Mud Rotary, NX/NQ Coring CASING SIZE: 4.0"/3.0" DEPTH: 23.0"/84.0' WATER: CHECKED BY' D. Mazujian DATE'	EQUIPMENT USED Acker Skid Rig with I DURING DRILLING: TIME: END OF DRILLING: -1.0' TIME:	Donut Hammer (on barrel float) DONUTE: DATE:

NOT	ENCOUNTERED	

								NOT ENCOUNTERED	
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS
 22.0	S-10	6 8 9 17	0.7'	35	PP 1.75	ML	wet	(continued from previous page). Gray varved SILT, (GLACIOLACUSTRINE DEPOSIT).	-
									_
23.0 _24.5_	U-1	P U S	1.1'	72	-	CL-ML	wet	Gray-brown Clayey SILT varved with Silt & Clay, alternating 3/8"± clayey silt, 1/4"± silt & clay, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a Shelby tube, advanced 18"
 	S-11	<u>п</u> / 11 17 21 28	1.5'	75	PP 1.50	CL-ML	wet		U-1: mc=26% LL=26 and 28, PI=4– and 6 99%<#200
	S-12	10 10 19 19	1.1'	55	PP 3.25	CL-ML	wet		-
35.0 _37.0_	S-13	3 5 7 9	1.2'	60	PP 0.75	CL	wet	Gray-brown Silty CLAY varved with Clayey Silt, alternating 1/4"± silty clay, 1/10"± clayey silt, (GLACIOLACUSTRINE DEPOSIT).	
40.0								(continued on next page).	
_									

BORING NO.	BW- 8
SHEET_3_C	F_5
DATE:START _	2/19/09
END	3/4/09
DATUM: NO	SVD29
ELEVATION:	-0.3±
TOTAL DEPTH:_	90.5'
lonut Hammor (or	harrol float)

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	ent Project COUNTY Hudson DATUM:	NGVD29
MUNI	CIPALI	TY Ke	arny	LO	CATIO	N Cec	dar Cree	ek MarshN. <u>697163.6±</u> E. <u>598549.4±</u> ELEVAT	ION:
INSPE	CTOR	S NAM	E/CON	1PANY	A. Fy	odorov	a/YU &	Associates, Inc. TOTAL [DEPTH: 90.5'
DRILL	ERS N	IAME/C	OMPA	NY <u>C</u>	. Deigei	rt/JBD			
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/I	NQ Cor	ing	EQUIPMENT USED Acker Skid Rig with Donut Han	imer (on barrel float)
CASIN	NG SIZ	E: <u>4</u> .	0"/3.0" Momuli	DE	PTH:	23.0	/84.0	WATER: DURING DRILLING: TIME:	_ DATE:
CHEC	KED B	Y: <u>D.</u>	wazuji	an	DA	ATE: _	2/20/1	END OF DRILLING: TIME:	_ DATE:
								NOT ENCOUNTERED	
	z			(%)			RE		
Ĥ.	RU RU	E E	≿	RY RY	TSF		STU		
Ē	ЧЩК	8/0.	ΞĤ		E ₩	CS	ĨQ	DESCRIPTION	REMARKS
L L	MPI VCC	SAC	ы С Ш	(%) (%)	NAI VAI	S N	Ē.	DEGORI HON	I LIMAINO
ä	ΥPE	ON	R	7 8	бĞ		MP		
	-			Y Ř			SA		
		3		100				(continued from previous page).	Advanced 4" casing
	C 14	10	2 0'		PP			Red-brown Silty CLAY varved with Clayey Silt,	to 23
	5-14	10	2.0		1.00	CL	wet	alternating 1/4"± to 1/3"± silty clay, 1/8"± clayey silt,	
42.0		10						(GLACIOLACUSTRINE DEPOSIT).	
[]									
45.0									
		2		100					
	- ·-	2			PP				
	S-15	4	2.0'		1.00	CL	wet		-
47 0		5							-
50 0									
		<u></u>		100				alternating 1/3"± silty clay, 1/4"± clayey silt.	
		WH			DD				
	S-16	WH	2.0'		<0.25	CL	wet		
52 0		wн							
02.0									
53 0									-
		P		92				Brown varved CLAY & SILT and Silty CLAY,	Undisturbed sample
\vdash \dashv		ľυ			20 25			alternating 1/8"± clay & silt, silty clay,	collected using a
\vdash \dashv	U-2	s	1.8'		TV	CL	wet	(GLACIOLACUSTRINE DEPOSIT).	U-2: mc=35%
55 0		H H			<0.05				LL=34 and 61,
-00.0		W/D		100				Red-brown Silty CLAY varved with Clav & Silt.	PI=13 and 36
\vdash \dashv		WR			סס			alternating 1/2"± to 1"± silty clay, 1/6"± clay & silt,	50%\#200
\vdash \dashv	S-17	WH	2.0'		0.75	CL	wet	(GLACIOLACUSTRINE DEPOSIT).	-
570		5							-
L21.0									-
\vdash \dashv									–
\vdash \dashv									-
\vdash \dashv									–
\vdash \dashv									–
								(continued on next page)	-
[0.00]			l						L

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

	BORING NO. BW- 8
	SHEET4 OF5
	DATE:START
	END 3/4/09
_	DATUM: NGVD29
	ELEVATION: -0.3±
-	TOTAL DEPTH: 90.5'
C	Oonut Hammer (on barrel float)
	DATE:

ſ

MUNI		TY <u>Ke</u>	earny	LO	CATIO	N Ced	lar Cre	Back Marsh N. 697163.6± E. 598549.4± ELEVAT	ION: -0.3±
	ECTOR	S NAM	E/CON OMPA	1PANY Ny C	<u>A.ry</u> Deige	rt/JBD	a/ 10 o)EPTH: 90.5
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX/	NQ Cor	ing	EQUIPMENT USED Acker Skid Rig with Donut Han	nmer (on barrel float)
CASI	NG SIZ	E: <u>4</u> .	0"/3.0	" DE	EPTH:	23.0"	84.0		DATE:
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	D	ATE: _	2/20/	12END OF DRILLING:TIME:	DATE:
					1	, , , , , , , , , , , , , , , , , , ,			
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
	S-18A	WR		100	-	SP-SM	wet	(continued from previous page).	Fluid loss at 60'
\Box		4	2 0'		_			Gray-brown coarse to medium SAND, little Silt,	
L _	S-18B	13	2.0		PP	ML	wet	Di.2 (GLACIOLACUSTRINE DEPOSIT).	_
62.0		19			1.25			some(-) coarse to fine Gravel (GLACIAL TILL)	_
⊢ –									_
⊢ –									_
<u>⊢</u> –									_
F -									Advanced 3" casing
65.0									to 65' —
[_		5		100				some medium to fine Gravel.	S-19: mc=13.5%
L _	S-19	6	2 0'		_	MI	wot		44.0%~#200
L _		11	2.0			IVIL	wei		_
67.0		14						-	_
<u>⊢</u> –									_
⊢ –									_
									_
									_
70.0									
70.1	<u>S-20</u>	100/1	0.0'	0	<u> </u>			No recovery.	Hard drilling at 70'
L _								BOULDER at 70.1' to 71.5'.	.0 80 —
<u>⊢</u> –									_
⊢ –									_
⊢ –									-
⊢ –									
F -									_
Γ.									
75.0				100					
15.3	<u>S-21</u>	100/3"⁄	0.3'		┝ -	<u>GP</u> _∤	wet	Red-brown coarse to fine GRAVEL, some coarse to	_
⊢ –									_
⊢ –									-
⊢ –									-
F -									-
F -									_
Γ Ξ									Possible boulder at
L _									
80.0								(continued on next page).	

BORING NO. BW- 8
SHEET_5_OF_5
DATE:START 2/19/09
END 3/4/09
DATUM: NGVD29
ELEVATION: -0.3±
TOTAL DEPTH: 90.5'
) Jonut Hammer (on barrel float)

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	ent Project COUNTY Hudson DATUM:	NGVD29
MUNICIPALITY Kearny LOCATION Cedar Creek				CATIO	N Ceo	dar Cre	eek MarshN. 697163.6±E. 598549.4±ELEVAT	ION:	
INSPECTORS NAME/COMPANY A. Fyodorova/YU &				A. Fy	odorov	a/YU 8	Associates, Inc. TOTAL [)EPTH: 90.5'	
DRILL	ERS N	AME/C	OMPA	NY <u>C</u>	. Deige	rt/JBD			
DRILL	ING M	ETHOD	<u>S</u> <u>M</u>	ud Rota	ry, NX/	NQ Cor	ing	EQUIPMENT USED Acker Skid Rig with Donut Han	mer (on barrel float)
CASIN	IG SIZ	E: <u>4</u> .	0"/3.0" Momuii		EPTH:	23.0	/84.0	_ WATER: DURING DRILLING: TIME:	DATE:
CHEC	KED B	Y: <u>D.</u>	viazuji	an	D.	ATE: _	2/20/	12 END OF DRILLING: TIME:	DATE:
	z			(%)			RE		
F.	ND/	ER	ž		TSF		STU		
L L	ЦЧЦ	3/0.5 MPL	T) VE		ц Ц Ц	CS	Ĩ	DESCRIPTION	
Í L	MPL 000	SAI	С Г	Ő / É	AP KE	SU	Ц	DESCRIPTION	REIVIARNO
B	YPE YPE	ON	RE	g / H	00 0R		MPI		
	ŕ			/ ¥			SAI		
80.3	S-22	65/3" _	0.1'	33	-	GM	wet	(continued from previous page).	Advanced 3" casing
80.5				0				Red-brown coarse to fine GRAVEL, (siltstone	to 65' —
								fragments), some coarse to medium Sand, trace(-)	_
	C-1		0.0'		-			Silt, (GLACIAL TILL).	_
925								No recovery.	_
02.5								\underbrace{C}_{C}	_
									_
									_
									Advanced 3" casing
									to 84'
85.0	S-23	50/4"	0.1'	33	_	N 41		 Red_brown_Clavey SILT_ and medium to fine Gravel	Loss of circulaton at
-85.5-	0-20	50/4	0.1	73	<u> </u>		wet	(DECOMPOSED ROCK)	85'
								Top of Rock at 85.5 feet.	_
<u> </u>				/				Red-brown CLAYSTONE, moderately to slightly	
L –								weathered, medium strong to strong, very closely to	
L –								moderately spaced fractures, (COMPETENT	
L –	C-2		3.7'	/				PASSAIC FORMATION).	
L _									_
L _				/					_
				/					_
L _				/					_
90.5				53				90.5' El90.8'	
								Bottom of borehole at 90.5 feet.	_
								NOTES: 1. Dering tramin grouted using 3x04 lb hags of	
								nortland cement 1x50-lb bag of bentonite, notable	_
								water	
								2 Undisturbed sample moisture contents noted in	
								"Remarks" reflect an average of all moisture contents	
								determined for the sample.	
$ \top $									
$ \top $									
\vdash \dashv									-
\vdash \dashv									-
\vdash \dashv									-
\vdash \dashv									-
\vdash \dashv									
\vdash \dashv									-
\vdash \dashv									
\vdash								1	

BORING NO. BW- 9	
SHEET1_OF5	
DATE:START	
END 3/6/09	
DATUM: NGVD29	
ELEVATION: 4.4±	
TOTAL DEPTH: 85'	
ed Rig with Safety Hammer	

Г

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ity Enha	nceme vn of k	ent Project COUNTY Hudson DATUM:	NGVD29
MUNICIPALITY Kearny LOCATION Town of Kearny/USPS N. 697085.9± E. 598925.1± ELEVATION INSPECTORS NAME/COMPANY R. Clavel/YU & Associates, Inc. TOTAL DI									DEPTH: 85'
DRILLERS NAME/COMPANY J. Zambardi/JBD									
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX/	NQ Cor	ing	EQUIPMENT USED CME-55 Truck Mounted Rig wit	h Safety Hammer
CASI	NG SIZ	E:	4.0" Mozuii	DE	EPTH:	30	.0' 2/20//	_ WATER: DURING DRILLING: <u>3.5'</u> TIME: <u>8:23</u>	DATE: <u>3/4/09</u>
CHEC	KED B	Y: <u>D.</u>	iviazuji	an	D.	AIE: _	2/20/	IZ END OF DRILLING: 12.5 TIME: 11:50	DATE: 3/6/09
					1				
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	USCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
0.0	G-1				-	SP-SM		Dark brown coarse to fine SAND, some coarse to fine Gravel, trace(+) Silt, occasional cobbles, brick fragments, (FILL).	Hand augered to 4' Used automatic — hammer at 4' to 10' bgs
4.0				3/					Dentenite
<u>⊢</u> –		5						fine Sand trace Silt occasional ash cinders (FILL)	introduced at 4'
⊢ –	S-1	8	0.7'		-	GP-GM	wet		_
		9							_
6.0_		,		17				6.0'El1.6'	Advanced 4" casing
+ -		3			PP			(ORGANIC DEPOSIT).	to 6'
8.0	S-2	2 1 1	0.3'		<0.25 TV <0.05	PT	wet		
		Р		100	-	PT	wet		Undisturbed sample
	U-1	U S H	2.0'		-	SM	wet	9.0' EI4.6' Dark gray fine SAND, and(-) Silt, (ALLUVIUM).	Shelby tube U-1 (PT): mc=342% LL=174, PI=93
10.0		1		38					U-1(SM):39%<#200-
 12 0	S-3	5 5 7	0.8'		-	SM	wet		-
- 12.0_		3		42				little(-) Silt.	PID = 0.0 ppm
	S-4	6	0.8'		-	SP-SM	wet		-
14.0		/		50				Crowich brown modium to find CAND trace() Silt	
 	S-5	3 5 5	1.0'	50	-	SP	wet	(ALLUVIUM).	Advanced 4" casing
160		6							to 15'
		2		59					PID = 0.0 ppm
	6.0	2	1.01						
	3-0	8	1.2		-	SP	wet		
18.0		13		50					
L _		8		50					PID = 0.0 ppm
⊢ –	S-7	14	1.0'		-	SP	wet		
		15						(continued on next page)	_
⊥∠0.0	1		1	1	1	1			

PROJECT NAME Portal Bridge Capacity Enhancement Project

MUNICIPALITY Kearny LOCATION Town of Kearny/USPS

ENGINEERS FIELD BORING LOG

COUNTY Hudson

N. <u>697085.9±</u> E. <u>598925.1±</u>

BORING NO. BW- 9
SHEET_2_OF_5
DATE:START 3/4/09
END 3/6/09
DATUM: NGVD29
ELEVATION: 4.4±
TOTAL DEPTH: 85'
ed Rig with Safety Hammer
8:23 DATE 3/4/09

INSPE	ECTOR	SNAM	E/CON		R. Cl	avel/YU	J & Ass	sociates, Inc. TOTAL	DEPTH: 85'			
	DRILLERS NAME/COMPANY J. Zambardi/JBD DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED CME-55 Truck Mounted Rig with											
CASI	NG SIZ	ETHOD F'	4.0"	DF	PTH [.]	30	.0'	WATER [·] DURING DRILLING [·] 3.5' TIME [·] 8:23	DATE 3/4/09			
CHEC	KED B	Y: D.	Mazuji	an	D,	ATE: _	2/20/ [,]	12 END OF DRILLING: <u>12.5'</u> TIME: <u>11:50</u>	DATE: 3/6/09			
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS			
		3		75	-	SP-SM	wet	(continued from previous page).	PID = 0.0 ppm			
		9						Grayish brown medium to fine SAND, trace Silt,				
	S-8	8	1.5'		-			(ALLUVIUM).				
22.0		9			-	ML	wet	Gray SILT, (ALLUVIUM).				
 25.0									No pocket penetrometer test — performed from S-8_ to S-9 due to sample adhering to walls of split spoon—			
		10		17				Gray Clayey SILT, trace(-) fine Sand, (ALLUVIUM).				
		15	0.21									
	5-9	12	0.3		-	ML	wet		_			
27.0		15										
 				17								
		16						Gray SILT & CLAY, (ALLUVIUM).	LL=26. PI=8 —			
	S-10	23	0.3'		-	CL	wet					
⊢ –		23										
32.0		20						-	–			
⊢ –									–			
⊢ –									. –			
⊢ –								<u> 33.5'El29.1</u>				
⊢ −									-			
25 0												
102				50				Brown varved CLAY & SILT and Silty CLAY.	Undisturbed sample			
					PP			alternating 1/2" to 1/4"± clay & silt, 1/2" to 1/4"± silty	collected using a -			
	U-2	s	1.0'		TV	CL	wet	clay, (GLACIOLACUSTRINE DEPOSIT).	Shelby tube			
37 0		H			0.50				LL=31 and 40,			
-01.0_		6		92				alternating 1/8"± clay & silt, 1/8"± silty clay.	PI=10 and 20 —			
F -		6			PP							
F -	S-11	9	1.8'		1.25	CL	wet					
39 0		9										
								1	-			
40.0	1							(continued on next page).	-			

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO. BW- 9	
SHEET3 OF	
DATE:START	
END 3/6/09	
DATUM: NGVD29	
ELEVATION: 4.4±	
TOTAL DEPTH: 85'	
d Rig with Safety Hammer	

MUNI	CIPALI	TY <u>K</u> e		LO			Nn of K	<u>Learny/USPS</u> <u>N. 697085.9±</u> E. 598925.1± ELEVAT	ION: 4.4±
			E/CON	1PANY NV J.	Zamba	avel/ f C ardi/JB	D & ASS		DEPTH: 00
	ING M		S Mu	ud Rota	ry, NX/	NQ Coi	ring	EQUIPMENT USED CME-55 Truck Mounted Rig wit	h Safety Hammer
CASI	NG SIZ	E:	4.0"	DE	EPTH:	30	.0'	WATER: DURING DRILLING: <u>3.5'</u> TIME: <u>8:23</u>	DATE: 3/4/09
CHEC	KED B	SY: D.	Mazuji	an	D/	ATE: _	2/20/1	2 END OF DRILLING: <u>12.5'</u> TIME: <u>11:50</u>	DATE: <u>3/6/09</u>
								NOT ENCOUNTERED	
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS
L _		4		92				(continued from previous page).	_
	S-12	6 6 8	1.8'		PP 1.50	CL	wet	Brown and gray varved Silty CLAY, 1/8"± varves, (GLACIOLACUSTRINE DEPOSIT).	
42.0									_
									_
L _									_
L _									_
45.0				92				2/16" 1/07/02	_
⊢ –		2		52					_
<u>⊢</u> –	S-13	3	1.8'		PP 1.25	CL	wet		_
		5							-
47.0									_
F -									_
F -									_
L _									_
50.0				02					_
		WH		92				red-brown, 1/8°± varves.	_
	S-14	WH 1	1.8'		PP <0.25	CL	wet		_
520		3			10.20				-
52.0									_
F -									
L _									
⊢ –									_
55.0				92					_
⊢ -		WH WH							_
├ -	S-15	WH	1.8'		<0.25	CL	wet		-
57 0		2							
Γ.									
⊢ –									_
								(continued on next page)	_
60.0								(continued on next page).	

BORING NO	BW- 9
SHEET_4	OF <u>5</u>
DATE:START	3/4/09
END	3/6/09
DATUM: N	IGVD29
ELEVATION:	4.4±
TOTAL DEPTH	l:85'
ed Rig with Safe	ty Hammer

PROJ MUNIO INSPE	ECT NA	AME _ L TY _ Ke S NAMI	Portal earny E/COM	Bridge LO 1PANY	Capaci CATIO <u>R. Cl</u>	ty Enha N Tov avel/YU	anceme wn of K I & Ass	Ent Project COUNTY Hudson DATUM: Kearny/USPS N. 697085.9± E. 598925.1± ELEVAT sociates, Inc. TOTAL D	NGVD29 ION: <u>4.4±</u> DEPTH: <u>85'</u>
	ERS N	AME/C	ompa S M I	ud Rota	rv. NX/	NQ Cor	ina .	EQUIPMENT USED CME-55 Truck Mounted Rig wit	h Safety Hammer
CASIN	IG SIZ	E:	4.0"	DE	PTH:	30	.0'	WATER: DURING DRILLING: <u>3.5'</u> TIME: <u>8:23</u>	DATE: 3/4/09
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	D/	ATE: _	2/20/1	12 END OF DRILLING: 12.5' TIME: 11:50	DATE: <u>3/6/09</u>
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
		WН		92				(continued from previous page).	
62 0	S-16	WH WH 3	1.8'		PP <0.25	CL	wet	Brown CLAY & SILT varved with Clay, alternating 3/8"± clay & silt, 1/4"± clay, (GLACIOLACUSTRINE DEPOSIT).	
									_
									_
65.0									_
	U-3	P U S	0.8'	38	PP 1.00 TV 0.35	CL	wet	Red-brown CLAY & SILT varved with Clay, trace fine Sand, alternating 3/8"± clay & silt, 1/4"± clay, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a Shelby tube U-3: mc=45%
67.0				92				Red-brown varved Silty CLAY and SILT & CLAY	PI=11 and 40 —
	S-17	3 4 10	1.8'		PP 1.00	CL	wet	alternating 5/8"± silt & clay, 5/8"± silty clay, occasional 6" silt layers, (GLACIOLACUSTRINE DEPOSIT).	98%<#200
69.0		8							_
									_
	S-18	7 13 14	1.8'	92	PP 1.65	CL	wet		
72.0		8							
									_
									_
75.0		F		96					S 10: mc=21.0%
	S-19	10	1.2'		-	CL-ML	wet	76 Or DEPOSIT).	LL=21, PI=5 —
76.3		70/3"_			-	GP	wet	Red-brown coarse GRAVEL, (GLACIAL TILL).	
⊢ −									Drill rig chattoring
									from 77' to 80'
\vdash –									Fluid loss at 77' to
80.0								80.0' El75.6'	80' —

PROJECT NAME Portal Bridge Capacity Enhancement Project

ENGINEERS FIELD BORING LOG

COUNTY Hudson

	BORING NO. BW- 9
	SHEET5OF
	DATE:START 3/4/09
	END 3/6/09
	DATUM: NGVD29
	ELEVATION: 4.4±
	TOTAL DEPTH: 85'
(ed Rig with Safety Hammer
	8.23 DATE 3/4/09

MUNIC		TY <u>ke</u>		LO				Kearny/USPS N. 697085.9± E. 598925.1± ELEVATION:	<u>4.4</u>
INSPE					Zamba	avel/10 ardi/.IB			00
			S MI	ud Rota	rv. NX/	NQ Col	rina	FOUIPMENT USED CME-55 Truck Mounted Rig with Safet	y Hammer
CASIN	G SIZI	=:	4.0"	DE	PTH:	30).0'	WATER: DURING DRILLING: <u>3.5'</u> TIME: <u>8:23</u> DATE	3/4/09
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE: _	2/20/1	/12 END OF DRILLING: <u>12.5'</u> TIME: <u>11:50</u> DATE	3/6/09
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION R	EMARKS
-								Ded brown CLAVETONE mederately to alightly	ced 4" casing
 82.5	C-1		2.5'	90				weathered, medium strong, closely to moderately spaced fractures, (COMPETENT PASSAIC FORMATION).	
								at 82.9	
	C-2		2.5'						_
									_
85.0				80				85.0' EI80.6'	
								Bottom of borehole at 85 feet. <u>Notes:</u> 1. Boring tremie grouted using 1x94-lb bag of portland cement, 1x50-lb bag of bentonite, potable water. 2. Undisturbed sample moisture contents noted in "Remarks" reflect an average of all moisture contents determined for the sample. 3. Temporary well installed 2' east of boring BW-9 to 10'.	to water in rary well: 3.0 n 3-9-09 at m

BORING NO.	BW- 10
SHEET_1_O	F_ 5
DATE:START	3/27/09
END	4/1/09
DATUM: NG	VD29
ELEVATION:	-0.2±
TOTAL DEPTH:_	82'
onut Hammor (on	harrol float)

PROJ	ECT N		Portal	Bridge	Capac	ity Enha	anceme	Project COUNTY Hudson DATUM:	NGVD29
INSPE	CTOR	S NAMI	E/COM	LO IPANY	<u>M. Tekin/YU & Associates, Inc.</u>			ociates, Inc. N. <u>697253.2±</u> E. <u>598756.4±</u> ELEVAII	ON: <u>-0.21</u>)FPTH: 82'
DRILL	ERS N	AME/C		NY C	. Deige	ert/JBD			
DRILL	ING M	ETHOD	s <u>M</u> u	ud Rota	iry, NX	NQ Cor	ring	EQUIPMENT USED Acker Skid Rig with Donut Ham	mer (on barrel float)
CASIN	IG SIZ	E:	4.0"	DE	EPTH:	34	.0'		DATE:
CHEC	KED B	Y: D.	Mazuji	an	D	ATE: _	2/20/1	END OF DRILLING: <u>-1.0</u> TIME:	DATE:
			r		4			NOT ENCOUNTERED	
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS
0.0		WR		75				Black Organic SILT, (ORGANIC DEPOSIT).	Depth to mudline 1'
	S-1	WR WR WR	1.5'		-	OL	wet		-
		WR		100					_
L _	S-2	WR	2.0'		-	0	wet		_
							wet		_
4.0_				100					_
		WR							_
	S-3	WR	2.0'		-	OL	wet		—
60		WR							_
-0.0		wн		25				Gray medium to fine(+) SAND, some Organic Silt,	—
		WH						(ORGANIC DEPOSIT).	_
	S-4	2	0.5'		-	SM	wet		_
8.0		3						8.0' El8.2'	_
		9		50				Gray coarse to fine SAND, little(-) Silt, trace(-) fine	S-5: mc=18.6%
	S-5	16	1 0'		_	ed em	wot	Gravel, (ALLUVIUM).	10.3%~#200
	00	24	1.0			35-311	wei		_
10.0		21		100					_
		7		100					_
	S-6	16	2.0'		-	SP-SM	wet		_
		21							_
^{12.0}		<u> </u>		50					-
		11							-
	S-7	13	1.0'		-	SP-SM	wet		_
14.0		14							-
		9		75					
	S-8	13	1.5'		_	ed em	wot		_
	00	11	1.0			35-311	wei		_
16.0		9		75				16.0' EI16.2'	_
		9		13				silt. 1/16"± silty clay. (GLACIOI ACUSTRINF	_
	S-9	13	1.5'		PP 1 20	ML	wet	DEPOSIT).	_
		23							_
10.U		7		50					-
		16			PP				—
	S-10	20	1.0'		2.20	ML	moist		-
20.0		22						(continued on next page).	_

BORING NO.	BW- 10
SHEET_2_0	F_5
DATE:START _	3/27/09
END	4/1/09
DATUM: NG	VD29
ELEVATION:	-0.2±
TOTAL DEPTH:_	82'

PROJI MUNIC	ECT N CIPALI CTOR	AME _ L TY _ Ke S NAMI	Portal earny E/CON	Bridge LO IPANY	Capaci CATIO <u>M. Te</u>	ty Enh N <u>Ce</u> kin/YU	anceme dar Cre I & Asso	ent Project COUNTY <u>Hudson</u> DATUM: ek Marsh N. <u>697253.2±</u> E. <u>598756.4±</u> ELEVAT ociates, Inc. TOTAL I	NGVD29 ION: -0.2± DEPTH: 82'
DRILL CASIN CHEC	ING M IG SIZ KED B	ETHOD E: Y: _ D.	0 <u>M</u> us <u>Mu</u> <u>4.0"</u> Mazuji	ud Rota DE an	EPTH:	NQ Co 34 ATE: _	ring 4.0' 2/20/1	EQUIPMENT USED Acker Skid Rig with Donut Han WATER: DURING DRILLING: TIME: END OF DRILLING: TIME: NOT ENCOUNTERED	Imer (on barrel float)
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
	S-11A S-11B	7 13 16 21	1.9'	95	PP 2.00 -	ML	moist	(continued from previous page). Gray-brown SILT varved with Silty Clay, alternating 3/4"± silt, 1/4"± silty clay, with 6"± layer of gray medium to fine gravel, and silty clay at 20',	
	S-12	12 16 18 19	2.0'	100	PP 1.50	ML	moist	brown-gray, alternating 1/2"± silt, 1/4"± silty clay.	-
	U-1	P U S H	1.5'	75	PP 1.70	ML	moist	Gray Clayey SILT, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a — Shelby tube —
	S-13	12 14 15 21	1.0'	50	PP 2.60	CL	moist	Gray SILT & CLAY, (GLACIOLACUSTRINE DEPOSIT).	
	S-14	13 18 26 29	1.0'	50	PP 3.50	CL	moist		
 33.0	S-15	10 14 21 22	1.2'	60	PP 2.50	CL	moist	Gray Silty CLAY, (GLACIOLACUSTRINE DEPOSIT).	-
	S-16	10 12 18 20	2.0'	100	PP NA	CL	moist	Gray Silty CLAY varved with Silt, alternating 1/4"± silty clay, 1/16"± silt, (GLACIOLACUSTRINE DEPOSIT).	-
37.0	S-17	8 12 13 12	2.0'	100	PP 1.50	CL	moist		
 _38.0 _40.0	U-2	P U S H	1.1'	55	PP 1.00	CL	moist	Gray Silty CLAY varved with Silt, (GLACIOLACUSTRINE DEPOSIT). (continued on next page).	Undisturbed sample collected using a — Shelby tube

BORING NO.	BW- 10
SHEET_3_0	F_ 5
DATE:START	3/27/09
END	4/1/09
DATUM: NG	VD29
ELEVATION:	-0.2±
TOTAL DEPTH:_	82'

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enh	anceme	ent Project	COUNTY Huds	son		DATUM:	NG	VD29
MUNI	CIPALI	TY Ke	arny	LO	CATIO	N Ce	dar Cre	ek Marsh	N. 697253.2±	E. 598	756.4±	ELEVAT	ION:	-0.2±
INSPE	ECTOR	S NAM	E/CON	1PANY	М. Те	kin/YU	J & Ass	ociates, Inc.				TOTAL E	DEPTH:	82'
DRILL	ERS N	IAME/C	OMPA	NY _C	. Deige	rt/JBD								
DRILL	ING M	ETHOD	s <u>M</u> u	ud Rota	ry, NX/	NQ Co	ring	E	QUIPMENT USED AC	ker Skid	Rig with	Donut Han	nmer (on	barrel float)
CASI	NG SIZ	E:	4.0"	DE	EPTH:	34	4.0'	_ WATER: D	URING DRILLING:		_ TIME: _		DATE:	
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE: _	2/20/1	1 <u>2</u> E	ND OF DRILLING:	-1.0'	_ TIME: _		DATE:	
								N	OT ENCOUNTERED					
				(%			Ř							
F	RUN	두 문	≻	RY(NT/ SF)		TUF							
<u>ц</u>	ЧN	/0.5 /PL	Щ Ч		E (J	S	OIS							
H H	L L CO	WS, SAN	δĒ.	<u>0</u> / 🔬	AN AN	nsc	Σ		DESCRIPTION				RE	MARKS
E E	SAN PE/	N S LO	RE		DRV DC	_	L L							
	‴≿			/ g	ďΥ		SAN SAN							
		7		100			0,	(contin	ued from previous pag	ne)				
		/						Grav Silty	CLAY varved with Sil	ilt altern:	atina 1/4"+	siltv		_
<u>⊢</u> –	S-18	′ 。	2.0'		1 00	CL	moist	clay 1/16	"+ silt (GLACIOLACI	JSTRINF		T)		_
		10			1.00			,	, (.).		_
42.0		10		100										_
<u> </u>		9		100										_
L _	S-19	12	2.0'		PP	CI	moist							_
L _		13	-		1.00	OL	moist							_
44.0		13		100										_
L_		5		100				grayish	brown.					
	S-20	7	2 0'		PP	~								
	3-20	8	2.0		0.60	CL	moist							
46.0		9												
		5		100				alternat	ing 1/4"± silty clay, 1/8	8"± silt.				_
		6			PP									_
	S-21	6	2.0		0.60	CL	moist							_
48.0		6												_
- 10.0		7		100										_
F -		8			DD									_
	S-22	9	2.0'		0.40	CL	moist							_
500		10												_
30.0		\A/L1		100				alternat	ing 1/2"± silty clay, 1/4	4"± silt.				_
F -									0 , , ,					_
	S-23	WH	2.0'		040	CL	moist							—
		WH												-
^{52.0}		14/1		100										-
⊢ −		VVH												-
⊢ −	S-24	3 7	2.0'		1 00	CL	moist							-
		7			1.00									_
<u> </u> 54.0_		1		85				araviah	brown alternating 1/2)"+ ciltu a		eilt		_
		13						with 6"+ I	aver of brown fine can	- I SIILY C	dy, 1/4 ±	511L,		_
⊢ −	S-25	10	1.7'		PP	CI	moist		ayor of brown line Sall	a, some	Slayey Sli			_
⊢ −		10			0.80	52								_
56.0		14		100				Drawer						_
L _		5		100				Brown C	LAY & SILL, occasion	ומו silt se פודו	ams,			_
	S-26	7	2 0'		PP	CI	moint		LAGUS I RINE DEPUS	311).				_
	0 20	10			1.00	υL	moist							
58.0		12		460										
L_		14		100										
	\$ 27	20	201		PP	~		with 4"±	layer of red-brown fir	ne sand,	and silty o	lay.		
Ľ	5-21	24	2.0		0.80	CL	moist							
60.0		27						(contin	ued on next page).					

BORING NO.	BW- 10
SHEET_4_O	F_5
DATE:START _	3/27/09
END	4/1/09
DATUM: NG	VD29
ELEVATION:	-0.2±
TOTAL DEPTH:_	82'

PROJ MUNI INSPE	ECT N CIPALI ECTOR	AME <u></u> TY Ke S NAMI	Portal earny E/CON	Bridge LO 1PANY	Capaci CATIOI <u>M. Te</u>	ty Enh N <u>Ce</u> kin/YU	anceme dar Cre I & Ass	ent Project COUNTY <u>Hudson</u> DATUM: ek Marsh <u>N. 697253.2±</u> E. <u>598756.4±</u> ELEVAT ociates, Inc. TOTAL [NGVD29 ION: -0.2± DEPTH: 82'
DRILL DRILL CASIN CHEC	ERS N ING M NG SIZ KED B	IAME/CO ETHOD E: Y: _ D.	OMPA S <u>Mu</u> <u>4.0''</u> Mazuji	NY <u>C</u> ud Rota DE an	. Deige i ry, NX/ PTH: D/	rt/JBD NQ Co 34 ATE: _	ring 4.0' 2/20/1	EQUIPMENT USED Acker Skid Rig with Donut Han WATER: DURING DRILLING: TIME: END OF DRILLING: TIME:	mmer (on barrel float) DATE: DATE:
			1						
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
62.0	S-28	WH WH WH WH	2.0'	100	PP 0.50	CL	moist	(continued from previous page). Grayish brown Silty CLAY varved with Silt, alternating 1/2"± silty clay, 1/4"± silt, (GLACIOLACUSTRINE DEPOSIT).	
63.0 	U-3	P U S H	1.8'	90	-	CL	moist	Gray-brown Silty CLAY varved with Silt, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a piston sampler
 	S-29	WH WH WH WH	0.8'	40	-	ML	wet	Red-brown Clayey SILT, some fine Sand, (GLACIOLACUSTRINE DEPOSIT).	
69.0	S-30	4 7 10 12	2.0'	100	-	ML	moist		
71.0	S-31	14 16 21 24	1.5'	75	PP 1.50	ML	moist	71.0' El71.2'	-
73.0	S-32	7 12 13 12	1.8'	90	-	ML	moist	Red-brown Clayey SILT, some(-) coarse to fine Sand, little(+) coarse to fine Gravel, (GLACIAL TILL).	-
75.0	S-33	15 40 28 37	2.0'	100	-	ML	moist		-
75.9	S-34	15 50/5"	0.5'	54	-	ML	wet	Red-brown Silt, some(+) coarse to fine Gravel, some(-) coarse to fine Sand, (GLACIAL TILL).	
								Top of Rock at 77 feet	_
//.0 				83				Brown SILTSTONE, slightly weathered, medium strong, very closely to moderately spaced fractures, (COMPETENT PASSAIC FORMATION).	
 	C-1		4.2'					(continued on next page).	

BORING NO. BW-10
SHEET_5_OF_5
DATE:START 3/27/09
END4/1/09
DATUM: NGVD29
ELEVATION: -0.2±
TOTAL DEPTH: 82'
onut Hammer (on barrel float)

PROJ	ECT N/	AME _	Portal I	Bridge	Capaci	ty Enha	anceme	ent Project COUNTY Hudson DATUM:	NGVD29
MUNI	CIPALI	TY Ke	arny	LO	CATIO	N Ceo	dar Cre	eek MarshN697253.2±E598756.4±ELEVATI	ON: -0.2±
INSPE	ECTOR	S NAM	E/CON	IPANY	<u>М. Те</u>	kin/YU	& Ass	ociates, Inc. TOTAL D	EPTH: <u>82'</u>
DRILL	ERS N	AME/C	OMPA	NY _C	. Deige	rt/JBD			
DRILL	ING MI	ETHOD	s <u>M</u> u	ud Rota	ry, NX/	NQ Cor	ing	EQUIPMENT USED Acker Skid Rig with Donut Ham	mer (on barrel float)
CASI	NG SIZI	E:	4.0"	DE	PTH:	34	.0'	_ WATER: DURING DRILLING: TIME:	DATE:
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	D.	ATE: _	2/20/1	12 END OF DRILLING: -1.0 TIME:	DATE:
								NOT ENCOUNTERED	
	7			(%)	, (RE		
F	NUI RUI	F 문	≿	אַ	LN ISF		1U		
<u>н</u>	ШШ	0.5 1PL) ER		E DE	SS	OIS		
	L CO	WS.	ς Ε	00 / 🗊	AN (ET	nsc	Ш	DESCRIPTION	REMARKS
	SAN PE	N S N	RĒ		OCI DR/		1PL		
	‴≿	шО		/ B	ďμ		SAN		
				/				(continued from previous page).	
<u>⊢</u> –								Brown SILTSTONE, slightly weathered, medium	_
<u>⊢</u> –								strong, very closely to moderately spaced fractures,	_
				70				COMPETENT PASSAIC FORMATION)	_
82.0				/ /0				82.0 EI82.2	
\vdash –								Notes:	_
⊢ –								1. Boring tremie grouted using 3x94-lb bags of	_
⊢ –								portland cement, potable water.	_
⊢ –									_
<u>⊢</u> –									_
L _									_
L _									_
L _									_
L _									_
L_									_
L_									_
L_									_
L _									_
L _									_
L_									_
L_									_
Γ -									_
Γ -									_
Γ -									_
Γ -									_
F -									_
F -									_
F -									—
F -									—
⊢ -									_
<u>⊢</u> –									_
⊢ -									_
⊢ −									_
⊢ -									_
⊢ −									_
<u> </u>									

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO.	BW- 11
SHEET_1_O	F_5
DATE:START _	12/29/08
END1	2/30/08
DATUM: NG	VD29
ELEVATION:	4.9±
TOTAL DEPTH:_	85'

MUNI	CIPALI	TY Ke	earny	LO	CATIO	N US	PS	N. <u>697216.8±</u> E. <u>599242.0±</u> ELEVAT	ON: 4.9±
INSPE	CTOR	S NAM	E/CON	IPANY	<u>J. Yu</u>	I/YU & A	Associa	ates, Inc. TOTAL D)EPTH: 85'
DRILL	ERS N	IAME/C	OMPA	NY <u>D</u>	Mend	ez/JBD	••••		h Automatia Hammar
DRILL	ING M		S <u>IVIL</u> 4 0''		ry, NX /	<u>NQ Cor</u> 20	וng סי		
CHEC		⊏ ∨·D.	Mazuii	an De	.г і п. П		2/20/1	12 END OF DRILLING: 2.3' TIME: 7:15	DATE: 12/30/08
		···			D.				DATE:
				<u>,</u>			ш		
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS
L _								Dark brown coarse to fine GRAVEL, some coarse to	Hand augered to 3'
 3.0_		10		15				medium Sand, little Clayey Slit, (FILL).	PID= 0.0 ppm
		40						some Clayey Silt.	-
	S-1	20	0.3'		-	GM	moist		_
50		16							_
	S-2	16 7 8 5	1.7'	85	-	SM	wet	Black coarse to fine SAND, some(-) medium to fine Gravel, little Silt, (FILL).	Advanced 4" casing to 5' PID= 0.3 ppm (VOCs)
⊢ ′.0_	S-3A	4		75	-	SM	wet		PID= 0.0 ppm
		4					wet		
	S-3B	1	1.5'		-	PT	wet	Dark brown PEAT, (ORGANIC DEPOSIT).	_
		1							PID= 0.0 ppm
0.0		Р		85	-	PT	wet		Undisturbed sample
 	U-1	U S H	1.7'		-	OL	wet	Gray-brown Organic SILT, and(+) medium to fine Sand, (ORGANIC DEPOSIT).	collected using a piston sampler U-1: mc=26% Non-plastic fines
	S-4A	5		100	-	PT	wet	11.4'Dark brown PEAT, (ORGANIC DEPOSIT). EI6.5'	Advanced 4" casing
	S-4B	4 7 6	2.0'		-	SM	wet	Gray-brown fine SAND, some(-) Silt, occasional roots, (ALLUVIUM).	to 10'
- 'S.U_		1		85				Greenish brown Clayey SILT, some fine Sand,	PID= 0.0 ppm
 _ 15 0	S-5	1 1 2	1.7'		-	ML	wet	occasional fibers, (ALLUVIUM).	-
	S-6	WH 1 4	2.0'	100	-	ML	wet	little medium to fine Sand, trace fine Gravel, occasional roots.	PID= 0.0 ppm
 	S-7	5 10 12 14	2.0'	100	-	SM	wet	Gray-brown coarse(+) to fine SAND, little(+) Silt, trace fine Gravel, (ALLUVIUM).	Advanced 4" casing to 15'
		4		-		SP-SM	wet	(continued on next page)	
<u> </u>		5	I						

BORING NO.	BW- 11
SHEET_2_0	F_ 5
DATE:START _	12/29/08
END1	2/30/08
DATUM: NG	VD29
ELEVATION:	4.9±
ELEVATION: TOTAL DEPTH:_	4.9± 85'

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ity Enha	anceme	t Project COUNTY Hudson	DATUM:	NGVD29
MUNI	CIPALI	TY <u>Ke</u>	arny	LO	CATIO		PS	N. <u>697216.8±</u> E. <u>59924</u>	42.0± ELEVAT	ION: 4.9±
INSPE			E/CON		J. Yu Mond	07/ IBD	ASSOCI	es, Inc.		DEPTH: 85
	INC M		OIVIPA	IN T	rv NX/		ina	EQUIPMENT LISED CME-75 Truc	k Mounted Rig wit	h Automatic Hammer
CASI	ING M IG SIZ	ETHOD F'	4.0"	DF	PTH [.]	20	.0'	WATER' DURING DRILLING' 2.5'	TIME [.] 9:30	DATE 12/29/08
CHEC	KED B	Y: D .	Mazuji	an	D	ATE: _	2/20/*	END OF DRILLING: <u>2.3'</u>	TIME: 7:15	DATE: 12/30/08
								NOT ENCOUNTERED		
				(%	_		Ш			
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTUF	DESCRIPTION		REMARKS
	S-8		1.5'		-		wet	(continued from previous page).		Advanced 4" casing
21.0		11		100		5P-5M	wet	Gray-brown medium(+) to fine SAND, trac	ce(+) Silt,	10 20
L _	S-9A	5		100	-			(ALLUVIUM).		_
23.0	S-9B	7 8 9	2.0'		PP 2.00 -	ML	wet	Gray-brown Clayey SILT, trace fine Sand (ALLUVIUM).	i,	PID= 0.0 ppm
L_		5		100						
	S-10	5	2.0'		PP 2.13	ML	wet			
25.0	S-11A			100				Grav-brown coarse to medium SAND, trac	ce Silt.	_
⊢ –	0-11A	6		100	-	5P-5M	wet	<u>5.7'</u> (ALLUVIUM).	El <u>20.8'</u>	_
27.0	S-11B	8 15 14	2.0'		- PP 2.25	ML	wet	Gray-brown Clayey SILT, trace fine Sand (GLACIOLACUSTRINE DEPOSIT).	1,	
	S-12	5 7 8 8	2.0'	100	PP 1.88	CL	wet	Gray-brown SILT & CLAY, trace(-) fine S (GLACIOLACUSTRINE DEPOSIT).	and,	S-12: mc=26.8% LL=28, PI=9
	S-13	5 9 10 13	2.0'	100	PP 2.00	CL	wet			-
 33.0	U-2	P U S H	1.5'	75	TV 0.65	CL	wet	Gray-brown SILT & CLAY varved with Cla alternating 1/6"± silt & clay, 1/10"± clay & (GLACIOLACUSTRINE DEPOSIT).	ay & Silt, silt,	Undisturbed sample collected using a — piston sampler — U-2: mc=27% — LL=26 and 37, — Dl=6 and 46
	S-14	5 8 10 10	2.0'	100	PP 2.25	CL	wet	Gray-brown Silty CLAY varved with Claye alternating 1/8"± to 3/8"± silty clay, 1/16"± clayey silt, (GLACIOLACUSTRINE DEPO	ey Silt, - to 1/8"± DSIT).	97.8%<#200
 	S-15	11 9 10 12	2.0'	100	PP 2.25	CL	wet			
	S-16	2 3 4 3	2.0'	100	PP 1.00	CL	wet			
		1 1		100	PP	CL	wet	(continued on next page).		

BORING NO.	BW- 11
SHEET3O	F5
DATE:START _	12/29/08
END1	2/30/08
DATUM: NG	VD29
ELEVATION:	4.9±
TOTAL DEPTH:_	85'

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	nt Project	COUNTY _H	uds	on			DATU	M: NG	SVD29	
MUNI	CIPALI	TY K	earny	LO	CATIO	N US	PS		N. 697216.8±		E. 59	9924	12.0±	ELEVA	ATION:	ON: 4.9±	
INSPE	ECTOR	S NAM	E/CON	IPANY	<u>J. Yu</u>	YU & /	Associa	tes, Inc.						ΤΟΤΑΙ	_ DEPTH:_	85'	
DRILL	ERS N	IAME/C	OMPA	NY D	. Mende	ez/JBD						-				- 4 - 11	
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ COI	ring		EQUIPMENT USED		2 5'	i ruc		ea Rig V		12/20/09	<u>)r</u>
CASIN		E:	4.0 Mazuii	DE an	PIH:	<u></u>	2/20/1	_ WAIER: 2		:	2.5	—.		9:30	DATE	<u>12/29/00</u> 12/30/08	
CHEC		T. <u>D.</u>	mazaji	an	D/	AIE	2/20/1	<u> </u>	END OF DRILLING	·	2.0		I IIVIE	7.10	DATE		
		1							NOT ENCOUNTER	ED							_
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE		DESCRIPT	ION					R	EMARKS	
	S-17	2	2.0'		1.00			(cor	ntinued from previous	pag	e).						
41.0		3				CL	wet	Gray-b	rown Silty CLAY var	/ed v	with CI	laye	y Silt,				
	S-18	2 2 3 4	2.0'	100	PP 0.63	CL	wet	alterna clayey	ting 1/4"± to 5/8"± sil silt, (GLACIOLACUS	ty cl STRI	ay, 1/1 NE DE	16"± ΞΡΟ	to 1/8"± SIT).	:		-	_
43.0		0		100				alterr	nating 1/2"+ to 3/4"+	siltv	clay_1	1/16	"+ to 1/8	"+			-
		2						clayey	silt.	0	o.o.j, .			-			-
	S-19	2	2.0'		PP 0.50	CL	wet										-
		2			0.00												-
45.0				100													-
		I VVH															-
	S-20	3	2.0'		PP 0.63	CL	wet										_
		5			0.00												_
47.0				100													_
		WH															_
	S-21		2.0'		PP 0.50	CL	wet										_
		3			0.00												_
49.0				100													_
		WH															_
\vdash –	S-22		2.0'		PP 0.50	CL	wet										-
		1			0.00												-
51.0		2		100				alterr	nating 1/4"± to 5/8"±	siltv	clav, 1	1/16	"± to 3/8	"±			-
		3			חח			clayey	silt.	,	,						-
\vdash –	S-23	4	2.0'		0.63	CL	wet										-
53.0		3															\neg
-00.0		wн		100													\neg
\vdash \dashv		wн			PP												۲
	S-24	3	2.0'		0.50	CL	wet										
55 0		3															
		wн		100													
		WH			PP												
	S-25	2	2.0'		0.50	CL	wet										
57.0		4															٦
		2		50													٦
	0.00	3	1.01		PP												
	3-20	3	1.0		0.63	CL	wet										
59.0		5															
[]		2		100													
		2			PP	CL	wet	(cor	ntinued on next page)	•							

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO.	BW- 11
SHEET_4_0	F_5
DATE:START _	12/29/08
END1	2/30/08
DATUM: NG	VD29
ELEVATION:	4.9±
TOTAL DEPTH:_	85'
A Rig with Autom	atic Hamme

MUNIC	CIPALI	TY Ke	arny	LO	CATIO	N US	PS	N. <u>697216.8±</u> E. <u>599242.0±</u> ELEVA	TION: 4.9±
INSPE	CTOR	S NAM	E/CON	1PANY	J. Yu	/YU & A	Associa	ates, Inc. TOTAL	. DEPTH: 85'
DRILL	ERS N	AME/C	OMPA	NY <u>D</u>	. Mende	ez/JBD			
DRILL	ING M	ETHOD	S_Mu	ud Rota	ry, NX/	NQ Cor	ing	EQUIPMENT USED CME-75 Truck Mounted Rig w	vith Automatic Hammer
CASIN	IG SIZ	E:	4.0"	DE	PTH:	20	.0'	WATER: DURING DRILLING: <u>2.5'</u> TIME: <u>9:30</u>	DATE: 12/29/08
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE: _	2/20/	2 END OF DRILLING: 2.3' TIME: 7:15	DATE: 12/30/08
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	USCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
	S-27	2	2.0'		0.50			(continued from previous page).	
61.0		3				CL	wet	Gray-brown Silty CLAY varved with Silt & Clay,	
 63.0	U-3	P U S H	2.0'	100	TV 0.73	СН	wet	alternating 1/3"± silty clay, 1/16"± silt & clay, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a piston sampler U-3: mc=37% LL=26 and 55, PI=6 and 34
 	S-28	WH 1 2 2	2.0'		PP 0.50	СН	wet		100%<#200
 67.0	S-29	WH WH WH 3	2.0'	100	PP 0.38	СН	wet		
	S-30	WH WH 1 3	2.0'	100	PP 0.25	CL	wet	Gray-brown Silty CLAY varved with Clayey Silt, alternating 1/8"± to 1/2"± silty clay, 1/16"± to 1/8"± clayey silt, (GLACIOLACUSTRINE DEPOSIT).	
 71.0	S-31	3 5 4 4	2.0'	100	PP 0.63	CL	wet	71.0' El66.	S-31: mc=12.4% LL=38, PI=20
73.0	S-32	5 6 6 7	1.0'	50	-	GC	wet	Red-brown CLAY & SILT, some medium to fine Gravel, some(-) coarse to fine Sand, (GLACIAL TILL).	
 75.0_	S-33	6 12 27 24	1.5'	75	-	GC	wet		
-76.7-	S-34	33 69 47 100/2"	1.5'	88	-	CL	wet	Red-brownlittle(+) coarse to fine Gravel (claystone fragments).	
77.9	S-35	100/5"	0.2'	22	-	CL	wet		
\vdash \dashv									
80.0								80.0' Top of Rock at 80 feet. El75.	

BORING NO.	BW- 11
SHEET_5_0	F_5
DATE:START	12/29/08
END1	2/30/08
	VD20
	VD29
ELEVATION:	4.9±
ELEVATION: TOTAL DEPTH:_	4.9± 85'

PROJ	ECT N/		Portal I	Bridge	Capaci	ity Enha	anceme	ent Project	COUNTY Huds	son		DATUM:	NGV	029
		TY <u>Ke</u>	arny		CATIO	N <u>US</u>	PS Associa	atos Inc	N. <u>697216.8±</u>		NON: <u>4.9±</u> DEPTH: 85'			
DRILL	FRS N	S NAM		NY D	. Mend	ez/JBD	-35001	ates, me.						
DRILL	ING M	ETHOD	S_ML	ud Rota	ry, NX/	NQ Coi	ring		EQUIPMENT USED	ME-75 Tru	ck Mount	ted Rig wit	h Automat	ic Hammer
CASIN	NG SIZE	≣:	4.0"	DE	EPTH:	20	.0'	WATER:	DURING DRILLING:	2.5'	TIME:	9:30	DATE:	12/29/08
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	D.	ATE: _	2/20/	12	END OF DRILLING:	2.3'	TIME: _	7:15	DATE:	12/30/08
						1			NOT ENCOUNTERED					
	ξĘ	⊢ ~		(%)	Σŵ		R							
FT)	NO.	12 E F 1	Ϋ́	ER/			ISTL							
TH (SOR!	/S/0 AMF	ET OVE			sco	QM		DESCRIPTION	1			REM	ARKS
)EP	AMF PE/O	N N N N	S C	R %	NS ₹		L L							
	° ₹	ΞO	-	Rol /	ЧЧ		BAM							
				100			0,	Red-b	rown CLAYSTONE, mod	lerately to	slightly			
				/				weath	ered, medium strong, vei	ry closely f	to closely	,		_
								space	d fractures, (WEATHER	ED PASSA	AIC			_
								FORM	IATION).					
	C-1		5.0'											_
L _	01		0.0											_
L _														_
				/										_
				42				95 O'						_
05.0								05.0	Bottom of borehole	e at 85 fee	et.	EI00. I		
								Notes:						_
								1. Bor	ing tremie grouted using	2x94-lb ba	ags of			_
								portiar	nd cement, bentonite, po listurbed sample moistur	table wate	er. e noted in			
								"Rema	arks" reflect an average of	of all moist	ture conte	ents		_
L _								detern	nined for the sample.					_
<u> </u>														_
														_
														_
														_
														_
$\lfloor]$														
L _														_
⊢ –														_
⊢ −														_
⊢ −														_
														_
														_
														_
L _														_
- _														_
⊢ −														_
⊢ −														_
														_
<u> </u>						L								

BORING NO. BW-12
SHEET_1_OF_5
DATE:START
END <u>4/8/09</u>
DATUM: NGVD29
ELEVATION: -0.2±
TOTAL DEPTH: 85'
Donut Hammer (on barrel float)

ſ

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ity Enha	anceme	ent Project	COUNTY Huds	on		DATUM:	NGVI	029
MUNIC	CIPALI	TY Ke	earny	LO	CATIO	N Ceo	dar Cre	ek Marsh	N. 697461.6±	ELEVAT	ION:	0.2±		
INSPE	ECTOR	S NAM	E/CON	IPANY	<u>M. Te</u>	ekin/YU	& Ass	ociates, Inc.					DEPTH:	85'
DRILL	ERS N	IAME/C	OMPA	NY _C	. Deige	rt/JBD								
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX/	NQ Cor	ing		EQUIPMENT USED AC	ker Skie	d Rig with	Donut Ham	nmer (on ba	arrel float)
CASIN	IG SIZ	E:	4.0"	DE	EPTH:	29	.0'	_ WATER:	DURING DRILLING:	3.0'	_ TIME: _	7:30	DATE: _	4/8/09
CHEC	KED B	Y: D.	Mazuji	an	D	ATE: _	2/20/1	2	END OF DRILLING:	0.0	_ TIME: _	13:00	DATE: _	4/8/09
									NOT ENCOUNTERED					
	z			(%)	~		RE							
F.	RU RU	E E	≿	<u>}</u>	TSF		STU							
L L	ШЧИ	10.5 APL	Ц КЕ			SS	1013		DECODIDITION					
L L L	\0 V0 V0 V0 V0 V0 V0 V0 V0 V0 V0 V0 V0 V0	SAN	Ю. F	<u>%</u> / Щ	AN AN	N.	2 Щ		DESCRIPTION				REIM	ARKS
DE	SA	N S S	R		00 OR		ЧРГ							
	F			/ ¥	ΔĔ		SAN							
				ſ									Depth to I	mudline 0'
														_
\vdash \dashv													Drilled thr	ough soft
\vdash \dashv													soils and	advanced
\vdash \dashv													4" casing	to 6"
\vdash \dashv														_
\vdash \dashv														_
\vdash \dashv														—
\vdash \dashv														_
\vdash \dashv														_
\vdash \dashv														_
														_
-0.0				15				Black	Organic SILT, frequent p	lant roo	ots. (ORGA	NIC		_
\vdash \dashv								DEPO	SIT).		, (_
\vdash \dashv	S-1	WR	0.3'		-	OL	wet							_
		WR												_
-0.U				15				dark	brown-gray little fine Sa	nd				_
\vdash \dashv		WH WU												_
\vdash \dashv	S-2	1	0.3'		-	OL	wet							_
		2						10.01						_
+10.0		2		75				Grav fi	ne SAND, some Silt, (AL		<u></u>	<u>EI 10.2</u>		_
\vdash \dashv		3												_
\vdash \dashv	S-3	6	1.5'		-	SM	wet							_
		9												_
+' ^{2.0}		10		25				little(-) Silt.					_
\vdash \dashv		10							. ,					_
\vdash \dashv	S-4	16	0.5'		-	SP-SM	wet							_
		19												_
^{14.0}				100				Grav	SILT & CLAY little(+) fine	e Sand	(ALLUVII	IM).	S-5: mc=	21.9% -
\vdash \dashv		4							, , , , , , , , , , , , , , , , ,	- cana,			LL=21, PI	=6 —
\vdash \dashv	S-5	΄a	2.0'		-	CL-ML	moist						70.8%<#2	200 _
		9												_
+16.0				50										_
\vdash \dashv		14												_
\vdash \dashv	S-6	10 19	1.0'		-	CL-ML	moist							_
		21												_
<u> </u> 18.0				75				Gravin	nedium to fine SAND littl	e(_) Silt	(Δ]]]]./!!	IM)		_
\vdash \dashv		12								u(-) Sill		<i>.</i>		_
\vdash \dashv	S-7	18 ว1	1.5'		-	SP-SM	wet							_
		21						(00)	ntinued on next name)					_
20.0								(00)	iniaca on next page).					

BORING NO.	3W- 12
SHEET_2_OF	5
DATE:START	4/7/09
END4	/8/09
DATUM: NGV	D29
ELEVATION:	-0.2±
TOTAL DEPTH:	85'

PROJ	ECT N		Portal	Bridge	Capaci	ty Enha	anceme	And Project COUNTY Hudson DATUM	NGVD29
MUNI	CIPALI CTOR	IY <u>re</u> S NAM	F/COM	LO IPANY	CATIO M. T e	N <u>Ce</u> ekin/YU	& Ass	ociates, Inc. N. <u>697461.6±</u> E. <u>599228.8±</u> ELEVA	ION: <u>-0.2±</u> DEPTH: 85'
DRILL	ERS N	AME/C	OMPA	NY C	. Deige	rt/JBD			
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX/	NQ Co	ring	EQUIPMENT USED Acker Skid Rig with Donut Ha	nmer (on barrel float)
CASI	NG SIZ	E:	<u>4.0"</u>	DE	EPTH:	29).0' 2/20/4	_ WATER: DURING DRILLING: <u>3.0'</u> TIME: <u>7:30</u>	_ DATE: <u>4/8/09</u>
CHEC	KED B	Y: <u>D.</u>	wazuji	an	D.	ATE: _	2/20/1	Iz END OF DRILLING: 0.0 TIME: 13:00	_ DATE: <u>4/8/09</u>
					1				1]
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS
L _		7		50				(continued from previous page).	_
L _	S-8	13	1.0'		-	90-9M	wot	Gray medium to fine SAND, little(-) Silt, (ALLUVIUM).	_
L _		19				51 -510	wei		_
22.0		21							_
⊢ –									
									_
⊢ –								<u>23.5' </u>	· _
									_
									_
25.0		10		70				Gray Silty CLAY varved with brown Silt, alternating	-
		10						$1/2"\pm$ silty clay, $1/8"\pm$ silt, (GLACIOLACUSTRINE	-
	S-9	23	1.4'		1.80	CL	moist	DEPOSIT).	-
27 0		27							-
27.0									-
									_
									_
									_
									Advanced 4" casing
30.0									to 29"
L_		25		75	PP			Gray SILT & CLAY, (GLACIOLACUSTRINE	S-10: mc=20.1%
	S-10	35	1.0'		3.50	CL-ML	moist	DEPOSIT).	
31.3 		50/4"							
⊢ –									
⊢ –									
⊢ –									_
⊢ –									_
⊢ –									-
									-
35.0		7		100				Gray Silty CLAY varved with brown Silt_alternating	-
⊢ -		΄a			DD			1/2"± silty clay, 1/8"± silt, (GLACIOLACUSTRINE	-
⊢ -	S-11	11	2.0'		0.80	CL	moist	DEPOSIT).	-
37 0		15							-
-37.0									-
38.0									-
	U-1	P U S	1.8'	90	TV 0.45	CL	moist	Gray Silty CLAY varved with brown Silt, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a Shelby tube
40.0		н						(continued on next page).	

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO.	BW- 12
SHEET_3_O	F_5
DATE:START	4/7/09
END	4/8/09
DATUM: NG	VD29
ELEVATION:	-0.2±
TOTAL DEPTH:_	85'
onut Hammer (on	narrei float)

MUNI	CIPALI	TY Ke	earny	LO	CATIO	N <u>Ce</u>	dar Cre	ek Marsh	N. 697461.6±	E. <u>599</u>	9228.8±	ELEVAT	ON:	-0.2±
INSPE	ECTOR	S NAM	E/CON		M. Te	kin/YU	& Ass	ociates, Inc.				TOTAL D	EPTH:	85'
DRILL	ERS N	IAME/C		NY <u>C</u> .			dina			kor Skie	Dia with [Jonut Ham	mor (on k	arrol float)
	ING M		<u>4 0"</u>		гу, NA/I	20	111g 1 0'			3 0'		7:30		4/8/09
CHEC	KED B	∟ 	Mazuii	an DL	. רו די . עם		2/20/1	2		0.0'		13:00	DATE:	4/8/09
OHLC						···					_ 111111		DAIL.	
				<u> </u>					NOT LINCOUNTERED]
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE		DESCRIPTION				REM	IARKS
		11		100				(COI	ntinued from previous page	e).				
	S-12	13 14	2.0'		-	CL	moist	Gray S 1/2"± s	Silty CLAY varved with brossilty clay, 1/8"± silt, (GLAC	own Silt, CIOLAC	, alternating USTRINE	9		
42.0		18						DEPO	SIT).					
L _														_
L _														_
L _														_
L _														_
45.0				100										_
<u>⊢</u> –		9												_
<u>⊢</u> –	S-13	10	2.0'		-	CL	moist							_
		12												_
47.0														_
F -														_
														_
F -														_
50.0				100										_
L _		8		100										_
L _	S-14	10	2.0'		PP	CI	moist							_
<u>⊢</u> –		13			1.20	01	molot							_
52.0		14												_
⊢ −														_
<u>⊢</u> –														_
F -														_
F -														_
55.0														_
		5		100				Brown	CLAY & SILT, with 1"± f	ine san	d layer,			
	S-15	8	2 0'		PP	CI	maint	(GLAC	CIOLACUSTRINE DEPOS	SIT).				_
L _	0.0	12			1.30	UL	moist							_
57.0		20												_
⊢ –														_
⊢ –														_
⊢ −														_
⊢ −														_
								(coi	ntinued on next page).					_
_00.0	l								······································					

BORING NO.	BW- 12
SHEET_4_O	F_5
DATE:START _	4/7/09
END	4/8/09
DATUM: NG	iVD29
	0.01
ELEVATION:	-U.ZI
ELEVATION: TOTAL DEPTH:_	-0.2± 85'

MUNICIPALITY Kearry LOCATION Ceder Creek Mark N 697461.62 E EEUCRINALITY EEUCRINALITY Columnation DRILLERS NAME/COMPANY S. Deiger/UBD EOUIPMENT USED Acker Skd Big with bount Hammer (on barrei float) TOTAL DEPTH 85' DRILLERS NAME/COMPANY S. Deiger/UBD EOUIPMENT USED Acker Skd Big with bount Hammer (on barrei float) DATE: 480' CASING SIZE: 4.0° DATE: 29.0° WATE: DURING DRILLING: 3.0° TIME: 73.0° DATE: 480'99 CHECKED BY: D. Maudian DATE: 29.0° WATE: Continued from previous page). Brown CLAY & SILT, with 15's fine sand layer, (GLACIOLACUSTRINE DEPOSIT). Brown Silty CLAY, (GLACIOLACUSTRINE DEPOSIT). Brown Silty CLAY, (GLACIOLACUSTRINE DEPOSIT). Brown silty CLAY and Clayery Silt, atternating 114* silty clay, 14* clayery silt, (GLACIOLACUSTRINE DEPOSIT). Undisturbed sampler sampler 72.0 10 CL moist Brown vared Silty CLAY and Clayery Silt, atternating 114* silty clay, 14* clayery silt, (GLACIOLACUSTRINE DEPOSIT). EL-73.7' 72.0 15 - CL moist Brown coarse to fine GRAVEL, some(+) Clayery Silt, little coa	PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	ent Project COUNTY Hudson DATUM:	NGVD29
INSPECTORS NAME/COMPANY M. Tokiny/U & Associates, Inc. TOTAL DEPTH. Total Depth. BS DRILLERS NAME/COMPANY 4.0° DEPTH: 2.0° EQUIPMENT USED Acker Skid Rig with Donut Hammer (on barrel feat) DRILLING METHODS 4.0° DETRIC 2.0° WATER: DURING DRILLING: 0.0° TIME: 73.00 DATE: 78.00 CHECKED BY: D. Macujian DATE: 22012 EXD OF DRILLING: 0.0° TIME: 13.00 DATE: 4809 CHECKED BY: D. Macujian DATE: 22012 WATER: DURING DRILLING: 0.0° TIME: 13.00 DATE: 4809 CHECKED BY: D. Macujian DATE: 22012 WATER: DURING DRILLING: 0.0° TIME: 13.00 DATE: 4809 CHECKED BY: D. Macujian DATE: 22012 Brown Sity CLAY, (GLACIOLACUSTRINE DEPOSIT). Encoreary. Indisturbed	MUNI	CIPALI	TY K	earny	LO	CATIO	N Ce	dar Cre	ek MarshN. <u>697461.6±</u> E. <u>599228.8±</u> ELEVAT	ION: <u>-0.2±</u>
DRILLIPS NAME/COMPANY C. DegerJubb DRILLIPS NAME/COMPANY C. DegerJubb DRILLIPS NAME/COMPANY C. DegerJubb CASING SIZE: 40° DEFTH: 29.0° WATE: DURING DRILLING: 3.0° TIME: 730 DATE: 4809 NOT ENCOUNTERED D CHECKED BY D. Macujian DATE: 22012 ENDO DO RILLING: 0.0° TIME: 1300 DATE: 4809 NOT ENCOUNTERED D CL 2017 CL moist 68.0 C 27 CL moist 68.0 C 27 CL moist 68.0 C 27 CL moist 70.0 CL NOS CLAY, (GLACIOLACUSTRINE DEPOSIT). 68.0 C 27 CL moist 70.0 CL NOS CLAY, (GLACIOLACUSTRINE DEPOSIT). 68.0 C 27 CL moist 70.0 CL moist 70.0 CL NOS CLAY, (GLACIOLACUSTRINE DEPOSIT). 70.0 CLAY SULT, with 15° fine sand layer, 71.0 CL MOS CLAY, (GLACIOLACUSTRINE DEPOSIT). 70.0 CLAY SULT, with 16° fine sand layer, 70.0 CLAY SULT, with 16° fine sand layer, 71.0 CL MOS CLAY, (GLACIOLACUSTRINE DEPOSIT). 72.0 CLAY SULT, WITH CLAY, (GLACIOLACUSTRINE DEPOSIT). 73.5°	INSPE	ECTOR	RS NAM	E/CON	IPANY	<u>M. Te</u>	kin/YU	& Ass	ociates, Inc. TOTAL D	DEPTH: 85'
DAILLING METHODS Multi Rotary, NAME Contra COUPMENT USED Sect and say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same say who contrament on particular difference of the same same say who contrament on particular difference of the same same say who contrament on particular difference of the same same saw who contrament on particular difference of the same same saw who contrament on particular difference of the same same saw who contrament on particular difference of the same same same same same same same sam	DRILL	ERS N	IAME/C	OMPA	NY <u>C</u>	. Deige	rt/JBD			
CHEMING SIZE DATE 22012 DURING DOT INME 1330 DATE 4805 CHECKED BY: D. Mazujan DATE 22012 END OF DRILING: 0.0" IMME 1330 DATE 4805 CHECKED BY: D. Mazujan DATE 22012 ED OF DRILING: 0.0" IMME 1330 DATE 4805 CHECKED BY: D. Mazujan DATE 22012 ED OF DRILING: 0.0" IMME 1330 DATE 4805 Gamma Sama	DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ CO	ring or		
CHECKED BT. Primetyper DATE Primetyper DATE Primetyper DATE Primetyper Image: State of the stat		יעבה ם יעבה מ	E:	<u>4.0</u> Mazuii	DE		<u></u>	2/20/*	WATER: DURING DRILLING: <u>3.0</u> TIME: <u>7.30</u>	DATE: 4/8/09
Hold Enclosion Republic Description Remarks E 1 10 1	UNEU		or. <u>D.</u>	mazaji		D/	AIE.	2,20,		DATE
Li Understand Understand Understand REMARKS 0				1						
- - - - CL moist	DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
S-16 17 27 10 - CL moist 62.0 27 - CL moist (GLACIOLACUSTRINE DEPOSIT). 65.0 - 12 100 - - - 65.0 12 100 - - - - - 66.0 12 100 - </td <td>L _</td> <td></td> <td>6</td> <td></td> <td>50</td> <td></td> <td></td> <td></td> <td>(continued from previous page).</td> <td>_</td>	L _		6		50				(continued from previous page).	_
65.0 12 100 TV CL moist 66.0 12 0		S-16	17 25 27	1.0'		-	CL	moist	Brown CLAY & SILT, with 1.5"± fine sand layer, (GLACIOLACUSTRINE DEPOSIT).	-
65.0 12 100 Brown Silty CLAY, (GLACIOLACUSTRINE Image: Classical structure Image: Classica	+ -									_
65.0 12 100 Brown Silty CLAY, (GLACIOLACUSTRINE Undisturbed sampling attempted with a piston 67.0 12 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>										_
65.0 12 100 Image: Sector Sile of the sector	+ -									_
65.0 Image: second	+ -									_
05.0 12 10 Image: constraint of the standard straint of the straint of th										_
12 11 <td< td=""><td>_05.0_</td><td></td><td>10</td><td></td><td>100</td><td></td><td></td><td></td><td>Brown Silty CLAY, (GLACIOLACUSTRINE</td><td>—</td></td<>	_05.0_		10		100				Brown Silty CLAY, (GLACIOLACUSTRINE	—
S-17 12 100 CL moist 67.0 12 12 12 12 12 68.0 12 12 12 12 12 12 68.0 12 12 12 12 12 12 12 68.0 12 12 12 12 12 12 12 12 68.0 12 13 14			12			τv			DEPOSIT).	_
67.0 12	+ -	S-17	8	2.0'		0.08	CL	moist		—
01/0 0	67 0		12							_
68.0 Image: Construction of the standard sta	107.0									_
	68 0									_
- U-NR U 0.0' - moist 70.0 H - moist moist sampling attempted with a piston sampling attempted with a piston sampler 70.0 H 100 - CL moist Brown varved Silty CLAY and Clayey SiLT, alternating 1/4"± silty clay, 1/4"± clayey silt, (GLACIOLACUSTRINE DEPOSIT). - 72.0 15 - CL moist 73.5' - EL73.7' 75.0 - S-19 28 0.5' - GM wet Brown coarse to fine GRAVEL, some(+) Clayey Silt, 11the coarse to fine Sand, (GLACIAL TILL). - 76.3 S-19 28 0.5' - GM wet Brown coarse to fine Sand, (GLACIAL TILL). - 76.3 S-19 28 0.5' - GM wet Brown coarse to fine Sand, (GLACIAL TILL). - 76.3 - - - - - - - - - 76.3 - - - - - - - - - 76.3 - - - - -	-00.0		Р		0				No recovery.	Undisturbed
70.0 H		U-NR	U S	0.0'		-		moist		sampling attempted with a piston sampler
8 100 - CL moist Brown varved Sity CLAY and Clayey SILT, alternating 1/4"± sity clay, 1/4"± clayey sit, (GLACIOLACUSTRINE DEPOSIT). 72.0 15 - CL moist 1/4"± sity clay, 1/4"± clayey sit, (GLACIOLACUSTRINE DEPOSIT). 72.0 15 - CL moist 73.5" - EI73.7" 75.0 9 38 - GM wet Brown coarse to fine GRAVEL, some(+) Clayey Silt, little coarse to fine Sand, (GLACIAL TILL). - 76.3 50/4" - GM wet - - - 80.0 - - GM wet - - - - 76.3 50/4" - GM wet - - - - 80.0 -	70.0		н		100					_
S-18 10 15 2.0' - CL moist (GLACIOLACUSTRINE DEPOSIT). 72.0 15 - CL moist (GLACIOLACUSTRINE DEPOSIT). 72.0 15 - CL moist (GLACIOLACUSTRINE DEPOSIT). 72.0 15 - CL moist (GLACIOLACUSTRINE DEPOSIT). 75.0 - - - - - - 75.0 - GM wet - - - 76.3 - S-19 28 0.5' - GM wet 76.3 - 50/4" - GM wet - - 80.0 - - - - - - - 76.3 - - - - - - - - 76.4 - - - - - - - - 76.3 - - - - - - - - 80.0' - - -	L _		8		100				Brown varved Silty CLAY and Clayey SILT, alternating	_
72.0 15 15 1000000000000000000000000000000000000	L _	S-18	10	2.0'		-	CI	moist		_
72.0 13 13 73.5' 75.0 9 38 73.5' 75.0 9 38 76.3 50/4" - 6.3 50/4" - 6.3 50/4" - 76.3 80.0' El73.7' 80.0 80.0' El80.2'	⊢ –		15				0L			_
75.0 9 38 - GM wet 76.3 5-19 28 0.5' - GM wet 76.3 50/4" - GM wet Brown coarse to fine GRAVEL, some(+) Clayey Silt, little coarse to fine Sand, (GLACIAL TILL). - 76.3 50/4" - GM wet - - - 80.0 - - GM wet - - - - 80.0 - - - - - - - - -	72.0		61							_
75.0 9 38 - GM wet 76.3 50/4" - GM wet 76.3 50/4" - GM wet 80.0 - Brown coarse to fine GRAVEL, some(+) Clayey Silt, little coarse to fine Sand, (GLACIAL TILL). -	⊢ –									_
75.0 9 38 - S-19 28 0.5' - GM wet 76.3 50/4" - GM wet Brown coarse to fine GRAVEL, some(+) Clayey Silt, little coarse to fine Sand, (GLACIAL TILL). - 76.3 - GM wet - GM wet 80.0 - - GM wet - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>├ -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>	├ -									_
75.0 9 38 - GM wet 76.3 50/4" - GM wet 76.3 50/4" - GM wet 80.0 - GM wet Brown coarse to fine GRAVEL, some(+) Clayey Silt, little coarse to fine Sand, (GLACIAL TILL). - 76.3 - GM wet - GM 76.3 - GM wet - - 76.4 - - - - - 76.3 - - - - - 70 - - - - - 70 - - - - - 80.0 - - - - - 80.0' - - - - - 80.0' - - -	⊢ −								<u>/3.5El/3./</u>	_
75.0 9 38 S-19 28 0.5' 76.3 50/4" 76.4 6M 80.0 6M 80.0 60.0' EI80.2'	├ -									-
10.0 9 38 <t< td=""><td>75 0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>	75 0									-
S-19 28 0.5' - GM wet little coarse to fine Sand, (GLACIAL TILL). 76.3 50/4" - GM wet little coarse to fine Sand, (GLACIAL TILL). - - - - GM wet little coarse to fine Sand, (GLACIAL TILL). - - - - - GM wet - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	+' ^{5.0}		9		38				Brown coarse to fine GRAVEL, some(+) Clayey Silt,	-
76.3 50/4"	F -	S-19	28	0.5'		-	GM	wet	little coarse to fine Sand, (GLACIAL TILL).	-
	76.3		50/4"							-
Rotary bit refusal at 79'	F -									_
- - - - - - - - - - 80.0 80.0' EI80.2'	F -									_
80.0 EI80.2'		1								
80.0 EI80.2' Rotary bit refusal at 79'	Ε.									_
80.0 EI80.2 Rotary bit refusal at 79'										
80.0 EI80.2 79										Rotary bit refusal at
	80.0								80.0' EI80.2'	13

BORING NO.	BW- 12
SHEET_5_0	F_5
DATE:START	4/7/09
END	4/8/09
DATUM: NG	VD29
ELEVATION:	-0.2±
TOTAL DEPTH:_	85'
lonut Hammor (on	barrol float)

٢

PROJ	ECT N		Portal	Bridge	Capaci	ity Enha	anceme	ent Project	COUNTY Hud	son			NGVE	029
MUNI		TY <u>Ke</u>				N <u>Ce</u>	ar Cre	ek Marsn	N. <u>697461.6±</u>	E. <u>59</u>	9228.8±		ION: <u>-</u>	<u>).2±</u> 85'
				/IPANY	Deige	ert/JBD	& A55	ociales, inc.					DEPTH:	00
			S MI	ud Rota	arv. NX/	NQ Co	rina			cker Ski	d Rig with	Donut Ham	mer (on ba	arrel float)
CASI	NG SIZ	E:	4.0"	D	EPTH:	29).0'	WATER:	DURING DRILLING:	3.0'	TIME:	7:30	DATE:	4/8/09
CHEC	KED B	Y: D.	Mazuji	an	D	ATE: _	2/20/1	12	END OF DRILLING: _	0.0'	_ TIME:	13:00	DATE:	4/8/09
									NOT ENCOUNTERED					
	7			(%)			Ш							
F	RUN RUN	ΕR	≿	RX(SF)		I UF							
	Ц И И И И	10.5 MPL	L C			S	jõis							
L L	MPL VCO	SAN	Ю. Г	© \(%	AN AN	NS N	≥ Щ		DESCRIPTION	N			REM	ARKS
	YPE	ON	R	l g	OR		MPL							
	-			/ x			SA							
				85	1				Top of Rock at	80.0 fee	t.			
L_				/				Brown	MUDSTONE, moderate	ly weath	ered, med	dium		
								strong		osely spa	aced fracti	ures,		_
L_									I HERED PASSAIC FUR	RIVIATIO	N).			_
L _	C-1		4 3'											_
L _														_
L _														_
L _				/										_
L -				1										_
85.0				/ 50				85.0'	Pottom of borobol	0 ot 95 f	oot	El85.2'		
⊢ –								Notes:	BOLLOITI OI DOI EITOI		eel.			_
<u>⊢</u> –								1. Bori	ng tremie grouted using	2x94-lb	bags of			_
								portlar	nd cement, potable wate	r.	U			_
														_
														_
														_
														_
														_
														_
														_
														_
Γ.]													
L														
L _														_
L _														_
⊢ –														_
⊢ –														_
⊢ –														_
⊢ −														_
├ -														_
├ -														_
⊢ −														_
⊢ −														_
⊢ −														_
⊢ -														_
+ -														_
F -														_
	1	I	1	1	1	1	I	1						

BORING NO	BW- 13
SHEET_1	OF
DATE:START	12/30/08
END	12/31/08
DATUM: N	GVD29
DATUM:N ELEVATION:	GVD29 5.2±
DATUM: <u>N</u> ELEVATION: <u></u> TOTAL DEPTH	GVD29 5.2± 89.5'

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	ancem	ent Project	COUNTY Huds	on		DATUM:	NGVD29	
MUNI	CIPALI	TY Ke	arny	LO	CATIO	N US	PS		N. 697330.2±	E. 5994	72.3±	ELEVAT	ON: 5.2±	
INSPE	ECTOR	S NAM	E/CON	IPANY	A. Fy	odorov	a/YU 8	Associates,	, Inc.			TOTAL D)EPTH: 89.5'	
DRILL	ERS N	AME/C	OMPA	NY _J.	Kurzyı	nowski	/JBD							
DRILL	ING M	ETHOD	s_Mu	ud Rota	ry, NX/	NQ Cor	ring		EQUIPMENT USED CM	IE-75 Tru	ck Mount	ed Rig wit	h Automatic Ha	mmer
CASIN	IG SIZ	E:	4.0"	DE	EPTH:	8.	.0'	WATER:	DURING DRILLING:	2.5'	TIME:	7:30	DATE: <u>12/3</u>	0/08
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE: _	2/20/	12	END OF DRILLING:	0.0'	TIME:	7:50	DATE:12/3	1/08
									NOT ENCOUNTERED					
				<u>@</u> /			щ							
		ΗR		/ 🖌	SF)		- L							
FT	Zщ	2.5 F	L K		μĔ	ŝ	ISI							
T	Ц Ц Ц	AMI AMI	2 E	0/		ŝ	Ĕ		DESCRIPTION				REMARKS	3
E D.	AMP D (E)	N N	ы Ш	RE %	₽Š		Ë							
	S ₹	ЫШ	Ľ.	/ 🛛	₽ Ē		AMF							
				/ <u>"</u>			Ś							
L _								Dark br	rown and gray coarse to	fine Grav	el, some		Hand augered	to 4'
L _								coarse	to fine Sand, some Silt,	(FILL).			FID=0.0 ppm	_
													PID=0.0 ppm	_
														_
														_
														_
_ .		F		25				 …red-b	rown and brown, and coa	arse to fir	ne Sand.		Advanced 4" ca	asina
		5						some S	Silt.		,		to 8'	- J
	S-1	2	0.5'		-	GM	wet						PID=0.0 ppm	_
		20												_
6.0		20		55					own dark brown and da	rk arov C	tilt and			_
L -		12		00				mediun	n to fine Sand little coard	se to fine	Gravel		PID=0.0 ppin	_
L _	S-2	7	1.1'		-	м	wet	(FILL)		30 10 1110	Olavel,		introduced at 6	· _
L _	-	9					wei							_
8.0		23		50				8.0'				<u>El2.8'</u>		_
L _		WН		50				Brown	PEAT, (ORGANIC DEP	OSIT).			PID=0.0 ppm	_
L _	5-3	WН	1 0'		_	БТ							Organic odor	_
	3-3	1	1.0		-	PI	wet							
10.0		WH											PID=0.0 ppm	
		Р		95	-	PT	wet	1					Undisturbed sa	mple
		U						11.0'				EL -5.8'	collected using	a —
	U-1	S	1.9'		-	SM	wet	Bluish	gray coarse to fine SANE	D, some(-) Silt,		piston sampler	_
120		н						(ALLU\	/IUM).					_
' <u>~</u> .0_		1		70				Greenis	sh gray medium to fine S	SAND, so	me(+) Silt		PID=0.0 ppm	-
\vdash \dashv		+						(ALLU\	/IUM).	,	() =		- 11	-
\vdash \dashv	S-4	5	1.4'		-	SM	wet							_
		3												_
^{14.0}				60				Dark or	reenish brown SILT and	1(+) medii	im to fine			_
\vdash \dashv		3						Sand (ALLUVIUM)				. 12 0.0 ppin	_
<u>⊢</u> –	S-5	4	1.2'		PP 0.75	мі	wet							_
L _		4			0.75									_
16.0		4		80						-1 0''''				_
		7		00				Brown	coarse to fine SAND, and	a Silt, tra	ce tine Gr	avel,	PID=0.0 ppm	,
	S-6	9	1.6'		_	CN4	14/64	Trequer	IL I ± SIIL layers, (ALLUV	iuivi).			S-6: mc=17.6%	۰ _
	0-0	8	1.0			SIVI	wet						43.3%~#200	_
18.0		10												
		2		0]						
	<u> </u>	9	0.01											
	S-7	12	0.0'		-			No reco	overy.					_
		16						(con	tinued on next page).					-

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO.	BW- 13
SHEET 2	DF
DATE:START_	12/30/08
END	12/31/08
DATUM: NO	GVD29
ELEVATION:	5.2±
TOTAL DEPTH:	89.5'
d Dig with Autor	natia Hamma

MUNI		TY K	earny E/CON	LO IPANY	CATIO A. Fy	N US	PS /a/YU &	N. 697330.2± E. 599472.3± ELEVAT Associates, Inc. TOTAL I	ION: <u>5.2±</u> DEPTH: 89.5'
DRILL	ERS N	AME/C	OMPA	NY _ J .	Kurzy	nowski	/JBD		
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ Coi	ring	EQUIPMENT USED CME-75 Truck Mounted Rig wit	h Automatic Hammer
CASIN		E:	4.0" Mazuii	DE an	PTH:	<u>8</u> ,	.U [*] 2/20/1	WATER: DURING DRILLING: <u>2.5</u> TIME: <u>7:30</u>	DATE: <u>12/30/08</u>
CHEC	KED B	Y: <u>D.</u>	iviazuji	an	D/	AIE: _	2/20/1		DATE: <u>12/31/00</u>
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
		8		75				(continued from previous page).	PID=0.0 ppm
	~ ~	9	4 51					Brownish gray coarse to fine SAND, little(+) Silt,	
	S-8	10	1.5'		-	SM	wet	(ALLUVIUM).	_
22.0		10							_
									_
L _								23.5'El18.3'	_
L _									_
L _									_
25.0				90				Brown and grove SILT & CLAX trace() find Sand	S 0: mo=20.1%
		8						(GLACIOLACUSTRINE DEPOSIT).	LL=29, PI=9
	S-9	9 10	1.8'		PP 2 00	CL	wet	(98.7%<#200
27 0		10			2.00				-
27.0									-
									_
									_
30.0									_
L _		5		80				Brown and dark gray varved CLAY & SILT, 1/5"±	_
L _	S-10	8	1.6'		PP	CI	wet	Varves, (GLACIOLACOSTRINE DEFOSIT).	_
L _		8 11			2.25	01			_
32.0									_
⊢ −									-
\vdash \dashv									-
									-
35.0									
$\lfloor $		4		0					
\mid \mid	S-11	4	0.0'		-				
	•	6						ino recovery.	
37.0									_
⊢ −									_
									_
									-
									-
40 0								(continued on next page).	-
F						L			

PROJECT NAME Portal Bridge Capacity Enhancement Project

ENGINEERS FIELD BORING LOG

COUNTY Hudson

BW- 13
DF <u>5</u>
12/30/08
12/31/08
GVD29
5.2±
89.5'

٢

MUNI		TY K	arny			N <u>US</u>	PS	Associates Inc. N. 697330.2± E. 599472.3± ELEVAT	ON: 5.2±	
INSPECTORS NAME/COMPANY A. FYODOROVA/YU & ASSOCIATES, INC. TOTAL DEPTH: 89.5'										
DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED CME-75 Truck Mounted Rig with Automatic Hammer										
CASIN	IG SIZ	E:	4.0"	DE	PTH:	8.	.0'	WATER: DURING DRILLING: <u>2.5'</u> TIME: <u>7:30</u>	DATE: <u>12/30/08</u>	
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE: _	2/20/1	2 END OF DRILLING: 0.0' TIME: 7:50	DATE: <u>12/31/08</u>	
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS	
 42.0	U-2	P U S H	1.8'	90	PP 1.25 TV 0.15	CL	wet	(continued from previous page). Dark gray varved Clayey SILT and Silty CLAY, alternating 1/8"± clayey silt, 1/8"± silty clay, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a — piston sampler — U-2: mc=33% LL=34 and 46, PI=3 and 26 —	
 44.0	S-12	1 4 5 5	1.8'	50	PP 1.75	CL	wet	1/5"± varves, (GLACIOLACUSTRINE DEPOSIT).	100%<#200 	
45.0_ 47.0_ 	S-13	WH 2 3 5	2.0'	100	PP 1.25	CL	wet	Dark grayish brown Silty CLAY varved with Clayey Silt, alternating 1/4"± to 1/2"± silty clay, 1/4"± clayey silt, (GLACIOLACUSTRINE DEPOSIT).		
 _50.0 52.0 	S-14	WH WH 1 1	2.0'	100	PP 0.75	CL	wet	Brown varved Silty CLAY and Clayey SILT, alternating 1/4"± silty clay, 1/4"± clayey silt, (GLACIOLACUSTRINE DEPOSIT).		
 55.0 	S-15	WR WR WR WR	2.0'	100	PP 0.75	CL	wet	Brown Silty CLAY varved with Clayey Silt, alternating 1/2"± silty clay, 1/4"± clayey silt, (GLACIOLACUSTRINE DEPOSIT).		
60.0								(continued on next page).	_	
Г ⁻ -										

BORING NO.	BW- 13
SHEET4O	F_5
DATE:START _	12/30/08
END1	2/31/08
DATUM: NG	VD29
ELEVATION:	5.2±
TOTAL DEPTH:_	89.5'

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	ent Project COUNTY Hudson DATUM:	NGVD29
MUNICIPALITY <u>Rearny</u> LOCATION <u>USPS</u>							PS ////11.9	N. <u>697330.2±</u> E. <u>599472.3±</u> ELEVAT	ON: 5.2±
INSPE						nowski	/ IRD	ASSociates, Inc.)EPTH: 09.5
	INC M		OIVIPA	id Rota	$r_V NX/$		rina	EQUIPMENT USED CME-75 Truck Mounted Rig wit	h Automatic Hammer
CASIN	ING M		4.0"		=pth.	8	.0'	WATER' DURING DRILLING: 2.5' TIME: 7:30	DATE 12/30/08
CHEC	KFD B	γ· D .	Mazuji	an	D	ATE	2/20/1	12 END OF DRILLING: 0.0' TIME: 7:50	DATE: 12/31/08
0									
				<u> </u>					
DEPTH (FT)	SAMPLE NO/ PE/CORE RUN	LOWS/0.5 FT DN SAMPLER	RECOVERY (FT)	RECOVERY(%	OCKET PENT/ DRVANE (TSF)	nscs	IPLE MOISTURI	DESCRIPTION	REMARKS
	~≻	шО		/ B	αĔ		SAN		
		\\//		100				(continued from previous page).	S-16: mc=45%
 62.0_	S-16	WH WH WH WH	2.0'		PP <0.5	CL	wet	Red-brown Silty CLAY varved with Clayey Silt, alternating 1"± silty clay, 1/8"± clayey silt, (GLACIOLACUSTRINE DEPOSIT).	LL=40, PI=22
L _									
L _									_
L _									_
									_
65.0				100					_
L _		WR		100				alternating 1"± to 1.5"± slity clay, 3/4"± to 1"± clayey	_
L -	S-17	WR	2.0'		PP	CL	wet	Sit.	_
		WR			<0.5				_
67.0								-	_
									_
									—
									_
									_
70 0									_
, 0.0		P		95				Red-brown varved SILT & CLAY and Silty CLAY,	Undisturbed sample
	11.2	U	1.01		PP			alternating 1/4"± silt & clay, 1/4"± silty clay,	collected using a —
	0-3	S	1.9		<0.5	CL	wet	(GLACIOLACUSTRINE DEPOSIT).	U-3: mc=41%
72.0		Н		1.0-					LL=28 and 56
		WH		100				Red-brown Silty CLAY varved with Clayey Silt,	
	S-18	WH	2 0'		PP	CI	wot	alternating 1"± to 2"± slity clay, 1/4"± clayey slit,	_
	0.10	2	2.0		<0.5	UL	wei	(GLACIOLACUSTRINE DEFUSIT).	_
74.0		1						-	_
									_
75.0				100				4	_
<u>⊢</u> –		WR		100					_
<u>⊢</u> –	S-19	WR	2.0'		PP	CL	wet		_
		WR			-0.5				_
L11.0								-	_
⊢ −									_
⊢ −									_
⊢ −								<u>1'0.5El73.3'</u>	-
⊢ −									_
80 0								(continued on next page).	_
+- •.•								· · · · · · · · · · · · · · · · · · ·	

BORING NO.	BW- 13
SHEET_5_O	F_5_
DATE:START	12/30/08
END1	2/31/08
DATUM: NG	VD29
ELEVATION:	5.2±
TOTAL DEPTH:_	89.5'

٢

PROJECT NAME Portal Bridge Capacity Enhancement Project									COUNTY <u>Huds</u>	son ⊏ 599	472 3+		NGV	D29 5.2±
INSPE		S NAM	E/CON	IPANY	<u>A. Fy</u>	odorov	/a/YU 8	Associates	, Inc.	E 555	9472.3±		DEPTH:	89.5'
DRILL	ERS N	AME/C	OMPA	NY _ J .	Kurzyı	nowski	/JBD							
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	iry, NX/	NQ Coi	ring			ME-75 Tr	uck Moun	ted Rig wit	h Automa	tic Hammer
CASING SIZE: <u>4.0</u> DEPTH: <u>0.0</u>								_ WATER: 12	END OF DRILLING:	0.0'		7:50	DATE:	12/30/08
		1				\ ∟					_ 1101		DATE.	
				Q /	1		ш		NOT ENCOUNTERED					
<u> </u>	2.7 RUN	F K	~	<u>مر(</u>	SF)		TUR							
(F	REP	10.5 1PLE	ER'	NEI	E (T	SS	OIS.							
PTF	VPL /CO	SAN	δĒ.	© \CC	VAN	nsc	≥		DESCRIPTION	1			REN	IARKS
DE	SAN	ON	RE	an C	000		MPL							
	L L			/ Ř			SA							
		8		100				(cor	ntinued from previous pag	ge).			Depth to	water 5.5'
L _	S-20	5	2.0'		-	М	wet	Red-br	rown Clayey SILT, some	e(-) medi	um to fine		am	/00 at 7.43
L -		5	_			IVIL	WCI	Graver		anu, (GL		_L).		_
82.0		9						-						_
														_
								83 5'				EI 78 3'		_
								00.0				<u>LI70.3</u>		_
														_
85.0								Red-br	own coarse to fine GRA	VEL, and	d Clayey S	Silt,		_
85.2	S-21	50/3" _^	0.2'	100		GM J	wet	85.5' (clayst	one and siltstone fragme	ents), (DI	ECOMPO	SED <u>80.3'</u>		
				69				RUCK). Top of Rock at a	85 5 feet		/		_
L _								Red-br	own and light grav CLA	YSTONE	. moderat	elv		_
								weathe	ered, medium strong, ve	ry closely	/ spaced			_
	C-1		2.8'					fracture	es, (WEATHERED PAS	SAIC FO	RMATION	N).		_
														_
				//										_
89.5				25				89.5'				El84.3'		_
									Bottom of borehole	at 89.5 f	feet.			
								<u>Notes:</u> 1 Rori	na tromio aroutod usina	2v04 lb 1	bage of			_
L -								portlan	id cement, 1/2x50-lb bag	of bento	nite, potat	ble		_
								water.			<i>.</i>			_
⊢ −								2. Und	isturbed sample moistur	e conten	ts noted in	۱ ,		_
\vdash –								"Rema	rks" reflect an average of hined for the sample	ot all moi	sture cont	ents		_
F -								uelelli	inted for the sample.					_
														_
														_
														_
														_
⊢ −														_
⊢ −														_
⊢ −														_
														_
\vdash –														_
														_
1														

BORING NO. BW- 14/CHS-1
SHEET_1_OF_6
DATE:START
END 4/17/09
DATUM: NGVD29
ELEVATION: 2.1±
TOTAL DEPTH: 99'

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	ent Project COUNTY Hudson DATUM:	NGVD29				
MUNICIPALITY Kearny LOCATION Cedar Creek Marsh N. 697581.8± E. 599514.5± ELEVATION									ION: 2.1±				
					A. He	rnande / IBD	ez/YUð)EPTH: <u>99</u>				
		IAIVIE/U	oivipa c Mi	ud Rota	rv NX/		rina		ammer				
CASIN	ING NI	ETROD F'	4.0"	DF	PTH [.]	23	3.0'	WATER' DURING DRILLING' 4.0' TIME' 9:00	DATE 4/16/09				
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE: _	2/20/*	12 END OF DRILLING: 0.0' TIME: 13:30	DATE: 4/17/09				
	_			(%			Ш						
F	RUN	F 문	≻	RY(NT/ SF)		L I I						
I (F	ŽШ	/0.5 /PLI	ER ER	JVE	L) = Ed.	SS	OIS						
PTF	/PL	SAN	ŚШ	© \CC	KET	nsı	≥ Щ	DESCRIPTION	REMARKS				
DE	YPE	ON	盟		00° 0R'		MPL						
	H			∕ x	T		SA						
0.0		WН		0				No recovery.	PID = 0.0 ppm				
	S-1	WH	0.0'		_				Organic material				
	01	WH	0.0						surface (marsh)				
2.0		WH		5									
L _		WR		5				Dark brown Organic SILT, frequent plant matter,	PID=0.0 ppm				
<u> </u>	S-2	WR	0.1'		-	OL	moist						
		WH WH				-			Advanced 5" casing				
4.0				0					to 5'				
		WH						The receivery.	PID = 0.0 ppm				
	S-3	WH	0.0'		-				-				
		WH							-				
0.0		<u></u>		60				Gravish brown SILT, and fine Sand, (ALLUVIUM).	PID=0.0 ppm<				
		WH											
	S-4	3	1.2'		-	ML	moist		_				
8.0		3							Advanced 5" casing				
		2		80				Brown fine SAND, some(-) Silt, occasional plant	to 8'				
	<u>с</u> б	4	1.6'			~~~		matter, (ALLUVIUM).					
	0-0	5	1.0		-	SIVI	wet		_				
10.0		5		100									
L _		5		100				Brown coarse to fine SAND, little Silt, (ALLUVIUM).	PID = 0.0 ppm				
L _	S-6	5	2.0'		-	SM	wet		_				
		8				e.m							
12.0		0		60				some(_) Silt					
		WH											
	S-7	2	1.2'		-	SM	wet		-				
		3							-				
		5		100				Brown fine SAND, some(-) Silt, (ALLUVIUM).	PID = 0.0 ppm				
		5											
	S-8	6	2.0'		-	SM	wet						
16.0		6							Advanced 5" casing				
		1		70				Brown SILT, and fine Sand, (ALLUVIUM).	TO 13 PID = 0.0 ppm				
	5-0	2	14'		_	N 41			Advanced 5" casing				
	0-0	4			-	IVIL	wet	et to 18'					
18.0		2		75				-					
		2		15					טויש = 0.0 ppm				
⊢ −	S-10	7	1.5'		-	ML	wet		_				
		10						(continued on next page)	4				
L20.0									l				

BORING NO. BW- 14/CHS-1
SHEET_2_OF_6
DATE:START
END 4/17/09
DATUM: NGVD29
ELEVATION: 2.1±
TOTAL DEPTH: 99'
tomatic Hammer

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	ent Project COUNTY Hudson DATUM:	NGVD29		
MUNICIPALITY Kearny LOCATION Cedar Creek Marsh N. 697581.8± E. 599514.5± ELEVATI								ON: 2.1±			
INSPE	CTOR	S NAM	E/CON	IPANY	A. He	rnande	z/YU 8	Associates, Inc. TOTAL D)EPTH: 99'		
DRILL	ERS N	IAME/C	OMPA	NY <u>P</u> .	Lynch	/JBD					
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ Cor	ing	EQUIPMENT USED CME-55 ATV with Automatic Ha	mmer		
CASIN	NG SIZ	E:	4.0" Mozuli	DE	PTH:	23	2/20/4	_ WATER: DURING DRILLING: <u>4.0</u> TIME: <u>9:00</u>	DATE: 4/16/09		
CHEC	KED B	Y: <u>D.</u>	iviazuji	an	D/	AIE: _	2/20/	<u>12</u> END OF DRILLING: <u>0.0</u> TIME: <u>13.30</u>	DATE: 4/17/09		
DEPTH (FT)	SAMPLE NO / YPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) 2D (%)	POCKET PENT/ ORVANE (TSF)	NSCS	MPLE MOISTURE	DESCRIPTION	REMARKS		
	H			A N	чт		SA				
		5		75				(continued from previous page).	PID = 0.0 ppm		
	0.44	7	4		PP			Brown Clayey SILT, some fine Sand, (ALLUVIUM).			
	S-11	7	1.5		1.00	ML	wet		_		
22 0		5						22 0' EL -19 9'	_		
		5		80				Brown varved Clayey SILT, (GLACIOLACUSTRINE	PID = 0.0 ppm		
\vdash \dashv		7			DD			DEPOSIT).			
\vdash –	S-12	10	1.6'		1.25	CL	wet		_		
		8							Advanced 5" casing		
24.0		4		85				Brown varved Silty CLAY. (GLACIOLACUSTRINE	to 23'		
		4						DEPOSIT).	—		
\vdash –	S-13	8	1.7'		2 50	CL	wet		_		
H		8			0.00				_		
26.0		0							_		
									_		
27.0				15							
 29.0	U-NR/ G-1	P U S H	0.3'		PP 3.00 TV 0.45	CL	wet		sampling attempted with a Shelby tube: insufficient recovery, sample		
[]		4		100					collected in jar G-1		
31 0	S-14	4 6 6	2.0'		PP 1.75	CL	wet				
									_		
32 0									-		
	U-1	P U S	1.0'	50	-	CL	wet	Brown Clayey SILT varved with Silt, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a piston sampler U-1: mc=28%		
34.0		Н		400							
		3		100				1/4"± varves.			
LJ	S_15	4	2 0'		PP						
$\lfloor \ \ \end{bmatrix}$	0-10	6	2.0		1.25	UL	wet				
36.0		5									
		3		100							
$\lfloor]$	Q 16	3	2 0'		PP						
	3-10	5	2.0		0.75	CL	wet				
38.0		4									
		4		100					1		
$ \vdash \dashv$	o :-	6			PP				-		
\vdash \dashv	S-17	6	2.0'		1.25	CL	wet		—		
40 0		5						(continued on next page).	-		
F.0.01								1			

BORING NO. BW- 14/CHS-1
SHEET3OF6
DATE:START
END 4/17/09
DATUM: NGVD29
ELEVATION: 2.1±
TOTAL DEPTH: 99'

PROJ	ECT N	AME _	Portal I	Bridge	Capaci	ty Enha	anceme	ent Project	_ COUNTY	Huds	on		DATUM:	NGV	029
MUNI	CIPALI	TY <u>Ke</u>	arny	LO	CATIO	N Ceo	dar Cre	ek Marsh	N. 697581.	8±	E. 599	9514.5±	ELEVAT	ION:	2.1±
INSPE	ECTOR	S NAM	E/CON	IPANY	A. He	rnande	z/YU &	Associates,	Inc.				TOTAL [DEPTH:	99'
DRILL	ERS N	IAME/C	OMPA	NY <u>P</u> .	Lynch	JBD				ON			townstin Lie		
DRILL	ING M		S <u>M</u> L	Id Rota	ry, NX/	NQ Cor	'ing			SED CIM	1E-35 A				4/16/00
CHEC	KED B	⊏ v·D.	Mazuii	D⊏ an	.етп. D/	<u>2</u> 3	2/20/1	_ WAIER.	END OF DRILL	ING	0.0'		13:30	DATE.	4/17/09
ONLO				-										DATE:	
				<u> </u>			ш								
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURI		DESCR	IPTION				REM	ARKS
L _		2		100				(cont	inued from prev	ious pag	ю).				_
42.0	S-18	2 4 2	2.0'		PP 1.25	CL	wet	Brown v alternati (GLACI	arved Silty CLA ng 1/4"± to 1/3" OLACUSTRINE	Y and S ± silty cl	SILT & C lay, silt & SIT).	CLAY, & clay,			
		3		100											
	S-19	3 4 4	2.0'		PP 1.25	CL	wet								
44.0		2		100											_
		2			PP										_
46.0	S-20	3 2	2.0'		1.25	CL	wet								
		WН		100											_
48.0	S-21	2 4 3	2.0'		PP <0.1	CL	wet								_
50.0	S-22	WH WH 1 2	2.0'	100	PP 0.50	CL	wet	Brown v alternati (GLACI	rarved Silty CL/ ng 1/4"± to 1/2" OLACUSTRINE	AY and (± clayey DEPOS	Clayey S / silt, 1/4 SIT).	SILT, l"± silty cla	y,		-
		WR		100											_
	S-23	WH 2 2	2.0'		PP <0.1	CL	wet								_
L02.0		WR		100				Brown S	Silty CLAY varve	ed with C	Clay & S	ilt, alternat	ing		_
 54.0	S-24	WR WH WH	2.0'		PP 0.75	CL	wet	3/4"± sil (GLACI	ty clay, 1/4"± cl OLACUSTRINE	ay & silt, DEPOS	, SIT).		-		
	S-25	WR WR WH WH	2.0'	100	PP 0.25	CL	wet								-
															_
57.0 _59.0_	U-2	P U S H	2.0'	100	PP 0.50 TV 0.40	CL	wet	Red-bro (GLACI	wn varved Silty OLACUSTRINE	CLAY a DEPOS	ind CLA SIT).	Y & SILT,		Undisturb collected piston sa U-2: mc= LL=32 an PI=13 an	ed sample using a npler 38% d 42, d23
⊢ −		WR			PP	CL	wet	(cont	inued on next pa	age).				100%<#2 	UU _

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO. BW- 14/CHS-1
SHEET4 OF6
DATE:START
END 4/17/09
DATUM: NGVD29
ELEVATION: 2.1±
TOTAL DEPTH: 99'

MUNIC	CIPALI	ty <u>K</u> e	arny	LO	CATIO	N Ce	dar Cre	ek MarshN. <u>697581.8±</u> E. <u>599514.5±</u> ELEVA	TION: 2.1±
INSPE	CTOR	S NAM	E/CON	IPANY	A. He	rnande	ez/YU &	Associates, Inc. TOTAL	DEPTH: 99'
DRILL	ERS N	IAME/C	OMPA	NY <u>P</u>	Lynch				lammar
DRILL			S <u>IVIL</u> 4 0"		ry, NA /I	22	ring እ በ'		
CHEC	KED B	⊏ γ· D.	Mazuii	an De	.г.п. D/	ATE.	2/20/1	2 END OF DRILLING: 0.0' TIME: 13:30	DATE:4/17/09
ONLO				-	0,				
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS
	S-26	WH	2.0'		<0.25	0		(continued from previous page).	
61.0		VVH		100		CL	wet	Brown Silty CLAY, (GLACIOLACUSTRINE	_
 63.0	S-27	WR WH 2 5	2.0'	100	PP <0.1	CL	wet	DEPOSIT). occasional fine sand seams.	
 	S-28	WR WR WR WR	1.3'	65	PP <0.1	CL	wet		
 67.0	S-29	WR WR WH WH	2.0'	100	PP 0.50	CL	wet		
	S-30	WH WH 2 2	2.0'	100	PP <0.1	CL	wet	Brown Silty CLAY varved with Silt & Clay, alternating 3/4"± silty clay, 1/4"± silt & clay, (GLACIOLACUSTRINE DEPOSIT).	
 71.0	S-31	WR WR WR WR	2.0'	100	PP <0.1	CL	wet	Brown Silty CLAY, (GLACIOLACUSTRINE DEPOSIT).	
 73.0	S-32	WR WH 3 4	2.0'	100	PP 0.25	CL	moist	Brown Silty CLAY varved with Silt & Clay, alternating 3/4"± silty clay, 1/4"± silt & clay, (GLACIOLACUSTRINE DEPOSIT).	
 	U-3	P U S H		100	PP 0.25 TV 0.20	CL	moist		Undisturbed sample collected using a piston sampler U-3: mc=32% LL=26 and 39, PI=7 and 22
	S-33	WR 1 3 6	2.0'	100	PP 1.50	CL	moist	Red-brown Silty CLAY, trace(-) fine Gravel, trace(-) coarse to fine Sand, (GLACIOLACUSTRINE DEPOSIT).	-
 	S-34	WH 2 6 5	1.8'	90	PP <0.1	CL	moist	(continued on next page).	

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO. BW- 14/CHS-1
SHEET5_OF6
DATE:START
END <u>4/17/09</u>
DATUM: NGVD29
ELEVATION: 2.1±
TOTAL DEPTH: 99'
tomatic Hammer

MUNI	CIPALI	TY K	earny	LO	CATIO	N <u>Ce</u>	dar Cre	eek Marsh N. 697581.8± E. 599514.5± ELEVATION: 2.1±
INSPE	ECTOR	S NAM	E/CON	/PANY	<u>A. He</u>	ernande	ez/YU 8	& Associates, Inc. TOTAL DEPTH: 99'
DRILL	ERS N	IAME/C	OMPA		. Lynch	JBD		
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ CO	ring	EQUIPMENT USED CME-55 AT V with Automatic Hammer
CASI		E:	<u>4.0</u> Mazuii	DE ian	-PIH:	<u> </u>	2/20/1	WATER: DURING DRILLING: <u>4.0</u> TIME: <u>5.00</u> DATE: <u>4/10/05</u>
CHEC	NED D	or. <u>D.</u>	mazaji	an	D/	AIE.	2/20/	END OF DRILLING. <u>0.0</u> TIME. <u>10.00</u> DATE. <u>4, 17,00</u>
	-							
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION
L _								80.5'(continued from previous page) EI78.4'
81.0				05				Rig chattering at
L _		11		00				Red-brown coarse to fine GRAVEL, some Silty Clay,
L _	S-35	14	1.3'		-	GC	moiet	
L _	0.00	10				00	moist	-
83.0		8		57				
L _		19		57				red-brown and blue-gray.
L _	S-36	35	1.1'		-	GC	moist	
L		25						-
84.9		100/5		50				-
		8						-
	S-37	22	1.0'		-	GC	moist	
		48						-
87.0		21		60				
		10						-
	S-38	9	1.2'		-	GC	moist	
		30						Top of Rock at 89 feet
89.0				55				89.0 EI86.9
				/				medium strong, very closely spaced fractures.
				/				(WEATHERED PASSAIC FORMATION).
								-
								-
	C-1		2.8'	/				-
								-
								-
				/				-
94.0				7				94.0' EL -91.9'
[100				Red-brown CLAYSTONE, moderately weathered,
				/				medium strong, very closely to closely spaced
								fractures, (COMPETENT PASSAIC FORMATION).
	<u> </u>		5.0'	/				
	0-2		5.0	/				
				/				
				/				
L _				/				
99.0				52				99.0' EI96.9'
L _								Bottom of borehole at 99 feet.
								1003.

SHEET_6	OF6
DATE:STAR	T 4/16/09
END_	4/17/09
DATUM:	NGVD29
ELEVATION:	2.1±

PROJ	ECT N	AME _	Portal I	Bridge	Capaci	ty Enha	anceme	ent Project	CC	DUNTY Hud	son		_ DATUM:	NGV	D29
MUNI	CIPALI	TY Ke	earny	LO	CATIO	N <u>Ceo</u>	dar Cre	ek Marsh	N6	97581.8±	_ E. _59	9514.5±	_ ELEVAT	ION:	<u>2.1±</u>
INSPE	ECTOR	S NAM	E/CON	IPANY	A. He	rnande	ez/YU 8	Associates	, Inc.					DEPTH:	99'
DRILL	ERS N	IAME/C	OMPA	NY P	. Lynch	JBD					ME 66 A	T\/ith A	_ L		
DRILL	ING M	ETHOD	S <u>IVIL</u>		TY, NX/	NQ COI	ring		EQUIPM	ENT USED	A CC-31VI				4/16/00
CASI		E:	<u>4.0</u> Mazuii	DE an		<u></u>	2/20/1	_ WATER:		DRILLING: _	4.0		13.00	DATE:	4/10/09
UNEU		or. <u>D.</u>	mazaji	un	D/	ATE	2/20/						10.00	DATE.	
									NOTEN	COUNTEREL					
	ξ			%)/	⊇û		H								
ET)	NO/	LER LER	RY		EN]		STL								
L L	л Н Н Н Н Н	MPI	Ξ.	<u></u>		SCS	Q		г		M				
L L	MPI VCC	SAS	С Ш	(%) XEO	NAI VAI	n	Щ				•				
B	YPE	ON	R	ਿੱ ਕ	0 S R		MPI								
	H			/ ~	ш (н		SA								
								1. Bori	ng comple	eted as slope	inclinom	eter under	direct		
					1			observ	ation by N	IRCE.					
								2. Und	isturbed s	ample moistu	re conte	nts noted i	n		_
								"Rema	rks" reflec	t an average	of all mo	isture con	tents		_
								aeterm		ie sample.	routed	eina 2v04	lh		_
								hans o	f nortland	cement 1/2v	50-lh hav	only 2x94- a of bentor	nite		_
								potable	e water on	6/1/10.		5 51 561101			_
F -															
F -					1										
															_
F -					1										_
F -					1										_
															_
<u>⊢</u> –															
<u>⊢</u> –					1										_
<u>⊢</u> –					1										_
<u>⊢</u> –					1										
<u>⊢</u> –					1										
<u>⊢</u> –															_
<u>⊢</u> –															_
<u>⊢</u> –															_
<u>⊢</u> –															-
<u>⊢</u> –															_
<u>⊢</u> –															_
<u>⊢</u> –															
<u>⊢</u> –															_
⊢ −															_
⊢ −															_
⊢ −															_
⊢ −															_
<u>⊢</u> –															_
<u>⊢</u> –															_
⊢ −															_
⊢ −															-
⊢ −															_
⊢ −															_
⊢ −															_
⊢ −															_
⊢ –															_
L															

BORING NOBW- 14A/CHS-1A
SHEET_1_OF_6
DATE:START
END 4/23/09
DATUM: NGVD29
ELEVATION: 2.1±
TOTAL DEPTH: 102'

PROJ	ECT N		Portal	Bridge	Capaci	ty Enha	ancemo	ent Project COUNTY Hudson DATUM:	NGVD29
INSPE	CIPALI =CTOR	1Y <u>re</u> S NAM	F/CON	LO /PANY	CATIO A. Fy	odorov	va/YU 8	Associates, Inc. 697586.3± E. 599523.5± ELEVAL	ION: <u>2.1±</u>)FPTH: 102'
DRILL	ERS N	IAME/C	OMPA	NY <u>P</u>	. Lynch	/JBD			
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX/	NQ Co	ring	EQUIPMENT USED CME-55 Truck Mounted Rig wit	h Safety Hammer
CASI		E:	<u>4.0"</u> Mazuii	DE ian	EPTH:	<u>34</u>	2/20/ [,]	_ WATER: DURING DRILLING: <u>1.0'</u> TIME: <u>12:30</u>	DATE: <u>4/21/09</u>
CHEC		or. <u>D.</u>	mazaji		U	AIE	21201		DATE. <u></u>
				© 7			ш		
	RUN	는 K	≻	RY (9	NT/ SF)		TUR		
⊢ ⊥ F	N N	/0.5 APLE	UER (OVE	L PE	SS	lois	DECODIDION	DEMARKO
PTF	MPL CC	SAN	Ю. Ш	SEC(%)	CKE	NS	≥ Щ	DESCRIPTION	REMARKS
B	SA SA	ON	R		POG		MPI		
							SA		
0.0		3		0				No recovery.	observed in drill
	S-1	1 WH	0.0'		-		wet		cuttings
20		2							_
2.0									-
L _									_
									Advanced 4" sessing
+									to 4'
5.0		1		15				Black Organic SILT, occasional wood, plant matter,	Organic odor
		WH						(ORGANIC DEPOSIT).	Advanced 4" casing
	S-2	1	0.3'		-	OL	wet		to 9' —
7.0		1							
									_
									_
								<u>8.5'</u> El. <u>-6.4</u> '	
									_
10.0									-
		16		55				Gray fine SAND, and(+) Silt, occasional plant matter,	Advanced 4" casing
	S-3	14	1 1'		-	сM	wot	(ALLUVIUM).	
		11				SIVI	wei		_
12.0_									_
├ -									-
-									-
15.0				50				dark grav some() Silt	Advanced 4" ecoine
├ -		7 F						uaik yiay, suine(-) siil.	to 19'
├ -	S-4	10	1.0'		-	SM	wet		-
17.0		7							-
⊢ –									
⊢ −									_
20 0								(continued on next page).	-
L_0.0_	I	1		L	I			· · · · ·	<u> </u>

BORING NO. BW-	14A/CHS-1A
SHEET_2_O	=
DATE:START	4/21/09
END 4	/23/09
DATUM: NG	VD29
ELEVATION:	2.1±
TOTAL DEPTH	102'

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	ent Project COUNTY Hudson DATU	M: NGVD29
MUNI	CIPALI	TY K	earny	LO	CATIO	N Ce	dar Cre	ek MarshN. <u>697586.3±</u> E. <u>599523.5±</u> ELEVA	TION: 2.1±
INSPE	ECTOR	S NAM	E/CON		A. Fy		/a/YU 8	Associates, Inc.	. DEPTH: 102'
DRILL	ERS N	IAME/C		NY <u>P</u>	. Lynch		rina		vith Safety Hammer
	ING M	ETHOD F	4.0"		PTH	34	1.0'	WATER: DURING DRILLING: 1.0' TIME: 12:30	DATE: 4/21/09
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE:	2/20/1	2 END OF DRILLING: 0.0' TIME: 13:00	DATE: 4/23/09
						_			
	_			(%			ш		
L F	RUN	타꼾	≻	RY(NT/ SF)		TUR		
H (F	Σщ	/0.5 /PL	L C			SS	10IS		DEMARKO
PTF	MPL VCO	SAN	Ю. ГО	(%)	VAN VAN	NSI	≥ Щ	DESCRIPTION	REMARKS
DE	YPE	ON	R	B B B B B B B B B B B B B B B B B B B	00.00		MPL		
	- i			∕ x	ЧН		SA		
	S-5A	13		90	_	014		(continued from previous page).	Advanced 4" casing
	S-5B	7	1.8'		_	SIVI	wet	Gray coarse to fine SAND, little Silt, (ALLUVIUM).	10 24
	0.05	13	1.0		PP	IVIL	moist	Gray SILT, below 21.1', (ALLUVIUM).	_
22.0		14			2.75				
								<u>23.5' El21.</u>	<u>4</u> ' —
									_
25.0									-
25.0		12		100				Blue and reddish gray varved Silty CLAY and Clayey	
		23			PP			SILT, alternating 1/8"± silty clay, clayey silt,	
	S-6	25	2.0'		3.25	CL	moist	(GLACIOLACUSTRINE DEPOSIT).	
27.0		31							
L _									_
									_
30.0				90					_
		10						DEPOSIT).	_
	S-7	13	1.8'		9P 3.00	ML	moist	,	_
32 0		23							-
-02.0									
									Advanced 4" casing
35.0				100					
		11		100				Brownish gray varved Silty CLAY and Clayey SILT,	
	S-8	14	2.0'		PP	CI	moist	(GLACIOLACUSTRINE DEPOSIT)	
		18 16			1.75	22			
37.0									
									-
-									
									-
40.0								(continued on next page).	
+	ı		•		ı				

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NOBW- 14A/CHS-1	A
SHEET_3_OF_6	
DATE:START	
END 4/23/09	
DATUM: NGVD29	
ELEVATION: 2.1±	

MUNI		TY <u>Ke</u>	earny	LO	CATIO	N <u>Ce</u>	dar Cre	<u>ek Marsh</u> N. <u>697586.3±</u> E. <u>599523.5±</u> ELEVAT	ION: 2.1±
INSPE						oaoro\ / IRD	/a/ YU &	Associates, Inc.	DEPTH: 102
DRILL	ERSN	AME/C		NY <u>r</u>			rina		h Safety Hammer
	ING M		4 0"		т у, ічл і :ртн.	34	1 0'		
CHEC	KFD B	∟ γ·D.	Mazuji	an	-i iii. D/		2/20/1	2 FND OF DRILLING: 0.0' TIME: 13:00	DATE: 4/23/09
OHLO		··		-	0,				DATE:
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS
L _		9		95				(continued from previous page).	
 42.0_	S-9	17 15 12	1.9'		PP 1.75	CL	moist	Brownish gray varved Silty CLAY and Clayey SILT, alternating 1/5"± to 1/4"± silty clay, clayey silt, (GLACIOLACUSTRINE DEPOSIT).	
<u>⊢</u> –									_
<u>⊢</u> –									_
									_
F -									_
L_									
46.0				05					_
48.0	U-NR/ G-1	P U S H	0.5'	25	PP 1.75 TV 0.50	CL	moist	Brown varved Silty CLAY, 1/4"± to 1/3"± varves, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sampling attempted- with a piston sampler: insufficient recovery, sample
	U-1	P U S H	1.0'	50	-	CL	moist		G-1 collected using a piston sampler U-1: mc=35%
L _									_
51.0 	U-2	P U S H	1.2'	58	PP 1.25 TV 0.20	CL	moist		Undisturbed sample collected using a piston sampler U-2: mc=37%
	S-10	4 9 7 12			PP 1.25	CL	moist	Gray-brown varved SILT & CLAY, 1/8"± varves, (GLACIOLACUSTRINE DEPOSIT).	-
[]									
56.0 	U-3	P U S H	2.0'	100	PP 1.25 TV 0.20	CL	moist	Brown Silty CLAY, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a Shelby tube U-3: mc=41%
L _									
								(continued on next page).	_

BORING NOBW- 14A/CHS-1A
SHEET4 OF6
DATE:START
END 4/23/09
DATUM: NGVD29
ELEVATION: 2.1±
TOTAL DEPTH: 102'

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson DATUM:												
DRILL	ERS N	AME/C	OMPA	NY P	. Lynch		rina		h Safety Hammer			
CASI	JG SIZ	ETHOD F'	4.0"		PTH [.]	34	1.0'	WATER DURING DRILLING 1.0 TIME 12:30	DATE 4/21/09			
CHEC	KED B	Y: D .	Mazuji	an	D	ATE: _	2/20/1	2 END OF DRILLING: 0.0' TIME: 13:00	DATE: 4/23/09			
				(%)			Ш					
Ê.	IO./ RUN	ER	2	ERY(TSF,		STUF					
H H	-E N BRE	S/0.5 MPL	Э́Г		E E E	SCS	Ĩ	DESCRIPTION	DEMARKS			
L D I	MPI	SWC SA	С Ш		SKE	n S		DESCRIPTION				
B	SA	OBLO	R	7 8	POL		M					
							Ś	· · · · · · · · · · · · · · · · · · ·				
L _								(continued from previous page).	_			
61.0				83				Brown Silty CLAY (CLACIOLACUSTRINE				
⊢ –		P 			PP			DEPOSIT)	collected using a			
<u>⊢</u> –	U-4		1.7'		1.00	CL	moist		piston sampler			
		н			0.40				0-4: mc=39%			
63.0									_			
<u>⊢</u> –									_			
<u>⊢</u> –									_			
F -									_			
F -									_			
F -												
F -									_			
L_									_			
L _									_			
L _									_			
<u>⊢</u> –									_			
									_			
70.0		_		88					I Indisturbed sample			
<u>⊢</u> –		P			PP				collected using a			
<u>⊢</u> –	U-5	S S	1.8'		1.00 TV	CL	wet		piston sampler			
72 0		H			0.40				<u> </u>			
-12.0									_			
F -									_			
L _												
L _												
⊢ –												
⊢ –												
⊢ −												
⊢ −												
<u>⊢</u> –									-			
⊢ −									-			
F -												
80.0								(continued on next page).				
			•									

PROJECT NAME _ Portal Bridge Capacity Enhancement Project ____ COUNTY _ Hudson

BORING NOBW- 14A/CHS-1A
SHEET5 OF6
DATE:START
END <u>4/23/09</u>
DATUM: NGVD29
ELEVATION: 2.1±
TOTAL DEPTH: 102'

MUNI		TY <u>K</u>	earny E/CON	LO IPANY	CATIO A. Fy	N <u>Ce</u> orov	dar Cre va/YU &	with reject COUNTY Indusor DATOR wek Marsh N. 697586.3± E. 599523.5± ELEVA Associates, Inc. TOTAL	TION: 2.1± DEPTH: 102'			
DRILL	DRILLERS NAME/COMPANY P. Lynch/JBD											
DRILL	DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED CME-55 Truck Mounted Rig with Safety Hammer											
	NG SIZI	⊑: ∨∘D	4.0 Mazuii	DE an	PIH:	<u>34</u>	2/20/1	_ WATER: DURING DRILLING: <u>1.0</u> TIME: <u>12:30</u> 12 END OF DRILLING: 0.0' TIME: 13:00	_ DATE: <u>4/21/09</u>			
UNEC		·. <u></u> .	inazaj.		D	AIL			_ DATE			
				<u>,</u>								
	2.7 RUN	F R	~	54(%	ЧТ/ SF)		IUR					
Ē	N N N N N N N N N N N N N N N N N N N	0.5 I IPLE	ER,		PEI E (T	S	OIS.					
PTH	/PLF	REMARKS										
B	א צלה אר											
	Ļ			₩ ¥	μ		SAI					
	S-11A	2		60		ML	wet	80.5' Grayish brown Clayey SILT, (GLACIOLACUSTRINE, -78.4	t'(continued from			
L _		5	1.2'		PP			DEPOSIT). Red brown Clovey SILT some medium to fine Cravel	previous page/			
<u>⊢</u> –	0 440	8			2.50			(GLACIAL TILL)	_			
82.0	2-11B	9				ML	moist	(02.00, 12.002).	-			
									_			
									-			
									–			
L_												
L _												
<u> </u>									_			
<u>⊢</u> –									Hard drilling at 88'			
									to 92':			
									Possible Decomposed Rock			
L _												
L _												
<u> </u>									_			
								Top of Rock at 92.0 feet				
192.0				100				Red-brown MUDSTONE, highly to moderately	<u> </u>			
F -				/				weathered, weak, extremely closely to moderately	-			
				/				spaced fractures, (WEATHERED PASSAIC				
				/				FORMATION).				
L I	C-1		5.0'	/								
L _	U-1		0.0	/								
L _									_			
⊢ –				/					_			
				/ A7								
191.0				100 /				Red-brown MUDSTONE, highly to moderately	<u>,</u>			
F -				/				weathered, weak, extremely closely to moderately	-			
F -				/				spaced fractures, (COMPETENT PASSAIC	-			
				/				FORMATION).				
	C-2		5.0'	/								
	0-2		0.0	V				(continued on next page).				

COUNTY Hudson

BORING NOBW- 14A/CHS-1A
SHEET6OF6
DATE:START
END 4/23/09
DATUM: NGVD29
ELEVATION: 2.1±
TOTAL DEPTH: 102'

ſ

MUNI	CIPALI	TY K	arny	LO	CATIO	N Ce	dar Cre	ek MarshN697586.3±E599523.5±ELEVAT	ON: 2.1±		
INSPECTORS NAME/COMPANY A. Fyodorova/YU & Associates, Inc. TOTAL DE									'EPTH: 102'		
	DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED CME-55 Truck Mounted Rig with Safety Hammer										
CASI	NG SIZI	E:	4.0"	DE	EPTH:	34	1.0'	WATER: DURING DRILLING: <u>1.0'</u> TIME: <u>12:30</u>	DATE: 4/21/09		
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	D.	ATE: _	2/20/1	2 END OF DRILLING: 0.0' TIME: 13:00	DATE: <u>4/23/09</u>		
								NOT ENCOUNTERED			
	z			(%)	\ (RE				
F.	NO/	ER	ž	- ER	TSF		STU				
L H	LE D ORE	S/0.	Э.E	⊼ ∑	NE (scs	MOI	DESCRIPTION	REMARKS		
EPT	AMP E/C	NOV NOV	EC E	REC (%)	CKE	Š	Ē				
	S/ TYP	Ъ	L CC	/ D	PO		AMF				
							S S	Red-brown MUDSTONE highly to moderately	(continued from		
⊢ –								weathered, weak, with soil (sand) zone at 100.6' to	previous page)		
<u>⊢</u> –								100.9', extremely closely to moderately spaced	_		
102 0				58				fractures, (COMPETENT PASSAIC FORMATION).	_		
102.0				/				Bottom of borehole at 102 feet.			
F -								Notes:	_		
								1. Boring completed as slope inclinometer under direct	_		
								2. Undisturbed sample moisture contents noted in			
L _								"Remarks" reflect an average of all moisture contents	_		
<u>⊢</u> –								determined for the sample.	_		
<u>⊢</u> –								3. Slope inclinometer tremie grouted using 2x94-lb	_		
<u>⊢</u> –								potable water on 6/1/10	_		
									_		
									_		
									_		
									_		
L _									_		
⊢ –									_		
<u>⊢</u> –									_		
<u>⊢</u> –									_		
<u>⊢</u> –											
F -									_		
⊢ –									_		
⊢ –									_		
⊢ -									_		
⊢ −									—		
<u>⊢</u> –									—		
F -									—		
L -									—		
L _									_		
⊢ –									_		
⊢ –									_		
			ļ								

PROJECT NAME Portal Bridge Capacity Enhancement Project

ENGINEERS FIELD BORING LOG

COUNTY Hudson

	BORING NO. BW- 15
	SHEET1_OF6
	DATE:START 12/31/08
	END1/5/09
	DATUM: NGVD29
	ELEVATION: 4.6±
	TOTAL DEPTH: 100'
nte	ed Rig with Automatic Hammer

ſ

MUNICIPALITY Kearny LOCATION USPS N. 697425.5± E. 599671.8± ELEVATION									
INSPE	DEPTH: 100'								
DRILL	ERS N	IAME/C	OMPA		. Mend	ez/JBD	lina		h Automatic Hammor
	ING M	ETHOD E·	<u>4.0"</u>		ary, N∧. =pth∙	20	nng).0'		
CHEC	KED B	Y: D .	Mazuji	an	D	ATE:	2/20/1	12 END OF DRILLING: 0.0' TIME: 7:10	DATE: 1/5/09
	-			(%)			Ш		
Ē	RUN RUN	ΗË	≿	<u>кк</u> (ISF)		STUF		
H H	л п И И И И И	S/0.5 MPL	ΞĘ			SCS		DESCRIPTION	DEMARKS
EPT	MPI NCC	NC NC			SVAI VAI	n S	Ē	DEGORI HON	
	SA	9 B C	R	17 8	D D D		AMP		
				/ <u>"</u>			ري ا		Hand augered to 2'
									PID= 0.0 ppm
+ -									_
									-
		13		75				Black coarse to fine SAND, some medium to fine	PID= 0.0 ppm
		20	4 51					Gravel, trace Silt, occasional brick fragments, (FILL).	
	5-1	35	1.5		-	SP-SM	moist		
4.0		18							
L _		12		/5				dark brown, some(-) Clayey Silt, occasional cinders.	PID= 0.0 ppm
⊢ –	S-2	16	1.5'		-	SM	moist		to 5'
		14							
6.0_		0		85				black. coarse to medium. some fine Gravel. trace	PID= 0.0 ppm
+ -		10						Silt.	
	S-3	11	1.7'		-	SP-SM	wet		_
8.0		10							
		7		85				Gray SILT, some fine Sand, (FILL).	PID= 0.0 ppm
L _	S-4	6	1.7'		-	м	wot		_
⊢ –	-	5				IVIL	WCI		_
10.0				15				10.0' EI5.4'	PID= 0.0 ppm
+ -		WH 1							Advanced 4" casing
	S-5	wH	0.3'		-	PT	wet		to 10'
12.0		1						12.0' El7.4'	
		Р		85				Grayish brown medium to fine(+) SAND, and(-) Silt,	PID= 0.0 ppm
	11_1	U	1 7'		TV	0.14		(ALLUVIUM).	Undisturbed sample
L _	0-1	S			0.70	511	wet		Shelby tube
14.0		н	<u> </u>	75					U-1: mc=21.0%
⊢ –		3		13					37.6%<#200 —
+ -	S-6	4	1.5'		-	SM	wet		PID= 0.0 ppm
16 0		5							-
' ^{0.0} _		5	<u> </u>	75				fine.	PID= 0.0 ppm
	67	7	1 51						Advanced 4" casing
	૭-/	7	1.5		-	SM	wet		to 15 [.]
18.0		9	<u> </u>	50					
⊢ –		3		00				tine, some(-) Silt.	PID= 0.0 ppm
⊢ –	S-8	5	1.0'		-	SM	wet		_
		7						(continued on next page).	-

	BORING NO. BW- 15
	SHEET_2_OF_6
	DATE:START
	END1/5/09
	DATUM: NGVD29
	ELEVATION: 4.6±
	TOTAL DEPTH: 100'
t	ed Rig with Automatic Hammer

PROJECT NAME _Portal Bridge Capacity Enhancement Project							ancem	ent Project COUNTY Hudson DATUM:	NGVD29			
MUNICIPALITY Kearny LOCATION USPS								N. <u>697425.5±</u> E. <u>599671.8±</u> ELEVAT	ON: 4.6±			
				IPANY NV D	. Mende	z/JBD	455001		EPTH: 100			
			S Mu	ud Rota	ry, NX/	NQ Coi	ing	EQUIPMENT USED CME-75 Truck Mounted Rig wit	h Automatic Hammer			
CASI	NG SIZ	E:	4.0"	DE	PTH:	20	.0'	WATER: DURING DRILLING: 0.8' TIME: 7:30	DATE: 12/31/08			
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE: _	2/20/ [,]	12 END OF DRILLING: TIME:	DATE: <u>1/5/09</u>			
DEPTH (FT) SAMPLE NO / TYPE/CORE RUN BLOWS/0.5 FT ON SAMPLER RECOVERY (FT) RECOVERY(%) ROD (%) POCKET PENT/ TORVANE (TSF) USCS USCS								DESCRIPTION	REMARKS			
L_		3		50				(continued from previous page).	PID= 0.0 ppm			
	S-9	4 5 5	1.0'		-	SM	wet	Grayish brown fine SAND, some(-) Silt, (ALLUVIUM).	Advanced 4" casing to 20' —			
22.0		2		85				Gravish brown SILT, trace fine Sand, (ALLUVIUM).	_			
		4			PP				_			
	S-10	4	1.7'		1.00	ML	wet		_			
24.0		4										
	-	5		100				Grayish brown Clayey SILT, trace(-) fine Sand,	S-11: mc=28.2%			
L _	S-11	4	2.0'		PP	М	wet	(ALLUVIUM).	98.1%<#200			
⊢ -			_		1.25		wet		_			
26.0		- 4		100				26.0' EI21.4'	_			
	-	5						(GLACIOLACUSTRINE DEPOSIT).	_			
	S-12	6	2.0'		1.50	ML	wet		-			
28 0		7							_			
		3		100					_			
	S_13	4	2 0'		PP	5.41						
L _	0-10	5_	2.0		1.50	IVIL	wet		_			
_30.0		/		100					_			
	-	5							_			
	S-14	9	2.0'		PP 2.00	ML	wet		_			
32 0	-	10							_			
102.0		5		50				Grayish brown Silty CLAY varved with Clayey Silt,	-			
	Q 15	7	1.0'		PP			trace(-) fine Sand, alternating 1/8"± to 3/8"± silty clay,				
	3-15	8	1.0		2.25	CL	wet	1/16"± to 1/8"± clayey silt, (GLACIOLACUSTRINE				
_34.0		11		95								
⊢ -	-	P		05					collected using a			
	U-2		1.7'		TV 0.75	CL	wet		Shelby tube			
36 0	-	Н			00				LL=27, PI=9			
100.0		5		100				Grayish brown Silty CLAY varved with Clayey Silt,	99.8%<#200 —			
	S 16	5	2.01		PP			trace(-) fine Sand, (GLACIOLACUSTRINE DEPOSIT).	_			
	3-10	6	2.0		1.50	CL	wet					
38.0		6		100					_			
⊢ -	-	WH		100				aiternating 1/8"± to 3/8"± silty clay, 1/16"± to 1/8"± clavev silt	_			
⊢ -	S-17	WH 2	2.0'		PP 0.50	CL	wet		_			
40 0	-	5			0.00			(continued on next page).	-			

PROJECT NAME Portal Bridge Capacity Enhancement Project

ENGINEERS FIELD BORING LOG

COUNTY Hudson

BORING NO.	BW- 15
SHEET_3_OI	=6
DATE:START	12/31/08
END	1/5/09
DATUM: NG	VD29
ELEVATION:	4.6±
TOTAL DEPTH:_	100'
ed Rid with Autom	atic Hammer

MUNICIPALITY Kearny LOCATION USPS N. 697425.5± E. 599671.8± ELEVATION INSPECTORS NAME/COMPANY J. Yu/YU & Associates, Inc. TOTAL DEP TOTAL DEP										
DRILL	ERS N	IAME/C	OMPA	NY D	. Mende	ez/JBD				
DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED CME-75 Track Modified Rig With Auto										
CHEC	NG SIZ	⊏ γ·D.	4.0 Mazuji	an	-гіп. D/		2/20/1	WATER. DURING DRILLING. <u>0.0</u> TIME. <u>7.30</u> 12 END OF DRILLING: 0.0' TIME: 7:10	DATE: <u>1/5/09</u>	
01120					0,					
	_			8			щ			
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTUR	DESCRIPTION	REMARKS	
		2		100				(continued from previous page).		
42.0	S-18	3 4 4	2.0'		PP 0.75	CL	wet	Red-brown Silty CLAY varved with Clayey Silt, alternating 1/4"± to 1/2"± silty clay, 1/8"± to 1/4"± clayey silt, (GLACIOLACUSTRINE DEPOSIT).		
		2		100						
	S-19	3	2 0'		PP	0	wet			
L _		3	2.0		0.75	CL	wei		_	
44.0				100					_	
+ -		WH 2			пп				_	
	S-20	2	2.0'		0.50	CL	wet			
46.0		3							_	
		WН		100				alternating 1/4"± to 1/2"± silty clay, 1/8"± to 1/4"±		
L _	S-21	WH	2.0'		PP	CI	wet	clayey silt.	_	
		WH			0.38	OL	Wei		_	
48.0_		4		100					_	
		1			PP				—	
	S-22	3	2.0'		0.53	CL	wet		_	
50.0		4		100						
L _		WН		100					_	
	S-23	2	2.0'		PP 0.53	CL	wet		_	
		2			0.55				_	
		wн		100				alternating 3/8"± to 1"± silty clay, 1/8"± to 1/4"±		
Ľ.	6 24	wн	2 0'		PP			clayey silt.		
	3-24	WH	2.0		<0.25	CL	wet			
54.0		1		100					_	
⊢ –		WH								
+ -	S-25	WH	2.0'		99 <0.25	CL	wet		—	
56.0		WН								
		WН		100						
	S-26	WН	2 0'		PP	CI	wot			
⊢ –		WH			<0.25	UL	wei		_	
58.0				100				alternating 1/5"+ to 3/4"+ silty clay, 1/8"+ clayey silt		
├ -		WH WH			pD					
F -	S-27	WH	2.0'		<0.25	CL	wet		-	
60.0	1	WH						(continued on next page).		

BORING NO.	BW- 15
SHEET4O	F6
DATE:START	12/31/08
END	1/5/09
DATUM: NG	VD29
ELEVATION:	4.6±
TOTAL DEPTH:_	100'
ad Rig with Autom	atic Hammor

٢

PROJECT NAME Portal Bridge Capacity Enhancement Project							anceme	ent Project	COUNTY Hud	DATUM:	DATUM: NGVD29					
MUNICIPALITY Kearny LOCATION USPS									N. 697425.5±	E. 59	ION: 4.6±					
INSPE	ECTOR	S NAM	E/CON	IPANY	J. Yu	YU & A	Associa	ates, Inc.				TOTAL I	DEPTH:	100'		
DRILL	ERS N	IAME/C	OMPA	NY <u>D</u>	. Mende	z/JBD										
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ Cor	ing		EQUIPMENT USED C	ME-75 T	ruck Moun	ted Rig wit	h Automa	tic Hammer		
CASI		E:	4.0 Mazuii	Dł an	PIH:	<u></u>	2/20/1	_ WAIER:	DURING DRILLING: _	0.8		7:30	DATE:	12/31/08		
CHEC		or. <u>D.</u>	mazaji		D/	\ ⊏	2/20/1		END OF DRILLING.	0.0	_ 111VIE	7.10	DATE.	110/00		
					(NOTENCOUNTERED							
DEPTH (FT)	DEPTH (FT) SAMPLE NO/ TYPE/CORE RUN BLOWS/0.5 FT ON SAMPLER RECOVERY (% (FT) (FT) (FT) RCD (%) NCCET PENT/ TORVANE (TSF) USCS								DESCRIPTION					REMARKS		
		WН		100				(COI	ntinued from previous page	ge).				_		
62.0	S-28	1 1 2	2.0'		PP <0.25	CL	wet	Red-bi alterna (GLAC	rown Silty CLAY varved ating 1/5"± to 3/4"± silty o CIOLACUSTRINE DEPO	with Clay clay, 1/8' SIT).	yey Silt, '± clayey s	ilt,		-		
 64.0	S-29	WH WH WH WH	2.0'	100	PP <0.25	CL	wet							-		
66.0	U-3	P U S H	1.8'	90	TV 0.45	CL	wet	Red-bi alterna (GLAC	rown Silty CLAY varved ating 1/3"± silty clay, 3/16 CIOLACUSTRINE DEPO	Undisturt collected Shelby tu U-3: mc= LL=31 ar	bed sample using a ube 40.0% nd 65, PI=8					
 	S-30	WH WH WH WH	2.0'	100	PP <0.25	CL	wet						99.9%<#	200		
70.0	S-31	WH WH WH WH	2.0'	100	PP <0.25	CL	wet							-		
72.0	S-32	4 4 WH 1	0.8'	40	PP 0.38	CL	wet	Red-bi alterna clayey	rown Silty CLAY varved ating 7/8"± to 1.5"± silty o silt, (GLACIOLACUSTF	with Clay clay, 1/10 RINE DE	yey Silt, 6"± to 1/4": POSIT).	£		-		
[ωн		100				alter	nating 1"± to 1.5"± silty o	clay, 1/8	"± clayey s	ilt.		-		
	S-33	WH WH WH	2.0'		PP <0.25	CL	wet		arternating i I to 1.5 I sity Clay, 1/8 I Clayey Silt.							
 76.0	S-34	1 WH WH 1	2.0'	100	PP <0.25	CL	wet	Red-bi alterna (GLAC	rown CLAY & SILT varve ating 1"± to 1.5"± clay & CIOLACUSTRINE DEPO	ed with C silt, 1/8": SIT).	Clayey Silt, ± clayey sil	t,	S-34: mc LL=36, P	=33% I=19 — — —		
78.0	S-35	WH WH WH WH	2.0'	100	PP <0.25	CL	wet							-		
80.0	S-36	WH 1 1 1	2.0'	100	PP 0.25	CL	wet	alter	nating 1"± to 1.5"± silty on next page).	clay, 1/4	"± clayey s	ilt.		-		

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO.	BW- 15
SHEET_5_C	F_6
DATE:START_	12/31/08
END	1/5/09
DATUM: NO	SVD29
ELEVATION:	4.6±
TOTAL DEPTH:_	100'
ed Ria with Auton	natic Hammer

MUNICIPALITY Kearny LOCATION USPS N. 697425.5± E. 599671.8± ELEVATION INSPECTORS NAME/COMPANY J. Yu/YU & Associates, Inc. TOTAL DEP DRILLERS NAME/COMPANY D. Mendez/JBD TOTAL DEP										
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX/I	NQ Co	ring	EQUIPMENT USED CME-75 Truck Mounted Rig	with Automatic Hammer	
CASI	NG SIZ	E:	4.0"	DE	EPTH:	20	.0'	WATER: DURING DRILLING: TIME:	DATE: <u>12/31/08</u>	
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	DA	ATE: _	2/20/	2 END OF DRILLING: 0.0' TIME: 7:10	DATE: 1/5/09	
								NOT ENCOUNTERED		
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS	
L _		1		100				(continued from previous page).	_	
	S-37	1	2.0'		PP 0.38	CL	wet	Red-brown Silty CLAY varved with Clayey Silt, alternating 1"± to 1.5"± silty clay, 1/4"± clayey silt,	_	
82 0		1						(GLACIOLACUSTRINE DEPOSIT).	_	
		WR		100					_	
	5-38	WR	2 0'		PP					
	3-30	WR	2.0		<0.25	CL	wet		_	
84.0		WR		100					_	
		1		100					_	
<u>⊢</u> –	S-39	WH WU	2.0'		PP	CL	wet		_	
		WH			10.20				_	
86.0				100					_	
		WH			PP				_	
	S-40	WН	2.0'		<0.25	CL	wet		_	
88.0		WH						88.0' El83	.4'	
L _		5		75				Red-brown CLAY & SILT, some fine Gravel, little(+)	_	
L _	S-41	12	1.5'		-	CI	wet	coarse to medium Sand, (GLACIAL TILL).	_	
		14				01	not		_	
90.0		10		70						
		10							_	
	S-42	22	1.4'		-	CL	wet		_	
92.0		33							_	
[_		4		6						
	S-43	15	0.1'		-			<u>93.0'El88</u>	.4'	
93.8		100/4"						Red-brown CLAYS I ONE, completely weathered,	_	
								Salency weak, (SECOM COED ROOK).	-	
05 0								Top of Rock at 95.0 feet.		
95.0				96 /				Red-brown CLAYSTONE, moderately to slightly	.+	
F -				/				weathered, medium strong to strong, closely to		
Γ -				/				moderately spaced fractures, (COMPETENT		
				/				PASSAIU FURMATION).		
L _	C-1		4.8'	/						
⊢ –				/					_	
⊢ −				/					–	
├ -				/					-	
				58						
100.0			!					EI90		

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

	BORING NO. BW- 15
	SHEET6OF6
	DATE:START 12/31/08
	END 1/5/09
	DATUM: NGVD29
	ELEVATION: 4.6±
_	TOTAL DEPTH: 100'
_	
nt	ed Rig with Automatic Hammer

ſ

MUNI		τγ κ ε	arny		CATIO		PS	N 697425 5+ ⊑ 5996	71.8+ FLF	/ATION 4.6±
INSPE	ECTOR	S NAMI	E/COM		J. Yu	/YU & /	Associa	es, Inc.	TOT	AL DEPTH: 100'
DRILL	ERS N	AME/C	OMPA	NY D	. Mende	ez/JBD				
DRILL	ING M	ETHOD	s <u>M</u> u	id Rota	ry, NX/	NQ Co	ring	EQUIPMENT USED CME-75 True	ck Mounted Rig	with Automatic Hammer
CASI	NG SIZI	E:	4.0"	DE	EPTH:	20).0'	WATER: DURING DRILLING:	TIME: 7:30	DATE: 12/31/08
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	D/	ATE: _	2/20/1	END OF DRILLING:	TIME: <u>7:10</u>	DATE: 1/5/09
								NOT ENCOUNTERED		
	z			(%)			RE			
Γ.	NO./	LER LER	Ϋ́	ERY	TSF		STL			
Ц Н Н	LE N DRE	S/0.	Э́Е	N0 /		scs	NO I	DESCRIPTION		REMARKS
EPT	MP CC	NOV NOV	ы С Ш	SEC (%)	SKE V	ŝ	Ē			
ā	SA	OBLO	R	7 8	0 d d		M			
							Ś			
L _								Bottom of borehole at 100 fee	et.	_
L _								1 Boring tremie grouted using 2x95-lb ba	ans of	_
⊢ –								portland cement, 10 lbs of bentonite. pot	able water.	
⊢ –								2. Undisturbed sample moisture contents	s noted in	
⊢ –								"Remarks" reflect an average of all moist	ture contents	
⊢ −								determined for the sample.		–
⊢ –										-
⊢ −										-
<u>⊢</u> –										-
<u>⊢</u> –										-
<u>⊢</u> –										-
<u>⊢</u> –										-
<u>⊢</u> –										-
F -										
										_
F -										_
– –										
L_										_
L _										_
L _										
L _										
⊢ –										
⊢ –										
⊢ –										
⊢ –										
⊢ –										
⊢ –										-
⊢ −										-
⊢ −										
⊢ −										
⊢ −										
⊢ −										
⊢ −										
F -										
F -										-
F -										-

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO	BW- 16
SHEET_1	OF <u>6</u>
DATE:START	4/14/09
END	4/16/09
DATUM: N	GVD29
ELEVATION:	3.8±
TOTAL DEPTH	<u>111'</u>
tomatic Hammer	

MUNIC	CIPALI	ty <u>K</u> e	earny	LO	CATIO	N Nev	vark JO	CTpk N. 697627.8± E. 599578.1± ELEVAT	ION: 3.8±		
INSPECTORS NAME/COMPANY N. DelGrosso/YU & Associates, Inc.											
DRILL											
CHEC		⊏ ∨·D.	Hazuii	ian	:гіп. D	 ATE:	2/20/1	WATER. DURING DRILLING. <u>3.0</u> TIME. <u>10.00</u>	DATE: 4/16/09		
		1				AIL			DATE.		
				<u>(</u>)							
ЕРТН (FT)	MPLE NO/ E/CORE RUN	DWS/0.5 FT I SAMPLER	ECOVERY (FT)	RECOVERY(%	CKET PENT/ VANE (TSF)	NSCS	LE MOISTURI	DESCRIPTION	REMARKS		
Ö	SA TYPI	BLO	R	Rap /	POG TOF		SAMP				
				ſ				2" ASPHALT CONCRETE, 8" CONCRETE over 10"	Hand excavated to		
								ASPHALT CONCRETE, 4" SUBBASE.	6' for utility		
20									_		
								Gray coarse to fine SAND, some coarse to fine	S-1, S-2 blow		
								Gravel, trace Silt, (FILL).	counts not recorded		
	S-1				-	SP-SM	moist				
4.0											
	6.0										
	3-2				-	SP-SM	moist				
6.0											
		2		25				dark brown, little coarse to fine Gravel, occasional			
	5-3	3	0.5'		_			roots.			
	0-0	4	0.5		_	5P-5M	wet		_		
8.0		3		74					_		
		WH		1	-	SM	wet	Brown fine SAND, little Silt, (FILL).	_		
	S-4	WH	1.4'		-	рт	wet	8.9' EI5.1' Brown fibrous PEAT (ORGANIC DEPOSIT)			
		1					wei	Blownibious r EAT, (ORGANIO DEI COTT).	_		
10.0		1		35				10.0' El6.2'			
\vdash $-$		1							to 15'		
\vdash $-$	S-5	3	0.7'		-	ML	wet		_		
		় ১ ২							_		
12.0		0		71				Grav fine SAND and Silt (ALLUVILIM)	S-6: mc=22.6%		
\vdash \dashv		8							44.3%<#200 -		
	S-6	0 7	1.4'		-	SM	wet		_		
		10							_		
+ +.0-		1		71				brown.			
\vdash \dashv		- 6							-		
\vdash –	S-7	6	1.4'		-	SM	wet		_		
16 0		6							_		
- 10.0		6		71					_		
\vdash \dashv		8									
\vdash \dashv	S-8	10	1.4'		-	SM	wet				
18.0		12						 18.0' FL -14 2'			
		10		84				Brown Clayey SILT, (GLACIOLACUSTRINE			
	<u> </u>	11	4 -71					DEPOSIT).			
	5-9	9	1.7		-	ML	wet				
20.0		10						(continued on next page).			
1											

BORING NO.	BW- 16
SHEET_2_C	DF
DATE:START _	4/14/09
END	4/16/09
DATUM: NO	GVD29
ELEVATION:	3.8±
TOTAL DEPTH:	111'
omatic Hammor	

PROJ MUNI	ECT N CIPALI	AME <u> </u> TY Ke	Portal earny	Bridge LO	Capaci CATIOI N. De	ty Enha N <u>Ne</u> e	anceme wark JC o/YU &	Project COUNTY Hudson DATUM: NGVD29 [pk N. 697627.8± E. 599578.1± ELEVATION: 3.8± ssociates, Inc. TOTAL DEPTH: 11'		
DRILLERS NAME/COMPANY C. Deigert/JBD										
DRILL	ING M	FTHOD	s Mu	ud Rota	ry, NX/	NQ Co	ring	EQUIPMENT USED CME-55 ATV with Automatic H	ammer	
CASI	NG SIZ	E:	4.0"	DE	PTH:	25	5.0'	WATER: DURING DRILLING: <u>3.0'</u> TIME: <u>10:00</u>	DATE: 4/14/09	
CHEC	_ DATE:									
				<u>@</u> /			щ			
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTUR	DESCRIPTION	REMARKS	
		10		84				(continued from previous page).	Advanced 4" casing	
F -		10			PP			Brown varved Clayey SILT, (GLACIOLACUSTRINE	to 25'	
F -	S-10	10	1.7'		1.25	ML	wet	DEPOSIT).		
22 0	1	12								
F -										
F -										
F -									_	
<u>⊢</u> –									_	
25.0				71				Brown Clavey SILT (GLACIOLACUSTRINE	Advanced 4" casing	
		4						DEPOSIT).	to 30'	
<u>⊢</u> –	S-11	0	1.4'		2 25	ML	moist		_	
		10			2.20					
27.0		10							_	
<u>⊢</u> –									_	
<u>⊢</u> –									_	
⊢ –									_	
⊢ –										
<u>⊢</u> –									_	
30.0				92				arou		
<u> </u>		6		52				gray.	_	
<u> </u>	S-12	7	1.8'		-	М	moist		_	
<u> </u>		12					moloc			
32.0		12								
⊢ –										
⊢ –										
⊢ –										
⊢ –										
L _										
35.0				0.2						
L _		4		92				Gray CLAY & SILT, (GLACIOLACUSTRINE	S-13: mc=29.5%	
L_	S-13	5	1.8'		PP	CI	moiot			
L_		5			1.50	ΟL				
37.0		7								
L_										
L									7	
									7	
Γ -										
40.0								(continued on next page).		
Γ -										

BORING NO.	BW- 16
SHEET 3	_ OF6
DATE:STAR1	4/14/09
END_	4/16/09
DATUM:	NGVD29
ELEVATION:_	3.8±
TOTAL DEPTI	H: 111'
<i>a</i> . n	
omatic Hamme	r
40.00	

Г

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	ent Project	COUNTY Hude	son		DATUM:	NGV	D29	
MUNIC	CIPALI	TY Ke	earny	LO	CATIO	N Ne	wark JO	C Tpk	N E E ELEVA			ELEVAT	ГІОN: <u>3.8±</u>		
INSPE	ECTOR	S NAM	E/CON	IPANY	N. De	Gross	60/YU &	Associates	, Inc.			TOTAL E	DEPTH:	111'	
DRILL	ERS N	IAME/C	OMPA	NY <u>C</u>	. Deige	rt/JBD				AF 55 A	T)/				
DRILL	ING M		S <u>Mi</u>	Id Rota	ry, NX /	NQ CO	ring			<u>/IE-55 A</u> 3 0'		10matic Ha		A/1A/09	
	KED B	⊏ ∨·D.	Hazuii	∪⊏ an	.РТП. D/	<u>~</u> ATE:	2/20/1	2 WAIER.		0.0'		14:15		4/16/09	
						\ ∟					_ 1101		DATE.		
				<u> </u>					NOT LINCOUNTERED]	
ЕРТН (FT)	AMPLE NO/ E/CORE RUN	.OWS/0.5 FT N SAMPLER	RECOVERY (FT)	RECOVERY(%)	CKET PENT/ RVANE (TSF)	NSCS	PLE MOISTUR		DESCRIPTION				REM	IARKS	
	N H	ВО		RQI	PC TO		SAMI								
		4		100				(cor	ntinued from previous pag	ge).					
	C 11	3	2 0'		PP			Gray-b	prown Silty CLAY, (GLA	CIOLAC	USTRINE				
	3-14	3	2.0		1.25	СН	moist	DEPO	SIT).					_	
42.0		4												_	
														_	
43.0				100											
		Р		100	PP			a 1					Collected	using a	
\mid \mid	U-1	U	2.0'		1.25	СН	moist	Gray-b		and CL	AY & SILT,		Shelby tu	ibe _	
\mid \mid \mid					0.18	011	moloc	(OLAC	NOLACUSTRINE DEFU	511).			U-1: mc=	:34.6%	
45.0				100									PI=15 an	d 32 —	
\vdash $-$		2		100										_	
	S-15	3	2.0'		PP 1 25	СН	moist							_	
		2			1.20									_	
47.0														_	
\vdash \dashv														_	
\vdash \dashv														_	
\vdash \neg														_	
														_	
50.0															
		WН		100											
	S-16	2	2 0'		PP	сц	moint							_	
$\mid - \mid$	2.0	2			1.00		moist							_	
52.0		3												_	
\vdash \dashv														_	
\vdash \dashv														_	
\vdash \dashv														_	
\vdash \dashv														_	
55 0														-	
[WR		100				Gray-b	orown CLAY & SILT, (GI	ACIOL	ACUSTRIN	E		_	
$ \mid \mid$	C 47	wн	2.01		PP			DEPO	SIT).					_	
	5-17	WH	2.0		0.50	CL	moist								
57.0		WH													
Ll															
														_	
$\mid \mid \mid \mid$														_	
$\mid - \mid$														_	
\vdash \dashv								1	ntinued on next and					_	
60.0								(COI	nunueu on next page).						

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO. BW-16
SHEET4 OF6
DATE:START
END 4/16/09
DATUM: NGVD29
ELEVATION: 3.8±
TOTAL DEPTH: 111'
omatic Hammer

ſ

MUNI	UNICIPALITY <u>Kearny</u> LOCATION <u>Newark JC Tpk</u> N. <u>697627.8±</u> E. <u>599578.1±</u> ELEVATION: <u>3.8±</u> ISPECTORS NAME/COMPANY <u>N. DelGrosso/YU & Associates, Inc.</u> TOTAL DEPTH: <u>111'</u> TOTAL DEPTH: <u>111'</u>										
	DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED CME-55 ATV with Automatic Hammer										
CASI	NG SIZ	ETHOD E:	<u>4.0"</u>		EPTH:	2	5.0'	URING DRILLING: TIME:	DATE: 4/14/09		
CHEC	KED B	Y: D.	Mazuji	an	D.	ATE: _	2/20/1	2 END OF DRILLING: 0.0' TIME: 14:15	DATE: <u>4/16/09</u>		
								NOT ENCOUNTERED			
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS		
		WH		100				(continued from previous page).			
62.0	S-18	WH WH WH	2.0'		PP 0.50	CL	moist	Red-brown varved CLAY & SILT, (GLACIOLACUSTRINE DEPOSIT).	-		
L _									_		
									_		
									_		
65.0				100					_		
⊢ –		WH		100					_		
	S-19	WH	2.0'		PP <0.5	CL	moist		_		
67.0		WH							_		
68.0				100							
 70.0	U-2	P U S H	2.0'	100	PP 1.00 TV 0.50	CL	moist	Red-brown varved CLAY & SILT and CLAY, (GLACIOLACUSTRINE DEPOSIT).	Collected using a — Shelby tube — U-2: mc=37.5% LL=33 and 60		
		6		100					PI=13 and 44 —		
<u> </u>	S-20	6	2.0'		PP	CL	moist		_		
720		4			0.50				_		
L' Z.U_									Bentonite		
									introduced at 72' —		
L _									_		
⊢ –									_		
75 0									–		
_' <u>5.0</u> _		WR		100				Brown varved CLAY & SILT, 1/4"± varves,			
	S-21	WH	2 0'		PP		moiot	(GLACIOLACUSTRINE DEPOSIT).			
L	521	WH WH			0.50		moist		_		
77.0_		VV II							Undisturbed -		
78 0									sampling attempted with a piston		
	U-NR/	3 3	2 0'	100	PP	5 41		Red-brown Clayey SILT, occasional fine sand seams, (GLACIOLACUSTRINE DEPOSIT).	sampler, material recovered with SPT_ split spoon: blow		
80.0	S-22	4 10	2.0		0.50	ML	moist	(continued on next page).	counts represent that of disturbed —		

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NOBW- 16								
SHEET5_OF_6								
DATE:START								
END 4/16/09								
DATUM: NGVD29								
ELEVATION: 3.8±								
TOTAL DEPTH: 111'								
tomatic Hammer								

MUNI	CIPALI	TY <u>K</u> e	earny	LO	CATIO	N Ne	wark JO	C Tpk	N. 697	7627.8±	E. 59	9578.1±	ELEVAT	ION:	3.8±
INSPE	ECTOR	S NAM	E/CON	/PANY	N. De	Gross	o/YU 8	Associates,	Inc.				TOTAL DEPTH: 111'		
DRILL															
DRILL	ING M	ETHOD	S M	ud Rota	ry, NX/	NQ Co	ring		EQUIPME	NT USED CN	1E-55 A	TV with Au	tomatic Ha	ammer	
CASI	NG SIZ	E:	4.0"	DE	PTH:	25	5.0'	WATER:	DURING D	RILLING:	3.0'	_ TIME: _	10:00	DATE:	4/14/09
CHEC	KED B	Y: <u>D.</u>	Mazuji	ian	D/	ATE: _	2/20/1	12	END OF D	RILLING:	0.0'	_ TIME: _	14:15	DATE:	4/16/09
									NOT ENCO	DUNTERED					
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE		DE	SCRIPTION				REM	IARKS
								(con	tinued from	previous pag	ne).				
F -								Red-bro	own Clayey	/ SILT, occas	sional fir	ne sand sea	ams,		_
F -								(GLACI	OLACUST	RINE DEPOS	SIT).				_
															_
⊢ –															_
⊢ –								82.5					<u>EI78.7</u>		_
⊢ –															_
⊢ –															_
L _															_
L _															_
85.0															_
		6		25				Red-bro	own Clayey	/ SILT, some	coarse	to fine Sar	nd,		
	6 99	8	0.51					little me	edium to fin	e Gravel, (Gl		TILL).			
Γ Τ	5-23	6	0.5		-	ML	moist								
87.0		11													_
															_
F -															_
															_
⊢ –															_
															_
															_
90.0	6.24	100/01	0.0'	0				No rooo	N/OD/						_
90.2	3-24	100/2		<u> </u>				No leco	Jvery.	n of Dools of	01 fa at				_
91.0				07				91.0'		p of Rock at	91 1001.		El87.2'		_
L _				91 /				Rea-bro		STONE, MOD	erately	weathered,	very		_
L _									neaium si			a fractures,			_
L _									HERED PA	JOSAIC FUR		N).			_
L_															
L	C 1		1 0'												
	0-1		4.0												
┌															
F -				/											_
96 0				43				96 0'					FI -92 2'		-
				100 /				Red-bro	own CLAYS	TONE, sliah	tly to m	oderately	_1. 02.2		_
F -				/				weather	red, very we	eak to mediu	m stron	g, very clos	sely		_
⊢ –				/				to close	ely spaced f	ractures, (CO	OMPETI	ENT PASS	AIC		_
\vdash –								FORMA	ATION).						_
⊢ –															_
⊢ –	C-2		5.0'												_
\vdash –															_
⊢ –				/					tion of t						_
L				V				(con	unuea on ne	ext page).					

	BORING NO. BW-16								
	SHEET6OF6								
	DATE:START								
	END 4/16/09								
	DATUM: NGVD29								
	ELEVATION: 3.8±								
	TOTAL DEPTH: 111'								
t	tomatic Hammer								

PROJ	ECT N		Portal	Bridge	Capaci	ty Enha	anceme	ent Project	t COUNTY <u>Hudson</u> DATUM				NGVD29		
		ΓΥ <u>Γ</u>	E/CON	LO 104.012	CATIO N. D e	N <u>Nev</u> IGross	o/YU 8	Associates	<u>pk N. 697627.8± E. 599578.1±</u> ELEVATION:				<u>3.0±</u> 111'		
DRILL	ERS N	AME/C			. Deige	rt/JBD			,				<u> </u>		
DRILL	ING M	ETHOD	s Mu	ud Rota	ry, NX/	NQ Coi	ring		EQUIPMENT USED C	ME-55 AT	V with Au	Itomatic Ha	Immer		
CASIN	NG SIZ	E:	4.0"	DE	EPTH:	25	5.0'	WATER:	DURING DRILLING:	3.0'	_ TIME: _	10:00	DATE:	4/14/09	
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	D/	ATE: _	2/20/1	12	END OF DRILLING:	0.0'	_ TIME: _	14:15	DATE:	4/16/09	
			1			1	I	1	NOT ENCOUNTERED						
	ξĘ	⊢ ~		(%)	Σû		LRE								
FT)	NO.	.5 F.	Ϋ́	ER/	TS (TS	~	ISTI								
TH (CLE CORI	/S/0	N E	00/~	L N	sco	0W		DESCRIPTION	I			REM	IARKS	
EP.	AMF PE/O	N N N N	ы Ш С Ш С	₩ %	NCK RVF		L L								
	S T	ΞO		Rol	ЧС		MA8								
				\vdash			0)	(coi	ntinued from previous pag	ge).					
101.0				65										_	
				92				Red-br	rown CLAYSTONE, slig	htly to m	oderately				
				/				weathe	erea, weak to medium st	rong, ver	y closely 1	C C		_	
_				/				FORM	ATION).			с I		_	
⊢ −				/					- /					_	
	C-3		4.6'	/										_	
														_	
				/										_	
				/										_	
106.0				62										_	
				97				sligh	tly weathered, medium s	strong, clo	osely to				
L _				/				moder	ately spaced fractures.					_	
L -				/										_	
														_	
	C-4		4.8'	/										_	
				/										_	
				/										_	
				/											
111.0				70				111.0'	Detterre of household		4	El107.2'			
<u> </u>								Notes [.]	Bottom of borenole	atinit	eet.			_	
⊢ −								1. Bori	ng tremie grouted using	2x94-lb k	bags of			_	
								portlan	nd cement, 1/2x50-lb bag	of bento	onite, and	cold		_	
F -								patche	ed with asphalt.					_	
														_	
														_	
$\lfloor]$															
														_	
\mid \mid														_	
														_	
⊢ −														_	
⊢ −														_	
														_	
														_	
														_	
1															

BORING NO.	BW-201
SHEET_1_O	F_ 5
DATE:START _	11/23/09
END	12/2/09
DATUM: NG	VD29
DATUM: NG ELEVATION:	VD29 1.2±
DATUM: <u>NG</u> ELEVATION: TOTAL DEPTH:_	VD29 1.2± 89'

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ity Enha	anceme	ent Project COUNTY Hudson DATUM:	JM: NGVD29		
MUNI	CIPALI	ty Ke	earny	LO	CATIO	N Ce	dar Cre	ek N. <u>696580.0±</u> E. <u>597242.4±</u> ELEVAT	ION: 1.2±		
INSPE	ECTOR	S NAM	E/CON		J. Yu Blain	I/YU & /	Associa	ates, Inc. TOTAL [)EPTH: <u>89'</u>		
DRILL	ERS N	AME/C		NY _W			rina		mor (on barrol float)		
	ING M JG SIZ	ETHOD ≓∙ 4 .	.0"/3.0	<u>ии кога</u> " DF	∎ y, IN∧ / =PTH∙	29.0	/70.0'	WATER: DURING DRILLING: 3.0' TIME: 11:15	DATE 11/23/09		
CHEC	KED B	Y: D.	Mazuji	an	D	ATE:	2/20/1	12 END OF DRILLING: 1.0' TIME: 8:00	DATE: 12/1/09		
				<u>@</u> /			щ				
	SUN	F R	~	<u>حر(</u>	SF)		I UR				
(FI	N N N	0.5 I IPLE	ÊR,		E PE	S	OIS.				
TH		WS/ SAN	ΝSE		ANI	nsc	Ш	DESCRIPTION	REMARKS		
DEI	SAN PE	SN()	Ř		OR/OC		JPL				
	F	ш с			ΔĔ		SAN				
0.0		WR		25				Black Organic Clayey SILT, frequent fibers,	PID = 0.0 ppm		
	0.4	WR	0.51					(ORGANIC DEPOSIT).			
	3-1	WR	0.5		-	OL	moist				
2.0		WR									
		WR		35					PID = 0.0 ppm		
	S-2	WR	0.7'		_	0	moiot				
	02	WR	0.1			UL	moisi				
4.0		WR		25							
L _		WR		25					PID = 0.0 ppm		
	S-3	WR	0.5'		-	OL	moist				
		WR							—		
6.0				0							
		WR						No recovery.			
	S-4	WR	0.0'		-						
		WR									
0.0		\//P		25				Dark brown PEAT, (ORGANIC DEPOSIT).	PID = 0.0 ppm		
		WR							Advanced 4" casing		
	S-5	WR	0.5'		-	PT	wet		to 8' —		
10.0		WR							_		
		Р		0				No recovery.	PID = 0.0 ppm		
	U-1/	U	0.0'					11.0'EI9.9'	Undisturbed		
	U-NR	S	0.0		-				with a Shelby tube		
12.0		H		25					-		
		2		20				Brown fine SAND, little Silt, occasional roots,	PID = 0.0 ppm		
	S-6	1	0.5'		-	SM	wet		Advanced 4" cosize		
		1							to 13'		
14.0		-		75				coarse(+) to medium little fine Gravel trace Silt			
		3									
	S-7	/ 12	1.5'		-	SP-SM	wet				
		14									
- 10.0		8		50					PID = 0.0 ppm		
		9							–		
-	S-8	15	1.0'		-	SP-SM	wet				
18.0		17									
		8		50					PID = 0.0 ppm		
	<u> </u>	8	1.01						Advanced 4" casing		
	5-9	8	1.0		-	SP-SM	wet		to 18' —		
20.0		7						(continued on next page).			

BORING NO.	BW-201
SHEET 2 OF	= 5
DATE:START	11/23/09
END1	2/2/09
DATUM: NG	VD29
ELEVATION:	1.2±
TOTAL DEPTH:	89'

Г

PROJECT NAME Portal Bridge Capacity Enhancement Project								ent Project COUNTY Hudson DATUM:	JM:NGVD29		
MUNI	CIPALI	TY <u>Ke</u>	earny	LO	CATIO	N <u>Ce</u>	dar Cre	N. <u>696580.0±</u> E. <u>597242.4±</u> ELEVAT	FION: <u>1.2±</u>		
				/IPANY	J. TU Bleiw	// 10 & / /as/.IBD	ASSOCI	ates, inc. TOTAL L	DEPTH: 89		
	ING M		S MI	ud Rota	rv. NX/	NQ Co	rina	EQUIPMENT USED Acker Skid Rig with Donut Han	nmer (on barrel float)		
CASI	NG SIZ	E: <u>4</u>	.0"/3.0	<u></u> DE	EPTH:	29.0	/70.0'	WATER: DURING DRILLING: TIME:	DATE: 11/23/09		
CHEC	KED B	Y: D.	Mazuji	an	D.	ATE: _	2/20/1	12 END OF DRILLING: <u>1.0'</u> TIME: <u>8:00</u>	DATE: 12/1/09		
		Г и		۲۲(%)	NT/ SF)		URE				
DEPTH (F1	SAMPLE NC TYPE/CORE F	BLOWS/0.5 I ON SAMPLE	RECOVER' (FT)	ROD (%)	POCKET PEN TORVANE (T	nscs	SAMPLE MOIS	DESCRIPTION	REMARKS		
		0		65				(continued from previous page).	PID = 0.0 ppm		
		9						Brown coarse(+) to medium SAND, some fine Gravel.			
	S-10	9	1.3'		-	SP-SM	wet	trace Silt, (ALLUVIUM).	_		
		8							_		
<u></u>									-		
F -									-		
									_		
									_		
									_		
25.0											
		13		50				gray-brown fine, some Silt.	_		
	0 11	24	1.01								
	3-11	30	1.0		-	SM	wet				
27.0		35									
L _											
L_											
									_		
									–		
L _									Advanced 4" casing		
30.0				65							
<u> </u>		17		05				Gray-brown Clayey SILT, trace fine Sand,	_		
	S-12	15	1.3'		PP	м	moist		_		
		15			1.50				_		
32.0									-		
⊢ −									-		
⊢ −									-		
<u>⊢</u> –								<u> </u>			
									-		
35.0									-		
-00.0		8		75				Gray-brown CLAY & SILT varved with Silt, trace(-) fine	-		
		8			PP			Sand, alternating 1/8"± to 1/4"± clay & silt, 1/16"± silt,	-		
F -	S-13	13	1.5'		1.00	CL	moist	(GLACIOLACUSTRINE DEPOSIT).			
37.0		12									
[
38.0									Undisturbed sample		
Ľ		Р		100					Shelby tube		
	11.2	υ	2 0'		ΤV				U-2: mc = 29%,		
	0-2	S	2.0		0.65	CL	moist		LL = 35, PI = 15,		
40.0		H						(continued on next page).	00.1 /0 - π200		

BORING NO. BW-201	
SHEET_3_OF_5	
DATE:START 11/23/09	
END 12/2/09	
DATUM: NGVD29	
ELEVATION: 1.2±	
TOTAL DEPTH: 89'	

Г

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	ent Project	COUNTY Hud	lson		DATUM:	NGV	D29	
MUNI	CIPALI	TY K	earny	LO	CATIO	N Ce	dar Cre	ek	– N. <u>696580.0±</u> E. <u>597242.4±</u> ELEVA				TION: 1.2±		
INSPE	CTOR	S NAM	E/CON	IPANY	J. Yu	/YU & /	Associa	ates, Inc.				TOTAL	DEPTH:	89'	
DRILL	ERS N	IAME/C	OMPA	NY M	. Blejw	as/JBD)								
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ Col	ring	E		Cker Ski	d Rig with	Donut Han	nmer (on b	arrel float)	
CASI		E: <u>4</u> .	. <u>U /3.U</u> Mazuii	DE	PIH:	<u>29.0</u>	2/20/1	_ WAIER: D		3.0		11:15 8:00	DATE:	12/1/09	
CHEC	KED B	Y: <u>D.</u>	iviazuji	an	D/	AIE: _	2/20/		ND OF DRILLING: _			0.00	DATE:	12/1/05	
								N	OT ENCOUNTERED						
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE		DESCRIPTIO	N			REM	IARKS	
L_		13		100				(contir	nued from previous pa	age).				_	
42.0	S-14	12 14 13	2.0'		PP 1.25	CL	moist	Gray-brov 1/8"± to 1 (GLACIO	wn CLAY & SILT van /4"± clay & silt, 1/16' LACUSTRINE DEPC	ved with "± silt, DSIT).	Silt, alterna	ating		_	
								1							
														_	
45.0															
L _		5		75											
L_	S-15	6	1.5'		PP	~								_	
L_	0-10	11	1.5		1.00	CL	moist							_	
47.0		10												_	
														_	
48.0				100										–	
L _		Р		100				Gray-brov	WN CLAY & SILT van	ved with	Silt,		Collected	using a	
L _	U-3	U	2.0'		-	CI	moist	(GLACIO	LACUSTRINE DEFC	5511).			Shelby tu	ibe _	
														_	
50.0				100				Gray bray		und with		ting		_	
		8						1/4"+ to 3	WITCLAT & SILT Van 8/4"+ clav & silt 1/16'	vea with "+ silt	Siit, aitema	aung		_	
	S-16	10	2.0'		PP 0.75	СН	moist	(GLACIO	LACUSTRINE DEPC	DSIT).				_	
		15			0.75				-	,				_	
L92.0_														_	
⊢ −														_	
<u>⊢</u> –														_	
F -														_	
F -														_	
55 0														-	
		12		100				alternat	ting 1/8"± to 1/4"± cla	ay & silt, ⁻	1/16"± silt.			_	
	0.4-	6	0.01		PP									_	
	5-17	8	2.0		0.75	CL	moist							_	
57.0		9													
								58.5'				<u>El57.4'</u>			
L_														_	
L_														_	
60.0								(contir	nued on next page).						

BORING NO.	BW-201							
SHEET4O	F_5							
DATE:START	11/23/09							
END	12/2/09							
DATUM: NG	VD29							
ELEVATION:	1.2±							
TOTAL DEPTH:_	89'							
Oonut Hammer (on barrel float)								

٢

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson DATUM: NGVD29 MUNICIPALITY Kearny LOCATION Cedar Creek N. 696580.0± E. 597242.4± ELEVATION: 1.2± INSPECTORS NAME/COMPANY J. Yu/YU & Associates, Inc. TOTAL DEPTH: 89'												
DRILL	ERS N	IAME/C	OMPA	NY M	. Blejw	as/JBD						
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX/	NQ Co	ing	EQUIPMENT USED Acker Skid Rig with Donut Ham	mer (on barrel float)			
CASIN	NG SIZ	E: <u>4</u>	.0"/3.0 Mozuii	" DE	EPTH:	29.0	/70.0' 2/20//	WATER: DURING DRILLING: <u>3.0'</u> TIME: <u>11:15</u>	DATE: <u>11/23/09</u>			
CHEC	KED B	Y: <u>D.</u>	wazuji	an	D/	AIE: _	2/20/	END OF DRILLING: <u>1.0</u> TIME: <u>6:00</u>	DATE: 12/1/09			
			1									
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS			
		34		10				(continued from previous page).				
	S-18	43	0.2'		-	80	wot	Red-brown coarse to medium SAND, some Clay &				
	0.10	26	0.2			30	wei	Slit, trace fine Gravel, (GLACIAL TILL).	_			
62.0 		29		0				No recovery.	Rotary bit refusal at 62'			
									Core barrel iammed			
	C-NR		0.0'		-				at 65' –			
									—			
65.0									_			
		12		10				Red-brown coarse to medium SAND, some Clay &	_			
	0.40	15	0.01					Silt, little fine Gravel, (GLACIAL TILL).	_			
	5-19	16	0.2		-	SC	wet					
67.0		20										
									_			
									_			
									_			
L _									_			
									_			
70.0		17		13					Advanced 3" casing			
	0.00	31	0.01						to 70'			
	5-20	40	0.2		-	SC	wet		_			
71.6		50/1"/							_			
									—			
73 0								73.0' Top of Rock at 73.0 feet. FI -71.9'	-			
				36				Red-brown MUDSTONE, highly weathered,	Rotary bit refusal at			
				/				(DECOMPOSED ROCK).	/3			
				/								
				/								
	C-1		1.8'	/					_			
	U 1			/					_			
				/					_			
				/					_			
				/ _					_			
78.0									_			
								<u>/′8.5′El77.4′</u>	_			
L19.0				50 /					-			
								(continued on next page).	-			

BORING NO. BW-201							
SHEET_5_OF_5							
DATE:START 11/23/09							
END 12/2/09							
DATUM: NGVD29							
ELEVATION: 1.2±							
TOTAL DEPTH: 89'							
Donut Hammer (on barrel float)							

MUNICIPALITY Kearny LOCATION Cedar Creek N. 696580.0± E. 597242.4± ELEVATION: 1.2± INSPECTORS NAME/COMPANY J. YUYU & Associates, Inc. D TOTAL DEPTH: 89' DRILLERS NAME/COMPANY M. Biejwas/JBD EQUIPMENT USED Acker Skid Rig with Donut Hammer (on barrel float) CASING SIZE: 4.0"/3.0" DEPTH: 29.0'/70.0' WATER: DURING DRILLING: 3.0' TIME: 11:15 DATE: 11/23/09 CHECKED BY: D. Mazujian DATE: 2/20/12 END OF DRILLING: 1.0' TIME: 8:00 DATE: 12/1/09 NOT ENCOUNTERED (continued from previous page). REMARKS S
INSPECTORS NAME/COMPANY J. YUYU & Associates, Inc. DRILLERS NAME/COMPANY M. Blejwas/JBD DRILLING METHODS Mud Rotary, NX/NQ Coring CASING SIZE: 4.0''3.0" DEPTH: 29.0'70.0' WATER: DL Mazujian DATE: 2/20/12 END OF DRILLING: 3.0' TIME: 11:15 DATE: 11/23/09 NOT ENCOUNTERED UNING DRILLING: 1.0' TIME: 8:00 DATE: 12/1/09 NOT ENCOUNTERED CHECKED BY: D. Mazujian DATE: 2/20/12 END OF DRILLING: 1.0' TIME: 8:00 DATE: 12/1/09 NOT ENCOUNTERED CHECKED BY: D. Mazujian DATE: 2/20/12 END OF DRILLING: 1.0' TIME: 8:00 DATE: 12/1/09 NOT ENCOUNTERED CHECKED BY: D. Mazujian DATE: 2/20/12 END OF DRILLING: 1.0' TIME: 8:00 DATE: 12/1/09 NOT ENCOUNTERED CHECKED BY: D. Mazujian DATE: 2/20/12 END OF DRILLING: 1.0' TIME: 8:00 DATE: 12/1/09 NOT ENCOUNTERED CHECKED BY: D. Mazujian BORD BY BY BORD BY BY BORD BY BY BORD BY BY BY BORD BY
DRILLERS NAME/COMPANY M. BlejwasJBD
DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED Acker Skid Rig with Donut Hammer (on barrel float) CASING SIZE: 4.0"/3.0" DEPTH: 29.0/70.0' WATER: CHECKED BY: D. Mazujian DATE: 2/20/12 END OF DRILLING: 3.0' TIME: 11:15 DATE: 11/23/09 NOT ENCOUNTERED Image: State Sta
CASING SIZE: 4.0'7.0.0'' DEPTH: 29.0/70.0'' WATER: DURING DRILLING: 3.0'' TIME: 11125 DATE: 1112309 CHECKED BY: D. Mazujian DATE: 2/20/12 END OF DRILLING: 1.0'' TIME: 8:00 DATE: 12/1/09 NOT ENCOUNTERED [] Image: Sign of
Image: Second
NOT ENCOUNTERED Image: Section of the section of t
Image: Large state stat
Image: Large of the second
HLAB Image: Comparison of the second sec
Image: Second Participation of the second Participation
Image:
Image: Problem Image
- -
- - C-2 2.5' Red-brown MUDSTONE, highly to moderately weathered, weak to medium strong, extremely closely to closely spaced fractures, (WEATHERED PASSAIC FORMATION). - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- C-2 2.5' // weathered, weak to medium strong, extremely closely to closely spaced fractures, (WEATHERED PASSAIC FORMATION). - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< td=""></td<>
- -
- - - - - - - - -
84.0 7 84.0' EI82.9' 94 Red-brown MUDSTONE, moderately to slightly
84.0 7 84.0' El82.9' 94 94 Red-brown MUDSTONE, moderately to slightly
94 Red-brown MUDSTONE, moderately to slightly
weathered, medium strong to strong, very closely to
89.0 EI87.9
Bottom of borehole at 89 feet.
Notes:
nortland cement 1/2/50-lb bag bentonite notable
water.
2. Undisturbed sample moisture contents noted in the
Remarks" reflect an average of all moisture contents
determined for the sample.

BORING NO.	BW-202						
SHEET_1_O	F_3						
DATE:START	11/20/09						
END1	1/20/09						
DATUM: NG	VD29						
ELEVATION:	1.0±						
TOTAL DEPTH:_	42'						
onut Hammer (on barrel float)							

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PROJ	ECT N	AME _	Portal	Bridge	Capac	ity Enha	ancem	ent Project COUNTY Hudson DATUM:	NGVD29
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			TY <u>Ke</u>				N <u>Ceo</u> /YII&/	dar Cre Associ	eekN. <u>696669.1±</u> E. <u>597451.3±</u> ELEVAT	ION: 1.0±
DULUMES METHODS Mult Rotary, MXMC Coring CULUMENT USED Acker Skill Rig with Dout Hammer (on Earrel find) CHECKED BY: 40° DETH: 290° CHECKED BY: 10° DATE: 220/12 CHECKED BY: 10° DATE: 220/12 EQUIPMENT USED Acker Skill Rig with Dout Hammer (on Earrel find): ONT ENCOUNTERED DATE: 220/12 END OF DRILLING: -0.8° THE: DATE: DA	DRILI	FRSN	AME/C		NY N	I. Blejv	as/JBD	100001		
CASING SIZE: 4.0" DEPTH: 22.0" WATER: DURIND RILLING: TIME: DATE: CHECKED BY: D.Mazujian DATE: 202012 NOT ENCOUNTERED D DATE:	DRILL	ING M	ETHOD	S_M	ud Rota	ary, NX	NQ Cor	ring	EQUIPMENT USED Acker Skid Rig with Donut Ham	mer (on barrel float)
CHECKED BY: D. Mazulian DATE: 22012 END OF DRILLING: 4.8 TIME: DATE: DATE: 1 NOT ENCOUNTERED D NOT ENCOUNTERED DESCRIPTION REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS REMARKS PID = 0.0 ppm Depth to multime uses S-2 WR S-2 WR S-3 WR 0.5 S-4 WR 0.5 S-5 S-6 S-7 OL WR S-6 S-7 OL WR S-7 OL WR S-6 S-7 OL WR S-6 S-7 OL WR S-7 OL WR S-7 OL WR S-7 OL WR S-7 OL WR S-7 OL WR S-8 S-7 S-7 OL WR S-7 S-7 OL WR S-6 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S-7 S	CASI	NG SIZ	E:	4.0"	DE	EPTH:	29	.0'	_ WATER: DURING DRILLING: TIME:	DATE:
Image: Construction of the stand structure in the stand structure is the structure is the structure in the stand structure is the structure	CHEC	KED B	Y: D.	Mazuji	an	D	ATE: _	2/20/	12 END OF DRILLING: TIME:	DATE:
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									NOT ENCOUNTERED	
10.0 S. WR WR 0.5' - OL WR Muthod WR 0.5' - OL WR Dark brown PEAT, (ORGANIC DEPOSIT). PID = 0.0 ppm 6.0 WR WR 0.3' - PT wet Dark brown PEAT, (ORGANIC DEPOSIT). PID = 0.0 ppm 8.0 H - ST 5' - PT wet - Gray-brown fine SAND, some(+) Sitt. (ALLUVUM). PID = 0.0 ppm 10.0 - St 5' - SP-SM wet - - - St - - SP-SM wet - - - - - - - - -	DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0		WR		25				Black Organic CLAY & SILT, occasional fibers,	PID = 0.0 ppm
$ \begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$		S-1	WR WR WR	0.5'		-	OL	wet	(ORGANIC DEPOSIT).	Depth to mud line was about 0.8'
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L_		WR		25					PID = 0.0 ppm
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$		S-2	WR WR WR	0.5'		-	OL	wet		_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L_		WR		15				Dark brown PEAT, (ORGANIC DEPOSIT).	PID = 0.0 ppm
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6.0	S-3	WR WR WR	0.3'		-	PT	wet		Advanced 4" casing in very soft soil to 6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Р		50					PID = 0.0 ppm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80	U-1	U S H	1.0'		-	PT	wet	8 0' EL -7 0'	Undisturbed sample collected using a — Shelby tube — U-1: mc = 229.1%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		50				Gray-brown fine SAND, some(+) Silt, (ALLUVIUM).	PID = 0.0 ppm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S-4	1 2 4	1.0'		-	SM	wet		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F10.0_		3		50				Gray-brown medium to fine SAND, trace Silt,	PID = 0.0 ppm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S-5	5 6 9	1.0'		-	SP-SM	wet	(ALLUVIUM).	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	' <u>~</u>		4		85				coarse to fine Sand, little(+) fine Gravel.	PID = 0.0 ppm
$\begin{bmatrix} & & 14 & & 50 \\ 13 & 1.0' & & - & SP-SM & wet \\ 16.0 & & 15 & & & & \\ 16.0 & & 15 & & & & \\ 18.0 & & 6 & & & & \\ 18.0 & & 6 & & & & \\ 18.0 & & 6 & & & & \\ 18.0 & & 6 & & & & \\ 18.0 & & 6 & & & & \\ 18.0 & & & 6 & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & & & \\ 18.0 & & & \\ 18.0 & & & \\ 18.0 & & & \\ 18.0 & & & \\ 18.0 & & & \\ 18.0 & & & \\ 18.0 & & & \\ 18$		S-6	7 20 18	1.7'		-	SP-SM	wet		Advanced 4" casing to 14'
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			14		50					PID = 0.0 ppm
$\begin{bmatrix} & 8 & 50 & & & & & & & & & & & & & & & & & $	16.0	S-7	13 16 15	1.0'		-	SP-SM	wet		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L		8		50				coarse to fine.	PID = 0.0 ppm
$\begin{bmatrix} 18.0 & 6 & 1.0 & 5P-SW & wet \\ 18.0 & 6 & & & & \\ - & - & 8-9 & 8 & 0.5' & - & SP-SM & wet \\ - & - & 8-9 & 8 & 0.5' & - & SP-SM & wet \\ - & - & - & - & - & - & SP-SM & wet \\ - & - & - & - & - & - & - & - & - & -$		S-8	5	1 0'		_				_
$\begin{bmatrix} 18.0 & 6 & & & \\ - & 8 & 25 & & \\ - & S-9 & 9 & 0.5' & - & SP-SM \text{ wet} \end{bmatrix}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0-0	6	1.0		-	37-3M	wet		_
$\begin{bmatrix} - & - \\ - $	18.0		6		25				4	
- - S-9 8 0.5' - SP-SM wet - 10 10 - SP-SM wet -			4		20					PID = 0.0 ppm
		S-9	8 9 10	0.5'		-	SP-SM	wet	(continued on next page).	

BORING NO	BW-202						
SHEET_2	OF <u>3</u>						
DATE:START	11/20/09						
END	11/20/09						
DATUM:	IGVD29						
ELEVATION:	1.0±						
TOTAL DEPTH	l: 42'						
onut Hammer (on barrel float)							

PROJECT NAME Portal Bridge Capacity Enhancement Project								ent Project COUNTY Hudson DATUM:	NGVD29
INSPE	ECTOR	S NAM	E/CON		<u>J. Υι</u>	I/YU & A	Associa	ates, Inc. TOTAL	DEPTH: 42'
DRILL	ERS N	AME/C	OMPA	NY M	. Blejw	as/JBD			
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX	NQ Cor	ing	EQUIPMENT USED Acker Skid Rig with Donut Han	mer (on barrel float)
CASIN		E:	4.0" Mazuii	DE an	EPTH:	<u>29</u>	2/20/1		
CHEC	KED B	Y: <u>D.</u>	wazuji		D	AIE: _	2/20/		. DATE:
			1						
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS
L _		7		50				(continued from previous page).	Advanced 4" casing
	S-10	9 10 11	1.0'		-	SP-SM	wet	Gray-brown coarse to fine SAND, little fine Gravel, trace Silt, (ALLUVIUM).	PID = 0.0 ppm
22.0									-
									-
									-
									_
									_
25.0									
		5		75				medium to fine.	
	S_11	6	1.5'		_				
	0-11	7	1.5		_	5P-5M	wet		_
27.0		9							_
L _									_
<u> </u>									
								<u>28.5' El27.5'</u>	
									-
30.0									_
30.0		10		75				Gray-brown CLAY & SILT varved with Silt, alternating	Advanced 4" casing
		5			PP			1/8"± to 1/4"± clay & silt, 1/16"± silt,	to 29'
	S-12	8	1.5'		1.00	CL	moist	(GLACIOLACUSTRINE DEPOSIT).	
32.0		8							
⊢ −									_
									_
35.0		0		75					-
\vdash –		0 7			PD				
	S-13	8	1.5'		1.25	CL	moist		
37.0		8							
38.0									Undisturbed sample
Ĺĺ		Р		75				Gray-brown CLAY & SILT varved with Silt,	Shelby tube
	U-2	U	1.5'		TV		moist	(GLACIOLACUSTRINE DEPOSIT).	U-2: mc = 29.0%,
	52	S			0.40		110150		LL = 30, PI = 18, 99.4% < #200 —
40.0		н						(continued on next page).	

BORING NO. BW-202								
SHEET3OF3								
DATE:START 11/20/09								
END 11/20/09								
DATUM: NGVD29								
ELEVATION: 1.0±								
TOTAL DEPTH: 42'								
onut Hammer (on barrel float)								

PROJECT NAME Portal Bridge Capacity Enhancement Project							anceme	ent Project COUNTY Hudson DATUM	1: NGVD29
MUNI	CIPALI	TY <u>K</u> e	arny	LO	CATIO	N <u>Ce</u>	dar Cre	ek N. <u>696669.1±</u> E. <u>597451.3±</u> ELEVA	TION: 1.0±
INSPE	ECTOR	S NAM	E/CON	IPANY	J. Yu	/YU & /	Associa	ates, Inc. TOTAL	DEPTH: 42'
DRILL	ERS N	IAME/C	OMPA	NY <u>M</u>	. Blejw	as/JBD			
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX/	NQ Co	ring	EQUIPMENT USED Acker Skid Rig with Donut Ha	mmer (on barrel float)
CASI	NG SIZ	E:	4.0"	DE	EPTH:	2).0'		DATE:
CHEC	KED B	Y: <u>D.</u>	wazuji	an	D.	ATE: _	2/20/1	IZEND OF DRILLING: TIME:	_ DATE:
								NOT ENCOUNTERED	
	z			(%)			RE		
F	DD/ DD	ER 1	≿	۲. ۲	TSF		STU		
L H	Ц Ц Ц Ц Ц Ц Ц Ц Ц	3.0.5 MPI	Ξ.		T PI	S	Į į		DEMADKS
LL	MPL	SAI	С Ш	(%)	VAN	ns	<u> </u>	DESCRIPTION	NLIMANNO
	SAI	ON	R		OC OC		MPL		
	Г Г			/ X	чн		SAI		
		6		70				(continued from previous page).	
		8			PP			Gray-brown CLAY & SILT varved with Silt, alternating	
	S-14	8	1.4'		1.00	CL	moist	1/8"± to 1/4"± clay & silt, 1/16"± silt,	
42 0		7						42 0' (GLACIOLACUSTRINE DEPOSIT).	יין —
								Bottom of borehole at 42 feet.	<u>,</u>
F -								Notes:	
<u>⊢</u> −								1. Boring tremie grouted using 2x94-lb bags of	
F -								portland cement, 1/2x50-lb bag of bentonite and	-
<u>⊢</u> –								potable water.	-
<u>⊢</u> –								2. Undisturbed sample moisture contents noted in	-
								"Remarks" reflect an average of all moisture contents	-
								determined for the sample.	-
									_
									_
<u>⊢</u> –									_
									_
<u>⊢</u> –									_
⊢ –									_
									_
									_
									_
									_
L _									_
									_
⊢ –									
⊢ –									
⊢ –									
L _									
L _									
\vdash –									
L _									
L _									
L_									
L_									
L_									
L									
									7

	BORING NO. BW-203								
	SHEET_1_OF_4								
	DATE:START 11/12/09								
	END 11/19/09								
	DATUM: NGVD29								
	ELEVATION: -0.1±								
_	TOTAL DEPTH: 73'								
C	Donut Hammer (on barrel float)								

PROJ	ROJECT NAME _Portal Bridge Capacity Enhancement Project COUNTY _Hudson DATUM: NGVD29									
MUNI	CIPALI	ty <u>K</u> e	earny	LO	CATIO	N Cec	dar Cre	ek N. <u>696849.8±</u> E. <u>597823.4±</u> ELEVAT	ION: -0.1±	
INSPE	ECTOR	S NAM	E/CON	1PANY	<u>S. Ca</u>	alabretta	a / J. Y	u/YU & Associates, Inc.)EPTH: 73'	
DRILL	ERS N	IAME/C	OMPA	NY M	. Biejw	as/JBD			mor (on horred floot)	
DRILL	ING M		S <u>IVIL</u>		ITY, NX/	NQ COP	<u>וחק ווק</u> יח			
CASI		E:	4.0 Mazuii	Dt an	:PIH:	<u> </u>	2/20/*	_ WATER: DURING DRILLING: TIME:		
UNEU		T D.	mazaji	un	D.	AIE	2/20/		DATE	
			1							
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS	
0.0		WН		15				Black Organic SILT, (ORGANIC DEPOSIT).	Depth to mudline	
2.0	S-1	WH WH WH	0.3'		-	OL	wet		PID = 0.0 ppm	
		12		25				occasional wood fragments.	PID = 0.0 ppm	
	S-2	3	0.5'		-	OL	wet		-	
^{4.0}				40						
 	S-3	7 10 12	0.8'		-	SP	wet	blown nine SAND, trace nine Gravel, (ALLOVION).	Advanced 4" casing to 4'	
6.0		10		50						
 	S-4	10 8 10 12	1.0'	50	-	SP	wet	coarse to fine.	PID = 0.0 ppm	
0.0 	S-5	10 11 11 13	1.2'	60	-	SP	wet	medium to fine.	PID = 0.0 ppm	
 12.0	S-6	6 10 15 17	1.5'	75	-	SP	wet	coarse to fine.	PID = 0.0 ppm	
	S-7	22 22 26 22	1.7'	85	-	SP	wet		PID = 0.0 ppm	
 	S-8	16 17 18 18	1.0'	50	-	SP-SM	wet	medium to fine, trace Silt.	PID = 0.0 ppm Advanced 4" casing to 14'	
 	S-9	18 17 14 15	1.3'	65	-	SP	wet	coarse to fine.	PID = 0.0 ppm	
	S-10	10 7 4 10	1.5'	75	-	SP	wet	(continued on next page).	PID = 0.0 ppm	

ENGINEERS FIELD BORING L	OG	BORING NO. <u>BW-203</u> SHEET <u>2</u> OF <u>4</u> DATE:START <u>11/12/09</u> END <u>11/19/09</u>
PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson		DATUM: NGVD29
MUNICIPALITY Kearny LOCATION Cedar Creek N. 696849.8± E.	597823.4±	ELEVATION: -0.1±
INSPECTORS NAME/COMPANY S. Calabretta / J. Yu/YU & Associates, Inc.		TOTAL DEPTH: 73'
DRILLERS NAME/COMPANY M. Blejwas/JBD		
DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED Acker	Skid Rig with D	onut Hammer (on barrel float)
CASING SIZE: 4.0" DEPTH: 34.0' WATER: DURING DRILLING:	TIME:	DATE:

ſ

DRILL	ERS N	AME/C	OMPA	NY <u>M</u>	. Blejw	as/JBD)				
DRILL	DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED Acker Skid Rig with Donut Hammer (on barrel float)										
CASI		E:	<u>4.0"</u> Mazuii	DE	EPTH:	34	4.0° 2/20//				
CHEC	KED B	Y: <u>D.</u>	iviazuji	an	D	AIE: _	2/20/		_ DATE:		
			1								
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS		
L _		9		85				(continued from previous page).	PID = 0.0 ppm		
 22.0	S-11	9 15 17	1.7'		PP 1.00	ML	wet	Gray-brown Clayey SILT, trace(-) fine Sand, (ALLUVIUM).			
L _									_		
									to 24'		
25.0		4 -		75					_		
⊢ –		15		-					_		
	S-12	12	1.5'		1.00	ML	wet		_		
27.0		17							_		
[_											
L _								<u>28.5' El28.6</u>			
⊢ –									_		
									_		
30.0				85				Grav-brown CLAY & SILT varved with Silt, alternating	_		
<u>⊢</u> –		9			DD			1/8"± to 1/4"± clay & silt, 1/16"± silt,	_		
	S-13	9	1.7'		1.00	CL	moist	(GLACIOLACUSTRINE DEPOSIT).	_		
32.0		11									
[_											
33.0				0							
⊢ –		Р		0				NO RECOVERY.	sampling attempted		
	U-NR	U S H	0.0'		-	CL	wet		with a Shelby tube — Advanced 4" casing to 34'		
00.0		6		100				Gray-brown CLAY & SILT varved with Silt, alternating	-		
F -		8	0.01		PP			1/8"± to 1/4"± clay & silt, 1/16"± silt,			
	S-14	9	2.0		0.75	CL	moist	(GLACIOLACUSTRINE DEPOSIT).			
37.0		11									
L _											
38.0_				85				Grow brown CLAV & CHIT vanied with Cite little/1)	collected using a		
⊢ –		P						medium to fine Gravel, trace coarse to fine Sand.	Shelby tube		
⊢ −	U-1A	s s	1.7'		0.55	CL	moist	(GLACIOLACUSTRINE DEPOSIT).	LL = 39, PI = 17,		
40.0		H			-			(continued on next page).	78.3% < #200 —		

	BORING NO. BW-203
	SHEET3OF4
	DATE:START 11/12/09
	END 11/19/09
_	DATUM: NGVD29
	ELEVATION: -0.1±
	TOTAL DEPTH: 73'
C	Oonut Hammer (on barrel float)

Г

PROJ	ECT N		Portal	Bridge	Capaci	ty Enh	anceme	ent Project COUNTY Hudson DATUM	NGVD29
MUNICIPALITY <u>Reality</u> LOCATION <u>Cedar Creek</u>								N. <u>696849.8±</u> E. <u>597823.4±</u> ELEVAI	ION: -0.1± 73'
	FRSN	S NAM		MY M	Bleiw	as/JBD)		
			s Mu	ud Rota	rv. NX/	NQ Co	rina	FOUIPMENT USED Acker Skid Rig with Donut Har	nmer (on barrel float)
CASI	NG SIZ	E:	4.0"	DE	EPTH:	34	4.0'	WATER: DURING DRILLING: TIME:	DATE:
CHEC	DATE:								
				<u>@</u> /	1		щ		
H (FT)	E NO/ RE RUN	:/0.5 FT APLER	VERY T)	DVERY(r pent/ Je (TSF)	cs	IOISTUR		
DEPTI	SAMPI TYPE/CC	BLOWS ON SAI	RECO (F	RQD (%)	POCKE TORVAN	SN	SAMPLE N	DESCRIPTION	REWARKS
L _		6		100				(continued from previous page).	
L_	S_15	6	2 0'		PP	~		Gray-brown CLAY & SILT varved with Silt, alternating	
	0-10	7	2.0		1.00		moist	$1/8"\pm$ to $1/4"\pm$ clay & silt, $1/16"\pm$ silt,	
42.0		9						(GLACIOLACUSTRINE DEPOSIT).	
45.0									
		8		100				red-brown.	
	o 10	6			PP				
	S-16	8	2.0'		1.25	CL	moist		
47 0		9							
50 0									
		7		100				Red-brown Silty CLAY varved with Silt, alternating 1/4"	
		8						to 3/4"± silty clay, 1/16"± silt, (GLACIOLACUSTRINE	
	S-17	11	2.0'		1.00	CL	moist	DEPOSIT).	
		9							-
L02.0									
200.0				85				Red-brown Silty CLAY varved with Silt.	Undisturbed sample
<u>⊢</u> –					T 1			(GLACIOLACUSTRINE DEPOSIT).	collected using a
<u>⊢</u> –	U-2	S	1.7'		0.40	CL	moist		Shelby tube
		н							-
20.02				100				alternating 1/4" to 3/4"+ silty clay_1/16"+ silt	
⊢ −		0							
⊢ −	S-18	11	2.0'		PP 1 25	CL	moist		-
H		¹⁴ 1⊿			1.20				
<u> </u> 57.0_									
⊢ –									
⊢ –									
⊢ –								<u>58.5' El58.6</u>	
⊢ –									
⊢ –								(continued on prost or a set)	
60.0								(continuea on next page).	

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

	BORING NO. BW-203
	SHEET4 OF4
	DATE:START
	END 11/19/09
	DATUM: NGVD29
	ELEVATION: -0.1±
	TOTAL DEPTH: 73'
-	

MUNI	CIPALI	TY <u>Ke</u>	arny	LO	CATIO	N Cec	lar Cre	ek N. <u>696849.8±</u> E. <u>597823.4±</u> ELEVAT	ION: -0.1±		
INSPECTORS NAME/COMPANY S. Calabretta / J. Yu/YU & Associates, Inc.											
DRILL	DRILLERS NAME/COMPANY M. BIejwas/JBD										
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX/	NQ Cor	ing	EQUIPMENT USED Acker Skid Rig with Donut Han	mer (on barrel float)		
CASIN	IG SIZI	E:	4.0" Monuii	DE	EPTH:	34	.0'	_ WATER: DURING DRILLING: TIME:			
CHECKED BY: DATE: END OF DRILLING: TIME:											
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%) ROD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS		
60.1	<u>S-19</u>	\ <u>50/1"</u> /	0.1'	100 j	/	GC	wet	(continued from previous page).			
								Red-brown fine GRAVEL, some(-) coarse to medium			
								Sand, some Clay & Silt, (DECOMPOSED ROCK).			
F -									_		
									_		
									_		
									_		
									_		
65.0								F O' Top of Rock at 65.0 feet.	_		
03.0				50 /				Red-brown MUDSTONE, highly weathered, weak,	Rotary bit refusal at		
				/				extremely closely to closely spaced fractures,	65' —		
								(WEATHERED PASSAIC FORMATION).	_		
									_		
									_		
	C-1		2.5'						_		
									_		
									_		
L –				/					_		
L –									_		
70.0									_		
L _				55 /					_		
L _									_		
L _	C-2		1.0'						_		
L _											
L _				//					Core barrel jammed		
73.0				/ 0				73.0' El73.1'			
L _								Bottom of borehole at 73 feet.			
L _								<u>INULES:</u> 1. Boring tramic grouted using 2x04 lb base of			
								n. During treatile grouted using 2x94-10 Dags of			
L _								notable water			
								2 Undisturbed sample moisture contents noted in			
								"Remarks" reflect an average of all moisture contents			
								determined for the sample.			
\vdash											
\vdash –											
<u> </u>			L	1	I						

BORING NO.	BW-204
SHEET_1_O	F_3
DATE:START _	11/10/09
END1	1/11/09
DATUM: NG	SVD29
ELEVATION:	-1.2±
TOTAL DEPTH:_	42'
onut Hammer (on	harrel float)

PROJ	ECT N	AME _	Portal	Bridge	Capac	ity Enha	inceme	t Project COUNTY Hudson	DATUM:	NGVD29
MUNICIPALITY Kearny LOCATION Cedar Creek							lar Cre	<u>k</u> N. 696980.7± E. <u>598166.9±</u>	ELEVAT	ION: -1.2±
INSPE	ECTOR	S NAM	E/CON	IPANY	J. Yı	u/YU & A	Associa	es, Inc.		DEPTH: 42'
DRILL	ERS N	AME/C	OMPA	NY M	. Blejv	/as/JBD				
DRILL	ING M	ETHOD	s <u>M</u> u	ud Rota	ry, NX	/NQ Cor	ing	EQUIPMENT USED Acker Skid Rig wi	h Donut Ham	nmer (on barrel float)
CASIN	NG SIZ	E:	4.0"	DE	EPTH:	24	.0'	WATER: DURING DRILLING: TIME:		DATE:
CHEC	KED B	Y: D.	Mazuji	an	D	ATE: _	2/20/1	END OF DRILLING: TIME:		DATE:
								NOT ENCOUNTERED		
	_			8			Щ			
L)	VO./	5 FT LER	Ϋ́	ERY(ENT/ TSF)		STUF			
) H	LE I ORE	S/0.	ŽF	<u>}</u> /	ЪЧ	scs	MOI	DESCRIPTION		REMARKS
EPT	MP NO	NC NC		(%) <500 <500 <500 <500 <500 <500 <500 <50	Ϋ́	≌	Щ			
	^S P	9 B	R	78	ЯĞ		ΜP			
	T			~~~			SA			
0.0		wн		25				Black Organic CLAY & SILT, occassional plant	matter,	PID = 0.0 ppm
		wн						(ORGANIC DEPOSIT).		Depth to mud line
F -	S-1	WН	0.5'		-	OH	wet			was about 1.5'
		WН								
<u></u>		<u>м</u> ц		50						PID = 0.0 ppm —
	S-2	WH	1.0'		-	ОН	wet			_
		WH								_
4.0				35				Dark brown PEAT (ORGANIC DEPOSIT)		PID = 0.0 ppm
		WR								-
	S-3	3	0.7'		-	PT	wet			_
										_
6.0		4		0						
L _		Р		Ŭ				No recovery.		attempted using a
L _	U-NR	U	0.0'		-			′. <u>0'</u>	<u> </u>	Shelby tube
		s								_
8.0		н		50						
		6		50				Light brown medium to fine SAND, trace Silt,		PID = 0.0 ppm
	S-4	8	1 0'		-		wot	(ALLUVIONI).		to 8'
	• ·	7				SF-3W	wei			_
10.0		8								
		7		75						PID = 0.0 ppm
	с Б	9	1 5'							_
	0-0	6	1.5		-	SP-SM	wet			
12.0		8								
		7		35				coarse to fine.		PID = 0.0 ppm
	66	9	0.7'							
	3-6	6	0.7		-	SP-SM	wet			Advanced 4" casing
14.0		7								to 13' —
		13		75				trace fine Gravel.		PID = 0.0 ppm
		10								Silt & Clay in spoon
	S-7	9	1.5'		-	SP-SM	wet			tip —
16.0		11						16.0'	ר בן _ב 17 י	
'0.0_		6		65				Gray-brown SILT & CLAY varved with Clav & S	<u>ilt,</u>	PID = 0.0 ppm
\vdash \dashv		12						alternating 1/8" to 1/4"± silt & clay, 1/16"± clay	& silt,	'' -
\vdash –	S-8	11	1.3'		1.50	ML	wet	(GLACIOLACUSTRINE DEPOSIT).		-
		18								–
18.0				67						PID = 0.0 ppm
\vdash \dashv		13								Advanced 4" casing
⊢ ⊣	S-9	20	1.3'		PP	ML	wet			to 18'
\mid \mid		22			1.50			(continued on post serve)		_
20.0		24						(continuea on next page).		

BORING NO	BW-204
SHEET_2	OF
DATE:START	11/10/09
END	11/11/09
DATUM: N	IGVD29
ELEVATION:	-1.2±
TOTAL DEPTH	: 42'
onut Hammer (o	on barrel float)

PROJ MUNI INSPE	ECT N CIPALI ECTOR	ame <u>I</u> Ty Ke S nami	Portal earny E/CON	Bridge LO 1PANY	Capaci CATIOI _J. Yu	ty Enha N <u>Cea</u> /YU & /	anceme dar Cre Associa	ent Project COUNTY <u>Hudson</u> DATUM ek <u>N. 696980.7±</u> E. <u>598166.9±</u> ELEVAT ates, Inc. TOTAL	NGVD29 'ION: -1.2± DEPTH: 42'
DRILL DRILL CASIN CHEC	ERS N ING M IG SIZ KED B	AME/C Ethod E: Y: _ D.	OMPA S <u>Mu</u> 4.0'' Mazuji	NY <u>M</u> ud Rota DE an	. Blejwa ry, NX/ PTH: D/	as/JBD NQ Coi 24 ATE: _	ring 1.0' 2/20/1	EQUIPMENT USED Acker Skid Rig with Donut Har WATER: DURING DRILLING: TIME: 2 END OF DRILLING: TIME:	nmer (on barrel float) DATE: DATE:
				(<u> </u>			ш		
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTUR	DESCRIPTION	REMARKS
		11		65				(continued from previous page).	PID = 0.0 ppm
	S-10	21 29 32	1.3'		PP 1.75	ML	wet	Gray-brown SILT & CLAY varved with Silty Clay, trace fine Sand, alternating 1/4"± silt & clay, 1/32"± silty clay, (GLACIOLACUSTRINE DEPOSIT).	Advanced 4" casing to 24'
									_
									_
25.0									
<u> </u>		10		50					_
<u>⊢</u> –	S-11	18 25	1.0'		РР 1.75	ML	wet		_
27.0		21							
									_
									_
– –									_
30.0									_
		17		75					
	S-12	20 27	1.5'		PP 1 75	ML	wet		_
32.0		29							_
[
┝ -									_
t -									
35.0		13		85				Brown Silty CLAY varved with Clay & Silt, trace(-) fine	-
	S-13	15 19 11	1.7'		PP 1.00	CL	moist	Sand, alternating 1/8" to 1/4" \pm silty clay, 1/16" to 1/8" \pm clay & silt, (GLACIOLACUSTRINE DEPOSIT).	
37.0									Cleaned out to 38'
38.0				85				Prown Silty CLAV varied with Clay & Silt trace() find	Undisturbed sample collected using a
 	U-2	P U S	1.7'		TV 0.55	CL	moist	Sand, (GLACIOLACUSTRINE DEPOSIT).	Shelby tube
40.0		Н						(continued on next page).	ອອ.ວ‰ < #200 —

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO. BW-204
SHEET3OF3
DATE:START
END 11/11/09
DATUM: NGVD29
ELEVATION: -1.2±
TOTAL DEPTH: 42'
Oonut Hammer (on barrel float)

MUNI	CIPALI	TY Ke	earny	LO	CATIO	N Ce	dar Cre	k N. <u>69</u>	6980.7±	E. 598	8166.9±	ELEVAT	ON:	-1.2±
INSPECTORS NAME/COMPANY J. YU/YU & Associates, Inc. TOTAL DE									EPTH:_	42'				
DRILLERS NAME/COMPANY M. Blejwas/JBD														
DRILL	ING M	ETHOD	s <u>M</u> u	ud Rota	ry, NX/	NQ Co	ring	EQUIPME	NT USED AC	ker Skid	Rig with D	Onut Ham	mer (on	barrel float)
CASI	NG SIZI	E:	4.0"	DE	PTH:	24	1.0'	WATER: DURING D	DRILLING:		_ TIME:		DATE:	
CHECKED BY: D. Mazujian DATE: 2/20/								END OF D	RILLING:	-1.5'	_ TIME:		DATE:	
								NOT ENC	OUNTERED					
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DE	ESCRIPTION				RE	MARKS
		10		100				(continued from	previous pag	ne).				
42.0	S-14	9 12 14	2.0'		PP 1.00	CL	moist	Brown varved Silty fine Sand, alternat 2.0'	CLAY and C ing 1/8"± silty RINE DEPOS	CLAY & S / clay, 1/ SIT).	SILT, trace /8"± clay &	(-) silt, <u>EI43.2'</u>		
								Botto	m of borehole	e at 42 fe	eet.			
L _								Notes:	an de la color	004				
								i. Boring tremie g	1/2v50 lb bac	∠x94-ID b of boots	Jays OT			
								water	1/2/20-in nag		nite, potab	iG.		_
L _								2. Undisturbed sa	mple moisture	e conten	ts noted in			_
L _								"Remarks" reflect	an average o	f all moi	sture conte	nts		_
L _								determined for the	sample.					_
L _														_
L _														_
<u>⊢</u> –														_
<u> </u>														_
⊢ –														_
<u>⊢</u> –														_
⊢ –														_
<u>⊢</u> –														—
<u>⊢</u> –														_
<u>⊢</u> –														_
<u>⊢</u> –														_
F -														—
<u>⊢</u> –														—
<u>⊢</u> –														_
F -														—
F -														_
														_
Γ -														_
Γ -														
Γ -														
Γ -														
Γ.														
														_
L _														
L														

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO.	BW-205
SHEET_1_C	DF
DATE:START_	10/30/09
END	11/3/09
DATUM: NO	GVD29
ELEVATION:	-0.3±
TOTAL DEPTH:	42'
onut Hammer (or	n barrel float)

MUNI	CIPALI	ty Ke	arny	LO	CATIO	N Cec	lar Cre	ek N. <u>697381.8±</u> E. <u>599048.0±</u> ELEVAT	ION: <u>-0.3±</u>				
INSPECTORS NAME/COMPANY J. Yu/YU & Associates, Inc.								DEPTH: 42'					
DRILLERS NAME/COMPANY M. Biejwas/JBD													
DRILL	ING M	ETHOD	S <u>M</u>	Id Rota	ry, NX/	NQ Cor	ing o'	EQUIPMENT USED Acker Skid Rig with Donut Han	mer (on barrel float)				
CASIN		E:	4.0 Mazuii	DE an	PIH:	<u>2</u> 3	.U 2/20/1	_ WATER: DURING DRILLING: TIME:					
]				
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	USCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS				
0.0		WR		13				Dark gray medium to fine(+) SAND, some(+) Clayey	Depth to mudline				
	S-1	WR	0.3'		_	~~~		Silt, frequent paper and wood fragments, (FILL).	2.0				
	0-1	WR	0.5			SIVI	wet		PID= 0.0 PPM				
2.0		8		_				2.0'El. <u>-2.3</u> '	_				
		3		5				Dark gray Organic SILT & CLAY, some fine Sand,	_				
	S-2	1	0 1'		-		wot	occasional roots, (ORGANIC DEPOSIT).					
	-	1					wei		PID= 0.0 PPM				
4.0		1		50				4.0' <u>El4.3'</u>					
L _		3		50				Grayish brown medium to fine(+) SAND, little Silt,	PID= 0.0 PPM				
L _	S-3	5	1.0'		-	SM	wet		_				
L -		9					mot		_				
6.0		13		80									
<u> </u>	S_1A	8		00					to 6'				
L -	3-4A	9	1.6'		-	SM	wet	Crevial harve Claver Cli T little fine Cand helew	_				
<u> </u>	S-4B	4			PP	ML	wet	7 5' (ALLEN/ILIM)					
8.0		0		50	0.63								
<u> </u>		7		00				Gray-brown line SAND, little Slit, (ALLOVION).	_				
	S-5	8	1.0'		-	SM	wet						
		8											
10.0		•		75					Advanced 4" casing				
		9		-					to 10'				
	S-6	10	1.5'		-	SM	wet		PID= 0.0 PPM				
120		13							-				
12.0		7		50				trace Silt.	-				
		8							_				
	S-7	4	1.0'		-	SP-SM	wet		PID= 0.0 PPM				
14 0		4							_				
		25		65				medium(+) to fine.	_				
		22							_				
	S-8	25	1.3		-	SM	wet		Advanced 4" casing				
16.0		23							to 15'				
		14		75				Gray-brown Clayey SILT, trace(-) Sand,	PID= 0.0 PPM				
LI	5-0	11	1 5'		PP		1	(ALLUVIUM).					
	3-9	12	1.0		1.63	IVIL	wet	wet					
18.0		20						18.0' El18.3'					
		8		6/				Gray-brown Clayey SILT varved with Clay & Silt,					
	S-10	16	1 3'		PP			alternating 1/8" to 1/4"± clayey silt, 1/8"± clay & silt,					
	0-10	16	1.5		1.75	IVIL	wet	(GLACIULACUSTRINE DEPUSIT).					
20.0		17						(continued on next page).	PID= 0.0 PPM				

BORING NO.	BW-205
SHEET_2_0	F_3
DATE:START	10/30/09
END	11/3/09
DATUM: NG	VD29
ELEVATION:	-0.3±
TOTAL DEPTH:_	42'
onuit Hammor (on	narrol tinati

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enh	anceme	DATUM	NGVD29
MUNI		TY <u>Ke</u>				N <u>Ce</u>	dar Cre	ek N. <u>697381.8±</u> E. <u>599048.0±</u> ELEVAT	TION: -0.3±
INSPE				1PANY NV M	<u>J. ru</u> Bleiw	as/.IRC	ASSUCIA)		DEPTH: <u>42</u>
			S MI	ud Rota	rv. NX/	NQ Co	rina	EQUIPMENT USED Acker Skid Rig with Donut Har	nmer (on barrel float)
CASI	NG SIZ	E iniod E:	4.0"	DE	EPTH:	2	5.0'	WATER: DURING DRILLING: TIME:	DATE:
CHEC	KED B	Y: D.	Mazuji	an	D.	ATE: _	2/20/1	2 END OF DRILLING: TIME:	DATE:
	-			(%)			Ш		
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTUF	DESCRIPTION	REMARKS
L _								(continued from previous page).	Advanced 4" casing
21.0 	U-1	P U S H	0.5'	25	-	CL	moist	Red-brown SILT & CLAY trace fine Sand, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a — piston sampler — U-1: mc = 21.2%, LL = 31, PI = 8, 01.7% < #200
	S-11	8 15 19 17	1.3'	65	PP 1.00	CL	moist	Gray-brown SILT & CLAY varved with Silty Clay, trace fine Sand, alternating 1/8" to 1/4" ± silt & clay, 1/8"± silty clay, (GLACIOLACUSTRINE DEPOSIT).	
L _									
26.0 	U-NR	P U S H	0.0'	0	-			No recovery.	Undisturbed sampling attempted with a piston sampler
30.0				05					_
	S-12	11 11 12 13	1.7'	00	PP 1.00	CL	moist	Gray-brown CLAY & SILT varved with Clayey Silt, alternating 1/8" to 1/4" clay & silt, and 1/8" clayey silt, (GLACIOLACUSTRINE DEPOSIT).	
⊢ _									
⊢ –									
⊢ –									-
⊢ –									-
35.0									-
55.0		8		85					-
 37.0	S-13	10 12 15	1.7'		PP 1.25	CL	moist		
Ĺ									
38.0									
	U-NR	P U S	0.0'	0	-			No recovery.	Undisturbed sampling attempted with a piston sampler
40.0		Н						(continued on next page).	

BORING NO. BW-205
SHEET3OF3
DATE:START
END 11/3/09
DATUM: NGVD29
ELEVATION: -0.3±
TOTAL DEPTH: 42'
Oonut Hammer (on barrel float)

PROJ	ECT N	AME _	Portal I	Bridge	Capaci	ty Enha	anceme	ent Project COUNTY Hudson DATUM:	NGVD29
MUNICIPALITY Kearny LOCATION Cedar Creek								ek N. <u>697381.8±</u> E. <u>599048.0±</u> ELEVAT	ION:
INSPE	ECTOR	S NAM	E/CON	IPANY	<u>J. Yu</u>	/YU & /	Associa	ates, Inc.)EPTH: <u>42'</u>
DRILL	ERS N	IAME/C	OMPA		. Blejw	as/JBD)		mor (on borrel floot)
DRILL	ING M		S <u>IVIL</u> 1/0"		ry, NX /	NQ CO 25	ring		
CHEC	KED B	⊏ v·D.	Hazuii	∪⊏ an	:РІП. D	<u>~</u> 4te	2/20/1	WATER. DORING DRILLING TIME	
OHLC					U/	\ ∟			
				<u> </u>					
	Z N	μĸ		٨(%	SF)		URI		
(FT	NUN	D.5 F	ĒŖ	ΥĒΡ	PEN T (T	s	ISIC		
TH	PLE	NS/(ξ.		ANE	JSC	N N	DESCRIPTION	REMARKS
DEP	PE	N S N	REO	BA/ €	DCK NV		PLE		
	‴≿			/ g	P		SAN		
		5		50				(continued from previous page).	
		13			PP			Gray-brown CLAY & SILT varved with Clayey Silt,	_
	S-14	17	1.0'		1.25	CL	moist	alternating 1/8" to 1/4" clay & silt, 1/8" clayey silt,	
42 0		24						42 0' (GLACIOLACUSTRINE DEPOSIT).	_
								Bottom of borehole at 42 feet.	
								Notes:	
	1							1. Boring tremie grouted using 2x94-lb bags of	
								portland cement, 1/2x50-lb bag of bentonite, potable	
								2 Water level was approximately 2.5' above top of soil	
								3. Undisturbed sample moisture contents noted in	
L_								"Remarks" reflect an average of all moisture contents	
								determined for the sample.	
L _									
L _									
L _									_
L _									_
									_
									_
									_
									-
									-
									_
									_
F -									
	1								
	1								
L_									
L _									
L _									
L _									
⊢ –									
⊢ –									
⊢ –									
⊢ –									_

PROJECT NAME Portal Bridge Capacity Enhancement Project COUNTY Hudson

BORING NO.	BW-206
SHEET_1_C)F_5
DATE:START _	11/3/09
END	11/9/09
DATUM: NO	GVD29
DATUM: NO	GVD29 -1.1±
DATUM: NO ELEVATION: TOTAL DEPTH:	<u>GVD29</u> -1.1± 79'

MUNI	CIPALI	ty <u>K</u> e	earny	LO	CATIO	N Ce	dar Cre	ek	N. 697533.1±	E. 599361	.8± ELEV	'ATION: -1.1±
INSPE	ECTOR		E/CON		J. Yu Bloiw	1/YU & /	Associa	ates, Inc.				\L DEPTH: 79'
DRILL		IAME/C		NY <u>IVI</u> Id Pota	ny NY		rina			ker Skid Rig	with Donut H	lammer (on barrel float)
CASIN	ING M IG SIZ	ETHOD F	4.0"	DF	∎ y, I∿∧ =PTH	24	1.0'	WATER		2.4' TI	<u>, with Donat 1</u> M⊑· 11:30	DATE 11/3/09
CHEC	KED B	Y: D .	Mazuji	an	D	ATE:	2/20/1	12	END OF DRILLING:	2.3' TI	ME: 7:45	DATE: 11/9/09
						_						
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE		DESCRIPTION			REMARKS
0.0	S-1	WR WR WH WR	1.0'	50	-	ОН	wet	Dark b (ORG/	orown Organic CLAY & SI ANIC DEPOSIT).	LT, occasioi	nal fibers,	PID = 0.0 ppm
4.0	S-2	WH WH WH 1	0.5'	25	-	он	wet	-				PID = 0.0 ppm
	S-3	1 1 1 1	1.0'	50	-	PT	wet	Dark b	prown PEAT, (ORGANIC	DEPOSIT).		PID = 0.0 ppm Advanced 4" casing to 5' bgs
	U-1	P U S H	1.5'	75	-	OL PT	wet wet	Dark b (ORG/ Dark b	prown Organic CLAY, and ANIC DEPOSIT). prown PEAT, (ORGANIC	coarse to fi DEPOSIT).	ne Gravel,	PID = 0.0 ppm Undisturbed sample collected using a Shelby tube U-1: mc = 373.4%,
 	S-4	WH WH 1 2	0.7'	35	PP <0.25	OL	wet	Green DEPO 10.0'	ish gray Organic SILT & (SIT).	CLAY, (ORG	GANIC El11	LL = 371, PI = 122, 54.0% < #200 - PID = 0.0 ppm _ 1.1'
		5		50				Gray-t	prown fine SAND, some(-)) Silt, (ALLU	VIUM).	PID = 0.0 ppm
	S-5	9 11 7	1.0'		-	SM	wet					Advanced 4" casing to 11' bgs -
 14.0	S-6	5 2 3 4	1.3'	65	PP 0.75	CL	moist	Gray-t (ALLU	prown SILT & CLAY, little VIUM).	fine Sand,		PID = 0.0 ppm
 16.0	S-7	3 6 6 6	1.5'	75	PP 0.75	CL	moist	Gray-t (ALLU	orown CLAY & SILT, trac VIUM).	e(-) fine Sar	nd,	PID = 0.0 ppm
	U-2 S-8A	P U S H 14	2.0'	100	TV 0.45 PP 0.50	CL-ML CL	moist	Gray-t Sand,	prown SILT & CLAY, trac (ALLUVIUM).	e(+) mediun	n to fine	Undisturbed sample collected using a - Shelby tube - U-2: mc = 31.1%, LL = 27, Pl = 5, - 90.3% < #200 - Advanced 4" casing to 19' bgs PID = 0.0 ppm -
		26						(CO	nunuea on next page).			

BORING NO	BW-206
SHEET_2_0	F5
DATE:START	11/3/09
END	11/9/09
DATUM: NG	VD29
ELEVATION:	-1.1±
TOTAL DEPTH:_	79'
TOTAL DEPTH:_	79'

٢

PROJ MUNIO INSPE	ECT NA CIPALI	ame <u>I</u> Ty Ke S nami	Portal earny E/CON	Bridge LO 1PANY	Capaci CATIO _J. Yu	ty Enha N <u>Cea</u> /YU & /	anceme dar Cre Associa	<u>t Project</u> COUNTY <u>Hudson</u> <u> </u>	9361.8±	DATUM: ELEVATI TOTAL D	NGVD29 ION: -1.1± DEPTH: 79'
DRILL DRILL CASIN CHEC	ERS N ING M IG SIZ KED B	AME/C ETHOD E: Y: _ D.	OMPA S <u>Mu</u> <u>4.0''</u> Mazuji	NY <u>M</u> ud Rota DE an	iry, NX/ PTH: D/	NQ Coi 24 ATE: _	, <u>ring</u> 1.0' 2/20/1	EQUIPMENT USED Acker Skin WATER: DURING DRILLING: 2.4' END OF DRILLING: 2.3' NOT ENCOUNTERED	d Rig with Do 	onut Ham 11:30 7:45	nmer (on barrel float) DATE: <u>11/3/09</u> DATE: <u>11/9/09</u>
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION			REMARKS
 21.0 	S-8B	21 15	1.7'		- PP 1.75	ML	moist	(continued from previous page). Gray-brown Clayey SILT, some fine S 19.5', (ALLUVIUM).	and, below		PID = 0.0 ppm
 25.0 27.0	S-9	9 20 21 25	2.0'	100	PP 1.75	CL	moist	Gray-brown CLAY & SILT, trace(-) fine (ALLUVIUM).	e Sand,		Advanced 4" casing to 24' bgs — — — — — —
								8 <u>.5'</u>	E	<u>=129.6'</u>	
	S-10	10 12 20 18	1.5'	75	PP 1.75	CL	moist	Gray-brown Silty CLAY varved with Silt medium to fine Sand, alternating 1/8" to clay, 1/16"± silt, (GLACIOLACUSTRIN	t, trace(-) o 1/4"± silty E DEPOSIT).		-
 35.0											
	S-11	10 10 17 14	1.5'	75	PP 1.50	CL	moist				
38.0_ 40.0	U-3	P U S H	1.7'	85	TV 0.75	CL	moist	Gray-brown Silty CLAY varved with Silt medium to fine Sand, (GLACIOLACUS DEPOSIT). (continued on next page).	t, trace(-) STRINE		Undisturbed sample collected using a Shelby tube U-3: mc = 34.4%, LL = 42, PI = 20, 99.1% < #200

BORING NO. BW-206
SHEET3 OF
DATE:START11/3/09
END 11/9/09
DATUM: NGVD29
ELEVATION: -1.1±
TOTAL DEPTH: 79'
onut Hammer (on barrel float)

PROJ	ECT N	AME _	Portal	Bridge	Capaci	ty Enha	anceme	ent Project	COUNTY Hud	son		DATUM:	NGVI	029
MUNICIPALITY Kearny LOCATION Cedar Creek									N. 697533.1± E. 599361.8± ELEVATION: -1.1±				1.1±	
INSPECTORS NAME/COMPANY J. YU/YU & Associates, Inc.													DEPTH:	79'
DRILL	ERS N	IAME/C	OMPA	NY M	. Blejwa	as/JBD)							
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ Co	ring			cker Skic	Rig with	Donut Han	nmer (on ba	arrel float)
CASING SIZE: <u>4.0</u> DEPTH: <u>24.0</u> WATER									DURING DRILLING: _	2.4	_ TIME: _	11:30	DATE: _	11/3/09
CHEC	KED B	Y: <u>D</u> .	iviazuji	all	D#	AIE: _	2/20/1	2	END OF DRILLING: _	2.3	_ IIME: _	7.43	DATE: _	11/9/09
		1	1						NOT ENCOUNTERED					
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE		DESCRIPTION	1			REM	ARKS
L _		5		15				(CO	ntinued from previous pa	ge).				_
	C 12	9	1.5'		PP	~		Gray-b	rown Silty CLAY varved	with Silt	, trace(-)			
	3-12	8	1.5		1.00	CL	moist	mediu	m to fine Sand, alternation	ng 1/8" to	o 1/4"± silt	<u>у</u>		
42.0		10						clay, 1	/16"± silt, (GLACIOLAC	USTRINE	= DEPOSI	1).		_
														_
F -														_
														-
														_
														_
45 0														_
		Q		100				red-l	prown, alternating 1/4" to	o 3/4"± si	lty clay, 1/	16"±		_
		11			пп			silt.						_
	S-13	12	2.0'		1.00	CL	moist							_
		13												_
47.0														_
														_
														_
														_
														_
														_
50.0				100										_
		8												_
⊢ –	S-14	9	2.0'		PP	CI	moist							_
⊢ –		12			0.75									_
L52.0		12												_
⊢ –														_
⊢ –														_
⊢ –														_
⊢ –														_
⊢ –														_
55.0				100				Dedte			0:14			_
L _		4						Red-bi	own Silly CLAY Varved	with Clay	rey Slit, clavev silt			_
L _	S-15	5	2.0'		PP	CL	moiet			, 1/10 ± (SIT)	Gayey Sill	,		_
L _	-	6			0.50	0L	moist			J				_
57.0		9												_
58.0				100							_		Undisturb	ed sample
		Р		100				Red-b	rown Silty CLAY varved	with Clay	ey Silt, ar	id(-)	Shelby tu	be _
	11-4	U	2 0'			C	moint	Coarse	וס meaium Sand, (GLA פוד)	CIULAC	USIRINE		U-4: mc =	32.7%,
L_		S	2.0			UL	moist		511 <i>)</i> .				LL = 45, F 63 4% < #	41 = 23, ±200 —
60.0		Н						(co	ntinued on next page).				0.7/0 7	200

BORING NO. BW-206
SHEET4 OF5
DATE:START 11/3/09
END 11/9/09
DATUM: NGVD29
ELEVATION: -1.1±
TOTAL DEPTH: 79'
Oonut Hammer (on barrel float)

PROJ MUNI INSPE	ECT N CIPALI ECTOR	ame <u> </u> TY _Ke S Nam	Portal earny E/CON	Bridge LO	Capaci CATIO _J. Yu	ty Enha N <u>Cea</u> /YU & /	anceme dar Cre Associa	Int Project COUNTY Hudson DAT ek N. 697533.1± E. 599361.8± ELE ites, Inc. TOT	NGVD29 EVATION: -1.1± FAL DEPTH: 79'
DRILL DRILL CASII CHEC	.ERS N .ING M NG SIZ :KED B	IAME/C ETHOD E: 3Y: _ D.	ompa s <u>Mu</u> <u>4.0''</u> Mazuji	NY <u>M</u> ud Rota DE ian	i ry, NX/ EPTH: D/	<u>NQ Co</u> 22 ATE: _	, ring 1.0' 2/20/*	EQUIPMENT USED Acker Skid Rig with Donut WATER: DURING DRILLING: <u>2.4'</u> TIME: <u>11:3</u> END OF DRILLING: <u>2.3'</u> TIME: <u>7:4</u> NOT ENCOUNTERED	: Hammer (on barrel float) 30 DATE: 11/3/09 5 DATE: 11/9/09
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
	S-16	7 9 10 12	1.7'	85	PP 0.50	CL	moist	(continued from previous page). Red-brown Silty CLAY varved with Clayey Silt, and(-) coarse to medium Sand, (GLACIOLACUSTRINE DEPOSIT).	
_65.0 	S-17	11 10 14 19	1.3'	65	PP 0.75	CL	moist		
								<u>68.5'El</u>	<u>69.6'</u>
_70.0 _72.0	S-18	38 59 40 52	1.0'	50	-	GC	wet	Red-brown medium to fine GRAVEL, little coarse Sand, some Clay & Silt, (DECOMPOSED ROCK).	
				30					Hard drilling from 72' to 74' –
 								(DECOMPOSED ROCK).	74' —
	C-1		1.5'						
_79.0 				γ <u> </u>				79.0' EI Bottom of borehole at 79 feet. <u>Notes:</u>	80.1'

	BORING NO. BW-206
	SHEET5OF5
	DATE:START 11/3/09
	END 11/9/09
	DATUM: NGVD29
	ELEVATION: -1.1±
_	TOTAL DEPTH: 79'
_	
h C	Donut Hammer (on barrel float)

PROJECT NAME _Portal Bridge (MUNICIPALITY _Kearny LOO INSPECTORS NAME/COMPANY	Capacity Enhancemen CATION Cedar Cree J. Yu/YU & Associat	nt Project COUNTY Hudson DA k N. 697533.1± E. 599361.8± EL res, Inc. TC	NGVD29 EVATION: -1.1± DTAL DEPTH: 79'
DRILLERS NAME/COMPANY <u>M.</u> DRILLING METHODS <u>Mud Rotar</u> CASING SIZE: <u>4.0"</u> DE CHECKED BY: <u>D. Mazujian</u>	Blejwas/JBD ry, NX/NQ Coring PTH: <u>24.0'</u> DATE: <u>2/20/12</u>	EQUIPMENT USED Acker Skid Rig with Donu WATER: DURING DRILLING: 2.4' TIME: 11 END OF DRILLING: 2.3' TIME: 7: NOT ENCOUNTEDED	ut Hammer (on barrel float) :30 DATE: 11/3/09 :45 DATE: 11/9/09
DEPTH (FT) SAMPLE NO / TYPE/CORE RUN BLOWS/0.5 FT ON SAMPLER ON SAMPLER RECOVERY (%) (fT) RQD (%)	POCKET PENT/ TORVANE (TSF) USCS SAMPLE MOISTURE	DESCRIPTION	REMARKS
		 Boring tremie grouted using 2x94-lb bags of portland cement, 1/2x50-lb bag of bentonite, potable water. Water level was approximately 2'5" above top of soi upon completion. Undisturbed sample moisture contents noted in "Remarks" reflect an average of all moisture contents determined for the sample. 	

20.0

10

ENGINEERS FIELD BORING LOG

ENGI	NEERS FIELD BORING LOG	BORING NO SHEET1OF7 DATE:START10/24/11			
PROJECT NAME <u>Portal Bridge Final Engineering</u> MUNICIPALITY <u>Kearny</u> LOCATION <u>Amtral</u> INSPECTORS NAME/COMPANY <u>R. Jeremic/YU &</u> DRILLERS NAME/COMPANY <u>C. Cruz/JBD</u>	COUNTY <u>Hudson</u> N. <u>698047.8±</u> E. <u>600637.3±</u> & Associates, Inc.	NGVD29 ELEVATION: 2.8± TOTAL DEPTH: 118'			
DRILLING METHODS Mud Rotary, NX/NQ Coring	EQUIPMENT USED Acker Soil XLS Track	Rig with Automatic Hammer			
CASING SIZE: 4.0" DEPTH 35.0'	WATER DURING DRILLING 0.5' TIME	10:00 DATE 10/24/11			

DRILI	FRSN	IAME/C		NY C	Cruz/	JBD							JEI III			
DRILL	ING M	ETHOD	S_M	ud Rota	ry, NX/	NQ Co	ring		EQUIPMENT USED	Acker So	oil XLS Trac	k Rig with	Automatio	: Hammer		
CASI	NG SIZ	E:	4.0"	DE	PTH:	35	5.0'	WATER:	DURING DRILLING:	0.5'	TIME:	10:00	DATE:	10/24/11		
CHEC	KED E	Y: <u>D.</u>	Mazuji	an	D/	ATE: _	2/22/1	12	END OF DRILLING:	0.0'		15:30	DATE:	10/31/11		
									NOT ENCOUNTERE	D 🗌						
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE		DESCRIPTION							
0.0 	S-1	2 4 5 6	0.5'	25	-	GP	wet	Black trace f	Black medium to fine GRAVEL, and brick fragments, trace fine Sand, trace Silt, frequent roots, (FILL).							
 	S-2	2 4 4 4	0.5'	25	-	GP	wet	Black mediu	medium to fine GRAVE m to fine Sand, trace S		-					
6.0	S-3	1 3 3 3	0.3'	15	-	ML	wet	Black (FILL).	Clayey SILT, and med	ium to fi	ne Gravel,		S-3: mc= 55.0%<#	=109.7% #200 		
 8.0	S-4A S-4B	2 3 2 3	0.4'	20	-	ML PT	wet wet	7.0' Dark b	rown PEAT, (ORGAN		DSIT). — — —	<u>EI4.2'</u> EI5.2'	-	-		
 	S-5	2 3 2 6	0.7'	35	-	SM	wet	Gray fi	ine SAND, little Clayey	Silt, (AL	LUVIUM).		S-5: mc= 46.0%<#	=19.6% #200 — —		
 12.0	S-6	8 10 9 14	1.7'	85	-	SP	wet	Gray fi	ine SAND, trace Silt, (A	ALLUVIU	M).			-		
 	S-7	5 10 10 12	2.0'	100	-	SM	wet	Green (ALLU	ish gray fine SAND, litt VIUM).	le Claye	y Silt,			-		
16.0	S-8	10 15 14 13	2.0'	100	-	SP	wet	Gray fi	ine SAND, trace Silt, (A	ALLUVIU	M).			-		
 18.0_	S-9	4 5 4 5	2.0'	100	-	SM	wet	and	Silt.					-		
 	S-10	3 6 8	1.0'	50	-	ML	wet	Brown	Clayey SILT, little fine	e Sand, (ALLUVIUM).		_		

20.0'.....(continued on next page).

El. -17.2'

	BORING NO. BW-317
	SHEET_2_OF_7
	DATE:START 10/24/11
	END 11/1/11
	DATUM: NGVD29
	ELEVATION: 2.8±
	TOTAL DEPTH: 118'
rack	Rig with Automatic Hammer

Г

PROJ	ECT N	AME _	Portal	Bridge	Final E	nginee	ring		COUNTY Hudson DATUM: NGVD29						D29			
MUNI		TY Ke	earny	LO	CATIO	N Am	trak		N698047.8± E600637.3± ELEVATION:2.8±						2.8±			
INSPE	CTOR	S NAM	E/CON	IPANY	R. Je	remic/	YU & As	ssociates, In	c.				TOTAL D	DEPTH:	118'			
DRILL	ERS N	AME/C	OMPA	NY <u>C</u>	. Cruz/J	BD												
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ Col	ring		EQUIPMENT U	JSED Acl	ker Soil	XLS Track	Rig with	Automatic	Hammer			
CASIN	IG SIZ	E:	4.0"	DE	PTH:	35	5.0'	WATER:	DURING DRIL	LING:	0.5	_ TIME:	10:00	DATE:	10/24/11			
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	D/	ATE: _	2/22/1	2	END OF DRILL	_ING:	0.0	_ TIME:	15:30	DATE:	10/31/11			
									NOT ENCOUN	ITERED								
EPTH (FT)	MPLE NO/ E/CORE RUN	DWS/0.5 FT SAMPLER	ECOVERY (FT)	RECOVERY(%)	KET PENT/ VANE (TSF)	NSCS	LE MOISTURE		DESC		REM	IARKS						
Ö	SA TYPE	BLO	12 12	a da	POG TOR		SAMP											
		2		100				(con	tinued from prev	ious page	e).			S-11: mc	=28.3%			
22.0	S-11	- 5 6 8	2.0'		PP 2.00	CL	moist	Gray SI alternat fine Sar	Gray SILT & CLAY varved with brown Clay & Silt, alternating 1/8"± silt & clay, 1/16"± clay & silt, trace fine Sand, (GLACIOLACUSTRINE DEPOSIT).									
														Easier drilling from				
23.0														22'	_			
		P		100	DD			Gray SI	LT & CLAY var	ved with	brown C	lay & Silt,		Undistur	bed sample			
	11.4	U	2.01		1.50			(GLACI	Shelby to	using a —								
	0-1	S	2.0		TV	CL	wet		U-1: mc=29.5%									
25.0		н			1.00									LL=32, P	I=9			
[]		2		90				Gray SI	LT & CLAY var	ved with	brown C	lay & Silt,						
	C 10	2	1 0'		PP			alternating 1/8"± silt & clay, 1/16"± clay & silt,										
	3-12	2	1.0		1.50	CL	wet	(GLACI	OLACUSTRINI	= DEPOS	511).							
27.0		2																
		4		85											_			
	S-13	4	1 7'		PP	~									_			
	0-10	3	1.7		1.25	CL	wet								_			
29.0		2		100											_			
		4		100											_			
	S-14	4	2.0'		PP	CI	wot								_			
		6			1.00	OL	wei								_			
31.0		4		100											_			
\vdash \dashv		3		100											_			
\vdash $-$	S-15	6	2.0'		PP	CL	wet								_			
\vdash		6			1.50	-									_			
33.0				100											_			
\vdash \dashv		2			DD										_			
\vdash \dashv	S-16	<u></u> з	2.0'		1 00	CL	wet								_			
		4													_			
-35.0		2		100				Grav Cl	_AY & SILT var	ved with	brown S	ilt & Clav.			_			
\vdash \dashv		ა 5			DD			alternat	ing 1/4"± clay &	k silt, 1/16	6"± silt 8	clay,			_			
\vdash \dashv	S-17	5	2.0'		1.25	CL	moist	(GLACI	OLACUSTRINI	E DEPOS	SIT).				_			
37 0		5													-			
		1		100											-			
\vdash \dashv	• • •	2			PP			ist							_			
$ \mid \mid$	S-18	2	2.0'		0.50	CL	moist							_				
39.0		2													_			
[1		3		100		<u>.</u>												
		2			PP	CL	moist	(con	tinued on next p	age).								

PROJECT NAME Portal Bridge Final Engineering COUNTY Hudson

	BORING NO. BW-317											
	SHEET3OF7											
	DATE:START10/24/11											
	END 11/1/11											
_	DATUM: NGVD29											
	ELEVATION: 2.8±											
	TOTAL DEPTH: 118'											
ck	k Rig with Automatic Hammer											

MUNI	CIPALI	TY <u>Ke</u>	earny	LO	CATIO	N <u>An</u>	ntrak	N. <u>698047.8±</u> E. <u>600637.3±</u> ELEVAT	ION: 2.8±
INSPE	ECTOR	S NAM	E/CON	IPANY	R. Je	remic/	YU & As	sociates, Inc.	DEPTH: 118'
DRILL	ERS N	AME/C	OMPA	NY <u>C</u>	. Cruz/J	IBD			
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX/	NQ Co	ring	EQUIPMENT USED Acker Soil XLS Track Rig with	Automatic Hammer
CASIN	NG SIZ	E:	4.0"	DE	EPTH:	3	5.0'	WATER: DURING DRILLING:0.5'TIME:10:00	DATE: <u>10/24/11</u>
CHEC	KED B	Y: D.	Mazuji	an	D#	ATE: _	2/22/1	2 END OF DRILLING: 0.0 TIME: 15:30	DATE: <u>10/31/11</u>
								NOT ENCOUNTERED	
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
	S-19	4	2.0'		0.50			(continued from previous page).	
41.0		3				CL	moist	Gray CLAY & SILT varved with brown Silt & Clay,	
 	S-20	1 2 1 2	2.0'	100	PP 0.75	CL	wet	alternating 1/4"± clay & silt, 1/16"± silt & clay, (GLACIOLACUSTRINE DEPOSIT). alternating 1/4"± clay & silt, 1/8"± silt & clay.	-
 45.0	S-21	4 3 4 5	2.0'	100	PP 0.75	CL	wet		-
 47.0	S-22	WH WH 2 2	2.0'	100	PP 0.25	CL	wet		-
49.0	S-23	1 2 1 2	2.0'	100	PP 0.25	CL	wet		-
 	S-24	WR WH WH 2	2.0'	100	PP <0.25	CL	wet		-
53.0	S-25	WH WH WH WH	2.0'	100	PP <0.25	CL	wet		-
	S-26	WH WH WH WH	2.0'	100	PP <0.25	CL	wet		S-26: mc=29.6% LL=35, PI=15 100%<#200
 57.0_	S-27	WH WH WH WH	2.0'	100	PP <0.25	CL	wet		-
$\lfloor $									
58.0 	U-2	P U S H	2.0'	100	PP <0.25 TV 0.10	CL	wet	Brown CLAY & SILT, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a — Shelby tube — U-2: mc=41.8% LL=36, PI=16 — 100%<#200 —

ENGINEERS FIELD BORING LOG

COUNTY Hudson

	BORING NO. BW-317
	SHEET4 OF7
	DATE:START10/24/11
	END 11/1/11
_	DATUM: NGVD29
	ELEVATION: 2.8±
_	TOTAL DEPTH: 118'
_	
ck	Rig with Automatic Hammer
	- J

ſ

MUNI	CIPALI	TY <u>Ke</u> S NAM	earny E/CON	IPANY	CATIO R. Je	N <u>Arr</u> remic/	ntrak YU & As	ssociates, Inc	N. <u>698047.8±</u> C.		E60	0637.3±	ELEVAT TOTAL I	ION: DEPTH:	2.8± 118'
	ERS N	IAME/C	OMPA	NY <u>C</u> Id Rota	Cruz/	NO CO	rina				ker Soil	XLS Trac	Rig with	Automatic	Hammer
CASI	NG SIZ	ETHOD E:	4.0"		EPTH:	35	5.0'	WATER:	DURING DRILLIN	IG:	0.5'	_ TIME: _	10:00	DATE:	10/24/11
CHEC	KED B	Y: D.	Mazuji	an	D/	ATE: _	2/22/1	12	END OF DRILLIN	G:	0.0'	_ TIME: _	15:30	DATE:	10/31/11
									NOT ENCOUNTE	RED					
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE		DESCRIP	TION				REN	IARKS
		WR		100				(cont	tinued from previou	ıs pag	e).				_
62.0	S-28	WH WH WH	2.0'		PP <0.25	CL	wet	Brown C Clay, alt (GLACIO	CLAY & SILT varve ternating 1/4"± cla OLACUSTRINE D	ed witl y & sil EPOS	h gray-t lt, 1/16" SIT).	brown Silty ± silty clay			_
[_		WН		100											_
	S-29	WH 1 2	2.0'		PP 0.50	CL	wet								
64.0				100											_
F -	0.00	WH	0.01		PP										_
	S-30	WH	2.0		<0.25	CL	wet								_
66.0		WH		100											_
L _		WН		100											_
<u>⊢</u> –	S-31	WH	2.0'		PP	CL	wet								_
		WH			~0.25										_
08.0		WP		100											_
F -	0.00	WH	0.01		PP										_
	5-32	WH	2.0		<0.25	CL	wet								_
70.0		WH		100				-							_
<u> </u>		WH		100											_
	S-33	WH WH	2.0'		PP <0.25	CL	wet								_
72 0		WH													_
								1							
73.0															. –
⊢ –		Р.		0				No reco	very.					Undistur	bed attempted
	U-3		0.0'		-									with a Sh	elby tube
75 0		н													_
13.0		4		100				Brown C	CLAY & SILT varve	ed witl	h red-br	own Silty C	Clay,		_
	6.24	5	2.0'		PP			alternati	ing 1/4"± clay & sil	lt, 1/16	6"± silty	clay, trace	fine		_
L _	0-04	5	2.0		0.50	CL	wet	Sand, (C	GLACIOLACUSTR	KINE [JEPOS	11).			_
77.0		6		100											_
⊢ –		1													_
⊢ –	S-35	2	2.0'		0.25	CL	wet								_
79 0		3			_										_
								1							_
80.0								(cont	tinued on next page	e).					_

PROJECT NAME _ Portal Bridge Final Engineering

MUNICIPALITY Kearny LOCATION Amtrak

ENGINEERS FIELD BORING LOG

	BORING NO						
FIELD DURING LUG	SHEET_5_OF_7						
	DATE:START10/24/11						
	END 11/1/11						
COUNTY Hudson	DATUM: NGVD29						
N. 698047.8± E. 600637.3±	ELEVATION: 2.8±						
es, Inc.	TOTAL DEPTH: <u>118'</u>						
EQUIPMENT USED Acker Soil XLS Track	Rig with Automatic Hammer						
	10.00 DATE: 10/24/11						

ſ

INSPE	ECTOR	S NAMI	E/CON	IPANY	<u>R. Je</u>	remic/	YU & A	ssociates, In	N. 090047.01	_ E0	0057.5±			118'
DRILL	ERS N	IAME/C	OMPA	NY <u>C</u>	. Cruz/J	IBD			-					
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ry, NX/	NQ Coi	ring		EQUIPMENT USED	cker So	il XLS Trac	k Rig with	Automatic	Hammer
CASI		E:	4.0 Mazuii	DE an	PIH:	30 ^ TE -	0.U 2/22/*	_ WATER:	DURING DRILLING:	0.5		10:00	DATE:	10/24/11
UNEU	NED D	r. <u>D</u> .	mazaji		D/	AIE			END OF DRILLING.			10.00	DATE	10/01/11
					1				NOTENCOUNTEREL					
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE		DESCRIPTIO	REMARKS				
L _		Р		100	PP			(con	ntinued from previous pa	age).			Undisturbe	ed sample
	U-3A	U S H	2.0'		0.50 TV 0.10	CL	wet	Brown	Silty CLAY, (GLACIOL	ACUSTF	RINE DEPC	DSIT).	U-3A: mc=	28119 a De =40.8% =23
L_		1		100				Brown	Silty CLAY varved with	red-brov	wn Clay & S	Silt,	100 /0 ~#20	
L _	S-36	1	2 0'		PP	CI	wot	alternat	ting 1/16"± silty clay, 1/	/32"± cla	y & Silt,			
L _	0.00				<0.25	0L	wei	(OLAC	IOLACOSTRINE DEFC	5511).				_
84.0		2		100				-						_
<u>⊢</u> –		WR												_
<u>⊢</u> –	S-37	WH	2.0'		PP <0.25	CL	wet							_
86 0		1												_
00.0		1		100				-						
		1			PP									_
F -	S-38	1	2.0'		<0.25	CL	wet							_
88.0		1												
		2		100				1						
L _	S-39	2	2 0'		PP	0	wat							_
L _	0.00	3	2.0		<0.25	CL	wei							_
90.0		2		100				-						_
⊢ –		2												_
<u>⊢</u> –	S-40	3	2.0'		PP <0.25	CL	wet							_
		4			0.20									_
L92.0_		3		100				1						_
		4			PP									_
F -	S-41	3	2.0		<0.25	CL	wet							_
94.0		3												
L _		9		35				Red-bro	own fine SAND, some	Silt,				_
L _	S-42	10	0.7'		-	SM	wet	(GLAC	IOLACUSTRINE DEPU	511).				_
⊢ –		9				CIVI	wet							_
96.0		12		100				Red-br	OWD CLAY & SILT littl	e fine Sa	and			_
⊢ −								(GLAC	IOLACUSTRINE DEPC	DSIT).			Dropped 1	0' rods
⊢ −	S-43	4	2.0'		<0.25	CL	wet						with spoor	n in hole. —
98 0		3											sample ar	eval of nd rods.
								1					hole adva	nced to
99.0								99.0'				<u>EI</u> 96.2'	retrieval.	sample –
[]	<u> </u>	7	0.01	64		00		Red-bro	own medium to fine Gr	avel, and	d Silty Clay	, little	Hard drillin	ng from
	S-44	13	0.8'		-	GC	wet	coarse	to tine Sand, (GLACIA	L TILL).			99	

ENGINEERS FIELD BORING LOG

ENGINEERS FIELD BOP	RING LOG	BORING NO SHEET6OF7 DATE:START10/24/11
PROJECT NAME Portal Bridge Final Engineering COUNTY MUNICIPALITY Kearny LOCATION Amtrak N. 698047. INSPECTORS NAME/COMPANY R. Jeremic/YU & Associates, Inc. DRILLERS NAME/COMPANY C. Cruz/JBD	E. 600637.3±	DATUM: <u>NGVD29</u> ELEVATION: <u>2.8±</u> TOTAL DEPTH: <u>118'</u>
DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT U	SED Acker Soil XLS Track	Rig with Automatic Hammer
CASING SIZE: 4.0" DEPTH: 35.0' WATER: DURING DRILL	ING: 0.5' TIME:	10:00 DATE: 10/24/11

DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED Acker Soil XLS Track Rig with Auto											Automatic	Hammer						
CASI	NG SIZ	E:	4.0"	DE	EPTH:	35	5.0'	_ WATER:	DURING DRILLING:	0).5'	TIME:	10:00	DATE:	10/24/11			
CHEC	KED B	Y: D.	Mazuji	ian	D.	ATE: _	2/22/	12	END OF DRILLING:	0	.0'	_ TIME:	15:30	DATE:	10/31/11			
									NOT ENCOUNTERE	D								
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE		DESCRIPTION									
100.2		50/2"								_								
101.0				-										Rock fragment at				
L _		9		59				Red-bro	own coarse to fine Gra	avel, a	and S	Silty Clay,	little					
L _	S-45	10	0.8'		-	GC	wet	coarse	to fine Sand, (GLACIA		LL).				_			
102.4		100/5"						-							_			
103.0				0-				103.0'	Top of Rock at	103.	.0 fee	t.	El100.2'	Rollerbit	advanced			
L_				95				Red-bro	Red-brown SILTSTONE/MUDSTONE, slightly									
				/				weathe	red, medium strong, c	losel	ly to n	noderatel	у		_			
								spaced	Tractures, (COMPETE		PASS	AIC			_			
L _									anon).						_			
L _	C-1		4 8'												_			
L _	0.																	
L _															_			
L _				/											_			
L _				/											_			
108.0				85											_			
L _				100				Red-bro	own MUDSTONE, slig	htly v	weath	ered, wea	ak to		_			
L _				/				spaced	fractures (COMPETE	IUSE			ly		_			
L _								FORMA	ATION).						_			
L _															_			
L _	C-2		5.0'												_			
															_			
<u> </u>															_			
<u>⊢</u> –				/											_			
⊢ –				1 50											_			
113.0				95	/			Bod br		htly	woath	orod mo	dium		_			
\vdash –				/				strong	closely to moderately	spac	ced fr	actures	aidin		_			
⊢ –				/				(COMP	PETENT PASSAIC FO	RMA	TION	l).			_			
⊢ –								,				,			_			
<u>⊢</u> –															_			
<u>⊢</u> –	C-3		4.8'												_			
<u>⊢</u> –															_			
\vdash –				/											_			
<u>⊢</u> –				/														
110 0				58				110 0'							_			
110.0								110.0	Bottom of boreho	le at	118 f	eet.	LI110.Z					
F -								Notes:										
F -								1. Bore	hole tremie grouted us	sing 2	2x94-	lb bags						
F -								portland	d cement, 1/2x50-lb ba	ag of	bento	onite, and	50		_			

ENGINEERS FIELD BORING LOG

COUNTY Hudson

	BORING NO. BW-317										
	SHEET_7_OF_7										
	DATE:START										
	END 11/1/11										
	DATUM: NGVD29										
′.3±	ELEVATION: 2.8±										
	TOTAL DEPTH: 118'										
S Track	3 Track Rig with Automatic Hammer										

MUNI		TY Ke	earny E/CON	LO 1PANY NY C	CATIO R. Je	N <u>Am</u> eremic/`	trak YU & As	ssociates, Ir	N. <u>698047.8±</u> nc.	E60	0637.3±	ELEVAT TOTAL D	ION: DEPTH:	2.8± 118'
DRILL	ING M	FTHOD	S Mu	ud Rota	ary, NX/	NQ Co	ring		EQUIPMENT USED	cker Soi	XLS Trac	k Rig with	Automatic	Hammer
CASI	NG SIZI	E:	4.0"	DE	EPTH:	35	5.0'	WATER:	DURING DRILLING:	0.5'	TIME:	10:00	DATE:	10/24/11
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	D.	ATE: _	2/22/1	2	END OF DRILLING:	0.0'	_ TIME: _	15:30	DATE:	10/31/11
									NOT ENCOUNTERED					
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE		DESCRIPTION	J			REM	IARKS
L _								gallons	s of potable water.	o contor	to noted in			
L _								2. Und "Roma	listurbed sample moistur	re conter	isture cont) onte		
L _								determ	nined for the sample.			ento		_
<u> </u>														_
⊢ –														_
⊢ –														_
⊢ –														_
⊢ −														_
<u>⊢</u> –														
– –														
L _														
L _														_
<u>⊢</u> –														_
														_
														_
L _														_
L _														_
⊢ –														_
⊢ –														_
⊢ –														_
F -														_
F -														_
														_
$\lfloor -$														
L _														_
⊢ _														_
⊢ –														_
⊢ –														_
⊢ –														_

ENGINEERS FIEL	BORING LOG BW-319 SHEET_1_OF_3 DATE:START 11/1/11
PROJECT NAME _Portal Bridge Final Engineering MUNICIPALITY _Kearny _ LOCATION _AmtrakN INSPECTORS NAME/COMPANY _R. Jeremic/YU & Associates, IncN DRILL ERS NAME/COMPANY _C. Cruz/JBD	COUNTY Hudson DATUM: NGVD29 I. _698092.6± E. _600725.2± ELEVATION: 2.3± TOTAL DEPTH: _38.5'
DRILLING METHODS Mud Rotary EQU CASING SIZE: 4.0" DEPTH: 29.0' WATER: DUR CHECKED BY: D. Mazujian DATE: 2/22/12 END	IPMENT USED Acker Soil XLS Track Rig with Automatic Hammer ING DRILLING: 0.0' TIME: 7:00 DATE: 11/1/11 OF DRILLING: 0.0' TIME: 16:00 DATE: 11/1/11 ENCOUNTERED

MUNI		TY Ke	earny E/CON	LO //PANY	CATIO R. Je	N <u>Am</u> eremic/N	trak /U & A	N. 698092.6± E. 600725.2± ELEVAT ssociates, Inc. TOTAL I	ION: <u>2.3±</u> DEPTH: <u>38.5'</u>					
DRILL	ERS N	IAME/C	OMPA	NY C	. Cruz/.	JBD			A					
DRILL	ING M		S <u>M</u>	ud Rota		20	0'							
	NG SIZ	⊑: ∨:D	4.0 Mazuii	DE	:PIH: ח	<u></u>	2/22/	_ WATER: DURING DRILLING: <u>0.0</u> TIME: <u>7.00</u> 12 END OF DRILLING: 0.0' TIME: 16:00	DATE: 11/1/11					
UNEO		1	inazaj.		D	AIL			DATE					
							111							
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS					
0.0		WН		15				Dark gray roots and plant fragments, (FILL).	_					
	S-1	WH WH	0.3'		-		wet		-					
2.0		WH		15					_					
⊢ –		1	Dark gray medium to fine GRAVEL, little coarse to fine Sand, trace Silt, frequent concrete and cinder											
<u> </u>	- $ -$													
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
4.0_				30				4.0 [°] EI1.7 [°] Brown fibrous PEAT (ORGANIC DEPOSIT)	_					
		3							—					
	S-3	1	0.6'		-	PT	wet		_					
60		1							_					
0.0		1		0				No recovery.	_					
	64	2	0.01											
	3-4	3	0.0		-				Peat in cuttings to					
8.0		2		10				8.0'El5.7'	Casing bounced at					
L _		3		10				Dark gray and black medium to fine GRAVEL,	8' bgs					
L _	S-5	6	0.2'		-	GP	wet		with rods —					
		8							_					
10.0		40		35				Greenish gray fine SAND and Silt occasional wood	S-6 [·] mc=20.4%					
		10						fragments, (ALLUVIUM).	35%<#200 -					
	S-6	8	0.7'		-	SM	wet		-					
12 0		11							_					
		2		60				Gray fine SAND, little Silt, trace wood fragments,	_					
	S_7	4	1 2'		_		+	(ALLUVIUM).	_					
L _	3-7	8	1.2		-	SM	wet		_					
14.0		7		75					_					
L _		4		15				trace Silt.	_					
	S-8	9	1.5'		-	SP-SM	wet		_					
		13							_					
16.0		2		100				Light brown Clayey SILT, some fine Sand,	_					
		5						(ALLUVIUM).	_					
	S-9	7	2.0'		-	ML	wet							
18.0		9							_					
		3		40										
	S-10	3	0.8'		_	NAL	wet		_					
L _	0.10	4	0.0			IVIL	wei	(another advanced and and a	_					
20.0		6						20.0'(continued on next page). EI17.7'						
1														

ENGINEERS FIELD BORING LOG

BW-319

BORING NO.

	X							SHEET.	OF	
	Concernation to	Surces						DATE:	START <u>11/1/11</u>	
			Devtel	Duidaa	Final F				END <u>11/1/11</u>	
PROJ	ECT N	AME _! ⊤∨ K e	Portal			nginee	ring trak		<u>NGVD29</u>	
INSPE	ECTOR	S NAM	E/CON	IPANY	R. Je	remic/	YU & A	ssociates, Inc.	DEPTH: 38.5'	
DRILL	ERS N	AME/C	OMPA	NY C	. Cruz/J	IBD				
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	iry			EQUIPMENT USED Acker Soil XLS Track Rig with	Automatic Hammer	
CASI		E:	<u>4.0"</u> Mazuli	DE	EPTH:	29).0' 2/22/1	_ WATER: DURING DRILLING: <u>0.0'</u> TIME: <u>7:00</u>	_ DATE: <u>11/1/11</u>	
CHEC	KED B	Y: <u>D.</u>	iviazuji	an	D#	AIE: _	21221		_ DATE:	
					1				1	
ЕРТН (FT)	Image: Sample No. Sample No. Sample No. BLOWS/0.5 FT BLOWS/0.5 FT BLOWS/0.5 FT ON SAMPLE NO. Image: Sample No. RECOVERY (FT) (FT) NOCKET PENT/ NON CALL USCS USCS USCS USCS USCS									
	N N S	B		Rg[/	0 D		AMF			
		4		60			S	(continued from previous page).	S-11: mc=29.2%	
 	S-11	2 2 2	1.2'		-	CL	wet	Gray SILT & CLAY varved with brown Clay & Silt, (GLACIOLACUSTRINE DEPOSIT).	LL=30, PI=9 99%<#200	
22.0		2	-							
		3							-	
⊢ –	S-12	4	1.8'		-	CL	wet		-	
24.0		5								
25.0				(00						
	U-1	P U S H	2.0'	100	PP 0.75 TV 0.25	CL	wet	Gray SILT & CLAY varved with brown Clay & Silt, little fine Sand, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a — Shelby tube — U-1: mc=29.5% LL=29, PI=6	
27.0		2		85				Gray SILT & CLAY varved with brown Clay & Silt,	_	
F -	0.40	2	4 -		PP			alternating 1/8"± silt & clay, 1/16"± clay & silt,	-	
	S-13	3	1.7		1.50	CL	wet	(GLACIOLACUSTRINE DEPOSIT).		
29.0		4		100					Advanced 4" casing	
L _		4		100					10 29.0	
<u>⊢</u> –	S-14	4	2.0'		PP	CI	wet		_	
		/ 8			1.75	02				
31.0		0		0				No recovery	2 attempts	
<u>⊢</u> –		2							-	
F -	S-15	5	0.0'		-				-	
33.0		4							_	
[_		3		100				Gray-brown SILT & CLAY varved with gray Clay & Silt,		
L _	S-16	2	2.0'		PP	CI	wot	alternating 1/8"± silt & clay, 1/16"± clay & silt,	_	
L _		3			0.50	OL	Wei	(OLACIOLACOSTAINE DEI OSIT).	_	
35.0				100					-	
⊢ –		WH							-	
⊢ −	S-17	WH	2.0'		<0.25	CL	wet		-	
37.0		WН							-	
		WН		100					Spoon bouncing at	
	S-18	WН	1.5'		PP <0.25	CL	wet		weight	
38.5		WH						38.5' El36.2		
⊢ –								Bottom of borenole at 38.5 feet.		
⊢ –								1. Borehole tremie grouted using 1/2x94-lb bag of		

BW-319

BORING NO.

PROJ MUNI INSPE DRILL DRILL CASIN CHEC	ECT NA CIPALI ECTOR ERS N ING M NG SIZI KED B		Portal I earny E/COM OMPA OS <u>Mu</u> 4.0" Mazuji	Bridge LO 1PANY NY <u>C</u> ud Rota DE an	Final E DCATIO R. Je Cruz/ ary EPTH: D	EINC inginee N _Arr remic/ JBD 2 ATE: _	oring htrak YU & A 9.0' 2/22/	COUNTY Hudson DATUM COUNTY Hudson DATUM N. 698092.6± E. 600725.2± ssociates, Inc. N. 698092.6± E. EQUIPMENT USED Acker Soil XLS Track Rig with WATER: DURING DRILLING: 0.0' TIME: 7:00 12 END OF DRILLING: 0.0' TIME: 16:00	3 OF 3 START <u>11/1/11</u> END <u>11/1/11</u> END <u>11/1/11</u> CON: 2.3± DEPTH: <u>38.5'</u> Automatic Hammer DATE: <u>11/1/11</u> DATE: <u>11/1/11</u>
	_			(% /	1		Ш	NOT ENCOUNTERED	
DEPTH (FT)	SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTUF	DESCRIPTION	REMARKS
								portland cement, 1/2x50-lb bag of bentonite, potable water. 2. Undisturbed sample moisture contents noted in "Remarks" reflect an average of all moisture contents determined for the sample.	

PROJECT NAME Portal Bridge Final Engineering COUNTY Hudson

BORING NO.	BW-368
SHEET_1_O	F_4
DATE:START	11/21/11
END1	1/22/11
DATUM: NG	VD29
ELEVATION:	4.1±
TOTAL DEPTH:_	70.1'

INSPECTORS NAME/COMPANY J. Thampiru & Associates, Inc. DTAIL DEPTH: 70.* DTAIL DEPTH: 7	MUNI	CIPALI	TY Ke	arny	LO	CATIO	N Am	trak		N	696653.5±		E. <u>59</u>	7887.1±	ELEVAT	ION:	<u>4.1±</u>
DRILLIPS NAME/COMPANY L. UN2080 DRILLIPS NAME/COMPANY L. UN2080	INSPE	CTOR	S NAM	E/CON	/PANY	<u>J. Th</u>	ampi/Y	U & As	sociates, Inc).						DEPTH:	70.1'
DRILLING METHODS Mud Rotary, NNRQ Coring Collimeter Use Face Vis Track with Automatic Farmer CASING SIZE: 4.0° DePTH: 30.0° VATE: 202/12 TIME: 9.0° DATE: 11/22/11 CHECKED BY: D. Mazujian DATE: 2/22/12 END OF DRILLING: 3.0° TIME: 9.00 DATE: 11/22/11 END OF DRILLING: 3.0° TIME: 9.0° TIME: 9.0° DATE: 11/22/11 END OF DRILLING: 3.0° TIME: 9.0° TIME: 9.0° DATE: 11/22/11 NOT ENCOUNTERED DESCRIPTION REMARKS 0.0 - - SF-SM Gray-brown coarse to fine SAND, some coarse to fine 6.0° - - - SP-SM SP-SM Brown coarse to fine GRAVEL, little coarse to fine S-3 fine - SAND, some coarse to fine S-3 mc=339.7%	DRILL	ERS N	AME/C	OMPA	NY <u>C</u>	. Cruz/	JBD										
CASING SIZE: <u>4.0</u> DEPTH: <u>30.0</u> WATER DURING DRILLING: <u>3.0</u> TIME: <u>900</u> DATE: <u>11/2111</u> CHECKED BY: <u>D.Maxujan</u> DATE: <u>21/21/1</u> NOT ENCOUNTERED $\begin{array}{c c c c c c c c c c c c c c c c c c c $	DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ Cor	ing		EQUIPI	MENT USEI		ker LS	I rack with	Automatic	Hammer	
CHECKED BY: DIMARUIAN DATE: 22212 END OF DRILLING: 3.0 TIME: 1300 DATE: 112211 NOT ENCOUNTERED NOT ENCOUNTERED NOT ENCOUNTERED DESCRIPTION REMARKS $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CASIN	IG SIZ	E:	4.0" Maanuii	DE	EPTH:	30	.0'	_ WATER:	DURIN		3:	3.0	_ TIME: _	9:00	DATE:	11/21/11
$\begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline c c c c c c c c c c c c c c c c c c $	CHEC	KED B	Y: D.	wazuji	an	D	AIE: _	21221	12	END OI	F DRILLING	j:	3.0	_ IIME: .	15:00	DATE:	11/22/11
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-			<u> </u>			NOT E	NCOUNTER	RED					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE			DESCRIPT	ION				REM	IARKS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0								Gray-br	rown coa	arse to fine	SAND	D, some	e coarse to	fine	Hand aug	gered to
G-1 - SP-SM 6.0 - SP-SM 6.0 - SP-SM 6.0 - SP-SM 6.0 - GM 8.0 9 - 9 - GM 8.0 9 - 9 - GM 10.0 - - 5.2 7 - 10.0 - - 5.2 7 - 10.0 - PT 12.0 - PT 12.0 - PT 12.0 - SM 12.0 - SM 14.0 - SM 14.0 - SM 14.0 - SM 15 - SP-SM 16.0 75 - 16.0 75 - 16.0 75 - 16.0 75 - 16.0 75 - 16.0 75 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Gravel,</td> <td>little(-)</td> <td>Silt, (FILL).</td> <td></td> <td></td> <td></td> <td></td> <td>6.0'</td> <td>_</td>									Gravel,	little(-)	Silt, (FILL).					6.0'	_
G-1 - SP-SM 6.0 - SP-SM 6.0 - SP-SM 6.0 - SP-SM 6.0 - GM 8.0 9 0.3' - 9 - GM wet 8.0 9 0' - 5.1 $\frac{8}{9}$ 0.3' - 5.2 $\frac{7}{4}$ 0.0' - 5.2 $\frac{7}{4}$ 0.0' - 5.3 $\frac{1}{1}$ 1.0' - 5.3 $\frac{1}{1}$ 1.0' - 5.3 $\frac{1}{2}$ 2 1.3' 12.0 - PT wet 12.0' - SM wet 14.0 2 1.3' - SM wet 14.0 - SS $\frac{15}{17}$ 1.5' - SP-SM wet 16.0 - - SP-SM wet Gray coarse to fine SAND, trace Silt, (ALLUVIUM). S- 6.15 - SP-SM wet <																	
G-1 . . SP-SM 6.0 . . . SP-SM 6.0 6.0 8.0 8.0 8.0 8.0 8.0 10.0 10.0 10.0 11.0 12.0 12.0 14.0 14.0 14.0 																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\vdash \dashv																_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		G-1				-	SP-SM										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⊢ −																_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_6.0_				15				Brown	oooroo t	a fina CDA	/=1		oroo to fin	_		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L _		10						Brown o Sand li	ittle Clay	O TINE GRAN	VEL, I	little co	arse to fine	3		
8.0 9 0 No recovery, black organic Silt & Clay at tip of spoon. 9.0' - 9.0' - 9.0' 10.0 3 50 - 9.0' 10.0 3 - 9.0' - - 10.0 3 - - 9.0' - - 10.0 3 - - 9.0' - - 10.0 3 - - - 9.0' - - 11.0' - - PT wet Black PEAT, (ORGANIC DEPOSIT). - S-3: mc=339.7% 12.0' 2 - - PT wet - Gray coarse(-) to fine SAND, little(+) Clayey Silt, (ALLUV/UM). - - S-4 2 1.3' - SM wet - 14.0 2 - SM wet - Gray coarse to fine SAND, trace Silt, (ALLUV/UM). - - S-5 21 1.5' - SP-SM wet - 16 - SP-SM wet -	L _	S-1	8	0.3'		-	GM	wet	Ganu, II		yey ont, (i il	-∟).					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	8					wei									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_8.0_		9														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L _		7		0				No reco	overy, bl	ack organic	Silt 8	& Clay a	at tip of sp	oon.		_
$\begin{bmatrix} 3.2 & 1 & 0.3 & 0 & 0 & 0 & 0 \\ 10.0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10.0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10.0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 11.0 & - & - & - & - & - & - & - & - & - & $	L _	S-2	4	0.0'		_			9.0'						<u>EI4.9'</u>		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0-2	1	0.0		-											_
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	10.0		3														_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		50				Black I	PEAT, (ORGANIC E	DEPC	OSIT).			S-3: mc=	339.7%
$\begin{bmatrix} -3.5 & 1 & 1.0 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} -3.5 & 1 \\ 2 & 1.0 \end{bmatrix} = \begin{bmatrix} -3.5 & 1 \\ 2 & 1.0 \end{bmatrix} = \begin{bmatrix} -7.9 \\ 12.0 \end{bmatrix} = \begin{bmatrix} -7.9 \\ 12.0 \end{bmatrix} = \begin{bmatrix} -7.9 \\ 65 \\ (ALLUVIUM) \end{bmatrix}$ $\begin{bmatrix} -3.4 & 2 \\ 2 & 1.3 \end{bmatrix} = \begin{bmatrix} -7.9 \\ -3.4 & 2 \\ 2 & 1.3 \end{bmatrix} = \begin{bmatrix} -7.9 \\ -3.4 & 2 \\ 2 & 1.3 \end{bmatrix} = \begin{bmatrix} -7.9 \\ -3.4 & 2 \\ 2 & 1.3 \end{bmatrix} = \begin{bmatrix} -7.9 \\ -3.4 & -3.4 \\ 2 & 1.3 \end{bmatrix} = \begin{bmatrix} -7.9 \\ -3.4 & -3.4 \\ -3.4 & -3.4 \\ -3.4 & -3.4 \end{bmatrix} = \begin{bmatrix} -7.9 \\ -3.4 & -3.4 \\ -3$		6.2	1	1.01												LL=482, 11 2%<#	PI=166 -
$\begin{bmatrix} 12.0 & 2 & & & & \\ 12.0 & 2 & & & \\ 14.0 & 2 & & & \\ 14.0 & 2 & & & \\ 14.0 & 2 & & & \\ 16.0 & & & & \\ 16.0 & & & & \\ 16.0 & & & & \\ 16.0 & & & & \\ 16.0 & & & & \\ 16.0 & & & & \\ 17.0 & & & & \\ 16.0 & & & & \\ 12.0' & & & \\ Gray coarse(-) to fine SAND, little(+) Clayey Silt, (ALLUVIUM). Gray coarse to fine SAND, trace Silt, (ALLUVIUM). \\ Gray coarse to fine SAND, trace Silt, (ALLUVIUM). \\ Gray coarse to fine SAND, trace Silt, (ALLUVIUM). \\ 0 & 0 & 0 & 0 & \\ 0 & 0 & 0 & 0 & \\ 0 & 0 &$		3-3	1	1.0		-	РГ	wet								86.4% or	ganic
$\begin{bmatrix} 3 \\ 2 \\ 2 \\ 1.3' \end{bmatrix} = \begin{bmatrix} 65 \\ 2 \\ 2 \\ 1.3' \end{bmatrix} = \begin{bmatrix} 65 \\ - \\ SM \end{bmatrix} wet \begin{bmatrix} Gray \ coarse(-) \ to \ fine \ SAND, \ little(+) \ Clayey \ Silt, \ (ALLUVIUM). \end{bmatrix}$ $\begin{bmatrix} 14.0 \\ 2 \\ - \\ - \\ S-5 \end{bmatrix} \begin{bmatrix} 15 \\ 21 \\ 16 \\ 16 \end{bmatrix} = \begin{bmatrix} 75 \\ - \\ SP-SM \end{bmatrix} wet \begin{bmatrix} Gray \ coarse \ to \ fine \ SAND, \ trace \ Silt, \ (ALLUVIUM). \end{bmatrix}$	12.0		2						12.0'						El7.9'	content	
$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $	[]		3		65				Gray co	oarse(-)	to fine SAN	D, litt	le(+) C	layey Silt,]	_
5-4 2 1.5' - SM wet 14.0 2 - SM wet - 15 - SP-SM wet - 5-5 17 1.5' - SP-SM wet 16.0 16 75 - SP-SM wet -	$ \top $	<u> </u>	2	4.01					(ALLU\	/IUM).							_
14.0 2 Gray coarse to fine SAND, trace Silt, (ALLUVIUM). 15 75 5 21 16.0 16	$ \top $	5-4	2	1.3		-	SM	wet									_
15 75 Gray coarse to fine SAND, trace Silt, (ALLUVIUM). - S-5 21 1.5' - SP-SM wet 16.0 75 - SP-SM wet - -	14.0		2														_
$\begin{bmatrix} 21 \\ 17 \\ 16.0 \end{bmatrix} = \begin{bmatrix} 21 \\ 17 \\ 16 \end{bmatrix} = \begin{bmatrix} 5P-SM \\ 16 \end{bmatrix} \text{ wet}$			15		75				Gray co	oarse to	fine SAND,	trace	e Silt, (A	ALLUVIUN).		_
S-5 17 1.5' - SP-SM wet 16.0 16 - - -	\vdash \dashv	a -	21														_
		S-5	17	1.5'		-	SP-SM	wet									
	16.0		16														_
₁₄ ⁷⁵	- 10.0		14		75											S-6: mc=	15.3%
	$\vdash \dashv$		17													88.3%<#	200 –
⊢	\vdash \dashv	S-6	20	1.5'		-	SP-SM	wet									-
			13														-
	10.U		10		60				-								_
	$\vdash \dashv$		12 10														_
S-7 '' ₇ 1.2' - SP-SM wet -	$\vdash \dashv$	S-7	10	1.2'		-	SP-SM	wet									-
			י א						1000	tinued o	n nevt nace)					_
	20.0		0						(00//		in next page	/•					

BORING NO.	BW-368
SHEET 2	_ OF 4
DATE:STAR	T_11/21/11_
END_	11/22/11
DATUM:	NGVD29
ELEVATION:	4.1±
TOTAL DEPT	'H: <u>70.1'</u>
Automatic Ham	mer

PROJ	ECT N	AME _	Portal	Bridge	Final E	ngineer	ring		COUNTY _	Hudse	on		DATUM:	NGV	D29	
MUNI	CIPALI	TY K	earny	LO	CATIO	N Am	trak		N. 696653.5±	ELEVAT	TION: 4.1±					
INSPE	ECTOR	S NAM	E/CON	IPANY	J. Th	ampi/Y	U & As	ssociates, Inc.	•				TOTAL	DEPTH:	70.1'	
DRILL	ERS N	IAME/C	OMPA	NY _C	. Cruz/	JBD										
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ Cor	ing		EQUIPMENT USE		ker LS	Track with	Automatic	Hammer	44/04/44	
CASIN		E:	4.0 Mazuii	DE ian	PIH:	<u>30</u>	.U 2/22/1	WATER:		G:	3.0		9:00	DATE:	11/21/11	
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	D	AIE: _		12		G:	<u> </u>		13.00	DATE:	11/22/11	
								1	NOTENCOUNTE	RED						
	_ N	⊢α		/ (%	ЦЦ Ц		URE									
Ē	NЧ	1.5 F	ΓK	/ ER	TS	6	IST									
TH	Ч С В С В	VS/0 AMF	N E		ANE A	sce	M		DESCRIPTION							
)EP	PE/0	N S N	LO L		NCK		РГЕ									
	∞₹	шO	-	/ Ig	P D		MAS									
		2		30			0)	(cont	tinued from previou	is pad	e).					
\vdash \dashv	- 2 Grav coarse to fine SAND. trace Silt. (ALLUVIUM).										_					
\vdash \dashv	S-8	6	0.6'		-	SP-SM	wet						,		_	
22 0		6													_	
22.0								1							_	
\vdash \dashv															_	
															_	
															_	
25.0								25.0'					EI20.9'			
		14		85				Gray SI	LT & CLAY varved	d with	Clayey	Silt, little f	ine		_	
	S-9	11	1 7'		_	N AL	wet	Sand, (GLACIOLACUSTR	RINE	DEPOS	IT).			_	
	00	12				IVIL	wei								_	
27.0		10						_							_	
\mid \mid															_	
\vdash \dashv															_	
\vdash \dashv															_	
\vdash \dashv															_	
															_	
30.0		10		100				Grav CL	AY & SILT varved	d with	brown	Silt & Clav	_		_	
\vdash \dashv		10			пп			alternati	ing 1/2"± clay & sil	t, 1/4"	'± silt &	clay,	,		_	
\vdash \dashv	S-10	8	2.0'		2.50	CL	wet	(GLACI	OLACUSTRINE D	EPOS	SIT).				_	
32 0		5													_	
[1							_	
															_	
$\lfloor]$																
35.0				100				4							_	
$\mid - \mid$		3													_	
$\mid - \mid$	S-11	4_	2.0'		PP	С	wet								_	
$\mid - \mid$		5			2.00		WGL								_	
37.0								4							_	
$\left - \right $														Undicture		
38.0				100				Grav Cl	AV & SILT varyon	1 with	brown	Silt & Clav		collected	using a	
\vdash \dashv		P			PP			(GLACI		EPOS	SIT).		,	Shelby tu		
\vdash \dashv	U-1		2.0'		2.00 TV	CL	wet			20	,-			LL=37, P	I=14	
		н			1.00			(cont	tinued on next page	e).				99.5%<#	200 —	
++0.0				I						,				l		

PROJECT NAME Portal Bridge Final Engineering COUNTY Hudson

BORING NO. BW-368
SHEET_3_OF_4
DATE:START 11/21/11
END 11/22/11
DATUM: NGVD29
ELEVATION: 4.1±
TOTAL DEPTH: 70.1'
Automatic Hammer

MUNI	CIPALI	TY <u>Ke</u>	earny	LO	CATIO	N <u>Am</u>	trak	N. <u>696653.5±</u> E. <u>597887.1±</u> ELEVAT	ION: 4.1±
INSPE	ECTOR	S NAM	E/CON	/PANY	<u>J. Th</u>	ampi/Y	U & As	sociates, Inc.	DEPTH: 70.1'
DRILL	ERS N	IAME/C	OMPA	NY <u>C</u>	. Cruz/J	JBD			
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	ry, NX/	NQ Col	ring	EQUIPMENT USED Acker LS Track with Automatic	Hammer
CASI	NG SIZ	E:	4.0"	DE	EPTH:	30	0.0	_ WATER: DURING DRILLING: <u>3.0'</u> TIME: <u>9:00</u>	DATE: <u>11/21/11</u>
CHEC	KED B	Y: <u>D.</u>	wazuji	an	D/	ATE: _	2/22/	END OF DRILLING: <u>3.0</u> TIME: <u>15:00</u>	DATE: <u>11/22/11</u>
								NOT ENCOUNTERED	
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS
		1		100				(continued from previous page).	
 42.0	S-12	2 3 5	2.0'		PP 1.50	CL	wet	Brown Silty CLAY varved with gray Clay & Silt, alternating 1/2"± silty clay, 1/4"± clay & silt, (GLACIOLACUSTRINE DEPOSIT).	-
 45.0									
		1		100					_
 47.0	S-13	3 3 2	2.0'		PP 1.00	CL	wet		
L _									_
48.0 50.0	U-2	P U S H	2.0'	100	PP 1.00 TV 0.50	CL	wet	Brown Silty CLAY varved with gray Clay & Silt, (GLACIOLACUSTRINE DEPOSIT).	Undisturbed sample collected using a — Shelby tube — U-2: mc=28.0% LL=46, PI=23
 52.0	S-14	8 9 14 10	1.7'	85	PP 2.00	CL	wet	Red-brown SILT & CLAY varved with gray Clay & Silt, alternating 1/2"± silt & clay, 1/4"± clay & silt, (GLACIOLACUSTRINE DEPOSIT).	99.9%<#200 — — — —
-									Strong rig
Γ –								53.0' EI48.9'	cnattering from 53'
 55.0									-
57.0	S-15	13 14 11 10	1.3'	65	-	GM	wet	Red-brown coarse to fine GRAVEL, little coarse to fine Sand, little Silty Clay, (GLACIAL TILL).	S-15: mc=8.8% 7.0%<#200 —
									Strong rig chattering to 60'
60 0								60.0'(continued on next page).	-
		I				I		EI. 00.0	

ENGINEERS FIELD BORING LOG

COUNTY Hudson

	BORING NO	B۱	N-368
	SHEET_4	OF_	4
	DATE:START	11	/21/11
	END	11/2	22/11
	DATUM:	IGVE	29
	ELEVATION:	4	.1±
_	TOTAL DEPTH	l:	70.1'
h /	Automatic Hamr	ner	
	0.00	- .	11/21/11

ſ

MUNI	JNICIPALITY Kearny LOCATION Amtrak N. 696653.5± E 597887.1± ELEVATION: 4.1± SPECTORS NAME/COMPANY J. Thampi/YU & Associates, Inc. TOTAL DEPTH: 70.1' RILLERS NAME/COMPANY C. Cruz/JBD TOTAL DEPTH: 70.1'												
DRILL	ING MI	ETHOD	s_ <u>M</u> u	ud Rota	ry, NX/	NQ Cor	ing	EQUIPMENT USED Acker LS Track with Automatic	Hammer				
CASIN	IG SIZI	:	4.0"	DE	EPTH:	30	.0'	WATER: DURING DRILLING: <u>3.0'</u> TIME: <u>9:00</u>	DATE: 11/21/11				
CHEC	KED B	Y: D.	Mazuji	an	D.	ATE: _	2/22/1	2 END OF DRILLING: TIME:	DATE: <u>11/22/11</u>				
								NOT ENCOUNTERED					
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS				
60.1	<u>S-16</u>	100/1	0.1'	100		WR	wet	60.1 Rock fragments at tip of spoon. EI56.0	(continued from				
	C-1 C-2		4.8'	97				Top of Rock at 60.1 feet. Red-brown SILTSTONE, slightly weathered, medium strong, closely to moderately spaced fractures, (COMPETENT PASSAIC FORMATION).	previous page) —				
									-				
70.1				/ 80		\mid		70.1' El66.0'					
								Bottom of borenole at 70.1 feet.	_				
								 Borehole tremie grouted using 2x94-lb bags portland cement, 1/2x50-lb bag of bentonite, and 50 gallons of potable water. Undisturbed sample moisture contents noted in "Remarks" reflect an average of all moisture contents determined for the sample. 					
- _									_				
⊢ −									_				
- -									_				
									_				
⊢ −									_				
									_				
									_				
<u> </u>						il							

ENGINEERS FIELD BORING L

ENGINEERS FI	IELD BORING LOG	BORING NO. <u>BW-369D</u> SHEET_1_OF_5 DATE:START_ <u>12/6/11</u> END_ <u>12/9/11</u>
PROJECT NAME <u>Portal Bridge Final Engineering</u> MUNICIPALITY <u>Kearny</u> LOCATION <u>Amtrak</u> INSPECTORS NAME/COMPANY <u>J. Thampi/YU & Associates, Inc</u> DRILLERS NAME/COMPANY <u>M. Carire/JBD</u>	COUNTY <u>Hudson</u> N. <u>696507.1±</u> E. <u>597582.8±</u> C.	DATUM: <u>NGVD29</u> ELEVATION: <u>5.6±</u> TOTAL DEPTH: <u>78.7'</u>
DRILLING METHODS Mud Rotary, NX/NQ Coring CASING SIZE: 4.0" DEPTH: 30.0' WATER: CHECKED BY: D. Mazujian DATE: 2/22/12	EQUIPMENT USED CME-750 Rubber Time DURING DRILLING: TIME: END OF DRILLING: TIME:	Big with Automatic Hammer 8:30 DATE: 12/6/11 9:30 DATE: 12/9/11

DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RECOVERY(%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
0.0	G-1				-			Brown coarse to fine SAND, some coarse to fine Gravel, little Silt, with frequent brick and concrete fragments, (FILL).	Hand augered to 6.0'
 8.0	S-1	6 6 5 3	0.4'	20	-	SM	wet	Black and brown coarse to fine SAND, some(-) coarse to fine Gravel, little Silt, with frequent brick and concrete fragments, (FILL).	
 10.0	S-2	12 11 7 33	0.6'	30	-	SM ML-OL	wet wet	little coarse to fine Gravel, little Silt, frequent brick and concrete fragments. 9.8' EI4.2'	 Spoon dropped in
 12.0	U-1	P U S H	1.5'	75	-	ОН-РТ	wet	Black Organic CLAY & SILT, occasional roots and fibers, (ORGANIC DEPOSIT). Brown PEAT, (ORGANIC DEPOSIT). 12.0' EI6.4'	bottom 2" of S-2 — U-1: mc=522.6% _ LL=496, PI=233 94.8%<#200 — 86.4% organic — content
 14.0	S-3	3 14 15 28	1.7'	85	-	SM	wet	Brown coarse to fine SAND, little Organic Silt, (ALLUVIUM).	-
 16.0_	S-4	4 9 12 14	1.3'	65	-	SP	wet	Brown-gray coarse to fine SAND, and medium to fine Gravel, trace Silt, (ALLUVIUM).	
20.0								(continued on next page).	
				_					

ENGINEERS FIELD BORING LOG

PROJECT NAME Portal Bridge Final Engineering COUNTY Hudson DATUM: NGVD29
MUNICIPALITY Kearny LOCATION Amtrak N 696507.1± F 597582.8± ELEVATION: 5.6±
INSPECTORS NAME/COMPANY J. Thampi/YU & Associates, Inc. TOTAL DEPTH: 78.7'
DRILLERS NAME/COMPANY Contrelable Con
CASING SIZE: <u>4.0"</u> DEPTH: <u>30.0'</u> WATER: DURING DRILLING: <u>4.0'</u> TIME: <u>8:30</u> DATE: <u>12/6/11</u>
CHECKED BY: D. Mazujian DATE: 2/22/12 END OF DRILLING: 2.0' TIME: 9:30 DATE: 12/9/11

٦

ſ

Image: Construct of the sector of the sec									NOT ENCOUNTERED	
$\begin{bmatrix} - & - & - & - & - & - & - & - & - & - $	DEPTH (FT) SAMPLE NO / TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	BLOWS/0.5 FT ON SAMPLER RECOVERY	(FT) RECOVERY(%)	RQD (%) POCKET PENT/	TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
$\begin{bmatrix} 25.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	S-5 22.0	6 10 9 8	6 10 9 8	.6'		-	SP	wet	(continued from previous page). Gray coarse to fine SAND, little medium to fine Gravel, trace Silt, (ALLUVIUM).	
3 25 Brown coarse to fine SAND, some medium to fine - S-6 4 0.5' 5 - SP										-
	S-6 27.0	3 4 5 5	⁴ 50. 55	.5'		-	SP	wet	Brown coarse to fine SAND, some medium to fine Gravel, trace Silt, (ALLUVIUM).	
<u> </u>	30.0								<u>29.0'El23.4'</u>	-
4 100 Gray varved CLAY & SILT and Silty CLAY, alternating - 5 2.0' PP 32.0 7 1.50 CL Gray varved CLAY & SILT and Silty CLAY, alternating 1/8"± to 1/16"± clay & silt, 1/8"± to 1/16"± silty clay, (GLACIOLACUSTRINE DEPOSIT).	S-7 32.0	4 5 6 7	1 5 6 7	.0') F 1	PP .50	CL		Gray varved CLAY & SILT and Silty CLAY, alternating 1/8"± to 1/16"± clay & silt, 1/8"± to 1/16"± silty clay, (GLACIOLACUSTRINE DEPOSIT).	-
33.0 P 100 PP Gray CLAY & SILT varved with Silty Clay, (GLACIOLACUSTRINE DEPOSIT). U-2: mc=32.0% U-2 V 1.50 TV CL 35.0 H 0.75 CL	33.0 U-2 35.0	P U S H	С U S H	.0') F 1 7 0	PP .50 TV 9.75	CL		Gray CLAY & SILT varved with Silty Clay, (GLACIOLACUSTRINE DEPOSIT).	U-2: mc=32.0% LL=35, Pl=14 100%<#200
3 100 Gray CLAY & SILT varved with brown Silty Clay, alternating 3/8"± to 1/8"± to 1/16"± S-8 2 1 0 37.0 2 1 0 37.0 2 1 0 CL Silty clay, (GLACIOLACUSTRINE DEPOSIT). 0	S-8 S-8 	3 2 1 2	³ ² 1 2	.0') F 1	PP .00	CL		Gray CLAY & SILT varved with brown Silty Clay, alternating 3/8"± to 1/8"± clay & silt, 1/8"± to 1/16"± silty clay, (GLACIOLACUSTRINE DEPOSIT).	-
									(continued on next page).	
			I	1						

ENGIN

	ENGINEERS FIELD BORING LOG SHEET_3 DATE:STA ENC													
PROJ	ECT N	AME _	Portal	Bridge	Final E	nginee	ring	COUNTY Hudson	DATUM:_	NGVD29	_			
		TY <u>Ke</u>			CATIO	N <u>Am</u> amni/Y	ntrak 118. As	N. <u>696507.1±</u> E. <u>597582.8±</u>	ELEVATI	ION: 5.6±	-			
DRILL	ERS N	S NAM		NY M	. Carire	allipi/ i e/JBD	U & AS		TOTALL	EPTH: 10.1	-			
DRILL	ING M	ETHOD	S Mu	ud Rota	ry, NX/	NQ Co	ring	EQUIPMENT USED CME-750 Rubber Tire F	Rig with A	Automatic Hamme	er			
CASIN	NG SIZ	E:	4.0"	DE	EPTH:	30).0'	_ WATER: DURING DRILLING: TIME:	8:30	DATE: <u>12/6/1</u>	<u> 1</u>			
CHEC	KED B	Y: <u>D.</u>	iviazuji	an	D/	AIE: _	21221	IZ END OF DRILLING: NOT ENCOUNTEDED	9:30	DATE:	<u>11</u>			
				<u> </u>	1									
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	ROD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTUR	DESCRIPTION		REMARKS				
		3		100				(continued from previous page).						
42.0	S-9	2 2 3	2.0'		PP 0.50	CL		Gray CLAY & SILT varved with brown Silty Clay, alternating 5/8"± to 1/8"± clay & silt, 3/8"± to 1/8"± si clay, (GLACIOLACUSTRINE DEPOSIT).	ilty					
 _43.0 	U-3	P U S	2.0'	100	PP 1.00 TV			Brown Silty CLAY varved with gray Clay & Silt, (GLACIOLACUSTRINE DEPOSIT).		U-3: mc=39.7% LL=47, PI=25 99.9%<#200				
45.0		H		100	0.75			Crav & brown varied CLAV & SILT alternation 2/4"			_			
 47.0_	S-10	1 2 3 4	2.0'		PP 1.00	CL		to 1/8"± gray clay & silt, 3/8"± to 1/8"± brown clay & silt, with fine Sand, (GLACIOLACUSTRINE DEPOSIT).	T					
 								50 0' F	=1 -44 4'					
	S-11	6 12 23 45	2.0'	100	-	CL	wet	Reddish brown CLAY & SILT, some(-) coarse to fin Gravel, little(-) coarse to fine Sand, (GLACIAL TILL)						
- -										Dia abattarian fa	_			

DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RCOVERY(%) RQD (%)	POCKET PENT/ TORVANE (TSF)	NSCS	SAMPLE MOISTURE	DESCRIPTION	REMARKS
 42.0	S-9	3 2 2 3	2.0'	100	PP 0.50	CL		(continued from previous page). Gray CLAY & SILT varved with brown Silty Clay, alternating 5/8"± to 1/8"± clay & silt, 3/8"± to 1/8"± silty clay, (GLACIOLACUSTRINE DEPOSIT).	-
43.0									-
 45.0	U-3	P U S H	2.0'	100	PP 1.00 TV 0.75			Brown Silty CLAY varved with gray Clay & Silt, (GLACIOLACUSTRINE DEPOSIT).	U-3: mc=39.7% LL=47, PI=25 99.9%<#200
47.0	S-10	1 2 3 4	2.0'	100	PP 1.00	CL		Gray & brown varved CLAY & SILT, alternating 3/4"± to 1/8"± gray clay & silt, 3/8"± to 1/8"± brown clay & silt, with fine Sand, (GLACIOLACUSTRINE DEPOSIT).	
50.0 _52.0	S-11	6 12 23 45	2.0'	100		CL	wet	50.0'EI44.4' Reddish brown CLAY & SILT, some(-) coarse to fine Gravel, little(-) coarse to fine Sand, (GLACIAL TILL).	-
 55.0									- Rig chattering from 53.0' -
 57.0_	S-12	14 17 23 19	1.5'	75	-	GM	wet	Reddish brown coarse to fine GRAVEL, some coarse to fine Sand, little Clayey Silt, (GLACIAL TILL).	-
60.0								(continued on next page).	-

ENGINEERS FIELD BORING LOC

ENGINEERS F	IELD BORING LOG	BORING NO SHEET4OF DATE:START
PROJECT NAME <u>Portal Bridge Final Engineering</u> MUNICIPALITY <u>Kearny</u> LOCATION <u>Amtrak</u> INSPECTORS NAME/COMPANY <u>J. Thampi/YU & Associates, Inc</u> DRILLERS NAME/COMPANY <u>M. Carire/JBD</u>	COUNTY <u>Hudson</u> N. <u>696507.1±</u> E. <u>597582.8±</u> c.	END <u>12/9/11</u> DATUM: <u>NGVD29</u> ELEVATION: <u>5.6±</u> TOTAL DEPTH: <u>78.7'</u>
DRILLING METHODS Mud Rotary, NX/NQ Coring CASING SIZE: 4.0" DEPTH: 30.0' WATER: CHECKED BY: D. Mazujian DATE: 2/22/12	EQUIPMENT USED CME-750 Rubber Tire DURING DRILLING: TIME: END OF DRILLING: TIME: NOT ENCOUNTERED	Rig with Automatic Hammer 8:30 DATE: 12/6/11 9:30 DATE: 12/9/11

٦

ſ

DRILLING METHODS Mud Rotary, NX/NQ Coring EQUIPMENT USED CME-750 Rubber Tire Rig with Autor											Automatic	Hammer		
CASIN	IG SIZ	E:	4.0"	DE	EPTH:	30).0'	_ WATER:	DURING DRILLING:	4.0'		8:30	DATE:	12/6/11
CHEC	KED B	Y: <u>D.</u>	Mazuji	an	D#	λτε: _	2/22/	12	END OF DRILLING:	2.0	TIME: _	9:30	. DATE:	12/9/11
					,		<u>т </u>		NOT ENCOUNTERED					
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE		DESCRIPTION				REM	IARKS
		38		85				(CO	ntinued from previous pag	ıe).				
	S-13	28 37	1.7'		-	GM	wet	Reddis fine Sa	sh brown coarse to fine G and, little(+) Clay & Silt, (GLACI	∟, little coai AL TILL).	rse to		_
62.0		49												_
65.2	S-14	100/2"/	0.0'	,o	- /			No rec	covery.					-
	Ē		Γ											
														_
														_
	l													_
_69.0								69.0'	Top of Rock at 6	69.0 fee	et.	El63.4'		
				100				Reddis	sh brown SILTSTONE int	erbedd	ed	-1	Intermitte	ent loss of
								SAND mediu	SIONE from 72.3 to 72.3	9°, Silgr modera	itly weather	red,		
L _								fractur	es. (WEATHERED PAS	SAIC F		N).		_
<u> </u>												.).		_
	C-1		4.6'											_
														_
														_
				26										_
73.6				100			-	73.6' Reddie	sh brown SILTSTONE sl	iahtly w	veathered	El68.0'	-	_
				/				mediu	m strong, closely to mode	eratelv	spaced			_
								fractur	es, (COMPETENT PASS	SAIC FO	ORMATION	۷).		_
														_
	C-2		5.1'											
														_
														_
														_
78 7				84				70 7'				EI 72 1'	,	
		<u> </u>						/0./	Bottom of borehole	at 78.7	feet.	EI7 3. I		
								Notes:						_
			L			L		1. Bor	ehole tremie grouted usir	ig 2x94	-lb bags			

BORING NO. BW-369D

	SHEET_ DATESI										
PROJ MUNI INSPE DRILL	ROJECT NAME Portal Bridge Final Engineering COUNTY Hudson DATUM: IUNICIPALITY Kearny LOCATION Amtrak N. 696507.1± E. 597582.8± ELEVATION INSPECTORS NAME/COMPANY J. Thampi/YU & Associates, Inc. N. 696507.1± E. 597582.8± TOTAL DE IRILLERS NAME/COMPANY M. Carire/JBD EOUIDATESTICATION OF A Middle Patient NY(I/O Cariling EOUIDATESTICATION OF A Middle Patient NY(I/O Cariling) EOUIDATESTICATION OF A Middle Patient NY (I/O Cariling) EOUIDATESTICATION OF A MIDDLE PATIENT OF A MIDD										
	ING M	ETHOD F·	os <u>Mi</u> 4.0"	id Rota DI	a ry, NX / =PTH [.]	NQ CO 30	ring).0'	WATER DURING DRILLING 4.0' TIME 8:30	DATE 12/6/11		
CHEC	KED B	Y: D.	Mazuji	an	D	ATE:	2/22/1	Image:	DATE: 12/9/11		
								NOT ENCOUNTERED			
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	DESCRIPTION	REMARKS		
							20	portland cement, 1/2x50-lb bag of bentonite, and 30 gallons of potable water. 2. Undisturbed sample moisture contents noted in "Remarks" reflect an average of all moisture contents determined for the sample.			
F -									-		
⊢ -									-		
									-		
_									_		
⊢ -									_		
<u>⊢</u> –	-								_		
	1								_		
_									_		
⊢ –									_		
<u>⊢</u> –									-		
E -									_		
									-		
⊢ –	-								_		
<u>⊢</u> –									-		

> 11 11

20.0

SM

wet

ENGINEERS FIELD BOR

CONTRACTOR OF CONTRACTOR	BORING SHEET_ DATE:S	NO. BW-369S <u>1</u> OF <u>2</u> TART <u>12/5/11</u> ND <u>12/5/11</u>						
PROJECT NAME Por	DATUM:_	NGVD29						
MUNICIPALITY Kear	LOCATION	Amtrak	N. <u>696371.3±</u>	E. 597275.5±	ELEVATI	ON: 9.3±		
INSPECTORS NAME/C	OMPANY J. Tham	pi/YU & Associates, I	nc.		TOTAL D	EPTH: 24'		
DRILLERS NAME/COM	PANY <u>C. Cruz/JBE</u>				A to	•		
DRILLING METHODS	Mud Rotary	20.0' 14/4755	_ EQUIPMENT USED	ACO' TINE	Automati	C Hammer 42/5/44		
	CASING SIZE: <u>4.0"</u> DEPTH: <u>20.0"</u> WATER: DURING DRILLING: <u>10.0"</u> TIME: <u>11:00</u>							
CHECKED BY: _D. Ma	DATE	E: <u>2/22/12</u>	NOT ENCOUNTERED		14.50	DATE:		
DEPTH (FT) SAMPLE NO / TYPE/CORE RUN BLOWS/0.5 FT ON SAMPLER RECOVERY	(FT) RCOVERY(%) RQD (%) POCKET PENT/ TORVANE (TSF)	USCS SAMPLE MOISTURE	DESCRIPTION	l		REMARKS		
3 S-1	50 D' - S	Brow Grav Grav and I	n coarse to fine SAND, so el, little Silt, frequent black prick fragments, (FILL).	ome coarse to fine < pockets of stained	soil	Fifth attempt to advance this borehole		

oil____

	5-1	10	1.0		-	SM	moist	and brick fragments, (FILL).	
2.0		14		60				and coarse to fine Gravel	
 0	S-2	8 8 16 16	1.2'		-	SM	moist		
 6.0	S-3	47 49 51 49	1.3'	65	-	SM	moist		S-3 - no stained so observed below 4'
 8.0	S-4	12 18 37 25	1.3'	65	-	SM	moist	some medium to fine Gravel.	
 10.0	S-5	5 4 3 5	0.5'	25	-	SM	moist	Dark gray and brown coarse to fine SAND, some medium to fine Gravel, little Silt, frequent brick fragments, (FILL).	
 	S-6	6 8 17 23	0.8'	40	-	SM	wet		
 _14 0	S-7	5 9 6 1	0.5'	25	-	GM	wet	Dark gray and black medium to fine Gravel, and coarse to fine Sand, little Silt, (FILL).	
	S-8A	3 3	1.0'	50	-	PT	wet	Brown PEAT, semi-decomposed fibers, (ORGANIC 14.7' DEPOSIT).	
16.0	3-08	2 2	1.0		_	SM	wet	Gray fine SAND, little(+) Clayey Silt, (ALLUVIUM).	
 18.0	S-9	WH WH 3 4	0.9'	45	-	SM	wet	Gray medium to fine SAND, little(+) Clayey Silt, (ALLUVIUM).	
	S-10	8 10	1.1'	55	_	SM	wet	Gray-brown coarse to fine SAND, little Silt, little(-) medium to fine Gravel, (ALLUVIUM).	

....(continued on next page).

ENGINEERS FIELD BORING LOG

COUNTY Hudson

	BORING NO. BW-369S
	SHEET_2_OF_2
	DATE:START
	END12/5/11
_	DATUM: NGVD29
	ELEVATION: 9.3±
_	TOTAL DEPTH: 24'
_	
th	Automatic Hammer

Γ

MUNI	CIPALI	TY K	earny	LO	CATIO	N Am	ntrak		N. 696371.3±	E. 5972	275.5±	ELEVAT	ION:	9.3±
INSPE	ECTOR	S NAM	E/CON	IPANY	J. Th	ampi/Y	'U & As	sociates, Inc.)EPTH:	24'
DRILL	ERS N	IAME/C	OMPA	NY <u>C</u>	. Cruz/.	JBD								
DRILL	ING M	ETHOD	S <u>M</u>	ud Rota	iry	~		E		ker XLS	Track wit	th Automati	<u>c Hammer</u>	40/5/44
CASI		E:	<u>4.0</u> Mazuii	Dł	PIH:	<u></u>	1.U 2/22/1	_ WAIER: L	DURING DRILLING:	10.0		11:00	DATE: _	12/5/11
UNEU	NED D	or. <u>D.</u>	mazaji		D	AIE.						14.00	DATE.	12/0/11
			<u> </u>		1			r	NOTENCOUNTERED					
DEPTH (FT)	SAMPLE NO/ TYPE/CORE RUN	BLOWS/0.5 FT ON SAMPLER	RECOVERY (FT)	G RECOVERY(% RQD (%)	POCKET PENT/ TORVANE (TSF)	nscs	SAMPLE MOISTURE	(conti	DESCRIPTION	ro)			REM	ARKS
⊢ –	-	7		25				(conti	inued from previous pag	<i>je)</i> .	Cilt			_
⊢ –	S-11	8	0.5'		-	SM			Dwn medium to line SAI	ND, trace	e Siit,			_
	-	8						(/ (220))						_
22.0		· ·		20				Grav-bro	wn coarse to fine SAN	D trace 9	Silt			_
├ -		8						(ALLUVI	IUM).	D, 11000 V	unt,			_
	S-12	10	0.4'		-	SM		(_
	-	11						24.01						_
_24.0								24.0	Bottom of borehole	e at 24 fee	et.	⊑1 14.0		
								Notes:						
	-							1. Boreh	ole tremie grouted usin	ng 1x94-lb	o bag por	tland		_
								cement,	15-lbs of bentonite, and	d 30 gallo	ons of po	table		_
								water.	attempt mode to advan	oo horina				
								2. Fifth a	attempt made to advance	ce boring	-			
	1													_
]													
L_														_
L _	-													
L _	-													_
	-													_
	-													_
⊢ –	-													
														_
+ -														
+ -	-													_
														_
														_
	1													_
]													_
	ļ													_
L _														_
L _	-													_
⊢ –	-													_
⊢ –														_
⊢ -														_

Gannett Fleming ENGINEERS FIELD BORING LOG

BORIN	IG NO.	GF	-1
SHEE	r <u>1</u>	_ OF _	5
DATE:	STAR	т_ 11 /	3/08
00	END_	11/10	0/08
FLEV		1.0	

PROJ MUNI	ECT N. CIPALI	AME TY _ K e	Portal earny	Bridge	Capac CATIO	rity Enh	iancen trak Pi	nent ProjectCOUNTY_Hudson ropertyN697310.41E598937.41	O.G. END <u>11/10/08</u> ELEV. <u>1.0</u>
STAT	ON _				OF	FSET F	ROM	CENTERLINE	
INSPE	CTOR	J. Kr	rupans	ky				DRILLERS NAME/COMPANY <u>C. Deigert/.</u>	IBD Drilling Inc.
EQUIF	PMENT	USED	Bar		t - Bar	ge Mou	nted A	Acker Skid Rig with Donut Hammer, 2 1/4 turns on cath	ead
DRILL	ING M	ETHOD)S <u>IVI</u> 4''		ary, Co		ls 55 ;	Sampling, NX Conventional Rock Coring	0:00 0.475 14/3/09
CASIN	NG: SIZ	E:	4 McCu	DEPT	H:	10.0	11/12/	WATER: DURING DRILLING: <u>-1.0</u> TIME: <u>1</u>	DATE:
CHEC	KED B	Y: <u>IVI.</u>	WICCU	nougn	D	AIE: _	11/12/	END OF DRILLING: TIME:	DATE:
DEPTH (FT)	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	ROD (%)	POCKET PENT/ TORVANE (TSF)	USCS AASHTO	H ₂ O CONTENT	DESCRIPTION	REMARKS
0.0		\W/P		5		ml		Black, SILT & CLAY, and coarse to fine Sand.	
- 0.0								little medium to fine Gravel, (Fill)	_
	S-1	WK O	0.1'		-		w		_
L –		2_							S 1 S 2: contains organia
2.0		5		15		mal			matter. glass. brick frags.
L _		2		15		mi			and debris
L _	S-2	1	0.3'		-		w		_
L _		WH							_
4.0		1							_
L _		1		10		mi			_
L _	S-3	3	0.2'		_		w		_
L _	00	4	0.2				••		
6.0		2						6.0' El5.0'	
		WH		60		pt		Brown, PEAT, (Meadow Mat)	
	сı	1	1 2'						
	3-4	WH	1.2		-		vv		
8.0		1							
		9		75		sp		8.5' EI7.5'	
- -		10						Brown, coarse to fine SAND, trace Silt,	
- -	S-5	11	1.5		-		W	(Alluvial)	
10 0		11						10.0' FL -9.0'	_
		3		75		sm		Gray and brown, medium to fine SAND, and	_
		1						Silt, (Alluvial)	_
	S-6	2	1.5'		-		W		_
12 0		2							
<u></u> _		1		75		sm			
		2							
	S-7	2	1.5'		-		w		
14 0		3							_
		5		80		sm			-
		4							-
\vdash	S-8	3	1.6'		-		w		-
16 0		6							—
+' ^{0.0} -		5		100		sm			-
\vdash \dashv		5							-
\vdash –	S-9	ے ا	2.0'		-		w		-
		ہ ا							-
L 10.0		11		75		sm		Gray and brown. coarse to fine SAND. little	-
\vdash \dashv		17						Silt, (Alluvial)	-
\vdash \dashv	S-10	18	1.5'		-		w		-
		10 27							-
<u> </u> ∠∪.∪_		21							

Gannett Fleming ENGINEERS FIELD BORING LOG

BORIN	IG NO.	GF	-1
SHEE	T_2	_OF_	5
DATE:	STAR	r_11/	3/08
~ ~	END_	11/1	0/08
O.G. FLEV		1.0	

PROJ MUNI	ECT NA	AME _ TY _K	Portal earny	Bridge LO	Capao CATIO	city Enh	trak P	nent Project COUNTY Hudson O.G. roperty N. 697310.41 E. 598937.41 ELEV.	END <u>11/10/08</u> <u>1.0</u>	-		
INSPE	ECTOR	J. Kı	rupans	ky	Ur	FSEIF	ROW	DRILLERS NAME/COMPANY <u>C. Deigert/JBD Drilli</u>	ng Inc.			
EQUIF	EQUIPMENT USED Barrel Float - Barge Mounted Acker Skid Rig with Donut Hammer, 2 1/4 turns on cathead											
DRILL	RILLING METHODS Mud Rotary, Continuous SS Sampling, NX Conventional Rock Coring											
CASIN	XASING: SIZE: <u>4"</u> DEPTH: <u>18.0'</u> WATER: DURING DRILLING: <u>-1.0'</u> TIME: <u>10:00</u> DATE: <u>11/3/08</u>											
UNEC												
				<u>@</u> /		/				٦		
DEPTH (FT)	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	RQD (%)	POCKET PENT/ TORVANE (TSF)	USCS AASHTO	H ₂ O CONTENT	DESCRIPTION	REMARKS			
		14		75		sm		Gray and brown, coarse to fine SAND, little				
	C 11	18	1 51					Silt, (Alluvial)(continued from previous	-			
	5-11	23	1.5		-		w	p~5-,	-			
22.0		25										
L _		14		75		ml				_		
L _	S-12	24	1.5'		-		w	23.0' EI22.0'	-	_		
		1/						some fine Sand layers, (Glaciolacustrine)	0: contains closely	,		
24.0		24 15		50		ml		spaced t	hin sandy varves	-		
		22			DD				-	-		
	S-13	23	1.0'		1.25		w		-	-		
26 0		16							-	-		
		14		50		ml			-			
	C 14	21	1.0'		PP				-			
	3-14	27	1.0		2.50		vv					
28.0		35						-		_		
L _		15		50		ml			-	_		
L –	S-15	18	1.0'		PP		w			_		
		21			2.50				-	_		
30.0		29 11		75		ml			-	-		
		12			PP				-	-		
	S-16	12	1.5'		1.50		W		-			
32.0		14							-			
		9		75		ml						
L _	S-17	11	1.5'		PP		w		-	_		
		12			1.00					_		
34.0		6		100		ml		-	-	-		
		7			pp				-	\neg		
\vdash \dashv	S-18	. 8	2.0'		1.25		w		-	\neg		
36.0		9							-	-		
		7		100		ml		1	-	1		
	S_10	6	2 0'		PP		14/		-			
	0-19	7	2.0		1.00		vv					
38.0		7		100						\square		
⊢ −		5		100	_	mi				\neg		
⊢ −	S-20	1	2.0'		PP 0.75		w		-	4		
		0 10			0.75					\neg		
40.0		10				1]		\dashv		

Gannett Fleming ENGINEERS FIELD BORING LOG

BORIN	IG NO.	GF	-1
SHEET	r <u> 3 </u>	_ OF _	5
DATE:	START		3/08
00	END_	11/10	0/08
ELEV.		1.0	

PROJ	ECT N	AME _	Portal	Bridge	Capac	ity Enh	ancen	nent Project COUNTY Hudson	O.G. END 11/10/08
MUNI	CIPALI	TY <u>K</u>	earny	LO	CATIO	N <u>Am</u>	trak P	ropertyN697310.41E598937.41	ELEV. <u>1.0</u>
STAT	ON _				OF	FSET F	ROM	CENTERLINE	
INSPECTOR _J. Krupansky DRILLERS NAME/COMPANY _C. Deigert/JBD Drilling Inc.									
EQUI	PMENT	USED	Barr	el Floa	t - Bar	ge Mou	nted A	Acker Skid Rig with Donut Hammer, 2 1/4 turns on cath	ead
DRILL	ING M	ETHOD	s <u>M</u>	ud Rota	ary, Co	ntinuou	is SS 🗄	Sampling, NX Conventional Rock Coring	
CASIN	IG: SIZ	E:	4"	DEPT	H:	18.0'		WATER: DURING DRILLING: TIME:	0:00 DATE: 11/3/08
CHEC	CHECKED BY: <u>M. McCullough</u> DATE: <u>11/12/08</u> END OF DRILLING: <u>TIME:</u> DATE: <u>DATE:</u>								
				<u> </u>		1			
	_ N	⊢œ		6) /	Ē	s /	F		
E I	NИ	5 F	КY	E /	TS TS	୍ଷ /	Ц		
H.	ЯĽ	S/0.	T.)	ő / _	ĽΨ	기입/입	'N	DESCRIPTION	REMARKS
L L	MP CMP	NC I S/	ы С	SEC	SKE VA	/ HS	õ		
	AS []	0 BLO	R	78	ĞБ	/ ≹	Η ³ O		
	-					V I			
		6		100		ml		Gray and brown, CLAYEY SILT, varved with	
		7			PP			some fine Sand layers, (Glaciolacustrine)	
	S-21	9	2.0'		0.50		W	(continued from previous page)	_
		a							—
42.0		5		100		ml			—
				100					—
L –	ST-1		2.0'		-		w		_
L _									_
44.0									
		5		100		ml			
	0.00	6	2.01		PP				
	5-22	7	2.0		0.50		W		
46 0		10							_
0.0_		5		100		ml			—
		6							-
	S-23	0	2.0'		0.50		w		-
L _		8			0.00				
48.0		11		100					_
L _		7		100		mi			_
L _	S-24	9	2 0'		PP		w/		
	0-24	13	2.0		1.00		vv		
50.0		16							
		6		75		ml			
		9			PP				_
	S-25	9	1.5'		0.75		W		_
		11							
52.0		2		100		cl		Brown CLAYEY SILT varved with some fine	—
		з _		100				Sand layers, (Glaciolacustrine)	—
L –	S-26	5	2.0'		PP 1 00		w		_
L _		5			1.00				_
54.0		8		100					_
L _		4		100		CI			
L _	S-27	4	2 0'		PP		14/		
	5-27	6	2.0		0.75		vv		
56.0		7							
		4		100		cl			-
		5			pD				
\vdash \dashv	S-28	4	2.0'		0.50		W		
		ر							
L28.0		4		100					_
$\mid - \mid$		3							_
	S-29	2	2.0'		PP		w		_
		1			0.50				
60.0		4							
1									

Gannett Fleming ENGINEERS FIELD BORING LOG

BORIN	IG NO.	GF	-1
SHEET	4	OF _	5
DATE:	START	· <u>11/</u>	3/08
00	END_	11/10	0/08
ELEV.		1.0	

PROJ MUNI	ECT N	AME _ TY K	Portal earny	Bridge LO	Capac CATIO	ity Enh	iancer trak P	nent Project COUNTY Hudson roperty N. 697310.41 E. 598937.41	O.G. END <u>11/10/08</u> ELEV. <u>1.0</u>
STATI	ON _				OF	FSET F	ROM	CENTERLINE	
INSPE	INSPECTOR J. Krupansky DRILLERS NAME/COMPANY C. Deigert/JBD Drilling Inc.								
EQUIF	EQUIPMENT USED Barrel Float - Barge Mounted Acker Skid Rig with Donut Hammer, 2 1/4 turns on cathead								
DRILL	ING M	ETHOD	DS <u>M</u> I	ud Rota	ary, Co	ntinuo	us SS	Sampling, NX Conventional Rock Coring	
CASIN	IG: SIZ	ZE:	<u>4"</u>	DEPT	H:	<u>18.0'</u>	44/40	WATER: DURING DRILLING: <u>-1.0'</u> TIME: <u>'</u>	10:00 DATE: <u>11/3/08</u>
CHEC	CHECKED BY: _M. MCCUIIOUGN DATE:11/12/08_ END OF DRILLING: TIME: DATE:								
		1	1					NOT ENCOUNTERED	
DEPTH (FT)	SAMPLE NO./ TYPE/CORE RUN	BLOWS/0.5 FT. ON SAMPLER	RECOVERY (Ft.)	RQD (%)	POCKET PENT/ TORVANE (TSF)	USCS AASHTO	H ₂ O CONTENT	DESCRIPTION	REMARKS
		3		100		cl		Brown, CLAYEY SILT, varved with some fine	
		3			PP			Sand layers, (Glaciolacustrine)(continued	
	S-30	2	2.0		0.50		W	nom previous page)	
62.0		5							
		1		100		cl			
		WН							
	S-31	WH	2.0		-		w		
64.0		2							
		1		100		cl			
	0.00	WH	2.01						
	5-32	WH	2.0		-		w		
66.0		WH						66.0' El65.0'	
		6		75		sm		Reddish brown, coarse to fine SAND, and Silt,	
	6 22	8	1 5'					little coarse to fine Gravel, (Glacial Till)	
	3-33	8	1.5		-		w		
68.0		7							
		9		10		sm			
	S-31	10	0.2'		_		14/		
	0-04	8	0.2				~~		_
70.0		12						-	_
		24		0					_
	S-35	60	0.0'		-				_
		70							_
72.0	6.26	89	0.0'						_
	5-30	100/0/	10.0			1			_
73.0				72				73.0' Top of Rock @ 73.0 ft EI72.0'	
\vdash \dashv				' /				weathered, closely spaced ioints, contains	Roller Bit Refusal at 73.0 ft
\vdash \dashv				/				inter-bedded sandstone	-
\vdash \dashv				/					-
\vdash \dashv				/					-
\vdash \dashv	R-1		3.6'	/					
\vdash \dashv				/					_
\vdash \dashv				/					_
\vdash \dashv				/					-
				60					-
+' ^{0.0}				100					-
\vdash \dashv				/					-
\vdash \dashv				/					-
\vdash \dashv				/					
		1	1	V		I I		1	
1									

ENGINEERS FIELD BORING LOG

BORIN	IG NO.	GF	-1
SHEET	5	OF_	5
DATE:	START	11/	3/08
~ ~	END_	11/10	0/08
O.G. FLEV		1.0	

PROJ	ECT N		Portal	Bridge	Capac	ity Enh	ancen	nent Project COUNTY Hudson	O.G. END <u>11/10/08</u>				
STAT	MUNICIPALITY Kearny LOCATION Amtrak property N. 697310.41 E. 598937.41 [ELEV] Station Ofeset from centerline												
INSPE	INSPECTOR J. Krupansky DRILLERS NAME/COMPANY C. Deigert/JBD Drilling Inc.												
EQUI	PMENT	USED	Barr	rel Floa	t - Bar	ge Mou	nted A	cker Skid Rig with Donut Hammer, 2 1/4 turns on cath	ead				
DRILL	ING M	ETHOD	DS <u>M</u>	ud Rota	ary, Co	<u>ntinuo</u>	us SS :	Sampling, NX Conventional Rock Coring					
CASIN	CASING: SIZE: <u>4"</u> DEPTH: <u>18.0'</u> WATER: DURING DRILLING: <u>-1.0'</u> TIME: <u>10:00</u> DATE: <u>11/3/08</u>												
CHEC	HECKED BY: M. MCCUIIOUGN DATE: 11/12/08 END OF DRILLING: TIME: DATE: DATE:												
(FT)	E NO./ RE RUN).5 FT. PLER	'ERY)	VERY(%	PENT/ E (TSF)	nscs	ITENT						
DEPTH	SAMPLE TYPE/COF	BLOWS/I ON SAM	RECOV (Ft.	RQD (%)	POCKET TORVAN	AASHTO	H ₂ O CON	DESCRIPTION	REMARKS				
	R-2		5.0'					MUDSTONE, reddish brown, hard, moderately weathered, closely spaced joints, contains inter-bedded sandstone(continued from previous page)					
									_				
83.0				48		<u> </u>		83.0' El82.0'					
⊢ ⊣								Bollom of dorenole at 83.0 feet.	_				
									_				
									_				
									_				
L _													
L –									_				
									_				
									_				
									_				
L _									_				
L _									_				
									_				
									_				
									-				
									_				
									-				
LΙ													
									_				
⊢ –									_				
									_				
									_				
									-				
\vdash \dashv									—				
				1	L	I							

	The service and the service of the s	
	NEW JERSEY DEPARTMENT OF TRANSPORTATION	04)
	IMPROVEMENT OF NEWARK - JERSEY CITY TURNPIKE (N.J. SECONDARY ROUTE 508) FROM SCHUYLER AVENUE TO N.J.S.H. ROUTE 7 TOWN OF KEARNY HUDSON COUNTY, N.J.	E. AS SHOWN
20, 1980 1979	CONSTRUCTION PLAN CALVIN H. GIBSON ASSOCIATES , P.C. 86 WASHINGTON STREET EAST ORANGE , NEW JERSEY	TI SCALL

New Jersey Department of Transportation

RETRACTABLE PLUG SAMPLER LOG

Rt	Newar	Local k-Jersey	ay Boring No. 400P - 12			
Sta.	115+8	0 0	ff		45' R	tRef. Survey BL
Date:	9/17/	En	ıgr	Gerva	sioG.W.TDry Sheet of	
L abo	oratory Resi	ults				
Wet Wt. ≉∕Ft.3	Moist %	lgn. Loss	Blows per foot		Sample Disp°n.	Sample Identification and Profile Change Elev.
			103	•	 A	Brown MF Gravel, and CF SAND,little(-)Silt,tr.(+) Fibers, pieces of Wood,Slight Organic Odor. (Fill)
		•••••				BOTTOM OF HOLE
	·····					NOTE: Fill runs back to Post Office fence. Made 4 attempts trying to get down.
	•••••					
	•••••					
			1	 		
				·····	·····	-
			.	 	 	
	· · · · · · · · · · · · · · · · · · ·					
				[]

= Limits of Sampling (Column 5)

X = Sample Discarded - - - = No Recovery

SECTION: Newark-Jersev City Turnpike	
SECTION: Newark-Jersev City Turndike	
STATION: 115+80 OFFSEI: 45° Rt. REFERENCE LINE: Survey BL GROUND LINE EL	LEVATION: +2.1'
BORINGS MADE BY: Bowers DATE STARTED: 1/2/80 0 Hr. +2.1'	Date: 1/4/8
INSPECTOR: Lounsberry DATE COMPLETED: 1/3/80 24 Hr. SAME	Date: 1/5/8
CASING SAMPLE NO. DEPTH D. 24 112 REC. and ft. P.P. Install	ed Date:
BLOWS 6 12 18 Profile Change	
3 Fill-Black CF SAND, trace (+)	Silt, little(-)
3 S-2 1.5' 3.0' 7 8 3 3" FILL-Black CF SAND, little F G	ravel. (Cinders)
2	
5 2 S-3 3.0 4.5 4 3 2 8" SAME	
5 S-4 4.5 6.0 2 2 1 3" SAME 12 FILL-Dark Brown CF SAND, little	e Silt, trace F
4 S-5 6.0' 7.5' 2 1 1 4" Grave1.	
6 Dark Brown Fibrous Organic SIL	т.
10 8 S-6 7.5' 9.0' 3 2 4 5"	
	. –
$\frac{30}{36}$ Si $\frac{5}{7}$ Dark Grey F SAND, trace (+) Si $\frac{36}{36}$	1 C.
38	
15 32	
20 S-9 15.0' 16.5' 6 9 10 17" Brown F SAND, little (+) Silt.	
20 45	
S-9 20.0' 21.5' 8 14 21 18" SAME	
	2
BOTTOM OF HOLE	
25	
	· ·
15	
<u> </u>	
	<u> </u>
o	
Nominal I.D. of Drive Pipe 2½" XXX	
Nominal I.D. of Split Barrel Sampler 1½ ¹¹ himself of the actual subsurface conditions. The	estigations in order to satisfy Information contained on this
Weight of hammer on Drive Pipe 300 lbs. log is not warranted to show the actual subsurface	e conditions. The Contractor
Weight of hammer on Split Barrel Sampler 140 lbs. agrees that he will make no claims ogainst the sto Drop of hammer on Drive Pipe 24'' conditions do not conform to those indicated by th	is log.
Drop of hammer on Split Barrel Sampler 30 ¹¹ New Tarsay Department of	Transportation
Core Dia	TIMISPOLULUL
Bureau of Geotechnical	Engineering
Soil descriptions represent a field identification after D.M. Burmister unless otherwise noted. Approximate Chanae in Strata	
PF	
Inferred Change in Strata	ک 20 آلو سے اور سے اور سے اور سے میں میں میں میں میں د
	anna air ann an ann ann ann ann ann ann ann ann

Form	Form SO-2 7/74 NEW JERSEY DEPARTMENT OF TRANSPORTATION									
ROU	re:			OCAL N	AME:	R	un-1	n Tra	ck Station TEST HOLE NO. 432W -	3
SECT	SECTION: Erie-Lackawanna Electrification									
STAT	ION:		OFFSET	· · ·		REFE	RENC	E LINE:	GROUND LINE ELEVATION: +3.5'	
BORI	NGS MAD	E BY:	Servi	110		DATE	STAR	TED:	5/18/77 0 Hr. +0.5' Date: 5/	19/77
INSP	ECTOR:		Henry	•	1	DATE	COMP	LETED:	5/19/77 24 Hr. SAMIS Date: 5/2	20//7
	BLOWS	SAMP	LENO. DI	EPTH	Blow	6 12	12 12 18	REC.	and Date: Profile Change	
	4	S-1	0.0'	1.5'	1	1	4	5"	Black CF Sand, and (+) Silt, little (-) MF	
	4	S-2	1.5'	3.0'	6	6	8	3"	Gravel (Ashes, Rotted Wood). Black CF SAND, some (-) Silt, some (-) CF	<u> </u>]
	5								Gravel (Cinders).	
5	6	<u>S-3</u>	3.0	4.5	8	10	13	6"	Red Brn.CF Sand, some(-)Silt, some(+)CF Gravel.	<u> </u>
	6	5-4	4.3	0.0	- 9	-11	14	0	SAME	
	5	S-5	6.0'	7.5*	2	2	3	5 ¹¹	SAME	8.0
	4	<u>S-6</u>	7.5'	9.01	2	1	1	<u>4</u> "	Black Organic Silt.	
10	2	8-7	0.01	10 5				E 11		+
	3	<u>S-7</u>	10.5	12.0'		1	2	3"	Black Organic STLT and PRAT (very high	
	5								moisture cont.).	12.9'
	21	<u>S-9</u>	12.0	13.5		1	5	18"	Yellow Gry.CF SAND, some(+)Silt, trace(-)Fibers.	<u> </u>
15	30	5-10	13.5	15.0.	10	10	20	11"	Grey Brown CF SAND, Silt.	<u> </u>
	32	_								<u>├</u>
	32									
	33									
20	34	S-11	20.0'	21.5	11	18	19	15#	Grev STIT and F Sand	<u>+</u>
		<u> </u>		~~~~			- 5		drey 5122 dies, r oand.	21.5
								•	BOTTOM OF HOLE	├ ────┤
25									-	<u>}</u>
20										
30										<u> </u>
!										
35	┝╼╌╌┤							·		<u> </u>]
· ·	┝┷╼╾┥								-	<u>├</u> ┨
				······································						
i	 									
4 0	┝╂									<u>├</u>
	LL		<i>I</i>		L	L	l		L	L]
	Nominal I	.D. of Dri	ve Pipe	<u>2½''</u>		1411	4''		The Contractor shall make his own subsurface investigations in order to sat	isfy
\vdash	Weight of	hammer a	n Drive Pi	pe 300	<u>'</u> 1bs.				himself of the actual subsurface conditions. The Information contained on the log is not warranted to show the actual subsurface conditions. The Contract	his Ior
	Weight of	hammer o	n Split Ba	rel Sampl	er 14	0 lbs.			agrees that he will make no claims against the State if he finds that the act	vat
F	Drop of h	ommer on	Drive Pipe	24''					conditions do not conform to those indicated by this log.	
L	Drop of hammer on Split Barrel Sampler 30" New Jersey Department of Transportation									
Core	Dia								Soils Bureau	
Soil a after	lescription D.M. Burn	ns represe nister unla	nt a field i ess otherwi	identificat ise noted.	tion				Approximate Change in Strata	-
									· · · · · · · · · · · · · · · · · · ·	
									Inferred Change in Strata	د و چک چه وب کب خک ج

a paragraphic section of the section

· -

Form	SO-2 7	/74	·····		N	IEW J	ERSE	Y DEPA	IRTMENT OF TRANSPORTATION Sheet 1 of 2	
ROUT	ГE:		1		AME:	R	lun-d	n Tra	ck Station TEST HOLE NO. 432W - 1	
SECT	ION: 1	Srie-L	ackawan	na Ele	etr:	lfic	atic	D		
STAT	ION:		OFFSET	:		REFE	RENC	E LINE:	GROUND LINE ELEVATION: +10.3	
BORI		DE BY.	Servi	110			STAD		5/4/77 Elevation G.W.T.	
	NOJ MAL					DATE	STAR		Date: 5/1	2/77
INSP	ECTOR:	Г	Henry				COMP	LETED:	5/12/77 24 Hr. SAPLS Dote: 5/1	.3///
	BLOWS	SAMP	LE NO. D	ЕРТН		/s on 3	112	REC.	and Dure:	
	23	S-1	0.0'	1.5	6	12	18	4"	Profile Change Black CF Sand and (-) Silt some (-) MF Crowell	
	25					-			(Cinder and Ashes).	
	37									
	25						ļ] [
5	20			6		<u> </u>	<u> </u>		4	
	30	5-2	5.0	6.5	3	4	5	6"	SAME	[
	170			<u> </u>						
	100		<u>†</u>				1		j	
10	74									
	52	S-3	10.0'	11.5	17	10	10	7**	Red Brown CF SAND, and (-) Silt, little (-)	<u>.</u>
	58		<u> </u>				 		MF Gravel.	
	72								┥ –	
15	77		+			├	<u> </u>			{
13	13	S-4	15.0'	16.0'	17	6		0"	(Semi liquid consistancy)	{
-	17	U-1	16.0'	18.0	PRI	SS8	/6"	23"	Red Brown & Black CF SAND, some (-) Silt,	
	49					ļ			Brown PEAT	17.5'
	116	<u>U-2</u>	18.0	19.8'	PI	<u> </u>	<u>s s</u>	10"	Grev CF SAND. little (+) Silt.	<u>18.3'</u>
20	50	8-5	20 01	21 51	10	7	6	211		
	70	3-5	20.0	21.5	10		0	<u> </u>	Grey Brown CF SAND, 11ttle Silt, 11ttle CF	
	72					<u> </u>				
	90									
25	92								۲	
	42	<u>S-6</u>	25.0	26.5	36	44	37	18"	Red Brown CF SAND, trace Silt.	
	122		<u> </u>						4 –	
	110					<u> </u>	<u> </u>			
0	123								1	30.0'
_	101	S-7	30.0'	31.5'	25	27	26	18"	Grey SILT little, F Sand.	
	158		ļ			ļ		L		
	132		<u> </u>		ļ		┝		(657) (259)	
5	145	U-3	35.0'	36.5'	PI	E	s s	0"	Grey SILT varved with Grev Brown CLAY.	
	132	S- 8	35.0'	36.5'	7	7	7	16"		
	152					ļ				
	158		<u> </u>		ļ	<u> </u>	<u> </u>		۰ ل ۲	
0	129	· · · · · · · · · · · · · · · · · · ·							-{	
	140	L	<u> </u>	L	J	L	l			
Nominal I.D. of Drive Pipe XXX 4" The Contractor shall make									The Contractor shall make his own subsurface investigations in order to satisf	fy ·
Nominal I.U. of Split Barrel Sampler 1/2" h Weight of hommer on Drive Pige 300 lbs							···		himself of the actual subsurface conditions. The Information contained on this	5
\vdash	Weight o	f hommer (on Shli+ Ra	rrel Samel	er 14	0 lb<			agrees that he will make no claims against the State if he finds that the actual	l
Drop of hammer on Drive Pipe 24" conditions do not								conditions do not conform to those indicated by this log.		
	Drop of I	ammer on	Split Borre	el Sampler	30 '	I			New Jersey Department of Transportation	
Core Dio									Soils Bureau	
	_ · · _ · ·									

مميد مدر رمد

··· */* #***

· · · · · · ·

Soil descriptions represent a field identification after D.M. Burmister unless otherwise noted.

·····

~

, ^{....}

*

and the second sec

Approximate Change in Strata

Inferred Change in Strata

Form	SO-2	7/74

NEW JERSEY DEPARTMENT OF TRANSPORTATION

Sheet 2 of 2

··· ·

٠

ROU	TE:			LOCAL N	AME:	R	un-1	n Trac	k Station		TEST HOLE NO.	43 2 W	- 1	
SEC		rie-La	ickawan	na Ele	ctri	fic	<u>atio</u>	n			۰ ۱۰			
STA	TION:		OFFSET	:		REFE	RENC	E LINE:			GROUND LINE ELEVATION:	+10.3	3'	
BOR	INGS MAD	DE BY:	Servi	110		DATE	STAR	TED: 5/	4/77	0 Hz.	Elevation G.W.T. +0.7	Date:	5/12/77	,
INSF	ECTOR:		Henry	,	1	DATE	сомр	LETED:	5/12/77	24 Hr.	SAME	Date:	5/13/77	,
	CASING	SAMP	LE NO. D	ЕРТН	Blow	/s on \$	ipoon	REC.	Sample ID and		ft. P.P. Installed	Date:		
	BLOWS	TT-A	40.01	42 01	6	12	18	94.11	Profile Change	8				
	223	S-9	40.0	42.0	6	6	9	18"	Brown Van	rved Silt	y CLAY.			
	210													****
	175								-					
4 5 _	154	11-5	45 01	46 01	DT	12		101	4					
	147	S-10	45.0	40.0	7		13	18"	Red Brown	h verved	STLT with thin Red Bro	111		-
	132				- ·			• • • •	Clay and	Red Brow	m MF varves.	WIL .		
50	153								-					
XX _	183	77 6	50.01	50 7	 			011	4					
	142	<u>0-0</u> S-11	50.5	52.01	10	12	18	10"					51.5	Ŧ
	150	<u> </u>	34.5	20.0			10		Red Brown	n SILT an	d CF Sand, little (+)	MF		
55	165								Gravel.					
XX_	425	8-12	55 01	55 0	142	150	1411-	- 711	Dod Bross	. CP Sand	14++10 Stlt and (-)	0P		
	500	0-12	33.0	33.3	146	1.30		-	Gravel ()	highly de	composed Shale).	CF		
	750												58.0	
60				(0.01			L							
XX_		C-1	58.0"	63.0	CC		<u>к</u>	55" 927	Red Brown	a F SANDS	TONE.			
						R	D Ö	0%	4					-
											<u>.</u>		63.0	•
65	·		<u> </u>		 									
XX_	<u> </u>		· · ·						4	BOT	TOM OF HOLE			
									4					
													······································	
														-
30 _	+			<u> </u>					-					
			<u> </u>						-					
														_
	ļ	ļ							-					_
30 -									4					_
]					
						ļ			4					_
40			<u> </u>		<u> </u>				4					_
- -			L		L	<u>د</u>	L		L				l	
ŀ	Nominal	I.D. of Dr	ive Pipe	2KX	1	1611	4''		The Contract	or shall make l	his own subsurface investigations in	order to	satisfy	
ŀ	Weight o	f hammer (on Drive P	ipe 300	lbs.	/*			himself of the log is not wa	e actual subsui pranted to sho	rface conditions. The Information co w the actual subsurface conditions.	ntained The Con	on this tractor	
	Weight o	f hammer (on Split Ba	urrel Sampl	er 14	0 lbs.			agrees that h	e will make na	claims against the State if he finds	that the	actual	
-	Drop of I	nammer on	Drive Pip	e 24''		1			conditions do	not contorm to	o mose indicated by this log.			
L	Drop of I	nammer on	Split Barr	ei Sampler	30'					New J	ersey Department of Transportation	on		
Core	e Dia						· · · · · · · · · · · · · · · · · · ·				Soils Bureau			
Soil	descriptio	ons repres	ent a field	i den ti fi ca	tion									
afte	r D.M. Bur	mister unl	ess otherw	vise noted					Approximate Ch	ionge in Strata				-
									Inferred Change	in Strata 🕳	الحنفية بوج كرور ورج ورج مرج بوج بوج بو	ر خند بعد الله ع		
					····		· · · · ·							

JTE:		I	LOCAL N	AME:	R	un-1	n Trac	k Station TEST HOLE NO. 432W -	2
TION:	rie-L	ackawan	ns Ele	etr	lfic	atio	n		
TION:		OFFSET	· <u> </u>		REFE	RENCI	E LINE:	GROUND LINE ELEVATION: +9.5'	
	E BY:	Servi	110		DATE	STAR	TED: 4/	28/77 Elevation G.W.T.	
		Vonru				COND		5/16/77 OHr. TL.O FILLED IN Dry Date: 5/1	
CASING	· · · ·	near y		BL	DATE	COMP	LEIED:	Same ID from 2A KYPEYEYEYEYEYEYEYEYEYEYEYEYEYEYEYEYEYEYE	
BLOWS	SAMP	LE NO. DI	EPTH	0	6 /	112	REC.	and	·
3	S-1	0.01	1.5*	6	12	18	611	Profile Change Black OF Sand and Silt trace P Crevel	т
13						v		roots (Cinders and Ashas)	<u> </u>
12					+	·		(cruces fur Manga).	<u> </u>
17		<u> </u>			<u> </u>	1			├───
15							·····		
32	S-2	5.0*	6.5'	7	11	11	8"	Reddish Brown and Black CF Sand, and (-) Silt.	
55								little MF Gravel. (Cinders)	
60									
40			l		ļ				L
32									ļ
18	<u>S-3</u>	10.0	11.5	13	13	13	11"	Red Brown CF SAND, some (+) Silt, little MF	ļ,
20			·	[Gravel.	<u> </u>
23		<u> </u>		\					<u>}</u>
27					┝				10
8	S-4	15.0'	16.5	11	9	9	18"		12
7								Dark Brown & Black PEAT some, CF Sand, little	 -
8		1		<u> </u>	<u> </u>			Organic SiLi.	18
12				· ·				*********	
21					i i				
22	S-5	20.0'	21.5	13	15	14	8"	Grey & Red Brown CF SAND, little Silt, little	
24								MF Gravel.	Ļ
35									ļ
42	· · · · ·				i i		<u> </u>		
21	6-6	25 01	96 E1	16	92	25	611		
22	3-0	25.0	20.3	10	23	23	0	Reddish Grey CF SAND, little (-) Silt.	
45				<u> </u>	}	·			<u> </u>
47		<u> </u>		<u> </u>					┝
53									
46	S-7	30.0'	31.5'	26	37	50	16"	Grey F SAND, and (+) Silt.	
66									
56							·		l
52			· · · · · · · · · · · · · · · · · · ·		[
47			·	ļ					35
41	<u>S-8</u>	35.0	36.5	6	10	14	18"	Grey Clayey SILT (90%) varved with Red Brown	<u> </u>
49	······	<u> </u>		}	 		<u> </u>	F Sand (10%).	
35									├
35									
		· ····		•		نــــــــــــــــــــــــــــــــــــ		kon	
Nominal	I.D. of Dr	ive Pipe	2½		12.11	XX		The Contractor shall make his own subsurface investigations in order to sat	sfy
Nominal	L. of Sp	Deine Pr	ompier	lbe l	/2	·		himself of the actual subsurface conditions. The Information contained on the	nis
Weisland	hammer	n Crive Pi	pe 300	or 14	0 16-			log is not warranted to snow the actual subsurface conditions. The Controct agrees that he will make no claims against the State if he finds that the actu	ior Jal
Drop of h	ammer on	Drive Pipe	e 24 ¹¹	<u>91 14</u>	v 105.			conditions do not conform to those indicated by this log.	
Drop of h	ammer on	Split Barre	Sampler	30 '	1			Now Jonson Bonostmost of Theoremostation	
								new Jersey Department of Transportation	

01

میں ڈروئر ہوا۔ موڈ ڈرڈ میں کار

ne esta e se

Soil descriptions represent a field identification after D.M. Burmister unless otherwise noted.

Approximate Change in Strata

Inferred Change in Strata

m SO-2 7	7/74			Ņ	IEW J	ERSE	Y DEPA	ARTMENT OF TRANSPORTATION Sheet 2 of 2
UTE:		I	LOCAL N	AME:	R	un-i	n Tra	ck Station TEST HOLE NO. 432W - 2
TION:	Srie-La	ckawan	na Ele	etri	Lfic	atic	R	
TION:		OFFSET:		1	REFE	RENC	E LINE:	GROUND LINE ELEVATION: +9.5
RINGS MAD	DE BY:	Serví	110		DATE	STAR	TED: 4	/28/77 Elevation G.W.T.
PECTOR		Henry	· · · ·		DATE	сомР	LETED:	5/16/77 24 Hr. Flooded with wash water Date: 5/17
CASING				Blow	vs on	Spoon	[Sample ID from 2A XXEEXXXEXX Date:
BLOWS	SAMP	LE NO. DI	EPTH	06	6/12	12/18	REC.	and Profile Change
37	S-9	40.0'	41.5	6	8	9	18"	Grey Brown varved CLAY.
41	· · · · ·			ļ	 			
37				+				
34					<u> </u>			
47	S-10	45.0'	46.5	4	13	18	18"	Red Brown Varved CLAY.
50				<u> </u>				
4/	ļ		·		[
32				<u>}</u>				┥
47	S-11	50.0'	51.5	7	9	10	14"	Red Brown CLAY (85%) varved with Red Brown
40				ļ				Silt (15%).
38				<u> </u>		<u> </u>		
42				1				
50	S-12	55.0	56.5	15	15	16	13"	Red Brown varved Silty CLAY trace, CF Sand,
65						· · ·		trace (-) MF Gravel.
650				+		<u> </u>	<u> </u>	
				1				
	C-1	59.0'	60.0'	CC	R	E	7"	Red Brown VF Sandstone and Shale.
			<u>.</u>	ļ	R	ec.	58%	4
·	C-2	60.0'	60.2	CC		E E	04	BOTTOM OF HOLE
					R	ec.	0%] <u> </u>
ļ				ļ	R	<u>QD</u>	0%	
		:				<u> </u>	<u></u>	
								1
		:		<u> </u>				
		:						
								j
·				ļ				
								4 . F
}				1			· · · ·	·
						1		
		ve Pipe	2½ "			XX		The Contractor shall make his own subsurface investigations in order to catief
Nominal	I.D. of Dri				17.11			himself of the actual subsurface conditions. The information contained on this
Nominal Nominal	I.D. of Dri I.D. of Sp	it Barrel S	ampler	1	/2			
Nominal Nominal Weight o	I.D. of Dri I.D. of Sp f hammer c	it Barrel S n Drive Pi	pe 300	lbs.	·/2			log is not warranted to show the actual subsurface conditions. The Contractor
Nominal Nominal Weight o Weight o Drop of b	I.D. of Dri I.D. of Sp f hammer o f hammer o	it Barrel S n Drive Pi n Split Ba Drive Pipe	pe 300 rrel Sampler 24 ¹¹	1 bs. er 14	1/2 10 lbs.			log is not warranted to show the actual subsurface conditions. The Contractor agrees that he will make no claims against the State if he finds that the actual conditions do not conform to those indicated by this log.
Nominal Nominal Weight o Weight o Drop of I Drop of I	I.D. of Dri I.D. of Spi f hammer of hammer on hammer on	it Barrel S n Drive Pi n Split Ba Drive Pipe Split Barre	iampler pe 300 rrel Sampl e 24 ¹¹ el Sampler	1 bs. er 14 r 30	/2 10 lbs.		· · · · · · · · · · · · · · · · · · ·	log is not warranted to show the actual subsurface conditions. The Contractor agrees that he will make no claims against the State if he finds that the actual conditions do not conform to those indicated by this log. New Jersey Department of Transportation
Nominal Nominal Weight o Weight o Drop of H Drop of H	I.D. of Dri I.D. of Spi f hammer of f hammer on nammer on	it Barrel S n Drive Pi n Split Ba Drive Pipe Split Barre	ampler pe 300 rrel Sampl e 24'' el Sampler	1 bs. er_14 r_30	10 lbs.			log is not warranted to show the actual subsurface conditions. The Contractor agrees that he will make no claims against the State if he finds that the actual conditions do not conform to those indicated by this log. New Jersey Department of Transportation Soils Bureau

Inferred Change in Strata

vasi igu Si i an

Form	SO-2 7	/74		······································	N	IEW J	ERSE	Y DEPA	RTMENT OF TRANSPORTATION	
ROUT	ГE:		1	LOCAL N	AME:	R	un-1	n Trac	ck Station TEST HOLE NO. 432W -	3
SECT	ION: E	Srie-La	ckawan	na Ele	etr:	ific	atic	D.		
STAT	ION:		OFFSET			REFEI	RENCI	ELINE:	GROUND LINE ELEVATION: +3.5'	
BORI	NGS MAD	E BY:	Servi	110		DATE	STAR	TED: 5	5/18/77 0 Hr. +0.5" Date: 5/	19/77
INSP	ECTOR:		Henry	/		DATE	СОМР	LETED:	5/19/77 24 Hr. SAME Date: 5/2	20/77
	CASING BLOWS	SAMP	LENO. D	ЕРТН	Blow	$\frac{1}{6}$	poon	REC.	Sample ID ft. P.P. Installed Date:	
	4	S-1	0.0'	1.5*	1	1	4	5"	Black CF Sand, and (+) Silt, little (-) MF	
	4	<u> </u>	1 51	2 01					Gravel (Ashes, Rotted Wood).	
	<u> </u>	3-2	1.3	3.0	0	0	0		Black CF SAND, some (-) Silt, some (-) CF Gravel (Cinders).	<u>├</u>
5	6	<u>s-3</u>	3.0'	4.5'	8	10	13	6"	Red Brn.CF Sand, some (-)Silt, some (+)CF Gravel.	
	7	<u>s-4</u>	4.5'	6.0'	9	11	14	6"	SAME	
	6	e_5	6 01	7 51	2		2	E11	CAMP	
	4	<u> </u>	7.5'	9.0'	2	- 2	<u> </u>	<u> </u>	Black Organic Silt.	8.0
10	2								Pres viguire privi	
	2	<u>s-7</u>	9.0'	10.5	1	1	2	5"	SAME (Liquid consistency) trace (+) Fibers.	
	3	<u>S-8</u>	10.5	12.0		1	1_	3"	Black Organic SILT and PEAT (very high moisture cont.).	
	21	S-9	12.0'	13.5	1	1	5	18"	Yellow Gry.CF SAND. some (+) Silt trace (-) Fibers	12.9
15	22	S-10	13.5	15.0	16	16	20	11"	Grey Brown CF SAND, Silt.	
	30				ļ					
i	32				 					<u> </u>
i	33									
20	34									
		<u>S-11</u>	20.0	21.5'	11	18	19	15"	Grey SILT and, F Sand.	
ĺ										21.5
									BOTTOM OF HOLE	
25									_	
								i		
					1					<u>├</u> ───┤
										<u>├</u> ───┤
30										
ļ					 					
1								·		
35										<u> </u>]
										<u> </u>
					<u> </u>				1	├ ───┤
40	<u> </u>				I	l				
	Nominal I	.D. of Dri	ve Pipe	2½"			4''		The Contractor shall make his own subsurface investigations in order to path	isfv
F	Nominal I	.D. of Spl	it Barrel S	ampler	<u> </u>	<u>½"</u>			himself of the actual subsurface conditions. The Information contained on the	his
-	Weight of	hammer a	n Drive Pi	pe 300	1bs.				log is not warranted to show the actual subsurface conditions. The Contract agrees that he will make no claims against the State if he finds that the actu	tor vat
<u> </u>	Prop of h	ommer on	Drive Pipe	24 ¹¹	<u>er 14</u>	J 105.			conditions do not conform to those indicated by this log.	
	Drop of h	ammer on	Split Barre	el Sampler	30 '	1			New Jersey Department of Transportation	
Core	Dia				.				Soils Bureau	
Soil d	escription	s represe	nt a field i	identificat	tion					
atter	D.M. Burn	nıster unle	ess otherwi	ise noted.					Approximate Change in Strata	······
									Inferred Change in Strata	و او دای خد کند جو ه
						·				

a paragraphic state and the state of the sta

· -

HOWARD, NEEDLES, TAMMEN & BERGENDOFF

CONSULTING ENGINEERS

P51 Boring No. Sheet No. 1 .of

BORINGS FOR

I-280, New Jersey

(PROJECT)

Giles Drilling Corporation

ONTRACT	NO	B	PURPÓS	ε	Roadway			STI	RUCTURE N	0
OCATION	Ha	rrison,	New Jers	ey			y <u>Böyl</u> a	ansta. <u>36+</u>	73	OFF. <u>45</u> 1
RIG NO. DATE TIME STA TIME FINI WEATHER	6 <u>12-</u> RTED 10 ISHED 11 R	TYPE Po 7-70 3 :45 :05 oudy	orter Sau	<u>pler</u> p	RILLER	ockett	HELPER(S)	C. Kuzn	18	
DEPTH R	EACHED 12	.0		 	· · · · · · · · · · · · · · · · · · ·			·		
ROUND	ELEVA F BORI	TION NG LO	G	-2.0	E	ML LEVATIO	.W. ELE	EVATION UND WA	TER	
	· · · ·		······································	PAY	QUANTIT	IES				· · · ·
	LINEAL I	FEET OF	BORING			SAMPLES		LIN. F	T, OF ROO	K CORE
2-1/2	3"	4"	Porter Sampler		ORDINARY DRY	UNDIST. DRY		1- 3/8	1-5%	
ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM
			12.0	· .				<u> </u>	4)	
			<u></u>	SIZE		WEIGHT	OF HAMN	/ER	AV. F.	ALL
INDIST UF	RED SAM	MPLES		1.U.,		<u> </u>	LENGTH	0	Ó	
GROUN DATE TIME DEPTH	O WATE	R REA	DINGS	······································	•					
ENERAL	REMAR	KS			• • • •		······································		• •	
· · ·						· ``				
·····					·····			•		
-									······································	
		· · · · · · · · · · · · · · · · · · ·								•
		· .				<u></u>				
	· · · · · · · · · · · · · · · · · · ·	······································						·····		
								·····		
		,				·				
	oo Cha	-los Sul			PECIDENT	ENCINE		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

S. Tar

<u>}</u>

Borir	ng	No.	P	5	L
Sheet	N	o	2	of	2

BORINGS FOR

Rec. d

- lide T van and

1, 443.3

:

•

-

	BLOWS	94.01	we -04		SAMPLE	IFUSE	
ELEV.	ON CASING	PENE	VETY R 6"	NO.	DEPTH	. LOO 0.0	P=Push MATERIAL & REMARKS
	P	0	6"	1	0-3		Blk.Br.c-f SAND, little Silt,trace c-f Gravel, trace R
	1	0	1		·	7	Fibers - Field observation
		0	T			7	(Fill)
		0].	
		0					· · · · · · · · · · · · · · · · · · ·
•		6]	- Same -
		0		2	3-6]	(Fill)
		0					
		0]	
-3.0		0				5.0	
-3.5		6				5.5	Grey Br.SILT & CLAY, little Br.Peat, trace f Sand (organic
		6					Grey CLAY & SILT, tr. f Sand, tr. Root fibers (organic odo
		0		3	6-9		(Sample Retained)
		0			<u> </u>		
		0			· · · ·		
		0					
		5				1	- Same -
		6					- Same -
	<u> </u>	0		4	9-12	4	
	P	0	<u> </u>				
0.0	<u> </u>			· · ·		4	
-9.0	60	2	╞╞	+		11.0	-same-
-9.5		6	+			11.5	Grey CLAY & SILT, little c-f Sand (organic odor)
-10.0	89	6				12.0	Br. c-f' SAND, trace f Gravel, trace Silt
			· · · ·	+		1	
		┨		 			
						-	Bottom of noie
, 		┼──		+		4	······································
			+	+			
	L	<u> </u>	1			-	
		{		+		- • •	
		<u> </u>		+		4	
		<u> </u>		1.	l	-	
		<u> </u>	1	1	······	1	
		1		1			
		1	1	+	·	1	
		1	1	1	-		
		1		1		1	
	 	1	1	1		1 .	

			· · · ·	000	N. C. C. T		• •			
				BORI	NGS	U H				
• • •				<u>I-280</u>	<u>New Jer</u>	sey	. ` 			
	• .	· · · · ·		Giles	Drilling	Corpora	tion			
		ъ		(co) Ro:	NTRACTOR) adway					
ONTRACT N	0 Hai		. PURPÓS New Jers	E			y Boylar	ST	RUCTURE N	0. DFI
			······	_						
RIG NO.	<u> </u>	_ TYPE PO	rter Sam	pler DR		rockett	HELPER(S)	C. Kuza	na	
DATE TIME STAR		1:20	· <u>.</u> .	·····			·			··
TIME FINISI	HED	1:30								
WEATHER		oudy		 						
DEPTH REA		10.0								
ROUND	ELEVA	TION	+1	6		Ш.	.W. ELE	VATION	·····	···
ZERO OF	BORI	NG LOC	;	······	E	ELEVATIO	N GRO	UND WA	TER	
			·	PAY	QUANTIT	TIES	· · · · · · · · · · · · · · · · · · ·			
<u> </u>	INEAL P	FEET OF	BORING			SAMPLES	;	LIN. F	T. OF ROC	ж
2-1/2	. 3"	4"	Porter Sampler		ORDINARY DRY	UNDIST. DRY		1-3/8	- ⁵ /8	
ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	1
			9.0							┢
	UNI	IT WEIGHT		SIZE		WEIGH	OF HAMN	MER	AV. F	ALI
CASING	_									
ORDINARY (DRY SAN	APLES	0.D1''	' I.D		<u>25∦ S</u>	LIP		12"	
JNDIST URB	ED S.AN	APLES	TYPE				LENGTH	0	.D	.D.
	WATE	REA	DINGS			· · ·				
TIME	: •							·		
DEPTH	······································		 							

.

Boring No. P52 Sheet No. 2 of 2.

BORINGS FOR

I 280, New Jersey

(Sian

Roadway PURPOSE

ELEV.	BLOWS ON GASING	BLOW SPC TECO FO PENE	19 -on Dvery R 6" Trat'n	NO.	SAMPLE DEPTH	_ LOS	On initial attempt hit obstruction st 4.5'. Moved hole 2 ft. P=Push MATERIAL & REMARKS
	P	0	6	1	0-3]	Blk.Br.c-f SAND, little c-f Gravel, trace root fibers, trace
	Р	0		\square			-Fill - Field observation
-0.1	<u>P</u>	1		 		1.5	- SameFill-
	<u> </u>	6	┟┊┠╴	ļ		4	Blk.Br.SILT & CLAY, little c-i Sand, trace i Gravel, trace
		6	┝╌┠╍	<u> </u>		-	- Same -
		6	┨╌┨╾	2	3 6	-{ ·	- Same -
	13				<u> </u>	- I	· · · · · · · · · · · · · · · · · · ·
·		0	╂╼┨╼		·····	1	
	13	0	$\left\{ \begin{array}{c} \\ \end{array} \right\}$	1		1	
		3					- Same -
4	17	6		1		1 .	- Same -
		0		4	6-9]	
-5.4	16	0				7.0	- Sample Retained
	ļ	4			· · · · · · · · · · · · · · · · · · ·	4	BIR.CLAY & SILT, little f Sand (organic odor)
	40	6				4	- Same -
	<u> </u>	6	<u> </u>	 	· ·		Top 3" SAME, Bottom 3" Br. c-1 SAND, trace Silt
-7.4	74	6_	6			19.0	- Same -
						╡ᡗ_	Bottom of hole
						4	
						1	
		· ·				1 .	
]	
			-				
			:				
<u> </u>	ļ			ļ		4	
	ļ	ļ	ļ	 		4	
		ļ	<u> </u>			4	
	ļ					-	
			<u> </u>			-	
			· · ·		ļ	4	
	<u> </u>			†		1	
	1					1	
	<u> </u>] .	
]	
					L		

	· · · · ·	· · · · · ·	C		ING ENG	INEERS		• .	Sheet N	¢. <u>_</u> _of
			· · · ·	BOR	INGS F	OR		unter Se unter angle	•	
				1-280	, New Jer	веу			-	
	· .	· · ·	•	Giles	Drilling	Corpora	tion			
		ىن، <u>ئىرىمى</u> بىر ى		(c o	NTRACTOR)					
ONTRACT	NO	B	PURPÓS	E Road	way			STF	RUCTURE NO	o
OCATION	<u> </u>	Harrison	n. New Je	rsey		RDW	yBoylan	. sta. <u>35</u> +	50 (DFF201
DIC NO	6	TYPE PO	orter Sam	mpler .	R.C	rockett		C. Ku	zma	
DATE	12.	-7-70		Ul	سیبی ۲۹ تا تا یا ۱۹ ·	d, ad (split) if info - 2, it - 1, st - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1	DELFER(3)			
TIME STA		:30	· · · · · · · · · · · · · · · · · · ·			·		· · · · · · · · · · · · · · · · · · ·		
TIME FIN		:45			· · · · · · · · · · · · · · · · · · ·		······		· <u></u>	
WEATHE	<u>۲۲۵</u> ۶	oudy	<u> </u>	·····			······································			
DEPTH R		• •	•	····			· · · · · · · · · · · · · · · · · · ·			
ROUND	ELEVA	TION		+3.0		M.L	.W. ELE	VATION		
ERO O	F BORI	NG LO	G	, 1	Ê	LEVATIO	N GRO	UND WA	TER	<u></u>
	<u></u>		<u></u>	DAV						
			BUDING	<u>[M]</u>	WUMBIII	SAMDI FO				
2-4"			Porter		ORDINARY	UNDIST.	, 	LIN. C	1. OF ROU 1-5 <u>"</u>	
C /2			Sampler		DRY	DRY		1-78	1-78	
ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM *	IIEM	IIEM
			9.0							
	UN	IT WEIGHT		SIZE	· • • ·	WEIGHT	OF HAMM	ER	AV. F	ALL
RDINARY	DRY SAM	MPLES	0.D1'	! I.D	······································	2	5∦ SLIP		12'	1
INDISTU	BED SAN	MPLES					LENGTH	0.	Ď I	.D
GROUN	D WATE	R REA	DINGS							
DATE						······································			<u></u>	<u></u>
DEPTH				· · · · · · · · · · · · · · · · · · ·						
-				· · · · · · · · · · · · · · · · · · ·						
ENERAL	REMAR	KS	. <u></u>							
		· · · · · · · · · · · · · · · · · · ·						•		
							· · · ·			
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
		:								
	<u></u>	· · ·		<u></u>	· ·					
<u> </u>									······	
	······				and the second					
		· · · · · · · · · · · · · · · · · · ·					•			

.

4

Boring No. <u>P53</u> Sheet No. <u>2</u> of <u>2</u>

BORINGS FOR

I 280, New Jersey

CONTRACT NO.

A. Land

÷.

PURPOSE Roadway

21.000

÷.

B

ELEX	BLOWS ON	-8404 =35(:eco	very		SAMPLE		MATERIAL & REMARKS
+3.0	CASING	FO PENE	R 6" TRAT'N	NO.	DEPTH		P=Push
	P	0	6	1	0-3	1	Blk organic SILT, little c-f Sand, trace Root fibers
	P	0					Field Observation
	P	<u>` 0</u>				_	- Fill -
	P	0		<u></u>			Come Edill
+0_4_	17	4	$\left \right $	-		2.0	For A'' same -: Bottom 2" Br. c-f ⁺ SAND, trace Silt
	11	0	┟┼──	2	2.6	`	
	15	0	┝╌╿╌╌	4	3=0	-	
		0	<u> - </u>			-	
	19	0]	
		0					
-3.0	23	2	 			6.0	- Same -
****		0	┟╌┠╌╌	3	6-9	-	
		0				-	
	26	0	╏╌┼╌╍		·	-	
-5.5		0	V			8.5	S amp 1
-6.0	61	6	6		•	9.0	Top 4"Grey SILTY CLAY, trace root fibers, trace f Sand(Retai
<u>.</u>			:			T	Bottom 2" Br. c-f ⁺ SAND, trace Silt
			<u> </u>			┥╽	Petter of bolo
						-	
······································				┨──┥			
······				+	<u></u>	·	
				+		-	
			[]	
			:				
			ļ				
	<u> </u>		· · ·			4	
						-	
	┫			<u> </u>		- 1	
	<u> </u>	÷				1	
					· · · · · · · · · · · · · · · · · · ·]	
				ļ		4	
	<u> </u>			$\left - \right $		-	
	<u> </u>			<u> </u>		4	
				+-1	, 	4.	·

	۰ ۱۹۰۰ - ۱۹۰۰ - ۱۹۰۰ ۱۹۰۰ - ۱۹۰۹ - ۱۹۰۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹	HOWA	RD, NEE C(DLES, NSULT BORI 1-280,	TAMMEN ING ENG NGS F New Jerse	BINEERS	RGENDC	DFF	Boring N Sheet N	o o1of
	n an			(P	ROJECT)	ornorat	ion		-	
				GILES I	NTRACTOR)	orporac				
ONTRACT	NO	B		Roadwa	ay		Barrlan	STF	RUCTURE NO). <u></u>
OCATION	Harris	son, New	Jersey	· · · · · · · · · · · · · · · · · · ·		RDW	Y. DUYTAN	STA		DFF
RIG NO.	6	TYPE PO	rter Sam	pler DF		Crockett	HELPER(S)	C. Kuzm	a	
DATE		2-7-70 L:45								
TIME STA	RTED	2:35	, <u></u>			<u></u>		· · · · · · · · · · · · · · · · · · ·		
WEATHE	<u>رى</u> ،	Loudy		·····				· · · · · · · · · · · · · · · · · · ·		
DEPTH R		• • •	· ····································							
GROUND ZERO O	ELEVA F BORII	TION NG LOC	+:	2.5	E	M.L LEVATIO	N GRO	VATION	TER	
				PAY	QUANTIT	IES				
	LINEAL F	EET OF	BORING			SAMPLES		LIN. F	T. OF ROC	KCOR
2-1/2	3".	4"	Porter Sampler	· · · ·		UNDIST. DRY		1-3%	1-5%	
ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEN
			11.0		·					
	UN	T WEIGHT		SIZE		WEIGHT	OF HAMM	IER	AV. FA	
CASING										
ORDINARY	DRY SAM	MPLES	0.D. <u>1''</u>	I.D		25#	SLIP		<u>12</u>	<u> </u>
	BED SAN				÷		LENGTH	0.	D I	.D
DATE						- 		····-		
TIME			······		4 1					
DEDTH					<u></u>					
DEPTH	REMAR	KS	· · · · · · · · · · · · · · · · · · ·							
DEPTH GENERAL			<u></u>			, 				
DEPTH GENERAL		· ·						-		<u> </u>
DEPTH GENERAL			·····		······			<u>. </u>		
DEPTH			·····		· · · · · · · · · · · · · · · · · · ·				·····	
DEPTH			······		······					·····
DEPTH										
DEPTH										
DEPTH										
DEPTH										

. .

Boring No. _____P54 Sheet No. 2 of 2

BORINGS FOR

I 280, New Jersey

CONTRACT NO.

B

• •

Roadway PURPOSE

	BLOWS	NS BEGUES BA			SAMPLE		
ELEV. +2.5	CASING			NO.	D Е РТН		P=Push
	P	0	6	1	0-3		Blk Grey CLAY & SILT, and Br. Peat, trace c-f Sand
	1	0					(Field observation)
		0					(Fill from ditch excavation)
		0					- Same -
		6					- Same -
		6					- Same -
		0		2	3-6		
		·0					Wet at 3.0'
		0					
		0			·		· · · · · · · · · · · · · · · · · · ·
-3.0		6				5.5	- Same -
	*	.6					B1k.Grey CLAY & SILT, trace Br. Peat, trace f Sand
		0.		3	6-9		-Sample Retaine
	_11	0					
		0				-	
	50	4					Blk.Grey CLAY & SILT, little Br. Peat, trace f Sand
		6				- ·	- Same -
-6.4	_53_	6			•	8.9	Top 4"Same, Bottom 2"Br. Grey c-f SAND, little Silt, tr.fGr
		6		4	9-11	_	- Same -
	30	6					<u>- Same -</u>
		6				-	- Same -
-8.5	94	6	Y			11.0	- Same -
		•		 			Pattan of bolo
							BOLLOW OI WOIE
						-	
						-	
		·	· · · · · · · · · · · · · · · · · · ·				
						-	
			· · · · · ·			-	
			:			-	· · · · · · · · · · · · · · · · · · ·
					·	1	
						-	······································
						-	
						1	
			· · · ·			-	
					· · .	1	
·						1	
1				1 I		1	

(مین بر س	· · · · · · · · · · · · · · · · · · ·		C	DNSULT	ING ENG	INEERS	NOLADO		Sheet N	o. <u>1</u> of	
				BORI	NGS F		•••••••••	n Ala shi ka ka			
	•			New Je	rsey 1-28	. 0		······	-		
		· · ·	· ·	Ciles	Drilling	Corporat	ion				
				(c o	NTRACTOR)	002		······			
NTRACT	NO	<u>B</u>	PURPÓS	E <u>Roadv</u>	ay		· · · · · · · · · · · · · · · · · · ·	STF	NUCTURE N	0	
CATION	Ha	<u>rrison,</u>	New Jer:	sey		RDW	Y. B <u>oylan</u>	STA. 33+	50 (DFF. 20 I	
	6	TYPE P(orter Sa	mpler o	R. C	rockett		C. Ku:	zma		
DATE	12	2-7-70					HELPER(S)				
TIME STA		::40									
TIME FIN	IISHED	3:00					· · · ·				
WEATHE).0		nishirini munimpi - Alin		<u></u>			<u> </u>	· · · · · · · · · · · · · · · · · · ·	
								·····		·	
ROUND	ELEVA	TION	H-	0.8		M.L	W. ELE	VATION			
ERO C	F BOR	NG LOO	3		E	LEVATIO	N GROU	JND WA	TER		
<u>.</u>			,	PAY	QUANTIT	IES		· ·			
	LINEAL	FEET OF	BORING			SAMPLES		LIN, F	T. OF ROC	K CORE	
2-1/2	3"	4"	Porter Sampler		ORDINARY DRY	UNDIST. DRY		- <mark>%</mark>	-5/8		
ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	ITEM	
			9.0								
	UN	IT WEIGHT		SIZE	,	WEIGHT	OF HAMM	ER	AV. F	ALL	
ASING			·		, . 	• - 11			101		
RDINAR	1 DRY SAN	VIPLES	0.D. <u>1</u>	<u> </u>		25# 8	SLIP				
	RED SAN				÷	·	LENGIH	0!	D I	.U	
DATE						-					
TIME					·····		`	· · · · · · · · · · · · · · · · · · ·			
	·						······		·····		
DEPTH	RENAR	K C	`		· · .			•			
					······································	¥					
DEPTH ENERAL					······					····	
ENERAL										<u> </u>	
ENERAL	1. 1997 - 18 ar 18 fer an easter an easter an easter an easter - 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	······································									
ENERAL						<u></u>					
DEPTH	· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·			
ENERAL			······································		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
ENERAL			······································		· · · · · · · · · · · · · · · · · · ·						
ENERAL			······					· · · · · · · · · · · · · · · · · · ·			

and a subscription of the subscription of the

۲

.. •

• :,

a second a s

· · ·

•

15

Boring No. <u>P55</u> Sheet No. <u>2</u> of of 2

BORINGS FOR

	BLOWS	tecc	vs=an- Wery	SAMPLE		6.0	
+0.8	CASING	FO PENE	R 6" TRAT'N.	NO.	O EPTH		P=Push
	P	0	6	1	0-3	_	Blk. organic SILT, and Br.Peat, trace f Sand
	↓ 	0	<u>∔</u> <u> </u>	ļ	. 	-	(Field observation)
-0.7	┨┨───	0		<u>`</u>		1,5	······
	+	1	+	· · ·	<u> </u>	-	Creve B1k CTAY & STIT little Br Dest trace f
	+ +	6					Grey Dir. Ouri & Dilli, little Di. feat, trace i
		0		2	3-6	1	- Salle -
<u></u>	t v	0				1	
	P	0					
	9	. 0					-Sample Retain
,	ļ	4				5.6	Grey Blk CLAY & SILT, trace f Sand, trace Root fib
-4.8	35	6					Top 2"Same, Bottom 4"Grey c-f ⁺ SAND, little Silt, t:
<u></u>		0		3	6-9	-	Root fibers
	49	4	$\left\{ \begin{array}{c} \\ \end{array} \right\}$			4	- Same -
	5/4	6				4	Grev c-f SAND, little Silt
<u> </u>	<u></u>	6	V	``````````````````````````````````````		4	- Same -
-8.2	76	6	6			9.0	- Same -
						T	
-							Bottom of hole
		· .		,	4		
						4	
							·
						4	· · · · · · · · · · · · · · · · · · ·
			·			4	
, 						-	
							
·····		х.					
				,	×		
						-	
·						4	
						- 	
		·			······		· · · · · · · · · · · · · · · · · · ·
	 				· · · · · · · · · · · · · · · · · · ·	1	

÷.

N 1977

and the second second

. . .

è

1

2

(WB 20)

STA. 5700 + 43.89 50'Rt.

	(~	в	2)	

STA. 5703+81.00 50'Lt.

				T			T	<u></u>				<u> </u>	
	BLOWS BLOWS ON	SAMP	LE				BLOWS	BLOWS	ON	SAM	APLE		
FLEV	ON SPOON				MATERIAL & REMARKS	FIEV	ON	SPOC	DN				MATERIAL & REMARKS
	CASING 0 6 12		рты				CASING	0/6/	12"		FPTH	-00	
7.0	6" 12 18					8.6	CASING	6" 12	"18" "		ALC: IN I		
					Red brown c-f Sand, Gravel and Rock fraam.				† †			-	
+50		-		e.ot					+ +	-		F	Grau brown c-f Sand, Gravel, Cinders Ash
	3 3 3	120	-35		· · · · · · · · · · · · · · · · · · ·			12 17	26	12	0-35	ł	and Boulders
			<u></u>	t	Black Cinders and c-f Gravel		t	76 11	20	· •	<u> </u>	t	
+20				50t			+ - +		++			H	
	321	250	-65	~ ~			++	2 2	2	2 5	0.65	ŀ	
+	J 2 /	e 0.0	-0.3	-	Company of Found trace of Silt			e 3	3	c 3.	0-0.5	-	
				ام م	Gray brown C-r Sana, Hole Of Shi			.	+			ł	
-1.0			4	5.0					+-+-			-	
		_		-								(n a)	
		-		ŀ	BIACK Loal, Cinders and MUCK	-/4			+	-		0.0	
	////	3 10-	1.5					11	11.	3 10	7-11.5	1	
													Peat
-6.0			/	'3 .0[[
			T			-5A						14.0	
0.5					Peat								
- 8.5	2710	4 15-	16.5	5.5				39	7.	1 15	5-16.5	ľ	Brown c-f Sand, trace of Silt
				- 1	· · · · · · · · · · · · · · · · · · ·	-				112		f	
				ŀ	Grow brown c-f Sand trace of Silt		+	++	+-+	-		t i	
			_	ł	and m-f Gravel				+ +			ŀ	
				ł			+		+				
	2 4 6	F 20	2/2	H			+	3-	++++	=	0.010	ł	
	348	3 20	- 21.5				ł	34	0.	ש בי	5-21.3	-	
	L			1		T			11			L	
		_		1					+			ļ	
									\perp			1	
- 18.0			ć	25.0]		
	8	6 25.	-26.5				1	15 15	11	6 2	5-26.5	[
				ľ	Gray f silty Sand		1	1.1/2	11			t	
		-		ł		-101	d				l	end	
				ŀ		13.4	}	<u></u> +	+		-	-0.0	······································
- 22 /				300			+		1	-		t	Gray f silty Sand
-20.0	266	7 30	- 2/5	~~~		- 02 4		5 0		7 2	0-215	310	or by f aing sone
	12 0 0	/ pu	51.5	ŀ	Even veryad alaway filt	20.4		12 10	0	- 00	0-3.0		· · · · · · · · · · · · · · · · · · ·
					bray varved clayey Sill		ł	\vdash					Comment of the City
		-		- [+	+	+				Gray varvea clayey Slit
				- i		•		+	+				
			-	-			+		+ +	-		1	
	345	8 33.	- 36.5	ļ	· · · · · · · · · · · · · · · · · · ·		1	34	6	0 3	5-36.5	1	MMAC OF ST.
			1				1						
-330				10.d		-314	1					⊿ad	
	233	9 10	A15					3 3	5	01	0-115	-70101	
		2 40	41.5		Proven varyad claugy Silt with lawars of			1212	+	3 100	0-41.5		Grow brown clauge filt
					f oilty fand					-+			Orgg brown Llugey Sin
					1 Silly Sulla			l	+ +			-	
									++			1-0	
		10 10		ł		-36.4	ř		+-+			45.0	
	4 / 8	10 43	-465		· · · · · · · · · · · · · · · · · · ·			24	4	10 4.	5-46.5		
													Brown varved clayey 5ilf
					· · · · · · · · · · · · · · · · · · ·							1	
-420			Ŀ	<i>49</i> 0									
	569	11 50.	-5/.5	[Red brown silty Clay, trace of m-f Gravel		T	22	3	11 50	0-51.5		
					and Rock fragments		Т						
							1		+-+				
							1		++	-+-			
				. 1		-AF	1	<u> </u>	++		· · · ·	550	
	670	12 55.	-56.5				+	25	R	12 5	5-565		
	···· ~ / 3			ł			+	1-1-	- ~ '				Red brown clause Silt with lawers of silter
	┝╌┄╌╞╼╌┾╌╴┤╶╴┨			ł			1	<u> </u>	+-+				f Sand
. 50 -				500			+	+	┉┼╍╍╍╂╴				
-52.0	┝╾╾┼╴┼╍┼╼┥	-+	 	13.0	Decomposed red Shale		+	+	+ +				
-53.5	17r	19 50	600	60.5	Decomposed rea andre		t	5		12 1	A-CIE		
		100 01	- 60.3				ł	12 10	10	13 00	בוטייט		
					Dilled ROY Decovory of and and	-	J	-	+			ارم	
	Urill tim	e			Urillea az % Recovery of rea seamy shale	-54.4	9	ļļ	++			63.0	
	8 10 12	12			29 pieces and tragments		1		+				
- 50F	14 mins.	/ft.	,	اء دا	No casing blows, drilled casing in								<u>Red brown silty Clay, trace of m-f Gravel</u>
				12.5				3 5	8	14 6.	5-66.5		Rock fragments and boulders
				- 4	-Bottom of Hole								
			-	Ì			1						
							1		-++				· · · · · · · · · · · · · · · · · · ·
				1			1		+				
			-	· ·]			1	5 4	111	15 7	0-7/5		
	┝──┼──┼──┤				· · · · · · · · · · · · · · · · · · ·		1	1× 10	+"+				
	┟──┼─┼─┤						+	1 1 -	-+				
	+ + + + + + + + + + + + + + + + + + +	_			· · · · · · · · · · · · · · · · · · ·			++	++				·
	┝┈╌╌┝╼╌┝╶╌┝			ļ			+	+	+				
	├── 			1	· · · · · · · · · · · · · · · · · · ·		<u> </u>	+		-			
	┟───┟──┟──┟			ļ			1	69	121	16 7.	5-76.5		
							<u> </u>						
				1			1			1			
						-71.4	1			T		<u>80.0</u>	

ELEV	BLOWS	BLO S	WS POO	ON N	s	AMPLE	1.00	мат
	CASING	%	6″/ 2″	12'' 18''	NQ	DEPTH	-00	
		Dr	;//	tir	ne			Drilled 40% Recover
		5	5	8	10]	8 pieces and fragm
		12	m	ns.	/ft.			
-76,4			<u> </u>		-		820	
		Dr		tim			1	Drilled 93% Recove
		In	11	9	10		1	19 nieces and fragm
		10	m	ns.	IA.		1	No casing blows di
-81.4							90.0	
							ト	Battern of Halo
							+	Bollom Ul Hole
							1	
		L						
			-	 			-	
					-		-	
		†	-				1	
			1			-	1	
		1			1]	
		ļ	ļ				4	
	-				<u> </u>	<u> </u>	1	
		-	+		+		1	
				+			1	
	-	-	-		1		1	
					_]	
	<u> </u>	h		\vdash			-	
		-			+ -		1	
			+	+			1	
		1	†	1			1	
					1		Į	
		<u> </u>		ļ			4	
		+			+		+	
		1 —	+	<u>† </u>			1	
	†	1			1		1	
		1	1-		t		1	
]	
	ļ	ļ	<u> </u>	-	 		1	
		-		+			1	
	h	<u>+</u>	+		+		1	
		\square	\vdash	ţ	1		†	
	l]	
		L		I	ļ		-	
	+	+	+		+	<u> </u>	-1	
	+	+	+	+	\vdash		1	
	1	Ľ	1	1			1	
			T				1	
							4	
		+	+	-			-	
		+	+	+	+	<u> </u>	1	
	1	1	+	1	1	İ	1	
			1	1			1	
		1		1	1	ļ	1	
		1	+	_		<u> </u>	4	
		+	+	\vdash	+		-	
	1 .	+	+	+	1		-1	
		t	-		1		1	
					1		1	
	ļ	1		-	 	ļ	4 1	
	<u> </u>	+	+	+	+	+	-	
		+	+	+	+		-1	
	1	†	+	<u>†</u>	+	1	1	
			1		1		1	
					1		4	
				-	+	ł	4	
	+	+	+	+	+	+	-	
	<u>† </u>	+	+	+	1	1	1	
		+	1	+	+	1	-1	
			1					

NO	DATE	70 2.
1	m. 3.71.	AS-R

TERIAL & REMARKS

ru of	red	sen	nu	Shale	
ents	120	Jeur.	<i></i> y	Silde	
ru of	rod	con	n//	Shale	
ents	120	32011	<i>'</i> y	0//0/E	
illed	casin	g in.			
			•	• • • •	
				,	
				-	
		<u>.</u>			

NOTE: For Boring Locations See Sheet 122.

and p