Appendix 3 – A – 5 SUPPORTING DOCUMENTATION

02-8810-75-SI **REV. NO. 1**

your copy marked up inthe wy connerts

FINAL DRAFT SITE INSPECTION REPORT **KEEGAN LANDFILL KEARNY, NEW JERSEY**

PREPARED UNDER TECHNICAL DIRECTIVE DOCUMENT NO. 02-8810-75 CONTRACT NO. 68-01-7346

FOR THE

ENVIRONMENTAL SERVICES DIVISION U.S. ENVIRONMENTAL PROTECTION AGENCY

> **SEPTEMBER 15, 1989** (REVISED SEPTEMBER 29, 1989)

> > **NUS CORPORATION** SUPERFUND DIVISION

SUBMITTED BY:

Ŕ

ŝ,

X

ŝ.

;

4

. 1

10

aint y

1

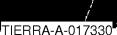
1.1

Ť.

1

DONALD P. HESSEMER PROJECT MANAGER

TAMARA MARQUART


SITE MANAGER

REVIEWED/APPROVED BY:

G RN

RONALD M. NAMAN FIT OFFICE MANAGER

140

CCA000045

Nev. NO. 1 .

SITE NAME: ADDRESS:

Keegan Landfill Bergen Avenue Kearny, New Jersey 07032

EPA ID NO.: LATITUDE: LONGITUDE: NJD981490428 40° 45' 27" N 74° 08' 07" W

1.0 SITE SUMMARY

The Keegan Landfill Site is an approximately 230-acre tract of land in an industrial section of Kearny, Hudson County, New Jersey. The site is bordered on the south and northwest by Conrail railroad tracks, on the southwest by businesses along Bergen Avenue, and on the northeast by a large wetlands lake. There are residential neighborhoods nearby, as approximately 20,000 people live within 1 mile and 223,000 people live within 3 miles of the site.

The site is the property of the Town of Kearny, but the operator of the landfill was John P. Keegan/Municipal Sanitary Landfill Authority (MSLA). Keegan/MSLA leased the land from the Town of Kearny and operated it as a municipal landfill from the mid 1960s to 1974. Some construction debris, such as concrete and stone, as well as tree branches and limbs, are still being disposed of at the site. There is also unauthorized dumping occurring, as the site is littered with abandoned furniture, appliances, and automobiles. The site is not fenced except for a locked gate at the main Bergen Avenue entrance. Therefore, the potential for direct contact with exposed wastes exists. The Kearny Health Department reported that a member of the Kearny Police Department had worked as a truck driver for Dupont Chemical in Newark in the 1960s. He reported that every morning at least one truck with approximately forty 30-gallon drums went to the Keegan tract. These wastes included chromate and bichromate slurry, pigment wastes, and organic wastes. Disposal of these wastes took place in various areas of the landfill. Approximately 10 drums were observed on site during an off-site reconnaissance conducted by Malcom Pirnie, Inc., on April 28, 1986; however, during the NUS Corporation Region 2 FIT site inspection conducted on April 25, 1989, no evidence of the drums was present.

There is no information available on the quantity of wastes deposited on site or the location of the hazardous waste dumping areas. There have been several underground fires on site, most recently in June and July of 1987. The site is crossed by an unnamed creek and Frank Creek, which originates on site. These two creeks converge south of the site, and flow into the Passaic River.

In a letter dated July 2, 1987, the New Jersey Department of Environmental Protection (NJDEP) recommended that a closure plan be submitted. On July 28, 1987, the NJDEP met with Neglia Engineering Associates to discuss the closure of sections of Keegan Landfill. Neglia Engineering Associates recommended that the access road be improved to provide a turnaround area, that the area of the recently extinguished fires be covered with 2 feet of cover, and that the access road from Bergen Avenue be secured. The current status of the closure plan is unknown.

Nek

On April 25, 1989, NUS Corporation Region 2 FIT personnel collected seven surface water samples and six sediment samples at the Keegan Landfill Site. These samples were collected to determine the presence or absence of Target Compound List (TCL) substances, and the potential for these substances to migrate off site. Results of this sampling indicate the presence of mercury, lead, chromium, polychlorinated biphenyls (PCBs), and several semivolatile compounds in various sediment samples. Several inorganic compounds, including mercury, lead, and chromium, were detected in surface water samples collected in Frank Creek.

Ref. Nos. 1, 2, 3, 4, 14-22

Ι.

.

S.

2.0 SITE INSPECTION NARRATIVE

2.1 EXISTING ANALYTICAL DATA

It is unknown whether any sampling has been performed at the Keegan Landfill Site prior to the NUS Corporation Region 2 FIT site inspection on April 25, 1989.

Ref. Nos. 1, 2

2.2 WASTE SOURCE DESCRIPTION

The Keegan Landfill is approximately 230 acres in size. This site was used as a municipal landfill from the mid 1960s to 1974. Construction debris, such as concrete and stone, as well as tree branches and limbs are still being disposed of at the site. Also scattered throughout the site are abandoned automobiles, appliances, and furniture. The landfill is unlined and there have been reports of chromate and bichromate slurry, organic wastes, and pigment wastes being dumped on site. The quantities and location where these substances were disposed of are unknown. During a 1986 offsite reconnaissance by Malcolm Pirnie, Inc., approximately 10 drums were reported along the eastern access road. The contents and condition of these drums are unknown.

There have been a number of fires beneath the surface of the landfill which recurred periodically, venting smoke from the landfill surface. In July 1987, the NJDEP recommended that a closure plan be submitted for the Keegan Landfill Site. Neglia Engineering Associates met with the NJDEP and recommended that the areas of recently extinguished fires be covered with 2 feet of cover. At the time of the NUS Corporation Region 2 FIT site inspection, there was no evidence of any burning waste or drums on site.

Ref. Nos. 1, 2, 4, 21

2.3 GROUNDWATER ROUTE

The Keegan Landfill Site lies within the Hackensack Meadowlands, a large wetlands area formed by the action of glaciers and fluctuations in ocean water levels. The bedrock in the Hackensack River 8asin is a part of the Newark Group of Late Triassic Age. Underlying the Keegan Landfill Site is the Brunswick Formation, which forms the bedrock throughout most of the Hackensack River Basin. The Brunswick Formation is composed of mudstone, siltstone, sandstone, and conglomerate. In the southern part of the basin, mudstone is the dominant lithology, and the deposits gradually become coarser grained northward. The Brunswick Formation is the most important bedrock aquifer in the basin. The water table in this area is assumed to be at or near the ground surface. Groundwater in the Brunswick Formation occurs in a network of interconnected openings formed along joints and fractures. Groundwater flow in the area is likely to be southeast toward the Hackensack River. Unconsolidated deposits overlying the Brunswick Formation consist of till, varved silt and clay, alluvium, sand, and gravel. Small quantities of groundwater are stored in the till which overlies the bedrock.

Net NY. I

Deposits of varved silt and clay, such as the lake beds that overlie bedrock and till in most of the meadows, have a poor permeability of approximately 10⁻⁵ to 10⁻⁷ cm/sec and impede the movement, discharge, and recharge of water. Stratified drift deposits of varved silt and clay, as much as 300 feet thick in the meadows, occur in two troughs which parallel the sides of the basin. The Keegan Landfill Site lies within the western trough.

Groundwater from the Brunswick Formation in the lower part of the basin is hard to very hard and highly mineralized. In this area the water quality in both the Brunswick and unconsolidated deposits is influenced by the water quality of the Hackensack River and Newark Bay. Both the surface water and groundwater quality in the lower area is influenced by the disposal of large quantities of sewage and industrial wastes in the Hackensack Meadows. High concentrations of chloride make the water in the lower Hackensack River unsuitable for municipal and industrial processes, although it is usable for cooling purposes.

There is no potable water collected from groundwater in the area. All municipalities within 3 miles of the site draw their drinking water from the Wanaque Reservoir, located in northern Passaic County. There are 10 industrial wells and one recreational well within 3 miles of the site, the nearest being approximately 0.7 mile southwest of the site. This well and nine others withdraw water from the Brunswick Formation. One well located 1.5 miles southeast of the site withdraws water from the stratified glacial drift. The recreational well is operated by the Essex County Parks Department, which is used to replenish water in a pond in Branch Brook Park located approximately 2.7 miles northwest of the site. This well information is summarized in Table 1. There is a potential for groundwater contamination since the landfill is unlined and reports have suggested that chromate and bichromate slurry have been deposited at the site. However, groundwater in the area is not used for potable water, but only for industrial and recreational purposes.

The net annual precipitation in the area is approximately 12 inches.

Ref. Nos. 2, 7, 8, 9, 10, 11, 12, 13, 24, 25

TABLE 1

GROUNDWATER USAGE WITHIN 3 MILES OF KEEGAN LANDFILL KEARNY, NEW JERSEY

Name	Distance From Site (Miles)	Direction From Site	Well Depth (ft)	Aquifer	<u>Use</u>
American Ref. Company	1.5	SE	35	Stratified drift	industrial
V. H. Swenson Co., Inc.	0.75	N	[·] 400	Brunswick Formation	Industrial
Ronson Metals Corp.	1.75	S	300	Brunswick Formation	Industrial
Ronson Metals Corp.	2.0	5	165	Brunswick Formation	Industrial
Public Service Electric	2.0	sw	216	Brunswick Formation	Industrial
New Jersey Beli Telephone	2.25	sw	215	Brunswick Formation	Industrial
Grand Union Company	2.7	N	300	Brunswick Formation	Industrial
International Minerals and Chemicals	2.0	NNW	400	Brunswick Formation	Industrial
Honeycomb Plastics Corp.	0.7	sw	500	Brunswick Formation	Industrial
Honeycomb Plastics Corp.	0.7	sw	700	Brunswick Formation	Industrial
Essex County Parks	2.7	NW	450	Brunswick Formation	Recreation

2.4 SURFACE WATER ROUTE

1

d

.

Ř

×.

Π

ŧ

34

ŝ

The Keegan Landfill Site is located in the surface waters of the Hackensack Meadowlands. The site is relatively flat with a few small mounds of less than 10 feet in height which were probably caused by the deposition of wastes on site. It is bounded on the northeast by a wetlands lake approximately 15 acres in size. There is an unnamed creek crossing the site, and Frank Creek which originates on site. These two creeks converge south of the site, and flow into the Passaic River approximately 1 stream mile south of the site. The Passaic River drains into the Hackensack River which flows into Newark Bay, and eventually connects with the Atlantic Ocean. Both the Passaic River and Newark Bay are used for navigational purposes. The Hackensack River lies approximately 2.0 miles east of the site and is used for navigational purposes by commercial and recreational vessels. These two rivers are tidal in nature. The 1-year 24-hour rainfall in the area is approximately 2.75 inches. There are no surface water intakes on the Passaic River, the Hackensack River, or Newark Bay within 3 miles downstream of the site. There are no habitats of federally endangered species within 1 mile of the site.

There is a potential for surface water to be contaminated by any hazardous substances present on the site, since the site is located in a wetlands area. The site is also crossed by an unnamed creek and Frank Creek, which drain into the Passaic River and eventually into the Hackensack River and Newark Bay. Therefore, hazardous substances present on site could easily migrate from the site.

On April 25, 1989, NUS Corporation Region 2 FIT personnel collected seven surface water samples and six sediment samples to determine the presence or absence of TCL substances on site, and the possbility for migration of any present TCL substances. Sample locations are shown in Figure 3 of Section 3.0 and analytical data is discussed in Section 4.0 of this report. Results of this sampling indicate the presence of several semivolatile compounds, chromium, lead, mercury, and PCBs in on-site sediments. Several inorganic compounds including chromium, lead, and mercury were detected in on-site surface water samples. These inorganics were detected in higher concentrations in the downstream surface water sample NJG3-SW5 than in the upstream samples NJG3-SW6 and NJG3-SW7. Since chromate and bichromate slurry were reported to have been disposed of on site, chromium contamination of surface waters in Frank Creek may be attributed to the site. During the site inspection, a dead fish was observed in the unnamed creek. Also noted on site was an oily sheen in Frank Creek near sample locations NJG3-SW5 and NJG3-SED5.

Ref. Nos. 1, 2, 4, 5, 6, 7, 8, 9, 13, 22, 24, 27

2.5 AIR ROUTE

During the April 25, 1989 site inspection of the Keegan Landfill Site, no air readings above background conditions were detected on the Organic Vapor Analyzer or the HNu photoionization detector. There are no National Historic Sites within view of the Keegan Landfill Site. There have been several underground fires reported at the site; however, there is no indication of a potential for release of hazardous substances to the air.

Ref. Nos. 1, 2

i ž

.

114

2.0

2.6 ACTUAL HAZARDOUS CONDITIONS

A dead fish was observed in the unnamed creek during the NUS Region 2 FIT site inspection on April 25, 1989. Also noted on site was an oily sheen in Frank Creek near sample locations NJG3-SW5 and NJG3-SED5. Chromium contamination of surface water was found in Frank Creek. PCBs, lead, and mercury were also detected in sediments in Frank Creek, the unnamed creek, and the wetlands lake. There is a potential for direct contact with hazardous substances on site since the site is not fenced. No other actual hazardous conditions pertaining to environmental contamination have been documented. Specifically:

- Contamination has not been documented either in organisms in a food chain leading to humans or in organisms directly consumed by humans.
- There have been no documented observed incidents of <u>direct</u> physical contact with hazardous substances at the landfill involving a human being or a domestic animal.
- There have been no documented instances of damage to flora (e.g., stressed vegetation) that can be attributed to hazardous materials on site.
- There is no documented contamination of a sewer or storm drain.
- There is no direct evidence of a release of a substance of concern from the facility to groundwater.
- There is no threat of explosion on site, although there is a fire hazard. There have been numerous underground fires reported on site, most recently in June and July of 1987.

Ref. Nos. 1, 2

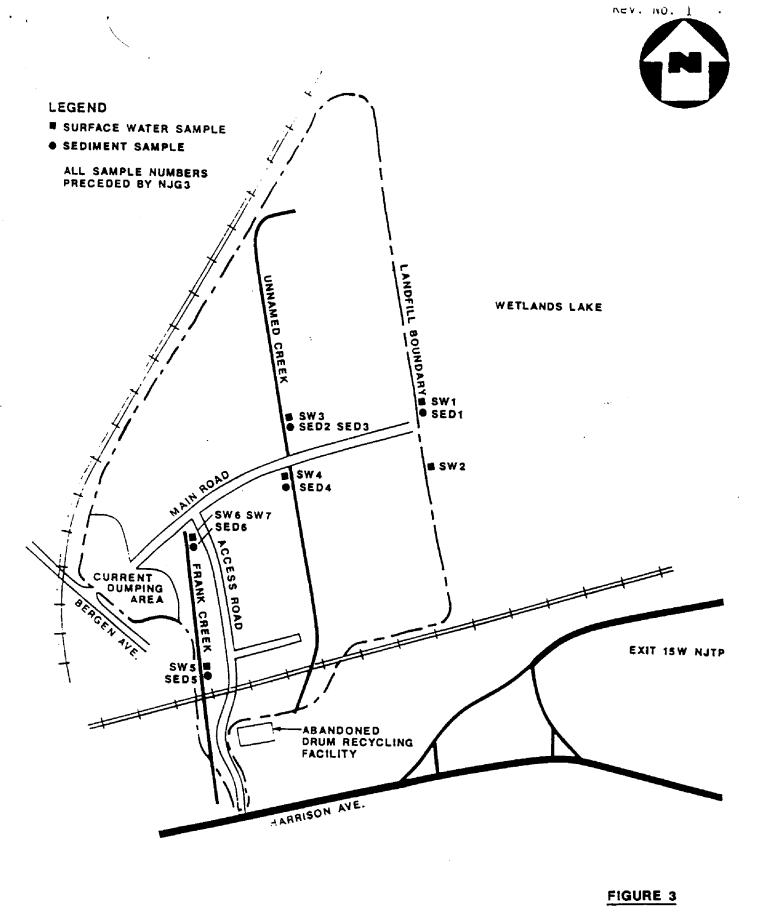
.

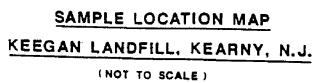
TABLE 2 - SUMMARY OF ANALYSES FOR SEDIMENT SAMPLES

Sediment Sample

Parameter/unit	Sed 1	Sed 4	Sed 5	Sed 6
Phenanthrene ug/kg			5300	4800 NS malkey
Fluoranthene ug/kg			15,000	4700 10,000/100
Pyrene ug/kg			9600	3500 10 1000, 100
Benzo (a) anthracene ug/kg			¥ 6900	2000 4/500
		۰.	7300	2400 Hol 500
Chrysene ug/kg			5800	2300 NS
Benzo(b)fluoranthene ug/kg			3700	1100 41500 NS
Benzo(k)fluoranthene ug/kg			3200	1600 4/500
Indeno (1,2,3-cd) pyrene ug/kg			*4400	2000 .66/100
Benzo(a)pyrene ug/kg			2700	2000 ~5
Benzo(g,h,i)perylene ug/kg				4200 E 2/50
Aroclor - 1254 ug/kg	≹2600 E		⁺ 1400 E	4200 E 21 J
Aroclor - 1260 ug/kg	¥2400 E		¥1600 E	
Mercury mg/kg	0.7	2.6	8.7	2.3 270
Lead mg/kg	305	1020	1180 🕈	479 600
Chromium mg/kg	13.3	93.6	114	116

E - estimated value


TABLE 3 - SUMMARY OF ANALYSES FOR SURFACE WATER SAMPLES


	Surface W	ater Sample
Parameter/unit	SW-5	<u>SW-6, SW-7</u>
Aluminum ug/L	2170 E	444 E, 467 E
Barium ug/L	445	211, 212
Chromium ug/L	21.6 E	4.6*, 4.2*
Copper ug/L	95.2 E	
Iron ug/L	11,900	2550, 2630
 Lead ug/L	159	43.9, 42.8
Manganese ug/L	484	224, 220
Mercury ug/L	1.2	
Zinc ug/L	339	45.4, 47.7

* - estimated value, compound present below CRDL, but above IDL.

E - estimated value

blank space - compound analyzed for but not detected

4.0 SITE INSPECTION SAMPLING RESULTS

NUS Corporation conducted a site inspection of Keegan Landfill on April 25, 1989, at which time seven surface water samples and six sediment samples were collected. These samples were collected to determine the presence or absence of TCL substances on site. Sample locations are shown in Figure 3, Section 3.0. The results of the analyses for the sediment and surface water samples are summarized in Tables 2 and 3. A complete list of sample parameters and analytical results is presented in Reference No. 22.

Several additional semivolatile compounds were detected in sediment samples NJG3-SED1, NJG3-SED3, NJG3-SED5, and NJG3-SED6, but were below contract required Quantitation Limits (CRQL). The downstream sample NJG3-SED5 was found to contain greater concentrations of several semivolatile compounds, lead, and mercury than the upstream sample NJG3-SED6. Sediment samples NJG3-SED1, SED5, and SED6 also contained PCBs. Sediment samples NJG3-SED4 and NJG3-SED5 also contained estimated concentrations of tetrachloroethane of 68 ug/kg and 17 ug/kg, respectively. Sediment sample NJG3-SED4 contained an estimated concentration of 100 ug/kg of xylenes. These volatiles were not detected in any of the other sediment samples.

Surface water samples NJG3-SW5 and NJG3-SW6, 7, collected from Frank Creek, contained inorganic concentrations from 2 to 35 times the concentrations found in the other surface water samples collected. The downstream surface water sample NJG3-SW5 contained concentrations of inorganic compounds as much as five times the concentrations found in upstream samples NJG3-SW6, 7.

Ref. Nos. 2, 22

5.0 CONCLUSIONS AND RECOMMENDATIONS

This site poses a potential threat of contamination of surface waters. Hazardous substances reported as being disposed of on site are chromate and bichromate slurry, organic waste, and pigment waste. Analyses of surface water samples collected at the Keegan Landfill Site indicate concentrations of chromium significantly greater in a downstream surface water sample than in an upstream sample. Semivolatile contaminants were detected in higher concentrations in the downstream sediment sample of Frank Creek than in the upstream sediment samples. However, the downstream samples, NJG3-SW5 and NJG3-SED5, were collected next to a railroad trestle; therefore, these contaminants may possibly be attributed to another source.

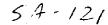
Groundwater in the area is not used for potable water, but solely for industrial use. The site is located in surface water, but there are no surface water intakes within 3 miles downstream of the site. The Hackensack River, located approximately 2.0 miles east of the site, is used for navigation by commercial and recreational vessels.

There is a potential for direct contact with hazardous substances present on site, since the site is not fenced. Based on the recreational targets from the Hackensack River and the potential for direct contact, this site is recommended for a MEDIUM PRIORITY for further action. A fence should be installed around the site to limit access to the landfill. Additional sediment and surface water samples should be collected from Frank Creek to determine if the contaminants present are attributable to the site or another source.

Ref. Nos. 1, 2, 4, 8, 10, 11, 22, 25, 26

6.0 REFERENCES

- 1. Preliminary Assessment, Malcolm Pirnie, Inc. May 5, 1986.
- Field Notebook No. 0381, Keegan Landfill, TDD No. 02-8810-75, Site Inspection, NUS Corporation Region 2 FIT, Edison, New Jersey. December 19, 1988.
- 3. General Sciences Corporation, Graphical Exposure Modeling System (GEMS), Landover, Maryland, 1986.
- 4. Three-Mile Vicinity Map for Keegan Landfill, based on U.S.G.S. Topographic Maps 7.5 Minute Series, "Orange, N.J. Quadrangle," 1955 photorevised 1981, "Weehawken, N.J. Quadrangle," 1967 photorevised 1981, "Elizabeth, N.J. Quadrangle," 1967 photorevised 1981, and "Jersey City, N.J. Quadrangle," 1967 photorevised 1981.
- 5. U.S. Department of the Interior, Federal Water Pollution Control Administration, Report on the Quality of the Interstate Waters of the Lower Passaic River and Upper and Lower Bays of New York Harbor, November 1969.
- 6. New Jersey Department of Conservation and Economic Development, Hackensack Meadows Comprehensive Plan Technical Report No. 2A, Definition of the Meadows, March 15, 1965.
- 7. County of Bergen, New Jersey, Office of the County Engineer Feasibility Study and Report of a Hackensack River Dam. October 1966.
- 8. Uncontrolled hazardous waste site ranking system, A user's manual, 40 CFR Part 300, Appendix A, 1986.
- 9. Suszkowski, Dennis J. Sedimentology of Newark Bay, New Jersey: An Urban Estuarine Bay, June 1978.
- 10. Telecon Note: Conversation between Ms. Carole Schmidt, Kearny Water Department, and David Heim, NUS Corp., July 6, 1989.
- 11. Telecon Note: Conversation between Mr. Vince Bucci, Essex County Parks Department, and David Heim, NUS Corp., July 7, 1989.
- 12. New Jersey Geological Survey, Department of Environmental Protection, Bedrock Map of the Hackensack Meadows, 1959, revised 1962.
- 13. New Jersey Department of Environmental Protection (NJDEP), Bureau of Water Allocation, Water Withdrawal Points and NJGS Case Index Site within 5.0 miles of latitude 40° 44' 53", Iongitude 74° 06' 48", October 19, 1988.
- 14. Letter from Edward J. Londres, New Jersey Department of Environmental Protection, to Henry J. Hill, Mayor of Kearny, July 2, 1987.
- 15. Letter from James A. Rogers, James C. Anderson Associates, Inc., to Henry Hill, Mayor of Kearny, July 7, 1987.
- 16. Letter from Joseph E. Neglia, Town Engineer, Town of Kearny, to Mayor and Council, Town of Kearny , August 28, 1987.
- 17. Letter from Robert Ferraiuolo, Hudson Regional Health Commission, to Henry Hill, Mayor of Kearny, July 14, 1987.


6.0 **REFERENCES (Cont'd)**

- 18. Letter from Edward Grosvenor, Health Officer, Town of Kearny, to Henry Hill, Mayor of Kearny, July 21, 1987.
- 19. Letter from John P. Sarnas, Assistant Health Officer, Town of Kearny, to Henry Hill, Mayor of Kearny, July 23, 1987.
- 20. Letter from John A. Castner, NJDEP to John P. Sarnas, Assistant Health Officer, Kearny Department of Health and Environmental Protection, August 25, 1987.
- 21. Kearny Department of Public Health and Environmental Protection Memos regarding landfill fire dated June 25, 26, 29, 30 and July 1, 2, 6, 7, 8, 9, 10, 1987.
- U.S. EPA Contract Laboratory Program, PEI Associates, Inc., and York Laboratories, Case No.
 11834, Laboratory Analysis from NUS Corporation Region 2 FIT Site Inspection conducted on April 25, 1989.
 - 23. New Jersey and National Registers of Historic Places, June 1, 1980.

25.

- 24. Carswell, L.D. Appraisal of Water Resources in the Hackensack River Basin, New Jersey. U.S. Geological Survey Water Resources Investigations 76-74. June 1976.
 - Telecon Note: Conversation between Mr. Michael Beard, Kearny Health Department, and Gerald Gilliland, NUS Corp., April 20, 1989.
- 26. Telecon Note: Conversation between Lt. Ronald Johnstone, Kearny Police Department, and Gerald Gilliland, NUS Corp., April 25, 1989.
- 27. U.S. Department of the Interior. U.S. Fish and Wildlife Service, Atlantic Coast Ecological Inventory, New York (N.Y.-Conn.-N.J.), 1980.

* 141

FINAL SITE INSPECTION PRIORITIZATION REPORT KEEGAN LANDFILL KEARNY, HUDSON COUNTY, NEW JERSEY

CERCLIS ID No.: NJD981490428

VOLUME 1 OF 3

Prepared for: UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION II

DCN: START-02-F-01093 TDD No.: 02-96-11-0044 EPA Contract No.: 68-W5-0019

JULY 1998

Prepared by: Region II Superfund Technical Assessment and Response Team Roy F. Weston, Inc. Federal Programs Division Edison, New Jersey 08837

CCA000051

З.

DCN: START-02-F-01093

FINAL SITE INSPECTION PRIORITIZATION REPORT KEEGAN LANDFILL KEARNY, HUDSON COUNTY, NEW JERSEY

CERCLIS ID No.: NJD981490428

Prepared by: Region II Superfund Technical Assessment and Response Team Roy F. Weston, Inc. Federal Programs Division Edison, New Jersey

prepared for:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

EPA Contract No.: 68-W5-0019 TDD No.: 02-96-11-0044 Document Control No.: START-02-F-01093

JUNE 1998

SUBMITTED BY:

aplall

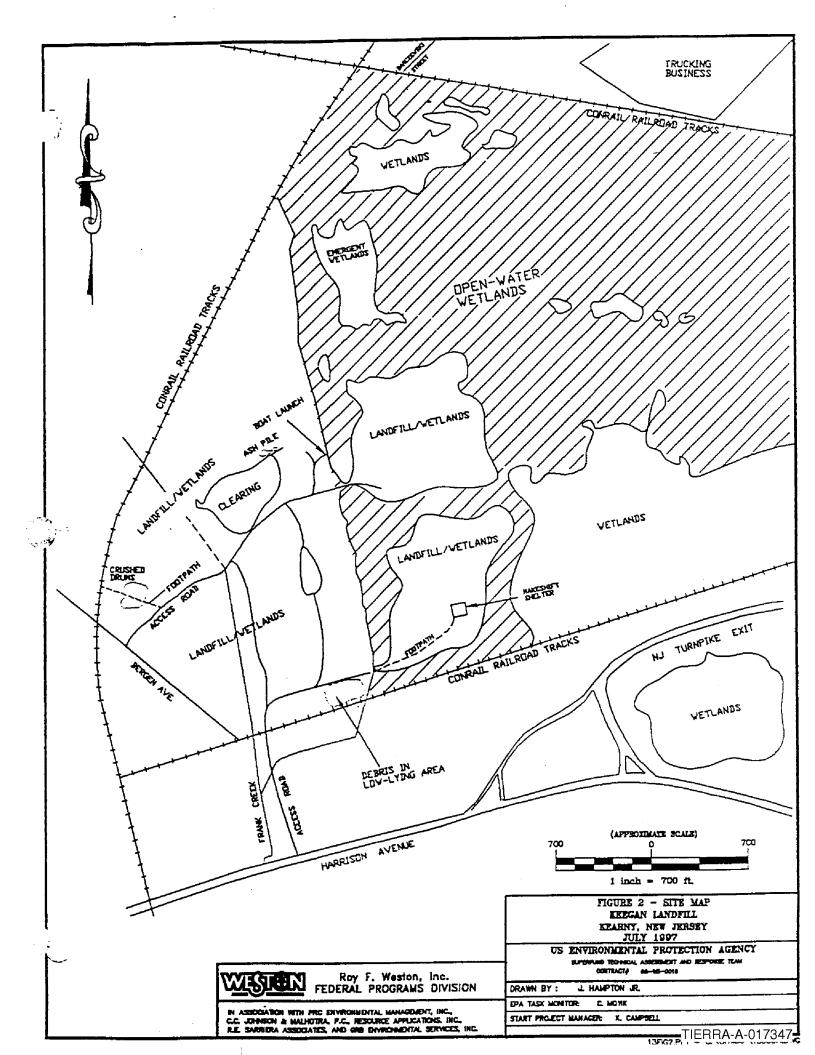
Kathy A. Campbell START Project Manager

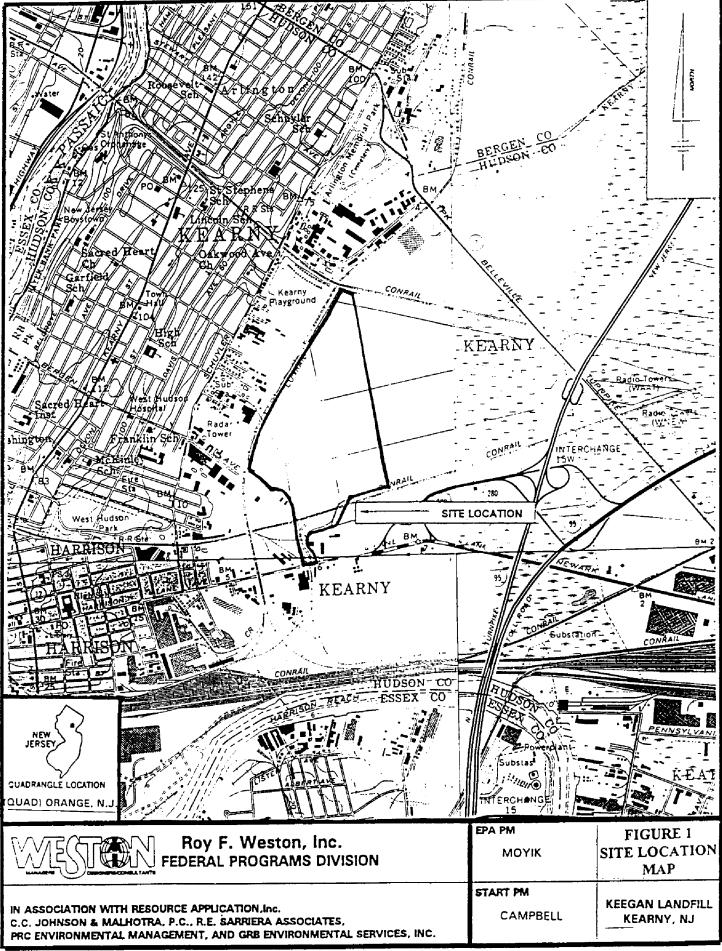
W. Scott Butterfield, CHMM Site Assessment Team Leader

Date 07/7/18

Date 7/17/94

KEEGAN.SIP


SITE SUMMARY


The Keegan Landfill (Keegan) site (a.k.a. MSLA Site B) is located at the foot of Bergen Avenue in a predominantly industrial section of Kearny, Hudson County, New Jersey (Ref. Nos. 1; 3, p. 3). Figures 1 and 2 provide a Site Location Map and Site Map, respectively. The Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) list notes that the site is located in Congressional District No. 11; however, the actual district is No. 09 (Ref. Nos. 1, p. 1; 2, p. 3). The unfenced property encompasses approximately 230 acres. The site is bordered on the north and west by Conrail railroad tracks; on the southwest by businesses along Bergen Avenue, including a scrap metal facility; on the south by Harrison Avenue; and on the southeast and east by wetland areas and a tidal open-water wetland (Ref. Nos. 3, pp. 3, 64; 4; 7). Primary site access was formerly gained through two entrances from Bergen Avenue. An additional access road originates at Harrison Avenue, located south of the site (Ref. Nos. 3, pp. 3, 12; 7). The three entrances are currently barricaded with concrete roadway dividers (Ref. No. 7). One makeshift shelter exists on site; it is unknown if the shelter is occupied (Ref. No. 24, p. 3). Another east-west Conrail rail line crosses the southern portion of the site (Ref. No. 4). One creek, Frank Creek, originates on site. The creek flows south and eventually discharges to the Passaic River, which is located 1/2-mile south of the former Harrison Avenue site entrance. The unnamed creek identified in the September 1989 Site Inspection (SI) Report is actually an open-water wetland area that is contiguous with other site wetlands (Ref. Nos. 3, pp. 3, 8, 12, 64; 4; 24, p. 3).

The Town of Kearny (the "Town") owns the property, which was leased to John P. Keegan/Municipal Sanitary Landfill Authority (Keegan/MSLA). From the mid-1960s to 1974, Keegan/MSLA operated an unlined municipal landfill at the site; operations ceased at the request of the Hackensack Meadowlands Development Commission (HMDC) (Ref. No. 3, p. 41). Keegan/MSLA no longer leases the property (Ref. No. 7). A 1986 Malcolm Pirnie, Inc. Preliminary Assessment (PA) Report noted the on-site presence of approximately 10 drums; the drums' location and contents, if any, are unknown (Ref. No. 3, pp. 3, 36). During the 1989 U.S. Environmental Protection Agency (EPA) Region II Field Investigation Team (FIT) SI, personnel noted the occurrence of ongoing disposal of cardboard waste, construction waste, household refuse, and landscaping debris (e.g., leaves, tree branches). During the inspection, FIT personnel also noted the presence of abandoned tires, appliances, and automobiles (Ref. No. 3, pp. 65, 67, 68). The drums observed during the April 1986 PA off-site reconnaissance were not observed during the SI on-site activities (Ref. No. 3, pp. 65 through 70).

In addition to landfill activities, illegal dumping of various materials and wire burning have occurred on site (Ref. No. 3, pp. 38, 45, 199). A Kearny Police Department officer, who worked as a truck driver for DuPont Chemical of Newark during the 1960s, stated that for approximately 7 years, a daily delivery of approximately forty 30-gallon drums of waste was disposed of on the Keegan property. Drums of waste were reportedly both deposited intact or emptied onto the ground surface. Drum contents included plating wastes, such as chromate and bichromate slurry; pigment wastes; and organic wastes (Ref. No. 3, p. 383).

In December 1981, December 1984, June/July 1987, and most recently in 1992, underground fires occurred at the site (Ref. Nos. 3, pp. 44, 46, 204 through 213; 7). On July 2, 1987, the New Jersey Department of Environmental Protection (NJDEP) cited fires as a recurring problem and recommended that the Town submit a closure plan for the landfill (Ref. No. 3, p. 182). In July 1987, the Town of Kearny contracted Neglia Engineering Associates (Neglia) to provide closure guidance for the extinguished portions of the landfill. In August 1987, Neglia provided the following recommendations: 1) improvement of the access road by eliminating depressions and providing a turnaround area, 2) deposition of two feet of compacted cover and seed layer on the extinguished areas, and 3) securing of the access road from Bergen Avenue, securing of a roadway easement for the access road situated on lots

owned by Hudson Meadows Urban Renewal Corporation, and cessation of illegal dumping on these lots (Ref. No. 3, pp. 188, 189). As of June 1997, the Town has improved the access road and secured the three site entrances from vehicular traffic. The site property is currently involved in litigation between the Town and the HMDC; the HMDC is attempting to procure the property. Dependent upon the outcome of court proceedings, HMDC plans to utilize the property initially as a construction/demolition debris landfill; after proper closure, HMDC plans to develop the property into a recreational park (Ref. No. 7).

On April 25, 1989, as part of SI activities, Region II FIT collected a total of seven surface water samples and six sediment samples from on-site surface water bodies. Samples were obtained from the openwater wetland, the "unnamed creek," and Frank Creek (Ref. No. 3, pp. 4, 13). Analytical results of the sediment samples indicate the presence of elevated concentrations of semivolatile organic compounds, polychlorinated biphenyls (PCBs), and metals (mercury, lead, and chromium). Elevated concentrations of mercury, lead, and chromium were also detected in the Frank Creek surface water samples (Ref. No. 3, pp. 4, 216 through 220). Additional analytical data collected on site by IT Corporation in 1994 indicate the presence of elevated concentrations of volatile organic compounds (VOCs) and metals in groundwater (Ref. Nos. 9, p. 37; 10, p. 3). In addition, analytical data of surface soil samples indicate the presence of VOCs; semivolatile organic compounds, such as phthalates and polynuclear aromatic hydrocarbons (PAHs); pesticides; PCBs; dioxin; petroleum hydrocarbons; and inorganic analytes, such as aluminum, barium, chromium, iron, lead, mercury, and cyanide (Ref. Nos. 9, p. 34; 10, p. 2).

On July 30-31, 1997, the U.S. Environmental Protection Agency (U.S. EPA) Region II Superfund Technical Assessment and Response Team (START) conducted sampling at the site as part of Site Inspection Prioritization (SIP) activities. START collected a total of 13 sediment samples, 3 surface water samples, and 4 soil samples (Ref. No. 24, p. 16). Analytical data of soil and sediment samples indicate the on-site presence of phthalates, pesticides, and metals at concentrations significantly above background (Ref. No. 25, pp. 14 through 16, 18 through 23, 26 through 28, and 337 through 339). During the sampling event, START personnel observed the following conditions/events on and adjacent to the site: leachate at the headwaters of Frank Creek, an ash pile located at the end of the westernmost access road, a variety of debris along all access roads, and recreational use of property/adjacent surface waters (e.g., a motorcyclist, person in a kayak, apparent boat launch area) (Ref. No. 24, pp. 1, 3 through 5, 10).

Although there is a potential for a release of contaminants to groundwater, drinking water supplies within the site vicinity are obtained from sources greater than 4 miles from the site (Ref. Nos. 4; 8, p. 23; 11, 12). The July 1997 START analytical data documents a release of site contaminants to adjacent surface water sediments (Ref. No. 25, pp. 14 through 16, 18 through 23, 26 through 28, and 337 through 339). The eastern adjacent wetland areas are interconnected with the Kearny Marsh, a NJDEP Natural Heritage Program (NHP) Priority Site and state-listed endangered species habitat (Ref. Nos. 14, 22). The remainder of the surface water migration route is composed of highly industrialized coastal tidal water bodies (Ref. No. 3, pp. 146, 147). Although these surface waters sustain fish populations, state-issued prohibitions and health advisories exist regarding the sale and consumption of specific fishes taken from these waters (Ref. Nos. 20; 24, p. 18). There are no residences, schools, or day care facilities within 200 feet of the site boundary (Ref. Nos. 3, pp. 3, 12, 49, 51; 4). As no remedial actions involving removal or containment of on-site wastes have occurred, contaminants associated with the site may continue to migrate to groundwater and adjacent surface water bodies (Ref. Nos. 1, p. 2; 3, p. 29).

SITE ASSESSMENT REPORT: SITE INSPECTION PRIORITIZATION PART I: SITE INFORMATION

1. Site Name/Alias <u>Keegan Landfill</u> (a.k.a.	MSLA Site B)
Street Foot of Bergen Avenue	
City Kearny	State NJ Zip Code 07032
2. County Hudson	County Code 017 Cong.Dist. 09
3. CERCLIS ID No. NJD981490428	
4. Block Nos. 205; 286	Lot Nos. <u>18, 19, 24 through 33[•]; 4</u>
5. Latitude 40° 45' 19" N	Longitude74° 08' 15" W
USGS Quad(s). Orange, NJ	
6. Approximate size of site230 acres	
7. Owner <u>Town of Kearny</u>	Telephone No. (201) 955-7979
Street 402 Kearny Avenue	-
City Kearny	State New Jersey Zip 07032
8. Operator <u>John P. Keegan/Municipal Sanita</u> Landfill Authority (MSLA)	ary Telephone No. (201) 741-1377
Street 18 Somerset Drive	-
City Rumson	State New Jersey Zip 07760
9. Type of Ownership	
Private Federal County X Municipal	State Unknown Other 205: the owner of these properties is Hudson Meadow Urb

* An access road crosses Lot Nos. 18, 31, 32 of Block 205; the owner of these properties is Hudson Meadow Urban Renewal Corporation (Mimi Development) (Ref. No. 3, p. 188).

* The second party identified as former lessee of Keegan Landfill is William A. Keegan. Jr., of 411 Bergen Avenue, Kearny, NJ. (Ref. No. 3, p. 43).

ł

Ϊ,

10.	Owner/Operator Notification on File
	_ RCRA 3001 _ DateCERCLA 103c Date
	X None Unknown
11.	Permit Information
	Permit Permit No. Date Issued Expiration Date Comments
	None known.
12.	Site Status
	ActiveX InactiveUnknown
13.	Years of Operation: <u>mid-1960s to 1974 (as Municipal Landfill)</u>

14. Identify the types of waste sources (e.g., landfill, surface impoundment, piles, stained soil, above- or underground tanks or containers, land treatment, etc.) on site. Initiate as many waste unit numbers as needed to identify all waste sources on site.

(a) Waste Sources

415. • • •

Waste Unit No.

Landfill

Waste Source Type

Facility Name for Unit

Landfill

1 <u>L</u>

Ref. Nos. 1 through 7.

(b) Other Areas of Concern

Identify any miscellaneous spills, dumping, etc. on site; describe the materials and identify their locations on site.

On August 5, 1980, the Kearny Police Department received information regarding illegal dumping of hazardous materials; the event allegedly occurred 1 year prior to the police report. Materials were reportedly dumped in an area southeast of the western Conrail line and northeast of Bergen Avenue. The Kearny Department of Public Works excavated four locations to depths from 18 inches to 4 feet. No evidence of deposited materials was observed. No samples were collected during the investigation of the incident.

In December 1984, while monitoring an underground landfill fire, a member of the Kearny Department of Public Health and Environmental Protection (DPHEP) noted that "a large pile of debris had been set on fire over the weekend by someone burning wire." The location and size of the burn pile are unknown.

Ref. No. 3, pp. 45, 47.

15.

Describe the regulatory history of the site, including the scope and objectives of any previous response actions, investigations and litigation by State, Local and Federal agencies (indicate type, affiliation, and date of investigations).

Local - Underground landfill fires are known to have occurred on site in December 1981, December 1984, June/July 1987, and most recently in 1992. Local agencies, including the Kearny DPHEP, and Keegan/MSLA personnel have been on site at these times to conduct and monitor fire-extinguishing efforts (Ref. Nos. 3, pp. 44, 46, 204 through 213; 7). During the 1987 fire, NJDEP personnel also visited the site to monitor fire-extinguishing progress (Ref. No. 3, pp. 206, 207, 209, 213).

<u>State</u> - In May 1986 Malcolm Pirnie, Inc., a contractor to the NJDEP, conducted a . Preliminary Assessment (PA) of the site. PA activities included the collection of background information and performance of an off-site reconnaissance. The PA evaluation indicated that the site, although "non-hazardous" overall, was a medium priority candidate for further action due to the observance of drums and exposed waste on the unsecured site (Ref. Nos. 1, p. 2; 3, pp. 34, 35, 40).

As mentioned in the above subsection ("Local"), NJDEP personnel participated in the monitoring of the June/July 1987 fire. On July 2, 1987, the NJDEP recommended that the Town submit a landfill closure plan (Ref. No. 3, p. 182). In August 1987, Neglia, under contract to the Town, provided closure recommendations for the extinguished burn areas (Ref. No. 3, pp. 188, 189).

Federal - In April 1989, Region II FIT conducted surface water/sediment sampling on site as part of a Site Inspection (SI) project. A total of seven surface water samples and six sediment samples were collected from on-site surface water bodies. Analytical data indicate the presence of elevated concentrations of semivolatile organic compounds, PCBs, and metals in sediment samples. Analytical data indicate the presence of elevated concentrations of the same metals in the Frank Creek surface water samples (Ref. No. 3, pp. 4, 13, 28). In July 1997, Region II START conducted environmental sampling at the site. Analytical results of this event are discussed in the Site Inspection Prioritization subsection of Part III of this report.

a) Is the site or any waste source subject to Petroleum Exclusion? Identify petroleum products and by-products that justify this decision.

Petroleum products and by-products are not known to have been disposed of at the site. Therefore, neither the site nor any waste source is subject to petroleum exclusion provisions under CERCLA.

Ref. No. 3, p. 3.

b) Has normal farming application of pesticides registered under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) occurred at the site? Have pesticides been produced or stored on site? Have there been any leaks or spills of pesticides on site?

The site has not been used for agricultural purposes, nor are pesticides known to have been produced, stored, or spilled on site. However, analytical data of onsite soil and sediment samples collected in July 1997 by Region II START indicate the presence of pesticides, including 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, endrin, endrin aldehyde, and chlordane. Similarly, analytical data of sample collected by IT Corporation indicate the presence of pesticides. including aldrin, beta-BHC, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, dieldrin, endrin, endosulfan I, endosulfan sulfate, heptachlor, heptachlor epoxide, and methoxychlor.

Ref. Nos. 3, p. 3; 9, pp. 34, 35; 10, Attachment C, p. 13, Attachment D, pp. 41 through 48, Attachment E, pp. 22 through 25; 25, pp. 26 through 28.

c) Is the site or any waste source subject to RCRA Subtitle C (briefly explain)?

Neither the site nor any waste source is subject to RCRA Subtitle C. The site has been inactive as a municipal sanitary landfill since 1974.

Ref. No. 3, p. 3.

d) Is the site or any waste source maintained under the authority of the Nuclear Regulatory Commission (NRC)?

Neither the site nor any waste source is maintained under the authority of the NRC.

Ref. No. 3, p. 3.

16. Do any conditions exist on site that would warrant immediate or emergency action?

There are no conditions on site that would warrant immediate or emergency action. The landfill has been inactive since 1974 and, although there have been underground fires at the site, the most recent event occurred in 1992.

Ref. Nos. 3, p. 41; 7.

17. Information available from:

Contact Cathy Movik	Agency	U.S. EPA	Telephor	ie No.:	(212) 637-4339
Preparer Kathy Campbell	Agency	Region II ST	ART	Date:	December 1997

PART II: WASTE SOURCE INFORMATION

For each of the waste units identified in Part I, complete the following items.

Waste Unit <u>1</u> - Landfill

Source Type

X	Landfill	 Contaminated Soil
	Surface Impoundment	 Pile
	Drums	 Land Treatment
	Tanks/Containers	 Other

Description:

1. Describe the types of containers, impoundments or other storage systems (i.e., concretelined surface impoundment) and any labels that may be present.

The Keegan site is an unlined landfill located in a primarily industrial portion of Kearny, New Jersey; the Town of Kearny owns the property. From the mid-1960s to 1974 Keegan/MSLA, the property lessee, operated a municipal sanitary landfill at the site. Historical information indicates that unauthorized dumping has occurred. Wastes deposited on site include construction and landscaping debris; cardboard waste; household refuse; used tires, appliances, and automobiles; and drummed wastes. From 1981 to the present, four underground landfill fires have occurred on site. While monitoring the December 1984 fire, a Kearny DPHEP member observed the remains of a wire burn pile; its location and size are unknown.

A Kearny Police Department member reported that, while working as a truck driver for DuPont of Newark in the 1960s, drummed wastes were transported to the site for disposal. For approximately 7 years, at least one daily delivery of an estimated forty 30-gallon drums were reportedly deposited both intact and emptied on the site. Drum contents included plating wastes, such as chromate and bichromate slurry; pigment wastes, and organic wastes. A 1986 PA Report noted the presence of 10 drums; however, their location and contents, if any, are unknown. Drums and crushed drums were observed at various locations during 1997 Region II START SIP on-site sampling activities.

PART II: WASTE SOURCE INFORMATION (Continued)

2. Describe the physical condition of the containers or storage systems (i.e., rusted and/or bulging metal drums).

N/A

3. Describe any secondary containment that may be present (e.g., drums on concrete pad in building or above ground tank surrounded by berm).

The Keegan Landfill site is unlined; no secondary containment is present.

Ref. Nos. 3, pp. 3, 35, 38, 41, 44 through 47, 65 through 70, 199, 204 through 213, 383; 7; 8, pp. 28, 61; 24, p. 1, 5, 12.

Hazardous Waste Quantity

The actual quantity of hazardous waste disposed of at the site is unknown. For the purposes of this report, the total site acreage (i.e., 230 acres) will be utilized as an estimated hazardous waste quantity value.

Hazardous Substances/Physical State

In July 1997 Region II START collected 13 sediment samples, 4 soil samples, and 3 surface water samples from the site and its vicinity. Analytical data indicate the presence of phthalates, pesticides, and metals at concentrations significantly above background. As part of 1989 SI activities, seven surface water samples and six sediment samples were collected from on-site surface water bodies. Analytical data of the sediment samples collected in 1989 indicate the presence of elevated concentrations of semivolatile organic compounds, such as phenanthrene, fluoranthene, pyrene, benzo(a)anthracene. chrysene, benzo(a)pyrene; PCBs; and metals, such as mercury, lead, and chromium. Analytical data indicate the presence of elevated concentrations of the same metals in the Frank Creek surface water samples.

Plating wastes and organic wastes from DuPont were reportedly disposed on site during the 1960s in slurry and liquid forms. Wastes generated from wire burning are in the solid/ash state. The physical state of other possible deposited wastes is unknown.

Additional analytical data collected on site by IT Corporation in 1994 indicate the presence of VOCs and elevated concentrations of metals in groundwater. In addition, analytical data of surface soil samples indicate the presence of VOCs; semivolatile organic compounds, such as phthalates and PAHs; pesticides; PCBs; dioxin; and inorganic analytes, such as aluminum, barium, chromium, iron, lead, mercury, and cyanide.

Ref. Nos. 3, pp. 4, 27, 28, 45, 216 through 220, 383; 9, pp. 34, 37; 10, pp. 2, 3; 25, pp. 14 through 16, 18 through 23, 26 through 28, 337 through 339.

PART III. SAMPLING RESULTS

EXISTING ANALYTICAL DATA

Site Inspection - On April 25, 1989, Region II FIT conducted an SI at the Keegan site. Seven surface water samples and six sediment samples were collected from on-site surface water bodies; the total numbers include one environmental duplicate sample per sampling medium (Ref. No. 3, pp. 13, 27). A Sample Location Map is presented in Reference No. 3, page 13. An analytical data summary is presented in Reference No. 3, page 28. All media samples were analyzed for Target Compound List (TCL) and Target Analyte List (TAL) parameters. For Quality Assurance/Quality Control (QA/QC) purposes, two equipment rinsate blank samples and one trip blank sample (VOC analysis only) were also collected. The Contract Laboratory Program (CLP) data package is included in Reference No. 3, pp. 215 through 350.

Analytical data of sediment samples indicate the presence of elevated concentrations of semivolatile organic compounds, such as phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(a)pyrene; PCBs, such as Aroclor 1254 and Aroclor 1260; and metals, such as mercury, lead, and chromium. Analytical data indicate the presence of elevated concentrations of the same metals in the Frank Creek surface water samples.

Passaic River Flood Protection Project - In May 1994, the Baltimore District of the U.S. Army Corps of Engineers (USACE) contracted IT Corporation to perform a Hazardous, Toxic, or Radioactive Waste (HTRW) investigation and hydrogeologic investigation along the proposed alignment of the Passaic River Basin floodwater diversion tunnel (Ref. Nos. 8, p. 2; 9, p. 1). As part of the HTRW investigation, IT Corporation collected soil and groundwater samples for chemical analyses. The sampling methodology is outlined in Reference No. 9, pages 17 through 28. Workshaft 2B-K of the project is located near the foot of Bergen Avenue on the Keegan Landfill site. During the project, a pilot borehole into bedrock and overburden boring were drilled at this location. Wells were constructed in both boreholes (Ref. No. 8, pp. 11, 24, 88, 89). At the close of sampling activities, IT Corporation abandoned the wells by drilling out obstructions in the pilot borehole and grouting both boreholes (Ref. No. 8, p. 60).

From May through August 1994, IT Corporation collected numerous surface soil, subsurface soil, and groundwater samples. All media samples were analyzed for the following parameters: VOCs, semivolatile organic compounds, pesticides, PCBs, total petroleum hydrocarbons (TPH), and metals (including cyanide). Most of the media samples were also analyzed for the presence of herbicides and the dioxin compound 2,3,7,8-TCDD (Ref. No. 9, pp. 33, 34). Table 1 of this report provides a summary of selected soil sampling analytical results. Table 2 of this report presents a summary of selected groundwater sampling analytical results.

تحريق ا

EXISTING ANALYTICAL DATA (Continued)

		Auminum	Barium	Chromium	Iron	Lead	Mercury	-TCL Compound	1,2- Dichloroethene	Trichloroethene	Tetrachloroethen e
Sample No.	(mg/L)		500 - 1 - 1		ter fra			ु. (ug/L)		<i>м</i> .	
GW-0B1		8.6	0.42	0.027	33.9	0.11	0.00023	1000 - 1000 1000 - 1000 1000 - 1000	~	~	-
GW-PB1		0.12	0.028	-	46.2	0.024	~ .	1	31	34	5.1
TB-0726 (VOAs ONLY)	1944 - A	NA	NA	NA	NA	NA	NA		-	-	-

Table 2: PASSAIC RIVER FLOOD PROTECTION PROJECT DATA GROUNDWATER SAMPLING DATE: JULY 26, 1994

All sample numbers are preceded by "2BK-."

- - Not detected.

NA - Not analyzed for particular contaminant.

Ref. No. 10, Attachment F.

A complete list of groundwater sampling analytical results is located in Reference No. 9, pp. 44 through 59. Groundwater and Soil Sample Location Maps are presented in Reference Number 8, pp. 56 and 57.

Surface Soil Sampling - Analytical data of surface soil samples indicate the presence of elevated concentrations of inorganic analytes, such as aluminum [16,800 milligrams per kilogram (mg/kg)], barium (23,200 mg/kg), chromium (1,270 mg/kg), iron (202,000 mg/kg), lead (13,000 mg/kg), and mercury (3.8 mg/kg) (Ref. No. 10, pp. 1, 2, Att. D, pp. 57 through 64, Att. E. pp. 30 through 33). PCBs were also detected in on-site soils at total Aroclor concentrations ranging from non-detected to 120,000 micrograms per kilogram (ug/kg) (Ref. No. 10, Att. D, pp. 41 through 48, Att. E, pp. 22 through 25).

KEEGAN.SIP

Sample No.	S-PB01-08	S-PB01-12	S-PB01-50	S-PB01-100	S-081-04	S-HA1"	S-HA2*	S-HA3*	S-HA4"	S-HA6"	S-HA7*	S-HA8"	S-HA9"	S-HA10"	S-HA11*	C 144.491	<u></u>
Contaminant								<u> </u>	1	0.10.0		3-10-0	341/03	3-11/10	S-MATT	S-HA12*	S-HA13*
~TAL Metal	(mg/kg)							<u> </u>	 		<u> </u>				h <u></u>		
Aluminum	6,100	5,300	11,000	12,000	6,560	4,940	3,570	4,640	5,180	5,280	16,000	9,220	13,900				
Barium	12 B	8.3 B	66	130	252	388	2,300	783	1,890.	1,740	2,700	2,740	23,200	9,600	2,620	12,800	16,800
Chromium	9.4	8.3	19	211	40.9	38.9	249	171	386	179	405	437		3,300	1,370	242	4,070
Iron	7,300	5,500	23,000	23,000	11,100	14,700	35,900	25,800	43,300	77,100	60,200	35,100	295	262	101	450	1,270
Lead	9.4	~	13	15	199	452	1,460	959	1.090	1,850	13,000	7 700	48,600 7,240	57,800	8,000	53,800	202,000
Mercury	~	-	~	~	0.34	0.67	5,7	1.3	3.8	3.2	3.6	1		9,400	4,260	564	6,520
~TCL Compound	(ug/kg)			·									3.7	1.4	~ '	0.31	1.3
Bis(2-ethylhexyl)phthalate	79 BJ	44 BJ	~	63 J	300 J	<u> </u>	~	~	7.600	15,000	~	810	1.500				
Di-n-butyl phthalate	320 J	150 J	110 J	90 J	~		-	~	-	~	4,700		1,500		~		~
Di-n-octyl phthalate	87 BJ	160 BJ	~	~	~	-		-	~	~	4,700				~	~~~~~	
Acenaphthene	~	-	~	~	1.200 J		~			-		~		~	~		
Anthracene	~	-	-	~	1.800	-	-	2,200	-	-			2,000	-	~		
Benzo(a)anthracene	~	~	~	~	4.000	910		4,400	2,100					<u> </u>			
Benzo(b)fluoranthene	-	~	~	-	4,800	1,400	4,100	7,200	5,000		1,500		4,200		~		
Benzo(k)fluoranthene	-	-	~	-	4,200			~	~	~	1,300	500	13,000		430	· · · · · · · · · · · · · · · · · · ·	
Benzo(a)pyrene	-	-	-	-	5,200	670	1,900	4.000				<u>├</u> ────	~	~			~
Chrysene	~	-	-	-	4,100	720	~	4,000	~	~			8,100	~			<u> </u>
Fluoranthene	-	~	-	-	9,900	1,800	~	8,200	3,700	~		~	4,200	-		-	
Hexachlorobenzene	~	-	~		-	-		0,200	3,700	~	<u> </u>		3,600	~		~	
Naphthalene	-	-	-		1 00E	~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		~	860	5,400	140,000	640	~	
Phenathrene		-	~	~	6,700	1,100	~	7,500		-					~ ~		
Pyrene		-		~	7,800	1,700		8,600	2,500	-			2,000	~			
1.2.4-Trichlorobenzene		_	~		~ ~	~		~ ~	4,400		~ ~		4,800		<u> </u>	~	
Trichloroethene	~	-	~		~	~		~	-		~		3,700	~		<u>~</u>	
PCBs - Total Arociors	-		~		2,230	430	3,800	<u> </u>	~		~	~	~	~	~	~	7,7
Aldrin	-	~	_	-	45		- 3,800	45,000	120,000	~	~	-	~				7,400
4',4'-DDD	~		~	~	20		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~		-		~		~	
4',4'-DDE	-	~	~	~	12		~		~	790	~	~	-	~	20		
4',4'-DDT	~	~	~		7.1	 31				7,400	73,000	480	6,300	27,000	210		~
Dieldrin	~		-		24		120			3,700	9,400	2,000	6,800	50,000	140	230	100
Endrin		~			3.8	~	<u> </u>		~		<u> </u>	~	~	-	~		-
					3.0	-		1 ~		~	-	- 1	- 1	~	-	-	-

Table 1: PASSAIC RIVER FLOOD PROTECTION PROJECT DATA SOIL SAMPLING DATES: 05/19/94 THROUGH 08/12/94

All sample numbers are preceded by "2BK-."

J - Estimated value,

B - Detected in blank sample.

~ - Not detected.

Ref. Nos. 8, p. 28, 10, Atts. A through E.

Sample Designations:

* - Sample Nos. S-HA1 through S-HA13 are surficial soil samples (e.g., collected from a depth less than 2 feet.

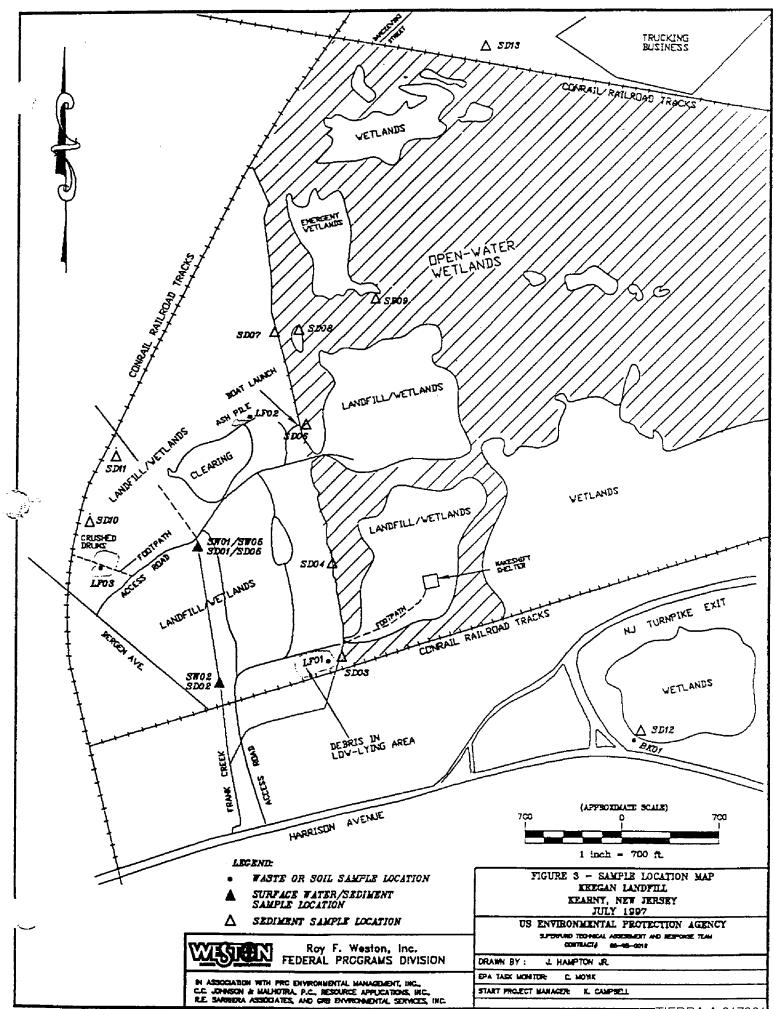
"PB" - Sample collected from the overburden portion of a pilot borehole in bedrock; the final number indicates sample depth.

"OB" - Sample collected from overburden borehole; the final number indicates sample depth.

~

EXISTING ANALYTICAL DATA (Continued)

Other organic compound groups detected in on-site surface soils include VOCs; semivolatile organic compounds, including phthalates and PAHs; and pesticides, such as 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT (see Table 2). Analytical data of four surface soil samples indicated the presence of the dioxin compound 2,3,7,8-TCDD; contaminant concentration ranged from 0.34 to 5.5 ug/kg (Ref. No. 9, p. 34). TPH surface soil sample concentrations ranged from 42 mg/kg to 24,000 mg/kg (Ref. No. 10, Att. D, pp. 49 through 56, Att. E, pp. 26 through 29). Total cyanide concentrations in surface soil samples ranged from non-detected to 7.8 mg/kg (Ref. No. 10, Att. D, pp. 65 through 74, Att. E, pp. 34 through 37).


Subsurface Soil Sampling - Analytical data of subsurface soil samples indicated the presence of elevated concentrations of inorganic analytes such as aluminum (12,000 mg/kg), barium (711 mg/kg), chromium (211 mg/kg), iron (23,000 mg/kg), and mercury (0.65 mg/kg) (Ref. No. 10, Att. B, p. 2, Att. C, p. 8). Analytical data of Sample No. 2BK-OB1-04, collected at a depth of 4 feet, indicated the presence of organic compounds similar to those detected in surface soil samples (i.e., PAHs, PCBs, and pesticides) (Ref. No. 10, Att. C, pp. 9 through 13).

Groundwater Sampling - Analytical data of a groundwater sample collected from the 510-foot pilot boring indicated the presence of elevated concentrations of VOCs (1,2-dichloroethene, trichloroethene, and tetrachloroethene) and metals (iron and zinc). Analytical data of the overburden groundwater sample indicated the presence of elevated concentrations of lead (Ref. No. 9, p. 37).

SITE INSPECTION PRIORITIZATION SAMPLING RESULTS

On July 30-31, 1997, Region II START conducted a sampling event at the site as part of SIP activities. During the SIP, 13 sediment samples, three surface water samples, and four soil samples were collected. In addition, 2 rinsate blanks and 1 trip blank were collected for Quality Assurance/Quality Control (QA/QC) purposes (Ref. No. 25, pp. 1 through 5). Figure 3 provides a Sample Location Map. All samples, except for the trip blank sample, were analyzed under the U.S. EPA Contract Laboratory Program (CLP) for full Target Compound List (TCL) and Target Analyte List (TAL) parameters, excluding cyanide; the trip blank sample was analyzed through the CLP for volatile organic compounds (VOCs) only. Environmental duplicate and matrix spike/matrix spike duplicate (MS/MSD) samples were collected for QA/QC purposes. One environmental duplicate was collected per sampling medium (Sample Nos. SW01/SW05 and SD01/SD05). Additional sample volumes were collected at the Sample No. 25, p. 4).

Tables 3 and 4 present analytical data summaries for the sampling event. Reference No. 25 includes the Sampling Trip Report, as well as the CLP TCL/TAL analytical data packages. Analytical data of soil and sediment samples indicate the presence of elevated concentrations of phthalates, pesticides, and metals.

1363.P. TIERRA-A-017361;

Table 3: Data Summary for TCL Compounds Keegan Landfill SIP July 30-31,1997

	Diethyl	n-Nitrosodi	Butylbenzyl					Endrin	alpha-	gamma-	Aroclor-
Sample No.	phthalate	phenylamine	phthalate	4,4'-DDE	Endrin	4.4'-DDD	4,4'-DDT		•	Chlordane	
SD01	ND (330)	ND (330)	ND (330)	16		73				ND (1.7)	530
SD02	ND (330)	ND (330)	700	ND (3.3)	ND (3.3)	240		ND (3.3)	73	72	
SD03	ND (330)	ND (330)	580		ND (3.3)	26	1		and the second second		1 T T T
SD04	ND (330)	ND (330)	2,600			78	1	R		24	520
SD05	ND (330)	ND (330)		ND (3.3)		130			29	1	600
SD06		ND (330)				ND (3.3)	E i		ND (1.7)	ND (1.7)	ND (33)
SD07		ND (330)	7,800			1,300	1	ND (3.3)	22		110
SD08		• •		ND (3.3)			1		i .	870	8,100
SD09		ND (330)		ND (3.3)			ND (3.3)				ND (33)
SD10		ND (330)	2,800								ND (33)
SD11	1 · · •	ND (330)			ND (3.3)	39	1 · · · · · · · · · · · ·	R 😳 🛛 🗄	25	26	350
SD12*			1,900			1,900	1			170	690
SD12*		ND (330)		ND (3.3)					ND (1.7)	ND (1.7)	320
		ND (330)	120			ND (3.3)			R	ND (1.7)	350
LF01	r	ND (330)	190	1 4 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 S S S S S S S S S S S S S S S S S S S	42	ND (3.3)	ND (3.3)	83	63	650
LF02		ND (330)			ND (3.3)	ND (3.3)	R				ND (33)
LF03	1,600			180	300	R	600				1,800
BK01*	ND (330)	ND (330)	ND (330)	ND (3.3)	ND (3.3)	ND (3.3)	61	A CONTRACTOR OF A CONTRACT	والمرتبع فيحتج المحالية المرتج المحالية المرتبع المحالية المحالية	ND (1.7)	810

Ref. No. 25

All concentrations are reported in micrograms per kilogram (ug/kg).

Bold italics indicates that concentration exceeds three times background.

* Samples SD12, SD13, and BK01 are background samples.

ND = Not detected.R = Rejected data.

() = Method detection limit.

.

Table 4: Data Summary for TAL Analytes Keegan Landfill SIP July 30-31, 1997

ample No.	Antimony	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Vanadium
SD01	3.8	27.9		the second s				The second se	74.2
SD02	2.5	11.8	5.8	the second second second second second	TWO IS CONTRACTOR CONTRACTOR		And a second second second		53.8
SD03	ND (12)	2.6	1.3		• Provide the second s	- 100 bene benede bebride 16 beide beide be		26 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.6
SD04	71.5	17,9	13.9	the second second second second			NY MARKA AND AND AND A	122112 12 12 12 12 12 12 12 12 12 12 12	20.0 94,8
SD05	2.8	18.9	a series de la companya de la compa	SECONDENSION DE LE LE	10000000000000000000000000000000000000	NEED XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	CONTRACTOR NOTIFIC	a de la contra de l	51.3
SD06	ND (12)	4.6		www.www.www.www.www.www.					0.10 6500000000000000000000000000000000000
SD07	23.2	 A second sec second second sec	10.101 X 200 X 200 10.111	CRASSESSOR CONTRACTOR		Construction of the second	A STATE OF A STATE AND A STATE OF A	NAMES AND ADDRESS AND ADDRESS A	19
SD08	ND (12)	A Assessment of the second second second	A CONTRACT OF A CONTRACT.			a state the second s	An experience of the second	Concernence and the second second	145
SD09		and the state of the second		00000 000 000 000 000 000 000 000 000		concernence since a si	and the second second second second	THE REPORT OF MALE 11 THE P	51.7
SD10	and the second	and the second second second	and the second		· · · · · · ·	Contraction of the second second second			
SD11	4.7	1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 -		1 S S S S S S S S S S S S S S S S S S S		and the second		Contract of the second s	49.3
SD12*	ND (12)	 A second sec second second sec						and the second	72.4
		·····			· · · · · · · · · · · · · · · · · · ·	Contraction and the second	A 10.11	sectored for the sector of the sector	35,7
LF01	1.7	and the second			1.11.201101	www.www.uni	1 1	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	59.6
LF02	4	the second se			2.20030202001111	a dia dia kaominina dia kao		1 C C C C C C C C C C C C C C C C C C C	23.1
LF03	215							144 A	
BK01*		and the second states of the						····· •	106 30.4
	SD01 SD02 SD03 SD04 SD05 SD06 SD07 SD08 SD09 SD10 SD11 SD12* SD13* LF01 LF02 LF03	SD01 3.8 SD02 2.5 SD03 ND (12) SD05 2.8 SD06 ND (12) SD07 23.2 SD08 ND (12) SD09 15.9 SD10 6.6 SD11 4.7 SD12* ND (12) SD13* ND (12) LF01 1.7 LF02 4 LF03 215	SD01 3.8 27.9 SD02 2.5 11.8 SD03 ND (12) 2.6 SD04 71.5 17.9 SD05 2.8 18.9 SD06 ND (12) 4.6 SD07 23.2 93 SD08 ND (12) 4.9 SD09 15.9 31.4 SD10 6.6 9.2 SD11 4.7 2.7 SD12* ND (12) 1.8 SD13* ND (12) 5.4 LF01 1.7 4.5 LF03 215 39.6	SD01 3.8 27.9 5.3 SD02 2.5 11.8 5.8 SD03 ND (12) 2.6 1.3 SD04 71.5 17.9 13.9 SD05 2.8 18.9 4.3 SD06 ND (12) 4.6 1.1 SD07 23.2 93 22.2 SD08 ND (12) 4.9 1.5 SD09 15.9 31.4 3.4 SD10 6.6 9.2 8.4 SD11 4.7 2.7 8.2 SD12* ND (12) 1.8 1.7 SD13* ND (12) 5.4 5.9 LF01 1.7 4.5 3.3 LF02 4 60.5 0.87 LF03 215 39.6 22.4	SD01 3.8 27.9 5.3 103 SD02 2.5 11.8 5.8 125 SD03 ND (12) 2.6 1.3 19.8 SD04 71.5 17.9 13.9 229 SD05 2.8 18.9 4.3 61.7 SD06 ND (12) 4.6 1.1 19.8 SD07 23.2 93 22.2 441 SD08 ND (12) 4.9 1.5 49.2 SD09 15.9 31.4 3.4 143 SD10 6.6 9.2 8.4 54.9 SD11 4.7 2.7 8.2 281 SD12* ND (12) 1.8 1.7 35.1 SD13* ND (12) 5.4 5.9 44.2 LF01 1.7 4.5 3.3 57 LF02 4 60.5 0.87 28.9 LF03 215 39.6 22.4 118	SD01 3.8 27.9 5.3 103 447 SD02 2.5 11.8 5.8 125 279 SD03 ND (12) 2.6 1.3 19.8 R SD04 71.5 17.9 13.9 229 588 SD05 2.8 18.9 4.3 61.7 302 SD06 ND (12) 4.6 1.1 19.8 R SD07 23.2 93 22.2 441 1,560 SD08 ND (12) 4.9 1.5 49.2 R SD09 15.9 31.4 3.4 143 R SD10 6.6 9.2 8.4 54.9 247 SD11 4.7 2.7 8.2 281 545 SD12* ND (12) 1.8 1.7 35.1 R SD13* ND (12) 5.4 5.9 44.2 390 LF01 1.7 4.5 3.3 57	SD01 3.8 27.9 5.3 103 447 1,130 SD02 2.5 11.8 5.8 125 279 879 SD03 ND (12) 2.6 1.3 19.8 R 164 SD04 71.5 17.9 13.9 229 588 27,700 SD05 2.8 18.9 4.3 61.7 302 844 SD06 ND (12) 4.6 1.1 19.8 R 92.2 SD07 23.2 93 22.2 441 1,560 2,250 SD08 ND (12) 4.9 1.5 49.2 R 215 SD09 15.9 31.4 3.4 143 R 518 SD10 6.6 9.2 8.4 54.9 247 319 SD11 4.7 2.7 8.2 281 545 1,330 SD12* ND (12) 1.8 1.7 35.1 R 282 <t< td=""><td>SD01 3.8 27.9 5.3 103 447 1,130 10.8 SD02 2.5 11.8 5.8 125 279 879 4.2 SD03 ND (12) 2.6 1.3 19.8 R 164 1.1 SD04 71.5 17.9 13.9 229 588 27,700 1.7 SD05 2.8 18.9 4.3 61.7 302 844 7.5 SD06 ND (12) 4.6 1.1 19.8 R 92.2 0.3 SD07 23.2 93 22.2 441 1,560 2,250 7.1 SD08 ND (12) 4.9 1.5 49.2 R 215 0.82 SD08 ND (12) 4.9 1.5 49.2 R 215 0.82 SD09 15.9 31.4 3.4 143 R 518 0.89 SD10 6.6 9.2 8.4 54.9 <t< td=""><td>SD01 3.8 27.9 5.3 103 447 1,130 10.8 50.2 SD02 2.5 11.8 5.8 125 279 879 4.2 44 SD03 ND (12) 2.6 1.3 19.8 R 164 1.1 166 SD04 71.5 17.9 13.9 229 588 27,700 1.7 157 SD05 2.8 18.9 4.3 61.7 302 844 7.5 35.3 SD06 ND (12) 4.6 1.1 19.8 R 92.2 0.3 12.9 SD07 23.2 93 22.2 441 1,560 2.250 7.1 468 SD08 ND (12) 4.9 1.5 49.2 R 215 0.62 21.7 SD09 15.9 31.4 3.4 143 R 518 0.89 43.9 SD11 4.7 2.7 8.2 281 54</td></t<></td></t<>	SD01 3.8 27.9 5.3 103 447 1,130 10.8 SD02 2.5 11.8 5.8 125 279 879 4.2 SD03 ND (12) 2.6 1.3 19.8 R 164 1.1 SD04 71.5 17.9 13.9 229 588 27,700 1.7 SD05 2.8 18.9 4.3 61.7 302 844 7.5 SD06 ND (12) 4.6 1.1 19.8 R 92.2 0.3 SD07 23.2 93 22.2 441 1,560 2,250 7.1 SD08 ND (12) 4.9 1.5 49.2 R 215 0.82 SD08 ND (12) 4.9 1.5 49.2 R 215 0.82 SD09 15.9 31.4 3.4 143 R 518 0.89 SD10 6.6 9.2 8.4 54.9 <t< td=""><td>SD01 3.8 27.9 5.3 103 447 1,130 10.8 50.2 SD02 2.5 11.8 5.8 125 279 879 4.2 44 SD03 ND (12) 2.6 1.3 19.8 R 164 1.1 166 SD04 71.5 17.9 13.9 229 588 27,700 1.7 157 SD05 2.8 18.9 4.3 61.7 302 844 7.5 35.3 SD06 ND (12) 4.6 1.1 19.8 R 92.2 0.3 12.9 SD07 23.2 93 22.2 441 1,560 2.250 7.1 468 SD08 ND (12) 4.9 1.5 49.2 R 215 0.62 21.7 SD09 15.9 31.4 3.4 143 R 518 0.89 43.9 SD11 4.7 2.7 8.2 281 54</td></t<>	SD01 3.8 27.9 5.3 103 447 1,130 10.8 50.2 SD02 2.5 11.8 5.8 125 279 879 4.2 44 SD03 ND (12) 2.6 1.3 19.8 R 164 1.1 166 SD04 71.5 17.9 13.9 229 588 27,700 1.7 157 SD05 2.8 18.9 4.3 61.7 302 844 7.5 35.3 SD06 ND (12) 4.6 1.1 19.8 R 92.2 0.3 12.9 SD07 23.2 93 22.2 441 1,560 2.250 7.1 468 SD08 ND (12) 4.9 1.5 49.2 R 215 0.62 21.7 SD09 15.9 31.4 3.4 143 R 518 0.89 43.9 SD11 4.7 2.7 8.2 281 54

Ref. No. 25.

١.

All concentrations are reported in milligrams per kilogram (mg/kg).

Bold italics indicates that concentration exceeds three times background.

* Samples SD12, SD13, and BK01 are background samples.

ND = Not detected.

R = Rejected data.

() = Contract Required Detection Limit.

Ξ.

Soil Sampling – Three samples (Sample Nos. LF01, LF02, and LF03) were collected from areas of the landfill in order to assist in characterizing the site waste source. One background sample (Sample No. BK01) was collected from an area located southeast of the site in order to assist in determining regional background hazardous substance concentrations. Analytical results of landfill samples indicated the presence of the following substances at concentrations significantly above background: diethyl phthalate, butylbenzyl phthalate, n-nitrosodiphenylamine, 4,4'-DDE, 4,4'-DDD, 4,4'-DDT, endrin, endrin aldehyde, chlordane, antimony, arsenic, cadmium, chromium, copper, mercury, nickel, and vanadium. Aroclor-1260 was detected in soil samples LF01 and LF03 at concentrations of 650 ug/kg and 1,800 ug/kg, respectively. However, Aroclor-1260 was also detected in the background soil sample, Sample BK01, at a concentration of 810 ug/kg (Ref. No. 25, pp. 14 through 16, 18 through 23, 26 through 28, and 337 through 339).

Sediment Sampling - START collected a total of 13 sediment samples, including two background samples (Sample Nos. SD12 and SD13), from the site and its vicinity. Two samples were collected from areas located north and southeast of the site in order to assist in determining regional background hazardous substance concentrations. Analytical data of Samples SD01 through SD11 represent TCL/TAL parameter concentrations within site wetlands and adjacent wetlands. Samples SD01/SD05 and SD02 were collected from Frank Creek, a south-flowing water body that originates on site. Samples SD10 and SD11 were collected from associated wetland areas. Analytical data of the Frank Creek sediment samples indicate the presence of the following substances at concentrations significantly above background: butylbenzyl phthalate, 4,4'-DDE, 4,4'-DDD, 4,4'-DDT, endrin, endrin aldehyde, chlordane, arsenic, and chromium. Samples SD03, SD04, and SD06 through SD09 were collected from wetland areas along the eastern portion of the site. Analytical data of these samples indicate the presence of the following substances at concentrations significantly above background: diethyl phthalate, butylbenzyl phthalate, 4,4'-DDE, 4,4'-DDD, 4,4'-DDT, endrin aldehyde, chlordane, antimony, arsenic, cadmium, chromium, and copper. Aroclor-1260 was detected in Samples SD03, SD04, SD06, and SD07; the concentrations ranged from 110 to 8,100 ug/kg. However, Aroclor-1260 was also detected in background sediment samples SD12 and SD13 at concentrations of 320ug/kg and 350 ug/kg, respectively (Ref. No. 25, pp. 14 through 16, 18 through 23, 26 through 28, and 337 through 339).

Surface Water Sampling – START collected three surface water samples, including one environmental duplicate sample (Sample No. SW05), from Frank Creek. Organic analytical data of these samples did not indicate the presence of elevated levels of TCL compounds. Inorganic analytical data indicate lead concentrations ranging from 1,020 to 1,590 ug/L (Ref. No. 25, pp. 17, 24, 25, 29, and 336).

PART IV. HAZARD ASSESSMENT

GROUNDWATER ROUTE

1. Describe the likelihood of a release of contaminant(s) to the groundwater as follows: observed release, suspected release, or none. Identify contaminants detected or suspected and provide a rationale for attributing them to the site. For observed release, define the supporting analytical evidence and relationship to background.

A release of contaminants is suspected due to the presence of on-site soil contamination and the existence of a shallow water table. From the mid-1960s to 1974, the property was utilized as a municipal sanitary landfill. Keegan/MSLA leased the property from the Town of Kearny. Unauthorized dumping is also reported to have occurred at the site. Wastes deposited on site included cardboard, construction, and household waste; landscaping debris; abandoned tires, appliances, automobiles; and drummed/uncontained plating wastes (chromate and bichromate slurry), pigment wastes, and organic wastes. As part of the Passaic River Flood Protection Project, IT Corporation drilled two on-site wells, including one 510-foot pilot boring well (Well No. 2BK-PB01) and one 22-foot overburden monitoring well (Well No. 2BK-OB01). The wells are located at Workshaft 2BK, at the foot of Bergen Avenue. Groundwater was encountered at 14 feet below ground surface. In July 1994, one groundwater sample was collected from each well.

Results of on-site groundwater sampling suggest that a release to groundwater has occurred; however, the data do not meet the observed release criteria because background samples were not collected. Analytical data of overburden groundwater samples indicate the presence of inorganic analytes, including aluminum, barium, chromium, iron, lead, and mercury. The pilot borehole groundwater sample contained the following chlorinated solvents: 1,2-dichloroethene (31 ug/L), trichloroethene (34 ug/L), and tetrachloroethene (5.1 ug/L). The sample also contained aluminum, barium, iron, lead, and zinc. In addition, analytical data of surface soil and subsurface soil samples indicate the presence of similar analytes. Numerous contaminants, such as PCBs, phthalates, PAHs, pesticides, petroleum hydrocarbons, and dioxin, have been detected in surface soil samples. Surface soil sample 2BK-S-HA13 contained trichloroethene (7.7 ug/kg); VOCs were not detected in all other soil samples. Similarly, analytical data of soil and sediment samples collected in July 1997 by Region II START indicate the presence of phthalates, pesticides, and inorganic analytes at concentrations significantly above background.

Ref. Nos. 8, pp. 3, 12, 53, 56, 57; 9, pp. 34, 37, 44 through 58; 10, pp. 2, 3; 25, pp. 14 through 16, 18 through 23, 26 through 28, 337 through 339.

2. Describe the aquifer of concern; include information such as depth, thickness, geologic composition, areas of karst terrain, permeability, overlying strata, confining layers, interconnections, discontinuities, depth to water table, groundwater flow direction.

The Keegan site is located within the Hackensack Meadowlands in the Piedmont physiographic province of New Jersey. The meadowlands area was once glacial Lake Hackensack. Groundwater is not known to be used for drinking water purposes in the vicinity of the site. Therefore, there is no true aquifer of concern. For the purposes of this report, the aquifer of concern is considered to be the underlying Passaic Formation of the Brunswick Group (Newark Supergroup). The formation consists of soft, reddish shale; red sandstone and siltstone; mudstone; and conglomerate. The strata are generally tilted northwestward, with the ridges tending northeastward. In the site area, the total thickness of these late Triassic Age rocks is estimated to be 6,000 to 7,000 feet. The primary water-bearing zone occurs from less than 200 feet to 600 feet below ground surface. Groundwater movement and storage occurs primarily due to extensive fracturing of its component rocks. Though cracks intersect so as to allow omni-directional movement, water may be inhibited in traveling along certain paths by fracture size and capacity. Approximately 150 feet of unconsolidated sediment overlie bedrock at the site. The sediments mainly consist of glacial lake sediments and glacial till, which do not yield a significant amount of water; these sediments usually act as a semi-confining aquiclude.

In 1994, IT Corporation conducted a hydrogeologic investigation at the Keegan site as part of USACE Passaic River Flood Protection Project activities. One 510-foot pilot borehole (No. 2BK-PB01) and one 22-foot overburden borehole were drilled. The stratigraphy of the 2BK-PB01 borehole was reported as follows: 0' to 6' - refuse and soil fill material; 6' to 9' - organic soil with fill; 9' to 20.5' - gray, sandy silt and silty sand; 20.5' to 25' - medium to coarse sand and fine gravel; 25' to 50' - brownish-gray silty sand, sandy silt, and clay; 50' to 100' - gray to reddish-brown varved clay, and silt with sand seams; 100' to 140' - silty sand; and 140' to 155' - glacial till. Bedrock was encountered at 155 feet below ground surface. Groundwater flow in the overburden is believed to be south-southwestward toward the Passaic River. Groundwater occurs at water table conditions at 14 feet below grade.

Ref. Nos. 3, pp. 39, 106, 132 through 135, 356 through 358, 361; 8, pp. 19, 28, 53, 58, 61 through 87.

- 3. What is the depth from the lowest point of waste disposal/storage to the highest seasonal level of the saturated zone of the aquifer of concern?

Ref. Nos. 8, pp. 28, 53; 10, Att. C, pp. 8 through 13; 25, pp. 14 through 16, 18 through 23, 26 through 28, 337 through 339.

4. What is the permeability value of the least permeable continuous intervening stratum between the ground surface and the top of the aquifer of concern?

The varved clay and silt with sand seams encountered between 50 and 100 feet below grade at the site is the least permeable continuous intervening stratum. The permeability associated with this material (silty clay) is 10^{-6} centimeters per second (cm/s).

Ref. Nos. 8, pp. 27, 28, 57, 61 through 67; 13, p. 4.

5. What is the net precipitation at the site (inches)?

The net precipitation in the vicinity of the site is between 15 and 30 inches.

Ref. No. 13, pp. 2, 3.

6. What is the distance to and depth of the nearest well that is currently used for drinking purposes?

Groundwater is not used for drinking purposes within 4 miles of the site.

Ref. Nos. 4; 8, p. 23; 11; 12.

1

7. If a release to groundwater is observed or suspected, determine the number of people that obtain drinking water from wells that are documented or suspected to be actually contaminated by hazardous substance(s) attributed to an observed release from the site.

Groundwater is not utilized for drinking water purposes within 4 miles of the site.- Due to the absence of drinking water wells in the site vicinity, no wells are suspected to be within a contamination boundary of a potential release.

Ref. Nos. 4; 8, pp. 23, 52; 11; 12.

8. Identify the population served by wells located within 4 miles of the site that draw from the aquifer of concern.

Distance	Population
$0 - \frac{1}{4}$ mile	0
> ¼ - ½ mile	0
$> \frac{1}{2} - 1$ mile	0
>1 - 2 miles	0
>2 - 3 miles	0
>3 - 4 miles	0

Ref. Nos. 4; 8, pp. 23, 52; 11; 12.

State whether groundwater is blended with surface water, groundwater, or both before distribution.

Not applicable.

Ref. Nos. 4; 8, pp. 23, 52; 11; 12.

Is a designated wellhead protection area within 4 miles of the site?

The site is not located within a designated wellhead protection area, as groundwater is not utilized for drinking water purposes within 4 miles of the site.

Ref. Nos. 4; 8, pp. 23, 52; 11; 12.

Does a waste source overlie a designated or proposed wellhead protection area? If a release to groundwater is observed or suspected, does a designated or proposed wellhead protection area lie within the contaminant boundary of the release?

Not applicable.

Ref. Nos. 4; 8, pp. 23, 52; 11; 12.

9. Identify one of the following resource uses of groundwater within 4 miles of the site (i.e., commercial livestock watering, ingredient in commercial food preparation, supply for commercial aquaculture, supply for major, or designated water recreation area, excluding drinking water use, irrigation (5-acre minimum) of commercial food or commercial forage crops, unusable).

Groundwater is not known to be utilized for the above-mentioned resources. No drinking water wells are located within 4 miles of the site; however, the potential exists for underlying groundwater to be used for drinking water purposes. Regionally, the chemical quality of bedrock groundwater is considered to be undesirable for potable supply without proper treatment. Groundwater within 4 miles of the site is utilized for industrial, commercial, and small-scale irrigation (lawn-watering) purposes.

Ref. Nos. 4; 8, pp. 22, 23, 46 through 52; 11; 12.

SURFACE WATER ROUTE

10. Describe the likelihood of a release of contaminant(s) to surface water as follows: observed release, suspected release, or none. Identify contaminants detected or suspected and provide a rationale for attributing them to the site. For observed release, define the supporting analytical evidence and relationship to background.

There are observed releases of contaminants associated with the site to both watersheds of the surface water pathway. From the mid-1960s to 1974, the property was utilized as a municipal sanitary landfill. Keegan/MSLA leased the property from the Town of Kearny. Unauthorized dumping is also reported to have occurred at the site. Wastes deposited on site include cardboard, construction, and household waste; landscaping debris; abandoned tires, appliances, automobiles; and drummed/uncontained plating wastes (chromate and bichromate slurry), pigment wastes, and organic wastes. Two probable points of entry to surface water exist on site: a creek that originates on site (Frank Creek), and a tidal openwater wetland. Frank Creek flows south and eventually discharges to the Passaic River, located ½ mile south of the site's Harrison Avenue entrance. The tidal wetland area, located along the eastern border of the site, is part of the Hackensack River drainage basin. Although there are observed releases to both watersheds, the Hackensack River watershed is evaluated fully in this report due to analytical data supporting actual contamination of a sensitive environment.

On July 30-31, 1997, Region II START collected 13 sediment samples, four soil samples, and three surface water samples. The samples were analyzed through the U.S. EPA CLP for TCL/TAL parameters. All of the surface water samples were collected from Frank Creek. The sediment samples were collected from locations along Frank Creek and contiguous wetlands, the eastern open-water wetland area, and two background locations. Analytical data of sediment samples collected from Frank Creek and its associated wetlands

indicate the presence of phthalates, pesticides, arsenic, and chromium at concentrations significantly above background. Analytical data of sediment samples collected from the eastern open-water wetland area indicate the presence of phthalates, pesticides, antimony, arsenic, cadmium, chromium, and copper at concentrations significantly above background. Concentrations of PCBs were detected at various locations throughout the site; however, PCBs were also detected at similar levels in background samples.

On April 25, 1989, Region II FIT conducted a SI at the Keegan site and collected seven surface water samples and six sediment samples from on-site surface water bodies. All media samples were analyzed for TCL/TAL parameters through the U.S. EPA CLP. Analytical data of sediment samples indicate the presence of elevated concentrations of semivolatile PAH compounds, such as phenanthrene, fluoranthene. pyrene. benzo(a)anthracene, chrysene, benzo(a)pyrene; PCBs, such as Aroclor 1254 and Aroclor 1260; and metals, such as mercury, lead, and chromium. Analytical data indicate the presence of elevated concentrations of the same metals in the Frank Creek surface water samples. Analytical data of Sample No. Sed-1, a sediment sample collected from the openwater wetland perimeter, indicated the presence of PCBs, mercury, and lead. An "oily sheen" was observed at surface water/sediment Sample Location No. SW-5. In 1994, similar contaminants were detected during on-site surface soil sampling conducted by IT Corporation.

Ref. Nos. 3, pp. 12, 13, 27, 28, 38, 41, 45, 78, 199, 383; 7; 10, p. 2; 14; 24; 25, pp. 14 through 16, 18 through 23, 26 through 28, 337 through 339.

11. Identify the nearest downslope surface water. If possible, include a description of possible surface drainage patterns from the site.

Two downslope surface water bodies are located on site. Frank Creek originates on site and flows south off site before discharging to the Passaic River; the river is located ¹/₂-mile south of the former Harrison Avenue entrance. The estuarine open-water wetland is situated along the eastern border of the site. The open-water wetland area drains southeastward to the Hackensack River. The Passaic and Hackensack Rivers both discharge to Newark Bay.

Ref. Nos. 3, pp. 3, 12; 14; 24, p. 3.

12. What is the distance in feet to the nearest downslope surface water? Measure the distance along a course that runoff can be expected to follow.

Frank Creek originates on site. The open-water wetland is immediately adjacent to the eastern border of the site.

Ref. Nos. 3, pp. 3, 12; 14.

13. Iden	ify all	surface	water	body typ	oes within	15	downstream miles.
----------	---------	---------	-------	----------	------------	----	-------------------

<u>Name</u>	Water Body Type	Flow (cfs)	Saline/Fresh/Brackish
Open-water * Wetland	Tidal River	N/A	Brackish
Hackensack Ri Watershed	ver		
Frank Creek	Tidal River	N/A	Brackish
Passaic River	Tidal River	N/A	Brackish
Hackensack Rive	er Tidal River	N/A	Brackish
Newark Bay*	Coastal Tidal	N/A	Saline
Arthur Kill*	Coastal Tidal	N/A	Saline
Kill Van Kull	Coastal Tidal	N/A	Saline
Upper NY Bay	Coastal Tidal	N/A	Saline
Hudson River*	Tidal River	N/A	Brackish
The Narrows'	Coastal Tidal	N/A	Saline
Lower NY Bay*	Coastal Tidal	N/A	Saline

Surface water body evaluated in Hazard Ranking System (HRS) PREscore for the site.

Ref. Nos. 3, p. 90; 13, p. 6; 14 through 17.

14. Determine the 2-yr., 24-hr. rainfall (inches) for the site.

The 2-year, 24-hour rainfall in the area of the site is approximately 3.3 inches.

Ref. No. 18.

15. Determine size of the drainage area (acres) for sources at the site.

Two drainage areas exist on the 230-acre property. It is estimated that the Frank Creek area, belonging to the Passaic River basin, drains approximately 60 percent, or 138 acres, of the site. Consequently it is estimated that the open-water wetland area, belonging to the Hackensack River basin, drains approximately 40 percent, or 92 acres, of the site.

Ref. Nos. 3, pp. 3, 12, 112; 14.

16. Describe the predominant soil group in the drainage area.

Overburden soils in the drainage area are composed primarily of glacial lake sediment deposits, refuse, and fill. Glacial lake sediments typically include sand, gravel, silt, clay, peat, and root mat. Due to the presence of clays, sandy clays, silty clays, and organic soils, it is estimated that fine-textured soils with very low infiltration rates are the predominant soil group in the area of the site.

Ref. Nos. 3, pp. 356, 357; 8, p. 28; 13, p. 5.

17. Determine the type of floodplain within which the site is located.

The Keegan site is located within a 100-year flood area.

Ref. No. 19.

18. Identify drinking water intakes in surface waters within 15 miles downstream of the point of surface water entry. For each intake identify: the name of the surface water body in which the intake is located, the distance in miles from the point of surface water entry, population served, and stream flow at the intake location.

Intake	Distance	Population Served	Flow (cfs)
None	N/A	N/A	N/A

Ref. Nos. 4; 8, p. 52; 11; 12.

19. Identify fisheries that exist within 15 miles downstream of the point of surface water entry. For each fishery specify the following information:

Fishery Name	Water Body Type	Flow (cfs)	Saline/Fresh/Brackish
Open-water Wetland	Tidal River	N/A	Brackish
Hackensack River	Tidal River	N/A	Brackish
Newark Bay	Coastal Tidal	N/A	Saline
Arthur Kill	Coastal Tidal	N/A	Saline
Kill Van Kull	Coastal Tidal	N/A	Saline
Upper NY Bay	Coastal Tidal	N/A	Saline
Hudson River	Tidal River	N/A	Brackish
The Narrows	Coastal Tidal	N/A	Saline
Lower NY Bay	Coastal Tidal	N/A	Saline

During July 1997 Region II START sampling activities, no one was observed fishing. However, START personnel noted the presence of a boat launch area, as well as discarded fishing supplies, along the eastern wetland shore.

There is a statewide ban on the sale of all striped bass taken from New Jersey waters. A ban also exists on the sale and consumption of *all* fish and shellfish taken from the lower portion of the Passaic River.

Certain restrictions due to known contamination exist on the above-mentioned fisheries. In the Newark Bay Complex, which includes Newark Bay, the lower Hackensack River, Arthur Kill, Kill Van Kull, and tidal portions of its tributaries, there is a ban on the consumption of striped bass and blue crab, as well as a health advisory regarding the consumption of American eel, bluefish, white perch, and white catfish. In the Hudson River and Upper New York Bay, there is a health advisory regarding the consumption of American eel, striped bass, bluefish, white perch, white catfish, and blue crabs. In the Raritan Bay Complex, which includes The Narrows and Lower New York Bay, there is a health advisory regarding the consumption of striped bass, bluefish, white perch, white catfish, and blue crabs.

Ref. Nos. 13, p. 6; 14 through 17; 20; 24, p. 10.

20. Identify surface water sensitive environments that exist within 15 miles of the point of surface water entry.

Environment	Water Body Type	Flow (cfs)	Wetland Frontage (miles)
Wetlands - Open-water Wetl (Hackensack Rive watershed)		N/A	4
Wetlands - Hackensack Rive	Coastal Tidal r	N/A	10
Wetlands -Newark Bay	Coastal Tidal	N/A	0.1
Wetlands –Arthur Kill	Coastal Tidal	N/A	2
Wetlands - Upper NY Bay	Coastal Tidal	N/A	1
Wetlands - Lower NY Bay	Coastal Tidal	N/A	0.1

KEEGAN.SIP

28

Environment	Water Body Type	Flow (cfs)	Wetland Frontage (miles)
State-listed endangered species (Podilymbus podice)	Coastal Tidal ps)	N/A	N/A
Unique Biotic Community – Coastal Heron Rook at Kearny Marsh	Coastal Tidal tery	N/A	N/A
Federally-listed endangered species (Falco peregrinus)	Coastal Tidal	N/A	N/A
State-listed endangered species (Sterna antillarum)	Coastal Tidal	N/A	N/A
State-listed endangered species (Lemna perpusilla)	Coastal Tidal	N/A	N/A
Unique Biotic Community – Coasta Heron Rookery at Gl		N/A	N/A

Ref. Nos. 13, p. 6; 14 through 17; 21; 22.

21. If a release to surface water is observed or suspected, identify any intakes, fisheries, and sensitive environments from question Nos. 18-20 that are or may be actually contaminated by hazardous substance(s) attributed to an observed release from the site.

Intake: N/A

Fishery: Open-water wetland

Sensitive Environment: Wetland; state-listed endangered species habitat; unique biotic community.

The 1997 Region II START analytical data support actual contamination of 0.2 mile of wetland frontage based on an observed release of contaminants to the adjacent open-water

wetland, which is interconnected with the Kearny Marsh. The NJDEP Natural Heritage Program (NHP) has indicated that a state-listed endangered species habitat (Pied-billed grebe) and a unique biotic community (coastal heron rookery at Kearny Marsh) may be located within the site boundaries.

Ref. Nos. 4; 9, p. 23; 11; 12; 14 through 17; 21; 22; 25, pp. 14 through 16, 18 through 23, 26 through 28, 337 though 339.

22. Identify whether the surface water is used for any of the following purposes, such as: irrigation (5 acre minimum) of commercial food or commercial forage crops, watering of commercial livestock, commercial food preparation, recreation, potential drinking water supply.

The surface waters along the migration route are highly industrialized waterways. However, surface waters provide navigational channels for both commercial and recreational boating vessels. In July 1997, Region II START personnel observed a person in a kayak on the adjacent open-water wetland area.

Ref. No. 3, pp. 146, 147; 24, p. 4.

SOIL EXPOSURE PATHWAY

23. Determine the number of people that occupy residences or attend school or day care on or within 200 feet of observed contamination.

The site is located in a primarily industrial area of the Town of Kearny. No residences are located on or within 200 feet of observed contamination. There are no schools or day care centers within 200 feet of the site.

Ref. Nos. 3, pp. 3, 12, 49, 51; 4.

24. Determine the number of people that regularly work on or within 200 feet of observed contamination.

The site is currently inactive; no workers are employed at the site.

Ref. No. 7.

25. Identify terrestrial sensitive environments on or within 200 feet of observed contamination.

Numerous contaminants, such as PCBs, phthalates, PAHs, pesticides, petroleum hydrocarbons, and dioxin, have been detected in surface soil samples. The NJDEP Natural Heritage Program (NHP) has indicated that a state-listed endangered species habitat (Piedbilled grebe) and a unique biotic community (coastal heron rookery at Kearny Marsh) may be located within the site boundaries. However, these locations are not considered terrestrial sensitive environments.

Ref. Nos. 10, p. 2; 22; 25, pp. 14 through 16, 18 through 23, 26 through 28, 337 through 339.

26. Identify whether there are any of the following resource uses, such as commercial agriculture, silviculture, livestock production or grazing within an observed or suspected soil contamination.

The site is located in a primarily industrial portion of the Town of Kearny. None of the above-mentioned resource uses occur within an area of observed or suspected soil contamination.

Ref. Nos. 3, pp. 3, 49, 51; 4.

AIR PATHWAY

<u>.</u>Зб

27. Describe the likelihood of release of hazardous substances to air as follows: observed release, suspected release, or none. Identify contaminants detected or suspected and provide a rationale for attributing them the site. For an observed release, define the supporting analytical evidence and relationship to background.

A potential for a release of contaminants associated with the site to air is not currently suspected. From the mid-1960s to 1974, the property was utilized as a municipal sanitary landfill. Unauthorized dumping is also reported to have occurred at the site. Wastes deposited on site include cardboard, construction, and household waste; landscaping debris; abandoned tires, appliances, and automobiles; and drummed/uncontained plating wastes (chromate and bichromate slurry), pigment wastes, and organic wastes. The site is currently inactive.

Underground landfill fires are known to have occurred on site in December 1981, December 1984, June/July 1987, and most recently in 1992. On June 29, 1987, air monitoring results during the underground landfill fire indicated "3 ppm organics at ground level." In December 1994, while monitoring an underground landfill fire, a Kearny DPHEP employee noted the presence of a debris pile from wire-burning activities.

In 1994, IT Corporation conducted on-site field activities as part of the Passaic River Flood Protection Project. Air monitoring was conducted using a photoionization detector (PID) during advancement of a split-spoon sampler at Pilot Borehole 2BK-PB01. Well boring logs indicate that a PID reading of "5 ppm above background" was detected from the 32foot-depth sample. No readings above background were detected in ambient air during nonintrusive activities. During July 1997 Region II sampling activities, no air monitoring instrument readings were detected in ambient air. During collection of Sample No. SW-02, a PID reading of 0.5 units above background was detected from the sample.

Ref. Nos. 3, p. 3, 38, 44, 45, 46, 47, 65, 67, 68, 199, 204 through 213, 383; 7; 8, p. 62; 24.

28. Determine populations that reside within 4 miles of the site.

Distance	Population
On site	0
> 0 - ¼ mi.	230
> ¼ - ½ mi.	1,820
> ½ - 1 mi.	17,490
> 1 - 2 mi.	63,220
> 2 - 3 mi.	128,230
> 3 - 4 mi.	187,460

Ref. Nos. 7; 23.

÷

ATTACHMENT 1

 \Diamond

ي لو:

TIERRA-A-017378

29. Identify sensitive environments, including wetlands and associated wetland acreage, within 4 miles of the site.

Distance	Wetlands Acreage	Sensitive Environment
0 – ¼ mi.	225	State-listed endangered species (<i>Podilymbus podiceps</i>); unique biotic community (coastal heron rookery).
> ¼ - ½ mi.	185	None Identified.
> ½ - 1 mi.	320	None Identified.
> 1 – 2 mi.	335	State-listed threatened species (<i>Passerculus sandwichensis</i>); state- listed endangered species (<i>Lemna perpusilla</i>).
> 2 - 3 mi.	625	Two state-listed endangered species (<i>Circus cyaneus</i> and <i>Cistothorus platensis</i>).
> 3 – 4 mi.	880	Federal-listed endangered species (Falco peregrinus); three state-listed endangered species (Phlox pilosa, Prenanthes racemosa, and Scirpus maritimus).
Ref. Nos. 14; 21; 22	2.	

30. If a release to air is observed or suspected, determine the number of people that reside or are suspected to reside within the area of air contamination from the release.

A release to air is not observed or suspected; refer to Question No. 27 for a description of likelihood of a release.

31. If a release to air is observed or suspected, identify any sensitive environments, listed in question No. 29, that are or may be located within the area of air contamination from the release.

A release to air is not observed or suspected; refer to Question No. 27 for a description of likelihood of a release.

KEEGAN.SIP

,

CCA000052

Prepared by: Region II Superfund Technical Assessment and Response Team Roy F. Weston, Inc. Federal Programs Division Edison, New Jersey 08837

÷

JULY 1998

Prepared for: UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION II DCN: START-02-F-01093 DDN 0.: 02-96-11-0044 TDD No.: 02-96-11-0044 EPA Contract No.: 68-W5-0019

VOLUME 2 OF 3

FINAL SITE INSPECTION PRIORITIZATION REPORT KEEGAN LANDFILL KEARNY, HUDSON COUNTY, NEW JERSEY CERCLIS ID No.: NJD981490428 #142

DCN: START-02-F-01093

FINAL SITE INSPECTION PRIORITIZATION REPORT **KEEGAN LANDFILL** KEARNY, HUDSON COUNTY, NEW JERSEY

CERCLIS ID No.: NJD981490428

Prepared by: Region II Superfund Technical Assessment and Response Team Roy F. Weston, Inc. Federal Programs Division Edison, New Jersey

prepared for:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

EPA Contract No.: 68-W5-0019 TDD No.: 02-96-11-0044 Document Control No.: START-02-F-01093

JUNE 1998

SUBMITTED BY:

Kathy A. Campbell START Project Manager

W. Scott Butterfield, CHMM Site Assessment Team Leader

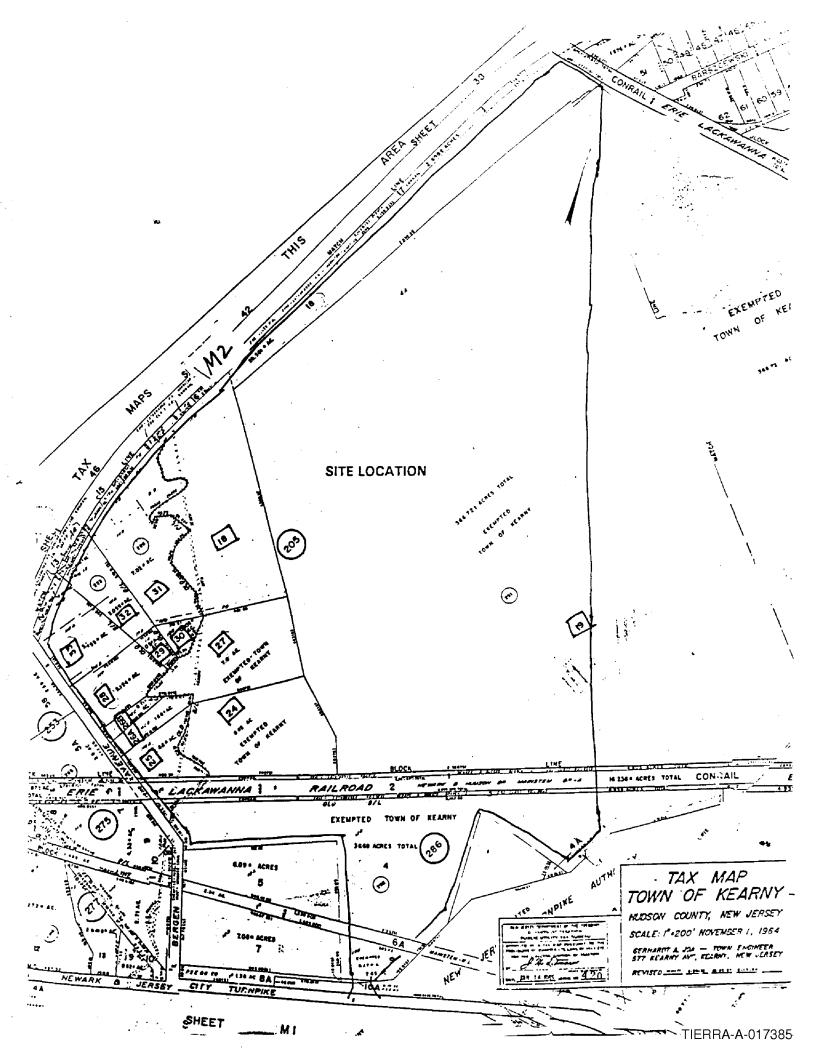
Date 07/7/98

------7/17/9F Date

. .

REFERENCE NO. 6

02-96-11-0044 SUPERFUND TECHNICAL ASSESSMENT AND RESPONSE TEAM **PROJECT NOTES** TO: DATE: Kergen LondAll fils 07/28/97 FROM: COPIES: K. Compbell SUBJECT: · · · · · Latitude and Longitude Calculations REFERENCE: "Orange, NQ Using the USGS produmate for calculations were site latitude and figured as follows : <u>2.5 cm</u> 19.3 cm (150"): 19" [where " Equals seconds <u>Latitude -</u> Base Latitude - 40°45'00" N + 19" Site Latitude 40°45'19" N $\frac{4.4 \text{ cm}}{14.3 \text{ cm}} (150") = 45"$ Longitude -Bax Longitude - 74°07'30" W + 45 Lite Longitude 74° 08' 15" W It should be noted at the approximately 230 acres, and therefore the latitude / longitude encomposses ghtly in report reference document 1 Gua 03/28/17


Ref. No. 5

SUPERFUND TECHNICAL ASSESSMENT AND RESPONSE TEAM TELECON NOTE
CONTROL NO: DATE TIME 02-96-11-0044 06/19/97 1500
02-96-11-0044 06/19/97 1500
Keegan Landfill file
BETWEEN OF Hackensack Meadows PHONE
Chris Duor Development Commission (HMDC) (201) 460-1700
AND
K. Campbell
DISCUSSION
Mr. Duor. of the HMDC Solid Waste Division, provided the following updated site information. He
confirmed that the site is currently involved in litigation. The HMDC is attempting to acquire the following
Lots of Block 205 in the Town of Kearny: Lot Nos. 18, 19, 24, 25, 26 (a and b), 27, 28, 29, 30, 31, 32, and 33.
Lot No. 19 contains a large freshwater wetland (referred to as a "wetland lake" in the 1989 SI Report). Lot
Nos. 25 and 26 (a and b) have buildings on the property. The HMDC plans to utilize the property as a
lined construction/demolition (C & D) debris landfill. They have contracted CDM to evaluate the development
potential of the site; he anticipates the findings report by the end of this year. After closure of the planned
C & D landfill, the property may be developed into a passive park area.
The site location is outlined on an attached copy of the applicable Kearny Tax Maps.
ACTION ITEMS:

The F. G

•

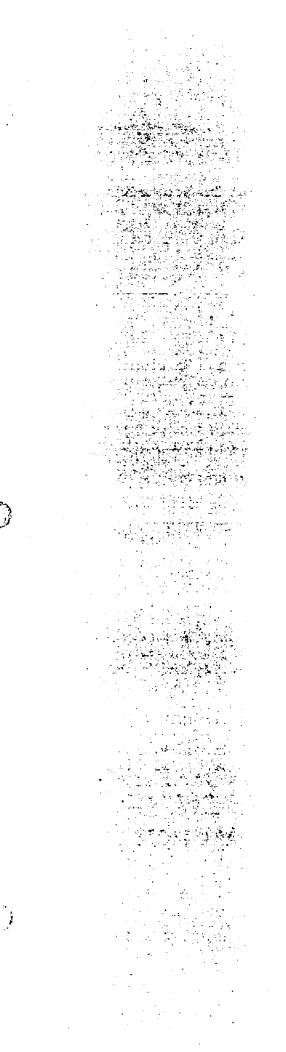
١

REFERENCE NO. 7

1

· .

SUPERFUND TECHN	ICAL ASSESSMENT AND RESP	ONSE TEAM	TELECON NOTE		
CONTROL NO: 02-96-11-0044	DATE: 06/10/97	TIME 1510	<u> </u>		
DISTRIBUTION:		•			
Keegan Landfill file		PHONE			
BETWEEN:	OF DE SUSSE	(201) 997-0			
Michael Beard	Kearny Dept. of Health	(2011997-0			
AND					
K. Campbell DISCUSSION			<u></u>		
Mr. Beard and I discus	ssed the more recent site history, with				
	the Town of Kearny: Keegan/MSLA				
Hackensack Meadowlan	ds Development Commission (HMD	C) are currently in litigatio	n over property control.		
HMDC plans to initially	utilize the property as a construction	n/demolition debris landfill.	provided the court		
grants in favor of HMDO	C. The landfill would later undergo p	proper closure, then be deve	eloped into a park. Mr.		
Beard suggested calling	Chris Duor of HMDC [Tel. No.: (20	1) 460-1700] for the correc	t site block and lot		
numbers; he did not feel	that the assessors office would have	the information as readily	available as the HMDC.		
Mr. Beard is not awar	e of any permits associated with the	site. Three site entrances e	xist: two from Bergen		
Avenue and one from H	arrison Avenue. The site remains un	fenced; however, all three	site entrances currently		
are barricaded with concrete roadway dividers. At one point, the on-site access roads were improved; although					
it is uncertain whether improvements were completed. No areas of the landfill were covered (recommended 2					
feet of fill) and seeded. Mr. Beard does not believe that the suggested easement across the properties belonging					
to Mimi Development w	vas obtained.				
Mr. Beard reported th	at an underground fire occurred appr	roximately five years ago (e.g., in 1992). Regarding		
the possibility of current	t unauthorized dumping. Mr. Beard s	stated that the blocked acce	ss roads prevent vehicles		
from entering the site, a	nd therefore help prevent illegal dur	iping.			
ACTION ITEMS: Telephone Chris Duo	r (HMDC) re: block/lot nos.				
· · · · · · · · · · · · · · · · · · ·					


R.F. No. 7

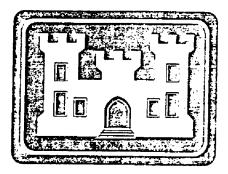
•

•

-

TIERRA-A-017388

REFERENCE NO. 8



Contract DACW31-94-C-0077 February 1995

Groundwater Investigation Final Report Passaic River Flood Protection Project Passaic River Basin, New Jersey

Prepared for:

Department of the Army U.S. Army Corps of Engineers Baltimore District Baltimore, Maryland

Prepared by: IT Corporation Edison, New Jersey

EXECUTIVE SUMMARY

Introduction

The USACE Baltimore District hired IT Corporation in May 1994 to perform a hydrogeologic investigation along the alignment of the proposed floodwater diversion tunnel in the Passaic River Basin. The diversion tunnel consists of two inlet shafts Pompton and Spur Inlets), four construction work shafts (2, 2B, 2C and 3), a 40 foot diameter main tunnel alignment 20.1 miles long, and a 20 foot diameter spur tunnel 1.2 miles long. The tunnel will discharge into Newark Bay. The project location is shown on Figure ES-01. The model areas and tunnel alignment are shown on Figure ES-02.

The purpose of the investigation was to estimate the potential effects of groundwater on tunnel design and construction and the potential effects of tunnel design and construction on the regional groundwater regime. IT conducted a field investigation at several proposed workshaft locations and completed a groundwater modeling study of five areas along the alignment to achieve these objectives. Specifically the goals were to:

- Determine the geologic and hydrogeologic characteristics at four work shaft locations 2, 2B, 2C and 3, and utilize this data to evaluate groundwater conditions along the length of the tunnel.
- Evaluate potential seepage rates into the tunnel during and after construction through the use of groundwater modeling techniques.
- Estimate the magnitude of drawdown in local aquifers and potential impacts to nearby water wells.
- Assess the potential for contaminants to be mobilized as a result of tunnel installation.

Site Investigations

IT conducted an intrusive subsurface investigation at the proposed locations of Workshafts 2B and 2C in Kearny, Workshaft 2 in Little Falls, and Workshaft 3 in Wayne, New Jersey. These locations were selected by the USACE as representative of major formations along the tunnel and for the dual purpose of collecting data at these shaft locations. The activities included soil and rock core collection and characterization, borehole geophysics, short-duration permeability tests, and short- and long-duration pumping tests. The data from the field investigation and from previous studies by the USACE and USGS were used to develop a regional hydrogeologic framework. Hydraulic testing data from the pumping tests were used to estimate aquifer parameters for groundwater flow modeling. The

EDIS/L1263-ES_Executive Summary

p. 2

modeling study evaluated quantitatively the interconnection of overburden materials with bedrock aquifers. The groundwater models were also used to estimate the quantity of groundwater that may (depending on the final design and construction technique selected) flow into the tunnel during construction and during operations. The models evaluate the potential for interference with existing water-supply wells, and mobilization of existing known groundwater contaminants.

At Workshaft 2 a pilot boring was installed by the USACE to a depth of 525 feet, and a pumping well was installed to a depth of 530 feet by IT. The bedrock encountered at this location was the Passaic Formation, at a depth of 20 feet below ground level (bgl). Downhole geophysical logging was performed on both wells. Straddle packer tests were performed in the pumping well. A multiport system was installed in the pilot boring after reviewing the geophysical logs, geological logs, straddle packer test results, and USACE pressure test results.

Water producing zones were encountered at depths of 30-130 feet bgl, 220-270 feet bgl, and 300-530 feet bgl. Transmissivity values representing the potential flow rates at these depths were 3,820 gpd/ft, 335 gpd/ft, and 80 gpd/ft, respectively. Hydraulic conductivity values ranged from 38.2 gpd/ft² to 0.35 gpd/ft².

At Workshaft 2B two potential shaft locations were investigated. A 510 foot deep pilot boring and a 22 foot deep overburden monitoring well were installed by IT at Workshaft 2B-K. A 510 foot deep pumping well, a 510 foot deep pilot boring and a 114 foot deep overburden monitoring well were installed by IT at Workshaft 2B-F. Additionally, IT deepened a pilot boring initially installed by USACE (C-23), drilling from 501.5 feet to a total depth of 653.5 feet. This location was used to obtain hydrogeologic data during pumping tests. The bedrock encountered at this location was also the Passaic Formation, at depths of 280 feet and 155 feet bgl at 2B-F and 2B-K, respectively.

Geophysical logs were run in the 2B-F pumping well and pilot boring, C-23 pilot boring, and 2B-K pilot boring. Multiport systems were installed in the 2-BF and 2B-K pilot borings after eight 1-hour straddle packer tests were performed on the pilot boring at Workshaft 2B-K, and six were performed at Workshaft 2B-F. Six 1-hour straddle packer tests were performed on the pumping test well at Workshaft 2B-F. In addition, one 8-hour and one 72-hour pumping tests were performed at the pumping well at Workshaft 2B-F after multiport installations.

A high yielding water producing zone was encountered at a depth of 338 feet to 388 feet bgl. This 50 foot interval had a transmissivity of 30,000 gpd/ft and a hydraulic conductivity value of 600 gpd/ft². The remainder of the zones in the bedrock aquifer were relatively impermeable.

EDIS/L1263-ES_Executive Summary

to evaluate the seepage rates to the tunnel during construction, estimate the long-term steady-state seepage rates to the tunnel after a liner is installed, and predict the amount of groundwater drawdown that might occur in the geological units as a result of tunnel seepage during both conditions.

The Packanack Lake model is located near the north end of the tunnel and was used to simulate groundwater conditions in the Boonton Shale and Hook Mountain Basalt. The permeabilities of these rocks are expected to be less than 0.5 foot/day. As a result, the estimated seepage after 100 days of construction is only 158 gpm/mile. Once a liner was added to the tunnel simulation, the seepage rate into the tunnel decreased immediately to 53 gpm/mile. The maximum steady state drawdown in groundwater levels at the end of construction was about 100 feet directly adjacent to the tunnel. The drawdown at 1,000 feet horizontal distance from the tunnel was about 13 feet and about 1 foot at 2000 feet distance.

The Preakness Valley model was located just south of the Packanack Lake model area and includes shales and siltstones of the Boonton and Towaco Formations, as well as the Hook Mountain Basalt. Hydraulic conductivities of fracture zones in this model ranged up to 3.4 feet/day. As a result, maximum seepage rates into the tunnel during construction (1056 gpm/mile) and after liner installation (121 gpm/mile) are greater than estimated for the Packanack Lake area. Maximum drawdown at the tunnel could be as great as 50 feet, but will decrease to less than 20 feet at about 3000 feet at horizontal distances from the tunnel alignment.

The Little Falls model is located near the central portion of the tunnel alignment and was used to simulate groundwater conditions in the Feltville Formation, Orange Mountain Basalt, and a small portion of the Passaic Formation. This area also includes the Work Shaft 2 site. There are a number of fracture zones located in the basalt and the Feltville siltstones, which may have hydraulic conductivity values as high as 10 feet/day. Also, there is a bedrock valley filled with sand and gravel deposits that overlies the tunnel alignment. For these reasons, seepage into this section of the tunnel could be greater than anywhere else along the tunnel alignment. A maximum inflow of 1,430 gpm/mile was predicted during construction and 127 gpm/mile was predicted to occur after the liner is installed. The maximum amount of drawdown in the Little Falls model area was predicted to be 155 feet in unfractured rock directly adjacent to the tunnel after construction. At a distance of 1,000 feet, the predicted drawdown in unfractured rock was substantially lower, about 10 feet. Predicted drawdowns in the fractured rock aquifers were about 3 feet, and zero in the overlying sand and gravel aquifer.

The Kearny model area is located toward the south end of the alignment and contains only rocks of the Passaic Formation. A

EDIS/L1263-ES_Executive Summary

. . •

deep bedrock valley also cuts across this section of the alignment and is partially filled with sand and gravel. Maximum predicted seepage rate into the tunnel during construction is 754 gpm/mile. After installation of the liner, steady state seepage into a dry tunnel should be about 96 gpm/mile. If the tunnel is allowed to flood and operate in a "wet" condition, seepage into the tunnel will be negligible (15 gpm/mile). For a lined tunnel during steady-state "wet" conditions, drawdown in surrounding rocks will be small or negligible.

The Newark Bay model is located at the far south end of the tunnel near the tunnel outlet. It includes only rocks of the Passaic Formation. Maximum seepage into the tunnel during construction was predicted to be 413 gpm/mile. If the tunnel is operated as a "wet" tunnel, steady state seepage into the tunnel and drawdown in the surrounding rocks will be almost zero.

If the southern portion of the tunnel that lies below sea level is operated as a wet tunnel, then it will need to be pumped dry occasionally for cleaning and maintenance. In this scenario, seepage rates into the lined tunnel will be approximately 130 to 180 gpm/mile during the dewatering operation.

Groundwater modeling results for all five model areas have shown that drawdown of groundwater in shallow overburden aquifers is not expected along the tunnel alignment as a result of tunnel construction or operation. Many bedrock wells are located within 5,000 feet of the tunnel alignment along the southern end of the proposed tunnel. These wells could experience drawdown impacts ranging from 10 to 50 feet during construction activities. Once construction is completed, the tunnel will be lined and inflow will be significantly diminished. Additionally, if the tunnel is operated in a wet condition (i.e., the tunnel will remain filled with water to an elevation of 0.0 feet msl), significant long term drawdown impacts from the tunnel do not exist. The wells along the alignment would only be impacted for short periods of time during dewatering and maintenance activities. Therefore, drawdown would be less than during construction activities.

If a well were to be significantly affected by drawdown, the cost to hook-up to municipal water supplies is estimated to be roughly \$700 (Passaic Valley Water Commission, personal communication, 1995). The \$700 estimate is considered an average installation cost for a 2-inch line from curb to building. Therefore, the \$700 estimate ordinarily applies to single family residences and other small volume water users. Hence, small capacity water wells that are impacted temporarily by tunnel construction or maintenance operations could be mitigated inexpensively by connecting the user to a public water supply.

Distribution lines for public water supplies are common throughout the southern portion of the tunnel alignment and virtually the entire nearby population is serviced by purveyor supplied surface water. In the northern portion of the

EDIS/L1263-ES Executive Summary

alignment, there is less urbanization, and consequently, the density of distribution lines are less. However, most of the population in the north has convenient access to nearby distribution lines.

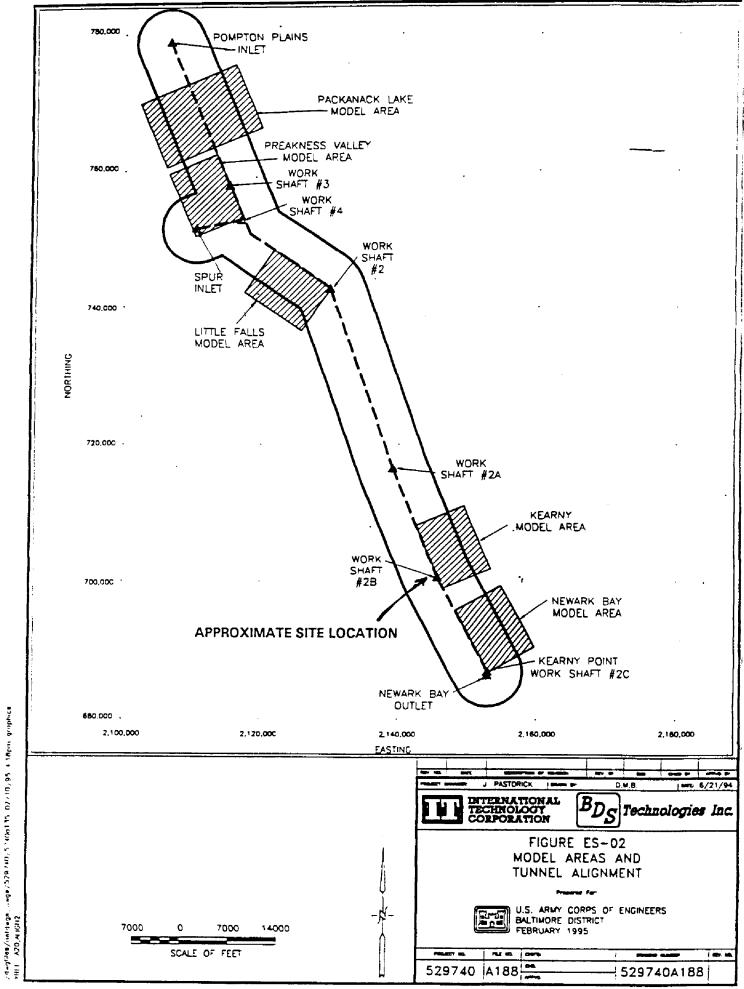
In general, groundwater impacts associated with this project will be small relative to the groundwater resources of the region. As a result, long-term water allocation permits are not required and water diversion permit requirements will be limited to short term construction dewatering and maintenance activities.

Interactions of Tunnel Construction and Operation with HTRW Sites

In conjunction with the groundwater investigation, IT also conducted an investigation of hazardous, toxic, and radioactive waste (HTRW) sites along the tunnel alignment and near other project features, such as levees and floodwalls. This information is contained in a separate report entitled Hazardous, Toxic and Radioactive Waste Investigation Final Report Passaic River Flood Protection Project; Passaic River Basin, New Jersey dated January 1995. The investigation included collection and analysis of soil and groundwater samples at proposed Workshaft and Tunnel Inlet locations, and evaluation of known HTRW sites in the vicinity. Various levels of groundwater contamination were identified at one workshaft location and several known HTRW sites along the alignment.

Deep groundwater collected from the highly permeable zone at the Workshaft 2B location was shown to be contaminated with up to 900 ppb of chlorinated solvents. It is projected that both the tunnel and the workshaft will intersect this zone. All other shaft and inlet locations at which IT collected groundwater samples showed minor or no contamination.


Shallow groundwater contamination, including separate-phase product in some cases, has been reported in the glacial overburden at several known HTRW sites along the tunnel alignment. The groundwater models indicate that there will be negligible or no induced drawdown effects in overburden sand and gravel deposits during tunnel construction and operations. Therefore, the project is not expected to affect the existing contamination at these sites, unless the contamination has already migrated vertically downward into bedrock.


Deep groundwater contamination has been reported at two known HTRW sites along the alignment. The Contract Packaging Corporation is located approximately 1,000 feet from the tunnel alignment near Workshaft 4. The deep contamination at this site is described as "low ppb" of tetrachloroethylene. This minor contamination is not expected to impact or be impacted by the tunnel. However, higher levels of contamination at Printers Service in Newark could pose a greater problem. This site lies within 100 feet of the proposed alignment between Workshafts 2B and 2C. Deep groundwater at the site reportedly contains 2,000

EDIS/L1263-ES_Executive Summary

ppm of methylene chloride. However, this reported contamination has not been confirmed and may not in fact be present. Because the most severe induced drawdown effects are expected to occur in bedrock immediately adjacent to the tunnel alignment, there is a relatively high potential for seepage of these contaminants into the tunnel during construction and later during the operations phase.

.

TIERRA-A-017398

۲۰۹

I. INTRODUCTION

The Passaic River Flood Protection Project, designed to alleviate flooding of the Passaic and Pompton Rivers, consists of two major elements. These include construction of underground floodwater diversion tunnels and a system of stream floodwalls and levees. The proposed tunnel system consists of a main 20.1mile long, 40-foot diameter diversion tunnel (Main Tunnel) along with a 1.2-mile long, 20-foot diameter spur (Spur Tunnel). The Main Tunnel will convey flood waters from the upper reach of the Pompton River to an outlet in Newark Bay located in the vicinity of Kearny Point. The Spur Tunnel will convey flood waters from the Passaic River through an inlet located just south of the confluence of the Passaic and Pompton Rivers to an underground junction with the Main Tunnel. A series of floodwalls and levees completes the Passaic River Flood Protection Project design. The project location is shown on Figure I-01.

The selected tunnel alignment is approximately 400 feet below ground level at the workshaft locations and traverses heavily industrialized portions of northern New Jersey where numerous instances of soil and groundwater contamination have been documented. Portions of the project area are heavily industrialized, presenting the potential for encountering significant groundwater, surface water, and soil contamination during project construction. Industrial sites located along the selected tunnel alignment include sites associated with petroleum storage and refining, chemical processing, metal plating and finishing, and landfilling. Groundwater in the vicinity of the tunnel alignment has been classified by the State of New Jersey as Class 2B throughout the project area. Groundwater designated as Class 2B is characterized as having widespread contamination and is considered to be unsuitable for public water supply. Class 2B groundwater may be used for purposes other than drinking water supply if these uses do not contribute to present levels of contamination. Remediation activities have been completed or are currently underway at several locations along the proposed project corridor.

The specific environmental concerns in the proposed tunnel area include (1) reduction of hydraulic head in local aquifer systems and interference with local water users; (2) seepage of potentially contaminated groundwater into the tunnel during construction activities and potential worker exposure; (3) seepage of potentially contaminated groundwater into the tunnel during operation, and (4) mobilization of contaminants at Hazardous, Toxic, and Radioactive Waste (HTRW) sites near the tunnel or shafts which may possibly affect the local groundwater use. A separate report titled Hazardous, Toxic and Radioactive June 8, 1995 Waste Investigation Final Report; Passaic River Flood Protection Project; Passaic River Basin, New Jersey, dated January 1995 addresses the HTRW issues in more detail. Groundwater inflow into the tunnel and shafts during construction

EDIS/9-94/E00/L1263spt_dW

is also an engineering concern. High flow rates would make working conditions more difficult, and can possibly undermine rock stability, potentially endangering the construction crew.

The groundwater investigation included intrusive investigations ranging from straddle packer testing in pilot boreholes to multi-well, multi-zone pumping tests at several shaft locations. The groundwater investigation was conducted in conjunction with the HTRW field investigation to minimize the number of boreholes, samples, and field tests required. The groundwater investigation included installation of deep 4-inch diameter <u>pilot</u> borings at Workshafts 2B-Fiore, <u>2B-Keegan</u>, and 2C. Eight-inch diameter pumping test wells were installed at Workshafts 2B-Fiore, 2C, 3, and 2. <u>Overburden wells</u> were installed at Workshafts 2B-Fiore, <u>2B-Keegan</u>, 2C, and 3 as well as at the Pompton Inlet and Spur Inlet.

The current investigation included development of five groundwater models for areas along the tunnel alignment between shafts 2C, 2B, 2A, 2, 3, 4, and the outlet shaft at Newark Bay. The specific groundwater modeling and particle tracking studies were designed to evaluate the short- and long-term environmental impacts due to the tunnel construction, operation, and maintenance.

Pursuant to the project objectives discussed above, the remainder of this chapter provides a description of several aspects of the project area. Chapter II discusses the approach and methods used during the investigation, Chapter III provides the results of the field investigation, Chapter IV discusses the groundwater modeling performed for the project and Chapter V discusses the potential impacts of construction on water users and known HTRW sites, as well as impacts of these sites on tunnel construction and operation.

A. Project Location

The Passaic River Flood Protection Program encompasses a large area in northeastern New Jersey, spanning from Wayne

Township at the northern end of the project area to Kearny at the southern end. Groundwater investigative activities were conducted at Workshafts 2B-Fiore (2B-F), 2B-Keegan (2B-K), 2C, 3, and 2 as well as at the Pompton and Spur Tunnel Inlets.

Workshaft 2B-K is located on the site of the former Keegan Landfill at the foot of Bergen Avenue in Kearny, NJ. Workshaft 2B-F is located approximately 1,100 feet from 2B-K, at the A.J. Fiore Disposal Company facility, in Kearny, NJ. Workshaft 2C is located near Central Avenue in Kearny at a site formerly occupied by Western Electric (also known as AT&T Technologies) and now known as the River Terminal Development Corporation. Workshaft 3 is located on a vacant parcel within the southern portion of Wayne Township, approximately 1,600 feet from the Wayne-Totowa border. Workshaft 2 is located on an undeveloped portion of Montclair State University in Upper Montclair, NJ. The site is adjacent to a former quarrying operation. The Pompton River Inlet site is located at the Top Soil Depot facility, adjacent to the Pompton River on Pompton Plains Cross Road in Wayne Township, The Spur Tunnel Inlet is located in a wooded lot NJ. approximately 150 feet east of Fairfield Road in the southwestern portion of Wayne Township. Figure I-02 shows locations of sites where groundwater investigation activities took place.

B. Purpose of the Hydrogeological Investigation

The reciprocal purposes of the hydrogeological investigation are: 1) to determine whether and to what extent groundwater will affect tunnel design and construction; and 2) to determine whether and to what extent tunnel design and construction will affect groundwater.

The objectives stated above were attained through the characterization of the hydrogeologic environment and the estimation of aquifer parameters for modeling of groundwater flow regimes. Data were gathered to define site-specific conditions at proposed workshaft locations. The site-specific conditions were used to develop a regional hydrogeologic framework. The data were used during the modeling study to evaluate the interconnection of the shallow subsurface with deep bedrock aquifer(s). Potential inflow quantities of groundwater into the tunnel and shaft excavations during and after construction were estimated. The possibilities of interfering with water supply wells and inducing ground settlements were also evaluated.

C. Regional Environmental Setting

1. Physiography

New Jersey has been divided into four general physiographic provinces, which have distinctive rock types, landforms, and drainage patterns (New Jersey Geological Survey [NJGS], 1994). From northwest to southeast, these regions are: Valley and

IDI8/9-94/ING/L1263rpt_GW

Ridge, Highlands, Piedmont, and Coastal Plain (Figure I-03). The Passaic River Basin is a watershed of 935 square miles, located primarily in north central New Jersey, with a small portion in southern New York (Figure I-04). The upper portion of the river basin lies in the Highlands, while the majority of the river basin lies in the Piedmont Province.

The Highlands are underlain by granite, gneiss, and small amounts of marble of Precambrian age. The Precambrian igneous and metamorphic rocks are interrupted by several elongate northeast-southwest trending bands of folded Paleozoic sedimentary rocks. The granites and gneisses are resistant to erosion and as a result now form a hilly upland dissected by deep, steep-sided valleys of major streams.

Most of the major tributaries of the Pompton and Passaic Rivers originate in the Highlands Province. The Pequannock, Wanaque, and Ramapo Rivers are the three major streams that form the Pompton River and their watersheds lie mostly in the Highlands. The watersheds of the Rockaway and Whippany Rivers (major tributaries of the Passaic River) also lie in the Highlands.

The Passaic River Tunnel project is located in the lower portion of the watershed to the southeast of the Highlands; it lies entirely in the Piedmont Province. The rocks of the Piedmont include Triassic and Jurassic interbedded sandstone, siltstone, shale, conglomerate, basalt, and diabase. The Piedmont is generally a broad lowland area interrupted by long northeast-southwest trending ridges which are formed by the erosion-resistant diabase and basalt formations. In the tunnel project area, three ridges are prominent and of greatest interest: First Watchung Mountain, Second Watchung Mountain (or Preakness Mountain), and Packanack Mountain.

Altitudes in the Highlands range from 1,491 feet above mean sea level (MSL) on Bearfort Mountain to 200 feet on the Wanaque River at Pompton Lakes. The maximum local relief is 850 feet between the crest of Bearfort Mountain and the valley immediately to the east (Carswell and Rooney, 1976). The Piedmont is more of a lowland area with elevations typically ranging from 100 to 400 feet. The highest elevation is 885 feet, which is found along the crest of the Second Watchung Mountain. The lowest altitude is sea level along the southeastern edge of the Piedmont.

The Pompton and Passaic Rivers and their tributaries flow in an irregular pattern, sometimes changing direction drastically. However, overall drainage direction is to the southeast, where the Passaic River enters Newark Bay (Figure I-04). The Pompton River has to pass through a gap in Packanack Mountain before joining the Passaic River. The Passaic River cuts through gaps in the First and Second Watchung Mountains near Paterson and

EDIS/9-94/ENG/L1263spt_CHT

Little Falls, respectively (Figure I-04). Smaller streams, in general, parallel the ridges of the Watchung Mountains.

2. Regional Geology

Beginning in early Mesozoic time, the Newark Basin developed as one in a series of rift basins along the eastern seaboard of North America, from Florida to Nova Scotia. Large, elongate crustal blocks were dropped downward during the initial stages of the opening of the Atlantic Ocean. These down-dropped blocks formed valleys known as rift basins. Sediment eroded from adjacent uplands was deposited along rivers and in lakes within the basins. These sediments became compacted and cemented to form conglomerate, sandstone, siltstone, and shale. They commonly have a distinctive reddish-brown color, because extensive iron oxidation occurred in the subaerial depositional environment.

Triassic and Jurassic rocks of the <u>Newark Basin (i.e.</u>, <u>Piedmont</u>, Figure I-03) are separated from the rocks of the Highlands by a series of high-angle normal faults, including the Ramapo Fault. During the course of crustal extension and rifting, the rock layers of the Newark Basin have become tilted northwestward, gently folded, and cut by several major faults. Volcanic activity was also associated with the rifting, which resulted in diabase sills being intruded into the sediments and basaltic lava flows being deposited over the sediments intermittently during the filling of the basin. The diabase sills and basalt layers form ridges in the otherwise lowland area of the Piedmont (Newark Basin).

Generally, the rocks of Newark Basin strike northeastsouthwest and dip from 5 to 25 degrees to the northwest (Figure I-05). In the southeastern part of the tunnel alignment, the rocks strike north 30 degrees east and dip from 5 to 15 degrees to the northwest (Parker, et al., undated). In the northwestern part of the tunnel alignment, bedrock units have been folded along the Hook Mountain syncline. The axis of the syncline strikes northwest-southeast and plunges to the northwest. The tunnel corridor lies on the northeast limb of the syncline. According to Martin (1994), sedimentary rocks near the Pompton Inlet strike about 28 degrees west of north and dip to the southwest at angles ranging from 8 to 22 degrees. Along the majority of the tunnel route (central and southern portion), the tunnel alignment is parallel to the dip direction. As a result of the Hook Mountain syncline, the northern portion of the tunnel will travel parallel to strike of the bedrock units.

The rock formations of the Newark Basin are shown in Figure I-06. The tunnel traverses most of the Basin, so it will intersect nearly all of the formations and rock types found in the Basin (Figure I-07). Specifically, the tunnel will pass through the Brunswick Group, from the youngest Boonton Pormation

EDI8/9-94/E00/L1263rpt_CH

in the northwest to the oldest Passaic Formation in the southeast (Figures I-05 through I-07).

Passaic Formation: Nearly two-thirds of the tunneling activities will be through the Passaic Formation. The Passaic Formation crops out within the Lower Valley area of the Passaic River, along the southeastern section of the tunnel (Figure It consists of a thick sequence of clastic sediments I-04). nearly 9,000 feet thick (Hoffman, 1989a; Hoffman and Quinlan, The Passaic Formation has been subdivided by Parker, et 1994). al., (undated) into informal mappable lithofacies units (Figure I-07) on the basis of stratigraphic position, areal distribution, color, and grain size. These lithofacies consist of mudstones, siltstones, sandstones, and conglomerates in varying percentages. Generally, the units are finer-grained towards the base of the Passaic Formation and coarser towards the top. Figure 1-08 shows stratigraphic and lithologic relationships of the Passaic Formation in the vicinity of the tunnel alignment. The geology in Figure 1-08 was taken from Parker (1993).

Unit 1 in Figure 1-07 includes siltstone, mudstone, and sandstone facies. It consists primarily of thick, fining-upwards sequences of intercalated massive siltstone and mudstone. The massive mudstone beds contain some relatively thin beds of crossbedded sandstone. As a whole, the unit fines upwards and becomes sandier in the middle and towards the base.

Unit 2 in Figure 1-07 is a sandstone and mudstone facies, with a major increase in the frequency of coarser-grained sediments relative to Unit 1. In Unit 2, massive mudstones become less common and the rocks are dominated by fine- to medium-grained, planar to trough cross-bedded sandstones.

Unit 3 in Figure 1-07 is a pebbly sandstone facies. It consists of thick-bedded, coarse-grained pebbly sandstones in flat laminated to trough cross-bedded units. The pebbly beds frequently exhibit scoured bases which may be indicative of erosion by migrating alluvial channels. The frequency of these channel-fill deposits increases towards the top of the unit.

Unit 4, the conglomerate sandstone facies, is not present along the tunnel alignment and is not shown on Figure 1-07.

Orange Mountain Basalt: A series of extrusive basalt flows are interbedded with the clastic sedimentary rocks of the Brunswick Group. The Orange Mountain Basalt is the oldest of these. It is composed of columnar basalt and is interbedded with a minimum of two volcanoclastic units. The cumulative thickness of the formation varies between 300 and 650 feet.

Feltville Formation: The Feltville Formation contains red siltstone and sandstone, with some buff gray and white feldspathic sandstone, and a thick, laterally continuous, non-red

EDI3/9-94/EDG/L1263rpt_GH

valleys carved into the underlying bedrock that were filled with glacial sediments during the Pleistocene Epoch. Buried glacial valley deposits traversed by the tunnel are classified by Stanford, et al., (1990) as lake-bottom, deltaic and lacustrinefan, and fluvial. Lake-bottom sediments consist of silt, clay, and fine sand deposited on the bottoms of glacial lakes. These deposits may be as much as 250 feet thick. Deltaic and lacustrine-fan deposits consist of sand and gravel which were deposited as deltas and fans in glacial lakes. These lacustrine deposits may locally overlie lake-bottom sediment, and they may be as much as 200 feet thick. Fluvial sediments represent sand and gravel deposited in valleys not occupied by glacial lakes. These outwash deposits are generally less than 50 feet thick (Figure I-10).

Joints are pervasive features of the rocks of the region. A prominent set of vertical joints roughly parallels the strike of the rocks (Vecchioli, 1967; Vecchioli, et al., 1969). A second well-developed joint set trends perpendicular to the strike. Also, joints and fractures are often well-developed along bedding planes. Locally, steeply dipping joints occur which are oblique to the primary joint sets. The distribution of joints and fractures in the rock is very irregular.

Major and minor faults also occur in these rocks. Generally, the faults trend towards the northeast (Vecchioli, 1967). Along the tunnel alignment, five inactive faults have been observed or inferred near the basalt flows of the Orange Mountain and Preakness Basalts (Figure I-05). The faults are relatively narrow, ranging from about 6 inches to 4 feet. across. Vertical zones of enhanced fracturing and brecciation up to 100 feet wide are associated with these faults (USACE, 1992).

3. Regional Hydrogeology

Three types of stratigraphic units can generally be defined in the project area. These include sedimentary rocks of the Brunswick Group, basalt flows of the Brunswick Group, and unconsolidated sediments (Hoffman, 1989a; Gill and Vecchioli, 1965; Nichols, 1968; and Hoffman and Quinlan, 1994). These groupings are exceptionally broad as the hydrogeologic properties and hydraulic interconnection of these units are very heterogeneous.

The sedimentary rocks of the Brunswick Group contain both confined and unconfined aquifers. Unconfined conditions generally occur in upland areas where overlying unconsolidated deposits are thin or absent. Confined and semi-confined conditions exist in lowland areas, especially where clay beds in the unconsolidated Quaternary deposits mantle the underlying rock units. Confined conditions may also occur directly beneath the basalt flows of the Brunswick Group, as well as beneath zones of

EDIS/9-94/EMG/L1263rpt_GW

121

low hydraulic conductivity within the sedimentary rocks themselves (Nichols, 1968).

The sedimentary rocks of the Brunswick Group generally have low intergranular hydraulic conductivities. However, fractures in the rocks are capable of transmitting significant amounts of water. Fracture zones in the rock are the most important aquifers in the region. The best producing wells in Essex County are for the most part completed in sedimentary rocks and are between 300 and 400 feet deep. Wells generally draw water from several zones of relatively high hydraulic conductivity (Nichols, 1968).

The anisotropy of hydraulic conductivity is widely described in interpretations of drawdown induced by pumping wells (Vecchioli, 1967; Nichols, 1968). Drawdowns are generally greatest parallel to strike; intermediate drawdowns are observed in the dip direction, and the minimum drawdowns are observed perpendicular to the other two directions. Vecchioli et al. (1969) demonstrate that wells in the Brunswick sedimentary aquifer produce water from isolated, very thin discrete zones. Additionally, the importance of localized zones of high hydraulic conductivity in designing effective monitoring wells has been noted by Hewett (1990), Michalski (1990), and Vecchioli, et al. (1969).

At least two hypotheses have been proposed to explain the anisotropic hydraulic properties of these rocks, and the localized zones which transmit water through them. One hypothesis, suggested by earlier observers (e.g., Herpers and Barksdale, 1951) emphasizes the role of a near vertical set of fractures which trend parallel to the strike of the rocks. Another hypothesis, argued by Michalski (1990) and Hewett (1990), postulates that the rocks are composed of a series of thick tabular aquicludes alternating with aquifers several tens of feet thick. The aquifers extend downdip for a few hundred feet and extend along strike for thousands of feet. A detailed explanation for the geologic nature of these aquicludes and aquifers is lacking.

The basalt flows of the Brunswick Group generally have low hydraulic conductivities. However, these rocks often contain abundant fractures. Wells drilled into the basalts produce small quantities of water, generally from depths of less than 300 feet (Gill and Vecchioli, 1965). The basalt flows locally serve as confining units between higher hydraulic conductivity zones of the sedimentary rocks of the Brunswick Group (Nichols, 1968).

The unconsolidated sediments of the region include glacial and nonglacial deposits of great variety and complexity (Figure I-09). For the purposes of this general overview, these deposits will be classified (following Stanford et al., 1990) as till, lake-bottom sediment, deltaic and lacustrine fan sediment,

EDIS/9-94/ENG/L1263rpt_GW

fluvial over lacustrine sediment, and fluvial sediment. This classification and the following discussion are limited to deposits of Pleistocene age, as these deposits are by far much more extensive than Holocene fluvial and marsh deposits of the region.

Unconsolidated Pleistocene deposits have extremely varied hydrogeologic characteristics. Till consists of nonstratified and nonsorted material deposited by a glacier. It is generally composed of silt, sand, gravel, and boulders. Units composed of till may serve as unconfined aquifers where they are thick and In many areas, deposits of till are discontinuous and of sandy. limited significance. Lake bottom sediments are generally made up of stratified clay, silt, and fine-grained sand deposited on the bottoms of glacial lakes. Lake bottom deposits do not yield a significant quantity of water, and usually act as a semi-confining aquiclude. In some areas, lake bottom sediments are underlain or overlain by stratified glacial deposits which are highly-productive aquifers. Fluvial sediments were deposited by meltwater streams and rivers on alluvial plains or in stream beds. Generally, they consist of stratified sand. Fluvial deposits which overlie lacustrine sediments are typically unconfined and are hydraulically connected to nearby bodies of surface water. Deltaic and lacustrine fan sediments are composed of stratified sands and gravel that were deposited in glacial lakes, usually near ice-water contacts.

The unconsolidated deposits in the project area reach their greatest thickness and significance in buried bedrock valleys. At least six buried valleys are traversed by the proposed tunnel alignment. From the southeast to northwest (Figure I-07), they include:

- (1) a lacustrine deposit over 250 feet thick in the Newark area,
- (2) a fluvial deposit over 50 feet thick in the valley of the Passaic River just north of Newark,
- (3) a deltaic and lacustrine fan deposit over 50 feet thick a few miles west of Belleville,
- (4) another deltaic and lacustrine fan deposit between 50 and 100 feet thick that fills a valley carved into the Feltville Formation along the Peckman River,
- (5) a lacustrine valley fill deposit over 100 feet thick which overlies the Towaco Formation, and
- (6) an extensive lacustrine deposit over 250 feet thick which overlies the Boonton Formation near the northern end of the proposed tunnel.

Although it is difficult to generalize on the basis of limited data, it has been widely assumed that significant hydraulic interaction occurs at least locally between the buried valley deposits and the bedrock aquifers (Hoffman, 1989a, 1989b; Hoffman and Quinlan, 1994; Gill and Vecchioli, 1965).

Hoffman and Quinlan (1994) have presented a conceptual model of groundwater flow in the Central Passaic River Basin which may be provisionally extended to the region along the tunnel alignment. They suggest that groundwater in the area is topographically driven, with recharge at higher elevations and discharge at lower elevations. In the surficial unconsolidated deposits, most groundwater recharge occurs where sands and gravels are exposed at the ground surface. Where bedrock aquifers crop out near the surface, recharge can occur through fractures and other zones of high hydraulic conductivity. After entering the subsurface in recharge areas, groundwater flows downward, then laterally, to discharge at lower elevations (i.e., stream channels).

Groundwater discharge in the area can occur through several mechanisms. Buried valley aquifers are often considered to be discharge areas. Groundwater in buried valley aquifers may be discharged directly to surface waters or through evapotranspiration. Groundwater may also be locally discharged from the bedrock aquifers directly to surficial aquifers which do not lie in buried valleys. Once groundwater enters these surficial aquifers, discharge may occur directly to surface waters or through evapotranspiration. Groundwater withdrawals by production wells also constitute a major regional source of groundwater discharge (Hoffman and Quinlan, 1994; Nichols, 1968).

The conceptual model presented above is necessarily simplistic: many exceptions are not only likely but certain as groundwater flow patterns respond to local geology and topography. Thus, the conceptual model presented above does not provide a detailed basis for site specific prediction, but rather as a generalized conceptual framework.

D. Groundwater Resources Along Tunnel Alignment

1. Sources and Capacities

Groundwater is used for municipal, commercial, industrial and individual domestic water supplies along the tunnel alignment. The degree of usage varies depending on the availability of surface water and the hydrogeologic and economic factors that would favor groundwater usage. Figures I-11 A-E show areas of the degree of groundwater and surface water usages.

Groundwater is derived from both the unconsolidated glacial and alluvial materials as well as the fractured bedrock. Where the unconsolidated materials consist of thick stratified sand and gravel deposits in buried glacial valleys, high capacity wells, capable of pumping more than 1,000 gallons per minute (gpm), are not uncommon, especially in the southern part of the Central Passaic River Basin (Hoffman and Quinlan, 1994). However, except for the extreme northern section, high capacity wells in the unconsolidated deposits are not known to have been drilled in the immediate vicinity of the tunnel alignment.

The fractured bedrock produces small to moderate and sometimes large water supplies. However, as pointed out by Hoffman and Quinlan (1994) the most productive surficial wells yield more groundwater than the most productive bedrock wells. Nonetheless, bedrock wells, producing several hundred gpm in places throughout the Newark Basin, are not uncommon. For example, during this present program it was seen that the 8-inch pumping well at the 2B site was capable of producing as much as 500 gpm. If the diameter of the well had been 12 inches or greater, the sustained yield could easily have exceeded 1,000 gpm because a high capacity pump could have been installed. There was more than 300 feet of available drawdown above the top of the thin high yielding fracture that produced virtually all the pumped water.

However, in two of the other three 8-inch pumping wells (Sites 2 and 2C), sustained pumping of as much as 30 gpm could not have been continued largely because of hydrogeologic constraints (major thin, shallow, water producing, bedding plane fractures and/or nearby fault controlled negative boundaries) discussed later in this report. The transmissivity of the rock section at the 2B site was about seven times greater than at Site 2, about 13 times greater than at Site 3, and about 42 times greater than at Site 2C. The above numbers demonstrate the extreme variability of the amount of groundwater available for utilization from the bedrock aquifers in the Newark Basin. They also illustrate how the geology effects the quantity of groundwater that could be pumped from the bedrock aquifers in various places.

In the Hackensack River Basin, lying immediately east of the Passaic River Basin, Carswell (1976) reported that the zone of most abundant and largest water-bearing joints and fractures in the rocks of the Brunswick Group occurs generally within 200 feet of land surface in lowland areas of major streams and within 400 to 500 feet of land surface in upland areas.

Carswell (1976) also stated that reported yields of industrial and public-supply wells tapping the Brunswick Group in the Hackensack River Basin are as much as 600 gpm. The median yield is 100 gpm.

In Union County, immediately south of the southern part of the tunnel alignment, Nemickas (1976) pointed out that the average reported yield of 230 public supply, industrial and

1015/9-94/1000/L1263rpt_00

٦, .

.

The Brunswick Group is the most important aquifer in the southeastern one third of Passaic County which encompasses the north-central alignment of the tunnel. Carswell and Rooney (1976) state that reported yields of public supply and industrial wells range from 50 to 510 gpm and the median yield is 130 gpm. Most of these wells are 200 to 400 feet deep. The median yield of all public supply and industrial wells over 300 feet deep and 8 inches or larger in diameter is 230 gpm.

2. Groundwater Quality

In the unimpacted state, chemical quality of groundwater from both the unconsolidated and bedrock aquifers is usually good for potable supplies. However, groundwater from the unconsolidated deposits overlying the bedrock, commonly contains excessive iron, i.e., greater than 0.3 parts per million (ppm) or manganese, i.e., greater than 0.05 ppm that can be treated by water distributors to comply with secondary drinking water standards. High hardness is also common, causing excessive soap consuming problems. However, there is no secondary drinking water limit for hardness.

Groundwater from the bedrock of the Brunswick Group, through which the tunnel will traverse, may contain some constituents that may exceed drinking water standards rendering the water undesirable for potable use without treatment. However, in the city of Rahway in nearby Union County, south of the tunnel alignment seven shallow rock wells yielded water of such poor quality that it could not be used for public supply because treatment could not be economically accomplished. Total dissolved solids content ranged from 1,255 to 2,660 ppm, sulfate content ranged from 503 to 1,710 ppm and the groundwater was very hard (Anderson, 1968).

Deeper rock wells (more than 250 feet deep) would be expected to generally yield poorer quality water than shallower rock wells (Carswell and Rooney, 1976). Deep rock wells may be expected to yield water having unacceptable sulfate and very high hardness (Nemickas, 1976).

In Passaic County, Carswell and Rooney (1976) stated that water from the Brunswick Group is moderately hard to very hard

EDI8/9-94/ENG/L1263rpt_OW

(89 to 540 ppm). The hardness is due mainly to solution of calcium and magnesium sulfate minerals (such as gypsum) in the rocks. The dissolved solids content ranged from 129 to 563 ppm. In recharge areas groundwater is less mineralized than in discharge areas.

Groundwater from the Passaic Formation in the lower area of the Hackensack River Basin, is hard to very hard and highly mineralized (Carswell, 1976). Here the water quality in both the Passaic Formation and unconsolidated deposits is influenced by water quality of the tidally influenced Hackensack River and Newark Bay. Heavy pumpage has induced recharge of poor quality water, high in chloride, from these sources. Carswell (1976) also states that both surface and groundwater quality in the lower Hackensack River Basin is influenced by the disposal of large quantities of sewage and industrial wastes in the Hackensack Meadows.

Serfes (1994) has recently completed a study of the natural groundwater quality in the bedrock aquifers of the Newark Basin. The following is the abstract of his report; which summarizes his findings;

Chemical analyses of 169 water samples from 150 wells in the bedrock of the Newark Basin show water to be generally fresh, somewhat oxidizing, slightly alkaline, non-corrosive, and hard. They are predominantly calcium-magnesium-sodium bicarbonate type waters of good natural quality, but locally they may require treatment for undesirable characteristics and constituents. The most common problems are with the state-recommended secondary drinking water standards. For the sedimentary formations, the standards exceeded are manganese (26.9 percent of samples exceeded the standard), maximum hardness (20.8 percent exceeded the standard), corrosivity (31.2 percent are corrosive), total dissolved solids (13.6 percent exceeded the standard), iron (14.5 percent exceeded the standard), sodium (8.5 percent exceeded the standard), and sulfate (8.2 percent exceeded the standard). A few samples exceeded the state primary drinking water standards for gross alpha particle activity (6.5 percent exceeded the standard), radium (only 226 Ra measured, 3 percent exceeded the standard), and lead (only one sample, or 0.7 percent, exceeded the standard).

3. Groundwater Usage

In the southern portion of the area, most residents are supplied with surface water, but many industries rely on groundwater for their processes. At the northern end of the alignment, most high capacity wells are used for public supply. Several communities rely entirely for groundwater to supply their residential population. Other communities have residents with their own private wells. A breakdown of residential water usage and locations of high capacity wells are shown in Figures I-IIA

1018/9-94/100/11263rpt_00

II. INVESTIGATIVE APPROACH

IT conducted a hydrogeologic field investigation to obtain data at several proposed workshaft and inlet locations along the planned Passaic Tunnel alignment. The data from the field investigation and information from available literature were used to develop groundwater models for five areas along the alignment. IT used the USGS programs MODFLOW and MODPATH to develop the models.

Pursuant to the project objectives discussed in the Executive Summary and in Chapter I, Section A of this chapter briefly discusses the field investigation approach and Section B discusses the approach to groundwater modeling. A detailed description of the approach and methods used for the field activities is included in Appendix A.

A. Field Investigation Activities

Several field techniques were used during the groundwater investigation. These included soil characterization and rock coring, subsurface geophysical logging, short-duration permeability tests (straddle-packer tests), installation of multiport systems, and long-duration pumping tests. A summary of the field activities conducted during the groundwater investigation is provided in Table II-01.

1. Soil Borings and Well Installation

To minimize the number of boreholes, samples, and field tests required, the data needs of the groundwater and HTRW field investigations were coordinated and field activities were performed in conjunction with one another. IT completed a total of 13 boreholes that were used to obtain data for the groundwater investigation.

Pilot Boreholes: Three 4-inch pilot boreholes were drilled into bedrock under the supervision of IT Corporation. Pilot boreholes were completed at Workshafts 2B-K, 2B-F, and 2C. Pilot boreholes at Workshafts 2 and 3 had been previously completed by the USACE.

Pumping-Test Boreholes: Four 8-inch pumping-test boreholes were drilled into bedrock during the groundwater field investigation. Pumping-test boreholes were completed at Workshafts 3, 2, 2B-F, and 2C.

Overburden Borings: Six overburden borings were drilled under the supervision of IT during the groundwater field investigation. Overburden borings were completed at Workshafts 3, 2B-K, 2B-F, and 2C, and at the Pompton and Spur Inlet sites. The borings were drilled to provide a monitoring well for overburden groundwater at each of these sites. The stratigraphic

EDIS/9-94/ENG/L1263rpt_CH

p. 24

information obtained during completion of the pilot and pumpingtest boreholes helped to determine the intervals at which the overburden wells were set.

Soil samples and rock cores were collected from the boreholes for classification and for archiving in the USACB warehouse facility in Bayonne, New Jersey. Samples and cores were collected according to the standards of the ASTM. Grab samples of cuttings from air-rotary drilling were also used to classify rock in the pumping-test boreholes. The grab samples were spoiled on site after the cuttings were classified. Recovered soil samples were visually identified using the USCS procedures. All rock cores were logged using the General Guidelines for Core Logging provided by USACE.

Wells were constructed in each of the boreholes completed by IT. The pilot wells were completed as 4-inch-diameter open holes in bedrock. The installations at Workshafts 2B-F and 2B-K were constructed with two stages of casing through the overburden, and the installation at Workshaft location 2C was a single-stage construction. The pumping-test wells were completed as 8-inch open holes in bedrock, with a single string of casing set into the top of rock. The overburden wells were constructed with 2inch diameter schedule-40 PVC casing and well screen, and were completed according to the guidelines for monitoring wells in the NJDEP Field Sampling Procedures Manual.

2. Borehole Geophysical Investigations

Overburden and bedrock portions of pilot and pumping-test boreholes drilled under IT supervision were subject to geophysical logging. Borehole geophysical logging was also completed in the uncased bedrock portions of well C-23 (drilled at 2B-F by USACE) and the pilot wells at Workshafts 2 and 3.

Natural gamma, spontaneous potential, multi-point resistivity, caliper, and temperature and delta temperature geophysical logs were performed through overburden and bedrock. Bedrock portions of boreholes were also subject to high resolution neutron density and neutron porosity logging. The results of geophysical logging were used to help determine zones for multiport installation and hydraulic testing.

3. Straddle-Packer Testing

Straddle-packer tests were completed at Workshafts 2C, 2B-F, 2B-K, 2 and 3 in uncased portions of pilot and pumping-test wells. Intervals of testing were determined by a review of the geologic and geophysical logs of each borehole. The results of the straddle-packer tests were used to determine the zones to be monitored by the multiport systems.

1015/9-94/1043/L1263rpt_GW

....

4. Multiport Monitoring Systems

A Waterloo multiport monitoring system manufactured by Solinst Ltd of Canada was installed in uncased portions of the 4-inch pilot wells at Workshafts 3, 2, 2B-K, 2B-F, and 2C. In general, each multiport monitoring system consisted of a seriesof discrete zones isolated by a packer system. Zones to be isolated by the multiport system were chosen by review of the straddle-packer testing results, the geophysical log, and the geological log. These zones were largely equivalent with the hydrostratigraphic zones that were evaluated during the 8-hour or 72-hour pumping tests.

Three monitoring zones were tested with multiport systems in the pilot boreholes at Workshafts 2B-F, 2B-K, 2C, and 2; two monitoring zones were tested in the pilot borehole at Workshaft 3.

5. Pumping Tests

Step-drawdown pumping tests (step tests) were conducted at the pumping wells at Workshafts 2B-F, 2C, 2, and 3. The zones selected for testing were those found to be the most permeable at the bottom, middle, and upper portions of the well during review of straddle-packer test results, the geophysical logs, and the geological log. The purpose of the step tests was to determine the optimal pumping rate for each zone for the 6-, 8-, and 72-hour pumping tests.

Six- or 8-hour pumping tests were completed on the zones of relatively high permeability that were not designated for a 72-hour pumping test. Two 8-hour tests were completed at each of Workshafts 2 and 3, and one 6-hour test and one 8-hour test were completed at Workshaft 2C. Pumping rates for the 6- and 8-hour tests were selected after evaluation of step-test results. Pumping rates were selected so that the aquifer would be sufficiently stressed to provide adequate drawdown but would not dewater.

Pumping tests of 72-hour duration were performed on the zones of highest permeability at Workshafts 2, 2B, and 2C. The pumping rates for the 72-hour tests were determined by an evaluation of step-test results. Pumping rates were selected so that the aquifer would be sufficiently stressed to result in adequate drawdown for analysis without dewatering.

6. Well Abandonment

At the conclusion of the groundwater investigation, the overburden wells at Workshaft 2B, the five multiport wells, and the four pumping-test wells were sealed and abandoned according to NJDEP regulations.

EDIS/9-94/EMG/L1263rpt_GM

recovery have been averaged for derivation of transmissivity and coefficient of storage estimates using the Theis curve. After about 200 minutes both trends depart from the Theis curve trace showing effect of boundaries. Two negative boundaries have been estimated based on evaluation of trends in both the pilot and pumping wells. Using the derived value of transmissivity of—– 3,820 gpd/ft and coefficient of storage of 3.2×10^{-3} shown in Figure III-33, the distance to both boundaries from both wells was estimated at about 115 feet. The directions of the boundary trends may be parallel to the line between the two wells but it is not known whether they lie to the north or south of that line or whether the two boundaries straddle the two wells.

The coefficient of storage suggests that semi-unconfined conditions occur in the upper zone.

(b) Summary of Workshaft 2 Results

Figure III-34 gives estimates of aquifer parameters in individual depth zones from all available information gathered at Workshaft 2 during this program. Because the thickness of the upper saturated zone is greater at the pilot borehole/multiport well, the estimate for this parameter is taken as 100 feet.

3. Workshaft 2B

Field investigation results for Workshaft 2B were obtained using a variety of investigative techniques including geotechnical, geophysical, and hydraulic analyses. The intrusive field investigations at Workshaft 2B included soil sampling and rock coring within five soil borings; soil and rock characterization; and the installation of two overburden wells, one 8-inch diameter pumping-test well, and two 4-inch multiport wells. In addition, geophysical and hydraulic testing were also completed at Workshaft 2B. The results from these field investigations provided the information needed to characterize the hydrogeologic environment, estimate aquifer parameters for groundwater modeling, and incorporate with data from other locations to develop a regional hydrogeologic framework of the Passaic River Flood Protection Project area. The Workshaft 2B groundwater investigation area is shown in Figure III-3.

> a) Workshaft 2B Soil and Rock Characterization Results

IT Corporation supervised the completion of five boreholes at Workshaft 2B. A pilot hole and an overburden well borehole were completed at the Keegan property (2BK). A pilot hole, a pumping-test well boring, and an overburden well boring were completed at the Fiore property (2BF). The pilot boreholes, IT-2BK-PB01 and IT-2BF-PB01, and the pumping-test well borehole, IT-2BF-PW01, were each advanced to a total depth of 510 feet. The 2BK overburden well boring, IT-2BK-OB01, was advanced to a

ED18/9-94/1040/11263rpt GW

depth of 22 feet and the 2BF overburden well boring, IT-2BF-OB01, was advanced to a depth of 114 feet. In addition to the aforementioned boreholes, IT also supervised the extension of USACE pilot hole number C-23 from its previous depth of 500 feet to a total depth of 650 feet below ground surface. The boring logs for Workshaft 2B are included in Appendix B.

Soil characterization samples were collected from the upper 50 feet of overburden in the pilot boreholes and from the 2BK overburden well boring at 4-foot intervals using carbon-steel split-spoon samplers. The remaining overburden in the pilot holes, as well as the entire column in the 2BF pumping-test and overburden well borings, was sampled at 5-foot intervals or at changes in lithology to the top of bedrock. Additionally, soil samples for chemical analysis were collected from the 2BK pilot and overburden-well boreholes using stainless-steel split spoons. Four soil samples from IT-2BK-PB01 and two soil samples from IT-2BK-OB01 were submitted for chemical analysis. The results of the chemical analyses are discussed in the HTRW Report (January 1995) for this project. Totals of 36 and 7 disturbed (split spoon) samples were collected from the 2BK pilot and overburdenwell boreholes, respectively. For the 2BF pilot, pumping-test, and overburden-well boreholes, the totals were 47, 51, and 16, respectively. In addition, IT collected two undisturbed samples from fine-grained sediments in the 2BF pumping-test hole using thin-walled samplers (4-inch diameter Shelby tubes).

The stratigraphy in IT-2BK-PB01, from ground surface to the top of competent bedrock at 155 feet, consists of refuse and soil fill material to a depth of 6 feet; organic soil with fill settled in to 9 feet; gray, sandy silt and silty sand to 20.5 feet; medium to coarse sand and fine gravel to 25 feet; brownishgray, silty sand and sandy silt with clay to 50 feet; gray to reddish-brown, varved clay and silt with thin sand seams to 100 feet; silty sand, varying in grain size from very fine to mediumcoarse, to 140 feet; and glacial till to 155 feet. A large boulder was discovered from 141 to 148 feet within the till. The stratigraphy in the 2BK overburden borehole is similar, with fine to coarse sand from 12 to 22 feet in depth, where the borehole was terminated.

The overburden stratigraphy at Workshaft 2BF, from ground surface to the top of competent bedrock at 285 feet, consists of fill material (fine to coarse sand with gravel and silt) to 14 feet; grayish-brown, silty, fine to coarse sand to 45 feet; gray to reddish-brown, varved clay and silt with thin sand seams to 132 feet; and glacial till to 285 feet. The till consists of gravelly sand with silt, clay, cobbles, and boulders.

The bedrock at the Workshaft 2B location is indicative of the lowermost unit of the Passaic Formation. The facies represented is that of a shallow, oxidizing lacustrine environment that was subjected to alternating wet and dry

ED18/9-94/ENG/L1263rpt_CH

p. 28

periods. It consists of interbedded, moderate-reddish-brown shale and siltstone. Below 330 feet in IT-2BK-PB01 and 390 feet in IT-2BF-PB01, 0.1- to 2-inch-thick beds of gypsum exist, on average, at 1-foot intervals within the siltstone. Gypsum beds were also encountered in the portion of C-23 cored by IT. The gypsum represents dry periods at the edge of a lake, when theevaporite deposits formed on the mud flats. The medium-soft bedrock is fissile to medium-bedded, and contains calcite-filled bedding joints. The bedding planes are horizontal to gentlysloping. The degree of weathering decreases with increasing depth, except for a few isolated zones.

The rock quality designations (RQD) for core runs from IT-2BK-PB-01 ranged from 15 to 100 percent and averaged 77 percent. Most of the low RQDs occurred above 300 feet; the average RQD below 390 feet was 100 percent. The RQD for core runs from IT-2BF-PB01 ranged from 55 to 100 percent and averaged 91 percent. The RQD for C-23 below 500 feet averaged 100 percent. The core recovery for all three boreholes was very nearly 100 percent. Fractures occurred throughout the rock column at intervals of approximately 0.25 to 10 feet.

During drilling of IT-2BK-PB01, about 2 gpm of water was lost at the depths of 169 to 183 feet and 230 to 243 feet. Water losses of 15 to 20 gpm occurred below 255 feet in IT-2BK-PB01, below 365 feet in IT-2BF-PB01, and below 500 feet in C-23. Estimated water yields during air-rotary drilling of IT-2BF-PW01 consisted of 15 to 20 gpm at 365 feet and 300 gpm at 370 feet. The well yield increased to 400 gpm at 410 feet and increased a little more at 460 feet.

b) Workshaft 2B Well Installation and Development

IT supervised the installation of a well in each of the five boreholes at the Workshaft 2B locations. The pilot and pumpingtest boreholes were cased through the overburden and 5 feet into competent bedrock. The pumping-test well, IT-2BF-PW01, is an open hole in bedrock to a depth of 510 feet, which is the same depth as the pilot boreholes. The overburden wells, IT-2BK-OB01 and IT-2BF-OB01, were constructed with 2-inch PVC pipe in conformance with the May 1992 NJDEP standards, and are screened from 12 to 22 feet and 104 to 114 feet below ground surface, respectively.

After the initial well construction and based on the results of straddle-packer testing, multiport systems were installed in the pilot boreholes. The zones that were packed-off for hydrogeological analysis in IT-2BK-PB01 were at depths of 149 to 187 feet, 195 to 234 feet, and 244 to 510 feet. Transducers and sampling ports were installed within these zones at depths of 172 feet, 223 feet, and 257 feet, respectively.

EDIS/9-94/E00/L1263spt_CH

·* #

ب ۲

The wells at the 2BK location were completed with a protective steel casing to a height of approximately 2.5 feet above the ground surface. The wells at the 2BF location, including USACE well C-23, were completed with flush-mounted protective covers. The well construction records for Workshaft 2B are included in Appendix C.

Each well at Workshaft 2B, including well C-23, was developed until the water was sediment-free or until the pH, conductivity, and temperature of the water stabilized. The pilot wells were developed after the casing was set but before the installation of the multiport systems. The two pilot wells, the pumping-test well, the 2BF overburden well, and C-23 were all developed using the air-lift technique. IT-2BK-PB01 was developed for 7 hours at a discharge rate of approximately 40 gpm; IT-2BF-PB01 was developed for 9 hours at 20 gpm; IT-2BF-PW01 was developed for 6 hours at 400 gpm; IT-2BF-OB01 was developed for 2.5 hours at 1 gpm; and C-23 was developed for 7.5 hours at 5 gpm. IT-2BK-OB01 was developed by overpumping at 2 gpm for 2 hours. The well-development logs for the Workshaft 2B wells are included in Appendix D.

c) Workshaft 2B Borehole Geophysics

Geophysical logs were run in the 2BF pumping well and pilot boring, C-23 pilot boring, and 2BK pilot boring. The geophysical logs are included in Appendix E.

The density logs show beds of more dense material to beds of less dense material with relatively thin bedding. These are probably due to the sandstone/shale interbeds. Most notable are the large fractures at the 2BF pumping well at a depth of 365 feet below top of casing (BTOC). Fractures occur in the 2BF pilot boring at 345-385' BTOC and at C-23 at a depth of 345 feet bgs. Fractures also occur at 2BK pilot boring 325-335 feet BTOC.

C-23 density log indicates several fractures at a depth of 210-250 feet bgl. The rest of the boring is relatively tight. 2BK pilot boring displays fracturing to a depth of 390 feet BTOC, then becomes tight. The pumping well shows possible fractures at 460 and 485 feet.

Gamma logs indicate the presence of shale and siltstone or sandstone interbeds. The pilot borings show a greater percentage of clay rich material, probably due to the coring of the wells. Overburden clay material tends to increase to the top of bedrock.

The neutron log at the pumping well shows a uniform amount of water bearing material throughout the rock column. At the depth of the fracture zone no deviations are noted. Neutron logs at 2BF pilot boring shows a trend of decreasing water from 200 feet BTOC to the bottom of the well. Uniform distribution patterns also exist for C-23 and the pilot boring at 2BK.

EDIS/9-94/2003/11263rpt GW

Multi-point resistivity logs show alternating beds of shale and siltstone/sandstone in uniform patterns throughout the rock column in each well. Resistivity tends to decrease as the bottom of the boring is approached.

Caliper logs show uniform boreholes for the 8-inch pumping well and the 4-inch pilot borings. Temperature logs show an average groundwater temperature of 53 degrees F. Temperature tends to increase to as the bottom of the borehole is approached.

d) Workshaft 2B Hydraulic Testing

Hydraulic testing by IT at the 2B site included straddlepacker tests in the pilot borehole and pumping well at 2B-F and the pilot borehole at 2B-K. After the multiport systems were installed in the pilot boreholes at 2B-F and 2B-K, one successful step test and one 72-hour pumping test were run at relatively high capacity in the only zone of high permeability in the pumping well at 2B-F. For this pumping test there were 3 rock observation wells: the two multiport wells (2B-F and 2B-K) and the CENAN borehole C-23. The 2B-F multiport well is located 80 feet from the pumping well. The 2B-K multiport well is 1,327 feet southwest of the pumping well, approximately along the geologic dip direction. Therefore 2B-K is updip from the 2B-F site. C-23 is 709 feet approximately downdip from the pumping well.

Because the water pumped from the pumping well had contaminants as seen by the analysis from water collected during straddle-packer tests in the pilot hole at 2B-F, a carbon system unit was installed by IT to remove contaminants before discharge to a nearby storm drain in the Fiore parking lot. The overburden wells were not affected by the pumping. The raw data files for the hydraulic testing at Workshaft 2B are included in Appendix F.

(1) Straddle-Packer Testing

Figure III-35 shows results of the one successful packer test run in the pumping well. The table below shows results of this packer test as well as the depths of two other attempted tests.

Depth of packed off zone in feet below top of casing	1 hr. Specific Capacity (gpm/drawdown in ft) and remarks						
290-340 (only one packer at 340')	Not determined - very tight zone						
340-390	18.6						
390-440	Not determined - very tight zone						

EDIS/9-94/ENG/L1243spt_GM

Figure III-36 shows results of the straddle-packer testing at the pilot borehole at 2B-F. Based on drilling activities of the pumping well, 80 feet away, it was shown that a very high yielding zone should have been in the 365- to 390-foot (bg1) depth interval. Specific capacity measured at the end of one hour or less of pumping was used to evaluate relative permeability with depth for installation of the multiport system. The table below summarizes specific capacity data from packed off zones in the pilot borehole at 2B-F.

Depth of packed off zone in feet below top of casing	Specific Capacity (gpm/drawdown in ft) and remarks						
343-353	0.007 - tight zone						
364-374	0.08						
380-390	0.57						
438-448	0.0003 - very tight zone						
485-495	0.00022 - very tight zone						

Figure III-37 shows the results of the straddle-packer testing at the 2B-K pilot hole. Specific capacity was again judged to be the most appropriate method for comparisons of relative permeabilities of rock zones with depth and to determine where the multiport packers and transducers should be set. The table below shows results of the straddle-packer testing in the pilot borehole at 2B-K.

Depth of packed off zone in feet below top of casing	Specific Capacity (gpm/drawdown in ft) and remarks
170-200	0.04
225-255	0.16
275-305	0.53
315-345	0.61
355-385	0.16
400-430	0.0004 - very tight zone
450-480	0.0005 - very tight zone

MDIS/9-94/EMG/L1263spt_GM

(2) Pumping Tests

- (a) Highly Permeable Zone (338-388 ft bgl)

After an unsuccessful attempt to run a step test on August 9, 1994 in the zone from 390 ft to the bottom of the hole, a high capacity step test was performed on August 11, 1994 in the packed off zone between 340 and 390 feet below top of casing in the 2B-F pumping well. The first attempt was stopped because of the very low permeability below 390 feet. For the 340- to 390-foot zone, three rates were run, at 145 gpm, 174 gpm, and 182 gpm.

Pumping was for one hour at each rate. The pumping episodes were separated by 1 hour recovery periods. One hour specific capacities were very high: 45.3, 48, and 43.6 respectively from lowest to highest rate. Figure III-38 shows total step tests results with subsequent water level data. Three other diagrams are included, showing the same data except that each zone monitored is plotted differently, for closer inspection. It is seen that during and following step testing, there were interference effects from localized and more distant pumpages. This is discussed further below. The water levels during step testing show that there is hydraulic connection above and below the packed off zone being pumped.

Based on the step test results and the capacity limitation of the water treatment facility, the pumping rate of 176 gpm was selected for the 72-hour constant rate pumping test.

Figure III-39 is an arithmetic graph of the pumping well showing water levels before, during and after pumping at 2B-F in the 340-390 foot zone. Of special importance is the water level record for four days following shutdown. This effect was also seen the previous week during step tests (Fig. III-38). The erratic water levels following and even during the step and 72 hour pumping periods showed conclusively that there are strong well interference effects from regional groundwater pumpages throughout the entire rock section. Inspection of the hydrograph after shutdown of 2B-F-PW suggests at least three high capacity pumping wells are pumping from the same horizon as the zone at 2B-F that was packed off for the pumping test. Analysis of the drawdown data from the pumping well at 2B-F and the three observation wells (2B-F pilot/multiport, 2B-K pilot/multiport and C-23) suggests that interfering high capacity wells may be located to the northeast and/or the southwest of the overall 2B-F site in strikewise directions. The three interfering wells are believed to be pumping almost constantly during the week but only intermittently on the weekend, at individual rates probably ranging from 125 to 225 gpm. There may also be other wells that are pumping at lesser rates. Based on aquifer parameters derived from the 2B-F 72 hour pumping test it is believed that the interfering wells may be located as close as % to 1% miles from

ED18/9-94/EM3/L1263zpt_GW

 a_{i}^{i}

any of the four wells used for the 2B-F pumping test. The combined step test graphing (Figure III-38) also shows that a local, moderate to high capacity well affected the immediate recovery in the pumped zone, but had no effect in the zones above and below the packed off zone at 2B-F.

Figures III-40, III-41, and III-42 are arithmetic records of water levels recorded in the 2B-F pilot/multiport well, 2BK pilot/multiport well, and the C-23 well, respectively, during and immediately following the 72 hours of pumping. The greatest drawdowns in the three latter graphs are due to connection with the high producing horizon at the pumping well which is believed to follow the bedding plane orientation. Geologic, drilling and geophysical logs and test data show that the most highly permeable fractured and vuggy zone in the pumping well is only 2 feet thick from 372 to 374 feet bgl. This two foot zone may connect with noted open zones at 2B-K and in C-23. Because ground elevation is about equal at the 2B-F, 2B-K and C-23 sites, projection suggests a 6-degree dip to the NW of the highly permeable horizon. The arithmetic graph of the 2B-K well (Figure III-41) indicates leakage from above during most of the testing period. This is also consonant with step test results (Figure III-38), where it is seen that there is some leakage from above as well as below the pumped horizon.

Figures III-43, III-44, III-45 and III-46 show analyses of the drawdowns in 2B-F-PW, 2B-F pilot/multiport, 2B-K and C-23, respectively. Recoveries were not used for analysis because of the strong interference effects from extraneous sources. The four semi-logarithmic graphs of drawdowns in the pumping and observation wells show the major well interferences as departures from the initial straight line. Three distant wells, each pumping 176 gpm have been synthesized. The first interfering well is located the closest to observation points. The second and third interfering wells appear to be located equally further. Each of the 3 interfering wells are about equal distances from all of the 4 wells evaluated for this pumping test (2B-F-PW, 2B-F pilot multiport, 2B-K and C-23). The major interfering wells seem to have started pumping at about the same time that the pumping test started and to have continued pumping at constant rates for the entire 72 hours of the 2B-F pumping test.

The four values of transmissivity from the semi-log graphs were averaged and that figure was rounded off to 30,000 gpd/ft. The three observation wells gave values of coefficient of storage ranging from 9.6 x 10^{-6} to 8.3 x 10^{-5} . The three values were averaged and that figure was rounded off to 5.0 x 10^{-5} .

(b) Summary of Workshaft 2B Results

Figure III-47 gives estimates of aquifer parameters in individual depth zones from all available information gathered at

1011/9-94/100/11263rpt_GR

C. Hydraulic Properties of Geological Materials

Two general types of geologic materials are considered to be aquifers in the Newark Basin--sand and gravels deposits and the Mesozoic sedimentary rocks. Fractured basalt can also be considered an aquifer in some cases. The geological materials in the Newark Basin that typically have the lowest values of hydraulic conductivity are lacustrine (i.e., lakebed) silt and clay deposits, unfractured basalt, and unfractured sedimentary rock. Table IV-01 summarizes values of hydraulic properties of different geological materials that are cited in the literature.

Over 650 pressure tests have been performed by the USACE in boreholes drilled along the tunnel alignment. Nearly all tests were performed on rock intervals at or near the depths planned for the tunnel horizon. The results of these packer tests are summarized in Figure IV-03. The data were transformed to log values of the data in cm/s, because the values spanned such a large range. For hydraulic conductivity values reported as "0", the value was assumed to be less than 1.0×10^{-7} cm/s. Several tests yielded hydraulic conductivities values that were as high as 1×10^{-2} cm/s, but most tests were less than 10^{-3} cm/s. Α statistical evaluation of the data showed the Feltville, Towaco, and the Orange Mountain Basalt Formations had the highest median values of hydraulic conductivity (approximately 2.5x10⁻⁴ cm/s). The Passaic Formation and the Preakness Basalt had the next highest median values--about 5.0x10⁻³ cm/s. The Boonton Formation and the Hook Mountain Basalt had the lowest median values -- 1.5x10⁻⁵ cm/s.

D. Summary of Previous Groundwater Modeling Studies

Groundwater models have been used to evaluate groundwater flow systems in the Newark Basin in at least three previous studies. Meisler (1976) used a two-dimensional finite-difference code developed by the USGS which was an early precursor of the MODFLOW code. The model was constructed in order to evaluate the flow system in a buried valley sand and gravel aquifer in southwestern Bssex and southeastern Morris counties, which is part of the Central Basin of the Passaic River watershed. The sand and gravel had a range of hydraulic conductivity values that were quite high (256 to 345 feet/day). The aquifer was overlain by semi-confining glacial till and lacustrine deposits, that were assumed to have a hydraulic conductivity values ranging from 0.006 to 0.043 feet/day. The bedrock valleys are underlain primarily by the Boonton Formation, the Hook Mountain Basalt, and the Towaco Formation. Meisler (1976) used a hydraulic conductivity of 1.27 feet/day to represent the sedimentary rocks. The Preakness Basalt bounds the southeast side of the valleys. A value of 0.94 feet/day was used to represent the hydraulic conductivity of the basalts. The model was used to simulate historic drawdowns in the sand and gravel aquifer and to predict future drawdowns under various well extraction scenarios.

EDIS/9-94/E00/L1263rpt GW

. S

I. Kearny Model

1. Introduction

The Kearny model area is located at Kearny, Hudson County, starting from approximately 14,000 feet north of Kearny Point and extending north to include Workshaft 2B (Figure IV-05). The Passaic River intersects the model area at the northwest corner (Figure IV-36). The model domain is rectangular, with the longitudinal axis oriented parallel to the tunnel alignment. The tunnel runs along the eastern boundary of the model area. The model domain is approximately 10,000 feet long and 7,500 feet wide.

Kearny model area was selected for modeling primarily because:

- The area contains the Passaic Formation. Approximately 27,860 feet (26 percent) of the proposed tunnel will pass horizontally through the Passaic Formation.
- The area contains a buried valley aquifer which is an important source of water for communities and industries in the immediate vicinity of the study area. The proposed tunnel runs approximately 150 feet below the buried valley aquifer.
- The area may contain locations with contaminated groundwater which could result in possible exposure to construction crews.
 - 2. Surface Features

The model area is located primarily in Hudson County, but extends approximately 1,000 feet across the county line into adjacent Bergen County. The model area lies wholly within the Piedmont physiographic province. The only surface water body in the vicinity of the model area is the Passaic River (Figure IV-36). The Passaic River meanders around the model area but does not run into the model domain. The surface topography within the study area is steep to gently sloping with surface elevations ranging between 8 and 120 feet above mean sea level.

3. Geology

Post-glacial surficial materials located within the Kearny model area include fill and estuarine deposits (Figure IV-37). Glacial deposits include till and lacustrine deposits of glacial Lake Bayonne, which consist of deltaic sands and gravels that locally overlie lake-bottom silt and clay. The lacustrine deposits are over 250 feet thick. The lake-bottom sediments underlie the estuarine deposits, and in some cases, fill.

EDIS/9-94/ENG/L1263rpt ON

The Passaic Formation underlies all of the Kearny model area (Figure IV-38). The contact between Unit 1 and Unit 2 of the Passaic Formation bisects the model area, with Unit 1 underlying the southern part of the model area, and Unit 2 underlying the northern part. The upper surface of the Passaic Formation is highly irregular within the model domain. In the northwestern part, the top of the Passaic Formation is at an elevation of over 100 feet. Toward the south, a buried bedrock valley with a minimum elevation of 250 feet below mean sea level cuts across the model domain. The Passaic Formation dips at six degrees toward the northwest within the model domain and the strike is approximately north 30 degrees east.

IT supervised the completion of five boreholes including a pilot hole and an overburden well at the Keegan property (2BK); and a pilot hole, a pumping-test well, and an overburden well at the Fiore property (2BF). The pilot boreholes, IT-2BK-PB01 and IT-2BF-PB01, and the pumping-test well, IT-2BF-PW01, were each advanced to a total depth of 510 feet. The 2BK overburden well, IT-2BK-OB01, was advanced to a depth of 22 feet, and the 2BF overburden well, IT-2BF-OB01, was advanced to a depth of 114 feet.

The stratigraphy in the pilot hole, IT-2BK-PB01, from ground surface to the top of competent bedrock at 155 feet, consisted of refuse and fill material to a depth of 6 feet; organic soil to 9 feet; gray, sandy silt and silty sand to 20.5 feet; medium to coarse sand and fine gravel to 25 feet; brownish-gray, silty sand and sandy silt with clay to 50 feet; gray to reddish-brown, varved clay and silt with thin sand seams to 100 feet; silty sand, varying in grain size from very fine to medium-coarse, to 140 feet; and glacial till to 155 feet. The stratigraphy in the 2BK overburden borehole, IT-2BK-0B01, consists of fine to coarse sand from 12 to 22 feet depth, where the borehole was terminated.

The overburden stratigraphy at Workshaft 2BF, from ground surface to the top of competent bedrock at 285 feet, consists of fill material (fine to coarse sand with gravel and silt) to 14 feet; grayish-brown, silty, fine to coarse sand to 45 feet; gray to reddish-brown, varved clay and silt with thin sand seams to 132 feet; and glacial till to 285 feet. The till consists of gravelly sand with silt, clay, cobbles, and boulders.

The bedrock at the Workshaft 2B location belongs to the lowermost unit of the Passaic Formation. It consists of interbedded, moderate-reddish-brown shale and siltstone. Below 330 feet in the pilot hole, IT-2BK-PB01, and 390 feet in IT-2BF-PB01, 0.1- to 2-inch-thick beds of gypsum exist at 1-foot intervals within the siltstone. The medium-soft bedrock is fissile to medium-bedded, and contains calcite-filled bedding joints. The bedding planes are horizontal to gently sloping. The degree of weathering decreases with increasing depth, except for a few isolated zones. Fractures occurred throughout the rock

EDIS/9-94/HMG/L1263zpt_6W

1

· · · · · ·

- **C**

column at intervals of approximately 0.25 to 10 feet. Based on elevation data from the pilot boreholes IT-2BK-PB01 and IT-2BF-PB01 at the Keegan and Fiore properties, the Passaic formation appears to dip northwest at 6°.

4. Hydrogeology

Two major aquifers are present at the Kearny model area. They include the unconsolidated overburden aquifer and the bedrock aquifer. The unconsolidated overburden consists of a surficial sand layer ranging between 10 to 40 feet over most of the area. The sand layer is underlain by 10 to 70 feet of clay. Beneath the clay lies another layer of sand and gravel at the base of the buried valley.

The bedrock aquifer underlying the Kearny area includes alternating beds of shale and siltstone/sandstone. The bedrock formation yields water primarily and almost exclusively from joints and fractures in the rocks. The primary pore space in the rocks are generally low, and water moves through them very slowly. The formation has extensive fracture zones and has thus acquired secondary porosity and permeability. Groundwater flows in the aquifer through the joints and interconnecting fractures.

During the recent field investigation conducted by IT at Workshaft 2BF, packer tests were performed at different intervals of the Passaic Formation in IT-2BF-PW01 and IT-2BF-PB01. Specific capacity at the end of the pumping periods for the intervals ranged from a high of 18.6 gpm/foot of drawdown in the fractured rocks to less than 0.00022 gpm/foot of drawdown in the unfractured rocks. Specific capacity for the interval between 340 and 390 feet below top of casing in the pumping well was determined to be 18.60 gpm/foot of drawdown and at the end of the three 1-hour pumping periods during step testing (Figure III-38), it ranged from 43.6 to 48 gpm/foot. Specific capacity data were not determined for the intervals between 290 and 340 feet; and 390 and 400 feet below top of casing in the pumping well because the zones did not transmit any appreciable quantity of water. Packer tests were also performed at seven intervals in the pilot borehole at 2BK. The estimated values ranged between 0.0004 and 0.61 gpm/foot of drawdown. Specific capacity data were determined to be 0.04, 0.16, 0.53, 0.61 and 0.16 gpm/foot of drawdown at the intervals ranging from 170 to 200 feet, 225 to 255 feet, 275 to 305 feet, 315 to 345 feet, and 355 to 385 feet, respectively. The zones between 400 to 430 feet and 450 to 480 feet were found to be very tight.

Pumping tests were performed at Workshaft 2B to determine the hydraulic parameters in the most permeable rock zone, as determined from the packer tests. Hydraulic parameters were determined for the 50 foot interval between 338 to 388 feet (bgl). The pumping test results indicate that the underlying rock at the Kearny model area consist of alternating zones of

EDIS/9-94/E00/L1263rpt_GM

unfractured, low permeability rocks and fractured, high permeability rocks. The upper rocks ranging between 288 and 338 feet bgl were determined to have hydraulic conductivity of less than 2.8E-03 ft/day. The middle zone was the high permeability fracture zone between 338 and 388 feet bgl. The hydraulic conductivity of the interval was estimated to be approximately 79 ft/day. The third zone, varying between 388 and 510 feet bgl, was determined to be a very low permeability rock zone. The hydraulic conductivity of the rock within this interval was estimated to be less than 1.1E-03 ft/day.

5. Model Design

Based on the hydrogeological reports and data obtained from the USGS, the New Jersey Geological Survey, and the USACE boring logs, a conceptual model including two main groundwater flow systems was developed for the model domain. The conceptual model includes the shallow groundwater flow system in the glacial overburden deposits in the buried valley and the deeper groundwater flow system in the bedrock.

The shallow groundwater flow system includes a water table which mimics the topography within the overburden hydrostratigraphic unit, and the Passaic River acting as the dominant discharge boundary. Consequently, groundwater recharge occurs in the upland areas and flows mostly south-southwest, similar to the surface topography to discharge to the Passaic River located approximately one mile south of the model domain.

The buried valley aquifer, which has a high hydraulic conductivity, is overlain by the semi-confining clay unit, and the thin surficial sand layer. The sand and gravel in the buried valleys are in hydraulic connection with the underlying bedrock aquifer. Based on the water level data collected by IT during the exploratory investigation, the potentiometric head in the overburden aquifer was higher than in the bedrock toward the southern portion of the model. A downward vertical gradient and leakage between the shallow and deep groundwater flow system occurs in this area. In the upland areas, the overburden unit is thin or completely absent. The bedrock is therefore exposed and receives direct recharge from precipitation. Groundwater flows down gradient from the recharge areas to the overburden and the bedrock. Groundwater recharge into the surficial aquifer occurs in areas where the bedrock dips below the overburden unit.

A numerical model of the Kearny area was constructed to cover an area of 1,722 acres (approximately 2.7 square miles). The model domain extends 10,000 feet parallel to the tunnel alignment, and 7,500 feet in the direction perpendicular to the tunnel. The model size was limited to 100 rows and 50 columns. A constant grid spacing of 100 and 150 feet was utilized in the direction parallel and perpendicular to the tunnel alignment.

EDIS/9-94/E00/L1263rpt 00

Ten layers were used to simulate the surficial and bedrock hydrostratigraphic units within the model (Figure IV-39). Three layers were used for the overburden, while seven layers were used to simulate the bedrock. Layer one represents the topmost permeable sand and gravel deposit within the overburden. Layer two represents the semi-confining, low permeability lacustrine deposit consisting of silty clay and varved clay. Layer three represents the sand and gravel bed at the base of the bedrock valleys. The three layers representing the glacial overburden are discontinuous in the upland areas where the bedrock occurs at shallow depth.

The distribution of permeable rocks within the bedrock is unknown because very few boreholes have been drilled in this area. Because such geologic information is unavailable, data gaps were filled by repeating the geologic data obtained at Workshafts 2BK and 2BF. Three repetitions of the fractured formation were included in the model design. These layers were designed as alternating zones of low and high permeability rocks. Three of the seven layers in the bedrock were used to simulate fractured rock zones. The remaining four layers represented thicker layers of unfractured rock. All the bedrock layers dip at approximately 6 degrees in the northwesterly direction.

6. Hydraulic Parameters

Hydraulic conductivities for each of the bedrock hydrostratigraphic layers in the Kearny numerical model were obtained from the straddle-packer testing and pump testing performed by IT Corporation at Workshaft 2B. Because hydraulic conductivity is largely responsible for the distribution of heads and the associated groundwater flow, the site-specific data were considered to be preferable as model input parameters. One of the considerations in the selection of the Kearny model area was that field investigations could provide accurate site-specific Site-specific hydraulic properties were not determined for data. the overburden layers during the recent field investigation. Hence, hydraulic parameters published in the literature were used for these layers. Table IV-01 provides a summary of published data on hydraulic properties of the rocks in the Newark Group and unconsolidated glacial deposits.

Table IV-13 provides a summary of the hydraulic properties used in the calibrated numerical model of the Kearny area. The bedrock aquifer was simulated to be anisotropic to account for the relative difference in hydraulic conductivity between the direction parallel and perpendicular to the formation strike. The hydraulic conductivity in the direction parallel to strike (K_x) was assigned to be two times the hydraulic conductivity in the direction perpendicular to strike (i.e., $K_x/K_y=2.0$). The hydraulic conductivity in the direction perpendicular to the bedding plane (K_x) was assigned to be one-tenth of the hydraulic

EDIS/9-94/EDG/L1263rpt_GM

conductivity in the direction parallel to strike (K_x) . The surficial aquifer was simulated to be isotropic.

7. Boundary Conditions

- Recharge due to precipitation into the surface layer
- Lateral constant head boundaries around the model domain
- No-flow impermeable boundary at the base of the model

The overburden aquifer has a surface boundary open to the atmosphere, and receives recharge directly from precipitation. Published data in the literature reports that groundwater recharge rate in the "glaciated Piedmont" is approximately 15 inches annually. (Canace et al., 1992). Therefore, groundwater recharge due to precipitation into the model area was assigned to be 15 inches annually. In the upland areas where the surficial deposit is thin, the bedrock aquifer is simulated to be unconfined. A direct recharge of 12 inches per year was applied in these areas. Constant head boundary conditions were assigned around the model layers representing the overburden aquifer. The boundary conditions for the glacial overburden layers were generated from topographic contour maps, but adjusted based on water measurements from the field.

The lateral boundaries of the bedrock were assigned constant heads, which were also generated from the topographic contour map and adjusted based on the water level data obtained from the field.

The bedrock upper boundaries are in contact with the unconsolidated glacial overburden (Layer three). The model was constructed to enable groundwater leakage between the surficial and bedrock flow systems. The final boundary condition was a noflow boundary beneath the bedrock hydrostratigraphic unit.

8. Model Calibration

Model calibration of the Kearny model consisted of comparing simulated hydraulic heads to approximate water levels in the study area, and comparing model computed baseflow with published data in the Mesozoic basin. Model calibration of potentiometric heads were performed where groundwater level data existed (i.e., the pilot borehole, IT-2BF-PB01, and the pumping well, IT-2BF-PW01) at Workshaft 2BF. Calibration of the numerical model was performed by adjusting model input parameters and boundary conditions so that the model computed heads are within +/-1.0 ft. of measured elevation. The numerical accuracy of water budget

EDI#/9-94/EMG/L1263spt_GW

accounting for total inflow and outflow into the model was within 1% error tolerance.

The simulated groundwater flow in the overburden aquifer is primarily in the south-southwest direction. The model-simulated groundwater potentiometric heads in the overburden unit (Layer-1) ranged from 5 feet to 20 feet above mean sea level. The modelsimulated heads in the buried valley aquifer (Layer 3) ranged between -10 and 12 feet mean sea level. Groundwater leakage between the bedrock and the overburden aquifer was effectively simulated in accordance with the conceptual flow system.

Table IV-14 summarizes the flow rate in and out of the model boundaries in units of cubic feet per day (cu. ft/day) to facilitate a comparison of the flow rates within the surficial and bedrock aquifer. Examination of the results obtained from the calibrated model (Table IV-14) reveals a significant groundwater interchange between the deep and shallow flow systems. The total flow through the surficial aquifer was estimated to be 1.0 mgd/sq. mile compared with approximately 0.3 mgd/sq. mile in the bedrock aquifer. Approximately 7% of precipitation into the surficial flow system leaks into the bedrock aquifer. However, a net flow of approximately 39,238 cu.ft/day (2.3 inches) from the bedrock aquifer to the surficial aquifer was simulated. The net recharge into the surficial aquifer due to direct precipitation and from the bedrock is approximately 12.78 inches. Published data in the literature have reported recharge rate in the Piedmont province between 10 and 15 inches annually.

A total of eleven sensitivity simulations were performed to investigate model sensitivity to hydraulic input parameters, such as horizontal and vertical hydraulic conductivities. Table IV-14 summarizes the model results and identifies the model input properties that were varied. Simulations 1 and 2 investigated the sensitivity of the model to changes in the horizontal and vertical hydraulic conductivities in the surficial sand unit (Layer 1). Simulation 3 investigated the model sensitivity to changes in the horizontal and vertical hydraulic conductivities of the confining clay layer (Layer 2). Simulations 4 and 5 investigated model sensitivity to horizontal and vertical hydraulic conductivities of the buried valley aquifer (Layer 3). Simulations 6 to 11 investigated model sensitivity to horizontal and vertical hydraulic conductivities of the unfractured bedrock aquitards, and the fractured bedrock aquifers. Bach parameter perturbation was decreased or increased by one order of magnitude. The results of the sensitivity analysis indicate that:

 Increasing/decreasing the horizontal and vertical hydraulic conductivity values of Layer 1 causes 5-10% change in net leakage from the bedrock into the overburden aquifer.

• : » **^{*}

Basalt. The results of this model can be used to evaluate potential impacts to well users from the Second Watchung Mountain southeast to the First Watchung Mountain and Workshaft 2 location (Figures I-11C and IV-05).

The maximum drawdowns predicted for unfractured bedrock were 155 feet immediately adjacent to the tunnel alignment. However, maximum drawdowns calculated for the fractured permeable rock layers were significantly less (about 3 feet of drawdown was predicted). At 1,000 feet distance from the tunnel alignment, drawdowns predicted for unfractured and fractured layers were less than 10 feet and less than 1 foot, respectively (Figures IV-33 and IV-35). Zero drawdown is expected in the shallow sand and gravel aquifer.

In the vicinity of the Little Falls model, there is an area on the southwest side of the tunnel alignment that has been identified as obtaining all water supplies from groundwater (Figure I-11A). This area lies between the Passaic River and the First Watchung Mountain, and south of U.S. Route 46. No high capacity wells have been identified in this area, however. Because the area lies over thick sand and gravel deposits along the Peckman River, it is likely that a majority of water supply wells are drawing water from the surficial aquifer. These wells should not be impacted by tunneling activities, since drawdown impacts to the sand and gravel aquifer were predicted to be zero.

One high-capacity bedrock well (No. 98) was identified within 5,000 feet of the tunnel alignment along the southeast flank of the First Watchung Mountain (Figure I-11C). It is approximately 2,000 feet from the alignment; therefore, tunneling activities should have a minimal effect on the water level in that well, if at all.

4. Kearny Model Area and Areas North to First Watchung Mountain

The Kearny model was used to simulate groundwater conditions in the Passaic Formation. Approximately 27,860 feet of the tunnel length (approximately 38 percent of the total length) will pass horizontally through the Passaic Formation. <u>Exploratory investigations</u>, and the results of packer tests and pumping tests indicate that the bedrock underlying the Kearny area consists of a series of thick, low-permeability, unfractured rock layers that alternate with thin zones of fractured rock. Hydraulic conductivities in these discrete fracture zones were determined to be as high as 80 feet/day, while the hydraulic conductivity in the unfractured rock was less than 2.8E-03 feet/day. The bedrock formation is overlain by a buried valley aquifer which is also an important source of water for several communities and industries in the Kearny area.

EDIS/9-94/E00/L1263spt_GW

 The areas around the Kearny model, including Harrison, Kearny, and East Newark, obtain their water supply from surface water sources. However, 19 high-capacity wells were identified within 5,000 feet of the tunnel alignment (Figure I-11E). The wells include Well Nos. 101, 107, 144, 145, 146, 147, 148, 165, 166, 167, 168, 178, 179, 181, 182, 210, 211, 218, and 219 (Figure I-11E). All of the wells listed above are completed in the bedrock and are within 3,000 feet of the tunnel. However, because the tunnel will be operated in the "wet" condition, drawdown effects in these 19 wells would be of very short duration during construction and maintenance periods. Drawdown predictions range from zero to 50 feet depending on the distance from the proposed tunnel, bedrock characteristics, well depth, and duration of construction and maintenance activities.

5. Newark Bay Model Area

The Newark Bay model located at Kearny Point is located north of the tunnel outlet at Newark Bay. The model area is also underlain by the Passaic Formation. Similar to the Kearny model area, the results of the exploratory investigations and hydraulic testing indicated that the bedrock formation includes thick unfractured rock zones that alternate with thin fracture zones. Typical hydraulic conductivity values for the thin fractured aquifers were determined to be up to 1.87 feet/day, while the hydraulic conductivity in the unfractured rock averaged 5.0E-03 feet/day.

Results of the transient tunnel simulations indicated that short-term drawdown in the fractured aquifer will be less than 20 feet directly adjacent to the tunnel alignment, and less than 3 ft at 1,000 feet distance from the tunnel. The highest drawdowns were predicted for the unfractured bedrock at the tunnel. However, rapid dissipation of drawdown in the low permeability zones results in less than 12 feet of predicted drawdown at 3,000 feet distance from the tunnel alignment. No impact from the tunnel was predicted for the glacial overburden aquifer.

The areas around Newark Bay, including the cities of Newark and Jersey City, obtain water supply from surface water sources. However, three high capacity wells serving some industries were identified in this region. The wells include Nos. 108, 33, and 34 (Figure I-11E) located at approximately 2,500 feet, 5,000 feet, and 7,500 feet, respectively, from the tunnel alignment. The high capacity well located closest to the tunnel alignment is Well No. 108; it is completed in the Passaic Formation at 300 feet bgl. No significant impact due to the tunnel is expected at the well location. The other two wells (Nos. 33 and 34) are completed in the overburden at 165 feet and 300 feet bgl, and are located at distances greater than 5,000 feet from the tunnel alignment. No significant impact from the tunnel is expected in these overburden wells.

ED18/9-94/H00/L1263spt_GW

.

No other groundwater contamination problems were identified in or near the Little Falls model area during the HTRW investigation.

4. Kearny Model Area

Three HTRW sites with known groundwater contamination are located in or near the Kearny model area. Wallace and Tiernan, Inc. is located approximately 1,000 feet from the tunnel alignment between Workshafts 2A and 2B. Elevated levels of arsenic and total petroleum hydrocarbons were reported for the shallow groundwater at this site. Diamond Head Oil Refinery is located approximately 300 feet from the tunnel alignment and 1,500 feet from Workshaft 2B-Keegan. Elevated levels of VOCs, SVOCs, arsenic, lead, and cyanide were reported for shallow groundwater at this site. Model results indicate little or no induced drawdown of overburden groundwater is expected in this model area. Therefore, mobilization of the shallow groundwater contaminants at these two sites due to tunnel construction and operations is not expected.

The third HTRW site identified in the Kearny Model Area is Workshaft 2B. Deep groundwater collected from the highly permeable zone was shown to be contaminated with up to 900 ppb of chlorinated solvents. Shallow and deep groundwater at 2B also contained elevated levels of lead and manganese. It is projected that the tunnel will intersect the high-permeability zone. A workshaft constructed at this location would intersect the shallow and deep groundwater contamination.

5. Newark Bay Model Area

Two HTRW sites with known groundwater contamination are located in or near the Newark Bay model area. Roadway Express, Inc. is located approximately 4,000 feet east of the proposed alignment and 4,000 feet from Workshaft 2C. Petroleum-related contamination, including up to 10.6 feet of separate-phase fuel oil, has been reported for shallow groundwater at this site. Model results indicate that little or no induced drawdown of overburden groundwater is expected to occur in this model area. Therefore, mobilization of the shallow groundwater contaminants at this site due to tunnel construction and operations is not expected.

Groundwater contamination was reported for the Printers Service site, which is located along the proposed alignment between Workshafts 2B and 2C. Methylene chloride was reportedly present at 2,000 ppm in groundwater at the site. The extent of groundwater contamination and the depth to which contamination has migrated are not known. As a conservative approach, it has been assumed that contamination has spread to the bedrock aquifer. Model results predict that induced drawdowns of bedrock groundwater could reach 140 feet in the immediate tunnel vicinity during construction and operations. Therefore, there is

EDIS/9-94/ENG/L1263rpt_GW

Figure I-11	Permit	Owner of Well	Local	П	Latitude	Longitude	County	Municipality	Depth	Geologic	Capacity
Identification	Number	(Company or Municipality)	Identification						(it. bgi)	Formation	(gpm)
	1000	High Mt. Rd. School		╉	40.9914	-74.2244	Bergen	Franklin Lakes	64	GQGU	200
	10071W 5113	Pequannock Township		⇒⊢	40.9806	74,3097	Morris	Pequannock	196	GQGU	737
	5113	Pequannock Township		1	40.9797	-74.3058	Morris	Pequennock	152	GOGU	1010
	1166D	Pequannock Township	wei		40.95	74,2917	Morris	Pequannock	25	GOGU	1000
	10097W	Urben Farms Shopping Ctr.ing.		71-	40.9936	-74,2139	Bergen	Franklin Lakes	87	GOSD	200
	10137W	Berlex Laboratories, Inc.	<u> </u>	-il	40,8986	-74,2653	Passalc	Wayne	90	GOSD	150
	5081	Hackenseck Water Company	1 Shadow	-+	41.0308	-74,1917	Bergen	Franklin Lakes	56	GOSD	25
	5081	Hackensack Water Company	4 Wyandott		40.99		Bergen	Franklin Lakes	138	GQSD	40
	5102	FAIRFIELD TOWNSHIP		9	40.8722		Essex	Fairfield	95	GQSD	12
10	5102	FAIRFIELD TOWNSHIP		-11-	40.8833		Essex	Fairfield	90	GOSD	30
	5115	ESSEX FELLS BOROUGH		2	40,8164	-74.2747	Essex	West Caldwell	40	GQSD	15
i	5115	ESSEX FELLS BOROUGH	18		40.8314	-74.2875		Essex Fells	96	GOSD	30
		ESSEX FELLS BOROUGH		7	40.8308	-74.2986		Essex Felis	95		40
14	5115	ESSEX FELLS BOROUGH		14	40.8325			Essex Feils	92	GOSD	40
14		Montville Township MUA	10/indian2		40.9336		Morris	Montville	24	GOSD	75
10		Montville Township MUA	9/Indian1		40,9338		Morris	Montville	24	GOSD	100
		Montville Township MUA	11/Indian3		40.9342		Morris	Montville	20:	GOSD	150
		Oakland Borough		4	41.0208		Bergen	Oakland	12		20
18		Oskland Borough		9	41.0236			Oskland	15		3
		Oakland Borough	· · · · · · · · · · · · · · · · · · ·	5	41.0208		Bergen	Oakland	12	GOSD	70
20		Wanague Borough	Haskell 2		41.0342			Wanaque	4		3
	5239	Wanague Borough	Haskell 1		40.2000			Wanague	1 11		7
2		Pompton Lakes Borough MUA		-2-	40.9786		Passalc	Pompton Lakes	15		8
		Pompton Lakes Borough MUA		-1	40.9792		Passaic	Pompton Lakes	21		10
				- 3	41.0056		Passalc	Pompton Lakes	16	O GOSD	12
		BERLEX LABORATORIES, INC.		- <u>i</u> t-	40.898		Passaic	Wayne	9	O GOSD	1
2		MONTCLAIR GOLF CLUB		5	40.8211	.74.2514	Essex	West Orange	7	5 Gaso	2
		ESSEX COUNTY DEPT. OF PARKS		-it-	40.788	-74.2719	Essex	West Orange	7	2 GOSD	4
		Kuehm Brothers Farm	Well 1		40.968		3 Passaic	Wayne	1 3	OT GTBH	1 1
		Morris County Park Commission		-1	40.961			Pequannock	1	9 GOGU	5
3		Hackensack Water Company	5 High Mtn		40.988			Franklin Lakes	1	2 GOSD	7
3		IBM CORP.			41.019			Franklin Lakes		GOSD	•
3		RONSON METALS CORP.		-3	40.728			Newark	1	5 Gaso	11
> 3		RONSON METALS CORP.	<u>↓</u>	─ラト	40.728			Newark	- 34	o Gaso	-1
→ 3		INTERNATIONAL VEILING CORP.	WELL	ł	40.883			Clifton	3	GOSD	-1
3	5 10616W	SWEPCO TUBE CORP.			40.864			Clifton	3	O GOSD	-
3	6 10624W	SWEPCO TUBE CORP.	l	L		-1 -1-1.1-1	-1 ,				

Table I-01 High-Capacity Overburden Wells in Vicinity of Tunnel Passaic River Flood Protection Project

Source: NJDEP, Water Supply Element, Bureau of Water Allocation, 1994 Notes:

Permit numbers followed by "w" or "p" must submit annual of quarterly reports, respectively. Permit numbers between 4000 and 5999 are public supply permits. Agricultural Certification permits are prefixed "PA" in Passaic County.

Geologic Formation Legend:

GQSD-Pleistocene, Stratified drift deposit GQGU-Pleistocene, Glacial deposit, undifferentiatad GTBH-Tertlary, Beecon Hill Formation

TIERRA-A-017434

Table I-02	
High-Capacity Bedrock Wells in Vicinity of Tunn	e i
Passaic River Flood Protection Project	

- . .

Figure I-11	Permit	Owner of Well	Local	Latitude						
Identification	Number	(Company or Municipality)	Identification	LERUGE	Longitude	County	Municipality	Depth (ft. bgl)	Geologic	Capacit
37	5015	Ridgewood Village						(1. 000)	Formation	(gpm)
38	5015	Ridgewood Village	Ames 5	41.0058	-74.1828	Bergen	Wyckoff			i
39	5015	Ridgewood Village	Arnes 6	41.0058	-74.1828	Bergen	Wyckoff	350 455	GTRB	
40	5015	Ridgewood Village	Ames 7	41.0058	74.1825	Bergen	Wyckoff	352	GTRB	
	5067	Riverdale Borough	Arnes 3	41.0058	-74.1828	Bergen	Wyckoff	350	GTRB	
42	5067	Riverdale Borough	3	40.9889	-74.2917	Morris	Riverdale		GTRB	
43	5067	Riverdale Borough	2	40.9889	-74.2917	Morris	Riverdale	195	GTRB	
	5077	ORANGE CITY	1	40.9992	-74.2989	Morris	Riverdale		GTRB	
45	5077	ORANGE CITY	9	40.7703	-74.2288	Essex	Orange	184	GTRB	
46	5102			40.78	-74.225	Essex	Orange	506	GIRB	
47	5102	FAIRFIELD TOWNSHIP	2	40.8778	-74.2903	Essex	Fairfield	500	GTRB	
48	5102	FAIRFIELD TOWNSHIP	6	40.8861	-74.2944	Essex	Fakfield	279	GTRO	
49	5102	Fainfield Township	B	40.8972	+74.2833	Essex	Fairfield	202	GÍRÐ	
	5102	FAIRFIELD TOWNSHIP	8	40.8972	-74.2833	Essex	Fairfield	230	GTRB	
51	5114	FAIRFIELD TOWNSHIP	7	40.87	74.2792	Essex	Fairfield	230	GTRB	
52	5115	ESSEX FELLS BOROUGH	17	40.83	-74.3086	Essex		303	GTRB	
		ESSEX FELLS BOROUGH	4C	40.8483	-74.2878	Essex	Roseland	450	GTRB	
	5115	ESSEX FELLS BOROUGH	48	40.8469	-74.2886	Essex	West Caldwell	360	GTRB	
54	5115	ESSEX FELLS BOROUGH	13	40.8517	-74.2867	Essex	West Caldwell	270	GTRB	
	5115	ESSEX FELLS BOROUGH	6	40.8272	-74.2928	Essex	West Caldwell	254	GTRØ	
56	5115	ESSEX FELLS BOROUGH	4A	40.8467	-74.2892		Essex Feils	565	GTRB	
57	5115	ESSEX FELLS BOROUGH	8	40.8322	-74.3008	Essex Essex	West Caktwell	195	GTRB	
58	5115	ESSEX FELLS BOROUGH	5	40.8167	-74.2833		Essex Fells	420	GTRB	
59	5115	ESSEX FELLS BOROUGH	9	40.8325	-74.2978	Essex	Essex Felis	295	GTRB	
60	5198	WALLINGTON BOROUGH		40.8569	74.1306	Essex	Essex Fells	364	GTRB	
61	5198	WALLINGTON BOROUGH	š	40.8569	74.1300	Bergen	Wellington	503	GTRB	
62	5245	MONTCLAIR TOWN	RAND W. 1	40.8061	-74.1308	Bergen	Wallington	506	GTRB	
63	5245	MONTCLAIR TOWN	RAND W. 1	40.8061	-74.2103	Essex	Montclair	300	GTRB	
64	5245	MONTCLAIR TOWN	GLENFLD 2	40.8142		Essex	Montclair	300	GTRB	
65	5245	MONTCLAIR TOWN	GLENFLD 2		-74.2117	Essex	Montclair	300	GTRB	
66	5260	GLEN RIDGE WATER DEPT.	2	40.8142	-74.2117	Essex	Montclair	300	GTRB	
67	5260	GLEN RIDGE WATER DEPT.		40.8131	-74.2028	Essex	Gien Ridge	400	GTRB	
68	5282	GARFIELD WATER DEPARTMENT		40.8131	-74.2028	Essex	Glen Ridge	400	GTRB	
69	5282	GARFIELD WATER DEPARTMENT	18	40.9083	-74.1292	Bergen	Elmwood Park	400	GTRE	
70	5282	GARFIELD WATER DEPARTMENT	4	40.9083	-74.1292	Bergen	Elimwood Park	353	GTRB	
71	5282	GARFIELD WATER DEPARTMENT	┟─┈───┋┟╴	40.9083	-74.1292	Bergen	Elmwood Park	404	GTRB	<u> </u>
72	5282	GARFIELD WATER DEPARTMENT	17	40.9083	-74.1292	Bergen	Elmwood Park	353	GTRE	
73	5282	GARFIELD WATER DEPARTMENT	2	40.9083	-74.1292	Bergen	Elmwood Park	358	GTRB	
74	5282	GARFIELD WATER DEPARTMENT	12	40.9083	-74.1292	Bergen	Elmwood Park	350	GTRB	1
75	5282	CAPELELO WATER DEPARTMENT	14	40.9083	-74.1292	Bergen	Elmwood Park	485		1
		GARFIELD WATER DEPARTMENT	10	40,9083	-74.1292	Bergen	Elmwood Park	350	GTRB	1

.

.

•

Table I-02
High-Capacity Bedrock Wells in Vicinity of Tunnel
Passaic River Flood Protection Project

i, . . ۲

Figure I-11 Identification	Permit Number	Owner of Well (Company or Municipality)	Local Identification	Latitude	Longitude	County	Municipelity	Depth	Geologic	Capaci
POPT ARCOUNT		(company of monicipality)	TOTAL RANGE BURNET					(it. bgi)	Formation	(gpm)
76	5282	GARFIELD WATER DEPARTMENT	1	40.9083	-74.1292	Bergen	Elmwood Park	300	GTRB	
77	5282	GARFIELD WATER DEPARTMENT	8	40.9083	-74.1292	Bergen	Elmwood Park	354	GTRB	
78	5282	GARFIELD WATER DEPARTMENT	11	40.9063	-74.1292	Bergen	Elmwood Park	353		
79	5282	GARFIELD WATER DEPARTMENT	5	40.9083	-74.1292	Bergen	Elmwood Park	353	GTRB	
80	5282	GARFIELD WATER DEPARTMENT	8C	40.9063	-74.1283	Bergen	Garfield	405	GTRB	
ð1	5309	Wayne Township	8 Schy-COE	40.9658	-74.2581	Passaic	Wayne	252	GTRB	
82	5309	Wayne Township	3 Gr Knoll	40.9925	-74.2708	Passaic	Wayne	160	GTRB	
83	5309	Wayne Township	2 Balsam R	40.9858	•74.2633	Passalc	Wayne	206	GTRB	
	5309	Wayne Township	4 Woodhavn	40.9769	-74.2594	Passalc	Wayne	200	GTRB	
	5309	Wayne Township	5 Altwood	40.9697	-74.2628	Passaic	Wayne	260	GTRB	
86	5309	Wayne Township	1 Pines Lk	40.9872	-74.2622	Passalc	Wayne	203	GTRB	
87	5317	FAIR LAWN BOROUGH	16	40.9261	-74.1411	Bergen	Feir Lawn	413	GTRB	
88	5317	FAIR LAWN BOROUGH	19	40.9261	-74,1394	Bergen	Fair Lawn	400	GTRB	†
89	10011W	Medical-Prof.Pk./Condo Assoc.	1	40.9458	-74.2611	Passalc	Wayne	240	GTRB	
	10060W	CARLSTADT - E. RUTHERFORD BOE	1	40.8253	-74.0978	Bergen	E.Rutherford	274	GTRB	
91	10126W	FEDERAL BUSINESS CENTERS	1	40.7144	-74.1944	Essex	Newark	475	GTRB	
92	10159W	DSD, INC.		40.8244	-74.2994	Essex	Roseland	398		
93	10169W	PRUDENTIAL INS. CO.	GIBRALTAR	40.7367	-74.1747	Essex	Newark	718		
» 94	10169W	PRUDENTIAL INS. CO.	MALL WELL	40.7384	-74.1725	Essex	Newark	546		
95	10195W	COLUMBUS HOSPITAL	1	40.7726	-74.1861	Essex	Newark	354	GTRB	
96	10276W	BENEDICT-MILLER, INC	WELL 1	40.8028	-74,1139	Bergen	Lyndhurst	228	GTRB	
97	10279W	Plausha Park Water Commpany	Well 1	40.9172	-74.3297	Morris	Montville	90		1
98	10336W	CLARA MAASS HOSPITAL	WELL 1	40.7844	-74.1778	Essex	Belleville	501	GTRB	— —
> 99	10336W	CLARA MASS HOSPITAL	WELL 1	40.7844	-74.1778	Essex	Belleville	501	GTRB	1
100	10351W	CRESTMONT COUNTRY CLUB	WELL 1	40.8078	-74.2761	Essex	West Orange	700		1
> 101	10362W	SAFER TEXTILE PROCESSING	5	40.7722	-74.1583	Essex	Newark	400		1
102	10379W	KAYSTONE METAL FINISHERS, INC.	2	40.7881	-74.0597	Hudson	Secaucus	150		1
103	10379W	KEYSTONE METAL FINISHERS, INC.	3	40.7869	-74.06	Hudson	Secaucus	312		1
104	10427W	MEER CORPORATION	WELL 7	40.7784	-74.0458	Hudson	North Bergen	280		
105	10432W	MOUNT HEBRON CEMETERY ASSOC.	WELL 1	40.8561	74.1989	Essex	- Montclair	330		1
106	10461W	CARLTON-COOKE PLATING CORP.	WELL 3	40.8236	-74.0608	Bergen	Carlstadt	400		1
107	10512W	SWENSON CO., INC.	1	40.7689	-74.1358	Hudson	Kearny	400		
108	10514W	RONSON METALS CORP.	1	40.7328	-74.1356	Essex	Newark	300	GTRB	
109	10555W	NEW JERSEY BELL TELEPHONE	1	40.7425	-74.1708	Essex	Newark	215		1
110	10561W	HAHNES	2	40.8144	-74.22	Essex	Montclair	350		1
111	10561W	HAHNES	2	40.8144	-74.22	Essex	Montclair	350		1
112	10626W	FALSTROM COMPANY, INC.	1	40.8394	-74.1331	Passalc	Passaic	300		1
113	10645W	RONALO MARK ASSOCIATES	1	40.6942	-74.2258	Union	Hillside	379		1
> 114	10672W	ROCHE DIAGNOSTIC SYSTEM	1	40.7883	-74.1717	Essex	Belleville	602		1

Page 2

.

1

E

Figure T-11	Permit	Owner of Well	Local	Latitude	Longitude	County	Municipality	Depth	Geologic	Capacity
IGentification	Number	(Company or Municipality)	Identification					(ft. bgl)	Formation	(gpm)
115		ROCHE DIAGNOSTIC SYSTEM		40.7883	-74.1717	Essex	Belleville	602	GTRB	
116		ROCHE DIAGNOSTIC SYSTEM	2	40,7883	-74.1717	Essex	Belleville	610	GTRB	
> 117	10672W	ROCHE DIAGNOSTIC SYSTEM	2	40.7883	-74.1717	Essex	Belleville	610		2
118		Becton Dickenson & Company	4	41.0144	-74.1897	Bergen	Franklin Lakes	420	GTRB	
119		Becton Dickenson & Company	1	41.0153	74.21	Bergen	Franklin Lakes	290	GTRB	
120		Becton Dickenson & Company	2	41.0181	-74.2103	Bergen	Frenklin Lakes	348	GTRB	
121	1070W	INSULFAB PLASTICS INC.	ii	40.8269	-74.0994	Bergen	E.Rutherford	300	GTRB	
122		MOTHER FOOD PRODUCTS INC.	1	40.7183	-74.1481	Essex	Newark	40.5	GTRB	
123	10742W	ALFRED HELLER HEAT TREATING CO.	2	40 8839	-74.1472	Passalc	Clifton	40.5	GTRB	
124		ALFRED HELLER HEAT TREATING CO.	ī	40 8839	-74.1472	Passalc	Clifton	300	GTRB	
125		ROBINHOOD CAR WASH	1	40.7917	-74,1983	Essex	Bioomfield	205	GTRB	
126		ROBINHOOD CAR WASH	ī	40,7917	-74.1983	Essex	Bloomfield	205	GTRB	
127	10789W	FAIRMONT CEMETERY ASSOCIATION	1	40.7428	-74.2078	Essex	Newark	635	GTRB	
128		ATLAS MODEL RAILROAD CO., INC.	WELL 1	40.7019	-74.2347	Union	Hillside	138	GTRB	
129		ATLAS MODEL RAILROAD CO., INC.	WELL 2	40.7011	-74.2347	Union	Hillside	300	GTRB	
130		GREENBROOK COUNTRY CLUB	PUMPHOUSE	40 8689	-74.2806	Essex	Feinfield	301	GTRB	
131		GREENBROOK COUNTRY CLUB	WELL 2	40.8694	-74.2778	Essex	Fairfield	283	GTRB	-
132		ITT AVIONICS DIVISION	Ī	40.825	-74.1389	Essex	Nutley	500	GTRB	
133		ITT AVIONICS DIVISION	2	40.825	-74.1389	Essex	Nutley	450	GTRB	
134		ITT AVIONICS DIVISION	j	40.825	-74.1389	Essex	Nutley	500	GTRB	
135		GRAND UNION CO.		40.7975	-74.1278	Bergen	N. Arlington	300	GTRB	
136		GRAND UNION CO.		40.7978	74.1272	Bergen	N. Arlington	300	GTRB	·
137	2048P	NATIONAL STARCH & CHEMICAL	1	40,7994	-74.1894	Essex	Bloomfield	410		
138		NATIONAL STARCH & CHEMICAL	ī	40,7994	-74.1894	Essex	Bloomfield	410		
139	2049P	SIKA CORPORATION	1	40.8069	-74.1108	Bergen	Lyndhurst	302	GIRB	
140	2063P	High Mountain Gold Club	3	40,9819	-74.1956	Bergen	Franklin Lakes	230		
141	2063P	High Mountain Gold Club	4	40.99	-74.1956	Bergen	Franklin Lakes	180		i
142	2063P	High Mountain Golf Club	1	40.9867	-74,1994	Bergen	Franklin Lakes	105	GTRB	
143	2063P	High Mountain Golf Club	2	40.9867	-74,1978	Bergen	Franklin Lakes	200	GTRB	i
- 144	2073P	ISP VAN DYK INC.	1	40.7833	-74.15	Essex	Belleville	352	GTRB	·
145	2073P	ISP VAN DYK INC.	1	40.7833	-74.15	Essex	Belleville	352		
146	2073P	ISP VAN DYK INC.	2	40.7833	-74,15	Essex	Belleville	400		
- 147	2073P	ISP VAN DYK INC.	3	40,7833	-74.15	Essex	Belleville	400		
148	2073P	ISP VAN DYK INC.	2	40.7833	-74.15	Essex	Belleville	400		
149	2073P	ISP VANK DYK INC.	3	40,7833	-74.15	Essex	Believille	400		
150	2081P	CERTIFIED PROCESSING CORP.	· ī	40.6944	-74.2239	Union	Hillside	400		
151	2081P	CERTIFIED PROCESSING CORP.	2	40.6972	-74.2239	Union	Hillskie		GIRB	
152	2081P	CERTIFIED PROCESSING CORP.	3	40.6944	74.2239	Union	Hillside	630		
153	2092P	GIVAUDAN-ROURE CORPORATION	7	40.8264	-74.1297	Passalc	Clifton	250 250		

Table 1-02 High-Capacity Bedrock Wells in Vicinity of Tunnel Passaic River Flood Protection Project

•

Page 3

-

Identification	Permit Number	Owner of Well (Company or Municipality)	Local Identification	Letitude	Longitude	County	Municipality	Depth (ft. bgi)	Geologic Formation	Capacity (gpm)
154	2092P	GIVAUDAN-ROURE CORPORATION	7	40.8264	-74.1297	Passalc	Clifton			
155		GIVAUDAN-ROURE CORPORATION	6	40.8278	-74.13	Passaic	Clifton	250	GTRB	1
158	2092P	GLEN RIDGE COUNTRY CLUB	3	40.8244	-74.1947	Essex	Gien Ridge		GTRB	2
157	2092P	GLEN RIDGE COUNTRY CLUB	2	40.8236	-74.1958	Essex	Bloomfield	400		
158	2100P	MARCAL PAPER MILLS, INC.		40,9033	-74.1311	Bergen	Elmwood Park	300		2
159	2100P	MARCAL PAPER MILLS, INC.	5	40.9033	-74.1311	Bergen	Elmwood Park	282		
160	2100P	MARCAL PAPER MILLS, INC.	1	40.9033	-74.1311	Bergen			GTRB	1
161	2100P	MARCAL PAPER MILLS, INC.	3	40,9033	-74.1311	Bergen	Elmwood Park			1
162	2100P	MARCAL PAPER MILLS, INC.		40.9033	-74.1311	Bergen	Eknwood Park	325	GTRB	2
163	2100P	MARCAL PAPER MILLS, INC.	6	40,9033	-74.1311		Elmwood Park	330		2
164	2106P	JERSEY PLASTIC MOLDERS, INC.	2	40.7169	-74.2228	Bergen Essex	Eknwood Park		GTRB	3
► 165	2141P	PFAFF TOOL & MANUFACTURING CO.		40.7678	-74.1347		Irvington	330	GTRB	3
166	2141P	PFAFF TOOL & MANUFACTURING CO.	3	40.7678	-74.131/	Hudson	Kearny	740	GTRB	1
► 167	2141P	PFAFF TOOL & MANUFACTURING CO.		40.7678	-74.1344	Hudson	Kearny	550	GTRB	1
► 168	2141P	PFAFF TOOL & MANUFACTURING CO.		40.7678		Hudson	Кеаглу	590		1
169	2167P	BLOOMFIELD, TOWN OF	2	40.7842	-74.135	Hudson	Keerny	333		
170	2187P	BLOOMFIELD, TOWN OF	2		-74.1992	Essex	Bioomfield	400		
171	2167P	BLOOMFIELD, TOWN OF		40.7842	-74.1992	Essex	Bloomfield	400		1
172	2167P	BLOOMFIELD, TOWN OF			•74.1992	Essex	Bloomfield	478	GTRB	
173	2184P	MOUNTAINSIDE HOSPITAL		40.7844	-74.1992	Essex	Bloomfield	748	GTRB	1
174	2184P	MOUNTAINSIDE HOSPITAL	i	40.8111	-74.2031	Essex	Montclair	400	GTRB	2
175	2233P	HOFFMANN-LAROCHE INC.	20	40.6125	-74.205	Essex	Montclair	400	GTRB	3
176	2233P	HOFFMANN-LAROCHE INC.	20	40.8333	•74.1553	Essex	Nutley	402	GTRO	ī
177	2233P	HOFFMANN-LAROCHE INC.		40.8375	-74.1575	Passaic	Clifton	650	GTRB	2
> 178	2247P	SETON COMPANY - LEATHER DIV.	37	40.8328	-74.1519	Passalc	Clifton	720	GTRB	3
179	2247P	SETON COMPANY - LEATHER DIV.	3	40.7764	-74.1569	Essex	Newark	250	GTRB	
180	2247P	SETON COMPANY - LEATHER DIV.	6	40.7783	-74.1561	Essex	Newark	400	GTRB	
181	2247P	SETON COMPANY - LEATHER DIV.	2	40.7769	-74.1569	Essex	Newark	300	GTRB	2
182	2247P	SETON COMPANY - LEATHER DIV.		40.7758	-74.1572	Essex	Newark	200	GTRB	2
183	2259P	SETON COMPANY - LEATHER DIV.	5	40.7753	-74.1575	Essex	Newark	400	GTRB	5
184	2259P	MONTCLAIR GOLF CLUB	2	40.8167	-74.2486	Essex	West Orange	360	GTRB	
185	2259P	MONTCLAIR GOLF CLUB	3	40.8167	-74.2486	Essex	West Orange	300	GTRB	
186	2259P	MONTCLAIR GOLF CLUB	4	40.8236	-74.2389	Essex	Verona	500	GTRB	
		MONTCLAIR GOLF CLUB	1	40.8187	-74.2486	Essex	West Orange	300	GTRB	
187	2261P	BASE CORPORATION	2	40.87	-74.1458	Passalc	Clifton	600	GTRB	2
188	2262P	UPPER MONTCLAIR COUNTRY CLUB	3	40.8481	-74.1725	Passaic	Clifton	300	GIRB	2
189	2262P	UPPER MONTCLAIR COUNTRY CLUB	. 1	40.8488	-74.1736	Passaic	Clifton	490	GTRB	
190	2262P	UPPER MONTCLAIR COUNTRY CLUB	2	40.8428	-74.1742	Essex	Bloomfield	335		
191	2262P	UPPER MONTCLAIR COUNTRY CLUB	4	40.8417	-74.1789	Essex	Bloomfield		GTRB	1
192	2263P	MOUNTAIN RIDGE COUNTRY CLUB		40.8611	-74.3056	Essex	Fairfield	300 275	GTRB GTRB	2

Table 1-02 High-Capacity Bedrock Wells in Vicinity of Tunnel Passaic River Flood Protection Project

Page 4

.

Figure I-11	Permit	Owner of Well	Local	Latitude	Longitude	County	Municipality	Depth	Geologic	Capacity
Identification	Number	(Company or Municipality)	Identification			-		(it. bgi)	Formation	(gpm)
193	2263P	MOUNTAIN RIDGE COUNTRY CLUB		40.8597	-74.2889	Essex	West Caldwell			
194	2267P	GLEN RIDGE COUNTRY CLUB	3	40.8244	-74.1947	Essex		240	GTRB	3
195	2267P	GLEN RIDGE COUNTRY CLUB	2	40.8236		Essex	Glen Ridge Bloomfield	400		
196	2267P	GLEN RIDGE COUNTRY CLUB	†ī	40.8228		Essex		300	GTRB	2
197	2267P	GLEN RIDGE COUNTRY CLUB	ti	40.8228	-74.1922	Essex	Bloomfield Bloomfield	353		- 4
198	2268P	FOREST HILL FIELD CLUB	ii	40.7969		Essex	Bloomfield	353	GTRB	4
199	2268P	FOREST HILL FIELD CLUB	1	40.7969	-74.1781	Essex	Bloomfield	238	GTRB	
200	2276P	SCHERING PLOUGH LABS	<u>;</u>	40.6842	-74.2325	Union	Union	238	GTRB	
201	2276P	SCHERING PLOUGH LABS		40.6842	-74.2325	Union	Union	676	GTRB	2
202	2297P	Preskness Hill Country Club	i	40.9431	74.2403	Passalc		635	GTRB	5
203	2297P	Preakness Hill Country Club		40.9458	74 2353	Passaic	Wayne	135	GTRB	
204	2297P	Preskness Hill Country Club	ii	40.9483	-74.2344	Passaic	Wayne	561	GTRB	1
205	2297P	Preskness Hill Country Club	j	40.9458	-74.2292	Passalc	Wayne	350	GTRB	1
206	2313P	PENCO OF LYNDHURST INC.	i	40.8125	-74.1206		Wayne	342	GTRB	2
207	2313P	PENCO OF LYNDHURST INC.	i	40.8125	74.1208	Bergen	Lyndhurst	267	GTRB	1
208	2313P	PENCO OF LYNDHURST INC.		40.8125	-74.1208	Bergen	Lyndhurst	410	GTRB	1
209	2313P	PENCO OF LYNDHURST INC.		40.8111	-74.1181	Bergen	Lyndhurst	313	GTR8	1
210	2320P	KOTOW TRADING CORPORATION		40.7517	-74,1442	Bergen	Lyndhurst	352	GTRB	1
211	2320P	KOTOW TRADING CORPORATION		40.7517	-74,1439	Hudson	Kearny	500	GTRB	2
212	2354P	ESSEX COUNTY DEPT. OF PARKS		40.7792	-74,1861	Hudson	Kearny	700	GTRB	5
213	2354P	ESSEX COUNTY DEPT. OF PARKS		40.7769		Essex	Newark	450		1
214	2363P	ESSEX COUNTY HOSPITAL CENTER	7	40.8556	-74.2422	Essex	Newark	200	GTRB	2
215	2363P	ESSEX COUNTY HOSPITAL CENTER	10		-74.2422	Essex	Cedar Grove	485	GTRB	11
216	2363P	ESSEX COUNTY HOSPITAL CENTER	9	40.8547	-74.2436	Essex Essex	Cedar Grove	524	GTRB	2
217	2363P	ESSEX COUNTY HOSPITAL CENTER	8	40.8508	-74.2464	Essex	Ceder Grove	524	GTRB	2
218	2382P	KARLSHAMNS USA, INC.	NORTH WELL	40.7461	-74.1439		Cedar Grove	550	GTRB	3
219	2382P	KARLSHAMNS USA, INC.	SOUTH WELL	40,7494	-74.1439	Hudson	Keerny	584	GTRB	5
220	2397P	SANDY ALEXANDER INC	COOTHINELLE	40.8358	-74.1303	Hudson	Kearny	600	GTRB	10
221	2397P	SANDY ALEXANDER INC		40.8347	-74.1303	Passalc	Clifton	400	GTRB	
222	2397P	SANDY ALEXANDER INC		40.8342		Passalc	Clifton	400	GTRB	1
223	2397P	SANDY ALEXANDER INC			-74.1289	Passaic	Clifton		GTRB	
224	2616P	ITT AVIONICS DIVISION		40.8344	-74.1294	Passaic	Clifton		GTRB	
225	2616P	ITT AVIONICS DIVISION		40.825	-74.1389	Essex	Nutley	500	GTRB	1
226	2616P	ITT AVIONICS DIVISION		40.825	-74.1389	Essex	Nutley	450	GTRB	1
227	5081	Hackensack Water Company	3 Hiltop	40.825	-74.1389	Essex	Nutley	500	GTRB	i
228	5245	MONTCLAIR TOWN	LORRAINE 3	40.9956	-74.2444	Bergen	Franklin Lakes	330		2
229	1185D	WEST ORGANGE TOWNSHIP		40.6431	-74.2103	Essex	Montclair	300	GTRBS	
230	10696W		VITRO SITE	40.8175	•74.2542	Essex	West Orange	50		6
230	5151	Becton Dickenson & Company	3	41.0169	-74.2133	Bergen	Franklin Lakes	298	GTRES	
431		Fayson Lake Water Company	4	40.9736	74.3611	Morris	Kinnelon	90	GPC	1

Table I-02 High-Capacity Bedrock Wells in Vicinity of Tunnei Passaic River Flood Protection Project

-

p;51

Page 5

Table I-03

Population, Water Suppliers, and Residential Wells Along Tunnel Alignment and Buffer Passaic River Flood Protection Project

	Population	Primary Water Company	Secondary Water Company	Percent of Population Hooked-up	Population Served by Residential Wells*
Morris County					
Pequannock	14,000	Municipal (wells)	City of Newark	100	поре
Lincoln Park	10,720	PVWC	DODC	95	536
Riverdale	1,200	Municipal (wells)	none	100	DODE
Essex County					
North Caldwell	12,000	Jersey City	PVWC, Essex Fells	99	120
Cedar Grove	12,600	NJDWC	PVWC	100	none
Montclair	38,000	NJDWC	Municipal (wells)	95	1,900
Glen Ridge	7,600	NJDWC (via Montclair)	Municipal (via Montclair)	100	none
Nutley	8,000	PVWC 75% Newark 25%	DODE	100	none
Bloomfield	45,061	City of Newark	none	100	поре
Belleville	34,213	City of Newark	DODE	100	none
Newark	275,000	City of Newark	Done	100	none
Passaic County					
Wayne	52,000	NJDWC	Municipal (wells)	98	1,040
Totowa	11,000	PVWC	DODE	100	none
West Paterson	10,982	PVWC	none	100	none
Little Falls	12,000	Essex Fells (wells)	NJAWC	99.8	24
Clifton	70,000	PVWC	вове	100	none
Pompton Lakes	10,539	Municipal (wells)	воре	100	none
Bergen County					
Lyndhurst	18,300	Jersey City	none	100	none
North Arlington	13,790	PVWC	DODE	100	none
Hudson County					
Кеатру	34,700	NJDWC	none	100	none
East Newark	2,000	NJDWC (via Kearny)	Done	100	DODE
Harrison	13,425	PVWC	none	100	none
Jersey City	228,537	Jersey City	DODe	100	лоре

Note:

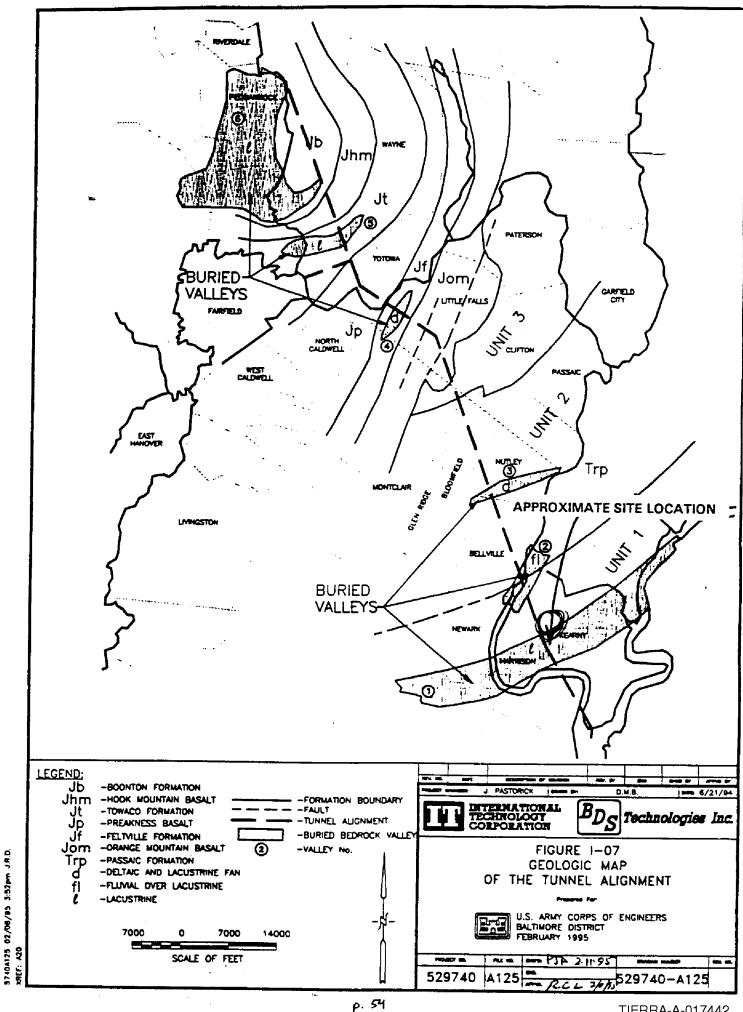
There are 935,667 people in the study area.

pulation data are from 1990 census.

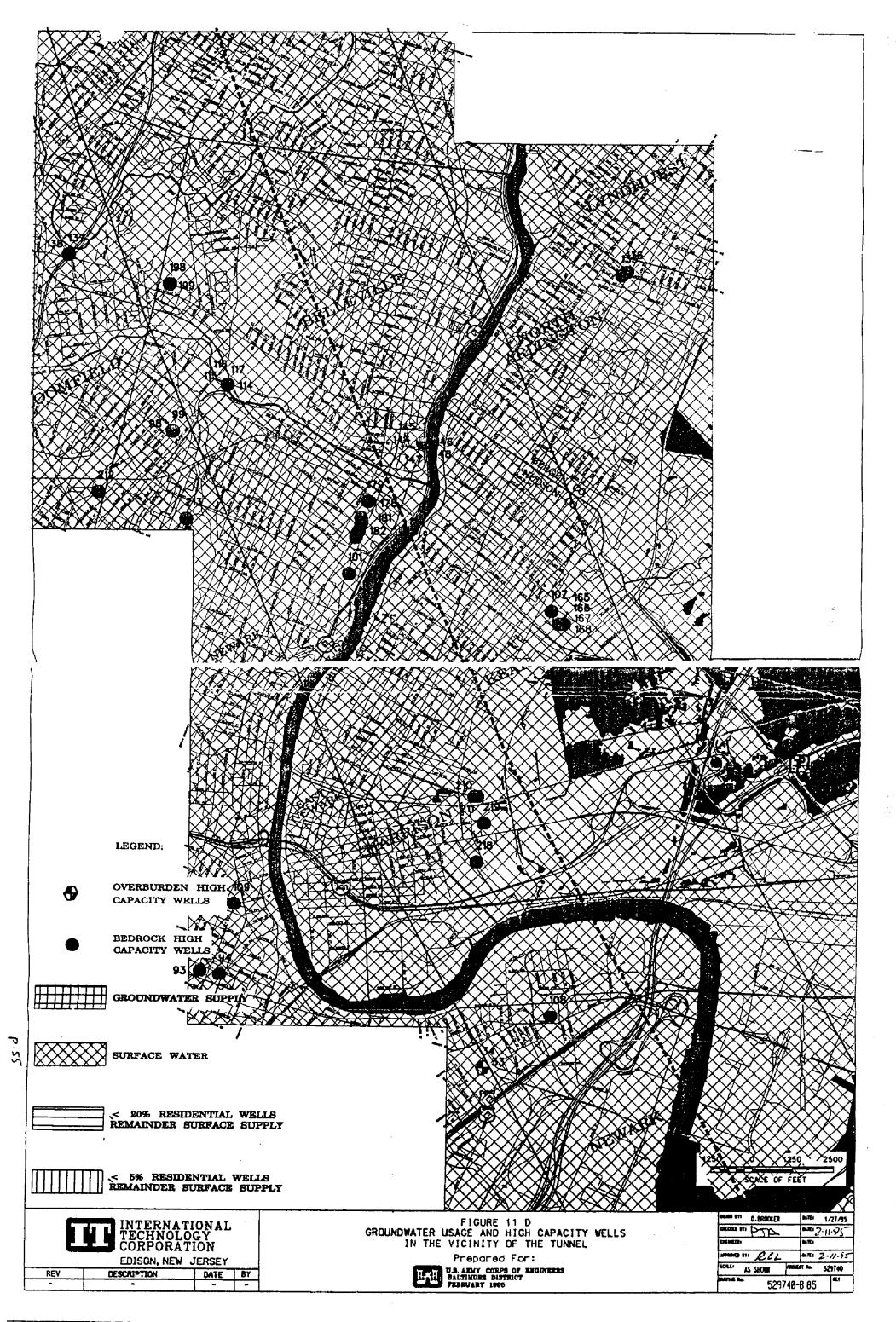
PVWC - Passaic Valley Water Commission

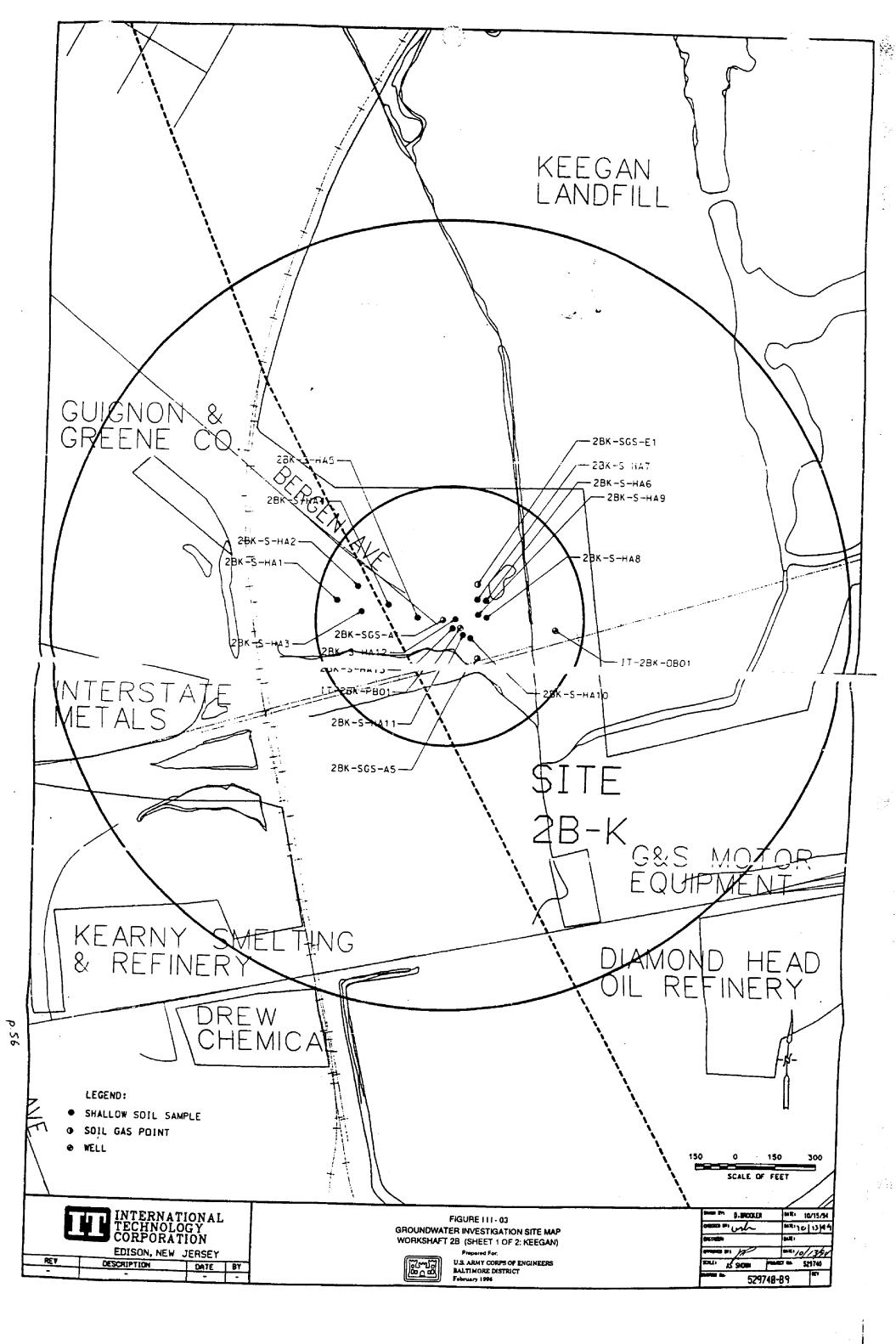
NJDWC - New Jersey District Water Commission NJAWC - New Jersey American Water Company

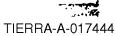
a - Population served by residential wells is estimated from the percent population not hooked up to the municipal water supply for each community.

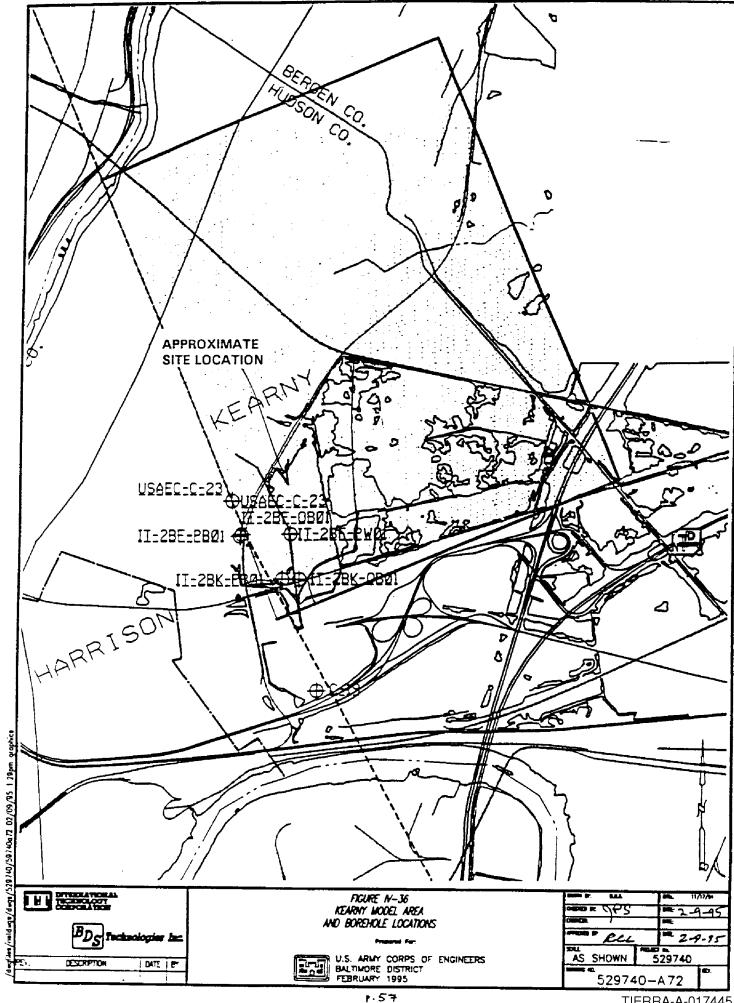

TABLE II - 1 SUMMARY OF FIELD ACTIVITIES PASSAIC RIVER FLOOD PROTECTION PROJECT

WORK SHAFT LOCATION	WELL/BORING	DEPTH OF	DEPTH OF OVERBURDEN		IER OF SPOONS		BER OF Y TUBES	ROCK	GEOPHYSICAL LOGS	STRAD	LE PACKE	RTESTS			
<u></u>		WELL	WATER TABLE	2	3.	ACOE	IT	FT.		1 HOUR	1 HOUR	AHOUR	R HOUR	11" 72 HOUR	SYSTE
→ 28K	PILOT	510	155 / 14	32	4	-	-	355	SUITE A (2 RUNS)	8			UTION	72 1001	-
					[<u> </u>			SUITE B (1 RUN)	— —			<u> </u>	- <u>-</u>	1
												<u> </u>			<u> </u>
	OVERBURDEN	22	-/ 14	5	2	- 1		-							
												— <u> </u>		┣────	
28-F	PILOT	510	290/6	47	-	<u> </u>	<u> </u>	220	SUITE A (2 RUNS)	ē			<u> </u>	 	
					<u> </u>				SUITE B (1 RUN)	-			<u> </u>	<u> </u>	1
	PUMPING	510	290/6	47	<u> </u>	2			SUITE A&B		6	- 3	<u> </u>	<u> </u>	<u> </u>
		1			<u> </u>	<u> </u>	·	 			0		1	1	
	OVERBURDEN	114	-	16		1			-					¦	
					1	†	·				·			<u> </u>	
2C	PILOT	510	81/6	19	•	†	 •	425	SUITE B	10			ļ		l
						<u>† </u>		-72.5	JUILE				<u> </u>		1
	PUMPING	510	77/6	15	•	2		- <u>-</u>	SUITE A&B		10	<u> </u>	<u> </u>	<u> </u>	<u> </u>
····		tt							SUIL AND		10	3	2	1	
	OVERBURDEN	29	6	5		1	<u> </u>						i	[
							·····			· ·	-	<u> </u>		- <u>-</u>	
2	PILOT	ACOE	20/30	•	-			-							
	1	†ł			<u>_</u>	╏───┤			· · · · · · · · · · · · · · · · · · ·	- -	-				1
	PUMPING	530	20/60	0	0	l ö l	Ö	0	SUITE B		10				
						 			JUILD		10	3		1	·
3	, PILOT	ACOE	80 / 30	-	-	<u>├-:-</u>			SUITE A&B						
· · · · · · · · · · · · · · · · · · ·		<u> </u>			.	┝──┤			SUITE AGB	•	-	-		· ·	1
	PUMPING	355	106/5	20	1	┝──┤	-		SUITE A						
						┝─┴╽			SUITE B	<u> </u>	4		2		
	OVERBURDEN	12	-/5	5	2	<u>├</u>			SUILE						
<u></u>					<u> </u>	┝───┨	÷			-	-	-		•	
POMPTON INLET	OVERBURDEN	45	45/15	2	2	┝╼┥		— — -							
		<u>``</u> -		<u> </u>	٤	┝───┨	<u> </u>			· ·		•		-	
SPUR INLET	OVERBURDEN	61	61/6	10	2	2									
		┝┈┝		<u></u>	۷.			-				-		-	-
# 10 LEVEE	OVERBURDEN	16		8		┝━━━━╋									
	I OTENDONDEN				2	-	· ·		-	•	-	- 1	- 11	-	-

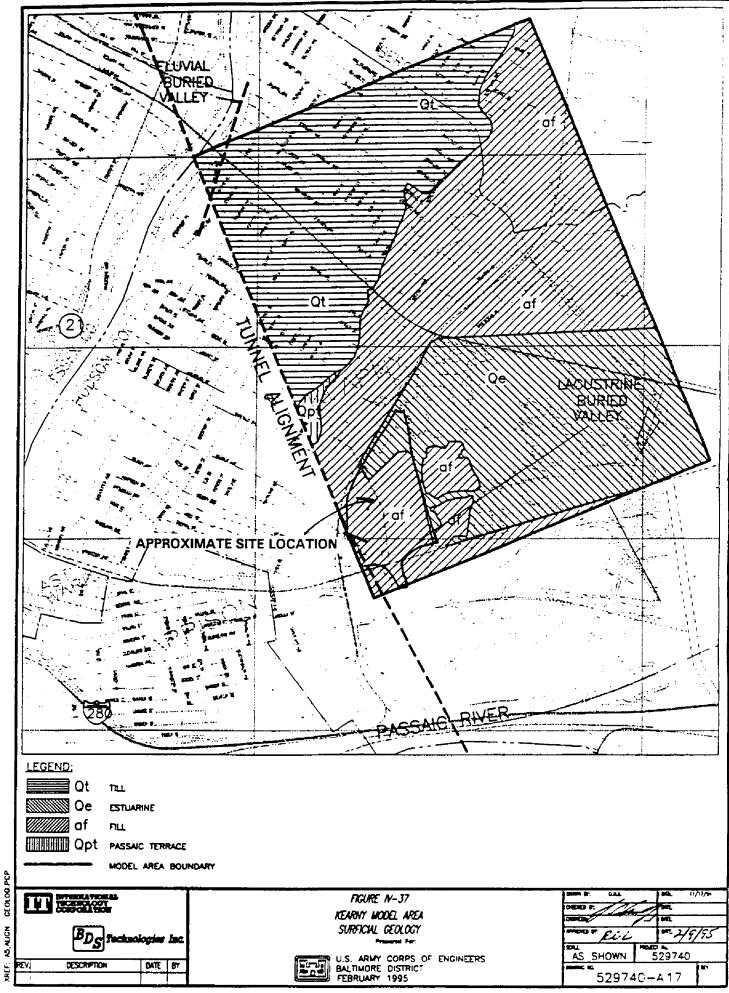

NOTE: BOLD INDICATES WORK TO BE COMPLETED BY PARTIES OTHER THAN IT CORPORATION


رد لا

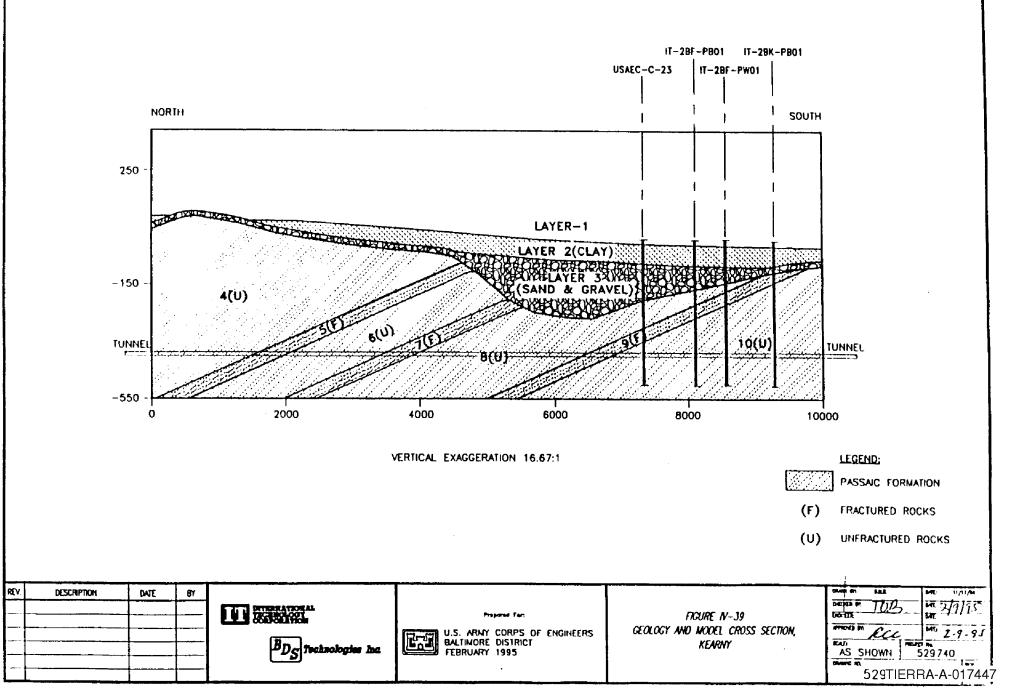

•



TIERRA-A-017442



TIERRA-A-017445



TIERRA-A-017446

0.58

Jam D M B

59740A17 02/09,

NJDEP regulations. Well abandonment tasks are summarized in the following table:

Site Location	Well ID	Well Type	Disposition
Workshaft 3	Pumping Well	8" Open rock hole	Grouted borehole
Workshaft 3	Pilot Borehole (DC-102)	4" Open rock hole with multiport system	Drilled out obstructions and grouted borehole
Workshaft 2	Pumping Well	8" Open rock hole	Grouted borehole
Workshaft 2	Pilot Borehole (DC-85A)	4" Open rock hole with multiport system	Drilled out obstructions and grouted borehole
Workshaft 2B (Keegan)	Pilot Borehole	4" Open rock hole with multiport system	Drilled out obstructions and grouted borehole
Workshaft 2B (Keegan)	Overburden Monitoring Well	2" PVC	Grouted borehole
Workshaft 2B (Fiore)	Pumping Well	8" Open rock hole	Grouted borehole
Workshaft 2B (Fiore)	Pilot Borehole (DC-22)	4" Open rock hole with multiport system	Drilled out obstructions and grouted borehole
Workshaft 2B (Fiore)	Overburden Monitoring Well	2" PVC	Grouted borehcle
Workshaft 2C	Pumping Well	8" Open rock hole	Grouted borehole
Workshaft 2C	Pilot Borehole	4" Open rock hole with multiport system	Drilled out obstructions and grouted borehole

1. Overburden Monitoring Wells

The overburden monitoring wells consisted of a 2-inch PVC casing and screen assembly installed in a 6-inch diameter drilled hole. The annulus of the borehole was filled with filter sand and grout. The well at 2B-K was completed with an above-grade protective casing and bollards. The well at 2B-F had a flush-mounted protective cover. The wells were sealed by grouting the PVC screen and riser using a tremie pipe.

The well abandonment and sealing of the overburden wells proceeded as follows:

- A grout tremie tube was lowered to the bottom of the well. An NJDEP-approved grout was pumped from the bottom of the well to the top. The tremie tube was withdrawn as the well was filled with grout.
- The stickup casing and bollards or flush-mounted cover were removed. The wellhead was capped below grade using concrete.
- Site restoration consisted of spreading and smoothing the gravel pad level with the existing grade. At Workshaft

GROUND ELEVATION MIX + 6-22 BASE LOCATION S _{1TE} 28 K BERGEN 4/2 GROUNDWATER OBSERVATION DATE DEPTH CASING AT TIME ELAPSED TIME	S: DURING DRILLING SUBSEQU 5/16/94 		TE 5/16/94 - 5/17/54 EET 1 OF 27 TO VERBURDEN D DRILLING ENCOUNTERED D NO READINGS	BOX NUMBER
REMARKS: Driller = DJ	ng Drilling at FEET [] NO GROUNDW Grahamer, Sammit Drilling, Bridgewater, MJ The Gilliland, IT Corp., Editor, NJ	M		STORAGE/CORE BO
ELEVATION DEPTH CASING BLOWS SAMPLE OR PROBE BLOWS SAMPI FRUN NO	SOIL AND ROCK CLASSIFICATION - DESCRIPTION DEPTHS OF CHANGE UNIFIED SOIL CLASSIFICATION	LEGEND	SOIL SAMPLING AND ROCK CORING DATA CHARACTERISTICS UNUSUAL CONDITIONS REMARKS	SAMPLE ST
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>Eill</u> : various soils (organic soil, yellow sudy clay, seal) mixed with Cut gravel, glass, & Dricks.	gc	3" Strintess-strel spon, low recovery -> no HTRW sample. No readings and on HNU=(HNU) Same as above sample (10 w recovery). Same as above sample (very 1, the recovery).	
	ORGANIC SOIL WI SAME FILL SETTIER : n	ы	2" spoon, low recovery. (HNOW) 2 x 3-inch ES spoons for HTRN.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Graz saturatel SANDY SILT grate: into 12.5' grade: SILTY SAND	۶m	25K-S-PBI-08 4049 2 * 3-inch ss spoons HTRW: 25K-S-PBI-12 (HXI)	
			2" spoon . Hyru	
2.0	REPLACES EDITION DATED JUNE 73 WHICH IS OBSOLETE		•	

4

~

CREPPORT CREPPORT

17-		<u> 98øi</u>			9740			DA		רו / 5	/ <i>५</i> न्न	
GROU	IND EL			MSL MLW BASE		<u></u>	EXPLORATIO		EET	_2_	_ OF <u>_ 27</u>	
LOCA"	TION 28K	<u>لاد</u> مر	en Av	re, Ke	ARNY, NJ	PROJECT PASCAIL RIVER FLO	NO PROTECTION ARD	UN	п			
				ATIONS	:							
	DATE				DURING DR		SUBSE		O DRIL	LING		
	DEPTH	ł		<u> </u>								
	CASINI TIME	GAT										
		ED TIM				G AT FEE		DWATER F		NTERED		
REMAI	rks:					¥						ľ
EXPLO	RATIO	N LOG			<u></u>	<u> </u>			-			
	ĺ	SWS	MS		с	SOIL AND ROU LASSIFICATION - DES				+	SAMPLING AND	
NOL	_	ว ยุเว	E OR	LERUNNO		DEPTHS OF CHA	NGE	e l		-	ARACTERISTICS	
ELEVATION	DEPTH	CASING BLOWS	SAMPLE OR PROBE BLOWS	RECOVERY EMPLERUNN	u	INIFIED SOIL CLAS	SIFICATION	LEGEND		UNUSI	UAL CONDITIONS	
Ξ	20	3	0 E 5	<u> </u>	Gran Sti	TY SAND	20.5			<u></u>	REMARKS	
			<u>0</u> 17	15"	l v	turated, clean			2"	opo fr	HIDU	
	-22		<u>55</u>		F. GRA			se				{
) Sr				
-+	24		<u>9</u>					_	211	-	(in du)	
			14	18"			24	5		spoon		
	26		_ <u>2</u> 7		Brownis	h-erez, SILTY	VF SAND					
		<u> </u>						sm				
	28		11		·				2"	Spora	(HNW)	
			18 19	12"						•	L'	
	30											
1												
	32-		10		Gradat.	ion to SANDY	SIL- w/		2"	5000n	HNU = 5 ppm AB	6.
		Ī	16	١٤	tract							
		Ī				2						
	3:											
	~		12	18"					2"	Speen .	HAU	
	<u></u>	<u> </u>	15	1.2							<u> </u>	
····								1				
	38	ŀ										1

. †

• • • ••. .

P.62

BORIN	ю NO. 28К-1	PBØI	OL	ם אס. בק	040	REPORT ON		^{.TE} 5/17/94	
	IND EL			MSL MLW BASE		SUBSURFACE EXPLORATION	I SH	EET <u>3</u> of <u>27</u>	_
LOCAT	TION RBK	SERCE	L Ave,	Kener	1 NJ	PROJECT PASSAIL RIVER FLOOD PROTECTON PROJECT	UN (n	
				ATIONS					┢
				1	DURING DR	ILLING SUBSEC		O DRILLING	
	DATE								
	DEPTH								
	CASIN(TIME	3 AI							
	ELAPS								
	סוטסט	INTRO	DUCE	DURIN	IG DRILLIN	G AT FEET 🔲 NO GROUND	VATER E].
REMAR	RKS:]
								•	
									╡
EXPLO	RATIO	N LOG	· · · · · · · · · · · · · · · · · · ·				T		
- 1	- 1	S	ν	N		SOIL AND ROCK		SOIL SAMPLING AND	
z		CASING BLOWS	SAMPLE OR PROBE BLOWS	SAMPLE/RUN NO	C				
ATIO	Ŧ	е С	500	٦,		DEPTHS OF CHANGE	P	CHARACTERISTICS	
ELEVATION	DEPTH	ASIN	AMP	AMP	l t	JNIFIED SOIL CLASSIFICATION	EGEND	REMARKS	
<u> </u>		<u> </u>	<u>0</u> 6	S			┝╌╸		╉
			8	20"		n-grig SANDY SILT of true	Sm	2" spoon . Hyde	
	42		10	20	<i>داي</i> او	nus (Varves).			
									ł
-+								· · · · · · · · · · · · · · · · · · ·	
	~ #		12		Grownish	- Brand to promi variab		2" spoon (Hpo'u)	1
	<u> </u>		<u> 1년</u> 14	22"	SILTY	VE SAND & SILTY LLAV	5/21	- span	
	46		<u> </u>		(41)	(44.in)	1/21		
	40								
			10 14					2" spoon . (H,DU)	
			18	ר,			1		
	50		20 10						$\left \right $
			12	20"	Gray	, verved CLAY & CLAYEY		2 a 3" & twinkess spons for HTRW scorpe 28K-S-PRI-50	Ì
	52		21		-	w/ lenses of dk-red-brown	cl	(Høu)	
						•	<u> </u>		ł
					vf sa	ind			
—†-							1		
-+	55 -		3	{					$\left\{ \right.$
	 		3	د2"				2" space (4,00)	
	57		- 4	~					
	'	ŀ							
1	1								
	 								
<u>ا</u>	40	l l							ļ

p.63

.

BORING NO. 17-28K-98ØI GROUND ELEVATION	JOB NO. 529740 MSL MLW BASE	REPORT ON SUBSURFACE EXPLORATION	DATE	5/17/94 - 3/18/64	
	N AVE, KEARNY,	NJ PROJECT NJ PASSAIL RIVER FLOD PROTECTION PRO			
GROUNDWATER OB		3 DRILLING SUBSEQ	UENT TO I	DRILLING	
DATE DEPTH CASING AT TIME ELAPSED TIME UQUID INTROD	DUCED DURING DR				
REMARKS:					STORAGENCORE
EXPLORATION LOG			<u> </u>		
ELEVATION DEPTH CASING BLOWS	SAMPLE OR PROBE BLOWS SAMPLE/RUN NO	SOIL AND ROCK CLASSIFICATION - DESCRIPTION DEPTHS OF CHANGE UNIFIED SOIL CLASSIFICATION	LEGEND	CHARACTERISTICS UNUSUAL CONDITIONS REMARKS	SAMPLE
0.		-brown to mak-readish-hrown, veryed, LY & SILT w/ frace vf and seems	cl	2" span. High	
62 -	// C_L/	(4 & SILT w) trace vf send seems ate color change w/ Kiv spain)			
	5 7 7			2" span (40 m)	
	<u>9</u> 20" VEF	124 are ~ 0.25' thick			
		rec are 0.5" -1" thick of this		2 " span . (474)	
	μ γ μ μ γ γ μ γ γ γ γ γ γ γ γ γ γ γ γ γ	sand seems.			
	2 7 7 24"			2" span inNu)	
50 -				و و و و و و و و و و و و و و و و و و و	

р. 6ч

BOR	ANG NC). 00 d i	JOE	3 NO.	1740	REPORT ON	D4	ATE 5/18/94 - 5/15/94	
		LEVATIO	1	MSL MLW BASE		SUBSURFACE EXPLORATION	SH	IEET OF7	
LOC	ation 2BK	Berre	tn Az	KEA	YANY NJ	PROJECT PASSAIL RIVER FLOOD PROTECTION PRA		ит	
			BSERV						-
				1	DURING DR	ILLING SUBSEQ	UENT T	O DRILLING	
	DATE			_					
	DEPT			_					5
	TIME			- 					NMB
		SED TIN D INTRO	AE DDUČEE		IG DRILLIN		VATER		BOX NUMBER
			. <u>.</u>						
REM	ARKS:								STORAGE/CORE
									Z Z
EXPL	ORATIO	ON LOG							1 E
		15	s	Q		SOIL AND ROCK		SOIL SAMPLING AND	
z		NO N	щ	RUN	C				SAMPLE
ELEVATION	Ξ	CASING BLOWS	E B E	SAMPLE/RUN NO		DEPTHS OF CHANGE	LEGEND	UNUSUAL CONDITIONS	
ELEV	DEPTH	SSI	SAMPLE OR PROBE BLOWS	SAM		UNIFIED SOIL CLASSIFICATION	LEG	REMARKS	
	50		4			P	+	2" spoon . (14/NW)	
			4	בב"		rown to mod-rek-brown, varvel			
	-82-		7			F (LAY(s+:ff)		· · · · · · · · · · · · · · · · · · ·	-
					(5)	It content his increased, clay ses are thin)			
					16*	ses are twin)			
	-85-								4
			Went of	אי'				2" spoon. (HAVU)	
	27.		<u></u> 6	5					
	<u> </u>								
	99		-teme					2" span (-R)	
				24"					
	92								4
]						
	75								4
			<u></u>	22"				2" spoon. (HOU)	
	9-		-0- -085	a					s/
									5/
	/00 M-25A		<u> </u>			REPLACES EDITION DATED JUNE 73 WHICH IS DESOLET	1		لسل

· • -

	NO NO		ot	B NO. 5297	140	REPO	RT ON	DA	TE 5/19/44	
	DUND EL		NC	MSL MLW BASE			EXPLORATION	I SH	EET OF	
LOC	ATION ABK	, BER	SEN AV	e, Ken	any, NJ	PROJECT PASSAIL RIVER Free	> Protector Pest	UN	n	
	DUNDW/									<u> </u>
					DURING DR	ILLING	SUBSEC	UENT TO	D DRILLING	
	DATE									Į
	DEPTI									0
	TIME				···					
<u> </u>		SED TIN				GAT FEET				
Ľ_			DDUCE	DURI						
REM	ARKS:									STORAGE/CORF ROX NUMBER
-										
EXPL			1		1			1		
		ŴS	SAMPLE OR PROBE BLOWS	SAMPLE/RUN NO	c	SOIL AND ROC			SOIL SAMPLING AND ROCK CORING DATA	SAMPLE
NO NO		BLO	E O I	IN IN		DEPTHS OF CHAN			CHARACTERISTICS	₹
ELEVATION	E	CASING BLOWS	E E	PLE	. .	UNIFIED SOIL CLASS		LEGEND	UNUSUAL CONDITIONS	
ELE	DEPTH	S	PRC	SA				۲ ۳	REMARKS	
	100		20	i			Y VE SAND	1	3-inch steinless-steel spoon for	
	11		24	24"	1-100-1-1	ef-brown, SILT ce clay	1 1. 240.5	Sm	ATRA Scaple, composite (1)	
	102		39			ce c.e.A			2BK-S-PB1-100 (100'-104') (HUU)	1
	┨╴╌┥		<u>75</u> 35	18"					3-inch as spean for composite	
	104		- 15			-			HTAN Sample listed above	
	105									
	[<u>65</u> 45						2" sovon . (Hyru)	
			<u>37</u> 46	24"						
	7-7-		<u></u>					1		
										ĺ
	110		35							
			36	24"		m_r ►			2" spaan . (HAU)	
	112		35 45	• 7	trace "	M-C sand			_	
	**									
[115		28						a" - (ŀ
{		<u> </u>	45 70	18"	frace	Faravel			a" spean . (HADU)	
			100/7"			5				
]							
	120			1						

•••

BOR	ING NO	DOA.	ot	B NO.	19740 REPORT ON	DA	NTE 5/19/94	
	SUND EL			MSL MLW BASE	SUBSURFACE EXPLORATION	SH	EET OF	
100 5.T	ATION C 2BK	, BER	GEN A.	ne, Ke	ARNY, NJ PROJECT ARNY, NJ PASSAIL RIVER FORD PRO TECTON PRO	J. UN	in	
GRC	WDW/	ATER C	BSERV	_				┢
					DURING DRILLING SUBSEQU	JENT T		
	DATE DEPTI							
	CASIN	IG AT						
) מסחונ		DDUCE	DURI	NG DRILLING AT FEET 🔲 NO GROUNDW	ATER I		
REM	ARKS							
FYPI	ORATIC							
			T	0				
z		ŇO	R OWS	NN	CLASSIFICATION - DESCRIPTION	ł		SAMPLE STOBAGE/CORE BOY NIMAGED
ATIO		19 19		LER	DEPTHS OF CHANGE	2	CHARACTERISTICS UNUSUAL CONDITIONS	ľ
ELEVATION	рертн	CASING BLOWS	SAMPLE OR PROBE BLOWS	SAMPLE/RUN NO	UNIFIED SOIL CLASSIFICATION	LEGEND	REMARKS	
	120		45				2" spoon . (Hyru)	┢
			5¥ 63	10"	Mod-res-Drown, M-C SAND w/	Sm	- spoor . (main	ļ
	122		65		some silt and trace F gravel		······································	$\left \right $
							-	
					•			
	;25		47					-
			92	10"	Mal-rek-brown F. SAND interbelled		2" spoon . (HVU)	
	+2-1				wil little clager silt		· · · · · · · · · · · · · · · · · · ·	
							3 1 1 1 1	
	[]							
	130							1
			71 96 100/3"	12"	Mod-red-brown CLAYEY SILT &	m	2" spon you	
			<u>10072</u>		gray, subangular to rounfel,			
					FGRAVEL			
	135							
			50 55 7)		Mod-red-brown SILTY F. SAND -/		2" spoon . (HAU)	
	-137		<u>12</u> 100/5	2"	trace clay lenses.			
	1				-			1
	140							
NY FOR				!				<u>I</u>

4

p.67

BORING NO. IT- 28K-PBP		9 740			NTE 5/19/94 - 6/3/44	-
GROUND ELEVA	MLW BASE				1EET <u>8</u> of <u>21</u>	_
LOCATION SITE JBK BE			PROJECT PASSAIL R. FLOOD PROTECTION PRATE	. UN cT	Passale Fm.	
GROUNDWATER	OBSERVATION					┢
DATE		DURING DRI		UENT T		
DEPTH	_	- <u>· ·</u>				
CASING AT TIME						
ELAPSED 1		-				
	ODUCED DURI	ING DRILLING	AT FEET 🔲 NO GROUNDY	VATER I		
			B Drilling Landing NJ		over @ 146' with B-61	
		OLL CON	ing. See note below right	чт .		
	- - -	T	······································		T	12
S S	SAMPLE OR PROBE BLOWS SAMPLE/RUN NO	CL	SOIL AND ROCK ASSIFICATION - DESCRIPTION	1	SOIL SAMPLING AND ROCK CORING DATA	
NO BE	BLOR UN		DEPTHS OF CHANGE		CHARACTERISTICS	
ELEVATION DEPTH CASING BLOWS	SAMPLE OR PROBE BLOWS SAMPLE/RUN NC	U U	NIFIED SOIL CLASSIFICATION	EGEND	UNUSUAL CONDITIONS	
				Ĕ	REMARKS	
140	<u>49</u> ייך <u>ייקטי</u>	moo-res	-brown F SAND & CLAY		2" span . (4 Nu)	
	<u> </u>		w/ weathered rock fragments	Se/	- Used boun-pressure for	ł
) (GI	ACIAL TILL)	121		1
			-			
		Boul	DER/LEDGE from			
	100/0- 0"	1~	141' to 148'		2" soon . (4/44)	
	100/0° 0"				2* 110 100	
					2" spoon attempted, no luck.	
					After 5' of very hand stuff, we assumed it was rock w/	
					surface @ 141', and set caving	
					to 146'. B& B Drilling took	
					over, and cored from 146'-	
		GLACIA	L TILL		150', apon which we discovered it was Till. We	
			-		teened to 165' (10' into	
					competent rock), w/ 4" rolt.	
					bit, grouted hole, then	
		Compe	tent SILTSTON'S bedrack		Legen Loring @ 159'	
			cic Frances)			
- +59-					Rock care 1 from 159'-163'	
<u></u>					957. recovery 20% RAD	

DEL	LING LOG	. 1	DIVISION	111.17	ALLATION			שונד ק סר ג'ן שוני
T PROJECT		i			TE MID T		• <i>4"</i> HG	Usamond .
Passaic	<u>River FL</u>	and	PROTECTION PROP	Tem	21709 708 2117		N KIOWI (TRA av A	40
E LOCATION WINE	KshAft	2.8	K KerRAY N.	J			HONATION OF BRIL	
E DHILLING	AGENCY				MODIL	B-6	1	
A HOLE NO.		<u>متيلا:</u>		PPOI	OTAL NO. (PLES TAR	10001000000 10001000000	
			IT-28K-	TDUI	OTAL HUM	IER CORE		
E HAME OF	JG Myt	feml	hin	16. E	LEVATION			+ msl
4. DIRECTIO	H OF HOLE			14. D	ATE HOLE		5/16/94	6/16/94
Q VENTI	CAL []14	C	DEC. P	NOW VENT.	LEVATION			
7. THICKNES	S OF OVER	INRO					TY FOR BORING	99
S. DEPTH DR				19. 55	GRATURE (TOR	
S. TOTAL DE		DLE	510'					ARKS
ELEVATION	DEPTH L	EGEN -	D CLASSIFICATION		RECOV	SAUPLE	(Drilling time, of	ater ince, singly of the first standard
	155 -	٤	TOP OF BEAR	nc.K		+	·····	<i>z</i>
ļ							1	
			Top of bedru Drilled throu	4h to 159'		f .		
	Ξ			C.	1	1		
	-				Ĩ			
	1					1		
	1 .		1				1	
ľ							1	
	Ξ.						ł	
1	159		100 40		Ara	0 1	<u> </u>	
	1		10 R 4/6 SILT: medium - Bedded	scone,	95%	Run I		
			meanin - Deaded	, '	RQD			
	ヨ			- -	= 2.0%			
	E				Į			
	Ţ				1	1		
			•	•				
	T		1		1			
10	63	7.15	Culture an las me		- <u> </u>	<u> </u>		
14	UME		S-Ltstonr calcateou soft, sliphtly weats afreshed certented,	- IUILY6, medzus rered, VERY fine	95%	Run 2	Cobles from gr	
	нз	_	10 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	بملاحظة معدها	Rad		then clay con	<i>Atime</i>
н	IJ.MB		ridino fentle incl matin Close Me		= 70%	113mm	on Fractures/5	e Hales. Et
	ms						WARE IN # 150	Pm/burelsau
Į	-3-		lipert wide separati				WATCH IN & 150 CRED CD CORE BIT: LOUA SUGFACE DIAM	UCAR SERTER
	1			CONFORMABLE	:			
			SHILE CALCATEOUS 1	nrt/ J			-Cal'C3 EN MA	TLI X
			Soft, slightly wear fine grained dearse flat	there's very . , then bedding	;		-10 R 1/6 CLAY SC	~ 0.5
	-1		FLAT	, <u></u> - · ·	1	1	IN NO LINGSO	
					1	1	ICR Vie CLAY SC	.tm ~0.75"
11	68-1-				<u> </u>		clay	
	8.2-	$\langle \rangle \rangle$	IOR % calcareous sh	ale and	100%	RUN	1 Fracture/S.	3'
	<u>+</u> }∕`	소기	Calcareous selfston approximately 0.2	5" three K	RQD	3	Rest of core	Broken, AB
16	9.2		anyodues/CaCD2), a	-d vuqs			-theoremour R	m, Inside
i	ME1	U)	*p/Lox. 10%	on Form ABLE	15%	(40 <i>ms</i> n)	vugs rock alto	ns to a
17	0.2	\mathbb{N}	Selfstone same as	1631405	1	Ē 1	108472 clay	c <i>ftewsse</i> g
	크스	习	and Annuadules of i	0.2" dimeter conformABLe			0.10" INTO AC	CARS LOBE
15	η. <u>Σ</u> Υ				1		hoec weathere	loftwo
''	'	-1	Shales sime as at 16	CONFOLMABLE			Rock types Broken Rock	
	<u></u>	Ē	selfstone sime as a	Conformatile			Loss water fr	
17.	2.2	Į.	10 R. 1/6 CALCHREOUS S.	HALE And			affrox. 100gal	
	- Al l	£	calcaleous selfstrate	uns falled		μ	2~167° thru [/	3.5
17	3.2-		where clarg, yugs my	i Caloz		ļ	5gfm In/ 14gpm	DUT
	1		migaues	-			VI	
	1	ľ	core barred plugges		- 7			
					. 1			
	E		sec wext page			4		

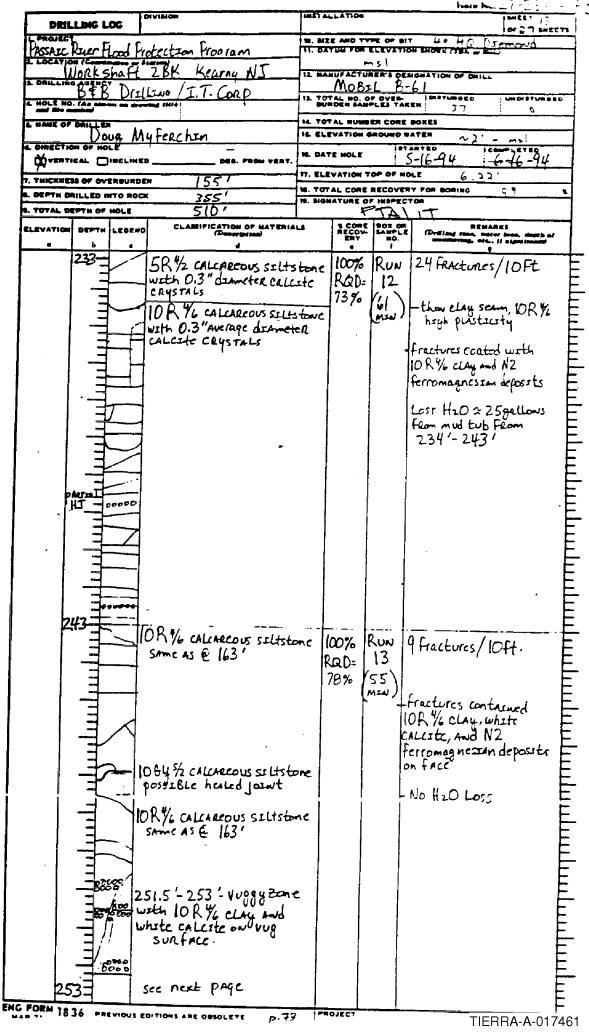
Dell	LING LI	x	DIVISION	MATAL	LATION		DHEET 10 OF 27 SHE
			0 0	146. SIZ1	-	-	4" HG UZAMENT
Passarc	KIVER	1001	Pictection Program				N SHOWN (781 - 1812)
HL LOCATIO	shaft			12 -		•	IGNATION OF DRILL
1 DRILLING	S AGENCY				MOBIL	<u>F-6</u>	
A HOLE HO	B Dri	LLA	/ I.T. Conp	11 107	DEN SAMP	LES TAR	
and 84+ m					-	TA CORE	
L HANE OF		Mufr	RCHIN			ROVED W	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
4. OMECTIC				H. DAT	E HOLE	187	5-16-94 -646494
	••• D	***	046. PRON VER	· .			
7. ТИСКИЕ		REURO	en 155'		VATION T	_	T POR BORING 79
		-	× 355'		ATURE OF	INSPEC	POR
S. TOTAL D	EPTH OF	HOLE	510'		· · · · · · · · · · · · · · · · · · ·		JALIT
ELEVATION	DEPTH	LEGEN	D. CLAMIFICATION OF MATER		RECOV	BOX OR SAMPLE NO.	REMARKS (Dyding time, meter less, depth o
	•	e			ļ .	"	weathering, ere., it aspettesant)
	173.5		-10R \$6 siltstone same	is at	1		15 fractures/10ft
1	ME		-163', Cacozanygoulos m			0	Í .
			-Zan al alterration	AMURAN	929	Run	
			Zone of alterzation IN	2x 0 10"	10/0	4	
			And VURS extenting Appen Into TOCK GAREN-CLAY-10	AUZN	irad	1. 5	
1			Track of Carry and I	(1/2)	41%	(BOmen)	1
			Fracture Faces coated wet	ow.		1	
	·		than Layce of CLAY (10	n16)	Ι,	1	
			Icentral FRACEFICE FACES ALSO	o dissplaye	6	l	WATER Loss = 75gallows
	1		a weather sug on surface	. 4.			From tub throughout RUN
			10 04 1/2 CLAY			1	1500m r-1/111 afres
1]				15gpmzw/14gpm out
	-7] .				*
	1		1 '	•-	-		
	<u>ل</u> م ۲		1			i	
	48		T				
			· ·				
	コ						
1			J	ſ			
1 1]				
1 1	7		1		1		
			1	ł	1		
	た	MB	1				
		/hB		1			•
		<u></u>	-				•
	コ	AB -	1	1			
	1			1	1		
1	1						
	<u>, 1</u>						
4 1	63.5 <u>-</u>		10R 1/2 sutstone calcare	ous		RUN	13Fractures/Sft
	~7	-	same as 1631		100%	,	
	ヨ		Vios and Caloz onyaduli epplox. So - BO % pre FL Wet	s I	ROD	5	(USAmond Studded metal)
1			applox. SO - 80 % pre FL Wet	- Holds	55%	73 คงคงไ	HOGAMENTS FOUND IN CORE
			i water	1	~~/° }	- 1	Barrel - some gaugsing of
			-FRACtuce FACES CLAY COALEd	Same]	· /
	ALL I	<u></u>	alterization to a 1064.7/	city	1	ł	Enoken - nough angular class
			some tractures faces appear have freed-mountsian depo			l	-
	1		a them N2 rolar				
		æ		1		ł	vuggy zone
		act to					
↓₩	88					l	(NC WATER LOSS)
4	;		10K 1/6 CALCANEOUS ST LYONE	:	100%	Run I	26 FRActures/SFt.
	±	$\leq -$	Vuggy-some filled with Ca	.co. li	RQD=	Ϊ.	
	-	~)	elter TATION WITHIN VUSS t			, ⁰	NO WATER LOSS
	⊐∠		indu the class	~~	34%	74===¥	
	⊒∓		1064 1/2 chay		ľ	1	
1	_		-Flactures faces IDR4/2 a	Au I	•		
	-	1	conted, rough some with	NS			
		•	ferromagnessan defessets	114		1	
		·		1	1	1	
		_					
	Ŧ					1	
	tin		See next page				
			See next page				

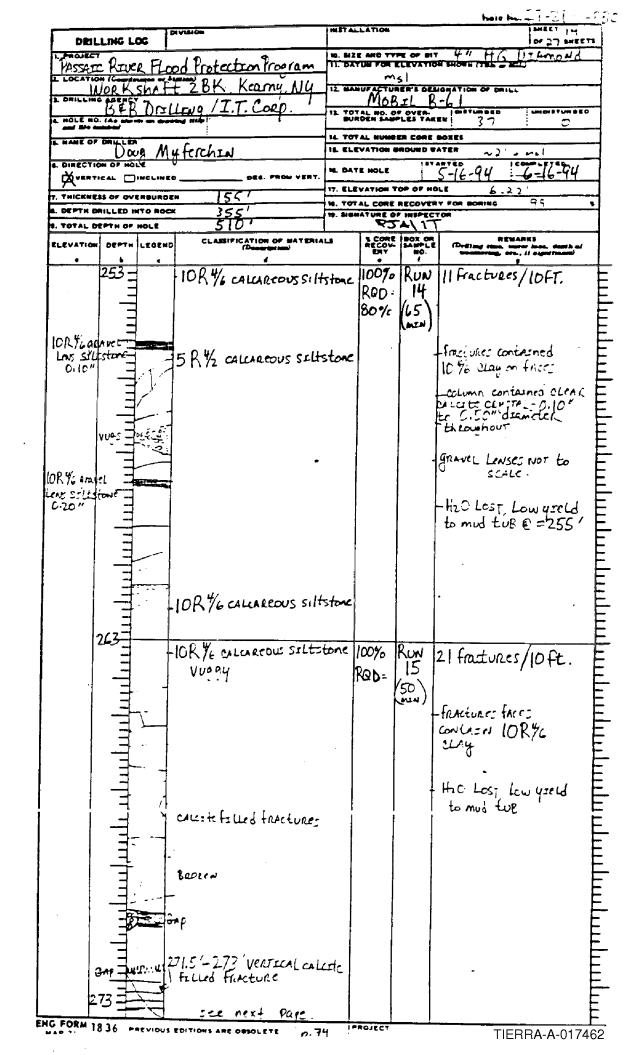
1⁻²⁴ 4 1

SHEET II DRILLING LOG IN. SIZE AND TYPE OF BIT 4 - HG DIA TRAILET nond Passarc River FLood Protection Fronker msl WORKshaft 28K KEARNY. N.J. Z. MANUPACTURER'S DESIGNATION OF DRILL MOBIL B-61 Bt B DAILLING T.T. Coal TOTAL NO. OF OVER-UNDISTURGED 37 ٥ 14. TOTAL HUNDER CORE BOXES IL ELEVATION GROUND TATER Myferchin 0004 ms 5-16 IL DATE HOLE U 6-16-94 -----17. ELEVATION TOP OF HOLE 22 155 THICKNESS OF OVERBURDEN N. TOTAL CORE RECOVERY FOR BORING 99 DEPTH DRILLED INTO ROCK 18. SIGNATURE OF INSPECTOR 355 510 . TOTAL DEPTH OF HOLE 17 1 COR BOX OR BANPLE NO. REWARKS CLASSIFICATION OF NATERIALS ELEVATION DEPTH LEGEND 10R% calcadeous SILtstone Vuggy 193 100% RUN7 37 FEALTURES/IDFT. Lined with Altered elay (106412) RQD= (244) (men) ferromagnestan minerals or 50% SLOW PROGRESS-METEL (#2) Caloz Ampa dulos present Fracture Faces IOR% clay contrag some with N2 Fortomagnestan FRAAMENTS IN BORSNY FROM BROKEN COKE BALLEL-BIT n To Be CHAnged. nincrals NO WHICK LOSS hB 103. NO ICK : Calcareou: siltstone 100% RUN S & fractures/10FT to 202.1' conformatic ROD= ALL PRACTURES coated with ICR % CALCALETU: CHALE. SAME AS AT 166.5' WOLL IOR YE CALCAREOUS (63min) 101. 46 clic 87% vios lines with 100872 siliston nodules vogan Altered CLAYS AND N2 - CONECRMABLE OF. 1/2 CALCARROUS SILLitone ferromagnessandeposito Time ANT AS AT 163' YUARY NO WATER LOSS. BI CHAnged After RUN 7 brt was serverly workn . contourna BLC ICRY's calcarecus shall same no dia monde remained 1- x- 164.5 VUQ24, with SITTS How nodules Est changed to Longyon r senses II, smpreynated diaminds. MB 7 4 Healed jozars -MB Set prat page ENG FORM TR 34 ----

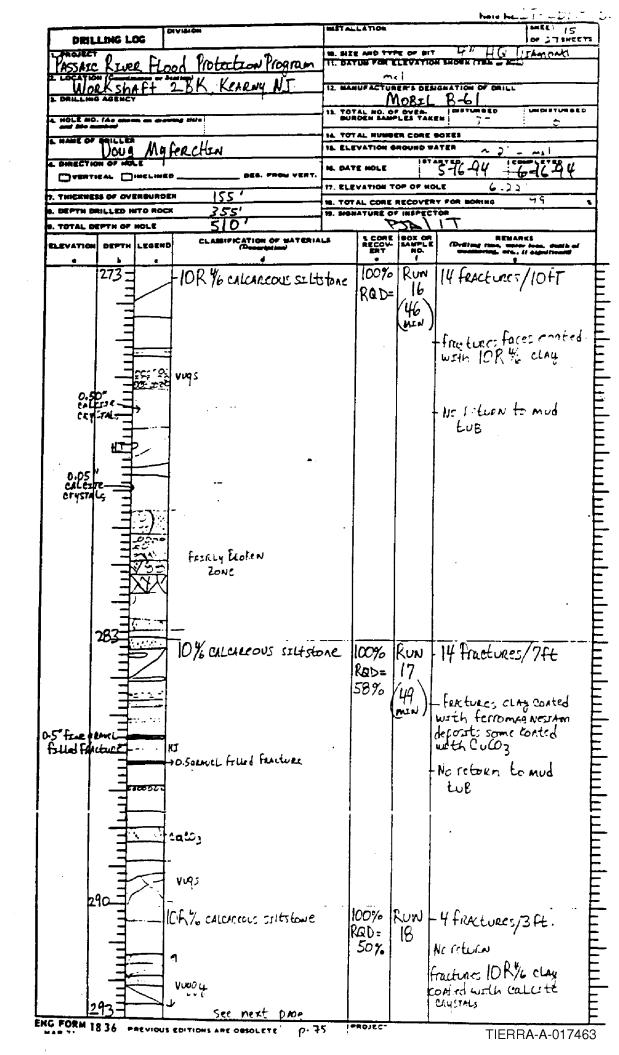
TIERRA-A-017459

ACSATC KTUREN FLOON PICT DON PLATENCY NJ LOCATOR CONTROL PLATENCY NJ LOCATOR CONTROL NO. SOULD CONTROL NO. SOUL	Hole No1-21+++-
ARABEST MAGEST MARKEN MARKENNEN MARKENNENNEN MARKENNENNENNEN MARKENNENNENNENNENNENNENNENNENNENNENNENNENN	SHEET 12 OF 27 SHEETS
E CENTRE RELATION OF REAL PARTY RELATION RELATION RETURNS TO BE RELATION AND RELATION RETURNS TO BE RELATION AND RELATION	4" HG USAMOWA
The ball the test of the ball the test of the ball the b	
Leven the definition and the set of the set	,1
L BARE OF PRILLES MU FERCIAIN L DUCE MU FERCIAIN L DATE HOLE L DA	N 37 0
DOUGE THE PARTY ENDINES	
CAVENTICAL DIRELINED DEFINITION OF MATERIALS TO ADD THE ADD T	
7. THECKNESS OF OVERBURDEN 1557 L. DEFTH OF ALLCOME NOTE $355'$ 5. TOTAL DEFTH OF NOLE $510'$ ELEVATION DEFTH OF NOLE $510'$ 2.12 2.12 2.12 106. Y/, CALCARDOUS SHALE SAME AS $106. Y/, CALCARDOUS SHALE SAMEAS 106. Y/, CALCARDOUS SHALE SAMEAS 100. Y/, CALCARDOUS SHALE SAMEAD 100. Y$	
E. TOTAL DEFTN OF HOLE 510' ELEVATION DEFTN LECEND CLARENC ATTOM OF BATEDIALS BECK BOX OF A DEFTN LECEND CLARENC ATTOM OF BATEDIALS BECK BOX OF A DEFTN LECEND CLARENC ATTOM OF BATEDIALS BECK BOX OF A DEFTN LECEND CLARENC ATTOM OF BATEDIALS BECK BOX OF A DEFTN LECEND CLARENC STATEDIALS BECK BOX OF A HJ PR A SE 166.5' CONFORMABLE RQD- 2176 33mzw MB 10 R % CALCARCOUS SILLStone RQD- 2176 33mzw WUG 3 219 219 219 219 219 219 219 219	FOR BORING O.C. S
217 217 HJ $=$ 10 k $\frac{1}{2}$ (calcaecous SHALE SAME HJ $=$ 10 k $\frac{1}{2}$ (calcaecous Stitstowe Same AS@ 163' ungay column mostly Elloken - weatered by Ugs $=$ 10 k $\frac{1}{2}$ (calcaecous Stitstome Nostly Elloken - weatered by Ugs $=$ 10 k $\frac{1}{2}$ (calcaecous Stitstome Nostly Elloken - weatered by Ugs $=$ 10 k $\frac{1}{2}$ (calcaecous Stitstome Nostly Elloken - weatered by Ugs $=$ 10 k $\frac{1}{2}$ (calcaecous Stitstome Nostly Elloken - weatered by Ugs $=$ 10 k $\frac{1}{2}$ (calcaecous Stitstome Nog $=$ 11 k $\frac{1}$	5Å IT
212 HJ HJ HJ HJ HJ HJ HJ HJ HJ HJ	REMARKS (Delling thes, state lass, depth of
HJ IS IS IS IS IS IS IS IS	weathering, see., if significant
$\frac{100}{100} = \frac{100}{100} = $	I FRActure/6ft mosrly E
210 210 210 210 210 210 210 210	fractures coated with
VUgs 247 247 Vugs Vugs Vugs Vugs Vugs Vugs Vugs Vugs Vugs Vugs Vugs Vugs Vugs Vugs Vugs E 221'-223' Vugs Vugs E 221'-223' Vugs Vugs Vugs E 221'-223' Vugs Vugs Vugs E 221'-223' Vugs Vugs Vugs Vugs E Vugs Vugs E 221'-223' Vugs Vugs Vugs Vugs E 221'-223' Vugs V	IOR YG CLAY E
Vugas 247 247 10 k 7_{e} calcaerous siltstone RD^{2} RD^{2} ID $Vugas \in 221'-223'$ RD^{2} ID RD^{2} ID RD^{2} ID RD^{2} ID RD^{2} ID RD^{2} ID RD^{2} ID RD^{2} ID RD^{2} ID RD^{2} R	, F
2.19 2.19 10 k γ_{e} calcaerous siltstone $IO0\%$ RUN $RDD= ID$ RDD= ID B1% (Yomsu) $f2232323227.5201 m a contains 100% Run 2RQD=II100%RQD=II100%Run 2 RQD=II100%Run 2Run 2$	SHART COURSE STAKE STEED
219 10 6 % calcarcous siltstone 100% RUN I Rob: 10 10 6 % calcarcous siltstone 100% RUN I Rob: 10 81% (46mm) f 10 81% (e Vugay Zowe Bicken by bat. E
249 249 249 249 249 249 249 249	- 110 HzC Lost
10 L 7 = CALCARCOUS SILEStone 100% RUN 1 ReD: 10 Nuggy & 221'-223' Nuggy & 221'-223' 10 R % calcareous SILEstone 100% Run 2 Nuggy & Calcareous SILEstone 100% Run 2 Same as @ 163' 223'-227.5 'column contains dispensed 1'-0.1" clear celerte num Nuggy & Calcareous SILEStone 100% Run 2 Nuggy & Calcareous SILEStone 100% Run 2 Same as @ 163' 223'-227.5 'column contains dispensed 1'-0.1" clear celerte enystals - subrand codex. 2000 224'-726'-Veetical clear	HJ:heard josurt E
10 L 7 = CALCARCOUS SILEStone 100% RUN 1 ReD: 10 Nuggy & 221'-223' Nuggy & 221'-223' 10 R % calcareous SILEstone 100% Run 2 Nuggy & Calcareous SILEstone 100% Run 2 Same as @ 163' 223'-227.5 'column contains dispensed 1'-0.1" clear celerte num Nuggy & Calcareous SILEStone 100% Run 2 Nuggy & Calcareous SILEStone 100% Run 2 Same as @ 163' 223'-227.5 'column contains dispensed 1'-0.1" clear celerte enystals - subrand codex. 2000 224'-726'-Veetical clear	E
10 L 7 = CALCARCOUS SILEStone 100% RUN 1 Rada 10 L 7 = CALCARCOUS SILEStone 100% RUN 1 Rada 81% (46ms) f 10 L 7 = CALCARCOUS SILEStone 100% Run 1 Same as @ 163' 223'-227.5 'column contains dispensed 1'-0.1" clean certains 223'-227.5 'column contains dispensed 1'-0.1" clean certains 75% (104) 2 Nun 1 Nun 2 Nun 2	F
10 L 7 = CALCARCOUS SILEStone 100% RUN 1 Rada 10 L 7 = CALCARCOUS SILEStone 100% RUN 1 Rada 81% (46ms) f 10 L 7 = CALCARCOUS SILEStone 100% Run 1 Same as @ 163' 223'-227.5 'column contains dispensed 1'-0.1" clean certains 223'-227.5 'column contains dispensed 1'-0.1" clean certains 75% (104) 2 Nun 1 Nun 2 Nun 2	CORE BARREL PLUgged with E
Vuggy & 221'-223' Rol: 10 Honsu) f 10 10 10 10 10 10 10 10 10 10	12 fractures/4,1Ft.
Vugay & 221 - 223 10AP 223 - 070000 Vertzert Frafue Vugay & 221 - 223 10R % calcareous SIUtstone Same as @ 163' 22-3'-227.5 'column contains disspensed 1'-0.1" clean celerte enusines - subrand codex. 2000 - 224'-726'-veetical clean	
Vusque Bears 223 Corresse IOR 1/6 CALCAREOUS SILISTONE 100% Run 2 Same as @ 163' 223'-227.5 Column Containes 102' 11 223'-227.5 Column Containes 100% Run 2 RQ D= 11 104 MIN) 2 Vusque Bears 2000 Containes 2000	FRActure faces coated with E
Vertication Verti	10 R 4/6 CLAY E N- 510LEN ZONE E
Vuesti disspersed 1'-0.1" CLCAR CELLATE Vuesti disspersed 1'-0.1" CLCAR CELLATE	C - GRAVEL ANALLAR CLAST.
Vuerison France AS @ 163' France AS @ 163' 22-3'-227.5 'Column contains dispersed 1'-0.1" CLEAR CELETE Vuerisone Constants - SUBrand CD ex. Zone - 200000 - 224'-726'-VeeticAL CLEAR	NO HOC LOST
Vuntier SAME AS @ 163' Frantie 22-3'-227.5 Column contains 75% (104) drspersed 1"-0.1" CLEAR CELETE Vuntie BORDED ERUSTRIS-SUBFORD CODEX. Zone 200000 CODES 2010 224 - 7.26 - Veetical CLEAR	E
Vuerison France AS @ 163' France AS @ 163' 22-3'-227.5 'Column contains dispersed 1'-0.1" CLEAR CELETE Vuerisone Constants - SUBrand CD ex. Zone - 200000 - 224'-726'-VeeticAL CLEAR	10 Erectures / Inth
Vusit Book Constants - 223'-227.5 Column contains 1570 (104) disspensed 1"-0.1" CLCAR CELCITE Vusit Book Constants - subrand Colex. 2011 - 224'-726'-Vertical CLCAR	20 Fractures/10Ft E
2014 - 224 - 726 - Vettch clark	230'-233'= 200 and F
THE 224'-726'-VERTICAL CLEAR	230'-233'= 200 gal E
Calcote Falled Fractures	E E
	E
	· F
	E
	E
	F
	E
	Ē
	Ę
	E
	E
- CCCCCC VUCCU Zone	F
	R 1/2 calcaleous siltstone
See next page	ALCENE Crystals-subrand -
G FORM 10 74 D 32 PROJECT	TIERRA-A-017460


- 13 19 19


.

•


.

۵. ور مورسه ا

.

DRILLING LOG	(hivida Cen			HIST AL			OF 27 SHEL
bassare Ruez FLE	od Protect	In PRODE	Ann		E AND TY		R BHORN (THE DISAW (THE)
2 LOCATION (Continues of WORKShaft	ZKK.	KEARNY	NJ	12. 844	Th C	ER'S DE	GNATION OF DRILL
2 DRILLING ADENCY		T. Coep			Mor	et	1000TURBED UNDISTURBE
4. HOLE HO. (As shown an a	anter Prist				AL NO. OI		em 37 0
L HAME OF DRILLER	erchan.				AL HUNDI		1770
L DIRECTION OF HOLE U	er(IVN.				EHOLE		
TABALICAL DINCLI	to	DE6. PR				07 07 H	
7. THICKNESS OF OVERBUR		55'		N. TOT	AL CORE	RECOVER	T FOR BORING 99
S. DEPTH DRILLED INTO RO S. TOTAL DEPTH OF HOLE		510,1		19. SIQN	ATURE OF		T
ELEVATION DEPTH LEGE		SIFICATION O			1 CORE RECOV-	BOX CR	REMARKS (Drilling rame, mover level, depth of measuring, ore., if algorithment
243	. 10 R %	CALCARCO	ous silts	tone	100%	RUN	10 factures / 6 FT
		Ch			ROD=	19	10 1.00 1.07 671
	Vugey				42%	(60 min)	1
LASTS ANGULE	7					(<i>m</i> īn)	
Fact with	4						
weathered	7					1	
calcite deposits and	-					_	Ferture Face much
chay =	. 1.002				i i		Frecture face rough IDR Ve clay coried
	× V-383						
							-NC RETURN to tub
			٠				
	beroc						core barrel plugged queth
299	INR W	CAICALEOU	r Srldel		100%	RUN	
	-		ust		RQD=		-No retarn to tub
POLIT RI	-				99%		-HJs throughout core except for Vuggy zone
							exept for Vuggy Zowe
<u>}</u>	-						
tregt	T MBs						
							·
303			<u> </u>				
	10 K %	CALCACEOU	s si Lt st	one	00%	Runu 21	11 tractures / 8.5Ft
	-			h	RQD =	21	/ · -
VURGE	НЈ				65%		
	+						· · · · · · · · · · · · · · · · · · ·
Kolua -	·l					+	IOR %: CLAY on Fracture Fries
	HJ			· [ttes
VU80 F						ĺ	•
						1	
1	ļ						
						1	
	MC				ĺ		
	1						
[,]	1						
					ł		
	1						
							•
Nucc E							
3115-7			······				Core barrel plugged grave
E		I	n d a a			[
	_r (next "	PAge -	1	1	- I	

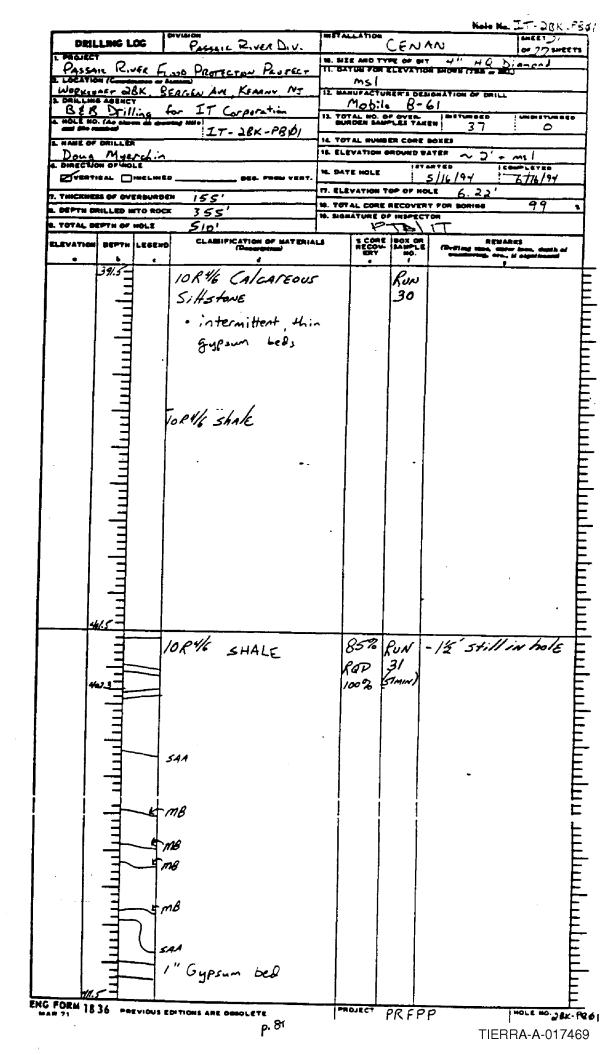
.

0.000	LING LO				LLATION		Hois KE TT DRK F
L PROJECT			PASSAIL RIVER DIV.	1 10. 04		CEN	AN OC 77 SHEE
L LOCATIO		-	200 PROTECTION PROSEC	- IL B	MS	ELEVATI	NA RHOWN CHER - HELL
WORKER	5- 28	<u>K</u>	ERGEN AVE, KEARNY NS	12.80	HUPACTI	URER'S DE	
BER	$\underline{\mathbf{Dr}}$	-	for IT Corporation		Mobil		61
			IT- 28K-PBØI	-			- 31 0
L HANE OF	Myer	chia				GROUND T	
	N OF HOLI			-	TE HOLE		ARTED ICOMPLETED
7. THICKNES					TION		
	_					RECOVER	TOR SORIES 99
. TOTAL DE	PTH OF H	9L E	510'			ACA	T
ELEVATION .	0877H L	EGEWĘ	CLABIFICATION OF MATER		RECOV	SAMPLE	REMARKS (Defined spec, server bass, depris of seventeering, one, if experiences
ł	3/1.5	/	IOR the Calcareous S	Hotor	1009	6 RUN	-16 Fracturecha
	=				1 ROD	22	-16 Fractures/10' No Return to Mud
	1	/	solid		63%	(55mm)	/
	E	_	VUKS]		-No RETURN to Mud
	_ ∓		mB		· .		Tub
	£	\leq			ĺ		
	F	\geq	- CACO3 X/5			1	
			Solid				
	;	-1					
		1	" class	j			
	H	A	-1" Chy NARVE GEAM HAR AUSTRITY -				
	1	7	•			-	
	Ŧ	7					
	7						
	7	7	1054 5/2				
		F	vuts" HJ				
			solid				
	_∃ø	82	m8's				
	مرجمان	7					•
	1		IORY/6 CALCATEOUS	+	100%	P.	
	_=		Siltstave		en l	23 -	16 Fractures /10'
	Ŧ	<u> </u>	J11737946			1 cc.	
	_t	7				-	No Return to Mud
	'∖F	\rightarrow	Vertical calcite fixed Fracture			1	Tub
	<u> </u>						
						-	Fractures - 10 Are
	Ĭ						Conted with white Calcite, others are
	E					'	CATCINE, OTHERS ARE COATEd with IOP & clay
İ				1	1 I		rough faces.
i	<u> </u>	-i		, I	1	1	J
		-1	a l'altradadi				Ē
	3=	K	1 wide HJ 10 Gy th		1		le l
	Ŧ	7					Ē
1	4-	1			ĺ		
	1				1		F
	╶┨╶	Z					<u>t</u>
	1/		,				E
		2 2 ~	Gypsum seams, F.b. row Crystals / that Can b. Removed As disks	r			F
	3		crustals 1" that Can b	د			
		1	Remarked as "diame"	1	1		1
23/ . FORM 18 3		æ.	REMOVED AS distas.				E

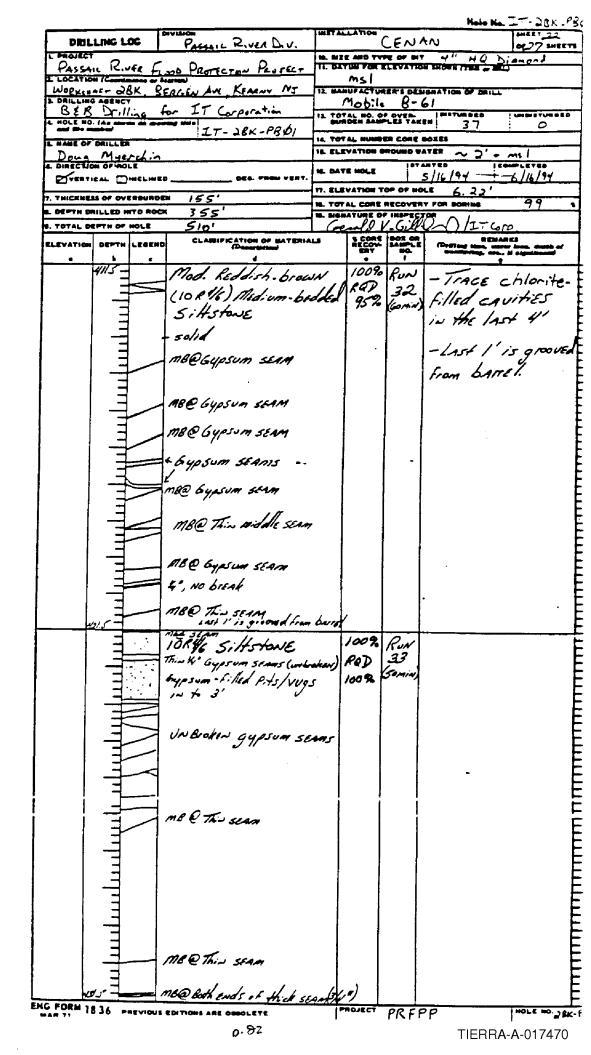
.

. .

TIERRA-A-017465


Noto No. IT- 28K -PSE/ DEILLING LOG CENAN PASSAIL RIVER DIV. 07 0.00 PASSAIL R. VER FL. DO PROTECTON <u>a---</u>J PLIFELT OCATION (C. msl WORKSWAET DBK. BEAGEN AM. KEARNY NJ BALLING ADENCY BEB Julling for IT Corporation HUFACTURER'S DEMONATION OF OR Mobile B-61 TOTAL BO. OF OVER HOLE NO. TAS BTL 37 IT- 28K-PBØI 0 A TOTAL NU OF DRILLE RE BOIES Dona Myerchin 18. ELEVATION O OUND WATER 2 + ml ABTE N. DATE HOLE EVENTICAL DINCLINED 5/16/94 6+16+94 EVATION TOP OF HOLE 23 THICKNESS OF OVERBURDEN 155 TOTAL CORE RECOVERY FOR BORING 99 DEPTH DRILLED INTO BOCK 355 TOTAL DEPTH OF HOLE 510' ∠ ₽ CLASSIFICATION OF MATERIALS S CORE BOX OR RECOVERANCE BRY BO. REMARKS DEPTH LEGEND 221.5 10R 1/6 Cakareous Sittstate 100% RUN 4 Fractures/10 44 SEAM Solid 24 Fractures calcite ROD 100% (62mm) (white) Filled 0.25 Gypson Stan No RETURN 2" Gyarin Sent HJ below SEAM dia co, GO3 0.10" bypsum Stan ca co, Servis Not to scale. TITTE 2 GYPSVA SEAM 10R 1/6 CALCAREOUS, 100% -11 Fractures/10' Run Siltstone Solid RAD 25 - 7 Fractures conten 982 Winner) NJ with white Ca CO2 ыJ - 4 control with 10R4/6 CLAY All rough FACES broken une. -No return to 06/13/94 06/14/194 Mud Tub. 2 94,05 m stan ENG FORM 1836 PREVIOUS EDITIONS ARE OBOLETE PROJECT PRFPP HOLE NO. 28K- PEGI p. 78 TIERRA-A-017466

DRILLING LOG	PASSAIL RIVER D.V.	INST ALLA		JAN 100_27 542
PALCAN R.VER	FLOD PROTECTEN PROFEC	18. 142E A		
L LOCATION (Continues	ar fantim)	— m;	51	-
1 DRILLING ADENCY	BERGEN AN KEARNY NS		bile B-	ENGRATION OF DELL
BEB Drilling	for IT Corporation	IL TOTAL	NO. OF OVER	
L HARE OF DRILLER	17-28K-PB\$1		WINDER COR	t eaxts
Dowa Myerch a DMECTION OF HOLE	in			TATER ~ 2'+ msl
L DIRECTION OF MOLE		. H. DATE H	NE I	5/16/94 -6/16/94
7. THICKNESS OF OVERSU		17. ELEVAT		
L DEPTH DRILLED HITO R	ocx 355'		DRE RECOVE	CTOR BORNA 99
S. TOTAL DEPTH OF HOLE	Sini	1		
ELEVATION DEPTH LED	(and the set of the s		COV- BASTPL	R REMARKS
357.5 -	10RUK CALCAREOUL	- 10	02 0	
	Siltstone		D= 26	- No return to Mue
	SITSINC		2% (59 mm)	100
	7			- 3 Fractures / 10'- white calcite
	TAJ			white calcite
		ļ		COATING, rough
				- 10 gyps um sent 0.10" thich to 2"
				-10 gyps um sen
-]	HJ	1		thick
]				TRICK
	19		1	
		.	-	
-	s			
	7			
	7			
	4			
	4			
36/5-0000	F			Senne what and
	10RA/s CALCATEOUS	100	2 0	SEAMS NOT to scale No return to Mud
F 1	SilfstoNE		KUN	-No rEturn to Mud
E		Kar	2 (27 2 (amu)	Tub
		100	10 TT TT	106 - 1 Fracture /10'rough 10R46 clay coating
				- , riacture 110 rough
EI				10 R 46 CLAY COATING
	HJ .	·		. /2
E				- 12 gypsum ser
				- 12 gyp sum sen 0.6" to 1.0" thick
1				
	HJ			
	HJ			
EI				
	HJ			
		1	1 1	


~

.

	LING LOG	P	ASSAIL RIVER	D <u>.v.</u>	unit al.	(CEN		
1. PROJEC	in River		PROTECTION PL		140. 8128 11. BAY	AND TT			Name
L LOCATR					12 844	MSI		LANATION OF SALL	
S DAILLIN	G ADENCY		N AM, KEARNY IT Corporation	<u> </u>		106:1	⊾ <i>B</i> -	61	
L HOLE HO). (As also as a		1T- 28K-P		11. TOT	AL NO. O DEN SAM	PLES TA	EN 37	
L HANE OF			21-28K-F	501			ER CORE		
	Myerci					· · · ·			- MS I
			DEL PRO		HL DATE			5/16/94	-6/16/94
	IL OF OVERB		55'		-		0P 07 80	NE 6.22'	99
	RILLED WTO		155' 10'			TURE OF	TA 1	T (10)	/
ELEVATION	1		CLABIFICATION OF	MATERIA					ARKS
		4 HU	(P asaryasa d	.	1		BOX OR SAUPLE NO.	-	uber inne, depeis e bes M algeritenend a
	371.5		4/6 CALCATED	15			Rin	00	
			HSTONE			RQD	28	- 9 Fract All coated 10R4/6 Ch	UTES /10
			v/ intermitt	ent.	Ĩ	89%	(ann)	All COAtEd	with
					}			IDRIG CI	AY
1	E I	3	ypson bed	'5				-	/
	-	l				į	1	i .	
	Ε								
1			,						
[TOR	16 shale						
	Ţ	1				ł			
				-			_		
	1								
						ļ			
	7	┣	11 . 1						
	FI	IOR	4 CALCATEO HSTONE	Ś					
	4	511	+StorE						
	ТП								
	Ξ							•	
	<u>6/.57</u>								
	1						e.	-No RETUR	1 to M.
	E					ľ		TU6	<i>↓ /<i>↓ /</i>′/0</i>
	1						-	100	
ļ	Ţ	1							
	Ξ								
	Ξ								
								•	
	T								
	Ŀ_					<u> </u>	1		
	h.uhu əhrutuu						1		
	T								
	1								
[Ŧ								
	Ξ	1							
	1								
	E								
	5-1								
G FORM 18	36		IL ARE DEIDLETE		PRO	אנכד	PRFP	P	

· • • •

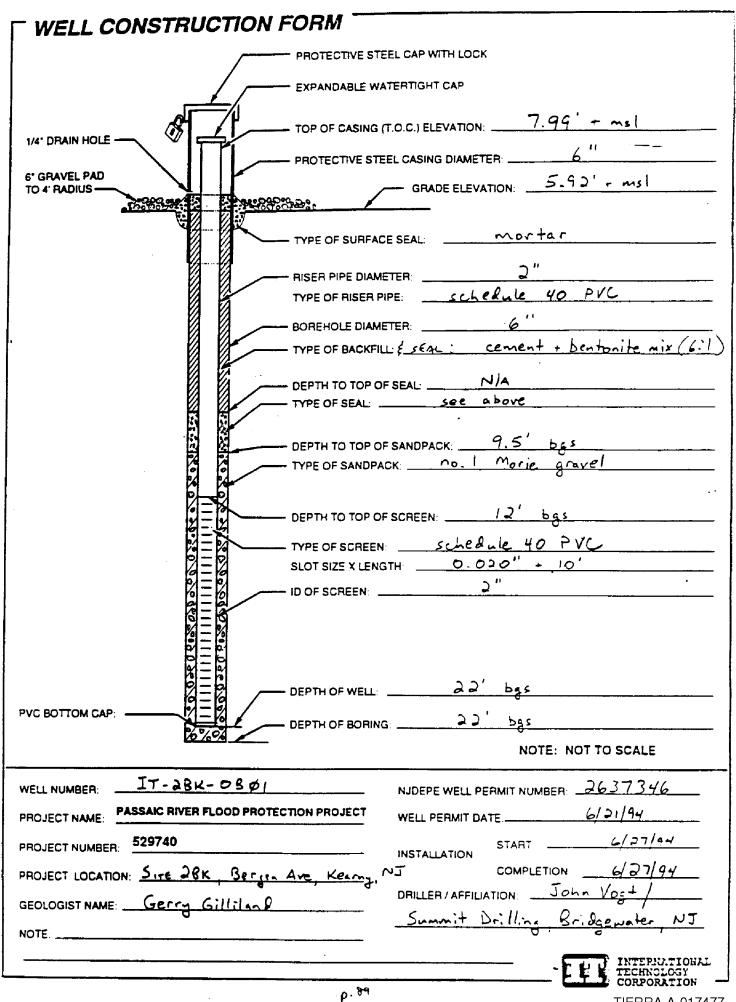
Kalo Ha IT-28K_PB\$1 MEET 23 IST ALLA TON CENAN DEILLING LOG PASSAIL RIVER D.V. RAJEC 18. MIE AND TYPE OF MIT 41 R. JER FLOD PROTECTON PROTECT HQ Diamond TON INCOM msl WORKERSET 2BK. BEARE Ns MANUFACTURES & DEMONIATION OF BRILL Mobile 8-61 EB Drilling IT Corporation for TOTAL NO. OF OVER. BURDEN SAMPLES TAKEN 37 0 IT- 28K-PB;\$1 TOTAL HUMBER CORE BOXES Myerchin IL ELEVATION GROUND TATER Dong 2 \sim . msl LETER TE HOLE 194 6+16/94 2 VERTICAL DING 5/16 TOP OF HOLE ٥ ENELS OF OVERBURDEN 155 99 TH BRILLED MITO ROCK 355 17-6-TOTAL DEPTH OF HOLE 510' 6.L S CORE BOX OR RECOV- BASFLE ERY BO CLASSIFICATION OF MATERIALS DEFTH LEGENO ------Filled Pits Nugs TOR THE SIL+ STONE 992 Run Pap 34 4015-Throughout 992 mA " were the gyps on sean we altered server 2.9'-3' MB@ This SEAM UNBROKEN SEAM 1"bypson sean@6.8-6.9" MB UNBROKEN SEARS 5° SEAM IOR 4/6 Silt store 100% ניטא RAD 1002 Ky Bypsun serm 35 MBQ 2.2 @ SEAM 14 bypsun seam "H" bypsom serm mR@ 6.85 m8@7.5 EPITT 36"56 ADS@ 7.95, 835, 875" All AB 1180 This SEAN (9.4') 180 The SEAN (9.4') Bottem 6" Citered by Bit ENG FORM 18 36 PREVIOUS EDITIONS ARE O PROJECT PRFPP HOLE NO. JAK- PEOI LETE. p.83 TIERRA-A-017471

. . .

						Holo	H. IT-JBK-	P3C
DRILL	ING LOG	PASSAIL RIVER D.V.	MISTA	LLATION (CENI	4N	SHEET JY	TE
AS SAIL	R. JER F.	300 PROTECTON PROFECT					Dianond	_
LOCATION	16 million and A	ERGEN AVE KENANY NO		MS			HLL	
S. DELLING	AGENCY	for IT Corporation		Mobile	<u> </u>	61		-
A. HOLE NO.	(A	IT- 28K-PBØ		TAL NO. O	PLES TAR	** 37	0	
-		: 11 abr - 15 P/						
Done A	Myerchin							4
		D DES. PHON VER	*.	TE HOLE		5/16/94-	<u>+ 6/16/94</u>	
7. THICKNESS	OF OVERBURDE			EVATION T		NE 6.22	99	
	LLED WTO ROC		10. 200	HATURE D	F HIMPEC	TOR /		Ť
	PTH OF HOLE	SID' CLABIFICATION OF MATER		In cont			T CORD	-
RLEVATION	DEPTH LEGENO	(Peertstine)		RECOV.	BOX CR	(Drifting sint)	and a superior	
the second se	50	Sillstone	•	1002	Pur	- Citento	a Roth	
	3	-		RAP	36	ENds by	DATES	F
	-	14" scan		100%	(sain)	out of	barrel "	ŧ
	1			1	[F
		· ·		.	ł			E
		A.+			l]	-	E
		- ()				s I		E
		3/4 "			1	1		F
	L F	MB		1				Ē
1				1				F
		¥q "			-			E
		•	•					E
								F
	K E	MBE SEAM, Slightly as	Enthers	¥ l				E
		- ,						E
]	4" sean						E
		HE SCAT						F
		me, crushed (Vuggy 2000))	ľ				E
		k " SIM @ 9'				•		F
								E
		IOR 4/6 Siltstane & "bypsom serm	· · · · · · · · · · · · · · · · · · ·	1007.	RUN		-	Ŧ
		IUR Y6 SITITUNE	i	RaD	37			E
	E	K"human		1002	(SMM)			F
		w cyprom server			-			E
	1000							F
		-\$¢''						E
		¥°						F
								E
						-		F
	$\frac{1}{1}$		1		1			E
- 1	I	K, *	1		1			F
		74			ļ			F
								E
	<u>19-</u>				ĺ			F
								E
	000	3/8 4						E
	- 0	18						F
								E
				1				F
	3							E
NG FORM		<u> </u>						E
ING FORM 18	36 PREVIOUS	EDITIONS ARE OBSOLETE.	1	PROJECT	PRF	PP	HOLE NO. 28	μ.
		p. 84				TIER	RA-A-017472	

		Holo No. IT- 20K -P30
	DRILLING LOG PASSAIL R. VER D.V.	CENAN OF THE T
· .	PASSAN RIVER E AD PROFESTAN PERFECT	
	LOCATION /Continue of Standing WORKS STATE OBK BEAGIN NS	MS
	BEB Drilling for IT Corporation	Mobile B-61
:	1 HOLE NO. 140 2 IT- 28K-PBØI	11. TOTAL NO. OF OVER- BURDEN SAMPLES TAKEN 37 0
	E NAME OF DOILLER Doug Myerchin E DMECTION OF HOLE	14. ELEVATION PROUND PATER ~ 2' + MS [
	EVERTHEAL DINCLINED DES. PAGE VERT.	
-	7. THEEREES OF OVERBURDEN 155'	TT. ELEVATION TOP OF HOLE 6. 22'
	B. DEPTH BRILLED HITO ROCK 355'	Genell V. Gillo / 12+ Corp.
_	ELEVATION DEPTH LEGEND CLAMIFICATION OF MATERI	ALL S CORT (POX OR) PERMANEN
	· · · · ·	
	480' Sittstart W/By	
· *·		100 % 38 (700 % 57min)
	₩ [']	E
· · · ·	MBE SENT @ 3'	
	24"	
	14"	
~	- IOR the SiltstonE	91% RUN =
		Rod 39
1. C	38"	
	5.	
	3 × 4 * +/-	
	winthered break	
	H. Click	
	Ho - Followed by APB string Break, chand of outhed ()	
	Mark abbert last reus 6 -	
	4- 07'	
		E E
	4015 9.2' Recovered	
		E E
· · ·		E
••**		
		F
	ENG FORM 18 36 PREVIOUS EDITIONS ARE DEPOLETE	PROJECT PREPP HOLE NO. JEK. PRE
· · ·	p. 85	
	•	TIERRA-A-017473

DEL		PASSAIL RIVER I		TALLATION	CENA	Δ1	MELT 26
L PROJEC	T .				TE OF BIT	4" HO)	Dignond
D LOCATH		LOOD PROTECTION PR.	SECT IL	MS!	LEVATIO	व इसल्पत त्यांत्र 🕳 क्रो	
WORKS	AFT OBK	SERGEN AM KEARNY	N3 12 0	MANUFACTU			•
BER	Drilling	for IT Corporatio		Mobile	⊾ B-∢	51	
A HOLE NO). (As sheves de de			TOTAL NO. C	PLES TAKE		
L HANE OF	DAILLEA	17-28K-P		TOTAL RUNS		IOI ES	
Dong	Myerchi	n	16. 0				msl
-		ED DE6. PRO		MTE HOLE		атер — — — 5/16/94 — —	- + / 16/94
	SS OF OVERBUR			LEVATION 1			
	RILLED INTO RO					FOR BORING	99
	EPTH OF HOLE	510'		Erall	V. C.I	60 017+	Ge.
ELEVATION	DEPTH LEGEN				BOT OR	8.511	
•		K' Gypsun SEAM 6)	ERY	HO.	Constraint State, and	rer inne, siepth ai - if algertinanti
	485	TIOR #15 sitt sto.	- NC	700	Row		
			-Ç-	RAD			
				100 %	40 (mm)		
		- 34 bypsun seam			/ مذہ مح		
		Jean Jean		1	[
	1 4.	1		· ·			-
		5° brypsum seam					
				1	[
		4					
		5' bussum casa		1			
		1-					
1		5° bypsum seam B° bypsum seam		ĺ			
.	- 2099		•		-		
1							
	1000	1					
		1		Į į	·		
		1		j l	1		
	MIS	10 R \$16 Siltst					
	-	TOR the Silfst	NE	93%	Run		
		<i>**</i> *	-	ROD	4/		
ſ		here the second		100%			
		Green (CHLOATE)					•
		ts" MBE BUC					
1		GOREN (CMORITE)					
1		<i>K</i> , 4					
ĺ	-32	<i>Б</i> +					
·	- Be	-					
					1		
	156						
				1			
İ		k •			1	-	
		5 * VV * MB@BASZ					
	آآ	k *					
1	-	•		1	1		
	1.0	<u></u> <u> </u>					
		K. 11 man					
		Hy " MB CTOP, SAW		1			
10	/.g' I 28	Hg #			1		
	┉╧╧┥╌╌╸┥			┝━━━━━┃-	<u> </u>		······································
	1 1				ľ		
	1 1		ĺ				
					1		
	= 						
Į	-1				J		
	3 1						
	7						
FORM 18				· · · ·			


....

	LING LOG	PASSAIL RIVER DIV.		CENAN	Halo Ha. IT. DBK -1
Dasca	. River C	DO PROTECTON PROTECT	N. NZE AND TY	РЕ ОР ВІТ 44 47 Ператки вноче	HQ Diamond
			msl		
LOPEKER DALLING	AFT QBK SE	AGEN AN KEMMY NS	Mobile	B-GI	OF BRILL,
L L L L L L L L L L L L L L L L L L L	Drilling for	or IT Corporation	11. TOTAL NO. O	POVER BLITU	
A HOLE NO	. (As shown db grant mhai	1T- JBK-PBØI	ļ		37 0
	DAILLER		18. ELEVATION O		~ 2' + msl
L DOW A	Myerchin		N. DATE HOLE	ISTARTED	I COMPLETED
2 Terr				5/16/9	
7. THERME		155'	17. ELEVATION T		. 22'
	HLLED INTO ROCK	355'		RECOVERY FOR BO	
8. TOTAL D		Sioi	10. SHEMATURE OF		JIT Corp.
ELEVATION		CLARFIFICATION OF MATERIA	LE SCORE RECOVA	BANFLE (Drata	REMARKS of New, water loss, depth of invited, ent., if superimovity
	50/.8'- 08	IOR 4/6 Siltstonie	- 100%	-	2' SAVED
	- 47		Pan	400 - 0	L JAVE
1	−° +	Vuggy. some calcite some green chlorite	RaD 100%	42	
		Some green chlorit	100 %		
	000	<i>v</i>	-		
			1.		
				t I	
	_ 				
			1		
	T				
			l i		
. I.	3~~'	• •.		-	
		V. C. Classes	, /		
		No* s=ft gypsum, MB, C) H * bgpsum seams	uched		
		* " bypsom seams			
		•			
	- 8000 - 8000 - 0090	lx #	•		
I I		14 " "- # 3 / kr"			
 					
1 1	1	BARING COMPLETE @ 5	10'	1	
1 1				1.	
1	1				•
	- 1		1 1		
l l	7			1	
1 1					
	7				
	-1				
	_				
	-		.		
			1		
	3				
					•
			ļ l		
1	-				
1 1	 i			1	
	-				
				ļ	
				ł	
				ł	-
	3 1			1	·
	7			1	
	7				
	=				
1 1	<u> </u>				
Bath 8 -		the second second second second second second second second second second second second second second second s			
ENG FORM 1	36 PREVIOUS E	PITIONS ARE GONOLETE.	PROJECT	PRFPP	

WELL CONSTRUCTION FORM	
	L CAP WITH LOCK
EXPANDABLE WAT	ERTIGHT CAP
1/4" DRAIN HOLE TOP OF CASING (T.	0.C.) ELEVATION:8.46' +s
	CASING DIAMETER: 8"
6' GRAVEL PAD TO 4' RADIUS	GRADE ELEVATION:6.22'+51
	SEAL <u>mortar</u>
OUTER CASING ID/7	YPE OF CASING: 8" Steel
	DIAMETER: / 2 "
DEPTH OF OUTER C	ASING:50' bgs
TYPE OF BACKFILL	<u>Cement-bentonite (15:1) grout</u>
INTERMEDIATE DIAM	
DEPTH TO TOP OF F	ЮСК: <u>155' Dgs</u>
INNER CASING ID/TY	PE OF CASING:4" \$ +ee 1
INNER CASING INTO	BEDROCK: total depth = 146 bgs
DIAMETER OF HOLE	IN BEDROCK:4"
	ICER/SAMPLING PORT:n/a TOP:144' BOTTOM:149'
	ICER/SAMPLING PORT: /7_2'
	· · · · · · · · · · · · · · · · · · ·
DEPTH OF PACKER	TOP:A BOTTOM:A
L_	
	тор: <u>234'</u> воттом: <u>244'</u>
	TOP: BOTTOM:A
	NOTE: NOT TO SCALE
WELL NUMBER:	NJDEPE WELL PERMIT NUMBER:
PROJECT NAME PASSAIC RIVER FLOOD PROTECTION PROJECT	WELL PERMIT DATE: 5/2/94
PROJECT NUMBER 529740	INSTALLATION
PROJECT LOCATION: Worksheft 28K, Bergen Ave, Kenning, NJ	COMPLETION: <u>8/11/94</u>
GEOLOGIST NAME: G.G. Hillion S/P. Angellio	DRILLER / AFFILIATION: DJ Grahamer / Summit
NOTE	& Dong Myerchin / BEB Drilling
	INTERNATIONAL
~~~	TECENOLOGY CORPORATION

3

.



2 7 10 54. * â Ē

TIERRA-A-017477

	MONITOR WELL DEVE	LOPMENT	Sheet of
لالاعدمي ، N ت Well Construction Details From Boning Log:			<b>.</b>
Total depth (top of casing):512.5	Screened interval: 160-510	<u>of open hole</u> Borehole dia	meter: <u>4</u> "
Water losses during drilling: 230'-243', 255'	Fluid Purging	•	
Height of well casing (ground surface):	.5'		<del>r. 4</del> *
Standing water: Well casing/screen: <u>btw 74</u>	- Vol. : 506' 4.	653 gal/ft = 330 gal	
(From Chart) Annulus (volume x 30%):n	10		
Date and time of development 6/16/94 1230	-1500 \$ 6/17/94	0700-1130	
Method of development (pump/bailer):Air1	;f+P	umping rate: ~ 40 g.p.	<u>n</u>
Depth(s) of pumping and elapsed time at each depth:			
	air introduced	or 7 hours	
Water level: Before development:	D	uring: 30' b _{r=s}	
Sim <u>PEEFP</u> Workshaft 28K west Despension <u>IT-28K-P3.01</u> instantion Date. <u>Mary First 1944</u> West Construction Details From Both Date Total depth (tot of casing): <u>512.5'</u> Screened interval: <u>(bo':510' optin held</u> : Borehold diameter: <u>4''</u> West Construction Statistic From Both Date Height of west casing (pround surface): <u>2.5'</u> <u>2.5'</u> West distances: <u>4''</u> Height of west casing (pround surface): <u>2.5'</u> <u>2.5'</u> West distances: <u>4''</u> Statistic casing (pround surface): <u>2.5'</u> <u>2.5'</u> <u>1.652 gall [4 = 730 gal</u> (From Charr) Arrunda (volume x 30%): <u>n   A</u> Date and time of development: <u>6/16[64] 1230-1500 ( d/17[64] 0700-1130</u> Metrice of development: <u>6/16[64] 1230-1500 ( d/17[64] 0700-1130</u> Development: <u>6/16[64] 1230-1500 ( d/17[64] 0700-1130</u> Metrice of development: <u>507'</u> Quart Intervalue 28 for 1 theores Water Intervalue (volume x 30%): <u>507'</u> Alter: <u>500'</u> Metrice of development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u> Metrice of a statistic development: <u>510'</u>			
		t	
		the are also	
See: $PQEFP$ workshaft 26% web Despinsion IT-26K-P301 instabilion Date: $M_{eq}$ [J-oc 1997 Web Construction : $M_{eq}$ [J-oc 1997 Meb			
•	•		
· · · · ·	-	m (2)	
		· · · · · · · · · · · · · · · · · · ·	
	•	· · · · · · · · · · · · · · · · · · ·	<u> </u>
•			
Size: $\frac{PEFP}{kChrosserveta}$ Weit Designation $\frac{T-26 k-P3.01}{kChrosserveta}$ installation Date: $\frac{M_{Key}}{J.J.ac}$ 155 Weit Construction Dealing: $512.5'$ Screened interval: $\frac{160'510'}{pch}$ held: Boretole diameter: $\frac{4''}{}$ Water losses during defing: $230'241', 255'_{1}$ Fluid Purging whitter Height of weit cessing (ground surface): $2.5'$ Weit diameter: $\frac{4''}{}$ Standing water: Weit cessing (ground surface): $2.5'_{1}$ Fluid Purging whitter Height of weit cessing (ground surface): $2.5'_{1}$ Fluid Purging whitter Height of weit cessing (ground surface): $2.5'_{1}$ Fluid Purging whitter Height of weit cessing (ground surface): $2.5'_{1}$ Fluid Purging whitter Height of weit cessing (ground surface): $2.5'_{1}$ Fluid Purging mater: $4''_{2}$ Standing water: Weit cessing (ground surface): $2.5'_{1}$ Purging rate: $4''_{2}$ gen Dates and time of development: $\frac{6116}{144}$ 1/320-1500 f $\frac{61}{144}$ 0700-1130 Method of development (pumpbater): $a.i.c. 1ift Defined of development (pumpbater): a.i.c. 1ift a.i.c. 1ift Defined of development (pumpbater): \frac{50'_{1}}{a.i.c. 1ift} Pumping rate: 4''_{2} genDefined of development (pumpbater): a.i.c. 1ift a.i.c. introduce 8 for 1 maarcsMater level: Before development: -4''_{1} bgsDuring: 3a'_{1} bcsNet depth (growing): Before: 51c'_{2} After: 51c'_{1}Net depth (growing): before: 51c'_{2} After: 51c'_{1}During: 3a'_{1} bcsFinal: 21c_{1} c. color less; 7.4'_{1} NTM, aa_{1} bgs;During (2) FinalThre: \frac{61}{14} 1215, \frac{61}{14} 1430, \frac{61}{14} 1430, \frac{61}{14} 140 20Conductive (kS(km)), 0.72 0.6k_{1} 0.4k_{2} -ch'_{1} 1.6k_{2} 7.73 7.73The \frac{61}{12} 7.73 7.73 7.73122.5 1.63 7.73 7.74Mater randowd the theremost (both incremental and total):4'_{2} gene fur: 7 hearts160.25 102.5 102.5 7.4'_{1} hearts160.25 7.4'_{1} hearts160.25 7.4'_{1} hearts160.25 7.4'_{1} hearts160.25 7.4'_{1} hearts160.25 7.4'_{1} hearts160.$			
	al and total):		
	······································		<u> </u>
See: PEFP WorkShoft 28K wetDespheren $\pm 1 - 28 \times -P8.01$ headinon Date: May films 1944 Keening, NJ WetConservation Datables From Bond Dig: Total depth flop of cating: $512.5^{-1}$ Screened interval: $180^{-510'}$ aptin halk. Borehold dimeters: $4^{H}$ Water torses during dilling $230'242'_{-255'}$ Field Purging water Height of wet cating (ground surface): $2.5^{-1}$ Wet diameter: $4^{H}$ Wet cating during $230'242'_{-255'}$ Field Purging water Height of wet cating (ground surface): $2.5^{-1}$ Wet cating (ground surface): $1.25^{-1}$ Standing water: Wet cating during $30'$ is $2.5^{-1}$ Wet cating during $30'$ is $320$ gal (From Chert) Annulus (where $3.05\%$ ): $n/4$ . Deter and time of development: <u>61161944</u> 1320-1520 f 611744 DT00-1130 alter level: Development: <u>61161944</u> 1320-1520 f 6174 Purping rate: $40'$ gen air introduce $0$ for introduce $0$ introduce $0$ for introduce $0$ for introduce $0$ for introduce $0$ for introduce $0$ for introduce $0$ for introduce $0$ for introduce $0$ for introduce $0$ introduce $0$ for $0$ and $0$ for introduce $0$ for $0$ and $0$ for $0$ for $0$ and $0$ for introduce $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$ for $0$			
Collect a 1-print sample of last water removed:65			
5		www.al.a.lar.l	• - \
within 1 and to _E of 44	inc all the summers	or the distance in	was TSNTU);
The The The The The The The The The The			TINE TELMORE
silty again ( 150 NTM			
silty usein ( 150 NTU	)		
silty usein ( 150 NTW			
MONITOR WELL DEVELOPMENT			

2

TIERRA-A-017478

		MONITOR WELL DE	VELOPMENT	Sheet of I
Sim: PRAPP	SITE 2BK		2BK-0BØL Installation	
Well Construction Det			/	
Total depth (top of	casing):	Screened interval:	22 BE LOUGANE Borehole d	ameter 6
			water during installat	
	ng (ground surface):			er:;;
	I casing/screen:	1.5' -6' BALOW 1-RAD	V= 17' x. 163 2-1	
(From Chart) And			53 gel	
		0	0	
Date and time of develo	opment <u>6/29/9</u>	4 @ 0830		
Method of developmen	(pump/bailer): 2-INCH	SUBMERSIBLE PUMP	Pumping rate: 2 GEM	
	id elapsed time at each depth;	- 1		
peper(s) or bourbing m	o oraștato trine al escul deputi.		~	
		······································	······	
			<u> </u>	
Water level: Before d	evelopment:4.5	BELAN WEADE ->	During 14 (10	00 m.rs)
Vell depth (sounded)	Belore:2.2		After:5'	
hysical appearance of	water (clarity, color, particulat	les ador):		
		-		
	Y SLIGHT Has a	<b>26.</b> 2		
Initial: V.SILT	Y, SLIGHT Has a			·
Initial: <u>V-SILT</u> During development	GREENISH A.		530 Hours 1 mars Afre	e smar)
Initial: <u>V-SILT</u> During development Final: <u>CLES</u>	- GREENISH BUT CLEAR	IT NOT THEBIS ( O		
Initial: <u>Y-Sul-T</u> During development Final: <u>Gress</u> Field analysis:	GREENISH A.	<u>ατ Νοτ τμεβιδ (Ο'</u> - Du	nng (2) .	Fnai
Initial: <u>Y-Sul-T</u> During development Final: <u>Gree</u> Field analysis: Time	GREENISH A.	- Du	nng (2) .	
Initial: <u>V.SILT</u> Dunng development Final: <u>Gres</u> Field analysis: Time Conductivity	GREENISH AL MISH BUT CLEAR Initial 0820 21,20	- Du - Du 	nng(2) . ろらせら ろらろの	Fnal 
Initial: <u>V-Su-T</u> Dunng development Final: <u>Gres</u> ield analysis: Time	GREENISH AN MISH BUT CLEAR Initial 0820 21,20 7.13	- Du - Du - 0910 - 3670 - 5-82	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Fnal 
Initial: Y-Suer During development Final: <u>Gres</u> Field analysis: Time Conductivity pH	GREENISH AL MISH BUT CLEAR Initial 0820 21,20	- Du - Du 	nng(2) . ろらせら ろらろの	Fnai 
Initial: <u>V-SILT</u> During development Final: <u>Gree</u> field analysis: Time Conductivity pH The Start Imposance	GREENISCI A. MISH BUT CLEAR Initial 0820 21,20 7.13 7200 Chime for removal (both increa	<u>ст мот тигвль (01</u>      	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Final 1025 4160 6.30
Initial: <u>V-SILT</u> During development Final: <u>Gree</u> ield analysis: Time Conductivity pH The S. SITY Imposance	GREENISCI A. MISH BUT CLEAR Initial 0820 21,20 7.13 7200 Chime for removal (both increa	<u>ст мот тигвль (01</u>      	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Final 1025 4160 6.30
Initial: Y-SILT During development Final: <u>Gree</u> ield analysis: Time Conductivity pH The 5-5 ITY Importance	GREENISCI A. MISH BUT CLEAR Initial 0820 21,20 7.13 7200 Chime for removal (both increa	<u>ст мот тигвль (01</u>      	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Fnai 1025 4160 6.30
Initial: <u>V-SILT</u> During development Final: <u>Gree</u> field analysis: Time Conductivity pH The Start Imposance	GREENISCI A. MISH BUT CLEAR Initial 0820 21,20 7.13 7200 Chime for removal (both increa	<u>ст мот тигвль (01</u>      	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Fnal 1025 4160 6.30
Initial: Y-SILT During development Final: <u>Gress</u> ield analysis: Time Conductivity pH Tues.sity Imposance Lanoty of water removed 240 Gauss	GREENISH AN MISH BUT CLEAR Initial 0820 21,20 7,13 7,00 Stime for removal (both increa / 2 Hours	<u>ст мот тигвль (01</u>      	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Fnai 1025 4160 6.30
Initial: Y-SILT During development Final: <u>Gress</u> ield analysis: Time Conductivity pH Tures.bitty Temperature wantity of water removed 240 (August	GREENISH AN MISH BUT CLEAR Initial 0820 21,20 7,13 7,00 Stime for removal (both increa / 2 Hours	<u>ст мот тигвль (01</u>      	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Fnal 1025 4160 6.30
Initial: Y.SILT During development Final: <u>Gress</u> field analysis: Time Conductivity pH <u>The B.BITY</u> <u>Lemperature</u> uantity of water removed 240 (August	GREENISH AN MISH BUT CLEAR Initial 0820 21,20 7,13 7,00 Stime for removal (both increa / 2 Hours	<u>ст мот тигвль (01</u>      	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Final 1025 4160 6.30
Initial: <u>V.SILT</u> During development Final: <u>Gress</u> Teld analysis: Time Conductivity pH <u>The B.BITY</u> Lemperature Uantity of water removed 240 (August	GREENISH AN MISH BUT CLEAR Initial 0820 21,20 7,13 7,00 Stime for removal (both increa / 2 Hours	<u>ст мот тигвль (01</u>      	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Final 1025 4160 6.30
Initial: <u>V.SILT</u> During development Final: <u>Gress</u> Field analysis: Time Conductivity pH <u>Twe 8.5 ITY</u> <u>Lemperature</u> Huantity of water removed <u>240 (August</u> )	GREENISH AN MISH BUT CLEAR Initial 0820 21,20 7,13 7,00 Stime for removal (both increa / 2 Hours	<u>ст мот тигвль (01</u>      	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Fnal 1025 4160 6.30
Initial: Y.SILT During development Final: <u>Gree</u> Field analysis: Time Conductivity pH Tucs () ITY Importance	GREENISH AN MISH BUT CLEAR Initial 0820 21,20 7,13 7,00 Stime for removal (both increa / 2 Hours	<u>ст мот тигвль (01</u>      	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Fnai 1025 4160 6.30
Initial: <u>V.SILT</u> During development Final: <u>Gress</u> Field analysis: Time Conductivity pH <u>Twe 8.5 ITY</u> <u>Lemperature</u> Huantity of water removed <u>240 (August</u> )	GREENISH AN MISH BUT CLEAR Initial 0820 2120 7.13 7200 S/time for removal (both increa / 2 Hours.	<u>ст мот тигвль (01</u>      	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Fnai 1025 4160 6.30
Initial: Y-SILT During development Final: <u>Gress</u> field analysis: Time Conductivity pH Ture 5.3 ITY Lemposature Uantity of water removed 240 Greass	GREENISH AN MISH BUT CLEAR Initial 0820 2120 7.13 7200 S/time for removal (both increa / 2 Hours.	LT NOT THEBIS (0" - Du - Du - 0910 - 3670 - 5-82 - 69.7 	nng (2) . <u>09+15</u> <u>3930</u> 6_29	Fnal 1025 4160 6.30

.

1 \$1 44194

BORING			BNO.	740 REPORT C	N	DAT	E 6/27/94	
GROUND + 5.		on C	MSD MLW BASE	SUBSURFACE EXP		SHE	ET OF	
LOCATIO	N			RAN NJ PASSAIL RIVER FOOD	PRITECTON	UNIT	RECENT OVERBURDEN	
GROUNE	WATER	DBSERV	ATIONS				• •	L
				URING DRILLING	SUBSEQUEN 6/29/94	ат то 	DRILLING	
	PTH			<u></u>	4.43 bas			
	SING AT			N K -	12' 655		12' bes	E B
TI								
EL	PSED TI		ים יום ח			ER FI		BOX NIMBER
			U DURI					
REMARK				St, Summit Drilling, Bridgemet		•	Mobile B-57 = Hollow-stem Anger (6")	ORAGE/CORE
	لارە	A	Gerry	Gilliand, IT Corp., Elison, NJ	· •c			¦ 2
EXPLOR		3						STOR
	SW	SAMPLE OR PROBE BLOWS	CH NUTERUN NO	SOIL AND ROCK CLASSIFICATION - DESCRIPTI	ON		SOIL SAMPLING AND ROCK CORING DATA	SAMPLES
8 I	BLO	К Б С	KE.				CHARACTERISTICS	8
Ĩ Į	υŸ	E E E	ĺŠ₽	DEPTHS OF CHANGE		EGEND	UNUSUAL CONDITIONS	
ELEVATION	CASING BLOWS	NA ON	αŢ	UNIFIED SOIL CLASSIFICA	TION	<u>0</u>	REMARKS	
		01						
			1	FILL: crushed asphalt mired	VEWAZ /W		Visual observation @ surface.	
			1	SILT	-			
		4	1	Elle: Dry, brown, F.M CRUS.	IED CRAVE	ŀ	2 + 3-inch steinless -steel speans	1
	_	38	16"	\$ SANDY SILT; tr. ghe	ci constal G	_	for HTRN Sample # 28K-5-081-82	
	<u> </u>	41	1	concrete @ base +-	,,	· · · [	No rectings abe on HNU (HATU)	
1		10		GROUPTE - LESE -			2 x 3-inch 55 spoons for 4TRIA	
	1	27	12"				Scapio # 2BK-S-OBI-04.	
		1 21		<u> Lauring Arilling</u>	6		(HAU)	ł
			"עכ	Olive-black saturated, OR	GANIC		2-inch split-spoon (HADU)	
		4	[	SOIL : SILTY CLAY -/ .		1		
		1			σ	Ī		
	-	-						
	<u>,                                    </u>					L	· · · · · · · · · · · · · · · · · · ·	
		2					2-inch spoon. (Hruy)	
		2	18"	same w/ ++ fisand	12'			
	<u>}</u>				- 12	-+		
				Brownish-gray to relian.	hert in	1		
						ρļ		l I
		5		saturated, F-C SAND .	1 # clag 3	Γŗ	2-inch spoon (HATY)	
		5	2₀"				a men spoor	
		13						ł
		j — -						
		1						
	<u> </u>	5	_		1	1		
+ <u></u>		5	16"				2-inch spoon. (HNU)	

	UND EL 5.92 ATION 28K UNDW/ DATE DEPTI CASIN TIME ELAPS	-08 PI EVATIO	۳ (۲ <u>م</u> <u>در م</u> SSERV	ASD ALLW BASE ATIONS	: DURING DR	SUBSURFA PROJECT PASCAIL R.M	FA Frees	SUBSEQU	ENT TC	6/27 ET T RELENG		2Burden 	SAMPLE STORAGE/CORE BOX NUMBER
EXPL	ORATK	ON LOG											TOR
ELEVATION	DEPTH	CASING BLOWS	SAMPLE OR PROBE BLOWS	RG LO VEA Y GAMPLERUN NO:		SOIL AND LASSIFICATION DEPTHS OF UNIFIED SOIL C	DESCRIP		LEGEND	ROC		ING AND NG DATA RISTICS ONDITIONS RKS	SAMPLES
			8 /2		Br-gree	F-M SAN	5 -1 +.	Ciry	s٩	2-inch op	<del>.</del> ^	HKU	<u> </u>
	22		ייין גב	18"	Graftes +	o not-ref-bu	w VF SA	ND @ 21.7'				<u> </u>	4
						pring termin							
NANY-FOR				E	I	REPLACES EDITION				<u>.</u>			

٠. ۱ 

p. 93

REFERENCE NO. 9

ς.

- --

### HTRW REPORT EXECUTIVE SUMMARY

The USACE Baltimore District contracted IT Corporation to perform intrusive field investigations and environmental records searches in the proposed feature areas of the Passaic River Flood Protection Project. Proposed project features include main and spur tunnels and associated inlets; temporary or permanent workshafts for tunnel access; river-channel modifications; weirs; levees; and floodwalls. Table ES-1 contains a list of field investigation locations and other identified HTRW sites, and indicates the proposed feature or features with which each is associated.

The purpose of the investigations was to estimate the potential effects of existing hazardous, toxic, or radioactive waste (HTRW) contamination on construction and operation of project features and the potential effects of the project on existing HTRW contamination. IT conducted field investigations at the proposed tunnel inlet locations, at several proposed workshaft locations, and at one proposed levee location. IT also conducted an environmental records search to find existing HTRW sites in the vicinity of each proposed project feature, including the entire length of the main and spur tunnels.

Based on the data from the field investigation and the environmental records search, IT performed qualitative analyses of the risks that might be posed due to occupational exposure to contaminated soil, groundwater, or surface water. The results of these risk screening analyses were used to evaluate potential occupational health risks during construction and operation of each feature. The collected data were also compared to NJDEP and USEPA criteria for contaminant levels in environmental media. IT compared the soils data to NJDEP criteria governing soil reuse and disposal, and compared the groundwater data to NJDEP and USEPA regulations for water-quality and effluent discharges to surface water.

The comparisons to NJDEP and USEPA criteria allowed for an evaluation of response alternatives. The alternatives addressed whether soils to be excavated or groundwater to be pumped during construction or operation would require special handling due to the presence of contaminants. Special handling for soils includes disposal or restrictions on reuse; special handling for pumped groundwater includes removal of contaminants prior to its discharge to surface water. Conservative cost estimates for special handling, and for future investigations where current data are incomplete, were developed for each feature.

The results of the risk screening analyses indicate that only a few sites along the project alignment might pose health risks to workers due to contaminant exposure. Occupational

XDIS/XHG/ay092094.25

Ref. 9

p.1

exposure cancer risks and non-cancer health hazard index values were estimated for several identified sites, including the fieldinvestigation locations, in the project area. The calculated values suggest that dermal-contact exposure to contaminants at most worksites would pose low to negligible cancer and non-cancer health risks in an occupational exposure scenario.

The only site where cancer risk estimates indicate potentially serious occupational health concerns is the Maxxus/Henkel/Diamond Alkali property, a known dioxin site on Lister Avenue in Newark. At all other sites evaluated by IT, the dermal exposure calculations for excess cancer risk from contaminants were low to negligible.

Elevated concentrations of trichloroethene (TCE) were detected in a deep groundwater zone at Workshaft 2B. TCE would volatilize from the groundwater into the air in the confined space of the workshaft and tunnel segment excavation site. Airborne concentrations of TCE in these confined space areas were calculated using conservative groundwater inflow and low air changes per hour assumptions. The calculated concentrations of TCE in these confined spaces were estimated to be less than 2 ppm. As the OSHA PEL for TCE is 50 ppm, inhalation exposure to TCE would not be a health concern at these excavation worksites.

Once the contaminant types, concentrations, and locations were ascertained and compared with NJDEP and USEPA criteria, an incremental cost estimate for special handling and further investigation was formulated for each feature. The estimates included costs for sampling and analysis, treatment, transportation, and disposal, as required. The incremental costs for each feature were summarized to yield a total incremental cost for the project. All the costs were based on conservative assumptions, such as homogeneity of contamination throughout a given site, so that the cost estimates were also conservative. There are limitations to the completeness of the collected data that may have affected the selection of HTRW sites and the subsequent cost estimates for avoidance or mitigation.

The evaluation of the data indicates that several features may require additional field investigations to characterize potential HTRW contamination. Several features are given high priority because they require further investigation: Workshafts 2A, 2B, 2C, and 3; Pinch Brook Levee; Doremus Avenue, Kearny Point, Lister Avenue, and Newark Bay Levee Systems; and Great Piece Weir and Pequannock River Channel Modifications. The recommended site-specific investigations must be performed to fully assess the impact of contamination. These focused investigations would provide the basis for more accurate estimation of the costs that would be specifically attributable to the presence of contamination at each feature location.

EDIS/ERG/ay092094.ES

p.2

In conjunction with the HTRW investigation, IT conducted a hydrogeologic investigation along the proposed alignment for the floodwater diversion tunnel. The investigation included field studies at proposed workshaft locations 2B, 2C, 2, and 3; evaluation of local and regional hydrogeology; and groundwaterflow modeling. The modeling study evaluated the interconnection of overburden materials with bedrock aquifers and the potential for interference with existing groundwater contamination, among other things.

Shallow groundwater contamination, including separate-phase contaminants in some cases, has been reported at several known HTRW sites along the tunnel alignment. The separate-phase contaminants were not reported for any proposed work locations. The USACE will provide engineering controls during construction so that inflow of shallow groundwater into work locations will be negligible. Also, the groundwater models indicate that there will be negligible or no induced drawdown effects in overburden groundwater during tunnel construction and operation. Therefore, existing shallow groundwater contamination is not expected to affect the project and the project is not expected to affect the existing contamination, unless the contamination has already migrated downward into bedrock.

Known groundwater contamination discovered near Workshaft 2B exists in a highly permeable zone along a bedding plane fracture in the soft bedrock. The tunnel and workshaft are expected to intersect this zone. Groundwater that enters the workshaft or tunnel from the zone will have to be treated prior to discharge to a surface-water body. The full impact of the project on this zone cannot be estimated because the source of contamination is unknown. All other shaft and inlet locations at which IT collected groundwater samples showed minor or no contamination.

In summary, there are proposed project features that may impact or be impacted by the presence of HTRW. The potential for occupational exposure to contaminants at Lister Avenue Levee System, Workshaft 2B, and Tunnel Segment 2B-2C will necessitate additional safety measures. Additional project costs for disposal of contaminated soil may be incurred at Workshafts 2B and 4; Newark Bay Tunnel Outlet; Rockaway, Lister Avenue, Doremus Avenue, and Kearny Point Levee Systems; and New Jersey Turnpike Levee. Additional costs for treatment of groundwater at and near Workshaft 2B are expected. There are also several sites where further investigation is required. Table ES-1 presents a summary of the investigations conducted to identify HTRW at each feature location, using environmental records search (ERS) or intrusive field investigations (FI) data. Table ES-2 presents a summary of estimates of HTRW impacts on feature construction and future investigation costs.

EDIS/ENG/ay092094.25

ρ.3

Note Information on this pape was revised by USACE Beltimore District subsocient to the delivery of the final report by IT Corporation.

# INVESTIGATION SUMMARY

# Passaic River Local Flood Protection Project

FEATURE NAME	SITE NAME	ERS	<u> </u>
Pompton Inlet		Maa	N
	Pompton Inlet Field Investigation	Yes Yes	Yes No
	Mobil Gas/Wayne Towing	Yes	NO
	R&S Strauss	Yes	No
	SGL Printed Circuits	Yes	No
	Wayne Interim Storage Site	105	INU
Spur Tunnel Inle	r .		
-	Spur Tunnel Inlet Field Investigation	Yes	Yes
	Finns Mobile Homes	Yes	No
Workshaft No.2 S	ite		
	Workshaft No.2 Site Field Investigation	Yes	Yes
•	Montclair College	Yes	No
	Shell Oil Co. (Shell service Station 449)	Yes	No
Workshaft No.2A	Site		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Workshaft No.2A Site Field Investigation	Yes	No
Work Site 2B	Work Site 2B - Fiore Field Investigation	Yes	Yes
-	Work Site 2B - Keegan Field Investigation	Yes	Yes
*	Campbell Foundry Co.	Yes	No
	Diamond Head Oil Refinery	Yes	No
	Drew Chemical Corp.	Yes	No
	Frank's Auto Electric	Yes	No
•	Guignon & Greene Co.	Yes	No
	G&S Motor Equipment Company Inc.	Yes	No
	Interstate Metals	Yes	No
	Keamy Smelting & Refining Co.	Yes	No
	Keegan Landfill	Yes	No
	Kenney Steel Treating Corp.	Yes	No
	Kleer Kast Inc.	Yes	No
	Theobold Industries / B&L Oil Corp. / National Freight	Yes	No
	T.J. McDermott Trans. Co.	Yes	No
	Warner Manufacturing Company	Yes	No
	West Hudson Lumber Company	Yes	No
	Wilkata Packaging Corp.	Yes	No
Workshaft No.2C	Site		
	Workshaft No.2C Site Field Investigation	Yes	Yes
	Western Electric Co., Inc./AT&T Technologies	Yes	No
		Note: Information on this page ( . USACE Baltimore District autore	

# INVESTIGATION SUMMARY

# **Passaic River Local Flood Protection Project**

FEATURE NAME	SITE NAME	ERS	_ FI
Vorkshaft No.3 Site			
	Workshaft No.3 Site Field Investigation	Yes	Ye
	Ferrulmatic/Universal Manufacturing Inc.	Yes	No
	Norton Chempiast	Yes	No
	Wayne DPW Garage	Yes	No
Vorkshaft No.4 Site			
	Workshaft No.4 Site Field Investigation.	Yes	Ye
	Amoco Service Station	Yes	No
	Contract Packaging Corp.	Yes	No
	Noeller Industries	Yes	No
	Wayne Bus Maint. Facility	Yes	No
unnel Segment PI-4	÷		
	CBA Industries/Lakeland Coldtype	Yes	No
unnel Segment 4-2			
	A-Bet-A Industries	Yes	No
	Citgo	Yes	No
	Glandora Knitting Mills/ Capital Knitting Realty Co.	Yes	No
	Hilltop Apartments	Yes	No
	Joseph Batelli	Yes	No
	Mobil Service Station	Yes	No
	Plaza Carwash	Yes	No
	Uddeholm Corp./Pitman Co.	Yes	No
unnel Section 2-2A			
	ABB Lummus Crest	Yes	No
	Brookdale Northbound Service Area	Yes	No
•	Brookdale Southbound Service Area	Yes	No
	Getty / Exxon	Yes	No
	Merrick Corp.	Yes	No
	Mobil	Yes	No
	Mobil Oil Corp. No. 15	Yes	No
	Nutley Municipal Garage	Yes	No
	Shell Oil Co.	Yes	No
	Shulton Toiletries	Yes	No

•

-

۰.

# INVESTIGATION SUMMARY

# Passaic River Local Flood Protection Project

FEATURE NAME	SITE NAME	ERS	F
unnel Section 2A-2B			
unnel Section 2n-2D	Alliance Color & Chemical Co.	Yes	No
	Amtrack Access Rd.	Yes	N
	Amtruck / Hildermann Ind.	Yes	N
	Batel Service Station & Repair	Yes	N
	Belleville Pike	Yes	No
	Breyers Warehouse	Yes	N
	Browning-Ferris Ind.	Yes	N
	Chester Jackson Tank Lines	Yes	N
	Conrail Stulman Property	Yes	No
	Diamond Shamrock Corp.	Yes	N
	Exxon No. 30190	Yes	No
	Ferry Wholesalers	Yes	No
	Frederick Gumm Chemical Company	Yes	No
	Frey Industries / Jobar Industries	Yes	No
	Hackensack RVR Access Road	Yes	No
	H&G Industries Inc.	Yes	No
	Kearny Drum Dumps	Yes	No
	Mass & Waldstein Co.	Yes	No
	Occidental Chemical Corp.	Yes	No
	Roanoke Avenue	Yes	No
	Seton Co.	Yes	No
	Shell Oil Co.	Yes	No
	Tress Chem Co.	Yes	No
	Wallace and Tiernan, Inc.	Yes	No

# INVESTIGATION SUMMARY

# **Passaic River Local Flood Protection Project**

FEATURE NAME	SITE NAME	ERS	F
I Casting DD DC			
unnel Section 2B-2C	ABF Trucking	Yes	N
	Arkansas Chemical Co./Sun Chemical Co./Gignard Chemical Co.	Yes	N
	Ashland Chem Company	Yes	N
	Bayonne Barrei & Drum Corp.	Yes	N
	Brady Iron & Metal Company	Yes	N
	Caisson #1 & Electrical Duct Building	Yes	No
	Capital City Products Company	Yes	No
	Cellofilm Corp.	Yes	No
	Chapel Avenue	Yes	No
	Continental Oil / Pitt-Consol Chemical Co.	Yes	No
	Degan Oil	Yes	No
	Droyer's Point	Yes	No
	Duralac	Yes	No
	Fairmont Chemical Co. Inc.	Yes	No
	Hayes Park East / Municipal Swimming Pool	Yes	No
	Kearny Power & Light	Yes	No
	Liberty Harbor North	Yes	No
	Linden East	Yes	No
	Lockwood St.	Yes	No
	Marion Junction - NJDOT	Yes	No
	MSLA1-ALF	Yes	No
	Multiplex Cinema	Yes	No
	NE Interceptor 3	Yes	No
	Newark Box Board Company	Yes	No
	NJ Transit	Yes	No
	NJ Turnpike - Greenville	Yes	No
	NJTPK Kearny	Yes	No
	Old Dominion	Yes	No
	Posnak & Turkish, Inc.	Yes	No
	Printers Service	Yes	No
	P&M Sanitation	Yes	No
	SCA Chemical Services Inc./Chem Waste Management	Yes	No
	V. Ottilio and Sons Landfill	Yes	No
wark Bay Tunnel Out	let set set set set set set set set set s		
-	Tunnel Outlet	Yes	No
eat Piece Weir Chann	el Modification		
	Finns Mobile Homes	Yes	No
unaque Ramano and	Pequannock River Channel Modification		
maque, numupo unu	Alvino's Service Station	Yes	No
	Cooper Oil	Yes	No
	K&M Machine Works	Yes	No

•

#### I. INTRODUCTION

The Passaic River Flood Protection Project is a proposed major construction project designed to alleviate flooding conditions along the Pompton and Passaic Rivers in northeastern New Jersey. The location of the project features is shown in Figure I-1.

The major element of flood protection project is a tunnel system that would conduct floodwaters from two tunnel inlets in Wayne Township, Passaic County, to a tunnel outlet terminating in Newark Bay. The main floodwater diversion tunnel is a 40-foot diameter, 20.1-mile long structure. The inlet basin to the main tunnel, Pompton Inlet, is located at the upper reach of the Pompton River at the confluence of the Ramapo and Pequannock Rivers. A second tunnel inlet, the Spur Tunnel Inlet, located at the confluence of the Pompton and Passaic Rivers, joins the main tunnel by a 1.2-mile long, 20-foot diameter spur tunnel.

In addition to the tunnels, the flood protection project includes river channel modifications, weirs, and an extensive system of levees and floodwalls. Channel modifications for diversion of floodwaters to the two tunnel inlet basins are proposed on the Ramapo, Pequannock, Wanaque, and Passaic Rivers. Levees and floodwalls would be constructed along the Pequannock, Pompton, Ramapo, and Wanaque Rivers above the Pompton Inlet. A series of levees extending into Morris County would provide flood protection along sections of the Rockaway River, Deepavaal Brook, Pinch Brook, and Passaic River. Lastly, a series of six levee and floodwall features would be constructed along the lower Passaic River and in the Kearny Point area to provide 500-year protection against hurricane and tidal surge flooding of industrial areas in the greater Newark area.

A portion of the selected tunnel alignment and many of the associated features of the project are located in heavily industrialized sections of northeastern New Jersey. Construction activities present the potential for encountering significant hazardous, toxic, and radioactive waste (HTRW) contamination in soil, surface water, and groundwater. IT Corporation (IT) was contracted to conduct a multi-task HTRW investigation to address the presence of HTRW materials as outlined below. Integration of the findings of the various tasks was required to meet the objectives of the study.

Encountering HTRW materials in environmental media during construction activities poses a number of concerns that should be examined in the design and feasibility phases of this project. The presence of HTRW materials may present environmental and occupational health and safety concerns at worksites. If HTRW materials are present, engineering approaches would be required to mitigate or remediate worksites prior to or during

EDIS/ENC/ay092094. TPL_ETRM

P. 8

construction of project features. Depending on the type and magnitude of HTRW materials present, various engineering approaches and their associated costs are examined to choose between the alternatives of avoidance, disposal, or treatment of contaminated soil and groundwater encountered during construction activities. In addition, construction activities and/or operation of the flood control tunnel may impact HTRW contaminants via flux changes in groundwater in the vicinity of the tunnel.

The HTRW investigation had five basic tasks:

- Intrusive field investigations at selected features to collect soil and groundwater samples for analytical testing;
- Collection of data to support groundwater models predicting the effect of the constructed tunnel on local and regional groundwater flows;
- Environmental records search and priority ranking methodology to identify HTRW sites that may impact construction activities and sites where contaminants may be influenced by construction activities;
- Qualitative risk screening methods to estimate occupational health risks at the various project features; and
- HTRW mitigation/remediation engineering alternatives and cost estimates for each of these alternatives by project feature.

The objectives of the field investigation were to determine the presence or absence of HTRW materials in soil and groundwater at selected features and to collect groundwater data (e.g., pumping and straddle-packer tests) to support the groundwater modeling task. The intrusive field investigation involved collection of soil samples at Passaic Levee No. 10, at Workshafts 2B, 3, 4, and at the Pompton and Spur Tunnel Inlet locations. Groundwater quality samples were collected at Workshafts 2, 2B, 2C, 3, and at both tunnel inlets. All collected samples underwent a full suite of analytical tests to determine the presence or absence of HTRW materials.

The environmental records search (ERS) employed ASTM standard practice database searches and Freedom-of-Information-Act requests to regulatory agencies to supplement and build upon the ERS previously conducted by Dames & Moore and Weston for the study area. Based on available information, a HTRW site ranking methodology was developed to focus the qualitative human health risk screening protocol and remediation engineering cost

EDIS/ENG/ay092094.mpt_HTRM

p.9

TIERRA-A-017491

estimates on known HTRW sites that would most impact the project or where HTRW materials may be influenced by the construction of project features.

Federal and New Jersey regulations governing contaminated soil disposal and effluent discharge to surface water were compared to the findings of the field investigation and the ERS. Where avoidance was not a feasible alternative, engineering cost estimates were prepared for features where site-related HTRW materials would impact on construction activities. Estimated costs of limited investigations to delineate HTRW at selected features are also presented.

Following this Introduction (Section I), the HTRW Investigation report is divided into three additional sections. Section II, Investigative Approach and Methodology, details the approaches and protocols followed to address the multi-task objectives of the HTRW investigation. Section III, Information Limitations, presents the limitations of results and findings for the various tasks performed within the HTRW investigation. Section IV, Results by Feature, is organized by project feature. All tables, figures and maps presenting data and findings for a feature are inserted immediately after the discussion of that feature. The results and findings of the field investigation and ERS for each feature are presented. These data are incorporated into a qualitative occupational health risk estimate, HTRW remedial cost estimates, and where warranted, proposed further field investigations of the feature are recommended and justified.

I-3

P-10

### II. INVESTIGATIVE APPROACH AND METHODOLOGY

The objective of the HTRW investigation was to ascertain the presence or absence of environmental contamination in the soils and/or groundwater for each proposed feature of the Passaic River Flood Protection Project. Field investigations and environmental records searches were used to determine the nature of contamination and if it may impact or be impacted by construction activities. Chemical characterization of the soils and groundwater allowed for the evaluation of soil disposal options and dewatering operations in developing a risk-screening analysis during actual construction of project features. In addition, the information concerning any areas of environmental contamination will augment the Supplemental Environmental Impact Statement (SEIS) and General Design Memorandum (GDM) for this project as required by the National Environmental Policy Act.

A. Environmental Records Search

The intent of the environmental records search (ERS) task of this project was to identify known, high potential or low potential HTRW sites that may affect construction or operation of project features or where HTRW may be influenced by project activities. The ERS focused on known HTRW sites along tunnel alignment or those sites in close proximity to features associated with the flood protection project. IT contacted regulatory agencies to access and review archived files to provide current HTRW-related information about each site.

A compiled master list of known HTRW sites was constructed and a decision tree was utilized to reduce the number of selected sites for further consideration. A site priority ranking methodology was developed to establish the relative importance of each site. To establish a qualitative health risk screening of identified HTRW sites, occupational risk was calculated for siterelated HTRW contaminants associated with a particular tunnel segment or feature.

Five primary documents were used to direct the environmental records search in the development of Master List of Known HTRW Sites:

- Phase 3 Environmental Records Search, Passaic River Local Flood Protection Final Report, Dames & Moore, January 1994.
- Environmental Records Search Report, Passaic River Local Flood Protection Project, Passaic River Basin, Roy F. Weston, April 1993.
- Known Contaminated Sites in New Jersey, NJDEP Site Remediation Program, July 1994.

ED15/200/ay092094.spt_HTMM

Note: Information on this page was revealed by USACE Betwinne District subsequent to the delivery of the final report by IT Corporation

- Vista Environmental Information, Inc. Report No. 7/045501-001, Corridor search (0.5 mile boundary) of the tunnel alignment and 0.5 mile radius of Passaic Levee No. 10 [ASTM Standard Practice Database Search].
- Environmental Data Resources, Inc. Report No. 50838,- 300 yard boundary searches of each of the Pinchbrook, Rockaway, and Passaic 2A and 2C Levee System features [ASTM Standard Practice Database Search].

The environmental records search reports compiled by Weston and Dames & Moore identified several hundred known or potentially contaminated sites that may impact the flood damage reduction project. The HTRW sites identified in these two reports were the initial foundation for development of a database of HTRW sites of interest. IT conducted two additional ASTM standard practice regulatory agency database searches to ensure that HTRW site status in the study areas is current (i.e., information to 1994).

USACE-provided maps, maps in the Dames & Moore and Weston reports, and maps obtained from vendors (ADR, PSE&G), were used to locate and plot HTRW sites of interest. Incomplete addresses and multiple owners of a property over time made plotting some sites an uncertain task. Because more than half of the newly identified HTRW sites in the two 1994 ASTM database searches were not mappable because of incomplete addresses, windshield surveys were initiated to locate the precise address of these HTRW sites and to establish the current owner/occupant of a site if there were conflicts between the most recent database searches and the historic environmental records data. These surveys helped to locate the site or clarify the present owner/occupant of the site in most cases. Not all sites could be located, particularly for properties along Belleville Pike in the Kearny area. However, using detailed maps and information provided by the FOI requests, and the 1994 NJDEP report Known Contaminated Sites in New Jersey, all unmappable sites were eventually located. All of the HTRW sites newly identified by IT were out of the study boundary, were located on the east bank of the Hackensack River, or had been declared no further action (NFA) by NJDEP or USEPA.

As the master list of known HTRW sites was being compiled from historic information and the ASTM database searches, formal written requests were made to regulatory agencies to gain access to archived files for each site of interest. Freedom-of-Information Act (FOI) requests for each site were made to the USEPA, NJDEP, and local agencies.

USEPA Region II, four NJDEP Site Remediation programs, and ten local regulatory agencies were contacted and 206 FOI requests were made for HTRW sites. Multiple requests to different agencies were made for high priority HTRW sites. Table II-1

EDIS/ENG/ay092094.spt_ETEM

p.12

Note: Information on this page was revealed by USACE Baltimore District subsequent to the derivery of the final report by IT Corporation summarizes agency contacts made for all FOI requests in the expanded ERS.

Agencies responded to the FOI requests and made their files available to IT staff for inspection. The FOI requests resulted in obtaining further information for 59 sites. This information was often in the form of copies of Preliminary Site Assessments and updated analytical data attached to correspondence with NJDEP. FOI requests also provided or confirmed NJDEP/USEPA "Recommended no further action" for 26 sites.

The IT Corporation Environmental Records Search (ERS) relied on the two previous records searches conducted by Dames & Moore and Weston in 1992-1993. These combined previous searches identified 117 known and 497 suspect (low or high potential) HTRW sites within the study boundaries. Thus, these three ERS identified 668 known or suspect HTRW sites within the study boundary. The Scope of Work requested that IT identify a minimum of 50 HTRW sites using risk screening procedures that would most impact on construction or operation of all of the features of the flood control project. IT achieved this objective by categorizing known HTRW sites into four priority levels. The priority ranking scheme used to select the sites with the most potential impact is outlined below.

A decision tree displayed in Figure II-1 was applied to the Master List of HTRW sites to determine which sites would most impact or be influenced by construction of the workshafts and features. The decision tree and the nine criteria in Table II-2 were used to eliminate HTRW sites from consideration in the risk screening analyses.

HTRW sites selected for the risk screening process were grouped by priority for risk characterization. Figure II-2 shows the HTRW site priority ranking scheme. Five priority rankings, A through E, were established. Priority A HTRW sites were those workshafts, inlets, and levees where IT conducted field investigations and where intrusive construction activities are anticipated. Priority B HTRW sites are located within 500 feet of a workshaft/inlet or are within the footprint of a levee or other feature. Priority C HTRW sites are located within 1,500 feet of a workshaft/inlet or are within a 300-foot boundary around a levee feature. Priority D HTRW sites are located within the tunnel alignment study area. Priority E HTRW sites are those facilities that were deleted from consideration for risk screening.

A priority E HTRW site ranking decision for the 109 sites identified allowed the records search to focus on those HTRW sites that may impact on construction of inlets, workshafts, and project features. As discussed below, specific criteria were used to place an HTRW site in the Priority E rank. Generally, a

RDIS/ENG/ay092094.spt_ETRS

Priority E site was either physically distant from project features, had low levels of on-site contaminants, had remedial design features that contain on-site contamination, or had known levels of specific HTRW contaminants that would not pose a risk. While risk screening calculations were not applied to these sites, the historic HTRW information for these sites was incorporated into the feature engineering alternatives and cost estimates for HTRW disposal costs, if appropriate.

Three basic categories of criteria were used to delete a site from further consideration:

- location of the site,
- regulatory status of the site, and
- nature and extent of site-related HTRW contaminants.

A site was deleted from consideration if it was located on the east bank of the Hackensack River, or outside the tunnel study area and the boundary areas of levees and other features.

A site was not considered for further risk-screening if the available regulatory status information demonstrated that the site had been recommended "no further action" by either the USEPA or NJDEP.

In reviewing the nature and extent of documented siterelated HTRW contaminants, the following criteria provided a rationale for assigning a Priority E ranking to the HTRW site:

- The only documented petroleum-based spill or leak at the site was less than 100 gallons and there was no impact to groundwater,
- Current HTRW surficial soil contaminant concentrations are less than New Jersey direct contact soil cleanup criteria levels,
- Documented HTRW contaminants are limited to inorganic metals, there is no impact to groundwater, and the site is not within 500 feet of a workshaft or within a levee footprint,
- A CERCLA/NPL site that is a secured radioactive materials storage facility with no documented impact to soil or groundwater, and
- A CERCLA/SPL site that is a New Jersey Hudson County chromate site where the known HTRW is limited to chromate ore slag fill on the property.

EDIS/ERG/ay092094.rpt_ETRM

II-4

P.14

A site-specific HTRW database was constructed from two types of HTRW contaminant information: current analytical data for soil and water samples collected during IT field investigations, and data compiled during the Environmental Records Search (ERS). The database was used to prepare HTRW site summaries for all Priority A,B,C and D HTRW sites. Table II-3 provides a brief explanation of the information provided in each HTRW Site Summary. The HTRW Site Summaries are included with the associated feature in Section IV.

To provide consistent data entry for both types of available analytical data into the database supporting risk screening and remediation cost estimate analyses, a rigid format was utilized to enable use of the different types of site-related data.

HTRW analytical data for each site were sorted by the environmental matrix and approximate depth of sample collection:

- surficial soil (0-2 feet),
- deep soil (3-100 feet or top of rock),
- shallow groundwater (unconsolidated till or 0-30 feet below ground level), and
- deep groundwater (bedrock or greater than 30 feet below ground level)

For each matrix, the principal HTRW contaminants that would drive the site-related health risk/hazard analyses or remediation of the site were identified. The following assumptions were used for data reviewed to make up this data set:

- If the analytical results did not specify the depth of the soil sample(s), the results were assumed to be representative of surficial soil; unspecified groundwater samples were assumed to be representative of shallow groundwater contamination.
- The maximum concentration of each identified siterelated HTRW contaminant was used as a conservative estimate of the maximal contamination that may be encountered at a site.
- To provide conservative assumptions for the toxicity of HTRW contaminants in the qualitative risk screenings, concentrations of specific chemicals and classes of chemicals were added together and reported as equivalent values of a representative chemical. Table II-4 identifies constituents grouped by chemical class and reported as toxic equivalent factors (TEF) of a reference or surrogate chemical.

p. 15

- Semi-quantitative analyses for petroleum and gasoline contamination, such as total petroleum hydrocarbon (TPH) and benzene, toluene, ethylbenzene, xylene (BTEX) were recorded to assist in remediation cost estimates.
- Sites identified as contaminated with free product (e.g.,fuel, gasoline) are recorded and the approximate thickness of the free product layer was noted.
- Generic, non-specific soil and groundwater analyses such as total volatile organic analytes (VOA) and total base-neutral (B-N) compounds were considered low quality data and were not included in the HTRW analytical database. Other low quality analyses such as the extraction procedure toxicity (EP Toxicity) and toxic characteristic leaching procedures (TCLP) were not included as indicators of soil contamination as these analyses generally reported results of the excavated materials that were removed from a site.

The available groundwater and soil analytical data for each site were evaluated and scored by a ranking system to provide an objective determination of the quality of the analytical data reviewed. Data quality was based in part on the most recent year that data was reported and the type of analyses conducted. For soil data, the extent of soil remediation conducted at the site was factored into the soil data quality score. The groundwater data quality score was influenced by the certainty of knowledge that site-related HTRW was impacting groundwater.

Section IV of this report discusses the findings and results of the potential interaction of these HTRW sites and the associated feature.

B. Field Investigation Activities

This portion of the HTRW Report details the implementation of the field investigation activities conducted to determine the presence or absence and, if the former, nature of environmental contamination at the selected workshafts, inlets, and Passaic Levee No. 10 locations for the Passaic River Flood Protection Project.

### 1. Site Access/Work Locations

All permits required for the completion of test borings and monitoring wells were obtained prior to the commencement of field activities. The locations of the test borings and monitoring wells were approved by the USACE Baltimore District and the Passaic River Division. Access to the work locations was granted to IT Corporation by the various property owners through Rightsof-Entry secured by the Passaic River Division of the USACE. Two

EDIS/ENG/ay092094.spt_ETRM

proposed drilling locations at the Workshaft 3 location were determined to be in a wetland and were subsequently relocated. At a third location (i.e., the overburden monitoring well at the Spur Inlet) it was not feasible to relocate the boring. The required wetland disturbance permit had been secured prior to the start of field activities. Prior to the commencement of intrusive subsurface investigations, such as test borings or well installations, the presence and locations of underground utilities were verified with the appropriate agencies. Information concerning underground utilities was also obtained from the individual property owners or their representatives and from town officials when the field investigation activities occurred on private property.

#### 2. Sampling Methodology

The following subsections detail the methods employed to obtain the environmental samples necessary to determine the presence or absence and, if applicable, the nature of environmental contamination at the individual workshaft locations, including soil and groundwater sample collection techniques, soil gas survey methods, and equipment decontamination procedures.

All HTRW samples were collected in compliance with NJDEP procedures, which are presented in the *Field Sampling Procedures Manual* dated May 1992. The following procedures were followed for all HTRW sampling activities:

- Precleaned laboratory containers were used for all HTRW samples collected during the project. Custody of the bottles was initiated when IT field personnel received them. Field personnel maintained custody of the bottles in a locked and secured area until the bottles were removed to collect samples.
- All sample handling was kept to a minimum; samples for VOC analysis were not aerated or agitated.
- Gravel and pebbles were removed from soils during collection.
- All required preservatives were added to sample bottles prior to sample collection. Soil samples did not require preservation. Aqueous samples were preserved as noted in the final Chemical Data Acquisition Plan.
- Aqueous-sample containers for VOC analysis were filled to capacity and did not contain air bubbles. Soil sample jars for VOC analysis were filled to capacity insuring that headspace present in the container was

EDIS/BHG/ay092094.spt_ETER

ъ.

, ,*

minimized. All other sample containers were filled to near-capacity.

- All sample containers were sealed airtight.
- Samples were kept in a cooler with ice or blue ice prior to and during shipment to the laboratory. The ice or blue ice was sealed in airtight, plastic bags.
- Samples remained in custody of field personnel until they were shipped to the lab.
- Sample holding times began at the time of sample collection.
  - a) HTRW Soil Gas Surveys

As part of the field work for the Workshaft 2B and Spur Inlet field investigations, soil gas surveys were conducted to identify the extent of contamination and to locate potential hot spots for shallow soil sampling. The soil gas surveys initially consisted of gridding the work area with a 50 foot by 50 foot grid. All vertices within the grid were screened during the initial site survey. Upon location of areas of suspected contamination, the grid spacing was decreased to provide enhanced resolution of the areas of interest.

The detection instruments that were used in the soil gas survey were photoionization detectors (PIDs) with ultraviolet lamps having ionization energies of 10.2 or 10.6 electron volts (eV).

The soil gas survey began with the insertion of a 1/2-inchdiameter stainless steel probe into the ground. The probe was equipped with a nonremovable tip for good ground penetration, vent holes for gas entry, and a removable liner rod that helped prevent soil intrusion into the probe. The expected penetration depth was 4 feet, but in several locations was shallower due to the presence of shallow groundwater. After the probe was driven to the proper depth, the liner rod was removed and soil was packed tightly around the probe at the ground surface to prevent ambient air flow into the hole. Tubing was then connected to the soil gas probe protruding from the ground at one end and to the probe of the PID at the other end. The vacuum pump in the PID drew soil gas through the instrument, and the peak reading (in ppm) was recorded. The soil gas readings were used to determine some of the shallow soil sampling locations at the Workshaft 2B-K and Spur Inlet locations.

b) HTRW Borehole Soil Sampling

HTRW borehole soil samples were obtained at the Workshafts 2B and 3, Spur Inlet, Pompton Inlet, and Passaic Levee No. 10 locations according to the following schedule. Two samples were collected from the first 10 feet of drilling; one HTRW soil sample was collected from each subsequent 10 feet of drilling above the water table, and one HTRW sample was collected every 50feet of drilling below the water table. Deviations from this sampling schedule due to field conditions or scope conditions are discussed in Section IV of this report. These samples were collected using 3-inch, stainless-steel split spoons. Splitspoon samples were collected by driving the split spoon into the soil using a 140-pound hammer with an average free fall of 30 inches, per ASTM D1586. Upon retrieval each split spoon was opened, its contents were screened with a PID equipped with a 10.2eV lamp, and the sample was transferred into the appropriate containers using a stainless-steel trowel. The sample for volatile organic compounds (VOC) was collected first from the top 6-inch interval. The VOC samples were placed in a jar and sealed within 15 seconds of removal of soil from the split spoon to limit escape of volatiles. The jars were filled completely to minimize any headspace. After the VOC sample was collected, the remaining sample was mixed in a stainless-steel mixing bowl before filling the remaining sample containers. All samples were handled in the field using clean surgical gloves.

#### c) HTRW Shallow Soil Sampling

HTRW shallow soil samples were collected at the Workshafts 2B, 3, and 4; Spur Inlet; and Passaic Levee No. 10 locations. Samples were collected with hand augers and soil-coring devices from a depth of 0 to 24 inches, except where refusal occurred at a shallower depth. Actual sample frequencies and depths for each location are discussed in Section IV of this report.

The field sampling team began the collection of each shallow sample by clearing the desired location of all inconsequential surface debris such as vegetation and rocks. The soil-coring device was then driven to 24 inches or refusal, and the VOC sample was collected immediately from the 6- to 12-inch interval. After collection of the VOC sample, soil from each location was collected with a hand auger and homogenized in a stainless-steel bowl. The sample was then transferred into the appropriate containers with a stainless steel trowel or spoon. The field sampling team wore clean latex or PVC surgical gloves during the collection and handling of all samples, changing gloves between each sampling location.

### d) HTRW Groundwater Sampling

Groundwater samples were collected from the overburden well and pilot boring at the Workshaft 2B location, and from the overburden wells at the Workshaft 3, Pompton Inlet, and Spur

EDIS/ENG/ay092094.spt_ETH

Inlet locations. Groundwater sampling began with the measurement of water level and total well depth so that well volumes could be calculated. Between three and five well volumes were then evacuated from the overburden wells using a centrifugal pump and from the pilot boring using a stainless steel submersible pump. The water was discharged to the ground surface at least 20 feet from each well. IT field personnel measured water temperature, pH, and conductivity before and after the well was purged. The time lapse between purging and sample collecting did not exceed 2 hours for any sample. Groundwater samples were collected from the wells with dedicated, stainless steel bailers.

Groundwater samples were also collected from pumping-test and pilot wells at the conclusion of straddle-packer and pumping tests at several locations including Workshafts 2 and 2C. The samples were collected directly from sampling ports within the pumping systems, located at the wellhead. These samples were analyzed for additional water-quality parameters to determine the acceptability of discharge of the pumped groundwater and to determine if pumping operation had mobilized contaminants present.

Groundwater samples were transmitted directly from bailers or sampling ports into the required pre-preserved containers in the following order, as applicable:

- 1. VOCs
- 2. TOX
- 3. TOC
- 4. SVOCs
- 5. Oil and grease/TPH
- 6. PCBs/pesticides/herbicides
- 7. Dioxin
- 8. Metals
- 9. Cyanide
- 10. Sulfate and chloride
- 11. Color and total dissolved solids
- 12. Nitrate-nitrite and ammonia
- 13. Radionuclides
- 14. Fluoride
- 15. Asbestos
- 16. Foaming agents

The locations, frequencies, and parameters for groundwater samples at each work location are discussed in Section IV of this report.

### e) Equipment Decontamination Methods

The following summarizes the decontamination procedures that were followed during the Passaic River Flood Protection Project HTRW investigation field activities.

EDIS/ENG/ay092094.ppt_ETRR

#### (1) Contamination Control Zones

Contamination control zones were maintained to prevent the spread of contamination and to prevent unauthorized persons from entering potentially hazardous areas. The exclusion zone (EZ) consisted of the entire area of suspected contamination. All employees entering the EZ used proper personal protective equipment as specified in the Site Safety and Health Plan and had received the appropriate training for hazardous waste site work. The EZ was a defined area where there was a possible respiratory and/or dermal contact health hazard. The location of exclusion zones at each workshaft location was identified by cones and/or warning tape. Exclusion zones were established at Workshafts 2B and 3, and at the Spur and Pompton Inlets.

The contamination reduction zone (CRZ), or transition area, was established to perform decontamination of personnel and equipment. All personnel entering or leaving the exclusion zone passed through this area in order to prevent any crosscontamination and for the purpose of accountability. Tools and any equipment or machinery were decontaminated in the CRZ. The decontamination of all personnel and the removal of personal protective outer garments and respiratory protection were also performed in the CRZ.

The support zone (SZ) was a clean area outside the CRZ located so as to prevent employee exposure to hazardous substances. Eating, drinking, or smoking were permitted in the support zone only after washing face and hands.

#### (2) Vehicle and Drilling Equipment Decontamination

Any vehicles that entered the EZ were decontaminated prior to leaving the CRZ. Decontamination of vehicles consisted of high pressure hot water washing. All drilling equipment, including rods, bits, and augers, were steam cleaned both inside and outside prior to use and between each borehole. Well casings and screens were also steam cleaned prior to installation. When no samples for chemical analyses were to be collected, decontamination of equipment used to recover soil samples (e.g., split spoons, Shelby tubes) consisted of an Alconox detergent wash and tap water rinse. Waste fluids from decontamination were collected and spoiled to the site in such a way as to minimize erosion or spread of contaminants.

#### (3) Sampling Equipment Decontamination

Several types of sampling equipment were used to collect the various environmental samples required during the Passaic River Flood Protection Project. Stainless steel split spoon samplers, trowels, and bowls were used to collect soil samples designated

EDIS/EEG/ay092094.spt_ETRE

for chemical analyses. Stainless steel bailers were used to collect groundwater samples. Procedures for on-site and off-site decontamination of sampling equipment are presented below. Acids and solvents were not used for on-site decontamination.

Each piece of soil sampling equipment was decontaminated on site prior to and between each use. Water level indicators used during groundwater sampling were also decontaminated at the site prior to and between each use. Decontamination of split spoon samplers, spoons, bowls, and water level indicators consisted of the following steps:

- Alconox detergent and tap water scrub to remove visual contamination;
- 2. Generous rinse with tap water;
- 3. Generous rinse with distilled and deionized water.

Any sampling equipment that showed visual contamination following this 3-step procedure was sent off site for the full 8step decontamination process, as described below for the bailers used to collect groundwater samples for chemical analyses.

Bailers were cleaned and packaged off-site prior to the commencement of sampling activities. Each decontaminated bailer was dedicated for exclusive use at one sample location. Extra bailers were available in the event that problems might have occurred in obtaining a sample. Decontamination consisted of the following steps:

- 1. Scrub with mixture of Alconox detergent and tap water;
- 2. Rinse generously with tap water;
- 3. Rinse with distilled and deionized water;
- 4. Rinse with 10 percent nitric acid;
- 5. Rinse with distilled and deionized water;
- 6. Rinse with pesticide-grade isopropanol";
- 7. Air dry;
- 8. Rinse generously with distilled and deionized water.
  - * Only if sample was to be analyzed for metals
     ** Only if sample was to be analyzed for organics

After each use, decontaminated equipment was left unwrapped and was kept away from clean, unused sampling equipment. The field deconned equipment and was sent back to the IT Corporation office in Edison, NJ at the end of the day for the complete eight-step decontamination procedure.

It was necessary to use a submersible pump to evacuate standing water from the bedrock well at Workshaft 2B-K prior to the collection of the groundwater sample. The cleaning process employed prior to and between each use of that pump consisted of

EDIS/ENG/ay092094.rpt_ETRN

a 20-gallon flush of distilled and deionized water through the pump and discharge lines.

#### 3. Field and Analytical QA/QC

The following subsections describe the QA/QC procedures applicable to the documentation of environmental sample collection activities conducted during the HTRW investigation for the Passaic River Flood Protection Project.

#### a) Field Documentation

All activities associated with the collection of environmental samples for chemical (HTRW) analyses were documented in the bound field notebook for each work location. The information from the notebooks was used to complete a daily QC report, detailing the day's sampling activities, weather conditions, field instrument readings, and departures from the approved sampling plans.

In addition to the daily QC report, a Sample Collection Log was completed for each sample. The completed form contains the date and time of collection, sample number, sample location description, sample type, and, if applicable, sample depth. The form also includes a list of all bottles used for that sample and their respective lot numbers. All forms are included with the other field documentation for each day's activities in the project file maintained in the Edison, NJ office of IT Corporation. Sample chain-of-custody (COC) forms were completed in the field.

(1) Logbooks/Field Activity Daily Logs

A record of each day's activities was maintained by the IT site geologist and/or sampling personnel in a bound field notebook at each work location. In some instances, such as when multiple field investigation activities were taking place at a given work location, the day's activities were also recorded on a Field Activity Daily Log (FADL) for that work location. Each day's entries include:

- An appropriate header, including project name, project number, site location (e.g., Workshaft 2, 2B-Fiore, or 2C), and date.
- Time and weather conditions as the first entry for each day. Significant climatological changes were noted throughout the day.
- The names and affiliations of field personnel and visitors to the site.

EDIS/ENG/ay092094.rpt_ETEN

1

- a 1

II-13

- Field equipment identification including type, manufacturer, model number, and serial number; and field equipment calibration data, if applicable.
- A general description of the day's field activities showing a chronological sequence of events.
- Field measurements, including units.
- References to appropriate field forms for details of each activity performed.
- The location and time of all samples collected during the day.
- Any changes from the workplan and a rationale for the change.

Maintained as described above, the field notebook contains the "master" record of the field work performed for each given day. Each page of the field notebook is numbered, signed, and dated, and is accompanied by the various forms described herein, as applicable, to document specific data. An example FADL is shown in Figure II-3.

### (2) Chain of Custody

Each sample that was delivered to a laboratory for analysis was accompanied by a Chain-of-Custody (CoC) form. The IT CoC forms are preprinted with a unique 6-digit control number in the upper right corner. The form is a two-part form. The white copy of each form accompanied the samples to the laboratories and the yellow copy was maintained in the field project file. The contents of this file were transferred to the project central file at the completion of the field program.

The CoC form was signed by each individual who had the samples in her or his possession before the samples were delivered to the lab. Sample custody is discussed in greater detail below. Copies of the CoC forms for this project are provided with the analytical reports. An example CoC form is shown in Figure II-4.

#### b) Equipment Decontamination

All equipment used during the sampling activities as required by the groundwater and HTRW investigations for the Passaic River Flood Protection Project was decontaminated before use on site and between each sampling event. Specific decontamination procedures for vehicle/drilling equipment and for

EDIS/ENG/ay092094.rpt_ETER

environmental sample collection equipment were discussed previously.

#### c) Field QC/QA Samples

This section describes the field quality control and quality assurance samples that were collected for the project.

(1) Collection of Quality Control Samples

Three types of field quality control samples were collected during the project: trip blanks, rinsate blanks, and replicate samples. Additionally, the field sampling team collected double volume for matrix spike and matrix spike duplicate (MS/MSD) analyses at a frequency of one MS/MSD sample per soil strata at each workshaft location. During soil drilling and sampling, if a different soil strata was encountered, then an extra volume was collected from that strata for an additional MS/MSD. The analytical data for the MS/MSD samples was used to determine whether matrix interferences are affecting the lab data. The applications and frequency of the field QC samples were as follows:

- Trip Blanks: the sampling team bottled and preserved a sample of deionized and distilled water, carried it with them to all sampling locations, and delivered it to the laboratory with the environmental samples. The purpose of collecting trip blanks is to determine whether samples are being contaminated during transit or sample collection. One trip blank was sent with each cooler that contained groundwater samples for VOC analyses, and the trip blanks were analyzed for VOCs. Trip blanks are not required for soil sampling.
- Rinsate Blanks (Field Blanks): the sampling crew collected the deionized and distilled water from the final rinse of fully-decontaminated sampling equipment and delivered it to the lab(s) for analysis. The purpose of collecting rinsate blanks is to determine whether the sampling equipment is causing crosscontamination of samples. The sampling team collected one rinsate blank per matrix per day per site location.
- Replicate (Field Duplicate) Samples: randomly-chosen environmental samples were split into, and labeled as, two separate samples for chemical analysis. The laboratories did not know the identity of replicates. The purpose of collecting replicates is to determine the representativeness of chemical data for environmental samples. The sampling team collected at least one replicate per 10 field samples of each

EDIS/ENG/ay092094.spt_ETRN

matrix. Replicates were analyzed for all the same parameters as their co-located sample.

The total number of QC samples collected was greater than 10 percent of the total number of samples collected.

(2) Collection of Split Samples (QA Samples)

Some of the field samples were collected and homogenized, and then split into two equal parts and placed into separate sets of containers. These samples served as "QA Samples" for comparison of data obtained from the project's laboratories and the QA Lab listed below. Samples for VOC analysis were not homogenized, but instead were collected directly into the two sets of containers. ITAS-Edison/Quanterra provided bottles with teflon-lined seals designated as "QA samples" to be used for the collection of split samples. Split samples were analyzed for the following parameters: Pests/PCBs, TPH, VOAs, Semi-VOAs, Cyanide, TAL Metals, Herbs and Gross Alpha/Beta. The first set of containers was sent to the IT-contracted laboratories. The second set of containers for each QA sample, with the exception of sample containers to be analyzed for Gross Alpha/Beta, was sent to the quality assurance laboratory for this contract:

> New England Division Water Quality Laboratory Barre Falls Dams, RFD#1 476 Coldbrook Road Hubbardston, MA 01452-9743 Attn: Brian Condike Phone: (508) 928-4238

Gross Alpha/Beta QA Samples were sent to:

Pace, Inc. 5930 McIntyre Street Golden, CO 80403 Telephone: (303) 278-3400

An advance copy of chain-of-custody forms for gross alpha/beta samples was sent to the above QA lab (Fax #: 508-928-5494). Chain-of-custody forms accompanying QA sample shipments to the QA lab had the project number E0236 written on it.

The total number of QA samples collected and sent to the QA laboratory was greater than 10 percent of the total number of field samples collected. QA samples were collected, handled, and transported in exactly the same manner as all other samples.

Five sets of samples were sent to the QA laboratories for duplicate analyses. Data comparisons for these samples were as follows:

EDIS/ENG/ay092094.ppt_ETRE

Analyte Group	Qualitative Agreement
Volatiles	100%
Semi-volatiles	100%
Pesticides/PCBs	100%
Trace metals	96%

The low value for TPH was due to one major discrepancy on a particular sample which fell outside of the upper limit of acceptability established by the QA laboratory. Additionally, the magnitude of the discrepancy was enhanced by the relatively small number of TPH samples sent to the QA laboratory. The QA laboratory concluded that the contract laboratory's performance was satisfactory for all analyses with the exception of the TPH sample discussed above.

> Sample Preservation Packaging and Shipping d)

100%

100%

100%

50%

This section describes the preservation, labeling, custody, and transportation of HTRW samples.

(1) Sample Preservation

Preservatives were used to stabilize certain portions of water samples collected for this project. Preservatives were not used for soil samples. When preservatives were required, they were added to the bottles at the laboratory prior to sample collection. The preservatives for water samples included hydrochloric acid for VOCs analyses, nitric acid for metals (except hexavalent chromium) and gross  $\alpha/\beta$  analyses, sulfuric acid for TOC and nitrate/nitrite analyses, and sodium hydroxide for cyanide analyses. Samples were also maintained at cold temperatures to stabilize all parameters.

> (2) Sample Labeling/Identification

Sample labels were completed for each sample using indelible ink. All samples were adequately marked for identification from the time of collection and packaging through shipping and storage. Sampling identification included, as appropriate:

Project name and number

Trace metals

Cyanide

TPH

Herbicides

Radioactivity

- Sample number
- Sample location (e.g., boring, depth or sampling interval, and field coordinates)

ED18/EMG/av092094.rmt ETRH

.....

II-17

- Sampling date and time
- The name of the individual performing the sampling
- Sample preservative, if any.

#### (3) Sample Custody

An overriding consideration for data resulting from environmental samples is the ability to demonstrate that the samples were obtained from the locations stated and that they reached the laboratory without alteration. Evidence of collection, shipment, laboratory receipt, and laboratory custody until disposal was documented to accomplish this. Documentation was accomplished through a Chain of Custody (CoC) form that records each sample and the individuals responsible for sample collection, shipment, and receipt. A sample was considered to be in custody if it was:

- In a person's actual possession
- In view, after being in physical possession
- Locked so that no one can tamper with it, after having been in physical custody
- In a secured area, restricted to authorized personnel.

#### (4) Sample Packaging and Shipment

Samples were packaged in waterproof insulated plastic coolers. About 1 inch of inert cushioning material (e.g., bubble-wrap) was placed in the bottom of each cooler. Labeled sample containers were enclosed in clear plastic bags and placed upright in the cooler without touching. The coolant (crushed ice or blue ice) was then added, followed by more packing material to completely fill the cooler. The paper work (chain-of-custody form) was placed in a plastic bag and taped to the inside of the cooler lid.

For samples transported directly to the laboratory, the white copy of the chain-of-custody form was kept in the possession of the person delivering the samples.

For samples shipped to the laboratory by commercial carrier, the white copy of the chain-of-custody form was placed in the shipping container, and the shipping container sealed prior to giving it to the carrier. Custody seals were attached to the front right and back left of each cooler and were covered with clear plastic tape. The cooler was strapped shut with tape in at least two locations. Samples were shipped within 24 hours of collection.

For the samples shipped by commercial carrier, the waybill serves as an extension of the chain-of-custody record between the

EDIS/ENC/ay092094.spt_HTRE

final field custodian and receipt in the laboratory. (The carrier and waybill number were written on the chain-of-custody form). Commercial carriers are not required to sign off on the custody forms as long as the custody forms are sealed inside the sample cooler and the custody seals remain intact.

C. Occupational Qualitative Risk Screening Analyses

The objective of this task was to review and organize the available site-related HTRW data in a manner to interpret the potential impact of identified HTRW contaminants to workers occupationally exposed to soil and groundwater during construction activities of the tunnel and associated features. Limited risk screening calculations were used to assess potential health hazards at HTRW sites by providing basic numerical estimates of cancer and non-cancer risks. These calculated risk estimates should not be construed as representing a complete multiple exposure pathway risk assessment. Rather, the sitespecific risk estimates are intended to provide a qualitative assessment of occupational health hazards that may be associated with construction activities for the various project features. Limitations of the risk screening procedures used for this qualitative assessment are detailed in Section III.

The HTRW constituents of concern listed in each HTRW site summary (see Section IV, Results by Feature) may differ from the data in screening criteria comparison tables. These comparison tables presents analytical data from the field investigation for samples where HTRW concentrations are compared to screening criteria specific to USEPA or New Jersey regulations listed below:

Documented HTRW contaminants at each known site were identified in the environmental records search or from environmental samples collected during IT field investigations of inlets, workshafts, and at Passaic Levee 10. The maximum value of each identified HTRW contaminant was used in these analyses to provide a conservative estimate of the extent of soil/groundwater contamination. These upperbound estimates of HTRW contaminant concentrations or toxic equivalent factors (TEF) were used in screening criteria comparisons and in the risk screening analyses for occupational exposure to contaminated environmental media.

Haz Waste Classification	NJDEPE Guidance Document for Remediation of Contaminated Soils, June 1994
Non Res Soil	NJDEPE Soil Cleanup Criteria, February 3, 1994
Res Soil	NJDEP Soil Cleanup Criteria, February 3, 1994
Soil Impact to <b>GW</b>	NJDEP Soil Cleanup Criteria, February 3, 1994

EDIS/ENC/ay092094.rpt_ETRE

II-19

Freshwater (a)	USEPA Surface Water Criteria, November 1991 (Acute)
Freshwater (c)	USEPA Surface Water Criteria, November 1991 (Chronic)
FW2-NT (a)	NJDEPE Surface Water Quality Standards, April 1994 (Acute)
FW2-NT (c)	NJDEPE Surface Water Quality Standards, April 1994 (Chronic)
FW2-NT (h)	NJDEPE Surface Water Quality Standards, April 1994 (Human Carcinogenic)
SE (a)	NJDEPE Surface Water Quality Standards, April 1994 (Acute)
SE (C)	NJDEPE Surface Water Quality Standards, April 1994 (Chronic)
SE (h)	NJDEPE Surface Water Quality Standards, April 1994 (Human Health)
SE (hc)	NJDEPE Surface Water Quality Standards, April 1994 (Human Carcinogenic)

The maximum soil values for priority rank B sites were also compared to the screening criteria.

These screening criteria are useful for estimating soil disposal and groundwater discharge cost estimates for features that may require remediation or treatment during construction activities. The data in the table are limited to those sites sampled during the field investigation and for Priority B HTRW sites identified in the ERS. The screening criteria presented are not applicable to assessing health hazards from dermal contact exposure to soil or water.

The HTRW site summaries include analytical data from the HTRW field investigation or historic analytical data compiled during the ERS. Health risks at HTRW sites are generally driven by a few principal constituents and the HTRW constituents of concern listing for each site is limited to HTRW constituents that maximize calculated health risks. Table II-4 lists the chemical or class of chemicals that were weighed for their inherent toxicity using Toxic Equivalent Factors (TEF) in the risk screening process for this study. Furthermore, the use of surrogate chemicals and TEF in the conservative risk screening protocol skews the analytical data in the health hazard risk estimates. For example, the analytical data for 10 polycyclic aromatic hydrocarbons (PAH) were summed and presented as a single concentration of benzo(a)pyrene equivalents in the HTRW site summary.

The qualitative risk screening protocol for assessment of site-related HTRW was based on a single exposure pathway, dermal contact with an environmental media. The risk screening protocol, discussed below, estimated human health cancer risks and non-cancer health hazards that may be associated with

EDIS/ENG/ay092094.spt ETRM

#### Health and Safety

Since HTRW impact costs do not include activities like earth excavation and groundwater pumping costs, therefore the presented health and safety costs are associated only with handling of HTRW materials.

Potential upgrading of Health and Safety required measures includes Personal Protective Equipment (PPE), air monitoring and equipment decontamination.

For hazardous soils contaminated with metals and organics upgraded level D PPE was assumed. Additionally dust control, and equipment decontamination costs were included. An estimated cost of 15 percent of the total construction cost, including contingencies was added to the total estimated direct construction cost to provide for health and safety.

For hazardous soils contaminated with dioxins, PCBs and pesticides level C PPE was assumed. A factor of 25 percent was chosen for the Health and Safety.

#### Future Investigations

Further investigations will be necessary at some feature or subfeature locations. At floodwall and levee site locations with unknown but potential soil contamination, surface soil samples would be collected every 100 feet for analysis. Parameters for analysis will include VOCs; SVOCs; TPH; pesticides and PCBs, herbicides; dioxin; metals; hexavalent chromium, cyanide; and TCLP as necessary.

Workshaft areas of intrusive disturbance, which have not been previously investigated, should be sampled. It was estimated that 10 to 15 surface and 8 to 10 subsurface soil samples would be collected for analysis at a workshaft area of approximately 1.5 to 2 acres. The samples will be analyzed for the same parameters as samples collected from levees and floodwall areas.

Additional groundwater investigations will be required at selected future locations. Those investigations will involve installation of shallow monitoring wells and deep bedrock wells where specified. Groundwater samples will be collected from pumping tests and pilot wells at the conclusion of straddlepacker and pumping tests. The number of groundwater samples collected for analysis will be defined separately at each well location, and will be at least two samples per zone. Samples collected during future groundwater investigations shall be analyzed for the same parameters as the samples collected during the current IT investigations.

EDIS/ENG/ay092094.spt_EIRS

p. 31

### IV. RESULTS BY FEATURE

The results of the HTRW investigation for each project feature are presented in this chapter. The environmental records search findings are discussed for each feature, and the field investigation results are presented for the applicable features. The analytical data are compared with applicable screening criteria on a site-specific basis. For example, the Pompton Inlet data are compared with soil cleanup criteria and with freshwater quality and effluent standards, but not with saltwater standards. The screening criteria used for comparison to project data are listed in Section II.C of this report.

The presentation of results for each feature is followed by a discussion of potential impacts including risk-screening analysis, recommendations for additional investigations and response alternatives, and estimated costs for the recommended investigations and responses. The project features are discussed according to type, in the following order: tunnel inlets, tunnel segments, the tunnel outlet, weirs, channel modifications, Pompton levee systems, central basin levees, and hurricane levee systems.

#### ED15/ENG/ay092094.rp4_ETRM

- a) Investigation Results
  - (1) Field Investigation

IT conducted an HTRW field investigation at the proposed location of Workshaft 2B, the old Keegan landfill, and a groundwater and HTRW investigation at a nearby location, the Fiore Disposal Company site. The locations of the Keegan and Fiore sites are shown in Figure IV-11. IT supervised the completion of two boreholes (IT-2BK-PB01 and IT-2BK-OB01) at the Keegan site and three boreholes (IT-2BF-PB01, IT-2BF-PW01, and IT-2BF-OB01) at the Fiore site. Wells were constructed in each of the boreholes. Groundwater was encountered at a depth of approximately 4 to 6 feet below ground surface at both sites. The details of drilling and well installation are discussed in the Groundwater Investigation Report for this project. The locations of all five wells are shown in Figure IV-11, IV-11A and IV-11B. A summary of detected compounds and applicable screening criteria is included in Table IV-A-5-1.

The <u>stratigraphy</u> at the Workshaft 2B Keegan location, from ground surface to the top of bedrock, consisted of refuse and soil fill material to 6 feet; organic soil with fill settled in to 9 feet; silty sand to 20.5 feet; medium- to coarse-grained sand to 25 feet; sandy silt with clay to 50 feet; varved clay and silt with thin sand seams to 100 feet; silty sand to 140 feet; and glacial till to 155 feet. The stratigraphy at the Fiore location is similar, except that the refuse is absent and the glacial till extends to a depth of 285 feet before bedrock is encountered. The interbedded shale and siltstone bedrock at Workshaft 2B is indicative of the lowermost unit of the Passaic /

IT collected soil samples for chemical analysis from the 8to 10-foot, 12- to 14-foot, 50- to 52-foot, and 100- to 104-foot intervals in IT-2BK-PB01. The presence of refuse and cut gravel precluded sampling in the first 8 feet of the borehole. The driller overdrove the split-spoon samplers to minimize the effects of drilling mud on the analysis. Soil samples were also collected from the 2- to 4-foot and 4- to 6-foot intervals in IT-2BK-OB01. The samples were analyzed for VOCs; SVOCs; TPH; pesticides and PCBs; herbicides; 2,3,7,8-TCDD; metals; chromium VI; cyanide; and gross  $\alpha$  and  $\beta$ . The 100- to 104-foot sample was not analyzed for herbicides or 2,3,7,8-TCDD. All four samples from IT-2BK-PB01 were also analyzed for asbestos. IT did not collect soil samples for chemical analysis at the Fiore site because the workshaft construction is proposed for the Keegan site.

EDIS/EBG/ay092094.sp4_ETEM

 $\mathbf{r}_{i}$ 

• ••

Several SVOCs, pesticides, PCBs, and metals were detected in the overburden-well soil samples. The SVOCs benzo(a) anthracene, benzo(b) fluoranthene, benzo(k) fluoranthene, benzo(a) pyrene, dibenz(a,h) anthracene, and indeno(1,2,3-cd) pyrene; the PCB aroclor 1248; and lead were detected above the NJDEP Residential Soil Cleanup Criteria in both samples. The pesticide aldrin was detected above the NJDEP criterion in the 4- to 6-foot sample, while the metals berium and cadmium were detected above the criteria in the 2- to 4-foot sample. Several SVOCs and metals were detected in the pilot-boring soil samples, but at concentrations below the NJDEP criteria. Pesticides and PCBs were not detected in the pilot-boring soil samples.

A few VOCs were detected at low concentrations below the NJDEP residential criteria in the IT-2BK-OB01 soils. VOCs were not detected in the pilot-boring samples. TPH was detected in the IT-2BK-OB01 samples at concentrations below the Hazardous Waste Classification criterion, and was not detected in the IT-2BK-PB01 samples. Gross  $\alpha$  and  $\beta$  were not detected at levels significantly above background in the 2BK soil samples. Herbicides, 2,3,7,8-TCDD, cyanide, and chromium VI were not detected in the 2BK soil-boring samples.

The soil between the depths of 2 and 8 feet at the Workshaft 2B location are evaluated as contaminated and possibly hazardous with respect to SVOCs, pesticides, and metals. It is also evaluated as nonhazardous contaminated with respect to PCBs. The soil below 8 feet is evaluated as noncontaminated.

In addition to the soil-boring samples, IT collected thirteen surface soil samples at the Workshaft 2B Keegan location. The samples were analyzed for VOCs; SVOCs; TPH; pesticides and PCBs; herbicides; 2,3,7,8-TCDD; metals; chromium VI; cyanide; and gross  $\alpha$  and  $\beta$ .

The dioxin compound 2,3,7,8-TCDD was detected in four surface samples at concentrations ranging from 0.34 to 5.5 ug/kg. Although the NJDEP does not have published guidance values for dioxin in soils, the 2BK surface soil is evaluated as contaminated with respect to dioxin.

Several SVOCs, pesticides, PCBs, and metals were detected in all the surface soil samples. Concentrations for at least three analytes in each sample exceed the NJDEP Residential Soil Cleanup Criteria. The maximum detected concentrations were:

Compound	<u>Conc. (ug/kg)</u>
Benzo(a)anthracene	4,400
Benzo(b)fluoranthene	13,000
Benzo(k)fluoranthene	4,200

EDIS/ENG/ay092094.xp4_ETRM

IV-21 ρ.34

Benzo(a)pyrene	8,100
Dibenz(a,h)anthracene	1,300
Hexachlorobenzene	140,000
Indeno(1,2,3-cd)pyrene	3,600
Aldrin	45
4,4'-DDE	73,000
4,4'-DDT	50,000
PCBs (Aroclor 1260)	120,000
Analyte	Conc. (mq/kq)
Antimony	1,680
Barium	23,200
Beryllium	9.1
Cadmium	112
Copper	55,400
Lead	13,000
Nickel	1,330
Silver	187
Vanadium	943
Zinc	10,100

Several other SVOCs, pesticides, and metals were detected in the surface soil samples, but at concentrations below the NJDEP standards.

TCE was detected in surface sample 2BK-S-HA13 at 7.7 ug/kg, substantially lower than the NJDEP standard of 1,000 ug/kg. VOCs were not detected in any other 2BK surface soils. TPH was detected in all the surface samples, at concentrations ranging from 42 to 24,000 mg/kg. Herbicides were detected in most of the surface samples, between 0.75 and 35 ug/kg. Cyanide was detected in twelve of the thirteen surface samples collected at the Workshaft 2BK location, but at concentrations below the NJDEP residential criterion. Gross  $\alpha$  and  $\beta$  were not detected at levels significantly above background in the 2BK surface soil samples. Chromium VI was not detected in the 2BK surface soil samples.

The surface soil at the Workshaft 2B location is evaluated as hazardous with respect to dioxin and PCBs. It is also evaluated as contaminated and possibly hazardous with respect to SVOCs, pesticides, and metals.

Straddle-packer tests were performed on pilot hole IT-2BF-PB01 as part of the groundwater investigation. During the packer tests, IT collected groundwater samples from depths of 343 to 353 feet and 364 to 374 feet. The samples were analyzed for VOCs; SVOCs; pesticides and PCBs; 2,3,7,8-TCDD; metals; chromium VI; cyanide; and gross  $\alpha$  and  $\beta$ . The shallower sample was also analyzed for herbicides.

EDIS/ENG/ay092094.rp4_ETRN

· · ·

Analysis showed that concentrations of the VOC trichloroethene (TCE) in both samples were substantially higher than the freshwater and saltwater effluent standards. Phenols were also detected at concentrations above the freshwater and saltwater effluent criteria in both samples. Several other VOCs were detected in the sample at concentrations below the effluent standards. Lead, mercury, silver, and zinc were detected in one or both of the straddle-packer samples, at concentrations below the water quality criteria and effluent standards.

In response to the high TCE concentrations, IT used a carbon filtration unit prior to the performance of a packer test at 340 feet and a 72-hour pumping test at 378 feet in IT-2BF-PW01. Samples for VOC analysis were then collected at the influent and effluent ports of the treatment unit according to the following schedule:

	Influent Samples	Effluent Samples
during straddle packer testing	1	1
at 0 hour of 72- hour pumping test	1	
at hour 12	1	
at hour 24	1	1
at hour 36	1	
at hour 48	. 1	
at hour 60	1	
at hour 72	1	1
TOTAL	8	3

In addition to VOC analysis, the effluent sample at 24 hours of the pumping test was also analyzed for total organic carbon (TOC). The influent sample at 72 hours was analyzed for SVOCs; pesticides and PCBs; metals; chromium VI; cyanide; and gross  $\alpha$  and  $\beta$ .

The analyses showed that the influent groundwater was contaminated with TCE, tetrachloroethylene (PCE), and trans-1,2-dichloroethene at concentrations above the effluent standards throughout the packer and pumping tests. TCE concentrations ranged from 511  $\mu$ g/L, at 48 hours into the pumping test, to 850  $\mu$ g/L at 0 hours. PCE concentrations ranged from an estimated

EDIS/ERG/ay092094.rp4_ETRM

.....

18.2  $\mu$ g/L at 48 hours to 52.8  $\mu$ g/L at 0 hours. Trans-1,2dichloroethene concentrations ranged from 50.6  $\mu$ g/L at 48 hours to 106  $\mu$ g/L at 0 hours. VOCs were not detected in the effluent samples, indicating the effectiveness of the filtration unit. Over the 72 hour pumping test, the VOC concentration appeared to reach steady-state.

Several metals were detected in the influent sample collected at the end of the 72-hour pumping test. Zinc was detected above the freshwater and saltwater effluent standards in that sample. Manganese was detected above the NJDEP saltwater quality criterion, however, there is no effluent standard for manganese. Gross  $\alpha$  and  $\beta$  were not detected at levels significantly above background in the sample. All other listed analytes were not detected in the 2BF groundwater sample collected at the end of the pumping test.

In addition to the groundwater samples collected at the Fiore site, IT collected groundwater samples from the pilot hole and overburden well at the Keegan site. Sample collection occurred prior to the installation of the multiport system in the pilot hole, therefore, the sample was a composite of the water column from 4 to 510 feet. The samples were analyzed for VOCs; SVOCs; pesticides and PCBs; metals; chromium VI; cyanide; and gross  $\alpha$  and  $\beta$ . The overburden well sample was also analyzed for herbicides and 2,3,7,8-TCDD.

<u>TCE and 1,2-dichloroethene were detected above the</u> <u>freshwater and saltwater effluent standards in the pilot-hole</u> <u>sample.</u> PCE was detected above the water-quality criteria but below the effluent standards in the same sample. VOCs were not detected in the Workshaft 2B overburden sample. Acetone was detected in the overburden- and pilot-well samples at respective concentrations of 12 and 17  $\mu$ g/L, substantially lower than the NJDEP standard of 700  $\mu$ g/L. The herbicide dinoseb was detected in the IT-2BK-OBO1 sample at an estimated concentration of 0.027  $\mu$ g/L.

Several metals were detected in the Workshaft 2B groundwater samples. Iron and zinc were detected at concentrations above the freshwater and saltwater effluent standards in both samples. Lead was detected above the effluent standards in the overburden sample. Lead in the pilot-hole sample, as well as arsenic and mercury in both samples, were detected at concentrations above freshwater and saltwater quality criteria but below effluent standards. Copper was detected above EPA freshwater quality criteria but below effluent standards in the overburden sample. Manganese was detected above the saltwater quality criteria in both samples, however, there are no effluent standards for manganese. Gross  $\beta$  was detected at 65 picocuries per gram, a level above background, in the sample from the overburden well.

EDIS/ENG/ay092094.xp4_EXEM

Ť

Gross  $\alpha$  was not detected at a level significantly above background in either sample. All other listed analytes were not detected in the Workshaft 2B groundwater samples.

Based on the results presented above, groundwater at Workshaft 2B will have to be treated for removal of VOCs and metals, and possibly phenols, prior to its discharge to surface water. In addition, further sampling is recommended to determine whether specific radionuclides are present at detrimental levels in the groundwater.

(2) Environmental Records Search

Six HTRW sites were located within 1,500 feet of the worksite 2B-Fiore (Tables IV-A-5-2, IV-A-5-3, and IV-A-5-4A, and Figure IV-11).

Warner Manufacturing, a Priority C HTRW site, is identified as an ISRA property with low quality analytical data scores for both soil and groundwater. Recent on-site surficial soil data (1993) indicated total petroleum hydrocarbons (TPH) concentrations of approximately 1,600 mg/kg, a level below New Jersey non-residential soil cleanup criteria.

Kleer Kast Inc, a SPL chromium site, has additional HTRW contaminants, petroleum-contaminated soil and groundwater, related to LUST remediation of three USTs in April, 1993. In September 1993, NJDEP has directed Kleer Kast to delineate the horizonal and vertical extent of the petroleum contamination in soils and install groundwater monitoring wells as free product was observed at one excavation site. The FOI review of the files for this site did not provide analytical data for the LUST remediation. Because of the petroleum-related HTRW, Kleer Kast was considered a Priority D HTRW site.

Four HTRW sites near Worksite 2B-Fiore, Frank's Auto Electric, Kenney Steel Treating Corp., T.J. McDermott Transportation Co., and West Hudson Lumber Co., are Hudson County SPL chromium sites. HTRW contaminants at these sites are limited to chromate slag fill and these properties were considered Priority E HTRW sites.

Ten HTRW sites were identified that are located within 1,600 feet of worksite 2B-Keegan (Table IV-A-5-4B and Figure IV-11). The worksite was located on the edge of Keegan Landfill and surrounded by active and abandoned industrial properties. Industrial contamination associated with many of these sites are metals (e.g., chromium, lead, copper) that have a low potential for horizonal and vertical migration. Guignon & Greene and Diamond Head Oil Refinery property are exceptions. Diamond Head Oil, approximately 1,600 feet south-southeast of the worksite,

EDIS/EEG/ay092094.rp4_ETRE

has on-site groundwater that is severely impacted by chlorinated solvents and petroleum products.

Keegan Landfill, a Priority B HTRW site, is a closed 230 acre unlined landfill in a wetlands area that accepted industrial waste including metal slurries, pigments, and waste solvents. Several underground fires have occurred at the site as recent as 1987. The analytical data for both soil and groundwater are low quality and based on a few samples collected in 1989. Lead, PCBs, and PAHs levels exceed New Jersey soil cleanup criteria. Groundwater analyses were limited to metals determination and indicated lead and mercury impact the groundwater.

Property known as the Diamond Head Oil Refinery, a Priority C HTRW site, is now an inactive 15-acre site. Low quality data for soil describe elevated levels of HTRW contaminants including aluminum (22,300 mg/kg), lead (8,100 mg/kg), and zinc (1,040 mg/kg). The groundwater table at the site varies from 4 to 14 feet bgl. Medium quality (1994) analytical data for shallow groundwater indicates extensive contamination with metals, chlorinated solvents, vinyl chloride, BTEX, and other organic compounds. Free product was reported in on-site wells.

Guigon & Greene Co. blends and processes petroleum and nonpetroleum oils, fuels, and solvents. No analytical data is available for this Priority C site but a history of spills and fires at the site suggest probable HTRW contamination. Groundwater is 1-2 feet bgl.

Kearny Smelting and Refining Company, a Priority C HTRW site, smelts scrap metal to produce bronze and brass ingots. Historically, wastewater from the operation was discharged to an unlined lagoon. The facility has received numerous citations for mismanagement of hazardous wastes and spills. The available analytical data for this site is considered low quality and is based on soil samples taken in 1986. Surficial soil levels of PAHs and several metals greatly exceed soil cleanup criteria and include antimony (427 mg/kg), cadmium (600 mg/kg), lead (15,300 mg/kg), silver (1,130 mg/kg), and zinc (81,200 mg/kg). No data was available to assess potential HTRW impact on groundwater.

G&S Motor Equipment Co., a Priority C HTRW site, has surficial soil contamination of PCBs (532 mg/kg), lead (1,010 mg/kg), and chromium (578 mg/kg) based on low quality analytical data collected in 1988. No data was available for site-related HTRW impact to groundwater.

Drew Chemical Corp is a Priority D HTRW site. High quality (1992) soil HTRW data indicates PAHs and TPH exceed soil cleanup criteria. No groundwater data was available for review. Depth to groundwater is approximately 20 feet bgl.

EDIS/ENG/ay092094.xp4_ETRM

to be performed on the workshaft. For as long as dewatering of the excavation is required, contaminants may be mobilized by the flowing groundwater, which would bring them into the excavation. The geotechnical design of the workshaft includes installation of structures that will minimize the inflow of groundwater into the excavation.

Either a slurry wall will be installed around the shaft excavation or ground freezing will be implemented to minimize infiltration of groundwater. The slurry wall would be installed in the overburden soils around the shaft location. This structure will reduce groundwater infiltration into the overburden excavation to nearly zero. Ground freezing implemented around the shaft will reduce this infiltration to zero. The bedrock will be grouted prior to workshaft excavation to minimize groundwater seepage. In addition, shotcrete and rock bolts will be used for primary support. These measures will minimize the influx of water. Uncontrolled seepage was assumed to be 60 gpm.

### c) Recommendations for Additional HTRW Investigation

HTRW data from the field investigation at Workshaft No. 28 included results for surficial soil, deep soil, shallow and deep groundwater. Both soil and groundwater were extensively contaminated by HTRW. Soil was impacted by concentrations of TCDD, pesticides, PCBs, PAHs, TPH, and metals (see HTRW Site Summary). Groundwater was also contaminated by chlorinated solvents and metals. Once the exact location of the workshaft is set, an extensive surface and shallow soil (up to 15 feet) sampling investigation should be performed. This should include approximately 10 subsurface, 15 surface, and 2 shallow soil boring samples. Samples should be analyzed for VOCs, SVOCs, Pesticides/PCBs, dioxin, metals, and TCLP for organics and / inorganics.

### d) HTRW Response Alternatives

Construction of Workshaft 2B will generate quantities of potentially contaminated groundwater. The known contaminants of concern are primarily the chlorinated hydrocarbons PCE, TCE, DCE and the metals iron, manganese, and zinc. Other compounds may also be present and may become mobilized into the groundwater recovered in the excavation. Analysis and, potentially, appropriate treatment of the groundwater would probably be required prior to its discharge.

A possible groundwater treatment system would comprise a metals removal unit followed by a granular activated carbon (GAC) adsorber. The metals removal unit would probably be of the type

EDIS/ENG/ay092094.rp4_ETRM

Note: Information on this page was reveal by USACE Baltimore District subsequent to the delivery of the final report by IT Corporation.

								rkshaft	40					Ę			
Analyte	Result	Fresh water (a)	Fresh water (c)	FW-2 Effluent Daily Max	FW-2 Effluent Monthly Avg	FW2-NT (h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soli	Res Soil	SE (h)	SE (hc)	SE Effluent Delly Max	SE Effluent Monthly Avg	Soli Impact to GW	Soil Misc	Water Misc
28-F-IT-PB01 (343																	
1,1,1-Trichloroethane	8.44			54									54	21			
1,1-Dichloroethane	16.2			59	22								59	22			
1,1-Dichloroethene	4.04 J			6		4.81							25	16			
Chloroform	1.83 J			11.4			5.67					470	46	21		·	
Gross Beta	5.1												······				
Phenols	62 8			26	15	20900				<u>-</u>	4600000		26	15			
Silver	0 99	4 1		50	25	164							50				
Tetrachioroethylene	1 36 J			16			0 39					4.29	56			······	
Trichloroethene	618 •			5.4			1.09				†	81					<u> </u>
Zinc	25 2	120	110	200	100								200	tt			
2B-F-IT-PB01 (364-	374)						د		I								L
1,1,1-Trichloroethane	7.63			54	21	127							54	21			r
1,1-Dichloroethane	16.4			59	22	· · · · · · · · · · · · · · · · · · ·							59				<u> </u>
1, 1-Dichloroelhene	3.57 J			6		4.81							25	1			{
Chloroform	2.02 J			11.4			5.67				<u> </u>	470					<u>├</u> ───
Gross Bela	9.1				··-				t					• • • •	·		
Lead	1 76	82	32	100	50	5					[]		100	50			i
Mercury	0.18	24	0.01	1		0.14					0.15		1				ł
Velhylene chloride	0.78 BJ			9.4			2 49					1600	89	40			
Phenols	54.8			26	15	20900			-		4600000		26	· · · ·			l
etrachloroethylene	1 28 J			16	· · · · · · · · · · · · · · · · · · ·		0.39					4.29			•••••	•	
Frichloroethene	642 •			5.4			1 09					4.23	54				+
Zinc	25 6	120	110	200	100								200		•	·- ·	··
2BF-GW-PW1-378	<u>_</u>	]	1			L	LI				L	<u></u>		1			1
Br-GW-PW1-J78	28	··1				2000	I	·· · r	····· ··· ·		<b>1</b>		<b>T</b>	<b>T</b> .'	· - · ,		Ŧ
Chlorobenzene	4 77 J		· • •			2000											ł
zniorobenzene	4 / J		·	28	15	2					21000		28	15			

### Table IV-A-5-1 Comparison of Field Investigation Analytical Results to Screening Criteria Workshaft 2B

.

s and the second second second second second second second second second second second second second second se

TIERRA-A-017523

Analyte		Fresh water (a)	Fresh water (c)		FW-2 Effluent Monthly Avg	FW2-NT (h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soil	Res Soil	SE (h)	SE (hc)	SE Effluent Daily Max	SE Effluent Monthly Avg		Soll Misc	Water Misc
Gross Bela	55				ľ											·	5
Iron	180			2000	1000								2000	1000			
Lead	9.1	82	3.2	100	50	5				•		· •	100				<b> </b>
Manganese	160										100						ł
Tetrachloroethylene	22 4			16			0.39					4.29	56	22			
Trans-1,2-dichloroethe	53			54	21							••••	54				·
Trichloroethene	655			54			1.09			•		81	54				<b>+</b>
Zinc	390	120	110	200	100								200				t
2BF-IN-PW1-000									<u> </u>		·		•				<b>_</b>
Chlorobenzene				28	15	22		•• •••••			21000		28	15			T
Tetrachloroethylene	53			16		······································	0.39	••				4.29	56				<u> </u>
Trans-1,2-dichloroethe	106	• •		54	21	· · ·							54				·
Trichloroethene	850			5.4		· · · · · · · · · · · · · · · · · · ·	1 09				f	81					
2BF-IN-PW1-012						<b></b> ,,	4I	,	I		L		I	1	L.,		L
Tetrachloroethylene	245			16			0 39			<del></del>		4.29	56	22			Т
Trans-1,2-dichloroethe	55 6			54	21								54				+
Trichloroethene	629			54			1.09					81	1		1		
2BF-IN-PW1-024				•••••			L		L		L		1	1	L		L
Tetrachloroethylene	25			16			0.39				T	4.29	56	22	I		1
Trans-1,2-dichloroethe	53 9	·		54	21						·	4.23	54				
Trichloroethene	600			5.4			1.09				ł	81		-		I	
2BF-IN-PW1-036				· · · · · · · · · · · · · · · · · · ·		Lang,	۱۱		I		L		1	1	L	L	1
1,1-Dichloroethane	5.99 J	I		59	22						I		59	22			T
Chlorobenzene	4.52 J			28					···		21000		28			<u> </u>	
Tetrachloroethylene	23 9			16			0.39					4.29					+
Trans-1,2-dichloroethe	57	<b> </b>		54	21								54				
Trichloroethene	743	<u> </u>		5.4			1.09		<b> </b>			81		1			
2BF-IN-PW1-048		L	······································	·		L	L1		L [.	<u> </u>	1	l	L	·I*'	1	l	J
Tetrachloroethylene	18 2 J	[ T	·	16			0 39	1	1	, ,	1	<u> </u>	J		1		,
Trans-1,2-dichloroethe	50 6		· · ·	54	21	···						4 29	54	22 21		· ·	1

TIERRA-A-017524

Analyte	Result	Fresh water (a)	Fresh water (c)	FW-2 Effluent Daily Max	FW-2 Effluent Monthly Avg	FW2-NT (h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soll	Res Soll	\$E (h)	SE (hc)	SE Effluent Daily Max	SE Effluent Monthly Avg		Soli Misc	Water Misc
Trichloroethene	511			5.4			1.09					81	54	21			
28F-IN-PW1-060																	
Chiorobenzene	4.96 J			28	15	22					21000		28	15			<b></b>
Tetrachloroethylene	23.1			16			0.39					4.29	56	22			
Trans-1,2-dichloroethe	57.3			54	21								54	21			
Frichloroethene	730			5.4			1.09					81	54	21		·	
2BF-IN-PW1-340																	•
1,1,1-Trichloroethane	7.82			54	21	127			Г	I			54	21	T	·	1
1,1-Dichloroethane	14												59				
1,1-Dichloroethene	3 18 J			6		4.81							25				<u> </u>
Chlorobenzene	3 53 J			28	15	, 22					21000		28	ł.,			┣───
etrachloroethylene	23 5			16			0.39				·	4.29				····	
Trans-1,2-dichloroethe	<b>63</b> 5			54	21								54				<b>⊢</b> · · · · · · · · · · · · · · · · · · ·
Trichloroethene	774			54			1.09					81					
2BK-FD-HA1						<b>-</b>	•		·	·				۸ <u></u>			<b>L</b>
4,4prime-DDT	35					I			9000	2000					500000		<b></b>
Aroclor 1260	670		······································					50000	2000	490		· · · · · · · · · · · · · · ·			50000		
Arsenic	7700				1				20000	20000							
Barium	· 551000	·							47000000	700000							·
Benzo(b)fluoranthene	810				•				4000	900				1	50000	<b>.</b>	+
Beryllium	530				1				1000	1000	·						+
Bis(2-ethylhexyl) phth	420		·		f		1		210000	49000					100000		+
Cadmium	4500								100000	1000		·					1
Copper	683000					[			600000	600000			[				t
Cyanide	3500								21000000	1100000				<b></b>			<b>†</b>
luoranthene	440				1	1			10000000	2300000			<b>†</b>	1	100000		†
Gross Bela	19				<u> </u>		1						1		[	6	j
ead	790000								600000	100000			<u> </u>	1			1
Mercury	1100				†				270000	14000				1			· · ·
Vickel	277000				1				2400000	250000			t	t	• • • • • • • • • • • • • • • • • • • •		· · · · · ·
yrene	490				1	1			10000000	1700000			<b>+</b>	t	100000		1

.

All units in ppb.

P. 43

٠

.

## TIERRA-A-017525

3

Analyte	Result	Fresh water (a)	Fresh water (c)	FW-2 Effluent Dally Max		FW2-NT (h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soli	Res So <del>l</del> l	SE (h)	SE (hc)	SE Effluent Dally Max	SE Effluent Monthly Avg	Soli Impact to GW	Soli Misc	Wate Misc
Selenium	760 S								3100000	63000							1
Total Petroleum Hydro	360000							30000000									
Vanadium	26200		·1						7100000	370000	· · · · · · · · · · · · · · · · · · ·					·	
Zinc	2170000								1500000	1500000	·						1
213K-FD-PB01-50													• <u> </u>				<b>.</b>
Acelone	42			·			· · · · · · · · · · · · · · · · · · ·	1	1000000	1000000			1	1	\$00000		т <u> </u>
Arsenic	4200						······	·	20000	20000				i			+
Barium	62000	· · · .			·			••••	47000000	700000			<u> </u>				
Bis(2-ethylhexyl) phth	110 J								210000	49000					100000		
Copper	22000				·	·			600000	600000							
Di-n-butyl phihalate	330 J		·····				• · · · · · · · · · · ·		10000000	5700000					100000		·
Lead	12000								600000	100000							
Nickel	21000								2400000	250000				1			+
Vanadium	29000				1				7100000	370000		·		· ·			
Zinc	52000								1500000	1500000			<u> </u>				ŧ
2BK-GW-0B1		•			4		·	<b>1</b>	<b> _</b> _			1	<u> </u>	.1	L	····	1
Acetone	12	I			1		<b></b>		1			I	<u> </u>	Γ			т <b></b> т
Arsenic	16	360	190	100	50		0 02				- -	0.14	100	50			
Barrum	420					2000	1 1										
Chromium (lotal)	27			100	50	160	1	•		·	3230		100	50			·
Copper	29	18	12	100	50								100				
Dinoseb	0.027 J						<b> </b>										
Gross Beta	65			·	1										· · · · · · · · · · · · · · · · · · ·		+
lion	33900			2000	1000							-	200	1000			
Lead	110	82	3.2	100	50	5							100				<u> </u>
Manganese	1500										100		1	<u>†                                    </u>	· · · · ·		<b>+</b>
Mercury	0.23	2.4	0.01	1		0.14					0.15		†"	1			
Zinc	150	120	110	200	100			-				1	200	0 100			-
2BK-GW-PB1															••••••••••••••••••••••••••••••••••••••		-4
1.2-Dichloroethene (ci	31	[		54	21	592			·1			[- <u></u>	5-	4 21	I ·	· · · · · · · ·	1
Acetone	21				· · · · · ·		<u> </u>		·				+	·	·	•	\$

## TIERRA-A-017526

Analyte	Result	Fresh water (a)	Fresh ) water (c)	FW-2 Effluent Daily Max	FW-2 Effluent Monthly Avg	FW2-NT (h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soli	Res Soli	SE (h)	SE (hc)	SE Effluent Delly Max	SE Effluent Monthly Avg	Soli Impact to GW	Soli Misc	Water Misc
Barium	28					2000							· · · · · · · · · · · · · · · · · · ·				1
Gross Beta	12																
Iron	46200			2000	1000						<u> </u>		2000	1000			
Lead	24	82	3.2	100	50	5						·	100				┣───
Manganese	1100				<u> </u>				i		100			<b>~</b>			┟───
Tetrachioroethylene	5.1			16			0.39					4.29	56	22			
Trichloroethena	34			5,4			1.09					81					╂┅───
Zinc	170	120	110	200	100								200	···			<u> </u>
2BK-S-HA01									L							- <del>17</del>	<u></u>
4 Aprime-DDT	31						· · · · · ·		9000	2000				i	500000		·
Aroclor 1260	430						I	50000	2000	490					50000		<b> </b>
Arsenic	8600								20000	20000							
Barium	388000							·	47000000	700000			·				
Benzo(a)anthracene	910								4000	900					500000		
Benzo(a)pyrene	670	··							660	660	······			·	100000		
Benzo(b)fluoranthene	1400					·			4000	900					50000		i
Beryllium	510								1000	1000					5000		
Cadmium	2000		··						100000	1000						<u> </u>	ļ
Chrysene	720					·			40000	9000					500000		
Copper	1720000		·					···· •	600000	600000							- <u> </u>
Cyanide	780			·					21000000	1100000							
luoranthene	1800								10000000	2300000				Į	100000		╆
Gross Alpha	5															50	
Gross Beta	14										·						
ead	452000								600000	100000						0	∦
dercury	670								270000	14000							
lickel	136000			••••••••					2400000	250000							i
yrene	1700								10000000	1700000		· _ · · ·			100000		
olal Petroleum Hydro	440000							3000000				· · · · ·					
/anadium	29800								7100000	370000							1
Inc	1470000								1500000	1500000							-

### 28K-S-HA02

All units in ppb.

р. <del>4</del>5

# TIERRA-A-017527

5

ł

Analyte	Result	Fresh water (a) v	Fresh vater (c)	FW-2 Effluent Daily Max		(h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soil	Res Solf	SE (h)	SE (hc)		SE Effluent Monthly Avg	Soll Impact to GW	Soll Misc	Water Misc
4,4prime-DDT	120			·····					9000	2000			1		500000		
Antimony	37200								340000	14000			1				
Arocior 1260	3800 D							50000	2000	490			1		50000		
Arsenic	10500								20000	20000				<b>-</b>			
Barium	2300000								47000000	700000							
Benzo(a)pyrena	1900								660	660			1		100000		
Benzo(b)fluoranthene	4100								4000	900					50000		<u> </u>
Beryllium	870						[		1000	1000				1			1
Cadmium	112000				1		[]		100000	1000				1			1
Copper	1550000				1				600000	600000			1				<b>*</b>
Cyanide	2200								21000000	1100000			1				
Gross Alpha	92					· · · ·							1	<u> </u>		50	
Gross Beta	12												1			60	1
Lead	1460000								600000	100000				1			
Mercury	5700								270000	14000			1	1			
Nickel	1060000				1	· · · ·			2400000	250000			· · · · · ·				+
Selenium	10000								3100000	63000			1				
Silver	1800	[ [ ·							4100000	110000							1
Total Petroleum Hydro	990000				1		·	30000000					1				
Vanadium	49300			·	1				7100000	370000		1		1	11		
Zinc	4020000								1500000	1500000		1	1	1			
2BK-S-HA03		L		L	L	L			L			L	- <b>I</b>		£		I
Anthracene	2200				[	[			10000000	10000000			1	T	100000		l
Antimony	39700	<b> </b>			1		<b> </b>		340000	14000							
Aroclor 1260	45000	-			····			50000	2000	490				1	50000		<u> </u>
Arsenic	9800	-		l	<u> </u>		·		20000	20000	·	1	-	1			ł
Barium	783000	t t			1	<u> </u>			47000000	700000		t		1	t	·· -·	<b> </b>
Benzo(a)anthracene	4400				<u> </u>	·	1		4000	900					500000		
Benzo(a)pyrene	4000			·			t		660	660		·†	1		100000	·	
Benzo(b) fluoranthene	7200	<u>├</u>	···						4000	900					50000		+
Beryllium	440	tt			<u>†</u>	<u> </u>	<b></b>		1000	1000		+	-				
Cadmium	12900	I───-		·	<u>+</u>				100000	1000		•		· /	<u>ا</u>	·	

All units in ppb.

р. 46

.

## TIERRA-A-017528

6

. . .

Analyte	Result	Fresh water (a) v	Fresh water (c)		FW2-NT (h)	FW2-NT (hc)	Haz Wəste Classifi cation	Non Res Soll	Res Soil	SE (h)	SE (hc)		SE Effluent Monthly Avg r	Soil Impact to GW	Soil Misc	Wate Mise
Chrysena	4100							40000	9000					500000		
Copper	786000							600000	600000							
Fluoranthene	8200	i i						10000000	2300000					100000		
Gross Alpha	6.3							Ĩ				···			50	
Gross Bela	21														60	
Lead	959000							600000	100000							
Mercury	1300							270000	14000							
Nickel	429000							2400000	250000						·	
Pyrene	8600							10000000	1700000					100000		
Selenium	1500							3100000	63000				1 1			
Silver	1300							4100000	110000				t t			
Total Petroleum Hydro	3800000						30000000								·	
√anadium	76000							7100000	370000							·
Zinc	1780000							1500000	1500000			<b> </b> · · · ·				
2BK-S-HA04 Antimony	21400							340000	14000							
Aroclor 1260	120000			 			50000	2000	490					50000		
Arsenic	9300			 				20000	20000							
Barium	1890000			 				47000000	700000							
Benzo(a)anthracene	2100			 				4000	900					500000		
Benzo(a)pyrene	2200			 : 	· ····			660	660					100000		
Benzo(b)fluoranthene	5000	l		 				4000	900					50000		
Beryllium	710			 				1000	1000							
Bis(2-ethylhexyl) phth	7600	.						210000	49000					100000		
Cadmium	11200	<b>├</b> ────		 				100000	1000							
Copper	1300000	-		 				600000	600000							
Cyanide	2300			 				21000000	1100000							
luoranthene	3700			 			Ι	10000000	2300000					100000		
Gross Beta	11	<b></b>  -		 		[		I							60	
ead	1090000			 				600000	100000			1				••
Mercury	3800			 				270000	14000				······			
lickel	903000							2400000	250000		1	1	<b>†</b>			1 ·

٢

.

р. 47

TIERRA-A-017529

Tyrene         440         1000000         100000           Selexum         1701         310000         50000         310000           Selexum         1701         310000         50000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         310000         3100000         310000         310000 <t< th=""><th>Analyte</th><th>Result</th><th>Fresh water (a) [,]</th><th>Fresh water (c)</th><th>FW-2 Effluent Daily Max</th><th></th><th>FW2-NT (h)</th><th>FW2-NT (hc)</th><th>Haz Waste Classifi cation</th><th>Non Res Soli</th><th>Res Soil</th><th>SE (h)</th><th>SE (hc)</th><th></th><th>SE Effluent Monthly Avg</th><th></th><th>Sol<del>i</del> Misc</th><th>Wate Mise</th></t<>	Analyte	Result	Fresh water (a) [,]	Fresh water (c)	FW-2 Effluent Daily Max		FW2-NT (h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soli	Res Soil	SE (h)	SE (hc)		SE Effluent Monthly Avg		Sol <del>i</del> Misc	Wate Mise
Sereum         1700         300000         65000           Shee         1500         410000         10000         10000           Vauadum         147000         7100000         3000000         10000         10000           Zne         2800000         1500000         1500000         1500000         10000         10000           Zne         2800000         1500000         1500000         1500000         10000         10000           Zark S-HA08         23.51 CEOD         5.5         0         0         50000         50000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000         150000	Pyrene	4400			· · · · · ·	I				10000000	1700000	· · · · · · · · · · · · · · · · · · ·				100000		1
Total Petroleum Hydra         210000         710000         370000         710000           Zine         280000         150000         100000         70000         70000           Zine         280000         150000         100000         100000         70000         70000           Zine         280000         1200         370000         10000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         700000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         700000         70000         70000 </td <td>Selenium</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3100000</td> <td>63000</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	Selenium									3100000	63000			1				
Vanadum         147000         710000         370000         1           Zire         280000         150000         150000         1         0           21/2         23.78.1CDD         55         0         0         0           4 (srine DD         470         12000         50000         50000         1         0           4 (srine DD         470         1200         5000         50000         50000         1         0           4 (srine DD         100         9000         2000         50000         50000         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         0         1         0         0         1         0         0         1         0         0         1         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Silver	1500								4100000	110000							
Zinc         280000         150000         150000         150000           23,78,1CDD         55         0         0         0           24,4crime.DDE         170         12000         2000         55000         0           4,4crime.DDE         1100         9000         2000         55000         4           4,4prime.DDE         1100         9000         2000         550000         4           Animory         283000         9000         2000         550000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000 <td< td=""><td>Total Petroleum Hydro</td><td>2100000</td><td></td><td></td><td></td><td></td><td></td><td></td><td>30000000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Total Petroleum Hydro	2100000							30000000									
2BK-S-1A06           23.7.8-1C00         5.5         0         0           4 sprine DDD         470         12000         3000         550000           4 sprine DDE         1100         9000         2000         550000           4 sprine DDE         1200         30000         2000         550000           A sprine DDE         1200         3000         2000         550000           Animory         253000         340000         14000         14000         14000           Animory         253000         340000         14000         14000         14000         14000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         160000         160000         160000         160000         160000	Vanadium	147000								7100000	370000		ŧ	1				
23.7.8 ICDD         5.5         0         0           4 kyime DDD         470         12000         3000         50000           4 kyime DDE         1100         9000         2000         50000           4 kyime DDE         1100         9000         2000         50000           A kyime DDE         1100         9000         2000         50000           A kyime DDE         340000         14000         50000         50000           Animory         263000         340000         14000         50000         50000           Arsenc         5200         9000         20000         20000         2000         50000           Barum         244000         4700000         10000         1000         50000         50000           Berufium         1500         10000         10000         1000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000	Zinc	2600000								1500000	1500000							
4 Aprime DDD         470         1200         3000         50000           4 Aprime DDE         1100         9000         2000         50000           4 Aprime DDE         1100         9000         2000         50000           Adminory         23300         340000         14000         50000           Anderson         340000         14000         50000         50000           Anderson         5200         2000         2000         50000           Arcors 1280         4300         50000         2000         499         50000           Arcors 1280         4300         2000         2000         20000         50000           Barum         2440000         4700000         4700000         900         500000           Bergot[Micoranhene         3300         1000         1000         50000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000	2BK-S-HA05				·													•
4 Aprime DDE         1100         50000         500000           A Aprime DD1         280         9000         2000         500000           Animory         253000         340000         14000         500000           Areance         5200         2000         20000         500000           Barum         2440000         20000         20000         20000           Barum         2440000         47000000         700000         1           Barum         2440000         44000         900         50000           Barum         244000         44000         900         50000           Beryllylhosanthere         3900         1000         1000         1           Codmium         14300         10000         10000         1         1           Codmium         14300         100000         100000         1         5           Crass Beta         14         1         5         5         5           Crass Beta         14         1         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5	2,3,7,8-1CDD	5.5				I				I			I ———	1		[]	Ū	1
4. Aprime-DD1         280         9000         2000         500000           Animory         253000         340000         14000         14000         14000           Arisenic         5200         2000         20000         20000         500000           Barum         2440000         4700000         700000         16000         16000           Barum         2440000         4700000         700000         16000         16000           Berzyllium         1500         1000         1000         1000         1000         16000           Coger         914000         600000         600000         16000         16000         16000         1000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         16000         160000 <td< td=""><td>4,4prime-DDD</td><td>470</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>12000</td><td>3000</td><td></td><td></td><td><u> </u></td><td>1</td><td>50000</td><td></td><td>†</td></td<>	4,4prime-DDD	470								12000	3000			<u> </u>	1	50000		†
Antimony         25300         34000         14000         1600           Arcors 150         4300         50000         2000         50000         50000           Banum         244000         4700000         700000         0         0         0           Banum         244000         4700000         700000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	4.4prime DDE	1100								9000	2000		·			50000		<b> </b>
Arocior 1260         4300         50000         2000         439         50000           Ansenic         5200         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000 <td< td=""><td>4 4prime DD1</td><td>280</td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td>9000</td><td>2000</td><td></td><td></td><td></td><td></td><td></td><td></td><td>t</td></td<>	4 4prime DD1	280								9000	2000							t
Arsenic         520         2000         2000         2000           Barium         2440000         47000000         700000         1         1           Benzo(b)fluoranthene         3900         4000         900         50000         1           Beryflum         1500         1000         1000         1000         1         1           Cadmium         14900         10000         1000         1000         1         1           Copper         914000         20000         10000         10000         1         1           Cyancle         1200         21000000         100000         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Anlimony	263000					· · ·			340000	14000		ŧ <b>=</b>					
Ansenic         5200         2000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000 <th< td=""><td>Aroclor 1260</td><td>4300</td><td></td><td></td><td></td><td>l</td><td></td><td></td><td>50000</td><td>2000</td><td>490</td><td></td><td>1</td><td>1</td><td><u>                                      </u></td><td>50000</td><td></td><td></td></th<>	Aroclor 1260	4300				l			50000	2000	490		1	1	<u>                                      </u>	50000		
Benzo(b)fluoranithene         390         50000           Beryflium         1500         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         10000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         10000         1000         1000	Arsenic	5200				[				20000	20000			1	1			
Beryflium         1500         1000         1000         1000         1000           Cadmium         14900         10000         10000         1000	Barium	2440000				1				47000000	700000		1	1	<u> </u>			
Cadmium         14900         10000         10000         10000         10000         10000         10000         10000         10000         10000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000	Benzo(b)fluoranthene	3900						1		4000	900		1			50000		
Copper         91400         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000         600000 </td <td>Beryllium</td> <td>1500</td> <td> [</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1000</td> <td>1000</td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	Beryllium	1500	[							1000	1000		1		1			
Cyanide         1200         21000000         1100000         50000           Gross Alpha         7 1           50           Gross Bela         14            50           Lead         4790000          600000         100000          60           Mercury         3800          270000         14000           60           Nickel         416000          2400000         250000	Cadmium	14900								100000	1000			1	1	·		1
Gross Alpha         7 1         50           Gross Bela         14         60         60           Lead         479000         600000         100000         60           Mercury         3800         270000         14000         70           Nickel         416000         2400000         250000         70           Total Petroleum Hydro         1300000         710000         370000         70           Vanadium         943000         7100000         370000         7100000         7100000         70000           Zinc         1940000         1500000         1500000         50000         70000         7100000         70000         70000         7100000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000         70000		914000								600000	600000		1		1			1
Gross Beta       14	Cyanide	1200				]				21000000	1100000							
Lead         479000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		71											1				50	n
Mercury         3800         270000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         14000         140000         140000         140000	Gros <del>s</del> Bela	14												1			6	D
Nickel         416000         2400000         250000	Lead	4790000								600000	100000		1					
Total Petroleum Hydro         1300000         3000000         100000         370000         100000         370000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000										270000	14000							1
Vanadium         943000         7100000         370000         1         1           Zinc         1940000         1940000         1500000         1500000         1         1           ZBK-S-HA06         4.4prime-DDD         790         12000         30000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000 <th< td=""><td>• - • • • • • • • • • • • • • • • • • •</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>250000</td><td></td><td></td><td></td><td><b>—</b>—</td><td></td><td></td><td>1</td></th<>	• - • • • • • • • • • • • • • • • • • •										250000				<b>—</b> —			1
Zinc         1940000         1940000         1500000         1500000           2BK-S-HA06         4.4prime-DDD         790         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000         50000 <td>Total Petroleum Hydro</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30000000</td> <td>1 1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>1</td>	Total Petroleum Hydro								30000000	1 1			1	1	1	1		1
2BK-S-HA06           4.4prime-DDD         790           12000         3000           50000           50000           50000	Vanadium									7100000	370000		T			1		1
4.4prime DDD         790         12000         3000         50000           4.4prime DDE         7400 D         9000         2000         50000	Zinc	1940000								1500000	1500000						+	1
4.4prime DDD         790         12000         3000         50000           4.4prime DDE         7400 D         9000         2000         50000	2BK-S-HA06																	
4. 4prime DDE 7400 D 50000		790	[ ] [		I	[	[	I		12000	3000	Ţ	1	T	1	50000		1
	4 Aprime DDE	7400 D				1				And the second second								ł
	4, 4prime-DDT	3700				1		t		9000	2000		1	•		500000		t

٠

TIERRA-A-017530

Analyte	Result	Fresh water (a)	Fresh water (c)	FW-2 Effluent Daily Max		(h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soli	Res Soli	SE (h)	SE (hc)	SE Effluent Daily Max	SE Effluent Monthly Avg	Soli Impact to GW	Soli Misc	Water Misc
Antimony	74700					l			340000	14000				[ · · · · ·			
Arsenic	10800	Ī			[				20000	20000							
Barium	1740000								47000000	700000							
Beryllium	490								1000	1000		····-	1				
Bis(2-ethylhexyl) phth	15000								210000	49000				·	100000		· · · · · · · · · · · · · · · · · · ·
Cadmium	29800								100000	1000							
Copper	1480000					1			600000	600000							
Cyanide	3700								21000000	1100000	· · · · · ·						
Gross Beta	15												1			60	l
Lead	1850000					1	<b></b>		600000	100000				<b> </b>			
Mercury	3200				·				270000	14000			<u> </u>				
Nickel	216000					· ·			2400000	250000				<u>├</u>			l
Selenium	3900 S					1			3100000	63000				· · · · · · · · · · · · · · · · · · ·			
Silver	16100				<u> </u>	1			4100000	110000							f
Total Petroleum Hydro	2400000							30000000					<u> </u>	<u> </u>			
Vanadium	133000	t				1			7100000	370000			1				
Zinc	4560000								1500000	1500000	• •			1			t
2BK-S-HA07					•	1	4		ι			<b>-</b> ,	.1		ا		ł
4,4prime-DDE	73000								9000	2000			1	1	50000	· · · · · · · · · · · · · · · · · · ·	T
4,4prime-DDT	9400								9000	2000			1		500000		
Antimony	41300								340000	14000			1	1			t
Arsenic	8500					[			20000	20000		1	1				
Barium	2700000								47000000	700000					1		
Benzo(b)fluoranthene	1500								4000	900			1		50000		
Beryllium	520								1000	1000					1		1
Cadmium	68100				1	1	<u> </u>		100000	1000		1	1	1			
Copper	25000000					1			600000	600000		†	†		· · · · · · ·		
Cyanide	7800						1		21000000	1100000		<b></b>	-	1	1		t
Di-n-butyl phthalale	4700 B	[							10000000	5700000			1	1	100000	t	1
Dielhyl phthalate	1200			·					10000000	10000000					50000		
Gross Alpha	8.4			h ··	1	1	t		[ ]						t	50	1
Gross Beta	14	h		<u>├</u>	1	1	1	f — <u>→</u> →→	1 t				+			60	

.

÷.,

All units in ppb.

۹۰. م

 $\rightarrow$ 

9

ead 1 Aercury lickel Selenium ilver	3000000 3600 285000							cation					Daily Max	Monthly Avg	to GW		Mis
lickel Selenium	285000								600000	100000					-		
Selenium									270000	14000							
									2400000	250000							
likent	4900 S								3100000	63000							
	66000								4100000	110000			<u> </u>				
otal Petroleum Hydro	590000							30000000							i		
/anadium	115000								7100000	370000							
linc	8110000								1500000	1500000							<u> </u>
BK-S-HA08												·		h			L
4prime DDE	480	<b>.</b>	I						9000	2000	*				50000		
4prime-DDT	2000								9000	2000					500000		┣
Intimony	57100					· — ·			340000	14000	· · · · · · · · · · · · · · · · · · ·						i
rsenic	5600					·			20000	20000			•			·······	
Barium	2740000	·							47000000	700000						<u> </u>	
enzo(b)/luoranthene	500								4000	900	···				50000		
kis(2-ethylhexyl) phth	810								210000	49000		·		<u> </u>	100000	•	
admium	85200			····					100000	1000		·	· · · · ·				
Copper 5	5400000								600000	600000							
yanide	6100				· · · · · · · · · · · · · · · · · · ·				21000000	1100000	•••••	·			I		
iethyl phthalate	1000					· · ••			10000000	10000000			· · ·	·	50000		ł
Sioss Bela	12													1		60	
lexachlorobenzene	860							•	2000	660				· · · · · · · · · · · · · · · · · · ·	100000		}
ead	7070000								600000	100000			h <b></b>				<u> </u>
lercury	1000					·			270000	14000				1			
lickel	349000								2400000	250000				1			<u> </u>
elenium	2200 S								3100000	63000						··	<del> </del>
ilver	35400								4100000	110000	· · · · · ·					<u></u>	
olal Petroleum Hydro	470000				· · · · · · · · · · · · · · · · · · ·		<u> </u>	30000000			· <b></b> ··			1	├──		
anadium	64300			· · · · ·					7100000	370000				1	<u>├</u>	··· ·	<b>+</b>
inc	7430000	··· ·					<u> </u>		1500000	1500000		•	<b></b>	1			
BK-S-HA09							·		<b>I</b>			ł	L	_I	Il		L
,2,4-Trichlorobenzen	3700		I		[		,	·	1200000	68000		I	ı	·	100000		T · · ·

•

1⁵, 20

10

Analyte	Result	Fresh water (a) v	Fresh water (c)	FW-2 Effluent Dally Max	FW-2 Effluent Monthly Avg	FW2-NT (h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soll	Res Soli	SE (ħ)	SE (hc)	SE Effluent Delly Max	SE Efficient Monthly Avg	8oil Impact to GW	Soll Misc	Wate Misc
2,3,7,8-TCDD	4.3			··-		· · ·		-								d	
4, 4prime-DOE	6300				[	1			9000	2000					50000		
4,4prime-DOT	6800					· · · ·			9000	2000					500000		
Acenaphthene	2000								10000000	3400000		<u> </u>			100000		
Antimony	42200							-	340000	14000							
Arsenic	16600 S								20000	20000							i
Barium	23200000							-	47000000	700000				[			
Benzo(a)anthracene	4200				1				4000	900					500000		
Benzo(a)pyrene	8100								660	660		1		1	100000		
Benzo(b)fluoranthene	13000			· · · · · ·					4000	900				[	50000		
Benzo(g,h,i)perylene	3600													1	500000		
Bis(2-ethylhexyl) phth	1500								210000	49000		1			100000		
Cadmium	93700								100000	1000			<b> </b>				
Chrysene	4200					· · · · · · · · · · · · · · · · · · ·	tt		40000	9000		<u> </u>			500000		
Copper	9000000				1				600000	600000			<u> </u>				
Cyanide	2800				1			··	21000000	1100000			l				
Dibenz(a,h)anihracen	1300								660	660			1	1	100000		
Diethyl phthalate	4400								10000000	10000000				1	50000	··	
Fluoranthene	3600				1	[			10000000	2300000			1	1	100000		
Gross Alpha	11											f		1	1	50	
Gross Beta	18												1	1		60	l
Hexachiorobenzene	5400			·	<b></b>	<b> </b>			2000	660		1	1	1	100000		
Indeno(1,2,3-cd)pyren	3600				1	t			4000	900		t	1	1	500000		
Lead	7240000	<b> </b>			1	1			600000	100000		t	1	<u>†</u>	1		<u>+</u>
Mercury	3700						<u> </u>		270000	14000		t	1	· [			<u>+</u>
Nickel	233000	·			1		t		2400000	250000			1		t		<b> </b> -
Pyrene	4800				t	1	† ·		10000000	1700000	• · · · <del>· · · · · · · · · ·</del>	1	1	1	100000	· · ·	
Selenium	4500				<b></b>	†	<u> </u>		3100000	63000		1	1				
Silver	187000				<u> </u>				4100000	110000	,†		+				1
Total Petroleum Hydro							<b>+</b>	30000000			<b> -</b>		+	- <b> </b>			<b> </b>
Vanadium	155000					· · - · · ·			7100000	370000		· · · · · · · · · · · · · · · · · · ·	·	•••••••••••••••••••••••••••••••••••••••	·		
Zinc	10100000					•••••	+	···· •· •	1500000	1500000	,	1					1

.

`, ·

All units in ppb

ک خل

11

1

•

Analyte	Result	Fresh water (a) v	Fresh water (c)	FW-2 Effluent Daily Max	FW-2 Effluent Monthly Avg	FW2-NT (h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soli	Res Soll	SE (h)	SE (hc)	Effluent	SE Effluent Monthly Avg	Soll Impact to GW	Soli Misc	Wate Misc
18K-S-HA10																	
2,3.7,8-1CDD	55								r	r		<u> </u>	<u> </u>	<u> </u>		0	y
,4pvime-DDE	27000								9000	2000				<u> </u>	50000		<b>↓</b>
4prime-DD1	50000								9000	2000					500000		<u> </u>
Vitimony	34400						·		340000	14000		<u>├</u> ───			_ 50000		
Visenic	7000			••••••••••••••••••••••••••••••••••••••		* ·		<b>-</b>	20000	20000							<b>!</b>
32000	3300000						·	····· -·· · ·	47000000	700000							
Beryllium	560	••••••	•••			-			1000	1000							
Codmun	42700			-			·		100000	1000							
Sabber	2210000							·· ·	£00000	600000		•					· · -
Syanide	2500		•						21000000	1100000							<b>.</b>
Jons Pela	11				· ·· •.			-			· -	· ~			··		
lexachlorotxenzene	140000 D						· ·		2000	660					100000	- <u>- a</u>	1
ead	9400000				··				600000	100000			· - ·				
dercury	1400								270000	14000		·	-·				
lickel	101000								2400000	250000			<u> </u>				ł
Selenium	1800 S								3100000	63000							
Silver	24700							····	4100000	110000	·· · · -	••••			·		-
Iotal Petroleum Hydro	1500000					· - ···		30000000					· <b>}</b> ··		· <b></b>		
/anadium	109000								7100000	370000							
linc	3260000			** ** =***	· ·				1500000	1500000						- <u></u>	
BK-S-HA11		•				L	4ł	I				l	L	L	I		
2,3,7,8-TCDD	0 34 J	, ·			r————	r		······					, <u> </u>				
.4prime-DDD																(	1
4prime-DDE	20				···				12000	3000					50000	~	f
, 4prime-DDE	210				<u>-</u> .				9000	2000					50000		1
· ·	140								9000	2000				1	500000		<b>F</b>
Intimony	1680000								340000	14000				1			t
Arsenic	3200								20000	20000							1
Barium	1370000								47000000	700000				1			
Serizo(b)fluoranthene	430	-							4000	900		]		1	50000	•	1 ·
Copper	204000	-				<u> </u>			600000	600000						•	-
Dyanide All units in ppb.	5100	I							21000000	1100000		1		· /		;	· ·

.

-

TIERRA-A-017534

Analyte	Result	Fresh water (a)	Fresh water (c)			FW2-NT (h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soll	Res Soil	SE (h)	SE (hc)	SE Effluent Daily Max	SE Effluent Monthly Avg	to GW	Soll Misc	Wa M
Gross Beta	7.3															60	
Hexachlorobenzene	640								2000	660					100000		
Lead	4260000								600000	100000				·			
Total Petroleum Hydro								30000000									
Vanadium	37900								7100000	370000							
Zinc	931000								1500000	1500000							
2BK-S-HA12					·									1	L		
4,4prime-DDT	230								9000	2000				1	500000		r—
Antimony	55900								340000	14000							
Arsenic	6100								20000	20000							_
Barium	242000					· ••			47000000	700000							-
Beryllium	9100								1000	1000							
Cadmium	23500		· - ···						100000	1000							-
Copper	2410000								600000	600000			· · · · · · · · · · · · · · · · · · ·				—
Cyanide	720			·					21000000	1100000		·					
Gross Beta	14															60	
Lead	564000								600000	100000				<b>∤</b> −−··−−i		~	
Mercury	310								270000	14000				<u> </u>			-
Nickel	703000								2400000	250000						i	
Silver	5300					· ·			4100000	110000							
Total Petroleum Hydro	24000000					-		30000000									
Vanadium	60300								7100000	370000				†			
Zinc	2020000								1500000	1500000		·					
2BK-S-HA13							<b>1</b>					L	L		I		I
4,4prime-DDT	100				· · · · · · · · ·				9000	2000					500000		ı—
Antimony	1550000					·			340000	14000							
Aroclor 1260	7400 D	<b> </b>						50000	2000	490			[	<u> </u>	50000		
Arsenic	14300								20000	20000				<u> </u>			
Barium	4070000								47000000	700000				<b> </b>		·	
Cadmium	89200							· ···	100000	1000		·					
Copper	2030000								600000	600000							
Cyanide	720			·					21000000	1100000							

٢

,

TIERRA-A-017535

Analyte	Result	Fresh water (a)	Fresh water (c)			FW2-NT (h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soil	Res Soil	SE (h)	SE (hc)		SE Effluent Monthly Avg		Soli Misc	Wate Misc
Gross Alpha	67															50	
Gross Bela	13															60	
Lead	6520000								600000	100000					···· ·		
Mercury	1300								270000	14000			ĺ	ł	i		
Nickel	1330000								2400000	250000							
Selenium	6700 S								3100000	63000							·
Total Petroleum Hydro	1100000							30000000							·		
Trichloroethene	77								54000	23000					1000		
Vanadium	280000								7100000	370000							
Zinc	2730000								1500000	1500000						·	
2BK-S-0B1-02								· · · · · · · · · · · · · · · · · · ·		I	· · · · · · · · · · · · · · · · · · ·	C		l	L	I	L .
4 4prime DDD		, <u> </u>					I		12000	3000		ı	I	I	50000		
4.4prime-DDE	15	<u>↓</u>							9000	2000	••••		}		50000		
4.4prime-DDT	13								9000	2000		l		<u> </u>	500000		
Acenaphthene	500 J								10000000	3400000		·			100000		
Acelone	50	}	· ··						1000000	1000000					100000		
Aldrin	36	<u>∤                               </u>							170	40		·	<u> </u>		50000		
Anthracene	1300 J				<b></b>					10000000					100000		
Aroclor 1016	280	} I					• <u>-</u> • · · · · ·	50000	2000	490		ļ			50000		
Aroclor 1248	720				i			50000	2000	490		ł			100000		ł
Aroclor 1254	360	<u> </u>			·			50000	2000	490	••••••				50000		l
Aroclor 1260	320	<b>!</b>			·····			50000	2000	490		i			50000		l
Arsenic	3100				· ·				20000	20000			i				ł ——
Barium	711000								47000000	700000							ļ
Benzo(a)anthracene	3200				·	·			4000	900		<u> </u>			500000		
Benzo(a)pyrene	3900	}	· · · · · · · · · · · ·			·			660	660					100000		
Benzo(b)fluoranthene	3600	}							4000					·	50000	·	
Benzo(g,h,i)perylene	1700												·	·			
Benzo(k)fluoranthene	3100				<b> </b>		<u></u> <u></u>		4000				<u> </u>	·	500000		
Bis(2-ethylhexyl) phth	330 J	<u> </u>				••····	<b>+ -</b>		210000	49000			<b></b>	+	500000	·· ·· ·	·
Butyl benzyl phthalate	160 J				<u>├──-</u> ·			<b></b>	10000000	1100000			<b> </b> · ·		100000		
Cadmium	1200	·	· · <u> </u>	<b></b>	<b>├</b> ───		+ ·		100000	1000					100000		· ·

p.s4

. .

.

Analyte	Result	Fresh water (a)	Fresh water (c)	FW-2 Effluent Dally Max	FW-2 Effluent Monthly Avg	(h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soll	Res Soli	SE (h)	SE (hc)		SE Effluent Monthly Avg	So <del>l</del> i Impact to GW	Soil Misc	Water Misc
Chrysene	3000				<u> </u>	1			40000	9000					500000		
Copper	47500								600000	600000			1				
Dibenz(a,h)anthracen	920 J				<u> </u>				660	660					100000		
Dieldrin	8.7						1		180	42			<u> </u>		50000		
Endrin	3.2 J						1		310000	17000				1	50000		
Fluoranthene	7600								10000000	2300000					100000		L
Fluorene	580 J						1		10000000	2300000				1	100000		
gamma-BHC (Lindane	15								2200	520			<u> </u>		50000		
Gross Alpha	4												<u> </u>			50	I
Gross Beta	20			•					•				<b> </b>			60	
Heptachlor	58				1				650	150					50000		
Indeno(1,2,3-cd)pyren	1700			<b>.</b> .					4000	900				1	500000		
Lead	258000								600000	100000							
Mercury	650			·					270000	14000			<u> </u>		I		<b></b>
Methoxychior	11 J							· • • • • • •	5200000	280000	··- <u></u>		<u> </u>	†·	50000		
Methylene chloride	3 BJ				1				210000	49000					1000		h
Naphthalene	170 J								4200000	230000					100000		<u> </u>
Nickel	22000						-		2400000	250000				1			ł
Pyrene	5800				<u> </u>	[			10000000	1700000			1	<u> </u>	100000		<u>+</u>
Toluene	1 J								1000000	1000000					500000		
Vanadium	229000						1	·	7100000	370000				·			<u> </u>
Zinc	479000				1				1500000	1500000		<u> </u>	<u> </u>	<u>+</u>			ł

.

•••

### 

p. 55

4,4prime-DDD	20			12	3000 3000		50000	
4,4prime-DDE	12			9	2000 2000	<b>x</b>	 50000	
4,4prime-DDT	71	 		9	2000 2000	x	 500000	
Acenaphthene	1200 J			10000	000 3400000	7	 100000	
Acelone	89			1000	000 1000000	5	 100000	
Aldrin	45				170 40	5	 50000	
Anthracene	1800			10000	000 10000000	p	 100000	
Antimony	1000 B		 	340	000 14000	5	 	·
Aroclor 1248	1400		 	50000 2	000 490		 100000	

All units in ppb.

15

Analyte	Result	Fresh water (a) w	Fresh aler (c)	FW-2 Effluent Daily Max	FW-2 Effluent Monthly Avg	FW2-NT (h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soll	Res Soil	SE (h)	SE (hc)	SE Effluent Daily Max	SE Effluent Monthly Avg	Soli Impact to GW	Soli Misc	Water Misc
Aroclor 1254	440				<u> </u>			50000	2000	490					50000		
Aroctor 1260								50000	2000	490					50000		
Arsenic	3100								20000	20000		· · · · · · · · · · · · · · · · · · ·	<u> </u>				
Barium	252000					_			47000000	700000			<u> </u> .			•··	
Benzo(a)anthracene	4000								4000	900	· · · · · · · · · · · · · · · · · · ·				500000		<b> </b>
Benzo(a)pyrene	5200								660	660					100000		<u> </u>
Benzo(b)fluoranthene	4800								4000	900					50000		<b> </b>
Benzo(g,h,i)perylene	1900														500000		
Benzo(k)fluoranthene	4200								4000	900					500000		ł — –
Bis(2-ethylhexyl) phth	300 J								210000	49000		·			100000	<u> </u>	
Cadmium	970								100000	1000		· <u> </u>					l
Chrysene	4100								40000	9000					500000		
Copper	40600								600000	600000		·					<b> </b>
Dibenz(a,h)anthracen	1070 J								660	660					100000		<b> </b>
Dieldrin	24								180	42					50000		
Endrin	38								310000	17000					50000		·
Fluoranthene	9900								10000000	2300000			·	·	100000		·
Fluorene	940 J								10000000	2300000		· · · · · · · · · · · · · · · · · · ·			100000		
Gross Alpha	4															50	
Gross Beta	22											•					······
Heptachlor	14								650	150			<b>-</b>	·	50000	0	
ndeno(1,2,3-cd)pyren	2100					· · · · · · · · · · · · · · · · · · ·			4000	900					500000		
Lead	199000								600000	100000							<b> </b>
Mercury	340								270000	14000			·				
Viethoxychlor	24								5200000	280000				<u> </u>	50000		ł
Velhylene chloride	4 BJ								210000	49000					1000		
Vaphthalene	300 J								4200000	230000		- <u></u>	·····		100000		- <u>-</u>
Vickel	17700							———	2400000	250000			·	<b>ا</b>			
yrene	7800								10000000	1700000					- 10000		
Selenium	500 B								3100000	63000					100000		ļ
/anadium	258000				-			1	7100000	370000							
	296000								1500000	1500000					·		

**.** `

.

All units in ppb.

16

TIERRA-A-017538

Analyte	Result	Fresh Fi water (a) wat	ter (c) Ei I			FW2-NT (h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soll	Res Soil	SE (h)	SE (hc)	SE Effluent Daily Max	SE Effluent Monthly Avg	Soil Impact to GW	Soil Misc	Wate Mis
2BK-S-PB01-08																	
Barium	12000 B								47000000	700000							
Bis(2-ethylhexyl) phth	79 BJ								210000	49000					100000		
Copper	5900								600000	600000							
Di-n-butyl phthalale	320 J								10000000	5700000					100000		
Di-n-octyl phthalate	87 BJ								10000000	1100000					100000		
Lead	9400					<b>A</b>			600000	100000			·	t			
Nickel	9900								2400000	250000			· · · · · · · · · · · · · · · · · · ·				
Vanadium	8600								7100000	370000		·					
Zinc	24000								1500000	1500000		· · · · · · · · · · · · · · · · · · ·					
2BK-S-PB01-100			•				·	L		ł			L	L	I		1
Barium	130000	<u> </u>					<b></b>	r	17000000	700000				······			
Beryllium	670								47000000	700000							L
Bis(2-ethylhexyl) phth	 63 J						_		1000 210000	1000 49000	••••••						
Copper	15000								600000	600000				ļ	100000		
Di-n-butyl phthatate	90 J		·		····•				10000000	5700000					400000		—
Gross Alpha	59	┝───-							100000	- 5700000		· · · · · · · · · · · · · · · · · · ·			100000		
Gross Alpha				·····										<b> </b>		50	1
Gross Alpha	75	<u>}</u>														50	
Gross Bela	36												<b> _</b>		I	50	
Gross Bela	43		<u>-</u>				•••••		···								
Gross Bela	44		}			·	• •••	·								60	
Lead	15000								600000	100000				<u> </u>		60	1
Nickel	21000								2400000	250000			ļ				
Vanadium	30000				· · ·		· ·		7100000	370000							
Zinc	51000	<u>├</u>	······						1500000	1500000		··	<b> </b>				
···		LI	l		l		l	l	150000	130000		l	L	I	L!	··	1
2BK-S-PB01-12		· ····································															
Barium	8300 B			_					47000000	700000			<u> </u>	1			Ľ
Bis(2-ethylhexyl) phih	44 BJ								210000	49000			1	1	100000		· ·
Copper	6400								600000	600000				t		· ··	t
Di n-butyl phthalate	150 J		<b>I</b>					· · · · · · · ·	10000000	5700000			·_· • • • • •	·····	100000		ł

.

p.s7

## TIERRA-A-017539

17

ļ

Ŧ

All units in ppb

Analyte	Result	Fresh water (a)	Fresh water (c)	FW-2 Effluent Dally Max	FW-2 Effluent Monthly Avg	(h)	FW2-NT (hc)	Haz Waste Classifi cation	Non Res Soil	Res Soil	SE (h)	SE (hc)	Effluent	SE Effluent Monthly Avg	Soll Impact to GW	Soil Misc	Water Misc
Di-n-octyl phthalate	160 BJ								10000000	1100000	· ····································				100000		
Nickel	7400								2400000	250000							· · · · ·
Vanadium	8900				1				7100000	370000	·						
Zinc	18000								1500000	1500000	·····			<u> </u>			
2BK-S-PB01-60 Arsenic Barium	3400 66000								20000	20000							
	23000			-700 -44		·			4700000	700000							
Copper	i+		· • · · · · · · · · · · · · · ·				I		600000	600000							
Di-n-butyl phthalate	110 J								10000000	5700000					100000		
Lead	13000	····							600000	100000							
Nickel	20000			İ					2400000	250000							
Vanadium	27000								7100000	370000							
Zinc	49000		1						1500000	1500000		ł					

.

· · ·

•

⇒

All units in ppb.

18

### Key to Criteria Cited in Field Investigation and Historical Data Tables

Criteria	Description
Freshwater (a)	USEPA Surface Water Criteria (Acute), November 1991
Freshwater (c)	USEPA Surface Water Criteria (Chronic), November 1991
FW-2 Effluent Daily Max.	NJDEP Soil Cleanup Criteria, February 3, 1994
FW-2 Effluent Monthly Avg	NJDEP Soil Cleanup Criteria, February 3, 1994
FW2-NT (a)	NJDEP Surface Water Criteria, (Acute), November 1991.
FW2-NT (C)	NJDEP Surface Water Criteria, (Chronic), November 1991.
FW2-NT (hc)	NJDEP Surface Water Criteria, (Human Carcinogenic), November 1991.
Haz Waste Classification	NJDEP Guidance Document for Remediation of Contaminated Soils, June 1994.
Non Res Soil	NJDEP Soil Cleanup Criteria, February 3, 1994
Res Soil	NJDEP Soil Cleanup Criteria, February 3, 1994
SE (a)	NJDEP Surface Water Quality Standards (Acute), April 1994.
SE (C)	NJDEP Surface Water Quality Standards (Chronic), April 1994.
SE (h)	NJDEP Surface Water Quality Standards (Human Health), April 1994.
SE (hc)	NJDEP Surface Water Quality Standards (Human
·	Carcinogenic), April 1994.
SE Effluent Daily Max.	NJDEP Guidance Document for Remediation of Contaminated Soils, June 1994.
SE Effluent Monthly Avg	NJDEP Guidance Document for Remediation of Contaminated Soils, June 1994.
Soil Impact to GW	NJDEP Soil Cleanup Criteria, February 3, 1994
Soil Misc	Miscellaneous Soil Criteria (Used to produce Gross Alpha, Gross Beta, and 2,3,7,8-TCDD reports)
Water Misc	Miscellaneous Water Criteria (Used to produce Gross Alpha, Gross Beta, and 2,3,7,8-TCDD reports)

#### Table IV - A - 5 - 4B

### LIST OF HTRW SITES WORK SITE 2B - KEEGAN

## **Passaic River Local Flood Protection Project**

SITE NAME	RANK	REASONS FOR DELETION	ADDRESS	TOWNSHIP	AGENCY ID	DESIGNATION	SOURCE
Work Site 2B - Keegan Field Investigation	A		Bergen Ave.	Kearny		DEDIGINATION	IT
Keegan Landfill	B		Bergen Ave	Kearny	NJD981490428	CERCLA	W, IT
Diamond Head Oil Refinery	C		1401 Harrison Tpk (RT 508)	Kearny	NJD092226000	CERCLA	WIT
Guignon & Greene Co.	Ċ		402 Bergen Ave	Kearny	NJD980757579	CERCLA	W, IT
G&S Motor Equipment Company Inc.	C		1800 Harrison Ave.	Kearny	NJD011370525	SPL	W, IT
Kearny Smelting & Refining Co.	C		936 Harrison Ave	Kearny	NJD002520401	CERCLA	W, IT
Drew Chemical Corp.	D		1106 Harrison Ave	Kearny	NJD053518536	CERCLA	W.IT
Campbell Foundry Co.	E	2	1235 Harrison Ave	Kearny	NJD002457273	CERCLA	VV, 11
Interstate Metals	E		241-275 Dukes Street	Kearny	NJD009717182	CERCLASPL	W, IT
Theobold Industries / B&L Oil Corp. / National Freight	E		1215 Harrison Avenue	Kearny	NJD980594006	CERCLA	
Wilkala Packaging Corp.	E		300 Hoyt Street	Kearny	NJD981559875	ISRA	W, IT W, IT

<u>م</u> و

#### Notes :

Criteria and Rationale Used to Delete Priority E HTRW Sites :

1. The site is not within the tunnel alignment database corridor search or within 300 feet of a levee feature if outside the corridor.

- 2. The site has been recommended "No Further Action" by the USEPA or NJDEP.
- 3. HTRW contaminant concentrations are less than the proposed New Jersey non-residential soil cleanup criteria.
- 4. The identified petroleum product spill or leak was less than 100 gallons and does not impact groundwater.
- 5. The site-related HTRW contaminants are limited to metals with no impact to groundwater and the site is not within 500 feet of a workshaft.
- 6. The site is a listed SPL Hudson County Chromate site and HTRW contaminants are limited only to the chromate ore slag fill on the property.
- 7. The NPL/SPL site is a secured radioactive materials storage facility with no soil or groundwater HTRW contamination.
- 8. The site is located on the east bank of the Hackensack River.
- 9. The site is only identified as a RCRA small or large quantity generator of hazardous waste materials.

#### HTRW SITE INFORMATION Passaic River Local Flood Protection Project

1. Name :	Work Site 2B - Keegan Field Investigation	5. Rank :	A
2. Add <b>ress</b> :	Bergen Ave.	6. Facility ID Number :	-
3. Town/Township :	Keamy	7. Designation :	-
4. Feature :	Work Site 2B - Keegan	8. Source :	т
9. Site Description an		······································	
	in the Keegan Landfil, I approximately 230 acres in size, a		
NJ. The Keegan Landf	ill was active from approximately the mid 1960s until 197	<ol><li>The landfill site is currently own</li></ol>	ed by the
Hudson Meadowlands	Development Corporation. While the landfill was active i	t reportedly received industrial wast	e on a regular

basis. Industrial wastes deposited in the landfill included chromate and bichromate slurries, pigment wastes and organic

solvents. Historical records indicate the landfill has been the site of several underground fires.

10. Physical and Geologic Description of the Site :

Depth to bedrock is approximately 155 ft. Beneath 6 ft of fill, the overburden consists of fine to medium sand to 50 ft, varved clay from 50-99 ft, and gravel and cobbles from 99 ft to bedrock. Bedrock is a fractured red shale and sandstone with layers of gypsum and calcareous zones. Water level in the overburden is about 4 ft below ground level.

MEDIA	SCORE	COMMENT
Soil	16	MEDIUM - Available analytical data indicate HTRW present in soils.
Groundwater	15	MEDIUM - Available analytical data indicate groundwater is impacted.
12. Occupational Risk and	Hazard Analysis :	
MEDIA	TOTAL RISK	TOTAL HAZARD
Surficial Soil	5.70E-05	4.91E-01
	1.41E-05	1.25E-02
Deep Soil		
Deep Soil Shallow Groundwater	NA	NA

. .

### HTRW SITE INFORMATION Passaic River Local Flood Protection Project

### 13. HTRW Constituents of Concern : Free Product : NA Product Thickness(ff) : NA

Depth to Groundwater(ft) : 4

	CONSTITUENT	CAS No.	MAX CONC.	UNIT	SAMPLING	REPORTED
MEDIA Deep Groupdwater	Arsenic	7440-38-2	16.00	μg/L	DATE 07/26/94	DATE
Deep Groundwater	Chloroform	67-66-3	21.00		07/26/94	
Deep Groundwater	Chromium	18540-29-9		µg/L	07/26/94	·
Deep Groundwater		7440-50-8	29.00	µg/L	07/26/94	
Deep Groundwater	Copper			µg/L		
Deep Groundwater	Dichloroethylene, 1,2- (Mixed Isomers)	540-59-0	31.00	µg/L	07/26/94	
Deep Groundwater	Lead	7439-92-1	110.00	µg/L	07/26/94	
Deep Groundwater	Manganese	7439-96-5	1,500.00	µg/L	07/26/94	
Deep Groundwater	Mercury	7439-97-6	0.23	hð\r	07/26/94	
Deep Groundwater	Tetrachloroethylene	127-18-4	5.10	µg/L	07/26/94	
Deep Groundwater	Trichloroethylene	79-01-6	34.00	µg/L	07/26/94	
Deep Groundwater	Vanadium	7440-62-2	130.00	µg/L	07/26/94	
Deep Groundwater	Zinc	7440-66-6	170.00	µg/L	07/26/94	
Deep Soil	Aldrin	309-00-2	45.00	µg/kg	06/27/94	
Deep Soil	Barium	7440-39-3	711,000.00	µg/kg	06/27/94	
Deep Soil	Chromium	18540-29-9	211,000.00	µg/kg	06/27/94	
Deep Soil	Cobalt	7440-48-4	10,000.00	µg/kg	06/27/94	
Deep Soil	Copper	7440-50-8	47,500.00	µg/kg	06/27/94	
Deep Soil	Dieldrin	60-57-1	24.00	µg/kg	06/27/94	
Deep Soil	Heptachlor Epoxide	1024-57-3	48.00	µg/kg	06/27/94	
Deep Soil	Lead	7439-92-1	258,000.00	µg/kg	06/27/94	
Deep Soil	Manganese	7439-96-5	520,000.00	µg/kg	06/27/94	
Deep Soil	Mercury	7439-97-6	650.00	µg/kg	06/27/94	
Deep Soil	Methoxychlor	72-43-5	24.00	µg/kg	06/27/94	
Deep Soil	Nickel	7440-02-0	22,000.00	µg/kg	06/27/94	
Deep Soil	PAHs (as BAP)	50-32-8	52,500.00	µg/kg	06/27/94	
Deep Soil	PCBs (Polychlorinated Biphenyls)		2,510.00	µg/kg	06/27/94	
Deep Soil	ТРН	TPH	2,000,000.00	µg/kg	06/27/94	
Deep Soil	Vanadium	7440-62-2	258,000.00	µg/kg	06/27/94	
Deep Soil	Zinc	7440-66-6	479,000.00	µg/kg	06/27/94	
Surficial Soil	Antimony	7440-36-0	1,680,000.00	µg/kg	08/12/94	
Surficial Soil	Barium	7440-39-3	23,200,000.00	µg/kg	08/12/94	
Surficial Soil	Benzo(a)pyrene	50-32-8	48,400.00	µg/kg	08/12/94	
Surficial Soil	Beryllium	7440-41-7	9,100.00		08/12/94	
Surficial Soil	Bis(2-ethylhexyl)Phthalate (DEHP	117-81-7		µg/kg		
Surficial Soil		7440-43-9	150,000.00	µg/kg	08/12/94	
Surficial Soll	Chromium	18540-29-9	112,000.00	µg/kg	08/12/94	
Surficial Soil	Cobalt		1,270,000.00	µg/kg	08/12/94	
Surficial Soil		7440-48-4	41,100.00	µg/kg	08/12/94	
Surficial Soil	Copper	7440-50-8	55,400,000.00	µg/kg	08/12/94	
	DDE	72-55-9	73,000.00	µg/kg	08/12/94	
Surficial Soil	DDT	50-29-3	50,000.00	µg/kg	08/12/94	
Surficial Soil	Hexachlorobenzene	118-74-1	140,000.00	µg/kg	08/12/94	
Surficial Soil	Lead	7439-92-1	13,000,000.00	µg/kg	08/12/94	
Surficial Soil	Manganese	7439-96-5	2,050,000.00	µg/kg	08/12/94	
Surficial Soil	Mercury	7439-97-6	5,700.00	µg/kg	08/12/94	
Surficial Soil	Nickel	7440-02-0	1,330,000.00	µg/kg	08/12/94	
Surficial Soil	PCBs (Polychlorinated Biphenyls)	1336-36-3	120,000.00	µg/kg	08/12/94	
Surficial Soil	Silver	7440-22-4	187,000.00	µg/kg	08/12/94	
Surficial Soil	Tetrachiorodibenzo-p-dicon, 2,3,7,8, (TCDD)	1746-01-6	5.50	µg/kg	08/12/94	
Surficial Soil	ТРН	ТРН	24,000,000.00	µg/kg	08/12/94	
Surficial Soil	Vanadium	7440-62-2	943,000.00	µg/kg	08/12/94	
Surficial Soil	Zinc	7440-66 <b>-6</b>	10,100,000.00	µg/kg	08/12/94	

1. Name :	Kearny Smelting & Refining	ig Co.		5, Rank :		С
2. Address :	936 Harrison Ave			6. Facility ID Nu	umber :	NJD00252040
3. Town/Township :	Keamy			7. Designation	:	CERCLA
4. Feature :	Work Site 2B - Keegan			8. Source :		W, IT
Scrap metal containing operations was dischai required for the lagoon Numerous other violati emissions to the air, ar	us metals since 1945. Part of copper, tin and/or zinc alloys rged to an unlined lagoon on s	is used to produce ite. In 1980 EPA in volving mismanage I grounds. RI/FS s	bronze and brass formed the facility ement of hazardou ampling was exec	s ignots. Wastev y that an NPDES us/solid waste, re cuted in 1991 to d	vater from permit w elease of f delineate s	these ould be ugitive soil
10. Physical and Geo NA	logic Description of the Site	:				
	,					
11. Quality of Informa				•••••		
MEDIA Soil	<u>SCORE</u> 6	and extent of	able analytical dat 'HTRW in soil.			21
Groundwater	<b>0</b>		able analytical dat ITRW has impact		not sufficie	ent to assess if
2. Occupational Risi	and Hazard Analysis :		······			
MEDIA	TOTAL RISK	TOTAL HAZA	<u>3D</u>			
Surficial Soil	4.37E-05	1.48E-01				
Deep Soil Shallow Groundwater	NA NA	NA NA				
Deep Groundwater	NA	NA				
3. HTRW Constituent				·		<u> </u>
Free Product :	NA	Depth to Gro	undwater(ft) : I	NA		
Product Thickness(ft) :						
					MPLING	REPORTED
MEDIA Surficial Sail	CONSTITUENT	CAS No.	MAX CONC.		DATE	DATE
Surficial Soil	Antimony	7440-36-0	427,000.00		9/23/86	
Surficial Soil Surficial Soil	Arsenic	7440-38-2 7440-41-7	31,000.00		9/23/86	
Surficial Soil	Beryllium		41,000.00		9/23/86	
Surficial Soil	Cadmium Chromium	7440-43-9 18540-29-9	600,000.00 468,000.00		9/23/86 9/23/86	
Surficial Soil	Copper	7440-50-8	468,000.00			
Surficial Soil	Cyanide (free)				3/23/86	
Surficial Soil	Dibutyl Phthalate	57-12-5 84-74-2	11,700.00 590.00		9/23/86 9/23/86	
	Lead	7439-92-1	15,300,000.00		9/23/86	
			10,000.00		9/23/86	
Surficial Soil		/4.59-9/-0				
Surficial Soil Surficial Soil	Mercury	7439-97-6 91-20-3	1 400 00	ua/ka na	3/23/86	
Surficial Soil Surficial Soil Surficial Soil	Mercury Naphthalene	91-20-3	1,400.00 458.000.00		9/23/86	
Surficial Soil Surficial Soil Surficial Soil Surficial Soil	Mercury Naphthalene Nickel	91-20-3 7440-02-0	458,000.00	µg/kg 09	9/23/86	
Surficial Soil Surficial Soil Surficial Soil Surficial Soil Surficial Soil	Mercury Naphthalene Nickel PAHs (as BAP)	91-20-3 7440-02-0 50-32-8	458,000.00 168,100.00	µg/kg 09 µg/kg 09	9 <b>/23/8</b> 6 9 <b>/23/8</b> 6	
Surficial Soil Surficial Soil Surficial Soil Surficial Soil Surficial Soil Surficial Soil	Mercury Naphthalene Nickel PAHs (as BAP) Phenol	91-20-3 7440-02-0 50-32-8 108-95-2	458,000.00 168,100.00 10.00	μg/kg 09 μg/kg 09 μg/kg 09	9/23/86 9/23/86 9/23/86	
Surficial Soil Surficial Soil Surficial Soil Surficial Soil Surficial Soil Surficial Soil Surficial Soil	Mercury Naphthalene Nickel PAHs (as BAP) Phenol Silver	91-20-3 7440-02-0 50-32-8	458,000.00 168,100.00 10.00 1,130,000.00	μg/kg 09 μg/kg 09 μg/kg 09 μg/kg 09	9/23/86 9/23/86 9/23/86 9/23/86	
Surficial Soil Surficial Soil Surficial Soil Surficial Soil Surficial Soil Surficial Soil	Mercury Naphthalene Nickel PAHs (as BAP) Phenol	91-20-3 7440-02-0 50-32-8 108-95-2 7440-22-4	458,000.00 168,100.00 10.00	μg/kg 09 μg/kg 09 μg/kg 09 μg/kg 09	9/23/86 9/23/86 9/23/86	

•

2. Address :	Keegan Landfill			5. Rank :		В
Z. AQUICAN .	Bergen Ave			6. Facility I	D Number :	NJD9814904
3. Town/Township :	Kearny			7. Designat	tion :	CERCLA
4. Feature :	Work Site 2B - Keegan			8. Source :		w, it
including furniture & a slurry, pigment and or originates on site and Passaic River, There I	nd History : Il approximately 230 acres operated ppliances still continues. During op ganic wastes. This is an unlined la one unnamed creek pass through the have been several underground fire atus of closure plan is unknown.	eration, it receiv ndfill and has the ne landfill. Thes	ed industrial wa e potential for G e creeks conver	iste, includin W contamin ge south of	ig chromate ar nation. Frank's the site and fic	nd bichromate Creek whch ow into the
	logic Description of the Site :					
	iginates on site and one unnamed o	creek pass throu	gh the landfill.	These creek	s converge so	uth of the site a
11. Quality of Informa	ation Reviewed :					• · · ·
MEDIA	SCORE	COMMENT				
Soil	11		e analytical dat	a is not suff	icient to chara	cterize the type
-		and extent of H				
Groundwater	2	LOW - Availab	e analytical dat	a is limited a	and not sufficie	ent to assess if
			RW has impact			
12. Occupational Risk	and Hazard Analysis :	···· · · · · · · · · · · · · · · · · ·				
MEDIA	TOTAL RISK	TOTAL HAZARD				
Surficial Soil	1.81E-05	2.55E-03				
Deep Soil	NA	NA				
Shallow Groundwater	NA	1.06E-02				
Deep Groundwater	NA	NA				
13. HTRW Constituent	ts of Concern :					
	NA	Depth to Groun	dwater(ft) : I	NA		
Free Product :						
Free Product : Product Thickness(ft) :	NA					
Product Thickness(ft) :					SAMPLING	REPORTED
Product Thickness(ft) : MEDIA	CONSTITUENT	CAS No.	MAX.CONC.	UNIT	DATE	REPORTED DATE
Product Thickness(n) : <u>MEDIA</u> Shallow Groundwater	<u>CONSTITUENT</u> Barium	7440-39-3	445.00	µg/L	DATE 04/25/89	
MEDIA Shallow Groundwater Shallow Groundwater	<u>CONSTITUENT</u> Barium Iron	7440-39-3 7439-89-6	445.00 11,900.00	μg/L μg/L	DATE 04/25/89 04/25/89	
MEDIA Shallow Groundwater Shallow Groundwater Shallow Groundwater	CONSTITUENT Barium Iron Lead	7440-39-3 7439-89-6 7439-92-1	445.00 11,900.00 159.00	μg/L μg/L μg/L	DATE 04/25/89 04/25/89 04/25/89	
Product Thickness(ft) : MEDIA Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater	<u>CONSTITUENT</u> Barium Iron Lead Manganese	7440-39-3 7439-89-6 7439-92-1 7439-96-5	445.00 11,900.00 159.00 484.00	μg/L μg/L μg/L μg/L	DATE 04/25/89 04/25/89 04/25/89 04/25/89	
MEDIA Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater	<u>CONSTITUENT</u> Barium Iron Lead Manganese Mercury	7440-39-3 7439-89-6 7439-92-1 7439-96-5 7439-97-6	445.00 11,900.00 159.00 484.00 1.20	μg/L μg/L μg/L μg/L μg/L	DATE 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89	
MEDIA Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater	CONSTITUENT Barium Iron Lead Manganese Mercury Zinc	7440-39-3 7439-89-6 7439-92-1 7439-96-5 7439-97-6 7440-66-6	445.00 11,900.00 159.00 484.00 1.20 339.00	μg/L μg/L μg/L μg/L μg/L μg/L	DATE 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89	
Product Thickness(ft) : MEDIA Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater	<u>CONSTITUENT</u> Barium Iron Lead Manganese Mercury	7440-39-3 7439-89-6 7439-92-1 7439-96-5 7439-97-6 7440-66-6 18540-29-9	445.00 11,900.00 159.00 484.00 1.20 339.00 116,000.00	μg/L μg/L μg/L μg/L μg/L μg/L	DATE 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89	
Product Thickness(ft) : <u>MEDIA</u> Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Surficial Soil	CONSTITUENT Barium Iron Lead Manganese Mercury Zinc Chromium Lead	7440-39-3 7439-89-6 7439-92-1 7439-96-5 7439-97-6 7440-66-6 18540-29-9 7439-92-1	445.00 11,900.00 159.00 484.00 1.20 339.00 116,000.00 1,180,000.00	μg/L μg/L μg/L μg/L μg/L μg/kg μg/kg	DATE 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89	
Product Thickness(ft) : <u>MEDIA</u> Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Surficial Soil Surficial Soil	CONSTITUENT Barium Iron Lead Manganese Mercury Zinc Chromium	7440-39-3 7439-89-6 7439-92-1 7439-96-5 7439-97-6 7440-66-6 18540-29-9	445.00 11,900.00 159.00 484.00 1.20 339.00 116,000.00	μg/L μg/L μg/L μg/L μg/L μg/kg μg/kg μg/kg	DATE 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89	
Product Thickness(ft) : <u>MEDIA</u> Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Sufficial Soil Sufficial Soil Sufficial Soil	CONSTITUENT Barium Iron Lead Manganese Mercury Zinc Chromium Lead Mercury	7440-39-3 7439-89-6 7439-92-1 7439-96-5 7439-97-6 7440-66-6 18540-29-9 7439-92-1 7439-97-6 50-32-8	445.00 11,900.00 159.00 484.00 1.20 339.00 116,000.00 1,180,000.00 8,700.00 63,900.00	μg/L μg/L μg/L μg/L μg/L μg/kg μg/kg μg/kg μg/kg	DATE 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89	
Product Thickness(ft) : <u>MEDIA</u> Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Shallow Groundwater Sufficial Soil Surficial Soil Surficial Soil	CONSTITUENT Barium Iron Lead Manganese Mercury Zinc Chromium Lead Mercury PAHs (as BAP)	7440-39-3 7439-89-6 7439-92-1 7439-96-5 7439-97-6 7440-66-6 18540-29-9 7439-92-1 7439-97-6 50-32-8	445.00 11,900.00 159.00 484.00 1.20 339.00 116,000.00 1,180,000.00 8,700.00	μg/L μg/L μg/L μg/L μg/L μg/kg μg/kg μg/kg	DATE 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89 04/25/89	

- -

.

•

•

1. Name :	Diamond Head Oil Refinery			5. Rank :		C
2. Address :	1401 Harrison Tpk (RT 508)	•		6. Facility I	D Number :	NJD092226000
3. Town/Township :	Кеатту			7. Designa	tion :	CERCLA
. Festure :	Work Sits 2B - Keegan			B. Source :		W. IT
			······			
Urban Development Co consists of approximate area covered by vegets Diamond Head Oil Ref	r operating under various names or operating under various names orp. now known as Hudson Mead sty 15 acres of undeveloped land tion along the western portion of the sestern portion of the cluding the concrete foundation of	lows Urben Ren comprised of w the site, and the site. The abar	ewal Development etiand areas and d e remnants of the f idoned refinery por	Corp. The Insinge ditcl former tion of the si	site is currenti hes, a small pi ite now contair	y inactive and ond, a landfill
The Site is situated on leposits are the glacio- sits and clays. Storag edrock of the Brunswi Vater levels taken from ite-specific areas of re	n onsite wells indicates groundwa charge. The groundwater table of ate depth of 12-14 ft in the middl	h consist mainly is apparently hig ater flow directio wists from an ap	y of sands and grav h. Underlying the n from east to was oproximate depth o	reis. Include se deposits i t with mode f 4-5 ft belov	ici in these de; a the red shak rate perturbati v grade along	oosits are lenses o and sandstone ons due to the perimeter of
1. Quality of Informa					<u></u>	
MEDIA	SCORE	COMMENT		–		4
Soil	15		lable analytical dat: f HTRW in soil.	a is not suffi	cient to charac	terize the type
Groundwater	10		vailable analytical	data indicat	e groundwater	is impacted.
•	and Hazard Analysis :					<u> </u>
MEDIA Sufficial Soli	TOTAL RISK NA	101AL HAZAN 4.69E-03	<u>10</u>			
eep Soil	NA /	NA				
hallow Groundwater	1.85E-06	4.18E-01				
eep Groundwater	NA	NA				
Free Product : roduct Thickness(ft) : MEDIA		·		4	SAMPLING	REPORTED
MEDIA Shallow Groundwater	CONSTITUENT Arsenic	<u>CAS No.</u> 7440-38-2	MAX CONC. 46.00	UNIT UQ/L	<u>DATE</u> 07/02/94	<u>DATE</u> 07/02/94
Shallow Groundwater	Benzene	71-43-2	30.00	µg/L	07/02/94	07/02/94
Shallow Groundwater		65-85-0	130.00	µg/L	07/02/94	07/02/94
Shallow Groundwater Shallow Groundwater		108-90-7 57-12-5	18.00	µg/L	07/02/94	07/02/94
Shallow Groundwater		5/-12-5 75-34-3	30.00 21.00	μg/L μg/L	07/02/94 07/02/94	07/02/94 07/02/94
Shallow Groundwater		156-60-5	19.00	µg/L	07/02/94	07/02/94
Shallow Groundwater	Dimethylphenol, 2,4-	105-67-9	390.00	µg/L	07/02/94	07/02/94
Shallow Groundwater	Ethyl Benzene	100-41-4	23.00	µg/L	07/02/94	07/02/94
Shallow Groundwater Shallow Groundwater	Hexanone, 2- Lead	591-78-6	25.00	µg/L	07/02/94	07/02/94
Shallow Groundwater	Methyl Isobutyl Ketone	7439-92-1 108-10-1	319.00 98.00	μα/L μα/L	07/02/94 07/02/94	07/02/94 07/02/94
Shallow Groundwater	Methyinapthalene,2-	91-57-6	22.00	µg/L	07/02/94	07/02/94
Shallow Groundwater	Methylphenol, 2-	95-48-7	310.00	µg/L	07/02/94	07/02/94
Shallow Groundwater Shallow Groundwater	Methylphenol, 4- Naphthalene	106-44-5 91-20-3	900,00 39.00	µg/L	07/02/94 07/02/94	07/02/94 07/02/94
ihallow Groundwater	Toluene	108-88-3	160.00	μg/L μg/L	07/02/94	07/02/94
Shallow Groundwater	Trichloroethylene	79-01-6	11.00	µg/L	07/02/94	07/02/94
Inallow Groundwater	Vinyl Chloride	75-01-4	12.00	µg/L	07/02/94	07/02/94
ihallow Groundwater Surficial Soil	Xylenes Aluminum	1330-20-7 7429-90-5	140.00 22,900,000.00	µg/L	07/02/94 07/02/91	07/02/94
Surficial Soli	Berium	7440-39-3	2,000,000.00	µg/kg µg/kg	07/02/91	
Surficial Soil	Cadmium	7440-43-9	4,900.00	µg/kg	07/02/91	
Suficial Soil	Calcium	7440-70-2	33,100,000.00	µg/kg	07/02/91	
Surficial Soil Surficial Soil	Cobalt Copper	7440-48-4 7440-50-8	51,800.00 161,000.00	µg/kg ug/kg	07/02/91	
Surficial Soll	Cyanide (free)	57-12-5	4,200.00	hð\kð hð\kö	07/02/91 07/02/91	
Surficial Soil	Ethyl Benzene	100-41-4	46.00	hðika	07/02/91	
Sufficial Soil	Iron	7439-89-6	21,600,000.00	µg/kg	07/02/91	
Surficial Soil	Leed Managerium	7439-92-1	8,110,000.00	µg/kg	07/02/91	
	Magnesium	7439-95-4	20,300,000.00	µg/kg µg/kg	07/02/91 07/02/91	
Sufficial Soll	Manganese					
	Manganese Nickel	7439-96-5 7440-02-0	200,000.00 190,000.00			
Surficial Soli Surficial Soli	+	7439-90-5 7440-02-0 1330-20-7	190,000.00 320.00	µg/kg µg/kg	07/02/91 07/02/91	

.

` .

1. Name :	Guignon & Greene Co.		5. Rank :	С
2. Address :	402 Bergen Ave		6. Facility ID Number :	NJD98075757
3. Town/Township :	Kearny		7. Designation :	CERCLA
4. Feature :	Work Site 2B - Keegan		8. Source :	W, IT
and packaged in drums pine oil, minal spirits, a of an oil spill into adjac probable soil contamin 10. Physical and Geol	npany (G&G) accepts large si s. There a several hundred dr ind kerosene. In 1990, NJDEF ent wetlands. NJDEP records ation. logic Description of the Site	ums present at any given tir P issued an emergency gen i indicate a fire at G&G burr :	ailcar, which are stored in tanks ne. The materials consisted of ta eral permit to G&G for containme ed a significant amount of petrol	all oil, fatty acids, ant and cleanup
groundwater is approxi	mately 1-2 ft below the surfact	e depending upon the amou	nt of fill material present.	
	HOIT NEVIEWED .			
•	ŚĊÓRĘ	COMMENT		
MEDIA Soil	SCORE 1	<u>COMMENT</u> LOW - Available anal and extent of HTRW i	ytical data is not sufficient to cha n soil.	racterize the type
MEDIA	SCORE 1 0	LOW - Available anal and extent of HTRW i LOW - Available anal		
MEDIA Soil Groundwater	1 0	LOW - Available anal and extent of HTRW i LOW - Available anal	n soil. ytical data is limited and not suffi	
MEDIA Soil Groundwater	1	LOW - Available anal and extent of HTRW i LOW - Available anal	n soil. ytical data is limited and not suffi	
MEDIA Soil Groundwater 12. Occupational Risk MEDIA	1 0 ; and Hazard Analysis :	LOW - Available anal and extent of HTRW LOW - Available anal site-related HTRW ha	n soil. ytical data is limited and not suffi	
MEDIA Soil Groundwater 12. Occupational Risk MEDIA Surficial Soil	1 0 : and Hazard Analysis : TOTAL_RISK	LOW - Available anal and extent of HTRW LOW - Available anal site-related HTRW ha TOTAL HAZARD	n soil. ytical data is limited and not suffi	
MEDIA Soil Groundwater 12. Occupational Risk MEDIA Surficial Soil Deep Soil Shallow Groundwater	1 0 : and Hazard Analysis : <u>TOTAL_RISK</u> NA	LOW - Available anal and extent of HTRW i LOW - Available anal site-related HTRW ha TOTAL HAZARD NA	n soil. ytical data is limited and not suffi	
MEDIA Soil Groundwater 12. Occupational Risk MEDIA Surficial Soil Deep Soil Shallow Groundwater	1 0 and Hazard Analysis : <u>TOTAL_RISK</u> NA NA	LOW - Available anal and extent of HTRW i LOW - Available anal site-related HTRW ha <u>TOTAL HAZARD</u> NA NA	n soil. ytical data is limited and not suffi	
MEDIA Soil Groundwater 12. Occupational Risk	1 0 and Hazard Analysis : <u>TOTAL_RISK</u> NA NA NA NA	LOW - Available anal and extent of HTRW i LOW - Available anal site-related HTRW ha <u>TOTAL HAZARD</u> NA NA NA NA	n soil. ytical data is limited and not suffi	
MEDIA Soil Groundwater 12. Occupational Risk MEDIA Surficial Soil Deep Soil Shallow Groundwater Deep Groundwater	1 0 and Hazard Analysis : <u>TOTAL_RISK</u> NA NA NA NA	LOW - Available anal and extent of HTRW i LOW - Available anal site-related HTRW ha <u>TOTAL HAZARD</u> NA NA NA NA	n soil. ytical data is limited and not suffi s impacted groundwater.	
MEDIA Soil Groundwater 12. Occupational Risk MEDIA Surficial Soil Deep Soil Shallow Groundwater Deep Groundwater 13. HTRW Constituent	1 0 and Hazard Analysis : TOTAL_RISK NA NA NA NA SS of Concern : NA	LOW - Available anal and extent of HTRW i LOW - Available anal site-related HTRW ha TOTAL HAZARD NA NA NA NA NA	n soil. ytical data is limited and not suffi s impacted groundwater.	

,

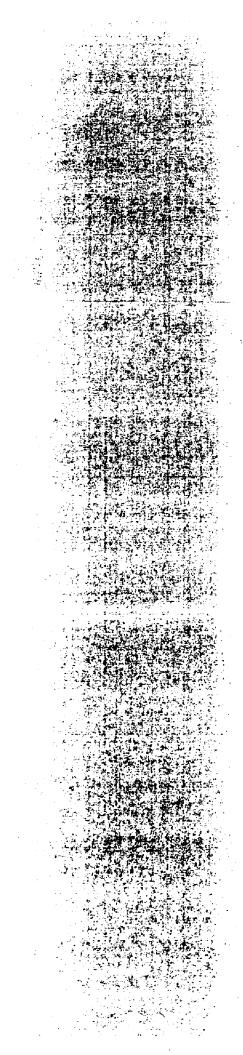
.

1, Name :	Drew Chemical Corp.			5. Rank :	D
2. Address :	1106 Harrison Ave			6. Facility ID Number	: NJD0535185
3. Town/Township :	Kearny			7. Designation :	CERCLA
4. Feature :	Work Site 2B - Keegan			8. Source :	<b>W</b> , IT
operation since 1970. off-spec materials, was 10. Physical and Geo The aquifer of concern opproximately 20 ft fro	bunds, paint defoamers, water trea Hundreds of 55-gallon drums and ste alkaline, formic acid, and obsol- logic Description of the Site : underneath the site consists of gla m ground surface. Shallow soils c	several ASTs ete material. 	are on-site. Haza	rdous waste generated i	It the site include:
ravel and silt fill mate					
1. Quality of Informa					
MEDIA	SCORE	COMMENT			
Soil	31	HIGH - Avai	able analytical da	ta is of sufficient quality	and reflects
Groundwater	0	LOW - Avail	itions of HTRW si able analytical dat ITRW has impact	a is limited and not suffi	cient to assess if
2. Occupational Risk	and Hazard Analysis :	····		<u> </u>	
MEDIA	TOTAL_RISK	TOTAL HAZA	RD		
urficial Soil	1.36E-06	9.78E-05	•		
eep Soll	NA ·	NA			
hallow Groundwater	NA	NA			
eep Groundwater	NA	NA			
3. HTRW Constituent	s of Concern :	······································			
Free Product :	NA	Depth to Gro	undwater(it) : I	A	•
roduct Thickness(ft):	NA			-	
MEDIA Surficial Soil Surficial Soil Surficial Soil Surficial Soil	<u>CONSTITUENT</u> Cadmium Lead PAHs (as BAP) PCBs (Polychlorinated Biphenyts) TPH	CAS.No. 7440-43-9 7439-92-1 50-32-8 1336-36-3 TPH	MAX CONC. 1,000.00 500,000.00 4,850.00 460.00 15,000,000.00	SAMPLING           UNIT         DATE           µg/kg         08/19/92           µg/kg         08/19/92	REPORTED DATE
			-		
				-	-

 Note: Information on this page was revised by USACE Baltimore District subsequent to the delivery of the final report by IT Corporation.

٠

•


.

·• .

1. Name :	G&S Motor Equipment Comp	any Inc.		5. Rank ;		С
2. Address :	1800 Harrison Ave.			6. Facility	ID Number :	NJD0113705
3. Town/Township :	Kearny			7. Design	ation :	SPL
4. Feature :	Work Site 2B - Keegan		8. Source	:	W, IT	
9. Site Description an A former transformer r been documented on s	nd History : recycling facility. Transformer fluid: site by the EPA in 1977 and 1988.	s were drumrne	ed and shipped o	ff-site. PC	B contamination	n of soils has
40 Dhusiaal and Cas	logic Description of the Site :			<b>_</b>		
Hackensack Meadows Triassic Age, is compo Brunswick Formation c	r near the ground surface, and GW is Tidal Marsh of Marine Origin. B used of diabase dikes and sills, and of the Newark Group is the only import that is estimated to be between 20	edrock in the H gently westwa portant bedrock	lackensack River rd dipping sands aquifer in the re	Basin, cor tone, congl	nsisting of the N iomerate and sh	ewark Group of ale The
11. Quality of Informa	ation Reviewed :	······································		· · · · · · · · · · · · · · · · · · ·		
MEDIA	SCORE	COMMENT				
Soil	9		ible analytical dat	ta is not su	fficient to chara	cterize the type
	-	and extent of	HTRW in soil.			
Soil Groundwater	9 0	and extent of LOW - Availa		ta is limited	and not sufficie	
Groundwater	-	and extent of LOW - Availa	HTRW in soil. Ible analytical dat	ta is limited	and not sufficie	
Groundwater 12. Occupational Risk MEDIA	0	and extent of LOW - Availa	HTRW in soil. ble analytical dat TRW has impact	ta is limited	and not sufficie	
Groundwater 12. Occupational Risk MEDIA Surficial Soil	0 < and Hazard Analysis :	and extent of LOW - Availa site-related H	HTRW in soil. ble analytical dat TRW has impact	ta is limited	and not sufficie	
Groundwater 12. Occupational Risk MEDIA Surficial Soil Deep Soil	0 c and Hazard Analysis : <u>TOTAL_RISK</u> 1.43E-05 NA	and extent of LOW - Availa site-related H <u>TOTAL HAZAR</u> 5.66E-03 NA	HTRW in soil. ble analytical dat TRW has impact	ta is limited	and not sufficie	
Groundwater 12. Occupational Risk <u>MEDIA</u> Surficial Soil Deep Soil Shallow Groundwater	0 < and Hazard Analysis : <u>TOTAL_RISK</u> 1.43E-05 NA NA	and extent of LOW - Availa site-related H 	HTRW in soil. ble analytical dat TRW has impact	ta is limited	and not sufficie	
Groundwater 12. Occupational Risk MEDIA Surficial Soil Deep Soil	0 c and Hazard Analysis : <u>IOTAL_RISK</u> 1.43E-05 NA	and extent of LOW - Availa site-related H <u>TOTAL HAZAR</u> 5.66E-03 NA	HTRW in soil. ble analytical dat TRW has impact	ta is limited	and not sufficie	
Groundwater 12. Occupational Risk MEDIA Surficial Soil Deep Soil Shallow Groundwater Deep Groundwater 13. HTRW Constituent	0 c and Hazard Analysis : <u>TOTAL_RISK</u> 1.43E-05 NA NA NA NA Start Concern :	and extent of LOW - Availa site-related H <u>TOTAL_HAZAR</u> 5.66E-03 NA NA NA NA	HTRW in soil. ble analytical dat TRW has impact	ta is limited red groundy	and not sufficie	
Groundwater 12. Occupational Risk MEDIA Surficial Soil Deep Soil Shallow Groundwater Deep Groundwater	0 x and Hazard Analysis : <u>TOTAL_RISK</u> 1.43E-05 NA NA NA ts of Concern : NA	and extent of LOW - Availa site-related H 	HTRW in soil. ble analytical dat TRW has impact	ta is limited	and not sufficie	
Groundwater 12. Occupational Risk MEDIA Surficial Soil Deep Soil Shallow Groundwater Deep Groundwater 13. HTRW Constituent Free Product :	0 x and Hazard Analysis : <u>TOTAL_RISK</u> 1.43E-05 NA NA NA ts of Concern : NA	and extent of LOW - Availa site-related H <u>TOTAL_HAZAR</u> 5.66E-03 NA NA NA NA	HTRW in soil. ble analytical dat TRW has impact	ta is limited red groundy	d and not sufficie water.	ent to assess if
Groundwater 12. Occupational Risk MEDIA Surficial Soil Deep Soil Shallow Groundwater Deep Groundwater 13. HTRW Constituent Free Product : Product Thickness(ft) : MEDIA	0 C and Hazard Analysis : <u>TOTAL_RISK</u> 1.43E-05 NA NA NA NA NA CONSTITUENT	and extent of LOW - Availa site-related H <u>TOTAL_HAZAR</u> 5.66E-03 NA NA NA NA	HTRW in soil. ble analytical dat TRW has impact	ta is limited red groundy	and not sufficie water.	ent to assess if
Groundwater 12. Occupational Risk MEDIA Surficial Soil Deep Soil Shallow Groundwater Deep Groundwater 13. HTRW Constituent Free Product : Product Thickness(ft) : MEDIA Surficial Soil	0 C and Hazard Analysis : <u>TOTAL_RISK</u> 1.43E-05 NA NA NA NA NA CONSTITUENT Chromium	and extent of LOW - Availa site-related H <u>TOTAL_HAZAR</u> 5.66E-03 NA NA NA NA Depth to Grou	HTRW in soil. Ible analytical dat TRW has impact D Indwater(ft) : I	ta is limited ed groundv	d and not sufficie water.	ent to assess if
Groundwater 12. Occupational Risk MEDIA Surficial Soil Deep Soil Shallow Groundwater Deep Groundwater 13. HTRW Constituent Free Product : Product Thickness(ft) : MEDIA	0 C and Hazard Analysis : <u>TOTAL_RISK</u> 1.43E-05 NA NA NA NA NA CONSTITUENT	and extent of LOW - Availa site-related H TOTAL_HAZAR 5.66E-03 NA NA NA Depth to Grou CAS No. 18540-29-9 7439-92-1	HTRW in soil. ble analytical dat TRW has impact D indwater(ft) : I MAX.CONC.	ta is limited ed groundv NA VNIT	d and not sufficie water. SAMPLING DATE	ent to assess if

*

•



)

. :^{\$}

Ì

# **REFERENCE NO. 10**

SUPERFUND TECHNICAL ASSESSM	ENT AND RESPONSE TEAM	PROJECT NOTES					
TO: DATE:	Page 1 01 5						
Keegan Landfill file 06/	09/97						
K. Campbell							
SUBJECT							
Passaic River Flood Protection Data							
REFERENCE							
IT Corporation, under contract to the U.S. Army Corps of Engineers, conducted a hydrogeologic investigation and							
a Hazardous, Toxic, or Radioactive Waste (HTRW) activities at the Keegan LF site. Excerpts of the hydrogeologic							
report are included in Reference No. 8; exce							
analytical data (Form I data sheets) from the	soil and groundwater sampling events are a	attached for referral. The					
remainder of the laboratory data sheets (i.e.,	MS/MSD data, method blank data, TICs) a	re stored in the Reference					
Subsection of the START II Keegan LF TD	D file. Data summary tables are included in	pages 2 and 3 of this Project					
Note. The following analytical data (Form I	sheets) are attached for review:						
ATTACHMENT	DESCRIPTION						
A	Subsurface soil samples S-PBC	01-08, S-PB01-12.					
В	Subsurface soil sample S-PB0	1-100.					
C	Subsurface soil samples S-OB	1-02, S-OB1-04.					
D	Surface soil samples S-HA1 to	S-HA4: S-HA6 to S-HA9.					
E	Surface soil samples S-HA10	to S-HA13.					
F	Groundwater samples TB-072	6, GW-OB1, GW-PB1.					
All noted sample numbers are preceded by '	'2BK-," the sample prefix for Workshaft 2B	at Keegan LF.					
Equipment rinsate blank samples, a trip blar	nk sample, environmental duplicate samples	, and MS/MSD samples					
were also collected during sampling as QA/	QC samples.						
	ana an						
L	<u>}</u>						

•

÷

Ref.10,

4 ط Table 1: PASSAIC RIVER FLOOD PROTECTION PROJECT DATA

" Sand

Sample No.	S-PB01-08	S-PB01-12	S-PB01-50	S-PB01-100	S-081-04	S-HA1*	S-HA2*	S-HA3"	S-HA4"	S-HA6"	S-HA7"	S-HA8	S-HA9"	S-HA10"	S-HA11*	S-HA12"	S-HA13*
Contaminant											· · · · · · · · · · · · · · · · · · ·					E THE	
~TAL Metal	(mg/kg)		And and	Carles Day											a second	187 S. 183	
Aluminum	6,100	5,300	11,000	12,000	6,560	4,940	3,570	4,640	5,180	5,280	16,000	9,220	13,900	9,600	2.620	12,800	16,800
Barlum	12 B	8.3 B	66	130	252	388	2,300	783	1,890	1,740	2,700	2,740	23,200	3,300	1,370	242	4,070
Chromium	9.4	8.3	19	211	40.9	38.9	249	171	386	179	406	437	295	262	101	450	1,270
Iron	7,300	5,500	23,000	23,000	11,100	14,700	35,900	25,800	43,300	77,100	60,200	35,100	48,600	57,800	8,000	53,800	202,000
Lead	9.4	ł	13	15	199	452	1,460	959	1,090	1,850	13,000	7,700	7,240	9,400	4,260	564	6,520
Mercury	~	4	~	~	0.34	0.67	5.7	1.3	3.8	3.2	3.6	1	3.7	1.4		0.31	1.3
~TCL Compound	(ug/kg)						Real Parts		Last in		and a second second second second second second second second second second second second second second second		and the second	2	Color Color		
Bis(2-ethylhexyl phthalate	79 BJ	44 BJ	~	63 J	300 J	~	-	-	7,600	15,000	~	810	1,500	~	~	~	- 1
Di-n-butyl phthalale	320 J	150 J	110 J	90 J	-	~	~	~	~	~	4,700	~	-	~	~	~	~
Di-n-octyl phthalate	87 BJ	160 BJ	-	~	~	~	~	~	-	~	-	~	~	~	-	~	~
Acenaphthene	~	~	-	~	1,200 J	~	~	~	~	~	~	~	2,000	~	~	~	-
Anthracene	-	-	~	-	1,800	1	-	2,200	~	~		~	-	~	-	-	-
Benzo(a)anthracene	-	-	-	~	4,000	910	-	4,400	2,100	~ ·			4,200	~	-	-	~
Benzo(b)fluoranthene	~	1	~	<del>~</del> .	4,800	1,400	4,100	7,200	5,000	~	1,500	500	13,000	~	430	~	-
Benzo(k)fluoranthene	-	ł	-	-	4,200	~	~	~	~	~	~	~	~	~	- 1	-	-
Benzo(a)pyrene	~	1	-	~	5,200	670	1,900	4,000	~	~	-	~	8,100	~	-	-	~
Chrysene	-	+	-	~	4,100	720	-	4,100	~	~	~	~	4,200	-	~	-	~
Fluoranthene	-	1	~	~	9,900	1,800	~	8,200	3,700	-	~	-	3,600	-	-	~	-
Hexachlorobenzene	~	+	~	~	+	-	~	~	~		~	860	5,400	140,000	640	~	-
Naphthalene	~	1	-	~	300 J	-	~	~	~	~	~	~	~	-	~	~	~
Phenathrene	~	+	~	~	6,700	1,100	~	7,500	2,500	~	~	~	2,000	-	~	~	-
Pyrene	~	~	-	-	7,800	1,700	~	8,600	4,400	~	~	~	4,800	-	~	-	~
1,2,4-Trichlorobenzene	-	~	~	-	ł	~	~	~	~	~	~	~	3,700	-	~	-	~
Trichloroethene	-	2	-	~	~	~	~	~	~	~	~	-	-	-	~	~	7.7
PCBs - Total Aroclors	-	2	-	~	2,230	430	3,800	45,000	120,000	~	~	-	[ - ]	~	~	~	7,400
Aldrin	~	-	~~	~	45	2	~	-	~	-	~	~	~	-	~	-	~
4',4'-DDD	~	~	-	~	20	-	~	~	-	790	~	-	~	-	20	-	~
4',4'-DDE	~	~	~	~	12	~	~	~	-	7,400	73,000	480	6,300	27,000	210	-	-
4',4'-DDT	~	~	~	~	7.1	31	120	~	~	3,700	9,400	2,000	6,800	50,000	140	230	100
Dieldrin	~	~	~	~	24	~	~	~	~	-	~	-	-	-	~	~	-
Endrin	~	-	~	~	3.8	~	~	-	~	~	-	-	~	~	~	-	-

All sample numbers are preceded by "2BK-."

J - Estimated value.

B - Detected in blank sample.

~ - Not detected

Ref. Nos. 8, p. 28; 10, Atts. A through E

Sample Designations:

* - Sample Nos. S-HA1 through S-HA13 are surficial soil samples (e.g., collected from a depth less than 2 feet.

"PB" - Sample collected from a pilot borehole in bedrock; the final number indicates sample depth.

"OB" - Sample collected from overburden borehole; the final number indicates sample depth.

	-TAL Metal	Auminum	Barlum	Chromium	Iron	Lead	Mercury	-TCL Compound	1,2-Dichkroethene	Trichloroethene	Tetrachloroethene
Sample No.	(mg/L)							(ug/L)			
GW-081		8.6	0.42	0.027	33.9	0.11	0.00023		-	•	-
GW-PB1		0.12	0.028	•	46.2	0.024			31	34	5.1
0726 (VOAs ONLY)		NA	NA	NA	NA	NA	NA				

# Table 2: PASSAIC RIVER FLOOD PROTECTION DATA GROUNDWATER SAMPLING DATE: JULY 26, 1994

All sample numbers are preceded by "2BK- "

· · · · · 4.5

⁻ - Not detected. NA - Not analyzed for particular contaminant.

_



)

# ANALYTICAL SERVICES

# CERTIFICATE OF ANALYSIS

ITEN/Passaic Tunnel HTRW Inv. 165 Fieldcrest Ave. Edison, NJ 08837 Attn: Ms. Paulette Frank

Date: June 16, 1994

NJ Lab Certification ID#: 12064

Job No.: 529740

• • •

P.O. Number: 529740-06-01-04

This is the Certificate of Analysis for the following samples:

Client Project ID: PASSAIC TUNNEL HTRW INV. Date Received: 05/18/94 Number of Samples: 4 Sample Type: SOIL/WATER

I. Introduction

Samples were labeled as follows:

SAMPLE IDENTIFICATION	LABORATORY #
2BK-S-PB01-08	F4-05-142-01
2BK-S-PB01-12	F4-05-142-02
28K-S-P801-12 MS	F4-05-142-03
2BK-S-PB01-12 MSD	F4-05-142-04

Reviewed and Approved:

Eileen S. Nemeth Project Manager

> American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

IT Analytical Services • 165 Fieldcrest Avenue, Edison, NJ 08837 • (201) 225-2000

P.F. 10

681-1-89

.

.

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-142

a second and a second at

TEST NAME: Metals SAMPLE ID: 28K-S-PB01-08 SAMPLE DATE: 05/17/94

. ..

ANALYSIS DATE: 05/25/94

	Results in	<u> </u>	Detection Limit
Antimony		ND	1.4
Aluminum		6100	14
Arsenic		ND	1.4
Barium		128	0.70
Beryllium		ND	0.70
Cadmium		ND	0.70
Calcium		1000	14
Chromium		9.4	1.4
Cobalt		<u> </u>	1.4
Copper		5.9	<u> </u>
Iron		7300	14
Lead		9.4	7.0
Magnesium		<u>     1800                              </u>	14
Manganese		<u> </u>	0.70
Mercury		ND	0.14
Nickel		9.9	5.6
Potassium		<u>460B</u>	70
Selenium		<u>ND</u>	0.70
Silver		ND	1.4
Sodium		<u>    130B</u>	14
Thallium		<u>ND</u>	1.4
Vanadium		8.6	1.4
Zinc		24	<u> </u>

Comments: ND indicates the compound is not detected at the level indicated.

TIERRA-A-017556

÷

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

. . . . . . . .

. . .

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-142

15

TEST NAME: Acid/Base Neutrals

SAMPLE ID: 2BK-S-PB01-08 SAMPLE DATE: 05/17/94

ANALYSIS DATE: 05/19/94

REISIS DRIE. $\frac{05/19/94}{19}$		
		Detection
Results in		Limit
,	(Dry Wt)	
<b>N</b>		
Acenaphthene	<u>ND</u>	470
Acenaphthylene	<u>ND</u>	470
Anthracene	ND	470
Benzidine	<u> </u>	470
Benzo(a)Anthracene	<u> </u>	470
Benzo(b)Fluoranthene	<u>ND</u>	470
Benzo(k)Fluoranthene	<u>ND</u>	470
Benzo(a)Pyrene	<u>ND</u>	470
Benzo(g,h,i)perylene	<u>ND</u>	470
bis(2-Chloroethyl)Ether	<u> </u>	470
bis(2-Chloroethoxy)Methane	ND	470
bis(2-Ethylhexyl)Phthalate	<u>795J</u>	470
bis(2-Chloroisopropyl)Ether	<u>ND</u>	470
4-Bromophenyl Phenyl Ether	ND	470
Butyl Benzyl Phthalate	ND	470
4-Chloroaniline	<u>ND</u>	470
2-Chloronaphthalene	ND	470
4-Chlorophenyl Phenyl Ether	ND	470
Chrysene	<u>ND</u>	470
Dibenzo(a,h)anthracene	ND	470
Dibenzofuran	ND	470
Di-n-butylphthalate	<u> </u>	470
1,2-Dichlorobenzene	<u>ND</u>	470
1,3-Dichlorobenzene	ND	470
l,4-Dichlorobenzene	ND	470
3,3'-Dichlorobenzidine	ND	930
Diethylphthalate	ND	470
Dimethylphthalate	ND	470
2,4-Dinitrotoluene	ND	470
2,6-Dinitrotoluene	ND	470
Di-n-Octylphthalate	87BJ	470
1,2-Diphenylhydrazine	ND	470
Fluoranthene	ND	470
Fluorene	ND	470
Hexachlorobenzene	ND	470
Hexachlorobutadiene	ND	470

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

.

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-142

and the second destination of the second second second second second second second second second second second

.

# TEST NAME: Acid/Base Neutrals

• • •

## SAMPLE ID: 28K-S-PB01-08 SAMPLE DATE: 05/17/94

Hexachloroethane	<u>ND</u>	470
Hexachlorocyclopentadiene	ND	470
Indeno(1,2,3-cd)pyrene	ND	470
Isophorone	ND	470
2-Methylnaphthalene	<u>ND</u>	470
Naphthalene	ND	470
2-Nitroaniline	<u>ND</u>	470
3-Nitroaniline	<u>ND</u>	470
4-Nitroaniline	<u>ND</u>	470
Nitrobenzene	ND	470
N-nitroso-dimethylamine	ND	470
N-Nitrosodipropylamine	<u>ND</u>	470
N-Nitrosodiphenylamine	ND	470
Phenanthrene	<u>ND</u>	470
Pyrene	ND	470
1,2,4-Trichlorobenzene	<u>ND</u>	470
Benzoic Acid	<u>ND</u>	2300
Benzyl Alcohol	<u>ND</u>	470
4-Chloro-3-methylphenol	<u>ND</u>	470
2-Chlorophenol	<u>ND</u>	470
2,4-Dichlorophenol	<u>ND</u>	470
2,4-Dimethylphenol	<u>ND</u>	470
2,4-Dinitrophenol	<u>ND</u>	2300
4,6-Dinitro-2-methylphenol	ND	2300
-2-Methylphenol	<u>ND</u>	2300
4-Methylphenol	ND	2300
2-Nitrophenol	<u>ND</u>	470
4-Nitrophenol	<u>ND</u>	2300
Pentachlorophenol	<u>ND</u>	2300
Phenol	ND	470
2,4,5-Trichlorophenol	ND	2300
2,4,6-Trichlorophenol	ND	470

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

الموردين المحاد وينح ومحادثهم المحاد

# IT ANALYTICAL SERVICES EDISON, NJ

(908) 225-2000 Work Order: F4-05-142

> A second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

TEST NAME: Acid/Base Neutrals

SAMPLE ID: 28K-S-PB01-08 SAMPLE DATE: 05/17/94

Surrogates	% Recovery
Nitrobenzene-d5	73
2-Fluorobiphenyl	
Terphenyl-d14	119
Phenol-d5	80
2-Fluorophenol	73
Tribromophenol	109

Comments: ND indicates the compound is not detected at the level indicated.

.

. ., Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000

Work Order: F4-05-142

an an ann an an ann an Ann

TEST NAME: Volatile Organics

SAMPLE ID: 2BK-S-PB01-08 SAMPLE DATE: 05/17/94

ANALYSIS DATE: 05/20/94

$\frac{00/20/2}{2}$	<u>4</u>	
		Detection
Results in	<u> </u>	Limit
	(Dry Wt)	
Acrolein	<u> </u>	14
Acrylonítrile	ND	14
Benzene	<u>ND</u>	7
Bromoform	<u>ND</u>	7
Bromomethane	<u>ND</u>	7
Carbon Tetrachloride	<u>ND</u>	7
Chlorobenzene	<u>ND</u>	7
Chlorodibromomethane	ND	7
Chloroethane	ND	7
2-Chloroethylvinyl Ether	ND	7
Chloroform	ND	7
Chloromethane	ND	7
Dichlorobromomethane	ND	7
1,1-Dichloroethane	ND	7
1,2-Dichloroethane	ND	7
1,1-Dichloroethene	ND	7
1,2-Dichloroethene	ND	7
1,2-Dichloropropane	ND	7
cis-1,3-Dichloropropene	ND	7
trans-1,3-Dichloropropene	ND	7
Ethylbenzene	ND	7
Methylene Chloride	ND	7
1,1,2,2-Tetrachloroethane	ND	7
Tetrachloroethene	ND	7
Toluene	ND	7
1,1,1-Trichloroethane	ND	7
1,1,2-Trichloroethane	ND	7
Trichloroethene	ND	7
Trichlorofluoromethane	ND	14
Vinyl Chloride	ND	14
Acetone		35
2-Butanone		14
Vinyl Acetate	ND	14
2-Hexanone	ND	14
4-Methyl-2-Pentanone	ND	14
Styrene	ND	14
		<u> </u>

.

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-142

~

٠

TEST NAME: Volatile Organics

SAMPLE ID: 28K-S-PB01-08 SAMPLE DATE: 05/17/94

Xylenes	<u>ND</u>	14
Methyl-Tert-Butyl-Ether(MTBE)	<u>ND</u>	14
Tert-Butyl-Alcohol (TBA)	<u>ND</u>	14
Carbon Disulfide	ND	7
1,1,1,2-Tetrachloroethane	ND	7

Surrogates	<b>%Recovery</b>
Toluene-d8	109
Bromofluorobenzene	83
1,2-Dichloroethane-d4	108

.

~

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ

(908) 225-2000 Work Order: F4-05-142

TEST NAME: Pesticides/PCB

SAMPLE ID: 2BK-S-PB01-08 SAMPLE DATE: 05/17/94

ANALYSIS DATE: 05/18/94 QC BATCH #: 2248

Results in	<u>uq/Kq</u>	Detection
NESUICS IN		Limit
Aldrin	<u>ND</u>	2.3
alpha-BHC	<u>ND</u>	2.3
beta-BHC	<u> </u>	2.3
Chlordane	<u> </u>	2.3
delta-BHC	<u>ND</u>	2.3
gamma-BHC	<u>ND</u>	2.3
4,4'-DDD	<u></u> ND	4.7
4,4'-DDE	<u>ND</u>	4.7
4,4'-DDT	<u>ND</u>	4.7
Dieldrin	<u>ND</u>	4.7
Endosulfan I	<u>ND</u>	2.3
Endosulfan II	ND	4.7
Endosulfan sulfate	<u>ND</u>	4.7
Endrin	<u>ND</u>	4.7
Endrin aldehyde	<u>ND</u>	4.7
Heptachlor	<u>ND</u>	2.3
Heptachlor epoxide	<u>ND</u>	2.3
Methoxychlor	<u>ND</u>	23
Toxaphene	<u>ND</u>	230
Aroclor-1016	ND	47
Aroclor-1221	<u>ND</u>	47
Aroclor-1232	<u>ND</u>	47
Aroclor-1242	ND	47
Aroclor-1248	ND	47
Aroclor-1254	<u>ND</u>	47
Aroclor-1260	<u> </u>	47
Endrin Ketone	<u>ND</u>	4.7

Surrogates	ፄ Recovery
Decachlorobiphenyl	74

Comments: U or ND indicates compound is not detected at level indicated. When units are ug/Kg, results are reported on a dry weight basis.

AH. A, p. 8

.

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000

Work Order: F4-05-142

TEST NAME: Metals

SAMPLE ID: 28K-S-PB01-12 SAMPLE DATE: 05/17/94

. .

ANALYSIS DATE: 05/25/94

	Results in	<u>mq/Kq</u> Dry Wt.	Detection Limit
Antimony		ND	1.2
Aluminum		5300	12
Arsenic		ND	1.2
Barium		<u>    8.3B</u>	0,60
Beryllium		<u>ND</u>	0.60
Cadmium		<u>ND</u>	0.60
Calcium		870	12.0
Chromium		<u> </u>	1.2
Cobalt		<u>2.9B</u>	1.2
Copper		<u> </u>	3.0
Iron		<u> </u>	12
Lead		ND	6.0
Magnesium		1600	12
Manganese		42	0.60
Mercury		ND	0.12
Nickel		7.4	4.8
Potassium		<u>4808</u>	60.0
Selenium		ND	0.60
Silver		<u>ND</u>	1.2
Sodium		<u>    100B</u>	12
Thallium.		ND	1.2
Vanadium		8.9	1.2
Zinc		18	2.4

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-142

#### TEST NAME: Acid/Base Neutrals

- --

SAMPLE ID: 2BK-S-PB01-12 SAMPLE DATE: 05/17/94

ANALYSIS DATE: 05/19/94

		Detection
Results in	<u>ug/Kg</u>	Limit
	(Dry Wt)	
Acenaphthene	<u> </u>	400
Acenaphthylene	<u>ND</u>	400
Anthracené	<u>ND</u>	400
Benzidine	<u> </u>	400
Benzo(a)Anthracene	<u>ND</u>	400
Benzo(b)Fluoranthene	ND	400
Benzo(k)Fluoranthene	<u>ND</u>	400
Benzo(a)Pyrene	<u>ND</u>	400
Benzo(g,h,i)perylene	<u>ND</u>	400
bis(2-Chloroethyl)Ether	<u>ND</u>	400
bis(2-Chloroethoxy)Methane	<u>ND</u>	400
bis(2-Ethylhexyl)Phthalate	<u> </u>	400
bis(2-Chloroisopropyl)Ether	<u></u>	400
4-Bromophenyl Phenyl Ether	ND	400
Butyl Benzyl Phthalate	<u>ND</u>	400
4-Chloroaniline	<u>ND</u>	400
2-Chloronaphthalen <del>e</del>	ND	400
4-Chlorophenyl Phenyl Ether	<u>ND</u>	400
Chrysene	<u>ND</u>	400
Dibenzo(a,h)anthracene	<u>ND</u>	400
Dibenzofuran	<u>ND</u>	400
Di-n-butylphthalate	<u> </u>	400
1,2-Dichlorobenzene	ND	400
1,3-Dichlorobenzene	ND	400
1,4-Dichlorobenzene	<u>ND</u>	400
3,3'-Dichlorobenzidine	<u>ND</u>	800
Diethylphthalate	ND	400
Dimethylphthalate	<u>ND</u>	400
2,4-Dinitrotoluene	<u>ND</u>	400
2,6-Dinitrotoluene	<u>ND</u>	400
Di-n-Octylphthalate	<u>160BJ</u>	400
1,2-Diphenylhydrazine	ND	400
Fluoranthene	<u>ND</u>	400
Fluorene	<u>ND</u>	400.
Hexachlorobenzene.	ND	400
Hexachlorobutadiene	<u>ND</u>	400

•

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ

(908) 225-2000 Work Order: F4-05-142

. . . . .

TEST NAME: Acid/Base Neutrals

SAMPLE ID: 2BK-S-PB01-12 SAMPLE DATE: 05/17/94

Hexachloroethane	ND	400
Hexachlorocyclopentadiene	<u>ND</u>	400
Indeno(1,2,3-cd)pyrene	ND	400
Isophorone	ND	400
2-Methylnaphthalene	<u>ND</u>	400
Naphthalene	ND	400
2-Nitroaniline	<u>ND</u>	400
3-Nitroaniline	<u>ND</u> '	400
4-Nitroaniline	ND	400
Nitrobenzene	ND	400
N-nitroso-dimethylamine	ND	400
N-Nitrosodipropylamine	<u>ND</u>	400
N-Nitrosodiphenylamine	<u>ND</u>	400
Phenanthrene	<u>ND</u>	400
Pyrene	<u>ND</u>	400
1,2,4-Trichlorobenzene	ND	<u>+00</u>
Benzoic Acid	ND	2000
Benzyl Alcohol	ND	400
4-Chloro-3-methylphenol	ND	400
2-Chlorophenol	ND	400
2,4-Dichlorophenol	<u>ND</u>	400
2,4-Dimethylphenol	<u>ND</u>	400
2,4-Dinitrophenol	<u>ND</u>	2000
4,6-Dinitro-2-methylphenol	<u>ND</u>	2000
2-Methylphenol	ND	2000
4-Methylphenol	ND	2000
2-Nitrophenol	ND	2000
4-Nitrophenol	<u>ND</u>	2000
Pentachlorophenol	ND	2000
Phenol	ND	400
2,4,5-Trichlorophenol	ND	2000
2,4,6-Trichlorophenol	ND	400
-		

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-142

TEST NAME: Acid/Base Neutrals

- --

SAMPLE ID: 28K-S-PB01-12 SAMPLE DATE: 05/17/94

Surrogates	% Recovery
Nitrobenzene-d5	66
2-Fluorobiphenyl	79
Terphenyl-d14	120
Phenol-d5	80
2-Fluorophenol	64
Tribromophenol	102

÷,

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000

Work Order: F4-05-142

TEST NAME: Volatile Organics

SAMPLE ID: 2BK-S-PB01-12 SAMPLE DATE: 05/17/94

ANALYSIS DATE: 05/20/94

		Detection
Results in	<u> </u>	Limit
	(Dry Wt)	
Acrolein	<u>ND</u>	12
Acrylonitrile	<u>ND</u>	12
Benzene	<u>ND</u>	6
Bromoform	<u>ND</u>	6
Bromomethane	<u>ND</u>	6
Carbon Tetrachloride	<u>ND</u>	6
Chlorobenzene	ND	6
Chlorodibromomethane	ND	6
Chloroethane	<u>ND</u>	6
2-Chloroethylvinyl Ether	ND	6
Chloroform	<u>ND</u>	6
Chloromethane	<u>ND</u>	6
Dichlorobromomethane	ND	6
1,1-Dichloroethane	<u>ND</u>	6
1,2-Dichloroethane	<u>ND</u>	6
1,1-Dichloroethene	ND	6
1,2-Dichloroethene	<u>ND</u>	6
1,2-Dichloropropane	<u>ND</u>	6
cis-1,3-Dichloropropene	<u>ND</u>	6
trans-1,3-Dichloropropene	ND	6
Ethylbenzene	<u>ND</u>	6
Methylene Chloride	<u>ND</u>	6
1,1,2,2-Tetrachloroethane	<u>ND</u>	6
Tetrachloroethene	ND	6
Toluene	<u>ND</u>	6
1,1,1-Trichloroethane	<u>ND</u>	6
1,1,2-Trichloroethane	ND	6
Trichloroethene	<u>ND</u>	6
Trichlorofluoromethane	<u>ND</u>	12
Vinyl Chloride	ND	12
Acetone	<u>ND</u>	30
2-Butanone	DN	12
Vinyl Acetate	<u>ND</u>	12
2-Hexanone	<u>ND</u>	12
4-Methyl-2-Pentanone	<u>ND</u>	12
Styrene	ND	12

.

~

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-142

TEST NAME: Volatile Organics

SAMPLE ID: 28K-S-PB01-12 SAMPLE DATE: 05/17/94

Xylenes	ND	12
Methyl-Tert-Butyl-Ether(MTBE)	ND	. 12
Tert-Butyl-Alcohol (TBA)	ND	12
Carbon Disulfide	ND	6
1,1,1,2-Tetrachloroethane	<u>ND</u>	6

Surrogates	<b>%</b> Recovery
Toluene-d8	<u> </u>
Bromofluorobenzene	91
1,2-Dichloroethane-d4	97

.

AH. A, P.14 .

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-142

TEST NAME: Pesticides/PCB

SAMPLE ID: 2BK-S-PB01-12 SAMPLE DATE: 05/17/94

ANALYSIS DATE: 05/18/94 QC BATCH #: 2248

		Detection
Results in	ug/Kg	Limit
Aldrin	ND	2.1
alpha-BHC	ND	2.1
beta-BHC	ND	2.1
Chlordane	<u>ND</u>	2.1
delta-BHC		2.1
gamma-BHC	<u>ND</u>	2.1
4,4'-DDD	<u>ND</u>	4.2
4,4'-DDE	<u>ND</u>	4.2
4,4'-DDT	<u>ND</u>	4.2
Dieldrin	<u>ND</u>	4.2
Endosulfan I	<u>ND</u>	2.1
Endosulfan II	<u>ND</u>	4.2
Endosulfan sulfate	<u></u> ND	4.2
Endrin	ND	4.2
Endrin aldehyde	ND	2.1
Heptachlor	ND	2.1
Heptachlor epoxide	<u>ND</u>	2.1
Methoxychlor	<u>ND</u>	21
Toxaphene	<u> </u>	210
Aroclor-1016	<u> </u>	42
Aroclor-1221	ND	42
Aroclor-1232	ND	42
Aroclor-1242	<u>ND</u>	42
Aroclor-1248	ND	42
Aroclor-1254	ND	42
Aroclor-1260	ND	42
Endrin Ketone	<u>ND</u>	2.1

Surrogates	% Recovery
Decachlorobipnenyl	70

Comments: U or ND indicates compound is not detected at level indicated. When units are ug/Kg, results are reported on a dry weight basis.

AH.A. p. 15

. . .

Company:	ITEN/Passaic Tunnel HTRW Inv.
Date:	<b>June 16, 1994</b>
Client Job No.:	529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-143

TEST NAME: Metals

SAMPLE ID: 2BK-S-PB01-50 SAMPLE DATE: 05/17/94

· ._

## ANALYSIS DATE: 05/25/94

;	Results in	<u>mg/Kg</u> Dry Wt.	Detection Limit
Antimony		ND	<u>    1.3</u>
Aluminum		11000	13
Arsenic		3.4	1.3
Barium		66	0.63
Beryllium		<u>ND</u>	0.63
Cadmium		ND	0.63
Calcium		7900	<u>    13</u>
Chromium		19	<u> </u>
Cobalt		10	<u> </u>
Copper		23	3.2
Iron		23000	13
Lead		13	<u> </u>
Magnesium		7800	13
Manganese		490	0.63
Mercury		ND	0.13
Nickel		20	5.1
Potassium		1800	63
Selenium		ND	0.63
Silver		<u>ND</u>	1.3
Sodium		2908	13
Thallium		<u>ND</u>	1.3
Vanadium		27	1.3
Zinc		49	2.5

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-143

TEST NAME: Acid/Base Neutrals

SAMPLE ID: 2BK-S-PB01-50 SAMPLE DATE: 05/17/94

ANALYSIS DATE: 05/19/94

<u></u>		Detection
Results in	ug/Kg	Limit
Results In	(Dry Wt)	LIMIC
	(Dry wc)	
Acenaphthene	ND	420
Acenaphthylene	ND	420
Anthracene	ND	420
Benzidine	ND	420
Benzo(a)Anthracene	ND	420
Benzo(b)Fluoranthene	ND	420
Benzo(k)Fluoranthene	<u>ND</u>	420
Benzo(a)Pyrene	<u>ND</u>	420
Benzo(g,h,i)perylene	<u>ND</u>	420
bis(2-Chloroethyl)Ether	<u>ND</u>	420
<pre>bis(2-Chloroethoxy)Methane</pre>	<u>ND</u>	420
bis(2-Ethylhexyl)Phthalate	ND	420
bis(2-Chloroisopropyl)Ether	ND	420
4-Bromophenyl Phenyl Ether	ND	420
Butyl Benzyl Phthalate	ND	420
4-Chloroaniline	ND	420
2-Chloronaphthalene	ND	420
4-Chlorophenyl Phenyl Ether	ND	420
Chrysene	ND	420
Dibenzo(a,h)anthracene	ND	420
Dibenzofuran	ND	420
Di-n-butylphthalate	110J	420
1,2-Dichlorobenzene	ND	420
1,3-Dichlorobenzene	ND	420
1,4-Dichlorobenzene	ND	420
3,3'-Dichlorobenzidine	ND	840
Diethylphthalate	ND	420
Dimethylphthalate	ND	420
2,4-Dinitrotoluene	ND	420
2,6-Dinitrotoluene	ND	420
Di-n-Octylphthalate	ND	420
1,2-Diphenylhydrazine	ND	
Fluoranthene	ND	420
Fluorene	ND	420
Hexachlorobenzene	ND	420
Hexachlorobutadiene	ND	420
		·····

.

ۍ. ز Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ

(908) 225-2000

Work Order: F4-05-143

TEST NAME: Acid/Base Neutrals

• ••

SAMPLE ID: 2BK-S-PB01-50 SAMPLE DATE: 05/17/94

Hexachloroethane	ND	420
Hexachlorocyclopentadiene	<u>ND</u>	420
Indeno(1,2,3-cd)pyrene	ND	420
Isophorone	<u>ND</u>	420
2-Methylnaphthalene	ND	420
Naphthalene	ND	420
2-Nitroaniline	ND	420
3-Nitroaniline	ND	420
4-Nitroaniline	ND	420
Nitrobenzene	ND	420
N-nitroso-dimethylamine	ND	420
N-Nitrosodipropylamine	ND	420
N-Nitrosodiphenylamine	ND	420
Phenanthrene	<u>ND</u>	420
Pyrene	<u>ND</u>	420
1,2,4-Trichlorobenzene	ND	420
Benzoic Acid	<u>ND</u>	2100
Benzyl Alcohol	ND	420
4-Chloro-3-methylphenol	ND	420
2-Chlorophenol	<u>ND</u>	420
2,4-Dichlorophenol	<u>ND</u>	420
2,4-Dimethylphenol	<u>ND</u>	420
2,4-Dinitrophenol	ND	2100
4,6-Dinitro-2-methylphenol	<u>ND</u>	2100
2-Methylphenol	ND	2100
4-Methylphenol	ND	2100
2-Nitrophenol	ND	2100
4-Nitrophenol	<u>ND</u>	2100
Pentachlorophenol	<u>ND</u>	2100
Phenol	ND	420
2,4,5-Trichlorophenol	ND	2100
2,4,6-Trichlorophenol	ND	420
-		

.^

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-143

TEST NAME: Acid/Base Neutrals

. . .

SAMPLE ID: 28K-S-PB01-50 SAMPLE DATE: 05/17/94

Surrogates	Recovery
Nitrobenzene-d5	69
2-Fluorobiphenyl	83
Terphenyl-d14	<u>    118</u>
Phenol-d5	83
2-Fluorophenol	67
Tribromophenol	107

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-143

TEST NAME: Volatile Organics

SAMPLE ID: 2BK-S-PB01-50 SAMPLE DATE: 05/17/94

ANALYSIS DATE: 05/20/94

ANALYSIS DATE: <u>05/20/94</u>	1	
		Detection
Results in	<u>uq/Kq</u>	Limit
	(Dry Wt)	
Acrolein	ND	13
Acrylonitrile	ND	13
Benzene	<u> </u>	6
Bromoform	<u>ND</u>	6
Bromomethane -	ND	6
Carbon Tetrachloride	<u>ND</u>	6
Chlorobenzene	<u>ND</u>	6
Chlorodibromomethane	<u>ND</u>	6
Chloroethane	<u>ND</u>	6
2-Chloroethylvinyl Ether	<u>ND</u>	6
Chloroform	ND	6
Chloromethane	ND	6
Dichlorobromomethane	ND	6
1,1-Dichloroethane	<u>ND</u>	6
1,2-Dichloroethane	<u>ND</u>	6
l,l-Dichloroethene	ND	
1,2-Dichloroethene	<u>ND</u>	6
1,2-Dichloropropane	ND	6
cis-1,3-Dichloropropene	<u>ND</u>	6
trans-1,3-Dichloropropene	<u>ND</u>	6
Ethylbenzene	ND	6
Methylene Chloride	<u>ND</u>	6
1,1,2,2-Tetrachloroethane	<u>ND</u>	6
Tetrachloroethene	<u>ND</u>	6
Toluene	ND	6
1,1,1-Trichloroethane	ND	6
1,1,2-Trichloroethane	<u>ND</u>	6
Trichloroethene	<u>ND</u>	6
Trichlorofluoromethane	ND	13
Vinyl Chloride	<u>ND</u>	13
Acetone	ND	32
2-Butanone	ND	13
Vinyl Acetate	ND	13
2-Hexanone	ND	13
4-Methyl-2-Pentanone	<u>ND</u>	13
Styrene	ND	13

:07

~

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-143

TEST NAME: Volatile Organics

. ..

SAMPLE ID: 2BK-S-PB01-50 Sample Date: 05/17/94

.

.

Xylenes	<u>ND</u>	13
Methyl-Tert-Butyl-Ether(MTBE)	<u>ND</u>	13
Tert-Butyl-Alcohol (TBA)	<u>ND</u>	13
Carbon Disulfide	<u>ND</u>	6
1,1,1,2-Tetrachlorothane	ND	6

Surrogates	<pre>%Recovery</pre>
Toluen <b>e-d</b> 8	114
Bromofluorobenzene	91
1,2-Dichloroethane-d4	101

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-143

TEST NAME: Pesticides/PCB

. . .

SAMPLE ID: 2BK-S-PB01-50 SAMPLE DATE: 05/17/94

ANALYSIS DATE: 05/18/94 QC BATCH #: 2248

		Detection
Results in	<u>ug/Kg</u>	Limit
Aldrin	<u>ND</u>	2.1
alpha-BHC	<u>ND</u>	2.1
beta-BHC	<u>ND</u>	2.1
Chlordane	<u>ND</u>	2.1
delta-BHC	<u>ND</u>	<u> </u>
gamma-BHC	<u>ND</u>	2.1
4,4'-DDD		4.2
4,4'-DDÉ	<u>ND</u>	4.2
4,4'-DDT	<u></u>	4.2
Dieldrin	<u>ND</u>	4.2
Endosulfan I	<u>ND</u>	2.1
Endosulfan II	<u>ND</u>	4.2
Endosulfan sulfate	ND	4.2
Endrin	<u>ND</u>	4.2
Endrin aldehyde	<u>ND</u>	4.2
Heptachlor	<u>ND</u>	2.1
Heptachlor epoxide	<u>ND</u>	2.1
Methoxychlor	<u>ND</u>	21
Toxaphene	<u>ND</u>	210
Aroclor-1016	ND	42
Aroclor-1221	ND	42
Aroclor-1232	<u>ND</u>	42
Aroclor-1242	ND	42
Aroclor-1248	ND	42
Aroclor-1254	ND	42
Aroclor-1260	ND	42
Endrin Ketone	ND	4.2

Surrogates	% Recovery
Decachlorobiphenvl	76

Comments: U or ND indicates compound is not detected at level indicated. When units are ug/Kg, results are reported on a dry weight basis.

Att. A, p. 22



# ANALYTICAL SERVICES

# CERTIFICATE OF ANALYSIS

ITEN/Passaic Tunnel HTRW Inv. 165 Fieldcrest Ave. Edison, NJ 08837 Attn: Ms. Paulette Frank Date: June 16, 1994

NJ Lab Certification ID#: 12064

Job No.: 529740

P.O. Number: 529740-06-01-04

This is the Certificate of Analysis for the following samples:

Client Project ID: PASSAIC TUNNEL HTRW INV. Date Received: 05/19/94 Number of Samples: 4 Sample Type: SOIL/WATER

I. Introduction

Samples were labeled as follows:

SAMPLE IDENTIFICATION 2BK-S-PB01-100 2BK-S-PB01-100 MS 2BK-S-PB01-100 MSD 2BK-RB-0519 LABORATORY # F4-05-162-01 F4-05-162-02 F4-05-162-03 F4-05-162-04

Reviewed and Approved:

nenith Eileen S. Nemeth

Eileen S. Nemeth Project Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

TIERRA-A-017577

}

-

3

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-162

TEST NAME: Metals

SAMPLE ID: 2BK-S-PB01-100 SAMPLE DATE: 05/19/94

. ...

ANALYSIS DATE: 05/24/94

	Results in	<u>mg/Kg</u> Dry Wt.	Detection Limit
Antimony		ND	1,1
Aluminum		12000	11
Arsenic		· <u>ND</u>	<u> </u>
Barium		<u> </u>	0,56
Beryllium		0.67	<u> </u>
Cadmium		<u>ND</u>	<u>    0.56</u>
Calcium		22000	11
Chromium		211	1.1
Cobalt		10	1.1
Copper		15	2.8
Iron		23000	11
Lead		15	5.6
Magnesium		7800	11
Manganese		520	0.56
Mercury		<u>ND</u>	0.11
Nickel		21	4.5
Potassium		3100	56
Selenium		<u>ND</u>	<u>     0.56</u>
Silver		<u>ND</u>	1.1
Sodium		<u> </u>	11
Thallium		<u>ND</u>	<u> </u>
Vanadium		30	<u> </u>
Zinc		51	2.2

Company: ITEN/Passaic Tunnel HTRW Inv. Date: June 16, 1994 Client Job No.: 529740 IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-162

والمرافع معروف والمحم الروار المالية والمراجع والم

TEST NAME: Acid/Base Neutrals

SAMPLE ID: 2BK-S-PB01-100 SAMPLE DATE: 05/19/94

ANALYSIS DATE: 05/20/94

$\frac{05720794}{2}$		
		Detection
Results in	<u>ug/Kg</u>	Limit
	(Dry Wt)	
Acenaphthene	<u>ND</u>	<u> </u>
Acenaphthylene	<u>ND</u>	370
Anthracene	ND	370
Benzidine	ND	370
Benzo(a)Anthracene	ND	370
Benzo(b)Fluoranthene	ND	370
Benzo(k)Fluoranthene	ND	370
Benzo(a)Pyrene	ND	370
Benzo(g,h,i)perylene	ND	370
bis(2-Chloroethyl)Ether	ND	370
bis(2-Chloroethoxy)Methane	ND	370
bis(2-Ethylhexyl)Phthalate	63J	370
bis(2-Chloroisopropyl)Ether	ND	370
4-Bromophenyl Phenyl Ether	ND	370
Butyl Benzyl Phthalate	ND	370
4-Chloroaniline	ND	370
2-Chloronaphthalene	ND	370
4-Chlorophenyl Phenyl Ether	ND	370
Chrysene	ND	370
Dibenzo(a,h)anthracene	ND	370
Dibenzofuran	ND	370
Di-n-butylphthalate	90J	370
1,2-Dichlorobenzene	ND	370
1,3-Dichlorobenzene	ND	370
1,4-Dichlorobenzene	ND	370
3,3'-Dichlorobenzidine	ND	740
Diethylphthalate	ND	370
Dimethylphthalate	ND	370
2,4-Dinitrotoluene	ND	370
2,6-Dinitrotoluene	ND	370
Di-n-Octylphthalate	ND	370
1,2-Diphenylhydrazine	ND	370
Fluoranthene	ND	370
Fluorene	ND	370
Hexachlorobenzene	ND	370
Hexachlorobutadiene	ND	370

Att. B. p. 3

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICE EDISON, NJ (908) 225-2000 Work Order: F4-05-162

# TEST NAME: Acid/Base Neutrals

SAMPLE ID: 2BK-S-PB01-100 SAMPLE DATE: 05/19/94

Hexachloroethane		
Hexachlorocyclopentadiene	<u>ND</u>	370
Indeno(1,2,3-cd)pyrene	<u>ND</u>	<u>370</u>
Isophorone	<u>ND</u>	370
2-Methylnaphthalene	<u>ND</u>	370
Naphthalene	<u>ND</u>	370
2-Nitroaniline	<u>ND</u>	370
3-Nitroaniline	<u>ND</u>	370
4-Nitroaniline	<u>ND</u>	370
Nitrobenzene	<u>ND</u>	370
	<u>ND</u>	370
N-nitroso-dimethylamine	<u>ND</u>	370
N-Nitrosodipropylamine	<u>ND</u>	370
N-Nitrosodiphenylamine Phenanthrene	<u>ND</u>	370
Pyrene	<u>ND</u>	370
	<u>ND</u>	370
1,2,4-Trichlorobenzene Benzoic Acid	<u>ND</u>	370
Benzyl Alcohol	<u>ND</u>	1900
4-Chlore 3 method to a	<u>ND</u>	370
4-Chloro-3-methylphenol 2-Chlorophenol	ND	370
2 4 Dichleman	ND	370
2,4-Dichlorophenol	ND	370
2,4-Dimethylphenol	ND	370
2,4-Dinitrophenol	ND	1900
4,6-Dinitro-2-methylphenol	<u>ND</u>	1900
2-Methylphenol	ND	1900
4-Methylphenol	ND	1900
2-Nitrophenol	ND	1900
4-Nitrophenol	ND	1900
Pentachlorophenol Phenol	ND	1900
	ND	370
2,4,5-Trichlorophenol	ND	1900
2,4,6-Trichlorophenol	ND	370
		<u>_</u>

-

~

Company: ITEN/Passaic Tunnel HTRW Inv. Date: June 16, 1994 Client Job No.: 529740 IT ANALYTICAL SERVICE: EDISON, NJ (908) 225-2000 Work Order: F4-05-162

TEST NAME: Acid/Base Neutrals SAMPLE ID: 2BK-S-PB01-100 SAMPLE DATE: 05/19/94

Surrogates	% Recovery
•••••	
Nitrobenzene-d5	80
2-Fluorobiphenyl	<u> </u>
Terphenyl-d14	123
Phenol-d5	90
2-Fluorophenol	76
Tribromophenol	109

Comments: ND indicates the compound is not detected at the level indicated.

A++. B. p.5

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-162

المرجع والمراجع والمسترية والمراجع المراجع والمراجع

# TEST NAME: Volatile Organics

SAMPLE ID: 2BK-S-PB01-100 SAMPLE DATE: 05/19/94

ANALYSIS DATE: 05/20/94

ANALISIS DAIL: 05/20/9	<u>4</u>	
		Detection
Results in	<u>ug/Kg</u>	Limit
	(Dry Wt)	
Acrolein	ND	11
Acrylonitril <b>e</b>	<u>ND</u>	11
Benzene	ND	6
Bromoform	ND	6
Bromomethane	ND	6
Carbon Tetrachloride	ND	6
Chlorobenzene	ND	6
Chlorodibromomethane	ND	6
Chloroethane	ND	6
2-Chloroethylvinyl Ether	ND	6
Chloroform	ND	6
Chloromethane	ND	6
Dichlorobromomethane	ND	6
1.1-Dichloroethane	ND	6
1,2-Dichloroethane	ND	6
1,1-Dichloroethene	ND	6
1,2-Dichloroethene	ND	6
1,2-Dichloropropane	ND	6
cis-1,3-Dichloropropene	ND	6
trans-1,3-Dichloropropene	ND	6
Ethylbenzene	ND	6
Methylene Chloride	ND	6
1,1,2,2-Tetrachloroethane	ND	6
Tetrachloroethene	ND	6
Toluene	ND	6
l,l,l-Trichloroethane	ND	6
1,1,2-Trichloroethane	ND	6
Trichloroethene	ND	6
Trichlorofluoromethane	ND	11
Vinyl Chloride	ND	11
Acetone	ND	28
2-Butanone	ND	28
Vinyl Acetate	ND	28
2-Hexanone	ND	28
4-Methyl-2-Pentanone	ND	28
Styrene	ND	28
•		<u> </u>

•

Company:ITEN/Passaic Tunnel HTRW Inv.Date:June 16, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-162

TEST NAME: Volatile Organics

SAMPLE ID: 2BK-S-PB01-100 SAMPLE DATE: 05/19/94

Xylenes	<u>ND</u>	28
Methyl-Tert-Butyl-Ether(MTBE)	ND	28
Tert-Butyl-Alcohol (TBA)	ND	28
Carbon Disulfide	ND	6
1,1,1,2-Tetrachloroethane	ND	6

Surrogates	<pre>%Recovery</pre>
••••••	
Toluene-d8	103
Bromofluorobenzene	<u> </u>
1,2-Dichloroethane-d4	102

Comments: ND indicates the compound is not detected at the level indicated.

s,

.

Company:	ITEN/Passaic Tunnel HTRW Inv.
Date:	June 16, 1994
Client Job No.:	529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-05-162

المعتومية فرار المولود المراجع الم

#### TEST NAME: Pesticides/PCB

· • ·

SAMPLE ID: 2BK-S-PB01-100 SAMPLE DATE: 05/19/94

ANALYSIS DATE: 05/20/94 QC BATCH #: ____2250

				Detection
Res	ults	in	<u>ug/Kg</u>	Limit
Aldrin			<u>ND</u>	1.9
alpha-BHC			<u> </u>	<u> </u>
beta-BHC			ND	1.9
Chlordane			<u>ND</u>	19
delta-BHC			<u>ND</u>	<u> </u>
gamma-BHC			<u>ND</u>	<u> </u>
4,4'-DDD			<u>ND</u>	<u> </u>
4,4'-DDE			ND	3.7
4,4'-DDT			<u>ND</u>	3.7
Dieldrin			<u>ND</u>	<u> </u>
Endosulfan I			<u>ND</u>	<u> </u>
Endosulfan II			<u>ND</u>	3.7
Endosulfan sulfa	te		ND	3.7
Endrin			<u>ND</u>	3.7
Endrin aldehyde			<u>ND</u>	<u> </u>
Heptachlor			<u>ND</u>	<u> </u>
Heptachlor epoxi	de		<u>ND</u>	1.9
Methoxychlor			ND	19
Toxaphene			<u>ND</u>	190
Aroclor-1016			ND	37
Aroclor-1221			<u>ND</u>	37
Aroclor-1232			<u>ND</u>	37
Aroclor-1242			ND	<u> </u>
Aroclor-1248			ND	37
Aroclor-1254			<u>ND</u>	<u>37</u>
Aroclor-1260			ND	37

Surrogates	% Recovery
•	
Decachlorobiphenyl	73

Comments: U or ND indicates compound is not detected at level indicated. When units are ug/Kg, results are reported on a dry weight basis.



# ANALYTICAL SERVICES

## CERTIFICATE OF ANALYSIS

ITEN/Passiac Tunnel HTRW Inv. Date: July 26, 1994 c/o IT Gorp. 165 Fieldcrest Ave. Edison, NJ 08837 Attn: Mr Paulette Frank NJ Lab Certification ID#: 12064

Job No.: 529740

P.O. Number: 529740

This is the Certificate of Analysis for the following samples:

Client Project ID: PASSAIC TUNNEL HTRW INV. Date Received: 06/27/94 Number of Samples: 5 Sample Type: SOIL/WATER

#### I. Introduction

Samples were labeled as follows:

SAMPLE IDENTIFICATION 2BK-S-OB1-02 2BK-S-OB1-02 MS 2BK-S-OB1-02 MSD 2BK-S-OB1-04 2BK-RB-0627

LABORATORY # F4-06-293-01 F4-06-293-02 F4-06-293-03 F4-06-293-04 F4-06-293-05

Reviewed and Approved:

Eileen S. Nemeth Project Manager

American Council of Independent Laboratories International Association of Environmental Testing Laboratories American Association for Laboratory Accreditation

681---19

•

Company:ITEN/Passiac Tunnel HTRW Inv.Date:July 26, 1994Client Job No.:529740

and the second second second second second second second second second second second second second second second

TEST NAME: Metals

-

SAMPLE ID: 2BK-S-OB1-02 SAMPLE DATE: 06/27/94

ANALYSIS DATE: 07/05/94

	Results in	<u>mg/Kg</u> Dry Wt.	Detection Limit
Antimony Aluminum		<u>ND</u> 6060	$\frac{1.0}{10}$
Arsenic		3,1	1.0
Barium		<u>711</u>	0,50
Beryllium		<u>ND</u> 1.2	0,50
Cadmium Calcium		28100	10
Chromium		50	2.0
Cobalt		5,5	1,0
Copper		47.5	2.5
Iron		10700	10
Lead		258	5.0
Magnesium		3210	10
Manganese		221	0.50
Mercury		0.65	0,10
Nickel		22	<u>     4.0</u>
Potassium		<u> </u>	50
Selenium		<u>ND</u>	0.50
Silver		<u>ND</u>	-1.0
Sodium		<u> </u>	10
Thallium		<u>ND</u>	1.0 1.0
Vanadium		229	4.0
Zinc		479	<u> </u>

Comments: ND indicates the compound is not detected at the level indicated.

AH. C, p. Z

Company:ITEN/Passiac Tunnel HTRW Inv.Date:July 26, 1994Client Job No.:529740

### TEST NAME: Acid/Base Neutrals

SAMPLE ID: 2BK-S-OB1-02 SAMPLE DATE: 06/27/94

ANALYSIS DATE: 07/05/94

LYSIS DATE: <u>07/05/94</u>		
		Detection
Results in	<u> </u>	Limit
	(Dry Wt)	
Acenaphthene	<u> </u>	1700
Acenaphthylene	<u>170J</u>	1700
Anthracene	1300J	<u> </u>
Benzidine	ND	1700
Benzo(a)Anthracene	3200	1700
Benzo(b)Fluoranthene	3600	<u> </u>
Benzo(k)Fluoranthene	3100	<u> </u>
Benzo(a)Pyrene	3900	<u> </u>
Benzo(g,h,i)perylene	1700	1700
bis(2-Chloroethyl)Ether	ND	1700
bis(2-Chloroethoxy)Methane	ND	1700
bis(2-Ethylhexyl)Phthalate	330J	1700
bis(2-Chloroisopropyl)Ether	ND	1700
4-Bromophenyl Phenyl Ether	DN	1700
Butyl Benzyl Phthalate		1700
2-Chloronaphthalene	ND	1700
4-Chlorophenyl Phenyl Ether	ND	1700
Chrysene	3000	1700
Dibenzo(a,h)anthracene	920J	1700
Di-n-butylphthalate	ND	1700
1. 2-Dichlorobenzene	ND	1700
1,3-Dichlorobenzene	ND	1700
1,4-Dichlorobenzene	ND	1700
3.3'-Dichlorobenzidine	ND	3300
Diethylphthalate	ND	1700
Dimethylphthalate	ND	1700
2,4-Dinitrotoluene	ND	1700
2,6-Dinitrotoluene	ND	1700
Di-n-Octylphthalate	ND	1700
1,2-Diphenylhydrazine	ND	1700
Fluoranthene	7600	1700
Fluorene	580J	1700
Hexachlorobenzene	ND	1700
Hexachlorobutadiene	ND	1700
Hexachloroethane	ND	1700
Hexachlorocyclopentadiene	ND	1700
nevacutorocletoheuraatene		

Company:	ITEN/Passiac Tunnel HTRW Inv.	,
Date:	July 26, 1994	
Client Job No.:	529740	

له به در شنب الم در الم ال

## TEST NAME: Acid/Base Neutrals

SAMPLE ID: 28K-S-081-02 SAMPLE DATE: 06/27/94

Indeno(1,2,3-cd)pyrene	1700	1700
Isophorone	ND	1700
Naphthalene	<u>170J</u>	1700
Nitrobenzene	ND	<u>    1700                               </u>
N-nitroso-dimethylamine	ND	1700
N-Nitrosodipropylamine	ND	1700
N-Nitrosodiphenylamine	ND	1700
Phenanthrene	5000	1700
Pyrene	5800	1700
1,2,4-Trichlorobenzene	ND	<u> </u>
4-Chloro-3-methylphenol	ND	1700
2-Chlorophenol	ND	1700
2.4-Dichlorophenol	ND	<u>    1700                               </u>
2.4-Dimethylphenol	ND	1700
2.4-Dinitrophenol	ND	8300
4,6-Dinitro-2-methylphenol	ND	8300
2-Nitrophenol	ND	1700
4-Nitrophenol	ND	8300
Pentachlorophenol	ND	8300
Phenol	<u>ND</u>	1700
2,4,5-Trichlorophenol	<u>ND</u>	<u> </u>
2,4,6-Trichlorophenol	<u>ND</u>	1700

Surrogates	Recovery
	· · · · · · · · · · ·
Nitrobenzene-d5	65
2-Fluorobiphenyl	85
Terphenyl-dl4	<u> </u>
Phenol-d5	90
2-Fluorophenol	75
Tribromophenol	80

-

.

Comments: ND indicates the compound is not detected at the level indicated.

~

Company:ITEN/Passiac Tunnel HTRW Inv.Date:July 26, 1994Client Job No.:529740

Detection

IT ANALYTICAL SERVICES EDISON, NJ

(908) 225-2000 Work Order: F4-06-293

ar 1000 to 01.00

## TEST NAME: Volatile Organics

SAMPLE ID: 2BK-S-OB1-02 SAMPLE DATE: 06/27/94

ANALYSIS DATE: 06/28/94

		Detection
Results in	ug/Kg	Limit
Results In		
	(Dry Wt)	
		50
Acrolein	<u>ND</u>	50
Acrylonitrile	<u>ND</u>	50
Benzene	<u>ND</u>	<u> </u>
Bromoform	<u>ND</u>	5
Bromomethane	<u>ND</u>	5
Carbon Tetrachloride	<u>ND</u>	5
Chlorobenzene	<u>ND</u>	5
Chlorodibromomethane	<u>ND</u>	5
Chloroethane	<u>ND</u>	5
2-Chloroethylvinyl Ether	ND	5
Chloroform	ND	5
Chloromethane	ND	5
Dichlorobromomethane	ND	5
1,1-Dichloroethane	ND	5
1.2-Dichloroethane	ND	
1,1-Dichloroethene	ND	5
1,2-Dichloroethene	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
trans-1,3-Dichloropropene	ND	5
	ND	5
Ethylbenzene Chleride	3BJ	5
Methylene Chloride	ND	5
1,1,2,2-Tetrachloroethane	ND	5
Tetrachloroethene	<u>ND</u> 1J	5
Toluene	<u>15</u> ND	5
1,1,1-Trichloroethane		5
1,1,2-Trichloroethane	<u>ND</u>	5
Trichloroethene	<u>ND</u>	5
Trichlorofluoromethane	<u>ND</u>	5
Vinyl Chloride	<u></u>	
Acetone	50	10
2-Butanone		10
Vinyl Acetate	58	10
2-Hexanone	<u>ND</u>	10
4-Methyl-2-Pentanone	<u>ND</u>	10
Styrene	<u>ND</u>	10
2 ·		

A++. C, p.5 .

..

Company:ITEN/Passiac Tunnel HTRW Inv.Date:July 26, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-06-293

TEST NAME: Volatile Organics

SAMPLE ID: 2BK-S-OB1-02 SAMPLE DATE: 06/27/94

Xylenes	ND	10
Methyl-Tert-Butyl-Ether(MTBE)	ND	10
Tert-Butyl-Alcohol (TBA)	ND	10
Carbon Disulfide	ND	5
1,1,1,2-Tetrachloroethane	ND	5

Surrogates	<pre>%Recovery</pre>
<b>Toluene-d8</b>	135
Bromofluorobenzene	73
1,2-Dichloroethane-d4	<u>96</u>

Comments: ND indicates the compound is not detected at the level indicated.

Company:ITEN/Passiac Tunnel HTRW Inv.Date:July 26, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ

(908) 225-2000 Work Order: F4-06-293

TEST NAME: Pesticides/PCB

SAMPLE ID: 28K-S-081-02 SAMPLE DATE: 06/27/94

ANALYSIS DATE: 06/29/94

Results in	Detection ug/Kg Limit
Aldrin alpha-BHC beta-BHC Chlordane delta-BHC gamma-BHC 4,4'-DDD 4,4'-DDT Dieldrin Endosulfan I Endosulfan Sulfate Endrin Endrin aldehyde	<u>ug/Kg</u> Limit <u>36</u> <u>1.6</u> <u>ND</u> <u>1.6</u> 2.2 <u>1.6</u> <u>ND</u> <u>16</u> <u>ND</u> <u>16</u> <u>15</u> <u>1.6</u> <u>3.0J</u> <u>3.3</u> <u>15</u> <u>3.3</u> <u>13</u> <u>3.3</u> <u>13</u> <u>3.3</u> <u>8.7</u> <u>3.3</u> <u>ND</u> <u>1.6</u> <u>24</u> <u>3.3</u> <u>2.4J</u> <u>3.3</u> <u>3.2J</u> <u>3.3</u> <u>ND</u> <u>3.3</u>
Heptachlor	
Heptachlor epoxide	$\frac{38}{11J}$ $\frac{1.6}{16}$
Methoxychlor Toxaphene	<u>ND 160</u>
Aroclor-1016	28033
Aroclor-1221	<u>ND 33</u>
Aroclor-1232	ND 33
Aroclor-1242	ND33
Aroclor-1248	720 33
Aroclor-1254	360 33
Aroclor-1260	320 33
Surrogates	<pre>% Recovery</pre>

Decachlorobiphenyl

<u>____110</u>

Comments: U or ND indicates compound is not detected at level indicated. When units are ug/Kg, results are reported on a dry weight basis.

Company:ITEN/Passiac Tunnel HTRV Inv.Data:July 26, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-06-293

### TEST NAME: Metals

SAMPLE ID: 2BK-S-OB1-04 SAMPLE DATE: 06/27/94

ANALYSIS DATE: 07/01/94

	Results in	<u>mg/Kg</u> Dry Wt.	Detection Limit
Antimony Aluminum Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium		Dry Wt. 1.0B 6560 3.1 252 ND 0.97 23500 40.9 40.9 40.6 11100 199 2850 206 0.34 17.7 729 0.50B ND 183B	Limit 1.0 10 0.50 0.50 0.50 10 2.0 1.0 2.5 10 5.0 10 5.0 10 0.50 0.10 4.0 5.0 0.50 1.0 1.0 0.50 0.10 1.0 0.50 0.10 1.0 1.0 0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
Sodium Thallium Vanadium Zinc		<u>ND</u> 258 296	1.0 1.0 2.0

Comments: ND indicates the compound is not detected at the level indicated.

Company: Date: Client Job No.: 529740 IITEN/Passiac Tunnel HTRW Inv. July 26, 1994

E.

# TEST NAME: Acid/Base Neutrals

SAMPLE ID: 2BK-S-OB1-04 SAMPLE DATE: 06/27/94

ANALYSIS DATE: 07/05/94

Acenaphthene1200JAcenaphthylene190JAnthracene1800BenzidineNDBenzo(a)Anthracene4000Benzo(b)Fluoranthene4800Benzo(k)Fluoranthene4200Benzo(a)Pyrene5200Benzo(g,h,i)perylene1900bis(2-Chloroethyl)EtherNDbis(2-Chloroethoxy)MethaneNDbis(2-Chloroisopropyl)EtherND4-Bromophenyl Phenyl EtherNDButyl Benzyl PhthalateND2-ChloronaphthaleneND4-Chlorophenyl Phenyl EtherNDDibenzo(a,h)anthracene1070JDi-n-butylphthalateND1,3-DichlorobenzeneND3,3'-DichlorobenzeneND3,3'-DichlorobenzidineNDDiethylphthalateNDNDND	ection imit
DimethylphthalateND2,4-DinitrotolueneND2,6-DinitrotolueneNDDi-n-OctylphthalateND1,2-DiphenylhydrazineNDFluoranthene9900	1700 1700 1700 1700 1700 1700 1700 1700
FluoreneNDHexachlorobenzeneNDHexachlorobutadieneNDHexachloroethaneNDHexachlorocyclopentadieneND	1700 1700 1700 1700

AH. C, p. 9

682 1-89

.

Company:ITEN/Passiac Tunnel HTRW Inv.Date:July 26, 1994Client Job No.:529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-06-293

#### TEST NAME: Volatile Organics

SAMPLE ID: 28K-S-081-04 SAMPLE DATE: 06/27/94

ANALYSIS DATE: 06/28/94

ANALYSIS DATE: 06/28/94	4	
		Detection
Results in	ug/Kg	Limit
	(Dry Wt)	
	· · · ·	
Acrolein	ND	
Acrylonitrile	ND	50
Benzene	ND	5
Bromoform	ND	5
Bromomethane	ND	5
Carbon Tetrachloride	ND	5
Chlorobenzene	ND	5
Chlorodibromomethane	ND	5
Chloroethane	ND	5
2-Chloroethylvinyl Ether	ND	5
Chloroform	ND	5
Chloromethane	ND	5
Dichlorobromomethane	ND	5
1,1-Dichloroethane	ND	5
1,2-Dichloroethane	ND	5
1,1-Dichloroethene	ND	5
1,2-Dichloroethene	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene		5
trans-1,3-Dichloropropene	ND	5
Ethylbenzene	ND	5
Methylene Chloride	<u> 4BJ</u>	5
1,1,2,2-Tetrachloroethane	ND	5
Tetrachloroethene	ND	5
Toluene	ND	5
1,1,1-Trichloroethane		5
1,1,2-Trichloroethane		<u> </u>
Trichloroethene	ND	5
Trichlorofluoromethane		5
Vinyl Chloride	ND	5
Acetone	89	10
2-Butanone	<u>ND</u>	10
Vinyl Acetate		10
2-Hexanone		10
		10
4-Methyl-2-Pentanone		10
Styrene	<u>ND</u>	<u>TV</u>

.

*

.

ITEN/Passiac Tunnel HTRW Inv. Company: July 26, 1994 Date: Client Job No.: 529740

IT ANALYTICAL SERVICES EDISON, NJ

(908) 225-2000 Work Order: F4-06-293

#### TEST NAME: Volatile Organics

SAMPLE TD: 2BK-S-OB1-04 SAMPLE DATE: 06/27/94

Xylenes	<u>ND</u>	10
Methyl-Tert-Butyl-Ether(MTBE)	ND	10
Tert-Butyl-Alcohol (TBA)	ND	10
Carbon Disulfide	24	5
1,1,1,2-Tetrachloroethane	ND	5

Surrogates	<pre>%Recovery</pre>
Toluene-d8	113
Bromofluorobenzene	70
l,2-Dichloroethane-d4	101

Comments: ND indicates the compound is not detected at the level indicated.

ITEN/Passiac Tunnel HTRW Inv. Company: July 26, 1994 Date: Client Job No.: 529740

IT ANALYTICAL SERVICES EDISON, NJ (908) 225-2000 Work Order: F4-06-293

#### TEST NAME: Pesticides/PCB

SAMPLE ID: 28K-S-081-04 SAMPLE DATE: 06/27/94

ANALYSIS DATE: 06/29/94

Results in	<u>ug/Kg</u>	Detection Limit
Aldrin	<u> </u>	<u> </u>
alpha-BHC	<u> </u>	1.6
beta-BHC	<u> </u>	1.6
Chlordane	<u>ND</u>	16
delta-BHC	<u>ND</u>	1.6
gamma-BHC	<u>ND</u>	1.6
4,4'-DDD	20	<u> </u>
4,4'-DDE	12	3.3
4,4'-DDT	<u> </u>	3.3
Dieldrin	24	<u> </u>
Endosulfan I	<u>ND</u>	1.6
Endosulfan II	<u>ND</u>	<u> </u>
Endosulfan sulfate	4.5	<u>3,3</u>
Endrin	<u> </u>	<u> </u>
Endrin aldehyde	<u>ND</u>	<u> </u>
Heptachlor	14	1.6
Heptachlor epoxide	48	1.6
Methoxychlor	24	16
Toxaphene	<u>ND</u>	<u> </u>
Aroclor-1016	<u>ND</u>	<u>33</u>
Aroclor-1221	<u>ND</u>	33
Aroclor-1232	<u>ND</u>	33
Aroclor-1242	<u>ND</u>	33
Aroclor-1248	1400	33
Aroclor-1254	440	<u>33</u>
Aroclor-1260	390	33

Surrogates	% Recovery
•••••	
Decachlorobiphenyl	112

Comments: U or ND indicates compound is not detected at level indicated. When units are ug/Kg, results are reported on a dry weight basis.

AH. C. p. 13

682 - 89 TIERRA-A-017596



September 21, 1994

Mr. John Golden International Technology Corporation 165 Fieldcrest Avenue Edison, NJ 08837

PROJECT NUMBER: 035873 P.O. NUMBER: 529740

Dear Mr. Golden:

Enclosed are the results of the analyses for Soil samples, sampled 8/11/94, for the following sample(s):

Number of	Sample(s)	Sample Matrix
	10	SOIL

The sample(s) were received under chain of custody at Enseco-East Laboratory on August 11, 1994. A brief description of the Quality Assurance/ Quality Control and method references employed by Enseco is contained within the report. This letter authorizes the release of the analytical results and is considered an integral part of this report.

All analyses subcontracted to Quanterra-New Jersey are found in appendix one of this report.

All analyses subcontracted to Quanterra-Tennessee are found in appendix two of this report.

All analyses subcontracted to Teledyne Brown Engineering are found in appendix three of this report.

Please refer to this project by the Enseco-East Laboratory Project Number to expedite any future discussions. We will be happy to answer any questions or concerns that you may have.

Sincerely, ileen Nemeth Program Manager

ENSECO-EAST LABORATORY

AH. D. p. 1

Enseco - J.P.

Method 8240

Client Name:	International Te 2BK-S-HA1	chnology Cor	porati	on		
Client ID: Lab ID:	035873-0001-SA	Sample	4: 11	AUG 94		
Matrix:	SOIL	Receive			Prepared: NA	l l
		Authorized			Analyzed: 23	
Parameter			Result	URT WEIGH Units	IT Reporting	
		•	163410	011103	Limit	
Chloromethan	e		ND	ug/kg	11	
Bromomethane	J.		ND	ug/kg	11	
Vinyl Chlorid	de		ND	ug/kg	11	
Chloroethane	lanida		ND	ug/kg	11	
Methylene ch	Ioriae		ND ND	ug/kg	5.7	
Acetone Carbon disul:	fida		ND	ug/kg	11 5.7	
1,1-Dichloro			ND	ug/kg	5.7	
1,1-Dichloro			ND	ug/kg ug/kg	5.7	
1,2-Dichloro			ND	ug/ kg	5.7	
trans)			ND	ug/kg	5.7	
Chloroform			ND	ug/kg	5.7	
1,2-Dichloroe	ethan <del>e</del>		ND	ug/kg	5.7	
2-Butanone			ND	ug/kg	11	
1,1,1-Trichld			ND	ug/kg	5.7	
Carbon tetrac			ND	ug/kg	5.7	
Vinyl Acetate			ND	ug/kg	11	
Bromodichloro			ND	ug/kg	5.7	
1,2-Dichlorop	propane		ND	uğ/kğ	5.7	
cis-1,3-Dichl	oropropene		ND	ug/kg	5.7	
Trichloroethe			ND	ug/kg	5.7	
Dibromochloro			ND	ug/kg	5.7	
l,l,2-Trichlo Benzene	roetnane		ND	ug/kg	5.7	
trans-1,3-Dic	hloropropene		ND ND	ug/kg	5.7	
Bromoform	and opropene		ND	ug/kg	5.7 5.7	
4-Methyl-2-Pe	entanone		ND	ug/kg ug/kg	11	
2-Hexanone			ND	ug/kg	11	
1,1,2,2-Tetra	chloroethane		ND	ug/kg	5.7	
Tetrachloroet			ND	ug/kg	5.7	
Toluene			ND	ug/kg	5.7	
Chlorobenzene	•		ND	ug/kg	5.7	
Ethylbenzene			ND	ug/kg	5.7	
Styrene			ND	ug/kg	5.7	
Percent moist	ure is 13%. All	results and	limits	- · · ·		veight basis.
					-	-

NA = Not Applicable ND = Not Detected

. .

Reported By: Ann Liang

Client Name: Client ID: Lab ID: Matrix:	International Tech 2BK-S-HA1		ion		
	035873-0001-SA SOIL	Sampled: 11 Received: 11 Authorized: 15	AUG 94	Prepared	: NA : 23 AUG 94
Parameter		Resul		WEIGHT Report	
Xylenes (tota Acrolein Acrylonitrile	•	ND ND ND	U	g/kg 5 g/kg 57 g/kg 57	.7
Surrogate		Reco	very		
l,2-Dichloroe Toluene-d8 4-Bromofluoro		99 109 92	% % %	-	

Percent moisture is 13%. All results and limits are reported on a dry weight basis. NA = Not Applicable ND = Not Detected

Reported By: Ann Liang

.

Approved By: Debra Cutler

AH. D. p.3

Enseco

coming company

Enseço Comine Compan

Method 8240

Client Name: Client ID:	Internationa 2BK-S-HA2	1 Tec	chnology	/ Corpo	rati	on					
	035873-0003- SOIL	SA	Rec	<pre>mpled: eived: orized:</pre>	11	AUG	94		ared:   yzed:	NA 21 AUG	94
Parameter				Re	sult	D	RY WEIGH Units		oorting _imit	9	
Chloromethane Bromomethane Vinyl Chlorid Chloroethane Methylene chl Acetone Carbon disulf 1,1-Dichloroe 1,2-Dichloroe trans) Chloroform 1,2-Dichloroe 2-Butanone 1,1,1-Trichlo Carbon tetrac Vinyl Acetate Bromodichlorop cis-1,3-Dichlorop cis-1,3-Dichloro Dibromochloro 1,1,2-Trichloro Benzene trans-1,3-Dicl	e oride ide thene thane thene (cis/ thane roethane hloride methane ropane oropropene ne methane roethane						ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg		11 11 11 11 11 11 11 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6		
Bromoform 4-Methyl-2-Per 2-Hexanone 1,1,2,2-Tetrac Tetrachloroet!	chloroethane			N N N	D D D D		ug/kg ug/kg ug/kg ug/kg		5.6 11 11 5.6 5.6		
Toluene Chlorobenzene Ethylbenzene Styrene				N N N N	D D D		ug/kg ug/kg ug/kg ug/kg ug/kg		5.6 5.6 5.6 5.6		
Percent moistu	are is 11%.	A11 Y	results	and li	mits	are	reporte	d on	a drv	weight	bas

Percent moisture is 11%. All results and limits are reported on a dry weight basis.

NA = Not Applicable ND = Not Detected

. تور

Reported By: Salman Qazi

•

# inseco.

TCL Volatile Organics

Client Name: Client ID: Lab ID: Matrix:	International Tecl 2BK-S-HA2 035873-0003-SA SOIL	Method 824 (cont.) nnology Corporat Sampled: 11 Received: 11 Authorized: 15	ion AUG 94 AUG 94	Prepared: NA Analyzed: 21	AUG 94
Parameter		Resul		HT Reporting Limit	
Xylenes (tota Acrolein Acrylonitrile		ND ND ND	ug/kg ug/kg ug/kg	5.6 56 56	
Surrogate		Reco	very		
1,2-Dichloroe Toluene-d8 4-Bromofluoro		101 120 86	% % %		v

Percent moisture is 11%. All results and limits are reported on a dry weight basis.

v = Surrogate recovery outside of QC limits due to sample matrix interference as verified by reanalysis. NA = Not Applicable ND = Not Detected

Reported By: Salman Qazi

Approved By: Debra Cutler

AH. D., P.5

Enseco

## Method 8240

Client Name:	International Tec	nology Corporation	
Client ID: Lab ID:	28K-S-HA3 035873-0004-SA	Sampled: 11 AUG 94	
Matrix:	SOIL	Received: 11 AUG 94 Prepared:	NΔ
			24 AUG 94
Da		DRY WEIGHT Reporti	
Parameter		Result Units Limit	
Chloromethan	e .	ND ug/kg 12	
Bromomethane		ND ug/kg 12	
Vinyl Chlori	de	ND ug/kg 12	
Chloroethane		ND ug/kg 12	
Methylene ch	loride	ND ug/kg 6.	2
Acetone		ND ug/kg 12	-
Carbon disul	fide	ND ug/kg 6.	2
1,1-Dichloro	ethene	ND ug/kg 6.	
1,1-Dichloro	ethane	ND ug/kg 6.	2
1,2-Dichloro	ethene (cis/	-3/ (3) 01	-
trans)		ND ug/kg 6.	2
Chloroform	•	ND ug/kg 6.	
1,2-Dichloro	ethane	ND ug/kg 6.	
2-Butanone		ND ug/kg 12	
1,1,1-Trichle	proethane	ND ug/kg 6.	2
Carbon tetra		ND ug/kg 6.	
Vinyl Acetate		ND ug/kg 12	
Bromodichlor	omethane	ND ug/kg 6.1	2
1,2-Dichlorog	propane	ND ug/kg 6.	
cis-1.3-Dichl	oropropene	ND ug/kg 6.	
Trichloroethe		ND ug/kg 6.	
Dibromochloro		ND ug/kg 6.	,
1,1,2-Trichle	proethane	ND ug/kg 6.	
Benzene		ND ug/kg 6.2	>
trans-1,3-Dic	chloropropene	ND ug/kg 6.2	
Bromoform		ND ug/kg 6.2	
4-Methy}-2-Pe	entanone	ND ug/kg 12	
2-Hexanone	••	ND ug/kg 12	
1,1,2,2-Tetra	chloroethane	ND ug/kg 6.2	
Tetrachloroet	hene	ND ug/kg 6.2	)
Toluene		ND ug/kg 6.2	)
Chlorobenzene	ł	ND ug/kg 6.2	
Ethylbenzene		ND ug/kg 6.2	•
Styrene		ND ug/kg 6.2	
Percent moist	ure is 20%. All r	sults and limits are reported on a dr	y weight basis.
NA = Not Appl ND = Not Dete	icable cted		

Reported By: Salman Qazi

,

Enseco A coming company

Client Name: Client ID: Lab ID: Matrix:	Method 8240 (cont.) International Technology Corporation 2BK-S-HA3								
	035873-0004-SA SOIL	Sampled: Received: Authorized:	11	AUG	94	Prepared: Analyzed:		AUG	94
Parameter		Re	sult		RY WEIG Units	HT Reportin Limit	ıg		
Xylenes (tot Acrolein Acrylonitril	-	1	ND ND ND		ug/kg ug/kg ug/kg	6.2 62 62	2		
Surrogate		Recovery							
1,2-Dichloro Toluene-d8 4-Bromofluoro		10	97 05 89		% % %				

Percent moisture is 20%. All results and limits are reported on a dry weight basis. NA = Not Applicable ND = Not Detected

Reported By: Salman Qazi

# Enseco

### TCL Volatile Organics

Method 8240

Client Name: Client ID:	International	Technology Corporation	I	
Lab ID:	28K-S-HA4 035873-0005-SA	Sampled: 11 AU	A0 31	
Matrix:	SOIL	Received: 11 AU	G 94	Prepared: NA
		Authorized: 15 AU	G 94	Analyzed: 24 AUG 94
				UT Deseuties
Parameter		Result		HT Reporting Limit
<b>AL1</b>	_			
Chloromethan Bromomethane	8	ND ND	ug/kg	13
Vinyl Chlorid	de	ND	ug/kg ug/kg	13 13
Chloroethane		ND	ug/kg	13
Methylene ch	loride	ND	ug/kg	6.5
Acetone		ND	ug/kg	13
Carbon disuli		ND	ug/kg	6.5
1,1-Dichloroe		ND ·	ug/kg	6.5
1,1-Dichloroe	ethane	ND	ug/kg	6.5
1,2-Dichloroe	ethene (cis/			
trans) Chloroform		ND	ug/kg	6.5
1,2-Dichloroe	thana	ND	ug/kg	6.5
2-Butanone	clidite	ND ND	ug/kg	6.5
1,1,1-Trichlo	roethane	ND	ug/kg ug/kg	13 6.5
Carbon tetrac	hloride	ND	ug/kg	6.5
Vinyl Acetate		ND	ug/kg	13
Bromodichloro	omethane	ND	ug/kg	6.5
1,2-Dichlorop	ropane	ND	ug/kg	6.5
cis-1,3-Dichl	oropropene	ND	ug/kg	6.5
Trichloroethe		ND	ug/kg	6.5
Dibromochloro		ND	ug/kg	6.5
1,1,2-Trichlo Benzene	roetnane	ND	ug/kg	6.5
trans-1,3-Dic	hloropropene	ND ND	ug/kg	6.5
Bromoform	intor opropetie	ND	ug/kg	6.5
4-Methy1-2-Pe	ntanone	ND	ug/kg ug/kg	6.5 13
2-Hexanone		ND	ug/kg	13
1,1,2,2-Tetra	chloroethane	ND	ug/kg	6.5
Tetrachloroet	hene	ND	ug/kg	6.5
Toluene		ND	ug/kg	6.5
Chlorobenzene		ND	ug/kg	6.5
Ethylbenzene		ND	ug/kg	6.5
Styrene		ND	ug/kg	6.5

Percent moisture is 23%. All results and limits are reported on a dry weight basis.

NA = Not Applicable ND = Not Detected

Reported By: Salman Qazi

# Enseco

### TCL Volatile Organics

Client Name: Client ID: Lab ID:	International Tec. 2BK-S-HA4 035873-0005-SA		.) ration	04		
Matrix:	SOIL	Sampled: Received:	11 AUG	94 94	Prepared: NA	
		Authorized:	15 AUG	94	Analyzed: 24	AUG 94
Parameter		Res	l sult	DRY WEIG Units	HT Reporting Limit	
Xylenes (tota Acrolein Acrylonitrile	•	1	ND ND ND	ug/kg ug/kg ug/kg	6.5 65 65	
Surrogate		Re	ecovery			
l,2-Dichlorod Toluene-d8 4-Bromofluoro		11	98 11 32	% % %		

Percent moisture is 23%. All results and limits are reported on a dry weight basis. NA = Not Applicable ND = Not Detected

Reported By: Salman Qazi

Method 8240

	International	Technology	Corporati	ion		
Client ID: Lab ID: Matrix:	2BK-S-HA6 035873-0007-S SOIL	Rece	pled: 11 ived: 11 ized: 15	AUG 94	Prepared: N Analyzed: 2	
				DRY WEIG	HT Reporting	
Parameter			Result	Units	Limit -	
Chloromethan	e		ND	ug/kg	22	
Bromomethane			ND	ug/kg	22	
Vinyl Chlorid	je"		ND	ug/kg	22	
Chloroethane	laud da		ND	uğ/kğ	22	
Methylene ch	loride		ND	ug/kg	11	
Acetone Carbon disuli	Fide		ND ND	ug/kg	22 11	
1,1-Dichloroe			ND	ug/kg ug/kg	11	
1,1-Dichloroe			ND	ug/kg	- 11	
1,2-Dichloroe	thene (cis/			-37.5		
trans)	• •		ND	ug/kg	11	
Chloroform			ND	ug/kg	11	
1,2-Dichloroe	thane		ND	ug/kg	11	
2-Butanone 1,1,1-Trichlo	waathana		ND	ug/kg	22	
Carbon tetrac			ND ND	ug/kg	11 11	
Vinyl Acetate			ND	ug/kg ug/kg	22	
Bromodichloro			ND	ug/kg	11	
1,2-Dichlorop			ND	ug/kg	11	
cis-1,3-Dichl	oropropene		ND	ug/kg	īī	
Trichloroethe			ND	ug/kg	11	
Dibromochloro			ND	ug/kg	11	
1,1,2-Trichlo	roethane		ND	ug/kg	11	
Benzene			ND	ug/kg	11	
trans-1,3-Dic Bromoform	nioropropene		ND ND	ug/kg	11	
4-Methyl-2-Pe	ntanone		ND	ug/kg ug/kg	11 22	
2-Hexanone			ND	ug/kg	22	
1,1,2,2-Tetra	chloroethane		ND	ug/kg	11	
Tetrachloroet	hene		ND	ug/kg	īi	
Toluene			ND	ug/kg	11	
Chlorobenzene			ND	ug/kg	11	
Ethylbenzene			ND	ug/kg	11	
Styrene			ND	ug/kg	11	
Percent moist	ura is 55% /	ll reculte -	nd limite		od on a day	

Percent moisture is 55%. All results and limits are reported on a dry weight basis.

NA = Not Applicable ND = Not Detected

į

:

1

Reported By: Ann Liang

Approved By: Debra Cutler

AH D, p. 10

Enseco A Comine Company

Client Name: Client ID: Lab ID: Matrix:	International Tec 2BK-S-HA6 035873-0007-SA SOIL	Method & (cont. hnology Corpor Sampled: Received: Authorized:	) ation 11 AUG 11 AUG	94	Prepared: NA Analyzed: 25	
~ Parameter		Res	ult	DRY WEIG Units	HT Reporting Limit	
Xylenes (tota Acrolein Acrylonitrila	-	N N N		ug/kg ug/kg ug/kg	11 110 110	
Surrogate		Re	covery			
1,2-Dichlorod Toluene-d8 4-Bromofluoro		9 12 7	2	X X X		v

Percent moisture is 55%. All results and limits are reported on a dry weight basis.

 v = Surrogate recovery outside of QC limits due to sample matrix interference as verified by reanalysis.
 NA = Not Applicable

ND = Not Detected

; - t

4

Reported By: Ann Liang

Approved By: Debra Cutler

AH.D, p.11

Enseco

### Method 8240

	International To	echnology Corp	oration	1		
Cl <b>ient ID:</b> Lab ID:	2BK-S-HA7 035873-0008-SA	Sampled	• 11 AU	IC 04		
Matrix:	SOIL	Received			Prepared: NA	
		Authorized			Analyzed: 25	AUG 94
Parameter		D,	esult	Units	HT Reporting Limit	
		n'	CJUIC	011103	L 1111 I G	
Chloromethan	e		ND	ug/kg	14	
Bromomethane			ND	ug/kg	14	
Vinyl Chlorid	1e		ND	ug/kg	14	
Chloroethane Methylene ch	loride		ND ND	ug/kg	14	
Acetone	Ioriue		ND	ug/kg	6.9 14	
Carbon disuli	Fide		ND	ug/kg ug/kg	6.9	
1,1-Dichloro			ND	ug/kg	6.9	
1,1-Dichloro	ethane		ND	ug/kg	6.9	
1,2-Dichloroe	ethene (cis/			-37 -3	••••	
trans)			ND	ug/kg	6.9	
Chloroform	, , ,		ND	ug/kg	6.9	
1,2-Dichloroe	ethane		ND	ug/kg	6.9	
2-Butanone 1,1,1-Trichlo	waathana		ND	ug/kg	14	
Carbon tetrac			ND ND	ug/kg	6.9	
Vinyl Acetate			ND	ug/kg ug/kg	6.9 14	
Bromodichlord			ND	ug/kg	6.9	
1,2-Dichlorop			ND	ug/kg	6.9	
cis-1,3-Dichl	oropropene		ND	ug/kg	6.9	
Trichloroethe			ND	ug/kg	6.9	
Dibromochloro			ND	ug/kg	6.9	
1,1,2-Trichlo	roethane		ND	ug/kg	6.9	
Benzene	<b>b1</b>		ND	ug/kg	6.9	
trans-1,3-Dic Bromoform	nioropropene		ND	ug/kg	6.9	
4-Methyl-2-Pe	ntanone		ND	ug/kg	6.9	
2-Hexanone			ND ND	ug/kg	14 14	
1,1,2,2-Tetra	chloroethane		ND	ug/kg ug/kg	6.9	
Tetrachloroet			ND	ug/kg	6.9	
Toluene			ND	ug/kg	6.9	
Chlorobenzene	!		ND	ug/kg	6.9	
Ethylbenzene			ND	ug/kg	6.9	
Styrene			ND	ug/kg	6.9	
Percent moist	ura is 28% All	maculta and 1				

Percent moisture is 28%. All results and limits are reported on a dry weight basis.

NA = Not Applicable ND = Not Detected

7

Reported By: Salman Qazi

Enseco A Comine Compan-

### TCL Volatile Organics

Client Name: Client ID: Lab ID: Matrix:	International Tec 2BK-S-HA7 035873-0008-SA SOIL	Method 824 (cont.) hnology Corporat Sampled: 11 Received: 11 Authorized: 15	ion AUG AUG	94	Prepared: NA Analyzed: 25	
Parameter		Resul		DRY WEIG Units	HT Reporting Limit	
Xylenes (tota Acrolein Acrylonitrile	•	ND ND ND		ug/kg ug/kg ug/kg	6.9 69 69	
Surrogate		Reco	very			
l,2-Dichloroe Toluene-d8 4-Bromofluoro		96 123 69		% % %		v v

Percent moisture is 28%. All results and limits are reported on a dry weight basis.

v - Surrogate recovery outside of QC limits due to sample matrix interference as verified by reanalysis. NA = Not Applicable ND = Not Detected

- - - -

Reported By: Salman Qazi

Approved By: Debra Cutler

AH.D, p.13

Enseco

Method 8240

Client Name: International Tech Client ID: 28K-S-HA8			
Lab ID: 035873-0009-SA Matrix: SOIL	Sampled: Il AUG Received: 11 AUG Authorized: 15 AUG	94	Prepared: NA Analyzed: 25 AUG 94
Parameter	Result	DRY WEIGH Units	T Reporting Limit
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,2-Dichloroethene (cis/	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	13 13 13 6.3 13 6.3 6.3 6.3 6.3
trans) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	6.3 6.3 13 6.3 6.3 13 6.3 6.3 6.3 6.3 6.3
Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene Chlorobenzene Ethylbenzene Styrene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	6.3 6.3 6.3 6.3 6.3 6.3 6.3 13 6.3 6.3 6.3 6.3 6.3 6.3 6.3

Percent moisture is 21%. All results and limits are reported on a dry weight basis. NA = Not Applicable ND = Not Detected

Reported By: Salman Qazi

Approved By: Debra Cutler

AH. D, p. 14

Client Name: Client ID: Lab ID: Matrix:	International Tec 2BK-S-HA8 035873-0009-SA SOIL	Method 8240 (cont.) hnology Corporati Sampled: 11 Received: 11 Authorized: 15	on AUG 94 AUG 94	Prepared: NA Analyzed: 25	AUG 94
Parameter		Result	DRY WEIG Units	HT Reporting Limit	
Xylenes (tot Acrolein Acrylonitril	•	ND ND ND	ug/kg ug/kg ug/kg	6.3 63 63	
Surrogate		Recov	ery		
l,2-Dichlorod Toluene-d8 4-Bromofluoro		92 141 62	% % %		v v

Percent moisture is 21%. All results and limits are reported on a dry weight basis.

 v = Surrogate recovery outside of QC limits due to sample matrix interference as verified by reanalysis.
 NA = Not Applicable
 ND = Not Detected

Reported By: Salman Qazi

Approved By: Debra Cutler

AH. D. p.15

Enseco

summer.

Method 8240

Client Name: Client ID:	International Tec 2BK-S-HA9	chnology Corporatio	n		
Lab ID: Matrix:	035873-0010-SA SOIL	Sampled: 11 A Received: 11 A Authorized: 15 A	UG 94	Prepared: NA Analyzed: 25 AUG	94
Parameter		Result	DRY WEIGH Units	T Reporting Limit	
Chloromethane Bromomethane Vinyl Chloric Chloroethane Methylene chl Acetone Carbon disulf 1,1-Dichloroe 1,2-Dichloroe trans) Chloroform 1,2-Dichloroe 2-Butanone 1,1,1-Trichlo Carbon tetrac Vinyl Acetate Bromodichloro 1,2-Dichlorop cis-1,3-Dichl Trichloroethe Dibromochloro 1,1,2-Trichlo Benzene trans-1,3-Dickl Bromoform 4-Methyl-2-Pes 2-Hexanone 1,1,2,2-Tetrac Tetrachloroeth Toluene Chlorobenzene Ethylbenzene Styrene Percent moiste NA = Not Appli	de loride Fide ethene ethene ethene (cis/ ethane roethane hloride methane ropane oropropene me hane roethane hloropropene htanone chloroethane ene ethene chloroethane thane chloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	$     \begin{array}{r}         13 \\         13 \\         13 \\         13 \\         6.6 \\         13 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6.6 \\         6$	basis.
Reported By:	Salman Qazi	Approved	By: Debra	Cutler	

.

.

Client ID:	2BK-S-HA9	Method 8240 (cont.) hnology Corporation			
Lab ID: Matrix: ~	035873-0010-SA Soil	Sampled: 11 AU Received: 11 AU Authorized: 15 AU	G 94	Prepared: NA Analyzed: 25	AUG 94
Parameter		Result	DRY WEIG Units	HT Reporting Limit	
Xylenes (tot: Acrolein Acrylonitril	-	NĎ ND ND	ug/kg ug/kg ug/kg	6.6 66 66	
Surrogate		Recovery	,		
1,2-Dichloroe Toluene-d8 4-Bromofluoro		93 139 60	% % %		v v

Percent moisture is 25%. All results and limits are reported on a dry weight basis.

v = Surrogate recovery outside of QC limits due to sample matrix interference as verified by reanalysis.
 NA = Not Applicable
 ND = Not Detected

. . . .

Reported By: Salman Qazi

Approved By: Debra Cutler

AH.D, p.17

. '

Enseco

nun .

Enseco A Comine Company

## TCL Semivolatile Organics

Method 8270

	International Tec 2BK-S-HA1	hnology Corporation	1		
Lab ID:	035873-0001-SA	Sampled: 11 AU	IG 94		
Matrix:	SOIL	Received: 11 AU	IG 94	Prepared: 1	6 AUG 94
		Authorized: 15 AU	IG 94	Analyzed: 2	4 AUG 94
				HT Reporting	
Parameter		Result	Units	Limit	
Phenol		ND	ug/kg	380	
bis(2-Chloro		ND	ug/kg	380	
2-Chlorophen	0]	ND	ug/kg	380	
1,3-Dichlorol	Denzene	ND	ug/kg	380	
1,4-Dichlorol	Jeuzene	ND	ug/kg	380	
1,2-Dichlorot		ND	ug/kg	380	
2-Methylphend bis(2-Chlorot		ND	ug/kg	380	
ether	isopi op <b>y</b> i j	ND	ua /ka	380	
4-Methylpheno	1	ND	ug/kg ug/kg	380	
N-Nitroso-di-		ne -	ug/ kg	380	
propylamine		ND	ug/kg	380	
Hexachloroeth		ND	ug/kg	380	
Nitrobenzene		ND	ug/kg	380	
Isophorone		ND	ug/kg	380	
2-Nitrophenol		ND	ug/kg	380	
2,4-Dimethylp		ND	ug/kg	380	
bis(2-Chloroe	tnoxy)-				
methane 2,4-Dichlorop	honol	ND	ug/kg	380	
1,2,4-Trichlo		ND	ug/kg	380	
Naphthalene	robenzene	ND	ug/kg	380	
4-Chloroanili	ne	ND ND	ug/kg	380	
Hexachlorobut		ND	ug/kg ug/kg	380 380	
4-Chloro-3-me	thylphenol	ND	ug/kg	380	
2-Methylnapht	halene	ND	ug/kg	380	
Hexachlorocyc			-3/ ~3		
pentadiene	·	ND	ug/kg	380	
2,4,6-Trichlo	rophenol	ND	ug/kg	380	
2,4,5-Trichlo		ND	ug/kg	1800	
2-Chloronapht	halene	ND	ug/kg	380	
2-Nitroanilin		ND	ug/kg	1800	
Dimethyl phth Acenaphthylen		ND	ug/kg	380	
3-Nitroanilin		ND	ug/kg	380	
J-HICIORITTIN	6	ND	ug/kg	1800	
Percent moist	ure is 13%. All r	esults and limits a	re reporte	ed on a dry	weight basis.
ND = Not Deter	cted				
Reported By:	Leonard Dikun	Approved	By: Lori	Ann Quinn	

## TCL Semivolatile Organics

Client Name: Client ID:	Method 8270 (cont.) International Technology Corporation 2BK-S-HA1				
Lab ID: Matrix:	035873-0001-SA SOIL	Sampled: 11 A Received: 11 A Authorized: 15 A	UG 94	Prepared: 16 Analyzed: 24	
Parameter		Result	DRY WEIGH Units	T Reporting Limit	
Acenaphthene 2,4-Dinitropl 4-Nitrophenoi Dibenzofuran 2,4-Dinitroto 2,6-Dinitroto Diethyl phtha 4-Chloropheny ether Fluorene 4-Nitroanilin 4,6-Dinitro-2 methylpheno N-Nitrosodiph 4-Bromophenyl ether Hexachloroben Pentachloroben Pentachloroben Phenanthrene Anthracene 9H-Carbazole Di-n-butyl ph Fluoranthene Pyrene Butyl benzyl 3,3'-Dichloro Benzo(a)anthr	l oluene oluene alate /l phenyl enylamine phenyl zene enol thalate phthalate benzidine	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	380 1800 1800 380 380 380 380 1800 1800	
bis(2-Ethylhe phthalate Chrysene Di-n-octyl ph Benzo(b)fluor Benzo(k)fluor Benzo(a)pyrene Indeno(1,2,3-e	xyl) thalate anthene anthene e	ND 720 ND 1400 ND 670 ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	380 380 380 380 380 380 380 380 380	
		results and limits			eight basis.
ND = Not Detec	ted				

Reported By: Leonard Dikun

۰,

Approved By: Lori Ann Quinn

AH. D, p. 19

Enseco

## TCL Semivolatile Organics

Client Name: Client ID:	Method 8270 (cont.) International Technology Corporation 2BK-S-HA1					
Lab ID: Matrix:	035873-0001-SA SOIL	Sampled: 11 Received: 11 Authorized: 15	AUG 94	Prepared: 16 Analyzed: 24		
Parameter		Result	DRY WEIG Units	HT Reporting Limit		
Dibenz(a,h)a Benzo(g,h,i)		ND ND	ug/kg ug/kg	380 380		
Surrogate		Recove	ery			
Nitrobenzene 2-Fluorobiphe Terphenyl-dl Phenol-d5 2-Fluorophene 2,4,6-Tribrom	enyl 4 Dl	71 97 107 84 91 105	* * * * * *			

Percent moisture is 13%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Leonard Dikun

Approved By: Lori Ann Quinn

AH. D, p.20

Enseci

Method 8270

Client Name: Internation Client ID: 2BK-S-HA2	al Technology Corporation			
Lab ID: 035873-0003 Matrix: SOIL	-SA Sampled: 11 AUG Received: 11 AUG Authorized: 15 AUG	<b>94</b>	Prepared: 16 Analyzed: 24	
Parameter	Result	DRY WEIG Units	HT Reporting Limit	
Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	1800 1800 1800 1800 1800 1800 1800	d
ether 4-Methylphenol N-Nitroso-di-n- propylamine Hexachloroethane	ND ND ND	ug/kg ug/kg ug/kg	1800 1800 1800 1800	
Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)-	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	1800 1800 1800 1800 1800	
methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	1800 1800 1800 1800 1800 1800	
Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclo- pentadiene	ND ND ND	ug/kg ug/kg ug/kg ug/kg	1800 1800 1800 1800	
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	1800 9000 1800 9000 1800 1800	

Percent moisture is 11%. All results and limits are reported on a dry weight basis.

d = All reporting limits raised due to matrix interferences. ND = Not Detected

....

Reported By: Leonard Dikun

Approved By: Lori Ann Quinn

AH. D, p. 21

Enseco

# Ensect

## TCL Semivolatile Organics

Client Name: Client ID:	International Tech 2BK-S-HA2	Method 8270 (cont.) nology Corporation			
Lab ID: Matrix:	035873-0003-SA SOIL	Sampled: 11 AUG Received: 11 AUG Authorized: 15 AUG	94	Prepared: 16 Analyzed: 24	
Parameter		Result	DRY WEIGH Units	HT Reporting Limit	
3-Nitroanilir Acenaphthene 2,4-Dinitroph 4-Nitrophenol Dibenzofuran 2,4-Dinitroto 2,6-Dinitroto Diethyl phtha	neno] Duene Duene Late	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	9000 1800 9000 9000 1800 1800 1800 1800	
4-Chloropheny ether Fluorene 4-Nitroanilin 4.6-Dinitro-2	e	ND ND ND	ug/kg ug/kg ug/kg	1800 1800 9000	
methylpheno N-Nitrosodiph 4-Bromophenyl	l enylamine	ND ND	ug/kg ug/kg	9000 1800	
ether Hexachloroben Pentachloroph Phenanthrene Anthracene		ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	1800 1800 9000 1800	
9H-Carbazole Di-n-butyl ph Fluoranthene Pyrene		ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	1800 1800 1800 1800 1800	
Butyl benzyl 3,3'-Dichlorol Benzo(a)anthra bis(2-Ethylhe: phthalate	benzidine acene	ND ND ND	ug/kg ug/kg ug/kg	1800 3700 1800	
Chrysene Di-n-octyl ph Benzo(b)fluora Benzo(k)fluora	anthene	ND ND ND 4100 ND	ug/kg ug/kg ug/kg ug/kg ug/kg	1800 1800 1800 1800 1800	

Percent moisture is 11%. All results and limits are reported on a dry weight basis. ND = Not Detected Reported By: Leonard Dikun Approved By: Lori Ann Quinn

Client Name: Client ID:	International Tec 2BK-S-HA2	Method (cont hnology Corpo	.)			
Lab ID: Matrix:	035873-0003-SA SOIL	Sampled: Received: Authorized:	11 AUG	94	Prepared: 1 Analyzed: 2	
Parameter		Res	sult	DRY WEIGH Units	T Reporting Limit	I
Benzo(a)pyrer Indeno(1,2,3- Dibenz(a,h)ar Benzo(g,h,i)p	-cd)pyrene athracene	h	00 1D 1D 1D	ug/kg ug/kg ug/kg ug/kg	1800 1800 1800 1800	
Surrogate		Re	covery			
Nitrobenzene- 2-Fluorobiphe Terphenyl-d14 Phenol-d5 2-Fluoropheno 2,4,6-Tribrom	nyl 1	8 10 5 8	5 8 6 3 2 7	* * * * * * * * * *		

Percent moisture is 11%. All results and limits are reported on a dry weight basis. ND - Not Detected

Reported By: Leonard Dikun

~

Approved By: Lori Ann Quinn

AH. D, p. 23

Enseco

Enseco

Method 8270

Client Name: Client ID:	International Tec 2BK-S-HA3	hnology Corporation			
Lab ID: Matrix:	035873-0004-SA SOIL	Sampled: 11 AU Received: 11 AU Authorized: 15 AU	G 94	Prepared: 16 Analyzed: 24	AUG 94 AUG 94
Parameter		Result	DRY WEIGH Units	IT Reporting Limit	
Phenol bis(2-Chlorod 2-Chlorophend 1,3-Dichlorod 1,4-Dichlorod 1,2-Dichlorod 2-Methylphend	ol penzene penzene penzene pl	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100 2100 2100 2100 2100	u
bis(2-Chlorot ether 4-Methylphenc N-Nitroso-di-	5	ND ND	ug/kg ug/kg	2100 2100	
propylamine Hexachloroeth Nitrobenzene Isophorone	ane	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100 2100	
2-Nitrophenol 2,4-Dimethylp bis(2-Chloroe	henol	ND ND	ug/kg ug/kg	2100 2100	
methane 2,4-Dichlorop 1,2,4-Trichlo Naphthalene 4-Chloroanili Hexachlorobut	robenzene ne adiene	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100 2100 2100 2100	
4-Chloro-3-me 2-Methylnapht Hexachlorocyc	halene	ND ND	ug/kg ug/kg	2100 2100	
pentadiene 2,4,6-Trichlo 2,4,5-Trichlo 2-Chloronapht 2-Nitroanilin Dimethyl phth Acenaphthylen	rophenol halene e alate	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100 10000 2100 2100	
· -			-31		

Percent moisture is 20%. All results and limits are reported on a dry weight basis. u = All reporting limits raised due to high levels of target analytes.
ND = Not Detected

Reported By: Leonard Dikun

. -

Approved By: Lori Ann Quinn

		Method 8270			
Client Name:	International Ter	(cont.) chnology Corporation			
Client ID:	2BK-S-HA3				
Lab ID: Matrix:	035873-0004-SA SOIL	Sampled: 11 AUG		Deserved. 10	
Matrix:	SUIL	Received: 11 AUG Authorized: 15 AUG		Prepared: 16 Analyzed: 24	
				÷	
Parameter		Result	Units	IT Reporting Limit	
3-Nitroanilir	ne	ND	ug/kg	10000	
Acenaphthene	-	ND	ug/kg	2100	
2,4-Dinitroph		ND	ug/kg	10000	
4-Nitrophenol Dibenzofuran		ND ND	ug/kg ug/kg	10000 2100	
2,4-Dinitroto	luene	ND	ug/kg	2100	
2,6-Dinitroto	luene	ND	ug/kg	2100	
Diethyl phtha		ND	ug/kg	2100	
4-Chloropheny ether	i phenyi	ND			
Fluorene		ND ND	ug/kg	2100	
4-Nitroanilin	e	ND	ug/kg ug/kg	2100 10000	
4,6-Dinitro-2			49/ K9	10000	
methylpheno		ND	ug/kg	10000	
N-Nitrosodiph	enylamine	ND	ug/kg	2100	
4-Bromophenyl ether	pnenyi	ND	um Ilia	0100	
Hexachloroben	zene	ND	ug/kg ug/kg	2100 2100	
Pentachloroph		ND	ug/kg	10000	
Phenanthrene		7500	ug/kg	2100	
Anthracene		2200	ug/kg	2100	
9H-Carbazole Di-n-butyl ph	thalata	ND	ug/kg	2100	
Fluoranthene		ND 8200	ug/kg	2100 2100	
Pyrene		8600	ug/kg ug/kg	2100	
Butyl benzyl		ND	ug/kg	2100	
3,3'-Dichloro		ND	ug/kg	4100	
Benzo(a)anthra bis(2-Ethylhe		4400	ug/kg	2100	
phthalate	^J ' [	ND	ua/ka	2100	
Chrysene		4100	ug/kg ug/kg	2100	
Di-n-octyl phi		ND	ug/kg	2100	
Benzo(b)fluor		7200	ug/kg	2100	
Benzo(k)fluora	anthene	ND	ug/kg	2100	

Percent moisture is 20%. All results and limits are reported on a dry weight basis. ND - Not Detected

Reported By: Leonard Dikun

Approved By: Lori Ann Quinn

Enseco

#### TCL Semivolatile Organics

Client Name:	International Tecl	Method 8270 (cont.) nnology Corporation			
Client ID: Lab ID: Matrix:	2BK-S-HA3 035873-0004-SA SOIL	Sampled: 11 AU Received: 11 AU Authorized: 15 AU	G 94 G 94	Prepared: 16 Analyzed: 24	
~			DRY WEIGH	T Reporting	
Parameter		Result	Units	Limit	
Benzo(a)pyrei Indeno(1,2,3 Dibenz(a,h)ai Benzo(g,h,i);	-cd)pyrene nthracene	4000 ND ND ND	ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100	
Surrogate		Recover	y Y		
Nitrobenzene- 2-Fluorobiphe Terphenyl-dl4 Phenol-d5 2-Fluorophene	enyl I	49 86 98 59 81	* * * * *		
2,4,6-Tribron		78	x ·		

Percent moisture is 20%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Leonard Dikun

Approved By: Lori Ann Quinn

0

Method 8270

		echnology Corporation			
Client ID: Lab ID: Matrix:	2BK-S-HA4 035873-0005-SA SOIL	Sampled: 11 AUG Received: 11 AUG Authorized: 15 AUG	G 94	Prepared: 16 Analyzed: 24	
Parameter		Result	DRY WEIG Units	HT Reporting Limit	
Phenol bis(2-Chlorod 2-Chloropheno 1,3-Dichlorot 1,4-Dichlorot 1,2-Dichlorot 2-Methylpheno	ol Denzene Denzene Denzene Di	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100 2100 2100 2100	d
bis(2-Chloroi ether 4-Methylphenc N-Nitroso-di-	)] ·n-	ND ND	ug/kg ug/kg	2100 2100	
propylamine Hexachloroeth Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylp	henol	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100 2100 2100 2100	
bis(2-Chloroe methane 2,4-Dichlorop 1,2,4-Trichlo Naphthalene 4-Chloroanili Hexachlorobut 4-Chloro-3-me 2-Methylnapht	henol robenzene ne adiene thylphenol	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100 2100 2100 2100 2100	
Hexachlorocyc pentadiene 2,4,6-Trichlo 2,4,5-Trichlo 2-Chloronapht 2-Nitroanilin Dimethyl phth Acenaphthylen	lo- rophenol halene e alate	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 10000 2100 10000 2100 2100	

Percent moisture is 23%. All results and limits are reported on a dry weight basis.

d = All reporting limits raised due to matrix interferences. ND = Not Detected

Reported By: Leonard Dikun

Approved By: Lori Ann Quinn

Att. D, p.27

Enseco A Comine Compan. LNS Com:

#### TCL Semivolatile Organics

ent Name: International Tec ent ID: 2BK-S-HA4	Method 8270 (cont.) hnology Corporation		
ID: 035873-0005-SA rix: SOIL	Sampled: 11 AUG Received: 11 AUG Authorized: 15 AUG	94	Prepared: 16 AUG 94 Analyzed: 24 AUG 94
ameter	Result	DRY WEIG Units	HT Reporting Limit
<pre>itroaniline naphthene -Dinitrophenol itrophenol enzofuran -Dinitrotoluene -Dinitrotoluene thyl phthalate hlorophenyl phenyl ther orene itroaniline -Dinitro-2- ethylphenol itrosodiphenylamine romophenyl phenyl ther achlorobenzene tachlorophenol nanthrene nracene Carbazole n-butyl phthalate oranthene ene yl benzyl phthalate '-Dichlorobenzidine zo(a)anthracene (2-Ethylhexyl) nthalate ysene</pre>	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10000         2100         10000         10000         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100         2100
n-octyl phthalate 20(b)fluoranthene 20(k)fluoranthene	ND 5000 ND	ug/kg ug/kg ug/kg	2100 2100 2100 2100

ent moisture is 23%. All results and limits are reported on a dry weight basis. asis.

Not Detected

orted By: Leonard Dikun

Approved By: Lori Ann Quinn

Att. D, p.28

Enseco

Method 8270

Client Name:	International	Technology	Corpor	ation	n		
Client ID: Lab ID:	2BK-S-HA6 035873-0007-SA	San	mpled:	11 AL	UG 94		
Matrix:	SOIL	Rece	eived:	11 AL	UG 94		16 AUG 94
		Author	rized:	15 AL	UG 94	Analyzed:	30 AUG 94
					DRY W	EIGHT Reporti	na
Parameter			Res	ult	Uni		
Phenol			N	D	ug/l	ka 2900	d
bis(2-Chloro			N	D	ug/l		•
2-Chlorophen	<b>5</b> ]		N		ug/l		
1,3-Dichlorol	penzene		N		ug/l		
1,4-Dichlorol 1,2-Dichlorol			NI NI		ug/i		
2-Methylphend			N		ug/i ug/i		
bis(2-Chloro	sopropy])		144		uy/i	kg 2300	
ether	•		NE	)	ug/I	kg 2900	
4-Methylphend			NE	<b>)</b>	ug/l		
N-Nitroso-di-							
propylamine Hexachloroeth			NE		ug/l		
Nitrobenzene	Idile		NE NE		ug/l		
Isophorone			NE		ug/k ug/k		
2-Nitrophenol			NC		ug/k		
2,4-Dimethylp	henol		NC		ug/k	-	
bis(2-Chloroe	thoxy)-				27	5	
methane	1 <b>9</b>		ND		ug/k		
2,4-Dichlorop	nenol		ND		ug/k		
1,2,4-Trichlo Naphthalene	robenzene		ND		ug/k	g 2900	
4-Chloroanili	ne		ND ND		ug/k	g 2900	
Hexachlorobut			ND		ug/k ug/k		
4-Chloro-3-me			ND		ug/k		
2-Methylnapht	halene		ND		ug/k		
Hexachlorocyc	10-					5 2000	
pentadiene	, <b>.</b>		ND		ug/k		
2,4,6-Trichlo	rophenol		ND		ug/k		
2,4,5-Trichlo 2-Chloronapht	halene		ND		ug/k		
2-Nitroanilin	2		ND ND		ug/k ug/k		
Dimethyl phth			ND		ug/k		
Acenaphthylen			ND		ug/k		
					-31 **	5 2000	

Percent moisture is 55%. All results and limits are reported on a dry weight basis.

d = All reporting limits raised due to matrix interferences. ND = Not Detected

Reported By: Leonard Dikun

s S

* ***** 

Approved By: Lori Ann Quinn

A#.D, p.29

Enseco omina

		Method 8270 (cont.)		
Client Name: Client ID:	International Tec 2BK-S-HA6	hnology Corporatio	'n	
Lab ID: Matrix:	035873-0007-SA SOIL	Sampled: 11 A Received: 11 A		
Hati ix.	JUIL	Authorized: 15 A		Prepared: 16 AUG 94 Analyzed: 30 AUG 94
Parameter		Result	DRY WEIGH Units	HT Reporting Limit
3-Nitroanili	ne	ND	ug/kg	14000
Acenaphthene	_	ND	ug/kg	2900
2,4-Dinitroph		ND	ug/kg	14000
4-Nitrophenol Dibenzofuran		ND	ug/kg	14000
2,4-Dinitroto	luene	ND MD	ug/kg	2900
2,6-Dinitroto	luene	ND	ug/kg	2900 2900
Diethyl phtha	late	ND	ug/kg ug/kg	2900
4-Chloropheny	'l phenyl		43/ 43	2300
ether		ND	ug/kg	2900
Fluorene 4-Nitroanilin		ND	ug/kg	2900
4,6-Dinitro-2		ND	ug/kg	14000
methylpheno	1	ND		14000
N-Nitrosodiph		ND	ug/kg ug/kg	14000 2900
4-Bromophenyl			uy/ky	2900
ether		ND	ug/kg	2900
Hexachloroben		ND	ug/kg	2900
Pentachloroph Phenanthrene	enol	ND	ug/kg	14000
Anthracene		ND	ug/kg	2900
9H-Carbazole		ND	ug/kg	2900
Di-n-butyl ph	thalate	Ń ND ND	ug/kg	2900
Fluoranthene		ND	ug/kg ug/kg	2900 2900
Pyrene		ND	ug/kg	2900
Butyl benzyl	phthalate	ND	ug/kg	2900
3,3'-Dichlorol		ND	ug/kg	5900
Benzo(a)anthra	acene	ND	ug/kg	2900
bis(2-Ethylhe) phthalate	( <b>)</b> ()	1 7 4 4 4		
Chrysene		15000	ug/kg	2900
Di-n-octyl pht	:halate	ND ND	ug/kg	2900
Benzo(b)fluora		ND	ug/kg ug/kg	2900 2900
Benzo(k)fluora	inthene	ND	ug/kg ug/kg	2900
			-31 vA	L 3 0 0

Percent moisture is 55%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Leonard Dikun

Approved By: Lori Ann Quinn

Att. D. p. 30

Client Name: Client ID: Lab ID: Matrix:	International Tec 2BK-S-HA6 035873-0007-SA SOIL	Method 8270 (cont.) hnology Corporation Sampled: 11 AU( Received: 11 AU(	<u>94</u>	Duana and 1	C 4110 04
netrix.	2015	Authorized: 15 AU(		Prepared: 1 Analyzed: 3	
Parameter		<b>Result</b>	DRY WEIG Units	HT Reporting Limit	
Benzo(a)pyrei Indeno(1,2,3- Dibenz(a,h)ai Benzo(g,h,i);	-cd)pyrene nthracene	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	2900 2900 2900 2900	
Surrogate		Recovery	,		
Nitrobenzene- 2-Fluorobiphe Terphenyl-dl4 Phenol-d5 2-Fluoropheno 2,4,6-Tribrom		83 90 97 98 94 78	% % % % %		

Percent moisture is 55%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Leonard Dikun

Approved By: Lori Ann Quinn

Att. D. p. 31

Ensec

Enseco omine Con

Method 8270

Client Name: Client ID:	International 2BK-S-HA7	Technology	Corpor	rati	on			
Lab ID:	035873-0008-SA	San	mpled:	11	AUG	94		
Matrix:	SOIL	Rece	eived:	11	AUG	94	Prepared:	
<b>W</b> .		Author	rized:	15 /	AUG	94	Analyzed:	30 AUG 94
						RY WEIG	HT Reporting	g
Parameter			Res	ult		Units	Limit	-
Phenol			N	D		ug/kg	920	d
bis(2-Chloroe				D		ug/kg	920	
2-Chlorophenc 1,3-Dichlorot			N			ug/kg	920	
1,4-Dichlorot			N N			ug/kg ug/kg	920 920	
1,2-Dichlorob	enzene		Ň			ug/kg	920	
2-Methylphend	1		Ň			ug/kg	920	
bis(2-Chloroi	sopropyl)					- 37 - 3		
ether			N			ug/kg	920	
4-Methylpheno N-Nitroso-di-			N	D		ug/kg	920	
propylamine			N	n		uo /ka	920	
Hexachloroeth				D ·		ug/kg ug/kg	920	
Nitrobenzene			N			ug/kg	920	
Isophorone			N			ug/kg	920	
2-Nitrophenol			N			ug/kg	920	
2,4-Dimethylp			N	כ		ug/kg	920	
bis(2-Chloroe methane	LNOXY)-		N	<b>`</b>			000	
2,4-Dichlorop	henol		NI			ug/kg	920 920	
1,2,4-Trichlo			N			ug/kg ug/kg	920	
Naphthalene			N			ug/kg	920	
4-Chloroanili			N	)		ug/kg	920	
Hexachlorobut			NE			ug/kg	920	
4-Chloro-3-me	thylphenol		N			ug/kg	920	
2-Methylnapht Hexachlorocyc	nalene lo-		NE	]		ug/kg	920	
pentadiene	10-		NC	ì		ug/kg	920	
2,4,6-Trichlo	rophenol		NC			ug/kg	920	
2,4,5-Trichlo	rophenol		NE			ug/kg	4400	
2-Chloronapht	halene		NC	)		ug/kg	920	
2-Nitroanilin			ND			ug/kg	4400	•
Dimethyl phtha Acenaphthylen			NE			ug/kg	920	
Accuration	5		ND	I		ug/kg	920	

Percent moisture is 28%. All results and limits are reported on a dry weight basis.

d = All reporting limits raised due to matrix interferences. ND = Not Detected

×

Reported By: Leonard Dikun

Approved By: Lori Ann Quinn

A++. D, p. 32

Client Name: Client ID:	International Tecl 2BK-S-HA7	Method 8270 (cont.) nnology Corporation			
Lab ID: Matrix:	035873-0008-SA Soil	Sampled: 11 AU Received: 11 AU Authorized: 15 AU	G 94	Prepared: 16 Analyzed: 30	
Parameter		Result	DRY WEIG Units	HT Reporting Limit	
3-Nitroanilin Acenaphthene 2,4-Dinitroph 4-Nitrophenol Dibenzofuran 2,4-Dinitroto 2,6-Dinitroto Diethyl phtha	nenol Duene Duene Late	ND ND ND ND ND 1200	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	4400 920 4400 4400 920 920 920 920 920	
4-Chloropheny ether Fluorene 4-Nitroanilin 4,6-Dinitro-2	e -	ND ND ND	ug/kg ug/kg ug/kg	920 920 4400	
methylpheno N-Nitrosodiph 4-Bromophenyl ether	enylamine	ND ND ND	ug/kg ug/kg ug/kg	4400 920 920	
Hexachloroben Pentachloroph Phenanthrene Anthracene 9H-Carbazole	enol	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	920 4400 920 920 920 920	
Di-n-butyl ph Fluoranthene Pyrene Butyl benzyl 3,3'-Dichloro Benzo(a)anthr	phthalate benzidine acene	4700 ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	920 920 920 920 1800 920	В
bis(2-Ethylhe phthalate Chrysene Di-n-octyl ph Benzo(b)fluor	thalate	ND ND ND 1500	ug/kg ug/kg ug/kg ug/kg	920 920 920 920 920	

Percent moisture is 28%. All results and limits are reported on a dry weight basis. B = Compound is also detected in the blank. ND = Not Detected

· •.

Reported By: Leonard Dikun

Approved By: Lori Ann Quinn

AH. D, p. 33

Enseco

# Ensecc

## TCL Semivolatile Organics

	International Tec 2BK-S-HA7	Method 8270 (cont.) hnology Corporation			
Client ID: Lab ID: Matrix:	035873-0008-SA SOIL	Sampled: 11 AU Received: 11 AU Authorized: 15 AU	G 94	Prepared: 10 Analyzed: 30	
Parameter		Result	DRY WEIG Units	HT Reporting Limit	
Benzo(k)fluo Benzo(a)pyre Indeno(1,2,3 Dibenz(a,h)a Benzo(g,h,i)	ne -cd)pyrene nthracene	ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	920 920 920 920 920 920	
Surrogate		Recover	/		
Nitrobenzene- 2-Fluorobiphe Terphenyl-dl4 Phenol-d5 2-Fluorophene 2,4,6-Tribrom	enyl 4 ol	84 94 107 94 93 89	% % % % %		

Percent moisture is 28%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Leonard Dikun Approved By: Lori Ann Quinn

## TCL Semivolatile Organics

Method 8270

Client Name: Client ID:	Internationa 2BK-S-HA8	1 Technology	Corporat	ion		
Lab ID:	035873-0009-	SA Sa	mpled: 11	AUG 94		
Matrix:	SOIL	Rec	eived: 11 rized: 15	AUG 94	Prepared: 1 Analyzed: 3	
Parameter			Result	DRY WEIG Units	GHT Reporting Limit	I
Pheno]			ND	ug/kg	420	
bis(2-Chloro	ethyl) ether		ND	ug/kg	420	
2-Chlorophene 1,3-Dichloroi	JI Denzene		ND ND	ug/kg	420	
1,4-Dichlorol	Denzene		ND	ug/kg ug/kg	420 420	
1,2-Dichlorot	penzene		ND	ug/kg	420	
2-Methylpheno			ND	ug/kg	420	
bis(2-Chiorot	isopropy])					
ether 4-Methylphend	.1		ND	ug/kg	420	
N-Nitroso-di-			ND	ug/kg	420	
propylamine	)		ND	ug/kg	420	
Hexachloroeth	ane		ND ·	ug/kg	420	
Nitrobenzene			ND	ug/kg	420	
Isophorone			ND	ug/kg	420	
2-Nitrophenol 2,4-Dimethylp	hanal		ND	ug/kg	420	
bis(2-Chloroe			ND	ug/kg	420	
methane			ND	ua/ka	420	
2,4-Dichlorop	henol		ND	ug/kg ug/kg	420 420	
1,2,4-Trichlo	robenzene		ND	ug/kg	420	
Naphthalene			ND	ug/kg	420	
4-Chloroanili Hexachlorobut			ND	ug/kg	420	
4-Chloro-3-me			ND ND	ug/kg	420	
2-Methylnapht	halene		ND	ug/kg ug/kg	420 420	
Hexachlorocyc	10-		ne	ug/ ky	420	
pentadiene			ND	ug/kg	420	
2,4,6-Trichlor	rophenol		ND	ug/kg	420	
2,4,5-Trichlor 2-Chloronaphti			ND	ug/kg	2000	
2-Nitroanilin			ND	ug/kg	420	
Dimethyl phtha			ND ND	ug/kg ug/kg	2000 420	
Acenaphthylen	3		ND	ug/kg	420	
3-Nitroanilin			ND	ug/kg	2000	
Percent moist	ıre is 21%. /	All results a	and limits	••••		weight basis.

ND = Not Detected

Reported By: Leonard Dikun

Approved By: Lori Ann Quinn

Enseco A Comine Company

## TCL Semivolatile Organics

Client ID:	2BK-S-HA8	Method 8270 (cont.) Technology Corporation			
Lab ID: Matrix:	035873-0009-SA SOIL	Sampled: 11 AU Received: 11 AU Authorized: 15 AU	G 94	Prepared: 16 Analyzed: 30	
Parameter		Result	DRY WEIG Units	HT Reporting Limit	
Acenaphthene 2,4-Dinitroph 4-Nitrophenol Dibenzofuran 2,4-Dinitroto		ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	420 2000 2000 420 420	
2,6-Dinitroto Diethyl phtha 4-Chloropheny	luene	ND 1000	ug/kg ug/kg	420 420	
ether Fluorene 4-Nitroanilin 4,6-Dinitro-2	e	ND ND ND	ug/kg ug/kg ug/kg	420 420 2000	
wethylpheno N-Nitrosodiph 4-Bromophenyl	l enylamine	ND ND	ug/kg ug/kg	2000 420	
ether Hexachloroben Pentachloroph		ND 860 ND	ug/kg ug/kg ug/kg	420 420 2000	
Phenanthrene Anthracene 9H-Carbazole Di-n-butyl ph	thalate	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	420 420 420 420	
Fluoranthene Pyrene Butyl benzyl	phthalate	ND NĐ ND	ug/kg ug/kg ug/kg	420 420 420	
3,3'-Dichloro Benzo(a)anthr bis(2-Ethylhe phthalate	acene	ND ND	ug/kg ug/kg	830 420	
Chrysene Di-n-octyl ph Benzo(b)fluor	thalate anthene	810 ND ND 500	ug/kg ug/kg ug/kg ug/kg	420 420 420 420	
Benzo(k)fluor Benzo(a)pyren Indeno(1,2,3-	anthene e	ND ND ND	ug/kg ug/kg ug/kg	420 420 420	
		l results and limits a	ire report	ed on a dry w	eight basis.
ND = Not Deter		<b>.</b> .	<b>.</b>		

Reported By: Leonard Dikun

Approved By: Lori Ann Quinn

#### TCL Semivolatile Organics

Client Name: Client ID: Lab ID: Matrix:	International Ter 2BK-S-HA8 035873-0009-SA SOIL	Method 8270 (cont.) chnology Corporation Sampled: 11 AUG Received: 11 AUG Authorized: 15 AUG	94	Prepared: 16 Analyzed: 30	AUG 94 AUG 94
Parameter Dibenz(a,h)ar Benzo(g,h,i);	nthracene Derylene	Result ND ND	DRY WEIG Units ug/kg ug/kg	HT Reporting Limit 420 420	
Surrogate		Recovery			
Nitrobenzene- 2-Fluorobiphe Terphenyl-dl4 Phenol-d5 2-Fluoropheno 2,4,6-Tribrom		73 98 118 84 85 125	% % % % % % %	·	I

Percent moisture is 21%. All results and limits are reported on a dry weight basis. I = Surrogate recovery outside of limits due to sample matrix interference.ND = Not Detected

Reported By: Leonard Dikun

•:.

Approved By: Lori Ann Quinn

#### TCL Semivolatile Organics

Method 8270

Client Na	ame:	International	Technology	Corpor	ati	ion						
Client II Lab ID:	U:	2BK-S-HA9 035873-0010-SA		npled:					<b>_</b> ,			
Matrix:		SOIL		ived: ized:					Prepared: Analyzed:			
in.						n		JETC	HT Reporti	na.		
Parameter	r			Res	ult		Ün		Limit	ing i		
Phenol				· N			ug,	/kg	880		(	d
		thyl) ether		N			ug/		880			
2-Chlorop	pheno	1		N			ug,		880			
1,3-Dich) 1,4-Dich)				N N			ug/		880 880			
1,2-Dichl				N.			ug/ ug/		880			
2-Methylp				Ň			ug/		880			
bis(2-Chl	loroi	sopropyl)			-		49/	~3				
ether				N			ug/	/kg	880			
4-Methylp				N	D		ug/		880			
N-Nitroso		n-			_		-	-				
propyla				N			ug/		880			
Hexachlor Nitrobenz		ane		ni Ni	D.		ug/		880 880			
Isophoron				N			ug/ ug/		880			
2-Nitroph				N			ug/		880			
2,4-Dimet		henol		Ň			ug/		880			
bis(2-Chl		thoxy}-					57					
methane		•		N			ug/		880			
2,4-Dich1				N			ug/		880			
1,2,4-Tri Naphthale		robenzene		3700			ug/		880			
4-Chloroa		20		NI NI			ug/		880			
Hexachlor				N			ug/ ug/		880 880			
		thylphenol		NE			ug/		880			
2-Methyln				ŇČ			ug/		880			
Hexachlor		0-					- ,					
pentadi				NC			ug/		880			
2,4,6-Tri	chion	rophenol		NE			ug/		880			
2,4,5-Tri 2-Chloron	CD   01	ropneno		NE			ug/		4200			
2-Nitroan				NC NC			ug/		880 4200			
Dimethyl				NE			ug/		4200			
Acenaphth				NC			ug/		880			
	-				-		-3/		000			

Percent moisture is 25%. All results and limits are reported on a dry weight basis.

d = All reporting limits raised due to matrix interferences. ND = Not Detected

~

Reported By: Leonard Dikun

Approved By: Lori Ann Quinn

Att. D, p. 38

#### TCL Semivolatile Organics

		Method 8270			
Client Name:	International ]	(cont.) Fechnology Corporation	1		
Client ID:	2BK-S-HA9				
Lab ID: Matrix:	035873-0010-SA SOIL	Sampled: 11 AU		Duppened 16	AU 0 0 4
Matrix:	501L	Received: 11 AU Authorized: 15 AU		Prepared: 16 Analyzed: 30	
				-	
Parameter		Result	DRY WEIG	HT Reporting Limit	
i di dinetei		RESUIL	UNITS		
3-Nitroanilii	ne	ND	ug/kg	4200	
Acenaphthene	anal	2000	ug/kg	880	
2,4-Dinitropi 4-Nitrophenol		ND ND	ug/kg ug/kg	4200 4200	
Dibenzofuran	•	ND	ug/kg	880	
2,4-Dinitroto	oluene	ND	ug/kg	880	
2,6-Dinitroto	oluene	ND	ug/kg	880	
Diethyl phtha	alate	4400	ug/kg	880	
4-Chloropheny ether	/i pnenyi	ND	ua (ka	000	
Fluorene		ND	ug/kg ug/kg	880 880	
4-Nitroanilir	ne	ND	ug/kg	4200	
4,6-Dinitro-2			- 37 (13		
methylpheno		ND	ug/kg	4200	
N-Nitrosodiph		ND	ug/kg	880	
4-Bromophenyl ether	pnenyi	ND	(1		
Hexachloroben	7000	ND 5400	ug/kg	880	
Pentachloroph		ND	ug/kg ug/kg	880 4200	
Phenanthrene		2000	ug/kg	880	
Anthracene		ND	ug/kg	880	
9H-Carbazole		ND	ug/kg	880	
Di-n-butyl ph Fluoranthene	thalate	ND	ug/kg	880	
Pyrene		3600 4800	ug/kg	880	
Butyl benzyl	nhthalate	4800 ND	ug/kg ug/kg	880 880	
3,3'-Dichloro	benzidine	ND	ug/kg	1800	
Benzo(a)anthr	acene	4200	ug/kg	880	
bis(2-Ethylhe	xyl)		-57.5	~~~	
phthalate		1500	ug/kg	880	
Chrysene Di-n-octyl ph	thalato	4200	ug/kg	880	
Benzo(b)fluor	anthene	ND 13000	ug/kg	880	
Benzo(k)fluor	anthene	ND	ug/kg ug/kg	880 880	
			~3/ ~3	000	

Percent moisture is 25%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Leonard Dikun

. ....

Approved By: Lori Ann Quinn

# TCL Semivolatile Organics

Client Name: Client ID: Lab ID: Matrix:	International Tec 2BK-S-HA9	Method 8270 (cont.) hnology Corporation			
	035873-0010-SA SOIL	Sampled: 11 AUG Received: 11 AUG Authorized: 15 AUG	94	Prepared: 16 Analyzed: 30	
Parameter		Result	DRY WEIGH Units	T Reporting Limit	
Benzo(a)pyre Indeno(1,2,3 Dibenz(a,h)a Benzo(g,h,i)	-cd)pyrene nthracene	8100 3600 1300 3600	ug/kg ug/kg ug/kg ug/kg	880 880 880 880	
Surrogate		Recovery			
Nitrobenzene 2-Fluorobiph Terphenyl-dl Phenol-d5 2-Fluorophen 2,4,6-Tribro	enyl 4 ol _	79 98 125 86 92 109	X X X X X X		

Percent moisture is 25%. All results and limits are reported on a dry weight basis.

Reported By: Leonard Dikun

\$

Approved By: Lori Ann Quinn



## TCL Organochlorine Pesticides/PCBs

Method 8080

:

ي. موجع ا

Client Name: Internatio Client ID: 2BK-S-HA1	nal Technology Corporation	
Lab ID: 035873-000 Matrix: SOIL	1-SA Sampled: 11 AUG Received: 11 AUG Authorized: 15 AUG	<b>94</b> Prepared: 16 AUG 94
Parameter	Result	DRY WEIGHT Reporting Units Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endosulfan sulfate 4,4'-DDT Endosulfan sulfate 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1254 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg9.2ug/kg9.2ug/kg9.2ug/kg9.2ug/kg9.2ug/kg9.2ug/kg9.2ug/kg9.2ug/kg18ug/kg18ug/kg18ug/kg18ug/kg18ug/kg18ug/kg18ug/kg18ug/kg18ug/kg92ug/kg92ug/kg92ug/kg92ug/kg92ug/kg92ug/kg92ug/kg92ug/kg92ug/kg180ug/kg180ug/kg180ug/kg180ug/kg180ug/kg180ug/kg180ug/kg180ug/kg180ug/kg180ug/kg180ug/kg180
Surrogate	Recovery	
Tetrachloro-m-xylene (TCX) Decachlorobiphenyl	73.4 88.4	% %

Percent moisture is 13%. All results and limits are reported on a dry weight basis. ND = Not Detected Reported By: Shanthi Damarapu Approved By: Thomas Gilbert



# TCL Organochlorine Pesticides/PCBs

Method 8080

Client Name: International Client ID: 2BK-S-HA2 Lab ID: 035873-0003-SA Matrix: SOIL	Sampled: 11 AUG Received: 11 AUG Authorized: 15 AUG	94 Pro	epared: 16 alyzed: 30 Reporting	
Parameter	Result	Units	Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene Aroclor 1016 Aroclor 1232 Aroclor 1248 Aroclor 1254 Aroclor 1254	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	36 36 36 36 36 36 36 72 72 72 72 72 72 72 72 72 72 72 72 72	u e D
Surrogate	Recovery			
Tetrachloro-m-xylene (TCX) Decachlorobiphenyl Percent moisture is 11%. Al & = Surrogate recovery is c		•	on a dry w	å weight basis.
D = Compound quantitated us u = All reporting limits ra ND = Not Detected	ing a secondary diluti	on.	analytes.	
Reported By: Shanthi Damara	Approved	By: Thomas	Gilbert	

. . ?

#### TCL Organochlorine Pesticides/PCBs

Method 8080

	echnology Corporation			
Client ID: 2BK-S-HA3 Lab ID: 035873-0004-SA	Sampled: 11 AUG	94		
Matrix: SOIL	Received: 11 AUG		Prepared: 16	AUG 94
	Authorized: 15 AUG		Analyzed: 29	AUG 94
			UT Departing	
Parameter	Result	Units	HT Reporting Limit	
rdrameter	Result	<b>Q</b> 11103	2	
alpha-BHC	ND	ug/kg	1000	u
beta-BHC	ND	ug/kg	1000	
delta-BHC	ND	ug/kg	1000	
gamma-BHC (Lindane)	ND	ug/kg	1000 1000	
Heptachlor	ND ND	ug/kg	1000	
Aldrin Nettochlen operide	ND	ug/kg ug/kg	1000	
Heptachlor epoxide Endosulfan I	ND	ug/kg ug/kg	1000	
Dieldrin	ND	ug/kg	2000	
4,4'-DDE	ND	ug/kg	2000	
Endrin	ND	ug/kg	2000	
Endosulfan II	ND	ug/kg	2000	
4,4'-DDD	ND ·	ug/kg	2000	
Endosulfan sulfate	ND	ug/kg	2000	
4,4'-DDT	ND	ug/kg	2000	
Endrin ketone	ND ND	ug/kg	2000 10000	
Methoxychlor Chlordane	ND	ug/kg ug/kg	10000	
Toxaphene	ND	ug/kg	20000	
Aroclor 1016	ND	ug/kg	10000	
Aroclor 1221	ND	ug/kg	10000	
Aroclor 1232	ND	ug/kg	10000	
Aroclor 1242	ND	ug/kg	10000	
Aroclor 1248	ND	ug/kg	10000	
Aroclor 1254	ND	ug/kg	20000	
Aroclor 1260	45000	ug/kg	20000	
Surrogate	Recovery			
Tetrachloro-m-xylene				
(TCX)	ND	%		Н
(TCX) Decachlorobiphenyl	ND	%		H
	results and limits as			

u = All reporting limits raised due to high levels of target analytes.
 ND = Not Detected

Reported By: Shanthi Damarapu

Approved By: Thomas Gilbert

## TCL Organochlorine Pesticides/PCBs

Method 8080

Client Name: Client ID:	International Te 2BK-S-HA4	echnology Corporation			
Lab ID: Matrix:	035873-0005-SA SOIL	Sampled: 11 AUG Received: 11 AUG Authorized: 15 AUG	94	Prepared: 16 AUG 94 Analyzed: 29 AUG 94	
<b>161</b>			DRY WEIGH	HT Reporting	
Parameter		Result	Units	Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (Li Heptachlor Aldrin Heptachlor ep Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan Su 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ooxide lfate	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 u 2100 2100 2100 2100 2100 2100 2100 2100 4100 4100 4100 4100 4100 4100 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 2100 2100 2100 2100 2100 2100 2	
Surrogate		Recovery			
Tetrachloro-m (TCX) Decachlorobip	-xylene henyl	ND ND	X X	H H	
Percent moist	ure is 23%. All	results and limits ar	e report	ed on a dry weight ba	si
H = Surrogate	e not detected be	ecause of required sam	nple dilu	tion.	- • •
u = All repor	rting limits rais	sed due to high levels	of targ	et analytes.	

u = All reporting limits raised due to high levels of target analytes.
ND = Not Detected

Reported By: Shanthi Damarapu

~

Approved By: Thomas Gilbert

AH. D. p.44

s.

# TCL Organochlorine Pesticides/PCBs

Method 8080

Ĵ

Ì

	International Tech	hnology Corporatio	חכ חכ		
Client ID: Lab ID: Matrix:	2BK-S-HA6 035873-0007-SA SOIL	Sampled: 11 / Received: 11 / Authorized: 15 /	\UG 94	Prepared: 1 Analyzed: 2	
Parameter		Result	DRY WEIG Units	HT Reporting Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor e	· · ·	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	180 180 180 180 180 180 180	u
Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan I 4,4'-DDD	I ·	ND ND 7400 ND ND 790	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	180 360 3600 360 360 360 360	D
Endosulfan su 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene		ND 3700 ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	360 360 1800 1800 3600	
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254		ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	1800 1800 1800 1800 1800 3600	
Aroclor 1260 Surrogate		ND Recove	ug/kg rv	3600	
Tetrachloro-m (TCX) Decachlorobip	-	ND ND	x %		H H
Percent moist	ure is 55%. All re	esults and limits	are report	ed on a dry	weight basis.
H = Surrogat	quantitated using e not detected bec rting limits raised cted	ause of required :	sample dilu	tion. et analytes.	
Reported By:	Shanthi Damarapu	Approved	d By: Thom	as Gilbert	

## TCL Organochlorine Pesticides/PCBs

Method 8080

.....

		nology Corporation			
Client ID: Lab ID: Matrix:	2BK-S-HA7 035873-0008-SA SOIL	Sampled: 11 AUG Received: 11 AUG Authorized: 15 AUG	94 Pr	epared: 16 alyzed: 25	
Parameter		[ Result	ORY WEIGHT Units	Reporting Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (L' Heptachlor Aldrin Heptachlor ep Endosulfan I Dieldrin 4,4'-DDE Endosulfan I 4,4'-DDD Endosulfan su 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1248 Aroclor 1254 Aroclor 1254	poxide I ulfate	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2200 2200 2200 2200 2200 2200 2200 220	U
Surrogate		Recovery			
Tetrachloro-m (TCX) Decachlorobip	•	ND ND	% %		H H
Percent moist	ure is 28%. All re	esults and limits ar	e reported	on a dry w	eight basis.
H = Surrogat u = All repo ND = Not Dete	orting limits raise	ause of required sam d due to high levels	ple dilutio of target	on. analytes.	
Reported By:	Shanthi Damarapu	Approved B	y: Thomas	Gilbert	

AH. D, p.46

٠

.

#### TCL Organochlorine Pesticides/PCBs

Method 8080

Client Name: Client ID:	International Te 2BK-S-HA8	chnology Corporation			
Lab ID:	035873-0009-SA	Sampled: 11 AUG			
Matrix:	SOIL	Received: 11 AUG Authorized: 15 AUG		Prepared: 16 Analyzed: 25	
				HT Reporting	
Parameter		Result	Units	Limit	
alpha-BHC		ND	ug/kg	100	u
beta-BHC		ND	ug/kg	100	
delta-BHC	tadaa a S	ND	ug/kg	100	
gamma-BHC (L Heptachlor	indane)	ND ND	ug/kg	100 100	
Aldrin		ND	ug/kg ug/kg	100	
Heptachlor e	novide	ND	ug/kg	100	
Endosulfan I		ND	ug/kg	100	
Dieldrin		ND	ug/kg	200	
4,4'-DDE		480	ug/kg	200	
Endrin		ND	ug/kg	200	
Endosulfan II		ND .	ug/kg	200	
4,4'-DDD		ND	ug/kg	200	
Endosulfan su	ilfate	ND	ug/kg	200	
4,4'-DDT		2000	ug/kg	200	
Endrin ketone	3	ND	ug/kg	200	
Methoxychlor Chlordane		ND ND	ug/kg	1000	
Toxaphene		ND	ug/kg	1000 2000	
Aroclor 1016		ND	ug/kg ug/kg	1000	
Aroclor 1221		ND	ug/kg	1000	
Aroclor 1232		ND	ug/kg	1000	
Aroclor 1242		ND	ug/kg	1000	
Aroclor 1248		ND	ug/kg	1000	
Aroclor 1254		ND	ug/kg	2000	
Aroclor 1260		ND	ug/kg	2000	
Surrogate		Recovery			
Tetrachloro-m	-xylene	ND	N/		
(TCX) Decachlorobip	henv]	ND ND	% %		H H
Decaentorobip	aneny i	UN NU	R		п
Percent moist	ure is 21%. All	results and limits ar	re report	ed on a dry w	weight basis.
H = Surrogat	e not detected be	cause of required sam	nple dilu	ition.	

H = Surrogate not detected because of required sample dilution. u = All reporting limits raised due to high levels of target analytes. ND = Not Detected

. . . .

Reported By: Shanthi Damarapu

.

Approved By: Thomas Gilbert

Att. D, p. 47



# TCL Organochlorine Pesticides/PCBs

Method 8080

Client Name: Client ID: Lab ID: Matrix:	International Tech 2BK-S-HA9 035873-0010-SA SOIL	nology Corporation Sampled: 11 AUG Received: 11 AUG Authorized: 15 AUG	94	Prepared: 16 Analyzed: 25	
Parameter		Result	DRY WEIGH Units	T Reporting Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor en Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan I 4,4'-DDD Endosulfan su 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1248 Aroclor 1254 Aroclor 1260	poxide I ulfate	ND ND ND ND ND ND 6300 ND 6300 ND 6300 ND ND 6800 ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg kg ug/kg kg ug/kg kg ug/kg kg ug/kg kg ug/kg kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2100 2100 2100 2100 2100 2100 2100 4200 42	U
Surrogate		Recovery			
Tetrachloro-m (TCX) Decachlorobig	-	ND ND	% %		H H
Percent moist	ture is 25%. All r	esults and limits ar	re report	ed on a dry	weight basis.
H = Surrogat u = All repo ND = Not Dete	orting limits raise	ause of required sam d due to high levels	ple dilu of targo	tion. et analytes.	

Reported By: Shanthi Damarapu Approved By: Thomas Gilbert

Ensece

#### Total Petroleum Hydrocarbons by IR

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA1 035873-0001-SA SOIL	Samp Receiv	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94		
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Total Petrole Hydrocarbor		mg/kg	92	3550/418.1 M	od. 16 AUG 9	4 17 AUG 94

Percent moisture is 13%. All results and limits are reported on a dry weight basis.

Reported By: Kalpana Patel Approved By: Joseph Persaud

•

AH. D. p.49

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA2 035873-0003-SA SOIL	Samp Recei	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94	
- Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Total Petrole Hydrocarbor		mg/kg	90	3550/418.1	Mod. 16 AUG 94 17 AUG 94

Percent moisture is 11%. All results and limits are reported on a dry weight basis.

Reported By: Kalpana Patel

Approved By: Joseph Persaud

Enseco Comine Compan

Client ID:	International T 2BK-S-HA3 035873-0004-SA SOIL	Samp Recei	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Total Petrole Hydrocarbon		mg/kg	500	3550/418.1	Mod. 16 AUG 94 17 AUG 94

4

Percent moisture is 20%. All results and limits are reported on a dry weight basis.

Reported By: Kalpana Patel Ap

Approved By: Joseph Persaud

Att. D, p.51

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA4 035873-0005-SA SOIL	Samp Recei	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94		
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Total Petrole Hydrocarbo		mg/kg	210	3550/418.1 M	od. 16 AUG 9	4 17 AUG 94

Percent moisture is 23%. All results and limits are reported on a dry weight basis.

Reported By: Kalpana Patel Approved By: Joseph Persaud

.

.

_

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA6 035873-0007-SA SOIL	Samp Recei	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94				
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method		Prepared Date	Analyzed Date	
Total Petrole Hydrocarbo		mg/kg	180	3550/418.1	Mod	. 16 AUG 9	4 17 AUG 94	

. .

Percent moisture is 55%. All results and limits are reported on a dry weight basis.

Reported By: Kalpana Patel

Approved By: Joseph Persaud

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA7 035873-0008-SA SOIL	Samp Recei	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94		
		AULNOFI	Zeu. 15 Aud	24		
Deventer	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Parameter	Result	011103	211110			
Total Petrol Hydrocarbo		mg/kg	110	3550/418.1	Mod. 16 AUG 9	4 17 AUG 94

Percent moisture is 28%. All results and limits are reported on a dry weight basis. Reported By: Kalpana Patel Approved By: Joseph Persaud

Enseco

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA8 035873-0009-SA SOIL	Samp Recei	orporation led: ll AUG ved: ll AUG zed: l5 AUG	94		
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Total Petrolo Hydrocarbo		mg∕kg	100	3550/418.1	Mod. 16 AUG	94 17 AUG 94

Percent moisture is 21%. All results and limits are reported on a dry weight basis.

Reported By: Kalpana Patel

Approved By: Joseph Persaud

.

## Total Petroleum Hydrocarbons by IR

Client ID:	International T 2BK-S-HA9 035873-0010-SA SOIL	Samp Recei	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94		
181.4		DRY WEIGHT	Reporting	Analytical	Prepared	Analyzed
Parameter	Result	Units	Limit	Method	Date	Date
Total Petrole Hydrocarbor		mg/kg	110	3550/418.1	1od. 16 AUG 9	4 17 AUG 94

Percent moisture is 25%. All results and limits are reported on a dry weight basis.

Reported By: Kalpana Patel Approved By: Joseph Persaud

Att. D, p. 56

## Total Metals

Client ID: 2BK-	rnational Teo S-HA1 73-0001-SA	Samp Receiv	ed: 11 AUG	94	
Parameter	[ Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	4940 ND 8.6 388 0.51 2.0 6100 38.9 7.1 1720 14700 452 1900 267 0.67 136 ND ND ND ND ND ND ND ND 29.8 1470	mg/kgg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg mgg mgg mgg mgg mgg mgg mgg mgg	$ \begin{array}{c} 11.5\\ 5.7\\ 0.57\\ 1.1\\ 0.23\\ 0.57\\ 57.4\\ 1.1\\ 1.1\\ 1.1\\ 1.5\\ 5.7\\ 57.4\\ 1.1\\ 0.11\\ 4.6\\ 574\\ 0.57\\ 1.1\\ 574\\ 0.57\\ 1.1\\ 2.3\\ \end{array} $	6010 6010 7060 6010 6010 6010 6010 6010	17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG

Percent moisture is 13%. All results and limits are reported on a dry weight basis.

S = Reported value determined by method of standard addition. ND = Not Detected

لمشهدية

. .

Reported By: Michael Lifton Approved By: Doug Dugan

AH. D. p. 57

Total Metals

Client Name: Client ID: Lab ID: Matrix:	Internationa] T 2BK-S-HA2 035873-0003-SA SOIL	Samp Recei	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	3570 37.2 10.5 2300 0.87 112 9460 249 19.7 1550 35900 1460 2140 439 5.7 1060 ND 10.0 1.8 578 ND 49.3 4020	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	11.2 5.6 2.2 1.1 0.22 0.56 56.0 1.1 1.1 1.1 1.2 5.6 56.0 1.1 0.22 4.5 560 2.8 1.1 560 0.56 1.1 560 0.56 1.1 2.2	6010 6010 7060 6010 6010 6010 6010 6010	17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       30       AUG       94         17       AUG       94       19       AUG

Percent moisture is 11%. All results and limits are reported on a dry weight basis.

ND = Not Detected

....

Reported By: Michael Lifton

Approved By: Doug Dugan

AH. D. p.58

Enseco

Total Metals

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA3 035873-0004-SA SOIL	Samp Recei	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	i 94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	4640 39.7 9.8 783 0.44 12.9 15000 171 10.3 786 25800 959 3050 323 1.3 429 ND 1.5 1.3 ND ND 76.0 1780	mg/kg mgg/kg mgg/kg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg	12.5 6.2 0.62 1.2 0.25 0.62 62.3 1.2 1.2 1.2 1.2 1.2 62.3 1.2 0.12 5.0 623 0.62 1.2 623 0.62 1.2 623 0.62 1.2 5.5	6010 6010 7060 6010 6010 6010 6010 6010	17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG

Percent moisture is 20%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Michael Lifton

)

Approved By: Doug Dugan

Alt. D, p. 59

Total Metals

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA4 035873-0005-SA SOIL	echnology C Samp Recei Authori	led: 11 AUG ved: 11 AUG	94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed. Date Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	5180 21.4 9.3 1890 0.71 11.2 17000 386 24.8 1300 43300 1090 5700 409 3.8 903 ND 1.7 1.5 ND ND 1.7 1.5 ND ND 147 2600	mg/kg mgg/kg mgg/kg mgg/kkg mgg/kkg mgg/kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg gg /kkg gg gg gg /kkg gg gg gg gg gg gg gg gg gg gg gg gg	12.9 6.5 0.65 1.3 0.26 0.65 64.6 1.3 1.3 1.3 12.9 6.5 64.6 1.3 0.13 5.2 646 1.3 1.3 646 0.65 1.3 2.6	6010 6010 7060 6010 6010 6010 6010 6010	17AUG9419AUG9417AUG949419AUG9417AUG949426AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417

Percent moisture is 23%. All results and limits are reported on a dry weight basis.

ND = Not Detected

Reported By: Michael Lifton

Approved By: Doug Dugan

AH. D, p. 60

Enseco

0

ç

#### Total Metals

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA6 035873-0007-SA SOIL	Samp Recei	led: 11 AUG	94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	5280 74.7 10.8 1740 0.49 29.8 24800 179 22.5 1480 77100 1850 3190 2050 3.2 216 ND 3.9 16.1 1160 ND 133 4560	mg/kg mgg/kg mgg/kg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg kkg mgg kkg mgg kkg mgg kkg mgg kkg mgg kkg kk	22.3 11.2 2.2 0.45 1.1 112 2.2 2.2 2.2 2.2 2.2 2.2	6010 6010 7060 6010 6010 6010 6010 6010	17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG

Percent moisture is 55%. All results and limits are reported on a dry weight basis.

S = Reported value determined by method of standard addition. ND = Not Detected

Reported By: Michael Lifton

Approved By: Doug Dugan

A++. D, p.61

#### Total Metals

Client Name: Client ID:	International T 2BK-S-HA7	echnology C	orporation		
Lab ID:	035873-0008-SA	Samp		94	
Matrix:	SOIL	Recei	ved: 11 AUG		
		Authori	zed: 15 AUG	94	
·••		DRY WEIGHT		Analytical	Prepared Analyzed
Parameter	Result	Units	Limit	Method	Date Date
Aluminum	16000	mg/kg	13.9	6010	17 AUG 94 19 AUG 94
Antimony	41.3	mg/kg	6.9	6010	17 AUG 94 19 AUG 94
Arsenic	8.5	mg/kg	3.5	7060	17 AUG 94 26 AUG 94
Barium	2700	mg/kg	1.4	6010	17 AUG 94 19 AUG 94
Beryllium	0.52	mg/kg	0.28	6010	17 AUG 94 19 AUG 94
Cadmium	68.1	mg/kg	0.69	6010	17 AUG 94 19 AUG 94
Calcium	50200	mg/kg	69.5	6010	17 AUG 94 19 AUG 94
Chromium	406	mg/kg	1.4	6010	17 AUG 94 19 AUG 94
Cobalt	22.9	mg/kg	1.4	6010	17 AUG 94 19 AUG 94
Copper	25000	mg/kg	1.4	6010	17 AUG 94 19 AUG 94
Iron	60200	mg/kg	13.9	6010	17 AUG 94 19 AUG 94
Lead	13000	mg/kg	6.9	6010	17 AUG 94 19 AUG 94
Magnesium	3980	mg/kg	69.5	6010	17 AUG 94 19 AUG 94
Manganese	1130	mg/kg	1.4	6010	17 AUG 94 19 AUG 94 17 AUG 94 17 AUG 94
Mercury	3.6	mg/kg	0.14	7471	
Nickel	285	mg/kg	5.6	6010 6010	17 AUG 94 19 AUG 94 17 AUG 94 19 AUG 94
Potassium	1130	mg/kg	695	6010 7740	17 AUG 94 19 AUG 94 17 AUG 94 26 AUG 94
Selenium	4.9 66.0	mg/kg	0.69 1.4	6010	17 AUG 94 19 AUG 94
Silver Sodium	1710	mg/kg	695	6010	17 AUG 94 19 AUG 94 17 AUG 94 19 AUG 94
Thallium	ND	mg/kg	0.69	7841	17 AUG 94 18 AUG 94
Vanadium	115	mg/kg	1.4	6010	17 AUG 94 18 AUG 94 17 AUG 94 19 AUG 94
Zinc	8110	mg/kg mg/kg	2.8	6010	17 AUG 94 19 AUG 94
21116	0110	mg/kg	2.0	0010	11 UAN 14 13 UAN 14

Percent moisture is 28%. All results and limits are reported on a dry weight basis.

S = Reported value determined by method of standard addition. ND = Not Detected

.

Reported By: Michael Lifton Approved By: Doug Dugan

Att. D, p. 62

Total Metals

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA8 035873-0009-SA SOIL		led: 11 AUG ved: 11 AUG	94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Aluminum Antimony Arsenic Barium Cadmium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	9220 57.1 5.6 2740 ND 85.2 100000 437 19.9 55400 35100 7070 5440 1230 1.0 349 ND 2.2 35.4 1370 ND 2.2 35.4 1370 ND 64.3 7430	mg/kg mg/kg mgg/kg mgg/kkg mgg/kkg mgg/kkg mgg /kkg mgg mgg mgg mgg mgg mgg mgg mgg mgg	25.2 12.6 3.2 2.5 0.50 1.3 126 2.5 2.5 2.5 2.5 2.5 2.5 0.13 10.1 1260 0.63 2.5 1260 0.63 2.5 5.0	6010 6010 7060 6010 6010 6010 6010 6010	17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG       94         17       AUG       94       18       AUG

Percent moisture is 21%. All results and limits are reported on a dry weight basis.

S = Reported value determined by method of standard addition. ND = Not Detected

• -

> Reported By: Michael Lifton Approved By: Doug Dugan

> > AH. D, p.63

inseco

#### Total Metals

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA9 035873-0010-SA SOIL	Samp Recei	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	13900 42.2 16.6 23200 ND 93.7 32200 295 33.6 9000 48600 7240 4250 1800 3.7 233 ND 4.5 187 ND 4.5 187 ND ND 155 10100	mg/kg mgg/kg mgg/kg mgg/kkg mgg/kkg mgg/kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg mgg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg /kkg gg gg gg /kkg gg /kkg gg /kkg gg /kkg gg gg gg gg gg gg gg gg gg gg gg gg	66.4 33.2 1.3 6.6 1.3 3.3 332 6.6 6.6 6.4 33.2 332 6.6 0.13 26.5 3320 3.3 6.6 3320 0.66 3320 0.66 13.3	6010         6010         6010         6010         6010         6010         6010         6010         6010         6010         6010         6010         6010         6010         6010         6010         6010         6010         6010         7471         6010         6010         7740         6010         7841         6010         6010	17       AUG       94       23       AUG       94         17       AUG       94       23       AUG       94         17       AUG       94       25       AUG       94         17       AUG       94       23       AUG

Percent moisture is 25%. All results and limits are reported on a dry weight basis.

S = Reported value determined by method of standard addition. ND = Not Detected

Reported By: Michael Lifton

Relative States

Approved By: Doug Dugan

AH. D, p.64

## General Chemistry

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA1 035873-0001-SA SOIL	Samp Recei	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Cyanide, Tot	al 0.78	mg/kg	0.57	9010	25 AUG 94 25 AUG 94

Percent moisture is 13%. All results and limits are reported on a dry weight basis.

Reported By: Deborah Kay

Approved By: Debra Brown

Att. D, p. 65

General Chemistry

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-FD-HA1 035873-0002-SA SOIL	Samp Receiv	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Cyanide, Tota	3.5	mg/kg	0.58	9010	25 AUG 94 25 AUG 94

Percent moisture is 14%. All results and limits are reported on a dry weight basis.

Reported By: Deborah Kay

Approved By: Debra Brown

Att. D, p. 66

General Chemistry

Client ID:	International T 2BK-S-HA2			·		
Lab ID: Matrix:	035873-0003-SA SOIL		led: 11 AUG ved: 11 AUG			
riati IX.	JUIL		zed: 15 AUG			
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date	1
Cyanide, Tota	al 2.2	mg/kg	0.56	9010	25 AUG 94 25 AUG	94

Percent moisture is 11%. All results and limits are reported on a dry weight basis.

Reported By: Deborah Kay

Approved By: Debra Brown

AH. D, p.67

General Chemistry

Client Name: Client ID:	International 1 2BK-S-HA3	[echnology C	orporation		
Lab ID:	035873-0004-SA		led: 11 AUG		
Matrix:	SOIL		ved: 11 AUG zed: 15 AUG		
فعلا		DRY WEIGHT	Reporting	Analytical	Prepared Analyzed
Parameter	Result	Units	Limit	Method	Date Date
Cyanide, Tota	al ND	mg/kg	0.62	9010	25 AUG 94 25 AUG 94

Percent moisture is 20%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Deborah Kay Approved By: Debra Brown

Att. D, p. 68

General Chemistry

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA4 035873-0005-SA SOIL	Samp Receiv	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94		
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cyanide, Tot	al 2.3	mg/kg	0.65	9010	25 AUG 9	4 25 AUG 94

Percent moisture is 23%. All results and limits are reported on a dry weight basis.

Reported By: Deborah Kay

ر. تربي

. .

Approved By: Debra Brown

AH. D, p. 69

TIERRA-A-017665

Client Name: International Technology Corporation Client ID: 2BK-S-HA5 Lab ID: 035873-0006-SA Sampled: 11 AUG 94 Matrix: SOIL Received: 11 AUG 94 Authorized: 15 AUG 94					
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Cyanide, Tota	al 1.2	mg/kg	0.67	9010	25 AUG 94 25 AUG 94

Percent moisture is 26%. All results and limits are reported on a dry weight basis.

Reported By: Deborah Kay

. و من افر سر

Approved By: Debra Brown

Att. D, p. 70

nseco

Enseco

Client Name: International Technology Corporation Client ID: 2BK-S-HA6 Lab ID: 035873-0007-SA Sampled: 11 AUG 94 Matrix: SOIL Received: 11 AUG 94 Authorized: 15 AUG 94						
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cyanide, Tot	a] 3.7	mg/kg	1.1	9010	25 AUG 9	4 25 AUG 94

Percent moisture is 55%. All results and limits are reported on a dry weight basis.

Reported By: Deborah Kay

;

، د او ب

.

Approved By: Debra Brown

AH. D, 17.71

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA7 035873-0008-SA SOIL	Samp Recei	orporation led: 11 AUG ved: 11 AUG zed: 15 AUG	94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Cyanide, Tota	al 7.8	mg/kg	0.69	9010	25 AUG 94 25 AUG 94

Percent moisture is 28%. All results and limits are reported on a dry weight basis.

Reported By: Deborah Kay

. .

. •

Approved By: Debra Brown

Att. D, p. 72

Enseco

Client Name: Client ID: Lab ID: Matrix:	e: International Technology Corporation 2BK-S-HA8 035873-0009-SA Sampled: I1 AUG 94 SOIL Received: 11 AUG 94 Authorized: 15 AUG 94					
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date	
Cyanide, Tota	al 6.1	mg/kg	0.63	9010	25 AUG 94 25 AUG 94	

Percent moisture is 21%. All results and limits are reported on a dry weight basis.

Reported By: Deborah Kay

.

.

Approved By: Debra Brown

.

AH. D, p.73

CC

Client Name: Client ID:	International 7 2BK-S-HA9	[echnology C	orporation		
Lab ID:	035873-0010-SA SOIL		led: 11 AUG ved: 11 AUG		
Matrix:	3012		zed: 15 AUG		
		DRY WEIGHT		Analytical	Prepared Analyzed
Parameter	Result	Units	Limit	Method	Date Date
Cyanide, Tota	al 2.8	mg/kg	0.66	9010	25 AUG 94 25 AUG 94

Percent moisture is 25%. All results and limits are reported on a dry weight basis.

Reported By: Deborah Kay

Approved By: Debra Brown

Att. D, p. 74

Enseco

muen È narementa

September 21, 1994

Mr. John Golden International Technology Corporation 165 Fieldcrest Avenue Edison, NJ 08837

PROJECT NUMBER: 035869 P.O. NUMBER: 529740

Dear Mr. Golden:

Enclosed are the results of the analyses for Soil samples, sampled 8/12/94, for the following sample(s):

## Number of Sample(s) 1

Sample Matrix

AQUEOUS SOIL

The sample(s) were received under chain of custody at Enseco-East Laboratory on August 12, 1994. A brief description of the Quality Assurance/ Quality Control and method references employed by Enseco is contained within the report. This letter authorizes the release of the analytical results and is considered an integral part of this report.

All analyses subcontracted to Quanterra-New Jersey are found in appendix one of this report.

All analyses subcontracted to Quanterra-Tennessee are found in appendix two of this report.

All analyses subcontracted to Teledyne Brown Engineering are found in appendix three of this report.

Please refer to this project by the Enseco-East Laboratory Project Number to expedite any future discussions. We will be happy to answer any questions or concerns that you may have.

ncerely,

/ Efleen Nemeth
 Program Manager

ENSECO-EAST LABORATORY

Enseco A Comine Compa

Method 8240

Client Name: Client ID: Lab ID: Matrix:	International Tec 2BK-S-HA10 035869-0002-SA SOIL	hnology Corporation Sampled: 12 AU Received: 12 AU Authorized: 15 AU	IG 94 IG 94 IG 94	Prepared: NA Analyzed: 20	AUG 94
Parameter		Result	DRY WEIGH Units	IT Reporting Limit	
Chloromethane Bromomethane Vinyl Chlori Chloroethane Methylene ch Acetone Carbon disul 1,1-Dichloro 1,2-Dichloro trans) Chloroform	de loride fide ethene ethane ethene (cis/	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	14 14 14 14 7.2 14 7.2 7.2 7.2 7.2 7.2 7.2	
1,2-Dichloro 2-Butanone 1,1,1-Trichl Carbon tetra Vinyl Acetat Bromodichlor 1,2-Dichloro cis-1,3-Dich Trichloroeth Dibromochlor 1,1,2-Trichl Benzene	oroethane chloride e omethane propane loropropene ene omethane oroethane	ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.2 14 7.2 7.2 14 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	
Bromoform 4-Methyl-2-P 2-Hexanone	achloroethane thene e	ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.2 14 14 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	
NA = Not App	licable	results and limits	are repor	ted on a dry	weight basis.
ND = Not Det Reported By:	ected Salman Qazi	Approved	i By: Deb	ra Cutler	

·.,

Client Name: Client ID:	Method 8240 (cont.) International Technology Corporation 2BK-S-HA10					
Lab ID: Matrix:	035869-0002-SA SOIL	Sampled: Received: Authorized:	12 AUG 12 AUG 15 AUG	94 94 94	Prepared: NA Analyzed: 20	AUG 94
		_			HT Reporting	
Parameter		Res	ult	Units	Limit	
Xylenes (tot Acrolein Acrylonitril		N	ID ID ID	ug/kg ug/kg ug/kg	7.2 72 72 72	
Surrogate		Re	covery			
l,2-Dichloro Toluene-d8 4-Bromofluor		11	8 7 · 2	% % %		

۰,

Percent moisture is 31%. All results and limits are reported on a dry weight basis. NA = Not Applicable ND = Not Detected Reported By: Salman Qazi Approved By: Debra Cutler

AH. E, p. 3

Method 8240

	International Tech 2BK-S-HA11 035869-0003-SA SOIL	Sampled: 12 Al Received: 12 Al	JG 94 JG 94 1	Prepared: NA	
		Authorized: 15 Al	JG 94 /	Analyzed: 20 /	AUG 94
Parameter		Result	DRY WEIGHT Units	T Reporting Limit	
Chloromethane Bromomethane Vinyl Chlorid Chloroethane Methylene chl Acetone Carbon disulf 1,1-Dichloroe 1,2-Dichloroe trans) Chloroform 1,2-Dichloroe 2-Butanone 1,1,1-Trichlo Carbon tetrac Vinyl Acetate Bromodichloro 1,2-Dichlorop cis-1,3-Dichl Trichloroethe Dibromochloro 1,1,2-Trichlo Benzene trans-1,3-Dic Bromoform 4-Methyl-2-Pe 2-Hexanone 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene	de loride Fide ethene ethane ethene (cis/ ethane proethane oropropene ne methane roethane hloropropene ne hloropropene ne chloroethane hloropropene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	$     \begin{array}{r}       13 \\       13 \\       13 \\       13 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 \\       6.4 $	
Ethylbenzene Styrene		ND ND	ug/kg ug/kg ug/kg	6.4 6.4 6.4	

Percent moisture is 22%. All results and limits are reported on a dry weight basis.

NA = Not Applicable ND = Not Detected

...

Reported By: Salman Qazi

Approved By: Debra Cutler

### TCL Volatile Organics

Client Name: Client ID:	International Tecl 2BK-S-HA11	Method 824 (cont.) nnology Corporat			
Lab ID: Matrix:	035869-0003-SA SOIL	Sampled: 12 Received: 12 Authorized: 15	AUG 94	Prepared: NA Analyzed: 20	AUG 94
Parameter		Result		HT Reporting Limit	
Xylenes (tota Acrolein Acrylonitrile		ND ND ND	ug/kg ug/kg ug/kg	6.4 54 64	
Surrogate		Recov	very		
1,2-Dichloroe Toluene-d8 4-Bromofluoro		98 113 88	% %		

Percent moisture is 22%. All results and limits are reported on a dry weight basis. NA = Not Applicable ND = Not Detected Reported By: Salman Qazi Approved By: Debra Cutler

AH. F, p.5

#### Method 8240

Client Name: Client ID:	International Te 2BK-S-HA12	chnology Corpo	ration			
Lab ID:	035869-0004-SA	Sampled:	12 AUG	94		
Matrix:	SOIL	Received:	12 AUG	94	Prepared: NA	
		Authorized:	15 AUG	94	Analyzed: 20	AUG 94
Parameter		_		ORY WEIG	HT Reporting	
		Res	ult	Units	Limit	
Chloromethane	•		D	ug/kg	11	
Bromomethane Vinyl Chlorid			D	ug/kg	11	
Chloroethane		N		ug/kg	11	
Methylene chl	oride	N N		ug/kg	11	
Acetone		Ň		ug/kg ug/kg	5.7 11	
Carbon disulf	ide	N		ug/kg	5.7	
<pre>1,1-Dichloroe 1,1-Dichloroe</pre>	thene	N		ug/kg	5.7	
1,2-Dichloroe	thene (cis/	N	)	ug/kg	5.7	
trans)		N	ו	ug/kg	5.7	
Chloroform		NE		ug/kg	5.7	
1,2-Dichloroe 2-Butanone	thane	NE		ug/kg	5.7	
1,1,1-Trichlo	coethano	NE		ug/kg	11	
Carbon tetracl	nloride			ug/kg	5.7	
Vinyl Acetate		NE		ug/kg	5.7	
Bromodichloron	nethane	ND		ug/kg ug/kg	11 5.7	
1,2-Dichloropr	ropane	ND		ug/kg	5.7	
cis-1,3-Dichlo Trichloroether	ropropene	ND		ug/kg	5.7	
Dibromochlorom	le lethano	ND		ug/kg	5.7	
1,1,2-Trichlor	oethane	ND		ug/kg	5.7	
Benzene		ND ND		ug/kg	5.7	
trans-1,3-Dich	loropropene	ND		ug/kg ug/kg	5.7 5.7	
Bromoform	<b>4</b>	ND		ug/kg	5.7	
4-Methyl-2-Pen 2-Hexanone	tanone	ND		ug/kg	11	
1,1,2,2-Tetrac	hloroethane	ND		ug/kg	11	
Tetrachloroeth	ene	ND ND		ug/kg	5.7	
Toluene		ND		ug/kg ug/kg	5.7 5.7	
Chlorobenzene		ND		ug/kg	5.7	
Ethylbenzene Styrene		ND		ug/kg	5.7	
ochiene		ND		lg/kg	5.7	
Percent moistur	reis 13%. All r	esults and limi	te amo	-		

Percent moisture is 13%. All results and limits are reported on a dry weight basis. NA = Not Applicable ND = Not Detected

Reported By: Ann Liang

Approved By: Debra Cutler

Enseci

#### TCL Volatile Organics

Client Name:	International Tec	Method 82 (cont.) hnology Corpora				
Client ID: Lab ID: Matrix:	2BK-S-HA12 035869-0004-SA SOIL	Sampled: 1 Received: 1 Authorized: 1	2 AUG 2 AUG	94	Prepared: NA Analyzed: 20	
Parameter		Resu		DRY WEIG Units	•	
Xylenes (tota Acrolein Acrylonitrile		ND ND ND		ug/kg ug/kg ug/kg	5.7 57 57	
Surrogate		Rec	overy			
1,2-Dichlorod Toluene-d8 4-Bromofluoro		105 137 66		% % %	· · ·	v v

Percent moisture is 13%. All results and limits are reported on a dry weight basis.

 v = Surrogate recovery outside of QC limits due to sample matrix interference as verified by reanalysis.
 NA = Not Applicable
 ND = Not Detected

Reported By: Ann Liang

.

Approved By: Debra Cutler

Method 8240

Client Name: International Te Client ID: 2BK-S-HA13 Lab ID: 035869-0005-SA Matrix: SOIL	chnology Corporation Sampled: 12 AUG 94 Received: 12 AUG 94 Authorized: 15 AUG 94	Prepared: NA
Parameter		'WEIGHT Reporting Inits Limit
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,2-Dichloroethane 1,2-Dichloroethane (cis/ trans) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone 1,1,2,2-Tetrachloroethane Itrachloroethene Dibromethane	ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND       u         ND <td< td=""><td>13         19/kg       13         19/kg       13         19/kg       13         19/kg       6.7         13       13         19/kg       6.7         13       13</td></td<>	13         19/kg       13         19/kg       13         19/kg       13         19/kg       6.7         13       13         19/kg       6.7         13       13
Ethylbenzene Styrene	ND u	g/kg 6.7 g/kg 6.7
Percent moisture is 25%. All NA = Not Applicable	results and limits are	reported on a dry weight basis.

ND = Not Detected

Reported By: Salman Qazi

Approved By: Debra Cutler

#### TCL Volatile Organics

Client Name: Client ID:	International Tec 2BK-S-HA13	Method 824 (cont.) hnology Corporat				
Lab ID: Matrix:	035869-0005-SA SOIL	Sampled: 12 Received: 12 Authorized: 15	AUG	94	Prepared: NA Analyzed: 20	
Parameter		Resul		DRY WEIG Units	HT Reporting Limit	
Xylenes (tot Acrolein Acrylonitril		ND ND ND		ug/kg ug/kg ug/kg	6.7 67 67	
Surrogate		Reco	very			
l,2-Dichloro Toluene-d8 4-Bromofluoro		97 124 80		% % %		v

Percent moisture is 25%. All results and limits are reported on a dry weight basis.

v = Surrogate recovery outside of QC limits due to sample matrix interference as verified by reanalysis. NA = Not Applicable ND = Not Detected

Reported By: Salman Qazi

Approved By: Debra Cutler

AH.E, p9

### TCL Semivolatile Organics

Method 8270

Client I Client (	Name:	International 2BK-S-HA10	Technology	Corpo	rat	ion			
Lab ID:		035869-0002-SA	San	npled:	12	AUG	94		
Matrix:		SOIL		ived:				Prepared:	
			Author	'ized:	15	AUG	94	Analyzed:	30 AUG 94
_							DRY WEIG	GHT Reportin	g
Paramete	er			Res	sult		Units	Limit	-
Pheno1					D		ug/kg	4800	d
bis(2-Ch	loroe	thyl) ether			ID		ug/kg	4800	
2-Chloro 1,3-Dich	pneno	1			ID		ug/kg	4800	
1,3-Dich	larah	enzene			ID ID		ug/kg	4800 4800	
1,2-Dich	lorob	enzene			D		ug/kg ug/kg	4800	
2-Methyl	pheno	1			Ď		ug/kg	4800	
bis(2-Ch	noroi	sopropyl)					-37-3		
ether		7			D		ug/kg	4800	
4-Methyl N-Nitros				N	D		ug/kg	4800	
propy]		11-		N	n		ug/kg	4800	
Hexachio		ane		N			ug/kg ug/kg	4800	
Nitroben.				N	D		ug/kg	4800	
Isophoro				N			ug/kg	4800	
2-Nitrop 2,4-Dime	neno: thvlpk	enel		N			ug/kg	4800	
bis(2-Ch	loroet	hoxy)-		N	U		ug/kg	4800	
methan	e			N	n		ug/kg	4800	
2,4-Dich				N			ug/kg	4800	
1,2,4-Tr		obenzene		N	D		ug/kg	4800	
Naphthale				N			ug/kg	4800	
4-Chloroa Hexachlor				NI			ug/kg	4800	
		hylphenol		N	-		ug/kg	4800	
2-Methylr	naphth	alene		N( N(			ug/kg	4800	
Hexachlor				146	,		ug/kg	4800	
pentadi				NE	)		ug/kg	4800	
2,4,6-Tri	ichlor	ophenol		NE			ug/kg	4800	
2,4,5-Tri	ICHIOP	ophenol		ND			ug/kg	23000	
2-Chloror 2-Nitroar	naphin niline	alene		NE			ug/kg	4800	
Dimethyl				NE NC			ug/kg	23000	
Acenaphth	nylene			ND			ug/kg ug/kg	4800 4800	
•	<del>-</del> -				•		~3/ ~3	4000	

Percent moisture is 31%. All results and limits are reported on a dry weight basis.

d = All reporting limits raised due to matrix interferences. ND = Not Detected

Reported By: Leonard Dikun

Approved By: Allan Mitch

Att. E, p. 10

## TCL Semivolatile Organics

		Method 8270 (cont.) hnology Corporatio	n		
Client ID: Lab ID: Matrix:	2BK-S-HA10 035869-0002-SA SOIL	Sampled: 12 A Received: 12 A Authorized: 15 A	UG 94	Prepared: 16 Analyzed: 30	
Parameter		Result	DRY WEIGH Units	IT Reporting Limit	
3-Nitroanilin Acenaphthene 2,4-Dinitroph 4-Nitrophenol Dibenzofuran 2,4-Dinitroto 2,6-Dinitroto Diethyl phtha 4-Chloropheny ether Fluorene 4-Nitroanilin 4,6-Dinitro-2 methylpheno N-Nitrosodiph	nenol Duene Duene Date Date Di phenyl e n n n n	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	23000 4800 23000 23000 4800 4800 4800 4800 4800 23000 23000 4800	
4-Bromophenyl ether Hexachloroben Pentachloroph Phenanthrene Anthracene 9H-Carbazole Di-n-butyl ph Fluoranthene Pyrene Butyl benzyl 3,3'-Dichlorol Benzo(a)anthr bis(2-Ethylhe	zene enol thalate phthalate benzidine acene	ND 140000 ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	4800 24000 23000 4800 4800 4800 4800 4800 4800 9500 4800	D
phthalate Chrysene Di-n-octyl ph Benzo(b)fluor:		ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	4800 4800 4800 4800	

Percent moisture is 31%. All results and limits are reported on a dry weight basis.

D = Compound quantitated using a secondary dilution. ND = Not Detected

.

Reported By: Leonard Dikun

Approved By: Allan Mitch

AH.E, p.11

## TCL Semivolatile Organics

Client Name: Client ID:	International Tech 2BK-S-HA10	Method (cont nology Corpo	.)			
Lab ID: Matrix:	035869-0002-SA SOIL	Sampled: Received: Authorized:	12 AUG	94	Prepared: 1 Analyzed: 3	
w.			г	DRY WEIGH	IT Reporting	
Parameter		Re	sult	Units	Limit	
Benzo(k)fluor			ND	ug/kg	4800	
Benzo(a)pyrer			D	ug/kg	4800	
Indeno(1,2,3- Dibenz(a,h)an			ND D	ug/kg	4800	
Benzo(g,h,i)p			ND ND	ug/kg ug/kg	4800 4800	
Surrogate		Re	ecovery			
Nitrobenzene-			55	%		
2-Fluorobiphe Terphenyl-dl4		10	92	ኤ ዋ		
Phenol-d5			76	¥ % % %		
2-Fluoropheno			34	× ·		
2,4,6-Tribrom	ophenol	7	4	%		

Percent moisture is 31%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Leonard Dikun

Approved By: Allan Mitch

AH.E. p. 12

Method 8270

	: International Technology Corporation					
Client ID: Lab ID: Matrix:	2BK-S-HA11 035869-0003-SA SOIL	Sampled: 12 AUG Received: 12 AUG Authorized: 15 AUG	<b>5</b> 94	Prepared: 16 Analyzed: 30		
Parameter		Result	DRY WEIGH Units	HT Reporting Limit		
Phenol bis (2-Chloroe 2-Chloropheno 1,3-Dichlorot 1,4-Dichlorot 1,2-Dichlorot 2-Methylpheno bis (2-Chlorot ether 4-Methylpheno N-Nitroso-di- propylamine Hexachloroeth Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylp bis (2-Chloroe methane 2,4-Dichlorop 1,2,4-Trichlo Naphthalene 4-Chloroanili Hexachlorobut 4-Chloro-3-me 2-Methylnapht Hexachlorocyc pentadiene 2,4,6-Trichlo 2,4,5-Trichlo 2-Chloronapht	henol thoxy)- henol thoxy)- henol robenzene ne adiene thylphenol halene lo- rophenol rophenol halene		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	420 420 420 420 420 420 420 420 420 420		
2-Nitroanilin Dimethyl phth Acenaphthylen 3-Nitroanilin	alate e	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	2000 420 420 2000		
Percent moist	ure is 22%. All n	results and limits a	re report	ed on a dry w	weight basis.	
ND = Not Dete	cted					

Reported By: Leonard Dikun

Approved By: Allan Mitch

AH. E, p. 13

Client ID:	2BK-S-HA11	Method 8270 (cont.) hnology Corporation Sampled: 12 AUG	а <i>л</i>		
Lab ID: Matrix:	035869-0003-SA SOIL	Received: 12 AUG Authorized: 15 AUG	i94 P	repared: 16 nalyzed: 30	
Parameter		Result	DRY WEIGHT Units	Reporting Limit 420	
Acenaphthene 2,4-Dinitrop 4-Nitropheno Dibenzofuran 2,4-Dinitrot 2,6-Dinitrot Diethyl phth 4-Chlorophen ether Fluorene 4-Nitroanili 4,6-Dinitro- methylphen N-Nitrosodip 4-Bromopheny ether Hexachlorobe	henol l oluene alate yl phenyl ne 2- ol henylamine l phenyl	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2000 2000 420 420 420 420 420 2000 2000	
Pentachloropi Phenanthrene Anthracene 9H-Carbazole Di-n-butyl pl Fluoranthene Pyrene Butyl benzyl 3,3'-Dichloro Benzo(a)anthi bis(2-Ethylho phthalate	henol hthalate phthalate pbenzidine racene exyl)	ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	2000 420 420 420 420 420 420 420 420 840 420 420	
Chrysene Di-n-octyl pl Benzo(b)fluo Benzo(k)fluo Benzo(a)pyre Indeno(1,2,3	hthalate ranthene ranthene ne	ND ND 430 ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	420 420 420 420 420 420 420	
		results and limits a	re reporte	d on a dry	weight basis.
ND = Not Det Reported By:	ected Leonard Dikun	Approved	By: Allan	Mitch	

AH.E, p.14

.

	International Tecl 2BK-S-HAll	Method 8270 (cont.) hnology Corporation			
Client ID: Lab ID: Matrix:	035869-0003-SA SOIL	Sampled: 12 AUG Received: 12 AUG Authorized: 15 AUG	94	Prepared: 16 Analyzed: 30	
			DRY WEIG	HT Reporting Limit	
Parameter		Result	Units		
Dibenz(a,h)a Benzo(g,h,i)	nthracene perylene	ND ND	ug/kg ug/kg	420 420	
Surrogate		Recovery			
Nitrobenzene 2-Fluorobiph Terphenyl-dl Phenol-d5	enyl 4	69 94 113 82 81	* * * *		
2-Fluorophen 2,4,6-Tribro		126	×		I

Percent moisture is 22%. All results and limits are reported on a dry weight basis.

I = Surrogate recovery outside of limits due to sample matrix interference. ND = Not Detected

Reported By: Leonard Dikun

Approved By: Allan Mitch

AH. E, p. 15



Method 8270

Client Name: Client ID:	International Tec 2BK-S-HA12	hnology Corporat	ion		
Lab ID: Matrix:	035869-0004-SA SOIL	Sampled: 12 Received: 12 Authorized: 15	AUG 94	Prepared: 16 Analyzed: 30	5 AUG 94 ) AUG 94
Parameter		Result	DRY WEIG Units	GHT Reporting	•
Phenol bis(2-Chloroe 2-Chloropheno 1,3-Dichlorob 1,4-Dichlorob 1,2-Dichlorob 2-Methylpheno	1 enzene enzene enzene 1	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	15000 15000 15000 15000 15000 15000 15000	ď
bis(2-Chloroi ether 4-Methylpheno N-Nitroso-di- propylamine Hexachloroetha Nitrobenzene Isophorone 2-Nitrophenol	l n- ane	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	15000 15000 15000 15000 15000 15000	
2,4-Dimethylph bis(2-Chloroet methane 2,4-Dichloroph 1,2,4-Trichlor Naphthalene 4-Chloroanilin Hexachlorobuta 4-Chloro-3-met	hoxy)- enol obenzene diene hylphenol	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	15000 15000 15000 15000 15000 15000 15000 15000	
2-Methylnaphth Hexachlorocycl pentadiene 2,4,6-Trichloro 2,4,5-Trichloro 2-Chloronaphtha 2-Nitroaniline Dimethyl phtha Acenaphthylene	alene o- ophenol ophenol alene	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	15000 15000 15000 74000 15000 74000 15000 15000 15000	

Percent moisture is 13%. All results and limits are reported on a dry weight basis. d = All reporting limits raised due to matrix interferences. ND = Not Detected

Reported By: Leonard Dikun

Approved By: Allan Mitch

Client Name:	International Tech	Method 8270 (cont.) nology Corporation		
Client ID: Lab ID: Matrix:	2BK-S-HA12 035869-0004-SA SOIL	Sampled: 12 AUG Received: 12 AUG Authorized: 15 AUG	94 An 94 An	epared: 16 AUG 94 alyzed: 30 AUG 94
Deventor		Result	DRY WEIGHT Units	Reporting Limit
Parameter 3-Nitroanili Acenaphthene 2,4-Dinitrop 4-Nitropheno Dibenzofuran 2,4-Dinitrot 2,6-Dinitrot	henol l coluene	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	74000 15000 74000 15000 15000 15000 15000 15000
2,0-Dinitro Diethyl pht 4-Chloropher ether Fluorene 4-Nitroanil 4,6-Dinitro	nalate nyl phenyl ine	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	15000 15000 74000 74000
methylphe N-Nitrosodi 4-Bromophen ether Hexachlorob	nol phenylamine yl phenyl enzene	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	15000 15000 15000 74000
Pentachloro Phenanthren Anthracene 9H-Carbazol Di-n-butyl Fluoranther	e phthalate	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	15000 15000 15000 15000 15000 15000
Pyrene Butyl benzy	/l phthalate probenzidine thracene	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	15000 30000 15000 15000
phthalat Chrysene Di-n-octyl Benzo(b)fl	e phthalate	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	15000 15000 15000 15000

Percent moisture is 13%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Leonard Dikun

,

• •

Approved By: Allan Mitch

AH. E. p. 17

### TCL Semivolatile Organics

Client Name:		Method 8270 (cont.) hnology Corporation			
Client ID: Lab ID: Matrix:	28K-S-HA12 035869-0004-SA SOIL	Sampled: 12 AUG Received: 12 AUG Authorized: 15 AUG	94	Prepared: 16 Analyzed: 30	
¥a.			DRY WEIG	HT Reporting	
Parameter		Result	Units	Limit	
Benzo(a)pyrei Indeno(1,2,3 Dibenz(a,h)ai Benzo(g,h,i);	-cd)pyrene nthracene	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	15000 15000 15000 15000	
Surrogate		Recovery			
Nitrobenzene- 2-Fluorobiphe Terphenyl-dl4 Phenol-d5 2-Fluorophene	enyl 4	34 72 111 50 57	* * * * * * *		
2,4,6-Tribror	nophenol	14	% ·		I

Percent moisture is 13%. All results and limits are reported on a dry weight basis.

I = Surrogate recovery outside of limits due to sample matrix interference. ND = Not Detected

nd - not betected

Reported By: Leonard Dikun Approved By: Allan Mitch

AH.E. p. 18

Method 8270

	International	Technology Corporation		
Client ID:	2BK-S-HA13	Sampled: 12 AU	C 94	
Lab ID:	035869-0005-SA SOIL	Received: 12 AUG	G 94 F	Prepared: 16 AUG 94
Matrix:	3011	Authorized: 15 AU		Inalyzed: 30 AUG 94
		Author (2001 10 Au		
				Reporting
Parameter		Result	Units	Limit
Phenol		ND	ug/kg	2200 d
bis(2-Chloro	ethyl) ether	ND	ug/kg	2200
2-Chlorophen	0]	ND	ug/kg	2200
1,3-Dichloro	benzene	ND	ug/kg	2200
1,4-Dichloro		ND	ug/kg	2200
1,2-Dichloro		ND	ug/kg	2200 2200
2-Methylphen		ND	ug/kg	2200
bis(2-Chloro	isopropyi)	ND	ug/kg	2200
ether 4 Mathylphon	^]	ND	ug/kg	2200
4-Methylphen N-Nitroso-di		NB	49/ 49	2200
propylamin		ND	ug/kg	2200
Hexachloroet		ND	ug/kg	2200
Nitrobenzene		ND	ug/kg	2200
Isophorone		ND	ug/kg	2200
2-Nitropheno	1	ND	ug/kg	2200
2,4-Dimethyl		ND	ug/kg	2200
bis(2-Chloro	ethoxy)-			
methane		ND	ug/kg	2200
2,4-Dichloro		ND	ug/kg	2200
1,2,4-Trich1	orobenzene	ND	ug/kg	2200
Naphthalene		ND ND	ug/kg	2200 2200
4-Chloroanil		ND	ug/kg	2200
Hexachlorobu		ND	ug/kg ug/kg	2200
4-Chloro-3-m 2-Methylnaph		ND	ug/kg	2200
Hexachlorocy		NB	ug/ kg	2200
pentadiene		ND	ug/kg	2200
2,4,6-Trichl		ND	ug/kg	2200
2,4,5-Trichl		ND	ug/kg	11000
2-Chloronaph		ND	ug/kg	2200
2-Nitroanili		ND	ug/kg	11000
Dimethyl pht		ND	ug/kg	2200
Acenaphthyle		ND	ug/kg	2200
• •				

Percent moisture is 25%. All results and limits are reported on a dry weight basis.

d = All reporting limits raised due to matrix interferences. ND = Not Detected

ω. •

Reported By: Leonard Dikun

Approved By: Allan Mitch

AH. E, p.19

		Method 8270			
Client Name:	International Tech	(cont.)			
Client ID:	2BK-S-HA13				
Lab ID:	035869-0005-SA	Sampled: 12 AUG	G 94	Prepared: 16	AUC 04
Matrix:	SOIL	Received: 12 AUG Authorized: 15 AUG	g 94 G 94	Analyzed: 30	AUG 94
		Author ized. 10 Met		-	
<b>.</b> .		Result	DRY WEIG	HT Reporting Limit	
Parameter					
3-Nitroanili		ND	ug/kg	11000 2200	
Acenaphthene		ND ND	ug/kg ug/kg	11000	
2,4-Dinitrop 4-Nitropheno		ND	ug/kg	11000	
Dibenzofuran		ND	ug/kg	2200	
2,4-Dinitrot		ND	ug/kg	2200	
2.6-Dinitrot		ND	ug/kg	2200	
Diethyl phth	alate	ND	ug/kg	2200	
4-Chlorophen	yl phenyl	ND	um (km	2200	
ether		ND ND	ug/kg ug/kg	2200	
Fluorene 4-Nitroanili		ND .	ug/kg	11000	
4.6-Dinitro-			49/19		
methylphen		ND	ug/kg	11000	
N-Nitrosodip		ND	ug/kg	2200	
4-Bromopheny					
ether		ND	ug/kg	2200 2200	
Hexachlorobe		ND ND	ug/kg	11000	
Pentachlorop		ND	ug/kg ug/kg	2200	
Phenanthrene		ND	ug/kg	2200	
Anthracene 9H-Carbazole		ND	ug/kg	2200	
Di-n-butyl p		ND	ug/kg	2200	
Fluoranthene		ND	ug/kg	2200	
Pyrene		ND	ug/kg	2200	
Butyl benzyl	phthalate	ND	ug/kg	2200	
3,3'-Dichlor	obenzidine	ND	ug/kg	4400	
Benzo(a)anth		ND	ug/kg	2200	
bis(2-Ethylh	exyl)	ND		2200	
phthalate		ND	ug/kg ug/kg	2200	
Chrysene Di-n-octyl p	hthalato	ND	ug/kg ug/kg	2200	
Benzo(b)fluc	ranthene	ND	ug/kg	2200	
Benzo(k)fluc		ND	ug/kg	2200	

Percent moisture is 25%. All results and limits are reported on a dry weight basis.

ND = Not Detected

. .

Reported By: Leonard Dikun

Approved By: Allan Mitch

Client Name:	International Tec	Method 82 (cont.) hnology Corporat			
Client ID: Lab ID: Matrix:	2BK-S-HA13 035869-0005-SA SOIL	Sampled: 12 Received: 12 Authorized: 1	2 AUG 94	Prepared: Analyzed:	16 AUG 94 30 AUG 94
Parameter		Resu		WEIGHT Reporti its Limit	
Benzo(a)pyre Indeno(1,2,3 Dibenz(a,h)a Benzo(g,h,i)	-cd)pyrene nthracene	ND ND ND ND	ug ug	/kg 2200 /kg 2200 /kg 2200 /kg 2200 /kg 2200	
Surrogate		Reco	overy		
Nitrobenzene 2-Fluorobiph Terphenyl-dl Phenol-d5 2-Fluorophen 2,4,6-Tribro	enyl 4 ol	80 101 111 85 77 81	% % % % % % % %		

Percent moisture is 25%. All results and limits are reported on a dry weight basis. ND = Not Detected

Reported By: Leonard Dikun

,

Approved By: Allan Mitch

AH.E. p.21



#### TCL Organochlorine Pesticides/PCBs

Method 8080

Client Name: Client ID: Lab ID: Matrix:	International Tec 2BK-S-HA10 035869-0002-SA SOIL	hnology Corporation Sampled: 12 AUG Received: 12 AUG		Prepared: 10	5 AUG 94
		Authorized: 15 AUG	94	Analyzed: 2	5 AUG 94
Parameter		Result	DRY WEIG Units	HT Reporting Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (Li Heptachlor Aldrin Heptachlor ep Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan su 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ooxide lfate	ND ND ND ND ND ND ND ND 27000 ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg	2300 2300 2300 2300 2300 2300 2300 2300	U
÷		Recovery			
Tetrachloro-m (TCX)	-xylene	ND	%		н
Decachlorobip	henyl	ND	× %		H
		esults and limits ar ause of required sam			weight basis

H = Surrogate not detected because of required sample dilution.<math>u = All reporting limits raised due to high levels of target analytes. ND = Not Detected

Reported By: Shanthi Damarapu

Approved By: Thomas Gilbert

AH. E. p. 22

#### TCL Organochlorine Pesticides/PCBs

Method 8080

1.

Client Name: Client ID: Lab ID: Matrix:	International Tec 2BK-S-HA11 035869-0003-SA SOIL	hnology Corporation Sampled: 12 AUG Received: 12 AUG	94 94	Prepared: 16 AUG 94
		Authorized: 15 AUG	94	Analyzed: 25 AUG 94
Parameter		Result	DRY WEIG Units	HT Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (L Heptachlor Aldrin Heptachlor ep Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan I 4,4'-DDD Endosulfan St 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1254 Aroclor 1260	poxide I ulfate	ND ND ND ND ND ND 31 ND 210 ND 20 ND 20 ND 20 ND 140 ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 10 10 10 10 10 10 20 20 20 20 20 20 20 20 20 2
Surrogate		Recovery		
Tetrachloro-m (TCX) Decachlorobig	-	80.1 192	X X	å

Percent moisture is 22%. All results and limits are reported on a dry weight basis. & = Surrogate recovery is outside of control limits. ND = Not Detected Reported By: Shanthi Damarapu Approved By: Thomas Gilbert

AH. E. p. 23

#### TCL Organochlorine Pesticides/PCBs

Method 8080

Client Name: Client ID:	International Tech 2BK-S-HA12	nnology Corporation			
Lab ID: Matrix:	035869-0004-SA SOIL	Sampled: 12 AUG Received: 12 AUG Authorized: 15 AUG	94	Prepared: 1 Analyzed: 2	6 AUG 94 5 AUG 94
W2			DRY WEIG	HT Reporting	
Parameter		Result	Units	Limit	
alpha-BHC beta-BHC delta-BHC gamma-BHC (Li Heptachlor Aldrin Heptachlor ep Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan SU 4,4'-DDD Endosulfan SU 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	oxide	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg ug/kkg	37 37 37 37 37 37 37 37 37 74 74 74 74 74 74 74 74 370 370 370 370 370 370 370 370 370 370	u
Surrogate		Recovery			
Tetrachloro-m-	xylene				
(TCX) Decachlorobiph	lenyl	31.6 ND	% %		н
		sults and limits are			veight basis.
H = Surrogate	not detected beca	use of required samp	le dilut	ion.	

u = All reporting limits raised due to high levels of target analytes. ND = Not Detected

Reported By: Shanthi Damarapu Approved By

1.1

а ......

Approved By: Thomas Gilbert

AH.E. p.24

Ensecu

# TCL Organochlorine Pesticides/PCBs

Method 8080

Client Name: International Tech	nnology Corporation	
Client ID: 2BK-S-HA13 Lab ID: 035869-0005-SA Matrix: SOIL	Sampled: 12 AUG 94 Received: 12 AUG 94 Authorized: 15 AUG 94	Prepared: 16 AUG 94 Analyzed: 25 AUG 94
Parameter	DRY WEI Result Units	GHT Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg <td>43 u 43 43 43 43 43 43 43 43 43 43</td>	43 u 43 43 43 43 43 43 43 43 43 43
	3, 3	
Surrogate	Recovery	
Tetrachloro-m-xylene (TCX) Decachlorobiphenyl	28.9 % ND %	Н
Percent moisture is 25%. All r	results and limits are report	rted on a dry weight basis.
<ul> <li>D = Compound quantitated using</li> <li>H = Surrogate not detected bec</li> <li>u = All reporting limits raise</li> <li>ND = Not Detected</li> </ul>	ause of required sample di	lution. rget analytes.
Reported By: Shanthi Damarapu	Approved By: The	omas Gilbert

· · ·

AH. E. p. 25

Enseco A Coming Compar

#### Total Petroleum Hydrocarbons by IR

Client Name: Client ID:	International T 2BK-S-HA10	echnology C	orporation		
Lab ID: Matrix:	035869-0002-SA SOIL	Recei	led: 12 AUG ved: 12 AUG	94	
		Authori	zed: 15 AUG	94	
		DRY WEIGHT		Analytical	Prepared Analyzed
Parameter	Result	Units	Limit	Method	Date Date
Total Petrol Hydrocarbo		mg/kg	120	3550/418.1	Mod. 16 AUG 94 17 AUG 94

Percent moisture is 31%. All results and limits are reported on a dry weight basis.

Reported By: Kalpana Patel

٠.

Approved By: Debra Brown

AH. E. p. 26

Enseco

# Total Petroleum Hydrocarbons by IR

	International T 2BK-S-HA11	echnology C	orporation			
Lab ID:	035869-0003-SA		led: 12 AUG			
Matrix:	SOIL	Receiv	ved: 12 AUG	94		
		Authori	zed: 15 AUG	94		
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Total Petrole Hydrocarbon		mg/kg	26	3550/418.1 Mod	1. 16 AUG 9	4 17 AUG 94

Percent moisture is 22%. All results and limits are reported on a dry weight basis.

Reported By: Kalpana Patel

Approved By: Debra Brown

AH.E, p. 27



Total Petroleum Hydrocarbons by IR

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA12 035869-0004-SA SOIL	Samp Recei	orporation led: 12 AUG ved: 12 AUG zed: 15 AUG	94		
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyze Date Date	d
Total Petrolo Hydrocarbo		mg/kg	1800	3550/418.1	Mod. 16 AUG 94 17 AUG	i 94

Percent moisture is 13%. All results and limits are reported on a dry weight basis.

Reported By: Kalpana Patel

4

Approved By: Debra Brown



# Total Petroleum Hydrocarbons by IR

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA13 035869-0005-SA SOIL	Samp Recei	orporation led: 12 AUG ved: 12 AUG zed: 15 AUG	94		
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Total Petrole Hydrocarbo		mg/kg	53	3550/418.1	Mod. 16 AUG 9	4 17 AUG 94

Percent moisture is 25%. All results and limits are reported on a dry weight basis.

Reported By: Kalpana Patel

;

Approved By: Debra Brown

S

#### Total Metals

Client Name:	International Te 2BK-S-HA10	echnology C	orporation		
Client ID:	035869-0002-SA	Samp	led: 12 AUG	94	
Lab ID:	SOIL	Receiv			
Matrix:	JUIL	Authori	zed: 15 AUG		
-					
		DRY WEIGHT	Reporting	Analytical	Prepared Analyzed
Parameter	Result	Units	Limit	Method	Date Date
Aluminum	9600	mg/kg	14.4	6010	17 AUG 94 19 AUG 94
Antimony	34.4	mg/kg	7.2	6010	17 AUG 94 19 AUG 94
Arsenic	7.0	mg/kg	1.4	7060	17 AUG 94 25 AUG 94
Barium	3300	mg/kg	1.4	6010	17 AUG 94 19 AUG 94
Beryllium	0.56	mg/kg	0.29	6010	17 AUG 94 19 AUG 94
Cadmium	42.7	mg/kg	0.72	6010	17 AUG 94 19 AUG 94
Calcium	70500	mg/kg	72.1	6010	17 AUG 94 19 AUG 94
Chromium	262	mg/kg	1.4	6010	17 AUG 94 19 AUG 94 17 AUG 94 19 AUG 94
Cobalt	41.1	mg/kg	1.4	6010	17 AUG 94 19 AUG 94 17 AUG 94 19 AUG 94
Copper	2210	mg/kg	1.4	6010	17 AUG 94 19 AUG 94 17 AUG 94 19 AUG 94
Iron	57800	mg/kg	14.4	6010 6010	17 AUG 94 19 AUG 94 17 AUG 94 19 AUG 94
Lead	9400	mg/kg	7.2 72.1	6010	17 AUG 94 19 AUG 94 17 AUG 94 19 AUG 94
Magnesium	3770	mg/kg	1.4	6010	17 AUG 94 19 AUG 94 17 AUG 94 19 AUG 94
Manganese	721	mg/kg	0.14	7471	17 AUG 94 17 AUG 94
Mercury	1.4 101	mg/kg	5.8	6010	17 AUG 94 19 AUG 94
Nickel Potassium	843	mg/kg mg/kg	721	6010	17 AUG 94 19 AUG 94
Selenium	1.8	mg/kg	0.72	7740	17 AUG 94 26 AUG 94
Silver	24.7	mg/kg	1.4	6010	17 AUG 94 19 AUG 94
Sodium	ND ND	mg/kg	721	6010	17 AUG 94 19 AUG 94
Thallium	ND	mg/kg	0.72	7841	17 AUG 94 25 AUG 94
Vanadium	109	mg/kg	1.4	6010	17 AUG 94 19 AUG 94
Zinc	3260	mg/kg	2.9	6010	17 AUG 94 19 AUG 94
		57.05			

Percent moisture is 31%. All results and limits are reported on a dry weight basis.

S = Reported value determined by method of standard addition. ND = Not Detected

Approved By: Doug Dugan Reported By: Michael Lifton

A44.E, p.30

#### Total Metals

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA11 035869-0003-SA SOIL	Samp Recei	led: 12 AUG	94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	2620 1680 3.2 1370 ND 296000 101 ND 204 8000 4260 6180 133 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg mgg/kgg mgg/kgg mgg/kgg/kkg mgg/kgg/kkg mgg/kgg/kgg mgg/kgg mgg/kgg mgg/kg mgg/kg mgg/kg	128 63.8 0.64 12.8 2.6 6.4 638 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.	6010 6010 7060 6010 6010 6010 6010 6010	17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG       94         17       AUG       94       19       AUG

Percent moisture is 22%. All results and limits are reported on a dry weight basis.

W = Post-digestion spike for furnace AA out of control limits while sample absorbance less than 50% of spike absorbance.
ND = Not Detected

Reported By: Michael Lifton

į

Approved By: Doug Dugan

AH. E, p. 31

Total Metals

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA12 035869-0004-SA SOIL	Samp Recei	orporation led: 12 AUG ved: 12 AUG zed: 15 AUG	94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	12800 55.9 6.1 242 9.1 23.5 5390 450 26.8 2410 53800 564 4910 580 0.31 703 1130 ND 5.3 ND ND 5.3 ND ND 60.3 2020	mgg/kg mgg/kg mgg/kg mgg/kg mgg/kg mgg/kkg mgg/kkg mgg/kkg mgg/kkg mgg/kg mgg/kg mg/kg mg/kg	$ \begin{array}{c} 11.5\\ 5.7\\ 0.57\\ 1.1\\ 0.23\\ 0.57\\ 57.5\\ 1.1\\ 1.1\\ 1.1\\ 1.5\\ 5.7\\ 57.5\\ 1.1\\ 0.11\\ 4.6\\ 575\\ 0.57\\ 1.1\\ 575\\ 0.57\\ 1.1\\ 2.3\\ \end{array} $	6010 6010 7060 6010 6010 6010 6010 6010	17AUG9419AUG9417AUG949419AUG9417AUG949419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417AUG9419AUG9417

Percent moisture is 13%. All results and limits are reported on a dry weight basis.

ND = Not Detected

ł

Reported By: Michael Lifton Approved By: Doug Dugan

AH.E. p. 32

nseco

いられつ

S

#### Total Metals

Client Name:	International T 2BK-S-HA13	echnology C	orporation		
Client ID: Lab ID:	035869-0005-SA	Samo	led: 12 AUG	94	
Matrix:	SOIL	Recei		94	
Mate IX.	JU12		zed: 15 AUG		
		DRY WEIGHT		Analytical	Prepared Analyzed
Parameter	Result	Units	Limit	Method	Date Date
Aluminum	16800	mg/kg	134	6010	17 AUG 94 19 AUG 94
Antimony	1550	mg/kg	66.8	6010	17 AUG 94 19 AUG 94
Arsenic	14.3	mg/kg	2.7	7060	17 AUG 94 25 AUG 94
Barium	4070	mg/kg	13.4	6010	17 AUG 94 19 AUG 94
Beryllium	ND	mg/kg	2.7	6010	17 AUG 94 19 AUG 94
Cadmium	89.2	mg/kg	6.7	6010	17 AUG 94 19 AUG 94
Calcium	82800	mg/kg	668	6010	17 AUG 94 19 AUG 94
Chromium	1270	mg/kg	13.4	6010	17 AUG 94 19 AUG 94
Cobalt	31.7	mg/kg	13.4	6010	17 AUG 94 19 AUG 94
Copper	2030	mg/kg	13.4	6010	17 AUG 94 19 AUG 94
Iron	202000	mg/kg	134	6010	17 AUG 94 19 AUG 94
Lead	6520	mg/kg	66.8	6010	17 AUG 94 19 AUG 94
Magnesium	45300	mg/kg	668	6010	17 AUG 94 19 AUG 94
Manganese	1600	mg/kg	13.4	6010	17 AUG 94 19 AUG 94
Mercury	1.3	mg/kg	0.13	7471	17 AUG 94 17 AUG 94 17 AUG 94 19 AUG 94
Nickel	1330	mg/kg	53.4	6010	17 AUG 94 19 AUG 94 17 AUG 94 19 AUG 94
Potassium	ND	mg/kg	6680	6010 7740	17 AUG 94 19 AUG 94 17 AUG 94 26 AUG 94
Selenium	6.7	mg/kg	0.67		
Silver	ND	mg/kg	13.4	6010 6010	
Sodium	ND	mg/kg	6680	6010	17 AUG 94 19 AUG 94 17 AUG 94 25 AUG 94
Thallium	ND	mg/kg	0.67	7841	17 AUG 94 25 AUG 94 17 AUG 94 19 AUG 94
Vanadium	280	mg/kg	13.4	6010 6010	17 AUG 94 19 AUG 94 17 AUG 94 19 AUG 94
Zinc	2730	mg/kg	26.7	6010	17 AUG 94 19 AUG 94

Percent moisture is 25%. All results and limits are reported on a dry weight basis.

S = Reported value determined by method of standard addition. ND = Not Detected ,

Reported By: Michael Lifton

Approved By: Doug Dugan

AH.E. p.33

General Chemistry

Client Name: Client ID:	International Technology Corporation 2BK-S-HA10					
Lab ID:	035869-0002-SA SOIL		led: 12 AUG			
Matrix:	301L		ved: 12 AUG zed: 15 AUG			
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date	
Cyanide, Tota	al 2.5	mg/kg	0.72	9010	25 AUG 94 25 AUG 94	

Percent moisture is 31%. All results and limits are reported on a dry weight basis.

Reported By: Deborah Kay

Approved By: Debra Brown

AH.E. p.34

Enseco

General Chemistry

Client Name: Client ID:	International Technology Corporation 2BK-S-HA11					
Lab ID: Matrix:	035869-0003-SA SOIL	Receiv	led: 12 AUG ved: 12 AUG	94		
ina.		AUTHOFIE	zed: 15 AUG	94		
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date	
Cyanide, Tota	al 5.1	mg/kg	0.64	9010	25 AUG 94 25 AUG 94	

Percent moisture is 22%. All results and limits are reported on a dry weight basis.

Reported By: Deborah Kay

Approved By: Debra Brown

General Chemistry

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA12 035869-0004-SA SOIL	Samp Recei	orporation led: 12 AUG ved: 12 AUG zed: 15 AUG	94	
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Cyanide, Tota	al 0.72	mg/kg	0.57	9010	25 AUG 94 25 AUG 94

Percent moisture is 13%. All results and limits are reported on a dry weight basis.

Reported By: Deborah Kay

Approved By: Debra Brown

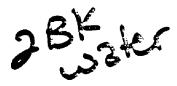
AH. F. p. 36

INSECO

General Chemistry

Client Name: Client ID: Lab ID: Matrix:	International T 2BK-S-HA13 035869-0005-SA SOIL	Technology Corporation A Sampled: 12 AUG 94 Received: 12 AUG 94 Authorized: 15 AUG 94				
Parameter	Result	DRY WEIGHT Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date	
Cyanide, Tot	al 0.72	mg/kg	0.67	9010	25 AUG 94 25 AUG 94	,

Percent moisture is 25%. All results and limits are reported on a dry weight basis.


Reported By: Deborah Kay

٠.

Approved By: Debra Brown

AH.E. p. 37

Enseco East





Data Package For International Technology Corporation Enseco-East Project No. 035576

AH. F p.1

Enseco Incorporated 2200 Cottontail Lane Somerset, NJ 08875 2017469-5800 Fax, 2017469-7516

# TCL Volatile Organics

Method 8240

	international Tecl BK-GW-OB1	nnology Corporation		
Lab ID: 0	35576-0001-SA QUEOUS	Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: NA Analyzed: 30 JUL 94
Parameter		Result	Units	Reporting Limit
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene chlor Acetone Carbon disulfic 1,1-Dichloroet 1,1-Dichloroet	ride de hene hane	ND ND ND ND 12 ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 5.0 10 5.0 5.0 5.0 5.0
1,2-Dichloroetl trans) Chloroform 1,2-Dichloroetl 2-Butanone 1,1,1-Trichloro Carbon tetrachl Vinyl Acetate Bromodichlorome 1,2-Dichloropro trans-1,3-Dichlorome 1,1,2-Trichloro Benzene cis-1,3-Dichlor Bromoform 4-Methyl-2-Pent 2-Hexanone 1,1,2,2-Tetrach Tetrachloroethe Toluene Chlorobenzene Ethylbenzene Styrene	hene (cis/ hane bethane loride ethane pane loropropene ethane pethane ropropene tanone	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 5.0\\ 5.0\\ 5.0\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$
NA = Not Applic ND = Not Detect	able ed			

Reported By: Ann Liang

#### TCL Volatile Organics

Client Name: Client ID: Lab ID: Matrix:	International Tech 2BK-GW-OB1 035576-0001-SA AQUEOUS	Method 8240 (cont.) nnology Corporation Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: NA Analyzed: 30 JUL 94
Parameter		Result	Units	Reporting Limit
Xylenes (tot Acrolein Acrylonitril		ND ND ND	ug/L ug/L ug/L	5.0 50 50
Surrogate		Recovery		
Toluene-d8 4-Bromofluoro 1,2-Dichloro		100 101 100	% % %	

NA = Not Applicable ND = Not Detected

Reported By: Ann Liang

Approved By: David Ercoliani

AH. F. p.3

Ensec

# TCL Volatile Organics

Method 8240

		chnology Corporation		
Client ID: Lab ID: Matrix:	2BK-G <b>W-</b> PB1 035576-0002-SA Aqueous	Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: NA Analyzed: 30 JUL 94
Parameter		Result	Units	Reporting Limit
Chloromethane Bromomethane Vinyl Chlorid Chloroethane Methylene chl Acetone Carbon disulf 1,1-Dichloroe 1,2-Dichloroe trans) Chloroform 1,2-Dichloroe 2-Butanone 1,1,1-Trichlo Carbon tetrac Vinyl Acetate Bromodichloro 1,2-Dichlorop trans-1,3-Dic Trichloroethe Dibromochloro 1,1,2-Trichlo Benzene cis-1,3-Dichl Bromoform 4-Methyl-2-Per 2-Hexanone 1,1,2,2-Tetrad Tetrachloroeth Toluene Chlorobenzene Ethylbenzene Styrene	ie foride fide thene thane thene (cis/ thane roethane hloride methane ropane hloropropene ne methane roethane thoropropene ntanone chloroethane hene	ND ND ND ND ND 21 ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$     \begin{array}{c}       10 \\       10 \\       10 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0 \\       5.0$
NA = Not Appl ND = Not Detec	icable cted			

Reported By: Ann Liang

# TCL Volatile Organics

Client ID: Lab ID:	International Tech 2BK-GW-PB1 035576-0002-SA AQUEOUS	Method 8240 (cont.) nnology Corporation Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: NA Analyzed: 30 JUL 94
Parameter		Result	Units	Reporting Limit
Xylenes (tota Acrolein Acrylonitrile		ND ND ND	ug/L ug/L ug/L	5.0 50 50
Surrogate	x.	Recovery		
Toluene-d8 4-Bromofluoro 1,2-Dichloroe		100 101 101	% % %	

NA = Not Applicable ND = Not Detected

.

Reported By: Ann Liang

#### TCL Volatile Organics

Method 8240

		chnology Corporation		
Client ID: 2BK-TB-0726 Lab ID: 035576-0003-TE Matrix: AQUEOUS		Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: NA Analyzed: 30 JUL 94
Parameter		Result	Units	Reporting Limit
Chloromethane Bromomethane Vinyl Chlorid Chloroethane Methylene chi Acetone Carbon disulf 1,1-Dichloroe 1,2-Dichloroe trans) Chloroform 1,2-Dichloroe 2-Butanone 1,1,1-Trichlo Carbon tetrac Vinyl Acetate Bromodichloro 1,2-Dichlorop trans-1,3-Dic Trichloroethe Dibromochloro 1,1,2-Trichlo Benzene cis-1,3-Dichl Bromoform 4-Methyl-2-Pe 2-Hexanone 1,1,2,2-Tetra Tetrachloroet Toluene Chlorobenzene Ethylbenzene Styrene	de loride fide ethene ethane ethane thene (cis/ ethane proethane hloride methane ropane hloropropene ne methane roethane oropropene ntanone chloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$ \begin{array}{c} 10\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$
NA = Not Appl ND = Not Dete	icable cted		-3/2	

Reported By: Ann Liang

ŧ

• • •

#### TCL Volatile Organics

	International Tec 2BK-TB-0726 035576-0003-TB AQUEOUS	Method 8240 (cont.) hnology Corporation Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	. 94	Prepared: NA Analyzed: 30 JUL 94
Parameter		Result	Units	Reporting Limit
Xylenes (tot Acrolein Acrylonitril	•	ND ADDED ADDED	ug/L - ug/L - ug/L	5.0
Surrogate		Recovery		
Toluene-d8 4-Bromofluore 1,2-Dichlore		101 101 98	% % %	

NA = Not Applicable ND = Not Detected

Reported By: Ann Liang

Volatiles Library Search (10 Compound TID)

Method 8240

Client Name: Client ID:	International 1 2BK-TB-0726	Technology Corpor	ration			
Lab ID: Matrix:	035576-0003-TB Aqueous	Sampled: Received: Authorized:	27 JUL	94	Prepared: Analyzed:	

Parameter

÷ х.

Result Units

Reporting Limit

No compounds reported

NA = Not Applicable Reported By: Ann Liang

Enseco

#### Method 8270

		chnology Corporation	ו	
Client ID: Lab ID: Matrix:	2BK-GW-0B1 035576-0001-SA AQUEOUS	Sampled: 26 JL Received: 27 JU Authorized: 27 JU	JL 94	Prepared: 29 JUL 94 Analyzed: 05 AUG 94
Parameter		Result	Units	Reporting Limit
Phenol bis(2-Chloroe 2-Chloropheno 1,3-Dichlorot 1,4-Dichlorot 1,2-Dichlorot 2-Methylpheno bis(2-Chloroi ether 4-Methylpheno N-Nitroso-di- propylamine Hexachloroeth Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylp bis(2-Chloroe methane 2,4-Dichlorop 1,2,4-Trichlo Naphthalene 4-Chloroanili Hexachlorobut 4-Chloro-3-me 2-Methylnapht	henol thoxy)- henol robenzene henol thoxy)- henol robenzene ne adiene thylphenol halene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10 10 10
pentadiene 2,4,6-Trichlo 2,4,5-Trichlo 2-Chloronapht 2-Nitroaniline Dimethyl phth Acenaphthylene 3-Nitroaniline ND = Not Deter	rophenol rophenol halene alate e e	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 50 10 50 10 10 50
Reported By:	Leonard Dikun	Approved	By: Debr	a Cutler

.

# TCL Semivolatile Organics

Client Name: Client ID:	International 7 2BK-GW-OB1	Method 8270 (cont.) echnology Corporation		
Lab ID: Matrix:	035576-0001-SA AQUEOUS	Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: 29 JUL 94 Analyzed: 05 AUG 94
Parameter		Result	Units	Reporting Limit
Acenaphthene 2,4-Dinitroph 4-Nitrophenol Dibenzofuran 2,4-Dinitroto 2,6-Dinitroto Diethyl phtha	luene luene late	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 50 50 10 10 10 10
4-Chloropheny ether Fluorene 4-Nitroanilin 4,6-Dinitro-2	e	ND ND ND	ug/L ug/L ug/L	10 10 50
methylpheno N-Nitrosodiph 4-Bromophenyl	enylamine	ND ND	ug/L ug/L	50 10
ether Hexachloroben Pentachloroph Phenanthrene	zene	ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 50 10
Anthracene Di-n-butyl ph Fluoranthene Pyrene		ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10
Butyl benzyl 3,3'-Dichloro Benzo(a)anthra bis(2-Ethylhe	benzidine acene	ND ND ND	ug/L ug/L ug/L	10 20 10
phthalate Chrysene Di-n-octyl phi Benzo(b)fluori Benzo(k)fluori	anthene	ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10
Benzo(k)fluor; Benzo(a)pyrene Indeno(1,2,3-c Dibenz(a,h)ant	e cd)pyrene	ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10
ND = Not Detec	ted			

Reported By: Leonard Dikun

.

÷.,

Approved By: Debra Cutler

# TCL Semivolatile Organics

Client ID:	2BK-GW-OB1	Method 8270 (cont.) hnology Corporation		
Lab ID: Matrix:	035576-0001-SA AQUEOUS	Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: 29 JUL 94 Analyzed: 05 AUG 94
Parameter		Result	Units	Reporting Limit
Benzo(g,h,i)	perylene	ND	ug/L	10
Surrogate		Recovery		
Nitrobenzene- 2-Fluorobiphe Terphenyl-dl4 Phenol-d5 2-Fluorophene 2,4,6-Tribrom	enyl 4 ol	61 69 65 60 53 67	* * * * *	

ND = Not Detected

Reported By: Leonard Dikun

,

Approved By: Debra Cutler

AH. F. p.II

Method 8270

	International Tec	hnology Corporation		
Client ID:	28K-GW-PB1 035576-0002-SA	Sampled: 26 JUL	04	
Lab ID: Matrix:	AQUEOUS	Received: 27 JUL	94	Prepared: 29 JUL 94
Hatt IA.	NUCCOU	Authorized: 27 JUL	94	Analyzed: 05 AUG 94
Parameter		Result	Units	Reporting Limit
			011705	
Phenol	41	ND	ug/L	10
bis(2-Chloro		ND ND	ug/L	10 10
2-Chlorophen 1,3-Dichlorol		ND	ug/L ug/L	10
1,4-Dichlorol		ND	ug/L	10
1,2-Dichlorol		ND	ug/L	10
2-Methylphend		ND	ug/L	10
bis(2-Chloro	isopropyl)	NB	dg/L	10
ether		ND	ug/L	10
4-Methylphend	51	ND	ug/L	10
N-Nitroso-di-	-n-		2,	_
propylamine	2	ND	ug/L	10
Hexachloroeth	nane	ND	ug/L	10
Nitrobenzene		ND	ug/L	10
Isophorone		ND	ug/L	10
2-Nitrophenol		ND	ug/L	10
2,4-Dimethylp		ND	ug/L	10
bis(2-Chloroe	ethoxy)-			
methane		ND	ug/L	10
2,4-Dichlorop		ND	ug/L	10
1,2,4-Trichlo	probenzene	ND	ug/L	10
Naphthalene		ND	ug/L	10
4-Chloroanili		ND	ug/L	10
Hexachlorobut		ND	ug/L	10
4-Chloro-3-me		ND	ug/L	10
2-Methylnapht Hexachlorocyc		ND	ug/L	10
pentadiene		ND	ug /l	10
2,4,6-Trichlo	ronhenol	ND	ug/L	10 10
2,4,5-Trichlo		ND	ug/L ug/L	50
2-Chloronapht	halene	ND	ug/L	10
2-Nitroanilin		ND	ug/L	50
Dimethyl phth		ND	ug/L	10
Acenaphthylen	e	ND	ug/L	10
3-Nitroanilin	e	ND	ug/L	50
ND = Not Dete	cted			
Reported By:	Leonard Dikun	Approved [	By: Debra	Cutler

۰.

.

Enseco

Client Name: Client ID:	International 2BK-GW-PB1	Method 8270 (cont.) Technology Corporation			
Lab ID: Matrix:	035576-0002-SA AQUEOUS	Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: 29 Analyzed: 05	
Parameter		Result	Units	Reporting Limit	
Acenaphthene 2,4-Dinitroph 4-Nitrophenol Dibenzofuran 2,4-Dinitroto 2,6-Dinitroto Diethyl phtha 4-Chloropheny ether Fluorene 4-Nitroanilin 4,6-Dinitro-2 methylpheno N-Nitrosodiph 4-Bromophenyl ether Hexachloroben Pentachloroben Pentachloroben Phenanthrene Di-n-butyl ph Fluoranthene Pyrene Butyl benzyl 3,3'-Dichloro Benzo(a)anthr bis(2-Ethylhe phthalate Chrysene Di-n-octyl ph Benzo(b)fluor Benzo(a)nyren	pluene pluene late late late l phenyl enylamine phenyl zene enol thalate benzidine acene xyl) thalate anthene anthene		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 50 50 10 10 10 10 10 10 50 50 10 10 10 10 10 10 10 10 10 1	
Benzo(a)pyren Indeno(1,2,3- Dibenz(a,h)an	cd)pyrene	ND ND ND	ug/L ug/L ug/L	10 10 10	
ND = Not Dete	cted		-		
Reported By:	Leonard Dikun	Approved B	v. Dohra	futler	

Reported By: Leonard Dikun

Approved By: Debra Cutler

		Method 8270 (cont.) hnology Corporation			
Client ID: Lab ID: Matrix:	2BK-GW-PB1 035576-0002-SA AQUEOUS	Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: 29 Analyzed: 05	
Parameter		Result	Units	Reporting Limit	
Benzo(g,h,i)	perylene	ND	ug/L	10	
Surrogate		Recovery			
Nitrobenzene 2-Fluorobipho Terphenyl-dl Phenol-d5 2-Fluoropheno 2,4,6-Tribror	enyl 4 ol	60 73 69 60 49 104	* * * * * *		

ND = Not Detected

Reported By: Leonard Dikun

Approved By: Debra Cutler

AH.F. p.14

Enseco

#### Method 8270

Client Name: Client ID:	International Tech 2BK-GW-OB1	hnology Corporation			
Lab ID: Matrix:	035576-0001-SA AQUEOUS	Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: 29 JUL Analyzed: 05 AUG	
Parameter		Result	Units	Reporting Limit	
Phenol bis(2-Chlorod 2-Chlorophend 1,3-Dichlorod 1,4-Dichlorod 1,2-Dichlorod 2-Methylphend bis(2-Chlorod	ol penzene penzene penzene pl	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10	
ether 4-Methylpheno N-Nitroso-di-	5]	ND ND	ug/L ug/L	10 10	
propylamine Hexachloroeth Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylp	e iane ohenol	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10	
bis(2-Chloroe methane 2,4-Dichlorop 1,2,4-Trichlo Naphthalene 4-Chloroanili Hexachlorobut 4-Chloro-3-me 2-Methylnapht	ne adiene thylphenol	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10 10	
Hexachlorocyc pentadiene 2,4,6-Trichlo 2,4,5-Trichlo 2-Chloronapht 2-Nitroanilin Dimethyl phth Acenaphthylen 3-Nitroanilin	lo- rophenol rophenol halene e alate e	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 50 10 50 10 10 50	
ND = Not Dete	cted				
Reported By:	Leonard Dikun	Approved B	y: Debra	a Cutler	

.

Enseco omina

			3-					
		Method 82						
Clinet Names		(cont.)	) • • • • • • •					
	International Tec	innology corpora	ation					
Client ID:	2BK-GW-OB1	<b>•</b> • • •		~ 4				
Lab ID:	035576-0001-SA	_Sampled: 2			<b>_</b> .		••••	
Matrix:	AQUEOUS	Received: 2			Prepared:			
	-	Authorized: 2	27 JUL	94	Analyzed:	05	AUG	94
164								
					Reporti	ng		
Parameter		Resu	ilt	Units	Limit			
Acenaphthene		ND		ug/L	10			
2,4-Dinitroph		ND	)	ug/L	50			
4-Nitrophenol		ND	)	ug/L	50			
Dibenzofuran		ND	)	ug/L	10			
2,4-Dinitroto	luene	ND	È i	ug/L	10			
2,6-Dinitroto	luene	ND	•	ug/L	10			
Diethyl phtha		ND		ug/L	10			
4-Chloropheny				~3/ -	••			
ether	· • • • • • •	ND		ug/L	10			
Fluorene		ND		ug/L	iŏ			
4-Nitroanilin	e	ND		ug/L	50			
4,6-Dinitro-2				ug/c	50			
methylpheno		ND		ua /I	50			
N-Nitrosodiph		ND		ug/L	10			
4-Bromophenyl		NU		ug/L	10			
ether	phenyi	ND		ug /1	10			
Hexachloroben	7000	ND		ug/L				
Pentachloroph				ug/L	10			
Phenanthrene	enor	ND		ug/L	50			
Anthracene		ND		ug/L	10			
	*	ND		ug/L	10			
Di-n-butyl ph	indiale	ND		ug/L	10			
Fluoranthene		ND		ug/L	10			
Pyrene		ND		ug/L	10			
Butyl benzyl		ND		ug/L	10			
3,3'-Dichloro		ND		ug/L	20			
Benzo(a)anthra	acene	ND		ug/L	10			
bis(2-Ethylhe	xy1}			-				
phthalate		ND		ug/L	10			
Chrysene		ND		ug/L	10			
Di-n-octyl phi	thalate	ND		ug/L	10			
Benzo(b)fluora		ND		ug/L	10			
<pre>Benzo(k)fluora</pre>		ND		ug/L	ĩõ			
Benzo(a)pyrene	2	ND		ug/L	10			
Indeno(1,2,3-0	cd)pyrene	ND		ug/L	10			
Dibenz(a,h)ant		ND		ug/L	10			
				-3/ 5	10			
ND = Not Detec	ted							

Reported By: Leonard Dikun

Approved By: Debra Cutler

.

.

# TCL Semivolatile Organics

Client Name: Client ID: Lab ID: Matrix:	International Tec 2BK-GW-OB1 035576-0001-SA AQUEOUS	Method 8270 (cont.) hnology Corporation Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: 29 JUL 94 Analyzed: 05 AUG 94
Parameter		Result	Units	Reporting Limit
Benzo(g,h,i);	perylene	ND	ug/L	10
Surrogate		Recovery		
Nitrobenzene- 2-Fluorobiphe Terphenyl-dl4 Phenol-d5 2-Fluorophenc 2,4,6-Tribrom	enyl J	61 69 65 60 53 67	% % % % % % % % % %	

2-Fluorophenol 2,4,6-Tribromophenol

ND = Not Detected

Reported By: Leonard Dikun

Approved By: Debra Cutler

Att. F, p. 17

ļ

# TCL Semivolatile Organics

Method 8270

		echnology Corporation		
Client ID: Lab ID: Matrix:	2BK-GW-PB1 035576-0002-SA AQUEOUS	Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: 29 JUL 94 Analyzed: 05 AUG 94
Parameter		Result	Units	Reporting Limit
Phenol bis(2-Chloroe 2-Chloropheno 1,3-Dichlorob 1,4-Dichlorob 1,2-Dichlorob 2-Methylpheno bis(2-Chloroi ether	ol penzene penzene penzene ]	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10 10
4-Methylpheno N-Nitroso-di-		ND ND	ug/L ug/L	10 10
propylamine Hexachloroeth Nitrobenzene Isophorone		NÐ ND ND ND	ug/L ug/L ug/L ug/L	10 10 10 10
2-Nitrophenol 2,4-Dimethylp bis(2-Chloroe	heno] thoxy)-	ND ND	ug/L ug/L	10 10
methane 2,4-Dichlorop 1,2,4-Trichlo	henol	ND ND ND	ug/L ug/L ug/L	10 10 10
Naphthalene 4-Chloroanili Hexachlorobut	adiene	ND ND ND	ug/L ug/L ug/L	10 - 10 - 10
4-Chloro-3-me 2-Methylnapht Hexachlorocyc	halene	ND ND	ug/L ug/L	10 10
pentadiene 2,4,6-Trichlou 2,4,5-Trichlou 2-Chloronapht	rophenol	ND ND ND ND	ug/L ug/L ug/L ug/L	10 10 50 10
2-Nitroaniline Dimethyl phtha Acenaphthylene 3-Nitroaniline	alate e	ND ND ND ND	ug/L ug/L ug/L ug/L	50 10 10 50
ND = Not Detec	ted		-3/ -	
Penanted Ry.	Loopand Dilum		<b>-</b> .	

Reported By: Leonard Dikun

.

Approved By: Debra Cutler

Enseco A Coming Compar

# TCL Semivolatile Organics

ParameterResultUnitsLimitAcenaphtheneNDug/L102,4-DinitrophenolNDug/L504-NitrophenolNDug/L502,4-DinitrotolueneNDug/L102,4-DinitrotolueneNDug/L102,4-DinitrotolueneNDug/L102,4-DinitrotolueneNDug/L104-Chlorophenyl phthalateNDug/L104-Chlorophenyl phenylNDug/L10etherNDug/L104-NitroanilineNDug/L50A,5-Dinitro-2-NDug/L10methylphenolNDug/L10-A-Bromophenyl phenylNDug/L10etherNDug/L10PentachlorobenzeneNDug/L10PhenanthreneNDug/L10Di-n-butyl phthalateNDug/L10Di-n-butyl phthalateNDug/L10Butyl benzyl phthalateNDug/L10Di-n-ottyl phthalateNDug/L10bis(2-Ethylhexyl)NDug/L10Di-n-ottyl phthalateNDug/L10Di-n-ottyl phthalateNDug/L10Di-n-ottyl phthalateNDug/L10Di-nottyl phthalateNDug/L10Di-nottyl phthalateNDug/L10Di-nottyl phthalateNDug/L10	Client Name: Client ID: Lab ID: Matrix:	International 1 2BK-GW-PB1 035576-0002-SA AQUEOUS	Method 8270 (cont.) Technology Corporation Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: 29 JUL 94 Analyzed: 05 AUG 94
2.4-DinitrophenolNDug/L504-NitrophenolNDug/L102.4-DinitrotolueneNDug/L102.4-DinitrotolueneNDug/L102.6-DinitrotolueneNDug/L102.6-DinitrotolueneNDug/L102.6-DinitrotolueneNDug/L102.6-DinitrotolueneNDug/L102.6-DinitrotolueneNDug/L104-Chlorophenyl phenylnoug/L10etherNDug/L504.6-Dinitro-2-methylphenolNDug/LmethylphenolNDug/L104-Bromophenyl phenyletherNDug/LetherNDug/L10PentachlorophenolNDug/L10PhenanthreneNDug/L10Di-n-butyl phthalateNDug/L10Di-n-butyl phthalateNDug/L10Butyl benzyl phthalateNDug/L10Butyl benzyl phthalateNDug/L10bis(2-Ethylhexyl)noug/L10phthalateNDug/L10Di-n-octyl phthalateNDug/L10Benzo(a)pyreneNDug/L10Benzo(k)fluorantheneNDug/L10Dibenz(k,fluorantheneNDug/L10Dibenz(k,fluorantheneNDug/L10Dibenz(k,fluorantheneNDug/L10 <td>Parameter</td> <td></td> <td>Result</td> <td>Units</td> <td></td>	Parameter		Result	Units	
etherNDug/L10FluoreneNDug/L104-NitroanilineNDug/L504,6-Dinitro-2- methylphenolNDug/L50N-NitrosodiphenylamineNDug/L104-Bromophenyl phenyl etherNDug/L10HexachlorobenzeneNDug/L10PentachlorophenolNDug/L10PhenanthreneNDug/L10AnthraceneNDug/L10Di-n-butyl phthalateNDug/L10PyreneNDug/L10Butyl benzyl phthalateNDug/L10J.3'-DichlorobenzidineNDug/L10Benzo(a) anthraceneNDug/L10Di-n-octyl phthalateNDug/L10Di-n-octyl phthalateNDug/L10Benzo(b) fluorantheneNDug/L10Benzo(k) fluorantheneNDug/L10Benzo(k) fluorantheneNDug/L10Benzo(k) fluorantheneNDug/L10Benzo(k) fluorantheneNDug/L10Benzo(k) fluorantheneNDug/L10NDug/L1010Benzo(k) fluorantheneNDug/L10NDug/L1010Benzo(k) fluorantheneNDug/L10NDug/L1010Benzo(k) fluorantheneNDug/L10ND<	2,4-Dinitrop 4-Nitrophenol Dibenzofuran 2,4-Dinitroto 2,6-Dinitroto Diethyl phtha	luene luene late	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	50 50 10 10 10
N-NitrosodiphenylamineNDug/L104-Bromophenyl phenyl etherNDug/L10HexachlorobenzeneNDug/L10PentachlorophenolNDug/L50PhenanthreneNDug/L10Di-n-butyl phthalateNDug/L10FluorantheneNDug/L10PyreneNDug/L10Butyl benzyl phthalateNDug/L10Butyl benzyl phthalateNDug/L10Butyl benzyl phthalateNDug/L10Bonzo(a) anthraceneNDug/L10bis(2-Ethylhexyl)nug/L10phthalateNDug/L10Di-n-octyl phthalateNDug/L10Benzo(k) fluorantheneNDug/L10Benzo(k) fluorantheneNDug/L10Benzo(a) pyreneNDug/L10Dibenz(a,h) anthraceneNDug/L10NDNDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10ND	ether Fluorene 4-Nitroanilin	e	ND	ug/L	10
etherNDug/L10HexachlorobenzeneNDug/L10PentachlorobenolNDug/L10PhenanthreneNDug/L10AnthraceneNDug/L10Di-n-butyl phthalateNDug/L10FluorantheneNDug/L10PyreneNDug/L10Butyl benzyl phthalateNDug/L10S,3'-DichlorobenzidineNDug/L10Benzo(a) anthraceneNDug/L10bis (2-Ethylhexyl)noug/L10phthalateNDug/L10Benzo(b) fluorantheneNDug/L10Benzo(k) fluorantheneNDug/L10Benzo(a) pyreneNDug/L10Benzo(a) pyreneNDug/L10Benzo(a) pyreneNDug/L10Benzo(a) pyreneNDug/L10NDug/L1010Benzo(a) pyreneNDug/L10NDug/L1010NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10NDug/L10<	methylpheno N-Nitrosodiph	l enylamine			
bis(2-Ethylhexyl) phthalateNDug/L10ChryseneNDug/L10Di-n-octyl phthalateNDug/L10Benzo(b)fluorantheneNDug/L10Benzo(k)fluorantheneNDug/L10Benzo(a)pyreneNDug/L10Indeno(1,2,3-cd)pyreneNDug/L10Dibenz(a,h)anthraceneNDug/L10ND = Not DetectedNDug/L10	ether Hexachloroben Pentachloroph Phenanthrene Anthracene Di-n-butyl ph Fluoranthene Pyrene Butyl benzyl 3,3'-Dichloro	zene enol thalate phthalate penzidine	ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 50 10 10 10 10 10 10 20
	bis(2-Ethylhe: phthalate Chrysene Di-n-octyl phi Benzo(b)fluor: Benzo(k)fluor: Benzo(a)pyrene Indeno(1,2,3-c Dibenz(a,h)ani	kyl) thalate anthene anthene cd)pyrene chracene	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 10 10 10 10 10
			Approved B	y: Debra	Cutler

ł

Enseco

## TCL Semivolatile Organics

Client Name: Client ID: Lab ID: Matrix:	International Tec 2BK-GW-PB1 035576-0002-SA AQUEOUS	Method 8270 (cont.) hnology Corporation Sampled: 26 JUI Received: 27 JUI Authorized: 27 JUI	. 94	Prepared: 29 JUL 94 Analyzed: 05 AUG 94
		Authorized: 27 Jul	. 94	Analyzeu: 05 AUG 94
Parameter		Result	Units	Reporting Limit
Benzo(g,h,i)	peryl <b>ene</b>	ND	ug/L	10
Surrogate		Recovery	,	
Nitrobenzene 2-Fluorobiph Terphenyl-dl Phenol-d5 2-Fluorophen 2,4,6-Tribro	enyl 4 ol	60 73 69 60 49 104	* * * * *	

ND = Not Detected

• •-••

Reported By: Leonard Dikun

Approved By: Debra Cutler

Att. F. p. 20

Enseco A comine company

# TCL Organochlorine Pesticides/PCBs

### Method 8080

	International Tec 2BK-GW-OB1	hnology Corporation		
Client ID: Lab ID: Matrix:	035576-0001-SA AQUEOUS	Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: 29 JUL 94 Analyzed: 04 AUG 94
Parameter		Result	Units	Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Li Heptachlor Aldrin Heptachlor ep Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan su 4,4'-DDD Endosulfan su 4,4'-DDD Endosulfan su 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1254 Aroclor 1260	ooxide		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1
Surrogate		Recovery		
Tetrachloro-m (TCX) Decachlorobip	-	84.6 76.0	% %	

ND = Not Detected

Reported By: Shanthi Damarapu

Enseco

# TCL Organochlorine Pesticides/PCBs

## Method 8080

Client Name: Client ID:	International Te 2BK-GW-PB1	chnology Corporation		
Lab ID: Matrix:	035576-0002-SA AQUEOUS	Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: 29 JUL 94 Analyzed: 04 AUG 94
				Reporting
Parameter		Result	Units	Limit
alpha-BHC beta-BHC		ND ND	ug/L ug/L	0.050 0.050
delta-BHC		ND	ug/L	0.050
gamma-BHC (Li Heptachlor	ndane)	ND ND	ug/L	0.050 0.050
Aldrin		ND	ug/L ug/L	0.050
Heptachlor ep	oxide	ND	ug/L	0.050
Endosulfan I Dieldrin		ND	ug/L	0.050
4,4'-DDE		ND ND	ug/L ug/L	0.10 0.10
Endrin		ND	ug/L	0.10
Endosulfan II		ND	ug/L	0.10
4,4'-DDD Endosulfan su	15.+.	ND	ug/L	0.10
4,4'-DDT	ITALE	ND ND	ug/L	0.10 0.10
Endrin ketone		ND	ug/L ug/L	0.10
Methoxychlor		ND	ug/L	0.50
Chlordane		ND	ug/L	0.50
Toxaphene		ND	ug/L	1.0
Aroclor 1016 Aroclor 1221		ND	ug/L	0.50
Aroclor 1221		ND ND	ug/L	0.50
Aroclor 1242		ND	ug/L ug/L	0.50
Aroclor 1248		ND	ug/L	0.50
Aroclor 1254		ND	ug/L	1.0
Aroclor 1260		ND	ug/L	1.0
Surrogate		Recovery		
Tetrachloro-m-	-xylene			
(TCX)	-	87.6	%	
Decachlorobip	neny I	81.0	%	

ND = Not Detected

i

Reported By: Shanthi Damarapu

# TCL Organochlorine Pesticides/PCBs

## Method 8080

	International Tech 2BK-GW-OB1	hnology Corporation		
Client ID: Lab ID: Matrix:	035576-0001-SA AQUEOUS	Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: 29 JUL 94 Analyzed: 04 AUG 94
Parameter		Result	Units	Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Li Heptachlor Aldrin Heptachlor ep Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDT Endosulfan su 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1248 Aroclor 1260	boxide I Ilfate		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.050\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ $
Surrogate		Recovery		
Tetrachloro-m (TCX) Decachlorobip	-	84.6 76.0	% %	

ND = Not Detected

è

Reported By: Shanthi Damarapu

Enseco

# TCL Organochlorine Pesticides/PCBs

## Method 8080

Client Name: Client ID:	International Tec 2BK-GW-PB1	hnology Corporation		
Lab ID: Matrix:	035576-0002-SA AQUEOUS	Sampled: 26 JUL Received: 27 JUL Authorized: 27 JUL	94	Prepared: 29 JUL 94 Analyzed: 04 AUG 94
Parameter		Result	Units	Reporting Limit
alpha-BHC beta-BHC delta-BHC gamma-BHC (Li Heptachlor Aldrin Heptachlor ep Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan SU 4,4'-DDT Endosulfan SU 4,4'-DDT Endrin ketone Methoxychlor Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1254 Aroclor 1254	ooxide	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1
Surrogate		Recovery		
Tetrachloro-m (TCX) Decachlorobip	•	87.6 81.0	% %	

ND = Not Detected

, v

Reported By: Shanthi Damarapu

AH.F, p.24

Enseco nur

## Total Metals

Client Name: Client ID: Lab ID: Matrix:	International Tech 2BK-GW-OB1 035576-0001-SA AQUEOUS	San Rece	Corporation pled: 26 JUL ived: 27 JUL ized: 27 JUL	94	
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Analyzed Date Date
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	8.6 ND 0.016 0.42 ND 219 0.027 ND 0.029 33.9 0.11 85.6 1.5	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.10 0.050 0.0050 0.010 0.0020 0.0050 0.50 0.010 0.010 0.010 0.025 0.50 0.010	6010 6010 6010 6010 6010 6010 6010 6010 6010 6010 7421 6010 6010	29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 09 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94
Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	0.00023 ND 25.8 ND ND 290 ND 0.13 0.15	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00020 0.040 5.0 0.0050 0.010 5.0 0.0050 0.010 0.020	7470 6010 6010 7740 6010 6010 7841 6010 6010	06 AUG 94 06 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 10 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 10 AUG 94 29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94

Reported By: Michael Lifton

Approved By: Doug Dugan

Att. F, p. 25

Enseco

## Total Metals

Client Name: Client ID:	International Tec 2BK-GW-PB1	hnology	Corporation		
Lab ID:	035576-0002-SA	Sam	pled: 26 JUL	94	
Matrix:	AQUEOUS	Rece	ived: 27 JUL	94	
	·	Author	ized: 27 JUL	94	
			Reporting	Analytical	Prepared Analyzed
Parameter	Result	Units	Limit	Method	Date Date
Aluminum	0.12	mg/L	0.10	6010	29 JUL 94 01 AUG 94
Antimony	ND	mg/L	0.050	6010	29 JUL 94 01 AUG 94
Arsenic	ND	mg/L	0.0050	7060	29 JUL 94 09 AUG 94
Barium	0.028	mg/L	0.010	6010	29 JUL 94 01 AUG 94
Beryllium	ND	mg/L	0.0020	6010	29 JUL 94 01 AUG 94
Cadmium	ND	mg/L	0.0050	6010	29 JUL 94 01 AUG 94
Calcium	68.2	mg/L	0.50	6010	29 JUL 94 01 AUG 94
Chromium	ND	mg/L	0.010	6010	29 JUL 94 01 AUG 94
Cobalt	ND	mg/L	0.010	6010	29 JUL 94 01 AUG 94
Copper	ND	mg/L	0.010	6010	29 JUL 94 01 AUG 94
Iron	46.2 0.024	mg/L	0.10 0.0050	6010 7421	29 JUL 94 01 AUG 94
Lead	17.2	mg/L	0.50	6010	29 JUL 94 09 AUG 94 29 JUL 94 01 AUG 94
Magnesium	1.1	mg/L	0.010	6010	29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94
Manganese Mercury	ND	mg/L	0.00020		06 AUG 94 06 AUG 94
Nickel	ND ND	mg/L mg/L	0.040	6010	29 JUL 94 01 AUG 94
Potassium	5.5	mg/L	5.0	6010	29 JUL 94 01 AUG 94 29 JUL 94 01 AUG 94
Selenium	ND	mg/L	0.0050	7740	29 JUL 94 10 AUG 94
Silver	ND	mg/L	0.010	6010	29 JUL 94 01 AUG 94
Sodium	57.4	mg/L	5.0	6010	29 JUL 94 01 AUG 94
Thallium	ND	mg/L	0.0050	7841	29 JUL 94 10 AUG 94
Vanadium	ND	mg/L	0.010	6010	29 JUL 94 01 AUG 94
Zinc	0.17	mg/L	0.020	6010	29 JUL 94 01 AUG 94

ND = Not Detected

Reported By: Michael Lifton

Approved By: Doug Dugan

Att. F, p.26

**REFERENCE NO. 11** 

-

	TECHNICAL ASSESSMENT AND	RESPONSE TEAM PROJECT NOTES				
TO: Keegan Landi	DATE: fill file 06/09/97	(Page 1 of 1)				
FROM: K. Campbell	Ø					
SUBJECT:						
Groundwater &	2 Surface Water Use					
	its surrounding communities obtain dri	nking water supplies from sources which are greater than				
four miles from	the site. Groundwater and surface wat	er are not known to be used for drinking water supply				
within four mil	within four miles of the site. The following list presents a summary of the surrounding cities and their					
respective water supply information:						
<u>City/Town</u>	Drinking Water Source	<u>Comments</u>				
Kearny	Wanaque Reservoir	No known private drinking water wells: industrial				
		wells present (Att. A).				
Harrison	Passaic Valley Water Comm.	No known private drinking water wells (Att. A: Ref.				
	······································	No. 8, p. 52).				
Newark	Pequannock Watershed (W. Milford	No known private drinking water wells (Att. B).				
	Twp., Passaic County) and Wanaque	Sources greater than four miles from the site.				
	Reservoir (Ringwood, Passaic County	).				
Bloomfield	City of Newark	No known private drinking water wells (Ref.8, p.52).				
Belleville	City of Newark	No known private drinking water wells (Ref.8, p.52).				
East Newark	Wanaque Reservoir (via Kearny)	No known private drinking water wells (Ref.8, p.52).				
North Arlingto	on Passaic Valley Water Comm.	No known private drinking water wells (Att. C).				
Jersey City	Boonton Reservoir	No known private drinking water wells. Also				
		supplies water to Hoboken/Lyndhurst/West Caldwell				
		United Water Resources operates their system (Att. D).				
Lyndhurst	Boonton Reservoir	Via Jersey City (Att. D).				
Secaucus	United Water Resources	Sources greater than four miles (Atts. E, F).				
Hackensack River watershed; Oradell/Lk. Tappan/Lk. DeForest/Woodcliff Lk. Reservoirs.						

•

.

~

..

TIERRA-A-017735

SUPERFUND TECHNICA	L ASSESSMENT AND RESPO	NSE TEAM TELECON NOTE
CONTROL NO: 02-96-11-0044	DATE. 04/14/97	TIME: 1125
DISTRIBUTION:		
Keegan Landfill file		
BETWEEN	OF	PHONE
Carol (Donnelly) McDonald	Kearny Water Department	(201) 991-2671
AND K. Campbell		
DISCUSSION		
Ms. McDonald confirmed t	hat the City of Kearny receives its	drinking water supply from the Wanaque
Reservoir; the City currently	owns 13% of the reservoir. She st	ated that there are no private drinking water wells.
although industrial wells do e	xist. The City also supplies water	to the community of East Newark. She noted
that East Newark has one indu	ustriàl well (for a cement company	•).
Ms. McDonald stated that t	he City of Harrison receives its dr	inking water supply from the Passaic Valley
Water Commission.	_	
She provided the following	NJDEP contact for water supply	systems in Hudson County:
Br	ian Keune - (609) 292-5550	
Mr. Keune may be able to ass	ist us with county-wide water supp	bly information based on Public Water Supply
ID Numbers.		
	· · ·	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	······································	<u> </u>
· · · · · · · · · · · · · · · · · · ·		
		······································
		· · · · · · · · · · · · · · · · · · ·
ACTION ITEMS:		
· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	

Ref. 11

A++. A

SUPERFUND TECHNIC	AL ASSESSMENT AND RES		TELECON NOTE
CONTROL NO: 02-96-11-0044	DATE: 06/04/97	TIME: 1455	
DISTRIBUTION:			
Keegan Landfill file			
BETWEEN	OF	PHONE	
Anthony DeBarros	Newark -Department of E	ngineering (201):256	-4965
AND			
K. Campbell		· · · · · · · · · · · · · · · · · · ·	
DISCUSSION Mr. DeBarros confirmed	that the City of Newark obtains	its drinking water supply f	rom the Pequannock
watershed (W. Milford Tw	o., Passaic County) and the Wana	ique Reservoir (Ringwood	l, Passaic County). Nearby
surface water bodies, such	as Weequahic Lake and the local	portion of the Passaic Riv	ver. are not utilized for
drinking water supply. The	re are no known private drinking	g water wells: however, gr	oundwater may be used for
industrial purposes.			
The City also maintains a	balancing reservoir in Cedar Gro	ove, which holds water from	om the Pequannock
watershed. The balancing	eservoir tends to be used to allev	iate substantial flow situa	tions (e.g., large-scale
firefighting), although the r	eservoir can be used and is used	for drinking water supply.	······································
			·
	·····		
<u> </u>	······································	- 100	
404 m			
			- ···· · · · · · · · · · · · · · · · ·
		······	
		· · ·	
ACTION ITEMS:		<u> </u>	
			·
······································			<u>``</u>

Ref. 11

	ASSESSMENT AND RESPONSE	
CONTROL NO. 02-96-11-0044	DATE 06/04/97	TIME 1145
DISTRIBUTION		
Keegan Landfill file		
BETWEEN	OF	PHONE
Bob Coup, Water Purveyor	North Arlington Water Utility Servic	ce (201) 955-5665
AND (	······································	
K. Campbell		
DISCUSSION Mr. Coup stated that North 2	Arlington purchases its water in bulk :	from the Passaic Valley Water Commission.
No groundwater is used for m	micipal supply. He is not aware of ar	ny private drinking water wells. In
emergency situations only, the	y may supply water to Lyndhurst.	
(The "Arlington" that appear	s on the USGS quadrangle near North	Arlington is actually considered part of
North Arlington).		
	- <u>\</u>	
	$\mathbf{X}$	
	<u>_</u>	
	$\sim$	<b>N</b>
		<u>\</u>
ACTION ITEMS:		
- 4,		
	•	

F SF. II

1

;

SUPERFUND TECHNICAL A	SSESSMENT AND RESPONSE	
CONTROL NO: 02-96-11-0044	DATE. 06/04/97	TIME 1121
DISTRIBUTION		
Keegan Landfill file		PHONE
BETWEEN: Bob Lorfing, Principal Engineer	OF Jersey City Water Department	(201) 547-4598
AND	Jersey City Water Department	(201) 547-4570
K. Campbell		
DISCUSSION		
Mr. Lorfing confirmed that the	City of Jersey City receives its dr	inking water supply from the Boonton
Reservoir. No groundwater is us	ed for municipal supply. He stated	d that there are no private drinking water wells.
The City also supplies water in b	ulk to the cities of Hoboken, Lynd	hurst, and West Caldwell. In addition, they
have an agreement to sell some w	vater to United Water Resources (U	JWR). The City still owns the distribution
system, while UWR is the operat	DT.	
The two open-air reservoirs vis	ible on the USGS quadrangle for J	ersey City are closed; they are not currently
usable as reservoirs, as the contai	nment walls for both have been br	eached.
No surface water intakes used f	or drinking water are known to ex	ist in the area.
For further information regarding	ng UWR water supplies, he sugges	sted contacting Michael Barnes (UWR).
	<b>X</b>	
· · ·		
		49
ACTION ITEMS:		

Ref.11

.

1

SUPERFUND TECHNICAL A	SSESSMENT AND RESPONSE T	EAM TELECON NOTE
CONTROL NO	DATE	TIME 1435
02-96-11-0044	06/04/97	
DISTRIBUTION.		
Keegan Landfill file	OF	PHONÉ
BETWEEN Christine Miller, Public Affairs	United Water Resources (UWR)	(800) 575-4433 T
K Campbell		
DISCUSSION		
Ms. Miller confirmed that UW		nunities of Secaucus and Weehawken.
in addition to other communities	. For the sources of drinking water su	pply, she will transfer me to Deb Rizzi
in the Corporate Communication	as Department.	
		4
<u>_</u>		· · · · · · · · · · · · · · · · · · ·
	\ \	
	<u> </u>	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
ACTION ITEMS:		
		$\mathbf{X}$

SUPERFUND TECHNICAL			Έ.
CONTROL NO: 02-96-11-0044	DATE: 06/04/97	TIME 1440	
DISTRIBUTION			
Keegan Landfill file			
BETWEEN:	OF	PHONE	
Deb Rizzi, Corporate Communications	United Water Resources	(UWR) (201) 767-2867	
AND K. Campbell		<u></u>	
DISCUSSION			
Ms. Rizzi confirmed that UW	R obtains its drinking wate	r supples from: the Hackensack River watershed.	
the Oradell Reservoir, the Lake	Tappan Reservoir, the Lak	e DeForest Reservoir. and the Woodcliff Lake	
Reservoir; all sources are outside	e the area of concern. Dur	ing drought conditions. UWR has the capability to	5
draw water from the Passaic Riv	er Basin, northwest of Ora	dell.	
She suggested that for future in	quiries, we may be better	served by calling Leo Fung in the Engineering	
Department at (201) 767-9300, e	xt. 6011.		
	······································		
	$\backslash$		
	<u> </u>		
		$\mathbf{X}$	
ACTION ITEMS:			
· · · · · · · · · · · · · · · · · · ·			
		$\backslash$	
	<u> </u>		
		$\mathbf{X}$	
······································			
<b></b>			
·		\	

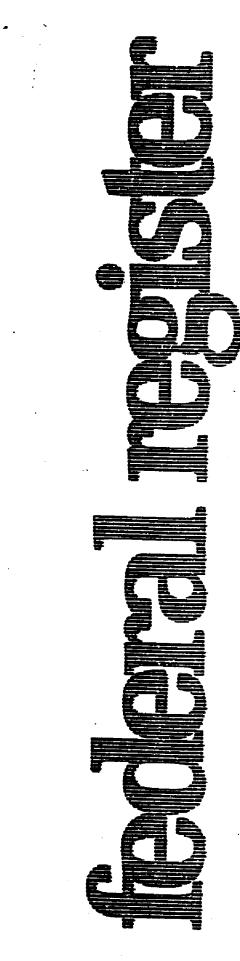
Ref. 11

~

, ÷

•

## **REFERENCE NO. 12**


:

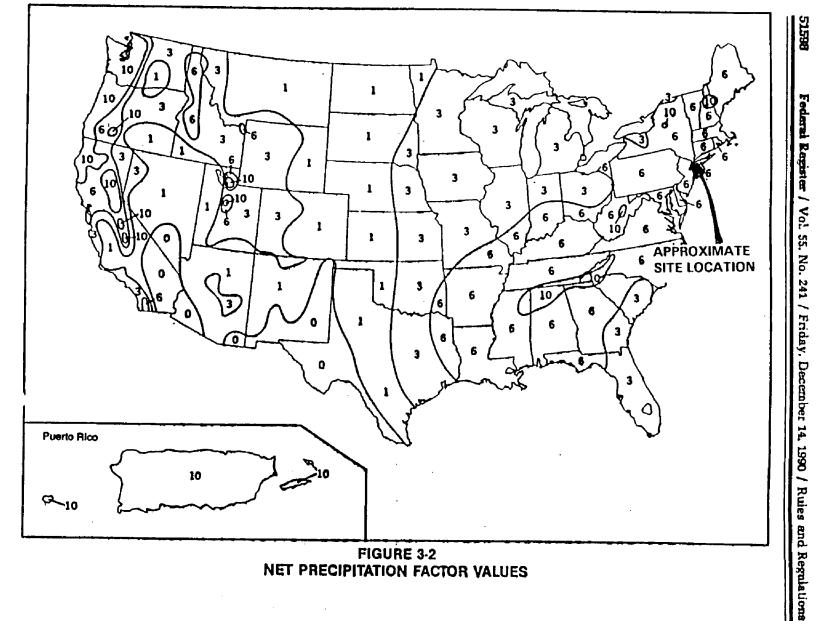
SUPERFUND TECHNICA	L ASSESSMENT AND RESPONSI	E TEAM	TELECON NOTE
CONTROL NO: 02-96-11-0044	DATE: 06/23/97	TIME: 0928	
DISTRIBUTION:			
Keegan Landfill file			
BETWEEN:	OF Essex County	PHONE	· · · · · · · · · · · · · · · · · · ·
Vince Bucci, Engineer	Parks Department	(973) 268	-3500
AND	<u> </u>	· · · · · ·	
K. Campbell 😡			
DISCUSSION			
Mr. Bucci confirmed that t	he Essex County Parks Department cu	rrently operates one	e well at the Branch
Brook Park location. The w	ell is used solely for re-filling Branch	Brook Pond, in orde	er to maintain a certain
water level and to prevent st	agnation.		
		····	······································
	<u> </u>		
<u> </u>			
	X		
	$\mathbf{X}$		
			<u> </u>
	$\sim$		
		$\backslash$	
-			
ACTION ITEMS:			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	<u> </u>
·			
		- · · ·	

R.f. 12

.

# **REFERENCE NO. 13**




Friday December 14, 1990

# Part II

# Environmental Protection Agency

40 CFR Part 300 Hazard Ranking System; Final Rule

Ref. 13



84

R.I.13

.

19 19

-

A Register

-When measured monthly evapotranspiration is not available. calculate monthly potential evapotranspiration (E₁) as follows:  $E_i = 0.8 F_i (10 T_i/l)^{\circ}$ where:

 $E_i = Monthly potential$ evapotranspiration (inches) for month L

Fi=Monthly latitude adjusting value for month i.

 $T_i =$  Mean monthly temperature (°C) formonth i.

$$J = \sum_{i=1}^{12} (T_i/5)^{1.514}$$

a=6.75×10⁻¹l³-7.71×10⁻¹l³+ 1.79×10-11+0.49239

Select the latitude adjusting value for each month from Table 3-3. For latitudes lower than 50" North or 20" South, determine the monthly latitude adjusting value by interpolation.

 Calculate monthly net precipitation by subtracting monthly evapotranspiration (or

monthly potential evapotranspiration) from monthly precipitation. If evapotranspiration (or potential evapotranspiration) exceeds precipitation for a month, assign that month a net precipitation value of 0.

· Calculate the annual net precipitation by summing the monthly net precipitation values.

 Based on the annual net precipitation. assign a net precipitation factor value from Table 3-4.

Enter the value assigned from Figure 3-2 or from Table 3-4, as appropriate, in Table 3-1.

Latitude •						Mon	th					
(degrees)	Jan.	Feb.	March	April	May	June	July	August	Sept	Oci	Nov.	Dec.
≥ 50 N 45 N 40 N 35 N 30 N 20 N 10 N 0 10 S 20 S	0,74 0,80 0,84 0,87 0,90 0,95 1,00 1,04 1,08 1,14	0.78 0.81 0.83 0.85 0.87 0.90 0.91 0.94 0.97 0.99	1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.04 1.05 1.05	1.15 1.13 1.11 1.09 1.08 1.05 1.03 1.01 0.99 0.97	1.33 1.28 1.24 1.21 1.18 1.13 1.08 1.04 1.00 0.96	1.36 1.29 1.25 1.21 1.17 1.11 1.06 1.01 0.96 0.91	1.37 1.31 1.27 1.23 1.20 1.14 1.08 1.04 1.04 1.00 0.95	1.25 1.21 1.18 1.16 1.14 1.11 1.07 1.04 1.02 0.99	1.06 3.04 1.04 1.03 1.03 1.02 1.02 1.02 1.01 1.00 1.00	0.92 0.94 0.95 0.97 0.98 1.00 1.02 1.04 4.05 1.08	0.76 0.79 0.83 0.89 0.93 0.98 0.93 0.98 1.01 1.05 1.09	0.7 0.7 0.8 0.8 0.8 0.9 1.0 1.0 1.0 1.0 1.1 1.1

Do not round to ne wat inte

For unlisted latitudes lower than 50° North or 20° South, determine the latitude adjusting value by interpolation.

#### TABLE 3-4.---NET PRECIPITATION FACTOR VALUES

	LUI	

	Net precipitation (inches)	Assigned Value
$\rightarrow$	0	0 1 3 6 4 10

3.1.2.3 Depth to aquifer. Evaluate depth to aquifer by determining the depth from the lowest known point of hazardous substances at a site to the top of the aquifer being evaluated, considering all layers in that interval. Measure the depth to an aquifer as the distance from the surface to the top of the aquifer minus the distance from the surface to the lowest known point of hazardous substances eligible to be evaluated for that aquifer. In evaluating depth to aquifer in karst terrain, assign a thickness of 0 feet to a karst aquifer that underlies any portion of the sources at the site. Based on the calculated depth. assign a value from Table 3-5 to the depth to aquifer factor.

Determine the depth to aquifer only at locations within 2 miles of the sources at the site, except: if observed ground water

contamination attributable to sources at the site extends more than 2 miles beyond these sources, use any location within the limits of this observed ground water contamination when evaluating the depth to aquifer factor for any aquifer that does not have an observed release. If the necessary geologic information is available at multiple locations. calculate the depth to aquifer at each location. Use the location having the smallest depth to assign the factor value. Enter this value in Table 3-1.

TABLE 3-5.—DEPTH TO AQUIFER FACTOR
VALUES

Depth to aquifer * (feet)	Assigned value		
Less than or equal to 25	5		
Greater than 25 to 250	3 1		

*Use depth of all layers between the hazardous substances and aquifer. Assign a thickness of 0 feet to any karst aquifer that underlies any portion of the sources at the site.

3.1.2.4 Travel time. Evaluate the travel time factor based on the geologic materials in the interval between the lowest known point of hazardous substances at the site and the

top of the aquifer being evaluated. Assign a value to the travel time factor as follows:

 If the depth to aquifer (see section 3.1.2.3) is 10 feet or less, assign a value of 35.

 If, for the interval being evaluated, all layers that underlie a portion of the sources at the site are karst, assign a value of 35. Otherwise:

- -Select the lowest hydraulic conductivity layer(s) from within the above interval. Consider only layers at least 3 feet thick. However, do not consider layers or portions of layers within the first 10 feet of the depth to the aquifer.
- -Determine hydraulic conductivities for individual layers from Table 3-6 or from in-situ or laboratory tests. Use representative, measured, hydraulic conductivity values whenever available.
- -If more than one layer has the same lowest hydraulic conductivity, include all such layers and sum their thicknesses. Assign a thickness of 0 feet to a karst layer that underlies any portion of the sources at the site.
- -Assign a value from Table 3-7 to the travel time factor, based on the thickness and hydraulic conductivity of the lowest hydraulic conductivity layer(s).

×

Į

#### TABLE 3-6.-HYDRAULIC CONDUCTIVITY OF GEOLOGIC MATERIALS

Type of material	Assigned hydrauhc conductivity (cm/sec)	•
Clay, low permeability till (compact untractured full); shale; untractured metamorphic and igneous rocks		_10 ⁻²
metamorphic rocks	10-+	10-4
Gravet; clean sand; highly permeable fractured igneous and metamorphic rocks; permeable basel; kerst imestones and dolomites	10-*	10 -Z

⁺ Do not round to nearest integer.

#### TABLE 3-7.-TRAVEL TIME FACTOR VALUES .

		Thickness of lowest hydrautic conductivity layer(s)* (leet)				
Hydraulic conductivity (cm/sec)	Greater then 3 to 5	Greater than 5 to 100	Greater then 100 to 500	Greater than 500		
Greater than or equal to 10**	35 35 15 5	35 25 15 5	35 15 5 1	25 15 5 1		

"If depth to aquifer is 10 feet or less or if, for the interval being evaluated, af layers that underlie a portion of the sources at the site are land, assign a value of

* Consider only layers at least 3 foet thick. Do not consider layers or portions of layers within the flist 10 feet of the depth to the equilar.

Determine travel time only at locations within 2 miles of the sources at the site, except: if observed ground water contamination attributable to sources at the site extends more than 2 miles beyond these sources, use any location within the limits of this observed ground water contamination when evaluating the travel time factor for any aquifer that does not have an observed release. If the necessary subsurface geologic information is available at multiple locations, evaluate the travel time factor at each location. Use the location having the highest travel time factor value to assign the factor value for the aquifer. Enter this value in Tuble 3-1.

3.1.2.5 Colculation of potential to release factor value. Sum the factor values for net precipitation, depth to aquifer, and travel time, and multiply this sum by the factor value for containment. Assign this product as the potential to release factor value for the aquifer. Enter this value in Table 3-1.

3.1.3 Calculation of likelihood of release factor cutegory value. If an observed release is established for an aquifer, assign the observed release factor value of 550 as the likelihood of release factor category value for that aquifer. Otherwise, assign the potential to release factor value for that aquifer as the likelihood of release value. Enter the value assigned in Table 3-1.

3.2 Waste characteristics. Evaluate the waste characteristics factor category for an aquifer based on two factors: toxicity/ mobility and hazardous waste quantity. Evaluate only those hazardous substances available to migrate from the sources at the site to ground water. Such hazardous substances include:

 Hazardous substances that meet the criteria for an observed release to ground water.

• All hazardous substances associated with a source that has a ground water containment factor value greater than 0 (see sections 2.2.2, 2.2.3, and 3.1.2.1).

3.2.1 Toxicity/mobility. For each hazardous substance. assign a toxicity factor value, a mobility factor value, and a combined toxicity/mobility factor value as specified in the following sections. Select the toxicity/mobility factor value for the squifer being evaluated as specified in section 3.2.1.3. 3.2.1.1 Taxicity. Assign a taxicity factor value to each hazardous substance as specified in Section 2.4.1.1.

3.2.1.2 Mobility. Assign a mobility factor value to each bazardous substance for the aquifer being evaluated as follows:

• For any hazardous substance that meets the criteria for an observed release by chemical analysis to one or more aquifers underlying the sources at the site, regardless of the aquifer being evaluated, assign a mobility factor value of 1.

• For any hazardous substance that does not meet the criteria for an observed release by chemical analysis to at least one of the aquifers, assign that hazardous substance a mobility factor value from Table 3-8 for the aquifer being evaluated, based on its water solubility and distribution coefficient (Ka).

• If the hazardous substance cannot be assigned a mobility factor value because data on its water solubility or distribution coefficient are not available, use other hazardous substances for which information is available in evaluating the pathway.

## TABLE 3-8.-GROUND WATER MOBILITY FACTOR VALUES

Water solucitity (mg/l)	Dist	Distribution coefficient (K.) (mi/g)				
, total solution (mg/l)		≤ 10	> 10 to 1,000	> 1.000		
resent as flouid *		1	i			
reater than fo0	- 1	1 1	0.01	0.0001		
reater than 1 to 100	1	1	0.01	0.0001		
veater than 0.01 to 1	- 0.2	0.2	0.002	2x10-+		
	0.002	0.002	2:10-1	2:10-1		
ess than or equal to 0.01	2110-	2:10-	2:10-7	2:10-+		

Do not round to nearest integer.

* Use if the hazardous substance is present or deposited as a liquid.

Use if the entire interval from the source to the equifer being evaluated is karct.

Drainage area. Determine the drainage area for the sources at the site. Include in this drainage area both the source areas and the area upgradient of the sources, but exclude any portion of this drainage area for which runoff is diverted from entering the sources by storm sewers or run-on control and/or runoff management systems. Assign a drainage area value for the watershed from Table 4-3.

Soil group. Based on the predominant soil group within the drainage area described above, assign a soil group designation for the watershed from Table 4-4 as follows:

 Select the predominant soil group as that type which comprises the largest total area within the applicable drainage area.

「「ないいい」をいたいないない、ことうとう

۰,

· ••••

ž

÷

Q1 13

 If a predominant soil group cannot be delineated, select that soil group in the drainage area that yields the highest value for the runoff factor.

Calculation of runoff factor value. Assign a combined rainfall/runoff value for the watershed from Table 4-5, based on the 2year. 24-hour rainfall and the soil group designation. Determine the runoff factor value for the watershed from Table 4-6. based on the rainfall/runoff and drainage area values. Enter the runoff factor value in Table 4-1.

TABLE 4-3.—DRAINAGE AREA VALUES

Drainage area (acres)	Assigned value
Less than 50	1
50 to 250	2
Greater than 250 to 1,000	3
Greater than 1.000	4

#### TABLE 4-4 .- SOIL GROUP DESIGNATIONS

Surface soil description	Soil group designation
Coarse-textured soils with high infil- tration rates (for example, sands, loarny sands).	*
Medium-textured soils with moderate infiltration rates (for example, sandy loarns, loarns),	B
Moderately fine-textured soils with low infiltration rates (for example, silty loams, silts, sandy clay loams),	С
Fine-textured soils with very low infli- tration rates (for example, clays, sendy clays, sitty clay loams, clay loams, sitty clays); or impermeable surfaces (for example, pavement).	D

#### TABLE 4-5.—RAINFALL/RUNOFF VALUES

2-Year, 24-hour rainfall	Sol	group	designa	tion
(inches)	A	B	c	ס
Less than 1.0	٥	0	2	3
1.0 to less than 1.5	0	1	2	3
1.5 to less than 2.0	0	2	3	4
2.0 to less than 2.5	.1	2	3	4
2.5 to less than 3.0	2	3	4	4
3.0 to less than 3.5	2	a '	4	5
3.5 or greater	3	4	5	6

#### TABLE 4-6.—RUNOFF FACTOR VALUES

Drainage	Rainfalt/runoff value						
area Value	0	1	2	Э	4	i 5	6
1	0	0	0	1	1	1	   1
2	0	. 0	1	1	2	3	4
3	0	0	1	Э	7	11	15
4	0	1	2	7	17	25	2

4.1.2.1.2.1.3 Distance to surface water. Evaluate the distance to surface water as the shortest distance, along the overland segment, from any source with a surface water containment factor value greater than 0 to either the mean high water level for tidal waters or the mean water level for other surface waters. Based on this distance, assign a value from Table 4-7 to the distance to surface water factor for the watershed. Enter this value in Table 4-1.

4.1.2.1.2.1.4 Calculation of factor value for potential to release by overland flow. Sum the factor values for runoff and distance to surface water for the watershed and multiply this sum by the factor value for containment. Assign the resulting product as the factor value for potential to release by overland flow for the watershed. Enter this value in Table 4-1.

4.1.2.1.2.2 Potential to release by flood. Evaluate potential to release by flood for each watershed as the product of two factors: containment (flood) and flood frequency. Evaluate potential to release by flood separately for each source that is within the watershed. Furthermore, for each source, evaluate potential to release by flood separately for each category of floodplain in which the source lies. [See section 4.1.2.1.2.2.2 for the applicable floodplain categories.) Calculate the value for the potential to release by flood factor as specified in 4.1.2.1.2.2.3.

4.1.2.1.2.2.1 Containment (flood). For each source within the watershed, separately evaluate the containment (flood) factor for each category of floodplain in which the source is partially or wholly located. Assign a containment (flood) factor value from Table 4-8 to each floodplain category applicable to that source. Assign a containment (flood) factor value of 0 to each floodplain category in which the source does not lie.

4.1.2.1.2.2.2 Flood frequency. For each source within the watershed, separately evaluate the flood frequency factor for each category of floodplain in which the source is partially or wholly located. Assign a flood frequency factor value from Table 4-9 to each floodplain category in which the source is located.

4.1.2.1.2.2.3 Calculation of factor value for potential to release by flood. For each source within the watershed and for each category of floodplain in which the source is partially or wholly located, calculate a separate potential to release by flood factor value. Calculate this value as the product of the containment (flood) value and the flood frequency value applicable to the source for the floodplain category. Select the highest value calculated for those sources that meet the minimum size requirement specified in section 4.1.2.1.2.1.1 and assign it as the value

for the potential to release by flood factor for the watershed. However, if, for this watershed, no source at the site meets the minimum size requirement, select the highest value calculated for the sources at the site eligible to be evaluated for this watershed and assign it as the value for this factor.

#### TABLE 4-7 - DISTANCE TO SURFACE WATER FACTOR VALUES

Distance	Assigned value
Less than 100 feet	25 20
Greater than 500 feet to 1,000 feet	16
Greater than 1,000 feet to 2,500 feet Greater than 2,500 feet to 1.5 miles	9 6
Greater than 1.5 miles to 2 miles	3

#### TABLE 4-8 --- CONTAINMENT (FLOOD) FACTOR VALUES

Containment criteria	Assigned value
Documentation that containment at the source is designed, construct- ed, operated, and maintained to prevent a washout of hazardous substances by the flood being eval-	o
Uated. Other	10

#### TABLE 4-9.—FLOOD FREQUENCY FACTOR VALUES

Assigned value
50
50
25
7
0

Enter this highest potential to release by flood factor value for the watershed in Table 4-1. as well as the values for containment (flood) and flood frequency that yield this highest value.

4.1.2.1.2.3 Calculation of potential to release factor value. Sum the factor values assigned to the watershed for potential to release by overland flow and potential to release by flood. Assign this sum as the potential to release factor value for the watershed, subject to a maximum value of 500. Enter this value in Table 4-1.

4.1.2.1.3 Calculation of drinking water threat-likelihood of release factor category value. If an observed release is established for the watershed, assign the observed release factor value of 550 as the likelihood of release factor category value for that watershed. Otherwise, assign the potential to release factor value for that watershed as the likelihood of release factor category value for that watershed. Enter the value assigned in Table 4-1.

4.1.2.2 Drinking water threat-waste characteristics. Evaluate the waste characteristics factor category for each

the hazardous substance with the highest toxicity/persistence factor value for the watershed to assign the toxicity/persistence factor value for the drinking water threat for the watershed. Enter this value in Table 4-1. 4.1.2.2.2 Hazardous waste quantity. Assign a hazardous waste quantity factor

•

#### value for the watershed as specified in section 2.4.2. Enter this value in Table 4-1.

4.1.2.2.3 Calculation of drinking water threat-waste characteristics factor category volue. Multiply the toxicity/persistence and hazardous waste quantity factor values for the watershed, subject to a maximum product

#### TABLE 4-12.-TOXICITY/PERSISTENCE FACTOR VALUES*

of 1 x 10*. Based on this product, assign a value from Table 2-7 (section 2431) to the drinking water threat-waste characteristics factor category for the watershed. Enter this value in Table 4-1.

	Toxicity factor value					
Persistance factor value	10,000	1,000	100	50	1	0
1.0 0.4 0.07 0.0007	10,000 4,000 700 7	1,000 400 70 0.7	100 40 7 0.07	10 4 0.7 0.007	1 0.4 0.07 0.0007	00000

* Do not round to nearest integer.

4.1.2.3 Drinking water threat-targets. Evaluate the targets factor category for each watershed based on three factors: nearest intake, population, and resources.

To evaluate the nearest intake and population factors, determine whether the target surface water intakes are sobject to actual or potential contamination as specified in section 4.1.1.2. Use either an observed release based on direct observation at the intake of the exposure concentrations from samples (or comparable samples) taken at or beyond the intake to make this determination (see section 41.2.1.1). The exposure concentrations for a sample (that is, surface water, benthic, or sediment sample) consist of the concentrations of those hazardous substances present that are significantly above background levels and attributable at least in part to the site (that is, those hazardous substance concentrations that meet the criteria for an observed release).

When an intake is subject to actual contamination, evaluate it using Level I

concentrations or Level II concentrations. If the actual contamination is based on an observed release by direct observation, use Level II concentrations for that intake. However, if the actual contamination is based on an observed release from samples. determine which level applies for the intake by comparing the exposure concentrations from samples (or comparable samples) to health-based benchmarks as specified in sections 2.5.1 and 2.5.2. Use the health-based benchmarks from Table 3-10 (section 3.3.1) in determining the level of contamination from samples. For contaminated sediments with no identified source, evaluate the actual contamination using Level II concentrations [see section 4.1.1.2].

4.1.2.3.1 Nearest intake. Evaluate the nearest intake factor based on the drinking water intakes along the overland/flood hazardous substance migration path for the watershed. Include standby intakes in evaluating this factor only if they are used for supply at least once a year.

Assign the nearest intake factor a value as follows and enter the value in Table 4-1:

 If one or more of these drinking water intakes is subject to Level I concentrations as specified in section 4.1.2.3, assign a factor value of 50.

 If not, but if one or more of these. drinking water intakes is subject to Level II concentrations, assign a factor value of 45.

 If none of these drinking water intakes is subject to Level I or Level II concentrations, determine the nearest of these drinking water intakes, as measured from the probable point of entry (or from the point where measurement begins for contaminated sediments with no identified source). Assign a dilution weight from Table 4-13 to this intake, based on the type of surface water body in which it is located. Multiply this dilution weight by 20, round the product to the nearest integer, and assign it as the factor value.

Assign the dilution weight from Table 4-13 as follows:

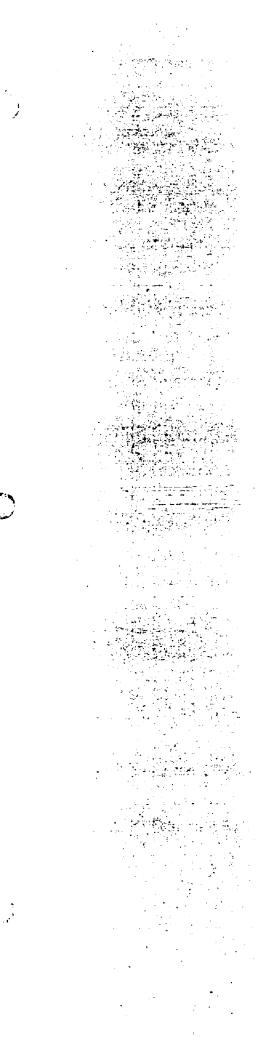
#### TABLE 4-13.—SURFACE WATER DILUTION WEIGHTS

Type of surface water body *			
Descriptor	Flow characteristics	dilution weight *	
Moderate to large stream	10 to 100 cfa         Greater than 100 to 1,000 cfs         Greater than 100 to 10,000 cfs         Greater than 10,000 to 100,000 cfs         Greater than 100,000 cfs         Flow not applicable, depth not applicable         Flow not applicable, depth less than 20 feet         Flow not applicable, depth orater than 200 feet         Flow not applicable, depth orater than 200 feet	0.001 0.00001 0.00001 0.0001 0.0001 0.00001 0.000005	

Treat each take as a separate type of water body and assign a dilution weight as specified in text.

Do not round to nearest integer cts = cubic feet per second.

⁴ Embayments, harbors, sounds, estuaries, back bays, lagoons, wetlands, etc., seaward from mouths of rivers and landward from baseline of Territorial Sea, ⁵ Seaward from baseline of Territonal Sea. This baseline represents the generalized U.S. coastline, It is parallel to the seaward limit of the Territorial Sea and other maintime limits such as the inner boundary of the Federal fishenes jurisdiction and the limit of States jurisdiction under the Submerged Lands Act, as amended.


 For a river (that is, surface water body types specified in Table 4-13 as minimal stream through very large river), assign a dilution weight based on the average annual flow in the river at the intake. If available,

use the average annual discharge as defined in the U.S. Geological Survey Water Resources Data Annual Report. Otherwise. estimate the average annual flow.

 For a lake, assign a dilution weight as follows:

-For a lake that has surface water flow entering the lake, assign a dilution weight based on the sum of the

## **REFERENCE NO. 14**



REFERENCE NO. 15

# Surface Water Quality Standards N.J.A.C. 7:9B



NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION AND ENERGY

Office of Land and Water Planning April 1994



p-1

34.15

÷

"Disinfection" means the removal, destruction, or inactivation of pathogenic and indicator organisms.

"DRBC" means Delaware River Basin Commission.

"EC50" means the median effective concentration of a toxic substance expressed as a statistical estimate of the concentration that has a specified adverse effect on 50 percent of the test organisms under specified test conditions, based on the results of an acute bioassay.

"Epilimnion" means the freely circulating upper region of a thermally stratified waterbody extending from the surface to the thermocline.

"Existing uses" means those uses actually attained in the waterbody on or after November 28, 1975, whether or not they are included in the Surface Water Quality Standards.

"Federal Act" means the "Federal Water Pollution Control Act" (33 U.S.C. § 1251 et seq.) including all subsequent supplements and amendments.

"Flow-through bioassay" means a toxicity test in which the test solutions flow into and out of the test chambers on a once-through basis for the duration of the test, in accordance with N.J.A.C. 7:18.

"Fresh water(s)" means all nontidal and tidal waters generally having a salinity, due to natural sources, of less than or equal to 3.5 parts per thousand at mean high tide.

"FW" means the general surface water classification applied to fresh waters.

"FW1" means those fresh waters that originate in and are wholly within Federal or State parks, forests, fish and wildlife lands and other special holdings, that are to be maintained in their natural state of quality (set aside for posterity) and not subjected to any man-made wastewater discharges, as designated in N.J.A.C. 7:9B-1.15(h) Table 6.

"FW2" means the general surface water classification applied to those fresh waters that are not designated as FW1 or Pinelands Waters.

"Groundwater" means that portion of water beneath the land surface that is within the zone of saturation (below the water table) where pore spaces are filled with water.

"Heat dissipation area" means a mixing zone, as may be designated by the Department, into which thermal effluents may be discharged for the purpose of mixing, dispersing, or dissipating such effluents without creating nuisances, hazardous conditions, or violating the provisions of this subchapter.

- g/ - p.2

"Measurable changes" means changes measured or determined by a biological, chemical, physical, or analytical method, conducted in accordance with USEPA
approved methods as identified in 40 C.F.R. 136 or other analytical methods (for example, mathematical models, ecological indices, etc.) approved by the Department, that might adversely impact a water use (including, but not limited to aesthetics).

"Mixing zones" means localized areas of surface waters, as may be designated by the Department, into which wastewater effluents may be discharged for the purpose of mixing, dispersing, or dissipating such effluents without creating nuisances or hazardous conditions, or violating the provisions of this subchapter.

"Natural flow" means the water flow that would exist in a waterway without the addition of flow of artificial origin.

"Natural water quality" means the water quality that would exist in a waterway or a waterbody without the addition of water or waterborne substances from artificial origin.

"NJPDES" means New Jersey Pollutant Discharge Elimination System.

"NOEC" means the "no observable effect concentration", which is the highest concentration of a toxic substance that has no adverse effect(s) on survival, growth, or reproduction of species based upon the results of chronic toxicity testing.

"Nondegradation waters" means those waters set aside for posterity because of their clarity, color, scenic setting, other characteristic of aesthetic value, unique ecological significance, exceptional recreational significance, or exceptional water supply significance. These waters include all waters designated as FW1 in this subchapter.

"Nonpersistent" means degrading relatively quickly, generally having a half-life of less than 96 hours.

"Nontrout waters" means fresh waters that have not been designated in this subchapter as trout production or trout maintenance. These waters are generally not suitable for trout because of their physical, chemical, or biological characteristics, but are suitable for a wide variety of other fish species.

"NPDES" means National Pollutant Discharge Elimination System.

"NT" means nontrout waters.

26.15

"Nutrient" means a chemical element or compound, such as nitrogen or phosphorus, which is essential to and promotes the growth and development of organisms.

"Outstanding National Resource Waters" means high quality waters that constitute an outstanding national resource (for example, waters of National/State Parks and Wildlife)

- κ - ρ.3

Refuges and waters of exceptional recreational or ecological significance) as designated in N.J.A.C. 7:9B-1.15(i).

"Persistent" means relatively resistant to degradation, generally having a half life of over 96 hours.

"Pinelands waters" means all waters within the boundaries of the Pinelands Area, except those waters designated as FW1 in this subchapter, as established in the Pinelands Protection Act (N.J.S.A. 13:18A-1 et seq.) and shown on Plate 1 of the "Comprehensive Management Plan" adopted by the New Jersey Pinelands Commission in November 1980.

"PL" means the general surface water classification applied to Pinelands Waters.

"Primary contact recreation" means recreational activities that involve significant ingestion risks and includes, but is not limited to, wading, swimming, diving, surfing, and water skiing.

"Public hearing" means a legislative type hearing before a representative or representatives of the Department providing the opportunity for public comment, but does not include cross-examination.

"River mile" or "R.M." means the distance, measured in statute miles, between two locations on a stream, with the first location designated as mile zero. Mile zero for the Delaware River is located at the intersection of the center line of the navigation channel and a line between the Cape May Light, New Jersey, and the tip of Cape Henlopen, Delaware.

"Saline waters" means waters having salinities generally greater than 3.5 parts per thousand at mean high tide.

"SC" means the general surface water classification applied to coastal saline waters.

"SE" means the general surface water classification applied to saline waters of estuaries.

"Secondary contact recreation" means recreational activities where the probability of water ingestion is minimal and includes, but is not limited to, boating and fishing.

"Shellfish" means those mollusks commonly known as clams, oysters, or mussels.

"Shelifish waters" means waters classified as Approved, Seasonally Approved, Special Restricted, Seasonally Special Restricted or Condemned that support or possess the potential to support shellfish which are within the Coastal Area Facility Review Act (C.A.F.R.A.) zone as delineated in 1973, (excluding: 1 - The Cohansey River upstream

- 7 - p.4

.~-15

- 1. Maintenance, migration and propagation of the natural and established biota;
- 2. Primary and secondary contact recreation;
- 3. Industrial and agricultural water supply;
- 4. Public potable water supply after such treatment as required by law or regulation; and
- 5. Any other reasonable uses.
- (d) In all SE1 waters the designated uses are:
  - 1. Shellfish harvesting in accordance with N.J.A.C. 7:12;
  - 2. Maintenance, migration and propagation of the natural and established biota;
  - 3. Primary and secondary contact recreation; and
  - 4. Any other reasonable uses.
- (e) In all SE2 waters the designated uses are:
  - 1. Maintenance, migration and propagation of the natural and established biota;

- 28 - p.<u>5</u>

- 2. Migration of diadromous fish;
- Maintenance of wildlife;
- 4. Secondary contact recreation; and
- 5. Any other reasonable uses.
- (f) In all SE3 waters the designated uses are:
  - 1. Secondary contact recreation;
  - 2. Maintenance and migration of fish populations;
  - 3. Migration of diadromous fish;
  - 4. Maintenance of wildlife; and

R1-15

- 5. Any other reasonable uses.
- (g) In all SC waters the designated uses are:
  - 1. Shellfish harvesting in accordance with N.J.A.C. 7:12;
  - 2. Primary and secondary contact recreation;
  - 3. Maintenance, migration and propagation of the natural and established biota; and
  - 4. Any other reasonable uses.
- 7:9B-1.13 Designated uses of mainstem Delaware River and Delaware Bay as set forth in the "Delaware River Basin Commission, dministrative Manual - Part III Water Quality Regulations," rticle 3, dated May 22, 1991 including all amendments and future supplements thereto.
- (a) The designated uses for the mainstem Delaware River and Delaware Bay are those contained in "Delaware River Basin Commission, Water Quality Regulations, Administrative Manual - Part III," Article 3, dated May 22, 1991, including all amendments and future supplements thereto.
- (b) The designated uses for other waters under the jurisdiction of the DRBC are as set forth at N.J.A.C. 7:9B-1.15(d).

## 7:9B-1.14 Surface water quality criteria

- (a) Surface water quality criteria for FW1 waters shall be maintained as to quality in their natural state.
- (b) Surface water quality criteria for PL waters are as follows:
  - 1. These waters shall be maintained as to quality in their existing state or that quality necessary to attain or protect the designated uses, whichever is more stringent.
    - i. For Nitrate-Nitrogen a level of 2 mg/l shall be maintained in the surface waters unless it is shown that a lower level must be maintained to protect the existing surface water quality.
    - ii. A pH level between 3.5 and 5.5 shall be maintained unless it is demonstrated that a pH level outside of that range is necessary to protect the existing/ designated uses.

R.L.15

6- ---

- 5. To find unnamed waterways or waterbodies or named waterways or waterbodies which do not appear in the listing, use the following instructions:
  - i. Unnamed or unlisted freshwater streams that flow into streams classified as FW2-TP, FW2-TM, or FW2-NT take the classification of the classified stream they enter, unless the unlisted stream is a PL water which is covered in (b)5vii below. If the stream could be a C1 water, see (b)5vi below.
  - ** ii. All freshwater lakes, ponds and reservoirs that are five or more acres in surface area, that are not located entirely within the Pinelands Area boundaries (see (b)5vii below) and that are not specifically listed as FW2-TP or FW2-TM are classified as FW2-NT. This includes lakes, ponds and reservoirs on segments of streams which are classified as FW2-TM or FW2-TP such as Saxton Lake on the Musconetcong River. If the waterbody could be a C1 water, also check (b)5vi below.
  - iii. All freshwater lakes, ponds and reservoirs, that are less than five acres in surface area, upstream of and contiguous with FW2-TP or FW2-TM streams, and which are not located entirely within the Pinelands Area boundaries (see(b)5vii below) are classified as FW2-TM. All other freshwater lakes, ponds and reservoirs that are not otherwise classified in this subsection or the following Tables are classified as FW2-NT. If the waterbody could be a C1 water, also check (b)5vi below.
  - iv. Unnamed or unlisted streams that enter FW2 lakes, ponds and reservoirs take the classification of either the listed tributary stream flowing into the lake with the highest classification or the listed tributary stream leaving the lake with the highest classification, whichever has the highest classification, or, if there are no listed tributary or outlet streams to the lake, the first listed stream downstream of the lake. If the stream is located within the boundaries of the Pinelands Area, see (b)5.vii. below; if it could be a C1 water, also see (b)5vi below.
  - v. Unnamed or unlisted saline waterways and waterbodies are classified as SE1 in the Atlantic Coastal Basin. Unnamed or unlisted saline waterways which enter SE2 or SE3 waters in the Passaic, Hackensack and New York Harbor Complex basin are classified as SE2 unless otherwise classified within Table 3 in (e) below. Freshwater portions of unnamed or unlisted streams entering SE1, SE2, or SE3 waters are classified as FW2-NT. This only applies to waters that are not PL waters (see (b)5vii below). If the waterbody or waterway could be a C1 water, also see (b)5vi below.
  - vi. If the waterway or waterbody of interest flows through or is entirely located within State parks, forests or fish and game lands, Federal wildlife refuges, other special holdings, or is a State shellfish water as defined in this subchapter, the Department's maps should be checked to determine if the waterbody of interest is mapped as a C1 water. If the waterway or waterbody does not appear on the United States Geological Survey quadrangle that the Department used as a base map in its designation of the

- 5,8 -

p.7

C1 waters, the Department will determine on a case-by-case basis whether the waterway or waterbody should be designated as C1.

vii. All waterways or waterbodies, or portions of waterways or waterbodies, that are located within the boundaries of the Pinelands Area established at N.J.S.A. 13:18A-11a are classified as PL unless they are listed as FW1 waters in Table 6 in (h) below. A tributary entering a PL stream is classified as PL only for those portions of the tributary that are within the Pinelands Area. Lakes are classified as PL only if they are located entirely within the Pinelands Area.

- 6. The following 10 classifications are used for the sole purpose of identifying the water quality classification of the waters listed in the Tables in (c) through (h) below:
  - i. "FW1" means freshwaters wholly within Federal or State lands or special holdings that are preserved for posterity and are not subject to manmade wastewater discharges.
  - ii. "FW2-TP" means FW2 Trout Production.
  - iii. "FW2-TM" means FW2 Trout Maintenance.
  - iv. "FW2-NT" means FW2 Non Trout.
  - v. "PL" means Pinelands Waters.
  - vi. "SE1" means saline estuarine waters whose designated uses are listed in N.J.A.C. 7:9B-1.12(d).

vii."SE2" means saline estuarine waters whose designated uses are listed in N.J.A.C. 7:9B-1.12(e).

- viii."SE3" means saline estuarine waters whose designated uses are listed in N.J.A.C. 7:9B-1.12(f).
- ix. "SC" means the general surface water classification applied to saline coastal waters.
- x. FW2-NT/SE1 (or a similar designation that combines two classifications) means a waterway in which there may be a salt water/fresh water interface. The exact point of demarcation between the fresh and saline waters must be determined by salinity measurements and is that point where the salinity reaches 3.5 parts per thousand at mean high tide. The stream is classified as FW2-NT in the fresh portions (salinity less than or equal to 3.5 parts per thousand at mean high tide) and SE1 in the saline portions.
- 7. The following water quality designations are used in Tables 1 through 5 in (c) through (g), respectively, below:
  - i. "(C1)" means Category 1 waters;
  - ii. "(tp)" indicates trout production in waters which are classified as FW1. This is for information only and does not affect the water quality criteria for those waters;
  - iii. "(tm)" indicates trout maintenance in waters which are classified as PL or FW1. For FW1 waters this is for information only and does not affect the water quality criteria for those waters.

p.8

- 59 -

Rifis

(e) The surface water classifications in Table 3 are for waters of the Passaic, Hackensack and New York Harbor Complex Basin:

# TABLE 3

Waterbody	Classification
APSHAWA BROOK (Macopin) - Entire length ARTHUR KILL	FW2-TP(C1)
(Perth Amboy) - The Kill and its saline New Jersey tributaries between the Outerbridge Crossing and a line connecting Ferry Pt., Perth Amboy to Wards Pt., Staten Island, New York	SE2
→(Elizabeth) - From an east-west line connecting Elizabethport with Bergen Pt., Bayonne to the Outerbridge Crossing	SE3
(Woodbridge) - All freshwater tributaries	FW2-NT
BEAR SWAMP BROOK (Mahwah) - Entire length	FW2-TP(C1)
BEAR SWAMP LAKE (Ringwood State Park)	FW2-NT(C1)
BEAVER BROOK	· · ·
(Meriden) - From Splitrock Reservoir Dam downstream to Meriden Road Bridge	FW2-TP(C1)
(Denville) - Meriden Road Bridge to Rockaway River TRIBUTARIES	FW2-NT
(Meriden) - Two tributaries located approximately three quarters of a mile southwest of Meriden BEECH BROOK	FW2-TP(C1)
(West Milford) - From State line downstream to Monksville Reservoir	FW2-TM
BELCHER CREEK (W. Milford),- Entire length	FW2-NT
BERRYS CREEK (Secaucus) - Entire length	FW2-NT/SE2
BLACK BROOK	1 112-11/1022
(Meyersville) - Entire length, except segment described	FW2-NT
(Great Swamp) - Segment and tributaries within the Great Swamp National Wildlife Refuge	FW2-NT(C1)
BLUE MINE BROOK	
(Wanaque) - Entire length, except segment described below	FW2-TM
(Norvin Green State Forest) - That portion of the stream and any tributaries within the Norvin Green State Forest	FW2-TM(C1)
BRUSHWOOD POND (Ringwood State Park)	FW2-TM(C1)
•	

- 92 - <u>r.9</u>

R.F.15

ELIZABETH RIVER	
(Elizabeth) - Source to Broad St. bridge, Elizabeth and	FW2-NT
all freshwater tributaries	
(Elizabeth) - Broad St. bridge to mouth	SE3
FOX BROOK (Mahwah) - Entire length	FW2-NT
GLASMERE POND (Ringwood)	FW2-NT(C1)
GOFFLE BROOK (Hawthorne) - Entire length	FW2-NT
GRANNEY BROOK - See SPRING BROOK	
GRANNIS BROOK (Morris Plains) - Entire length	FW2-NT
GREAT BROOK	
(Chatham) - Entire length, except segment described	FW2-NT
below (Great Swamp) - Segment within the boundaries of the	EVAD NITICA
Great Swamp National Wildlife Refuge	FW2-NT(C1)
GREEN BROOK	
(W. Milford) - Entire length, except those segments	FW2-TP(C1)
described below	1.001/
(Hewitt State Forest) - Those segments and tributaries	FW1(tp)
which originate and are located entirely within the	
Hewitt State Forest boundaries	
GREEN POND (Rockaway)	FW2-TM
GREEN POND BROOK	
(Picatinny Arsenal) - Green Pond outlet to, but not	FW2-TP(C1)
including, Picatinny Lake	
(Wharton) - Outlet of Picatinny Lake to the confluence	FW2-NT
with the Rockaway River	
GRÉENWOOD LAKE (W. Milford) HA <u>CKENSACK RIVER</u>	FW2-TM
(Oradell) - Source to Oradell dam	FW2-NT
(Oradell) - Main stem and saline tributaries from	SE1
Oradell dam to the confluence with Overpeck	021
Creek	,
(Little Ferry) - Main stem and saline tributaries from	SE2
Overpeck Creek to Route 1 and 9 crossing	
(Kearry Point) - Main stem downstream from Route 1	SE3
and 9 crossing	
TRIBUTARIES	
(Oradell) - Tributaries joining the main stem between	FW2-NT/SE1
Oradell dam and the confluence with Overpeck	
Creek	
(Little Ferry) - Tributaries joining the main stem	FW2-NT/SE2
downstream of Overpeck Creek	<b>F1</b> A/4
HANKS POND (Clinton) - Pond and all tributaries	FW1
HARMONY BROOK (Brookside) - Entire length	FW2-TP(C1)
HARRISONS BROOK (Bernards) - Entire length	FW2-NT

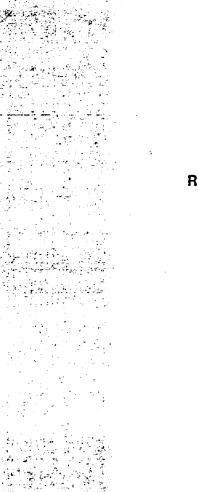
# R1f.11

HAVEMEYER BROOK (Mahwah) - Entire length	FW2-TP(C1)
HEWITT BROOK (W. Milford) - Entire length	FW2-TP(C1)
HIBERNIA BROOK	
(Marcella) - Source to first Green Pond Road bridge	FW2-TP(C1)
downstream of Lake Emma	· · ·
(Hibernia) - First Green Pond Road bridge to confluence	FW2-TM
with Beaver Brook	
TRIBUTARY	
(Lake Ames) - Source to, but not including, Lake Ames	FW2-TP(C1)
HIGH MOUNTAIN BROOK (Ringwood) - Source to, but not	FW2-TP(C1)
including, Skyline Lake HOHOKUS BROOK (Hohokus) - Entire length	
HUDSON RIVER	FW2-NT/SE2
(Rockleigh) - River and saline portions of New Jersey	054
tributaries from the New Jersey-New York	SE1
boundary line in the north to its confluence with	
the Harlem River, New York	
->(Englewood Cliffs) - River and saline portions of New	SE2
Jersey tributaries from the confluence with the	502
Harlem River, New York to a north-south line	
connecting Constable Hook (Bayonne) to St.	
George (Staten Island, New York)	
TRIBUTARIES	
(Rockleigh) - Freshwater portions of tributaries to the	FW2-NT
Hudson River in New Jersey	
INDIAN GROVE BROOK (Bernardsville) - Entire length	FW2-TP(C1)
JACKSON BROOK	· •
(Mine Hill) - Source to the boundary of Hurd Park, Dover	FW2-TP(C1)
(Dover) - Hurd Park to Rockaway River	FW2-NT
JENNINGS CREEK (W. Milford) - State line to Wanaque River	FW2-TP(C1)
JERSEY CITY RESERVOIR (Boonton)	FW2-TM
KANOUSE BROOK (Newfoundland) - Entire length	FW2-TP(C1)
KIKEOUT BROOK (Butler) - Entire length	FW2-NT
KILL VAN KULL (Bayonne) - Westerly from a north-south line	SE3
connecting Constable Hook (Bayonne) to St. George (Staten Island, New York)	
LAKE RICKONDA OUTLET STREAM (Monks) - That segment	
of the outlet stream from Lake Rickonda within	FW2-TM(C1)
Ringwood State Park	
LAKE STOCKHOLM BROOK	
(Stockholm) - Entire length, except tributaries described	FW2-TP(C1)
separately below	• •••=•• (01)
(Stockholm) - Portion of westerly tributary, from its	FW1(tp)
	· · · · · · · · · · · · · · · · · · ·

- جو p^{,11}

1.5-15

TIERRA-A-017763---


origins to about 1000 feet south of the Route 23	
bridge, located entirely within the boundaries of	
the Newark watershed	
(Stockholm) - Brook between Hamburg Turnpike and	FW1(tp)
vemon-Stockholm Rd. to its confluence with Lake	· · · · · (.p)
Stockholm Brook, north of Rt 23	
LITTLE POND BROOK (Oakland) - Entire length	
LOANTAKA BROOK	FW2-TP(C1)
(Green Village) - Entire length, except segment	
described below	FW2-NT
(Great Swamp) - Brook and all tributaries within the	
boundaries of Great Swamp National Wildlife	FW2-NT(C1)
Refuge	
LUD-DAY BROOK (Camp Garfield) - Source downstream to its	
confluence with the couthwarter a still	FW1
confluence with the southwestern outlet stream	
from Clinton Resevoir just upstream of the	
confluence of the outlet stream and a tributary	
from Camp Garfield	
MACOPIN RIVER	
(Newfoundland) - Source to Echo Lake dam	FW2-NT
(Newfoundland) - Echo Lake dam to Pequannock River	FW2-TM
MEADOW BROOK (Wanaque) - Skyline Lake to Wanaque	FW2-NT
River	
MILL BROOK	
(Randolph) - Source to Rt. 10 bridge	FW2-TP(C1)
(Randolph) - Rt. 10 bridge to Rockaway River	FW2-NT
MONRSVILLE RESERVOIR (Long Pond Iron Works	FW2-TM(C1)
State Park)	1 442-1141(01)
MORSES CREEK (Linden) - Entire length	
MOSSMANS BROOK (West Milford) - Source to confluence	FW2-NT/SE3
WILL CLINION Reservoir	FW2-TP(C1)
MT. TABOR BROOK (Morris Plains) - Entire length	
→ NEWARK BAY (Newark) - North of an east-west line connecting	FW2-NT
Elizabethport with Bergen Pt., Bayonne up to the	SE3
mouths of the Passaic and Hackensack Rivers	
NOSENZO POND (Upper Macopin)	
OAK RIDGE RESERVOIR (Oak Ridge)	FW2-NT(C1)
	FW2-TM
OAK RIDGE RESERVOIR (Oak Ridge) - Northwestern	FW1(tm)
tributary to Reservoir	
OHIO BROOK (Morris Township) - Source downstream	FW2-TM
to Morristown town line	
OVERPECK CREEK (Palisades Park) - Entire length	FW2-NT/SE2
PACACK BROOK	
(Canistear) - Brook and tributaries upstream of	FW1
·	

- 98 -

p.12

Canistear Reservoir located entirely within the	
boundaries of the Newark Watershed	FW2-NT
(Stockholm) - Outlet of Canistear Reservoir to	(* VVZ-IVI
Pequannock River	
PASSAIC RIVER (Mendham) - Source to Interstate 287 bridge, except	FW2-TP(C1)
tributaries described separately below	
(Paterson) - Interstate 287 bridge to Dundee Lake dam	FW2-NT
(Little Falls) - Dundee Lake dam to confluence with	FW2-NT/SE2
Second River	050
—> (Newark) - Confluence with Second River to mouth	SE3
TRIBUTARIES	FW2-NT(C1)
(Great Piece Meadows State Park) - Tributaries within Great Piece Meadows State Park	1 112-111(01)
PECKMAN RIVER (Verona) - Entire length	FW2-NT
PEQUANNOCK RIVER	• • • •
MAIN STEM	
(Vernon) - Source to confluence with Pacack Brook	FW1(tp)
(Hardyston) - Pacack Brook to, but not including,	FW2-TM
Macopin Reservoir or the tributaries described	
separately below	FW2-TP(C1)
(Kinnelon) - Macopin Reservoir outlet to Hamburg	F442-1F(C1)
Tumpike bridge in Pompton Lakes Borough (Riverdale) - Hamburg Tumpike bridge in Pompton	FW2-TM
Lakes Borough to confluence with Wanaque	
River	
(Pompton Plains) - Confluence with Wanaque River	FW2-NT
downstream to confluence with Pompton River	
TRIBUTARIES	
(Copperas Mtn.) - Entire length	FW2-TP(C1)
(Smoke Rise) - Entire length	FW2-TP(C1)
(Green Pond Junction) - Tributary at Green Pond	FW1(tm)
Junction from its origin downstream to Route 23	FW1(tm)
(Jefferson) - Tributary joining the main stem about 3500 <u>+</u> feet southeast of the Sussex-Passaic	
County line, near Jefferson from its origin to	
about 2000 feet upstream of the pond	
(Lake Kampfe) - Source to, but not including,	FW2-TM
Lake Kampfe	
(Lake Kampfe) - Lake Kampfe to Pequannock River,	FW2-NT
except tributary described separately below	
(Lake Kampfe) - Tributary within the boundaries of	FW2-NT(C1)
Norvin Green State Forest, originating west of	
Tome Mtn.	SE3
PILES CREEK (Grasselli) - Entire length	

- 99 -p.13



2 . 11

Ş

---

# **REFERENCE NO. 16**

TIERRA-A-017766

# WATER QUALITY REGULATIONS SURFACE WATER AND GROUNDWATER CLASSIFICATIONS AND STANDARDS

.

•

• 3

New York State Codes, Rules and Regulations Title 6, Chapter X Parts 700-705



New York State Department of Environmental Conservation

ł

а 6

;

15t 18

TIERRA-A-017767

## **PART 700**

## DEFINITIONS, SAMPLES AND TESTS

(Statutory authority: Environmental Conservation Law, §§ 3-0301[2][m]. 15-0313, 17-0301, 17-0303, 17-0809)

700.1 Definitions

Sec

700.2 Collection of samples

700.4 Severability **Historical Note** 

700.3 Tests or analytical methods

800.

Part repealed, new (§§ 700.1-700.2) filed: April 28, 1972; Feb. 25, 1974; repealed, new (§§ 700.1-700.4) filed Aug. 2, 1991 eff. 30 days after filing.

Section 700.1 Definitions. (a) The terms, words, or phrases used in Parts 700-705 of this Title shall have the meanings described below.

(1) Acute toxic effect means an effect that usually occurs shortly after the administration of either a single dose or multiple doses of a chemical.

(2) Administrator means the Administrator of the United States Environmental Protection Agency.

(3) Approved treatment as applied to water supplies means treatment accepted as satisfactory by the authorities responsible for exercising supervision over the quality of water supplies.

(4) Best usages as specified for each class of water means those uses as determined by the commissioner in accordance with the considerations prescribed by the Environmental Conservation Law.

(5) Chronic toxic effect means an effect that is irreversible or progressive or occurs because the rate of injury is greater than the rate of repair during prolonged exposure to a chemical.

(6) Coastal waters mean those marine waters within the territorial limits of the State other than estuaries and enclosed bays. Long Island Sound is designated as coastal waters for the purposes of thermal discharges.

(7) Commissioner means the Commissioner of the Department of Environmental Conservation.

(8) Consolidated rock or bedrock means the compact or solld hard rock beneath or exposed at the surface of the earth or overlain by surface waters.

(9) Department means the New York State Department of Environmental Conservation.

(10) Disposal system means a system for disposing of sewage, industrial waste or other wastes, including sewer systems and treatment works.

(11) Effluent limitations mean any restriction on quantities, qualities, rates and concentrations of chemical, physical, biological, and other constituents of effluents that are discharged into or allowed to run from an outlet or point source or any other discharge within the meaning of section 17-0501 of the Environmental Conservation Law into surface waters, groundwater or unsaturated zones.

(12) Enclosed bays mean those marine waters within the territorial limits of New York State, other than coastal waters or estuaries, in which exchange of sea water is severely limited by barrier beaches. For the purpose of thermal discharges, the following are designated as enclosed bays: Jamaica Bay, Hempstead Bay, Great South Bay, Moriches Bay, Shinnecock Bay and Mecox Bay.

391 CN 8-31-91

p. 2

R\$£ 16

(b) These waters shall contain no floating solids, settleable solids, oil, sludge deposits, toxic wastes, deleterious sub⁴tances, colored or other wastes or heated liquids attributable to sewage, industrial wastes or other wastes.

(c). There shall be no discharge or disposal of seware, industrial wastes of other wastes into these w. (c);

(d) These waters shall contain no phosphorus and nitrogen in amounts that will (n, n) in growths of algae, weeds and slimes that will impair the waters for their best usages.

#### Historical Not-

Sec. amid. GR + May 28, 1067; repeated, new filed: April 28, 1972; Feb. 25, 1077, 5 com. 701.15, new filed fully 3 1085; repeated new filed Aug. 2, 1991 eff. 30 days after filing.

**701.4** Class A-Special (A-S) fresh surface waters. (a) The best usages of Class A-S waters are: a source of water supply for drinking, culinary or food processing purposes; primary and secondary contact recreation; and fishing. The waters shall be solitable for fish propagation and survival.

(b) This classification may be given to those international boundary waters that, if subjected to approved treatment, equal to coaguiation, sedimentation, fillration and disinfection with additional treatment, if necessary, to reduce naturally present bayers. Ities, meet or will meet New York State Department of Health drinking water standards and are or will be considered safe and satisfactory for drinking water purposes.

#### **Historical Note**

Sec. repeated, new filed: April 26, 1972; Feb. 26, 1971; and, filed Sept. 20, 1974; renum: 701-19, new filed July 3, 1985; repeated, new filed Aug. 2, 1991 eff. 30 days after filing

ાં

701.5 Class AA fresh surface waters. (a) The best usages of Class AA waters are: a source of water supply for drinking, cultuary or food processing purposes; primary and secondary contact recreation; and fishing. The waters shall be suitable for

(b) This classification may be given to those waters that, if subjected to approved disinfection treatment, with additional treatment if necessary to remove paturally present impurities, meet or will meet New York State Department of Health drinking water standards and are or will be considered safe and satisfactory for drinking water purposes.

#### Ilistorical Noto

Sec. repeated, filed March 20, 1007; new filed Feb. 25, 1074; amd. filed Sept. 20, 1074; renom. 701.20, new filed July 3, 1985; repealed, new filed Aug. 2, 1991 eff. 30 days after filing.

701.6 Class A fresh surface waters. (a) The best usages of Class A waters are: a source of water supply for drinking, culinary or food processing purposes; primary and secondary contact recreation; and fishing. The waters shall be suitable for fish propagation and survival.

(b) This classification may be given to those waters that, if subjected to approved treatment equal to coagulation, sedimentation, filtration and disinfection, with additional treatment if necessary to reduce naturally present impurities, meet or will meet New York State Department of Health drinking water standards and are or will be considered safe and satisfactory for drinking water purposes.

Historical Noto Sec. filed July 3, 1985; repealed, new filed Aug. 2, 1991 eff. 30 days after filing. § 701.13

701.7 Class B fresh surface waters. The best usages of Class B waters are primary and secondary contact recreation and fishing. These waters shall be suitable for fish propagation and survival.

#### Historical Note Sec. filed July 3, 1985; repealed, new filed Aug. 2, 1991 eff. 30 days after filing.

701.8 Class C fresh surface waters. The best usage of Class C waters is fishing. These waters shall be suitable for fish propagation and survival. The water quality shall be suitable for primary and secondary contact recreation, although other factors may limit the use for these purposes.

Ilistorical Note

Sec. filed July 3, 1985; repealed, new filed Aug. 2, 1991 eff. 30 days after filing.

701.9 Class D frosh surface waters. The best usage of Class D waters is fishing. Due to such natural conditions as intermittency of flow, water conditions not conducive to propagation of gaine fishery, or stream bed conditions, the waters will not support fish propagation. These waters shall be suitable for fish survival. The water quality shall be suitable for primary and secondary contact recreation, although other factors may limit the use for these purposes.

> Historical Note Sec. filed July 3, 1986; repealed, new filed Aug 2, 1991 eff. 30 days after filing.

#### SALINE SURFACE WATERS

701.10 Class SA saline surface waters. The best usages of Class SA waters are shellfishing for market purposes, primary and secondary contact recreation and fishing. These waters shall be suitable for fish propagation and survival.

> Historica) Note Sec. (fled July 3, 1985; repealed, new filed Aug 2, 1091 eff. 30 days after filing.

701.11 Class SB sullne surface waters. The best usages of Class SB waters are primary and secondary contact recreation and fishing. These waters shall be suitable for fish propagation and survival.

> Historical Noto i Sec. filed July 3, 1986; repeated, new filed Aug. 2, 1991 eff. 30 days after filing.

701.12 Class SC saline surface waters. The best usage of Class SC waters is fishing. These waters shall be suitable for fish propagation and survival. The water quality shall be suitable for primary and secondary contact recreation, although other factors may limit the use for these purposes.

> Illistorical Noto Sec. filed July 3, 1985; repealed, new filed Aug. 2, 1991 eff. 30 days after filing.

701.13 Class I sulloo surface waters. The best usages of Class I waters are see, ondary contact recreation and fishing. These waters shall be suitable for fish propagation and survival.

> Ifistorical Note Sec. filed July 3, 1985; repealed, new filed Aug. 2, 1991 eff. 30 days after filing.

fish propagation and survival.

142F.16

1

→ 701.14 Class SD saline surface waters. The best usage of Class SD waters is fishing. These waters shall be suitable for fish survival. This classification may be given to those waters that, because of natural or man-made conditions, cannot meet the requirements for primary and secondary contact recreation and fish propagation.

#### **Historical** Note

Sec. filed July 3, 1985; repealed, new filed Aug. 2, 1991 cff. 50 days after filing.

#### GROUNDWATERS

701.15 Class GA fresh groundwaters. The best usage of Class GA waters is as a source of potable water supply. Class GA waters are fresh groundwaters.

#### Historical Note

Sec. filed July 3, 1985; repeated, new filed Aug. 2, 1991 off. 30 days after filing.

701.16 Class GSA saline groundwaters. The best usages of Class GSA waters are as a source of potable mineral waters, for conversion to fresh potable waters, or as raw material for the manufacture of sodium chloride or its derivatives or similar products. Class GSA waters are sailne groundwaters.

> Historical Note Sec. filed July 3, 1985; repealed, new filed Aug. 2, 1001 eff. 30 days after filling.

701.17 Class GSB saline groundwaters. The best usage of Class GSB waters is as a receiving water for disposal of wastes. Class GSB waters are saline groundwaters that have a chloride concentration in excess of 1,000 milligrams per liter or a total dissolved solids concentration in excess of 2,000 milligrams per liter.

> **Historical Note** Sec. filed July 3, 1985; repealed, new filed Aug. 2, 1991 eff. 30 days after filing.

701.18 Assignment of groundwater classifications. (a) The groundwater class sifications defined in sections 701.15 through 701.16 of this Part are assigned to all the groundwaters of New York State.

(b) The Class GSB shall not be assigned to any groundwaters of the State, unless the commissioner finds that adjacent and tributary groundwaters and the best usages thereof will not be impaired by such classification.

#### Historical Note

Sec. added by renum. 701.3, filed July 3, 1985; repealed, new filed Aug. 2, 1991 eff. 30 days after filing.

701.19 Severability. If any provision of this Part or its application to any person or circumstance is held to be invalid, the remainder of this Part and the application of that provision to other persons or circumstances will not be affected.

#### **Historical Note**

Sec. added by renum. and amd. 701.4, filed July 3, 1985; amd. filed Sept. 20, 1985; repealed, new filed Aug. 2, 1991 eff. 30 days after filing.

#### 701.20

#### Illstorical Note

Sec. added by renum. 701.6, filed July 3, 1985; amd. filed Sept. 20, 1985; repealed, flied Aug. 2, 1991 eff. 30 days after filing.

## **PART 702**

#### DERIVATION AND USE OF STANDARDS AND GUIDANCE VALUES

(Statutory authority: Environmental Conservation Law, 55 3-0301(2)(m), 15-0313, 17-0301, 17-0303, 17-0809)

Sec.

#### Sec.

- 702.1 Basis for derivation of water quality standards and guidance values 702.2 Standards and guidance values for pro-
- tection of human health and sources of potable water supplies
- 702.3 Procedures for deriving standards and guidance values based on Specific MCLs and principal organic contaminant classes
- 702.4 Procedures for deriving standards and guidance values based on oncogenic effects
- 702.5 Procedures for deriving standards and guidance values based on nononcogenic effects
- 702.6 Procedure for deriving standards and guidance values based on aesthelic considerations
- 702.7 Procedure for deriving standards and guidance values based on chemical correlation
- 702.8 Procedures for deriving standards and guidance values for protection of human health from consumption of fish
- 702.9 Standards and guidance values for protection of aquatic life

- 702.10 Procedures for deriving slandards and guidance values for fish propagation and survival
- 702.11 Procedures for deriving standards and guidance values for fish survival
- 702.12 Procedures for deriving standards and guidance values based on tainting of aquatic food
- 702.13 Procedures for deriving standards and guidance values to protect wildlife consumers of fish
- 702.14 Procedure for deriving standards and guidance values based on chemical correlations
- 702.15 Derivation of guidance values
- 702.18 Derivation and implementation of ef-**Nuent limitations**
- 702.17 Variances for effluent limitations based on aquatic sinndards or guidance valuen
- 702.18 More stringent groundwater effluent standards or limitations
- 702.19 Modifications of groundwater effluent standards or limitations
- 702.20 Studies and monitoring for discharges to groundwater
- 702.21 Exceptions to groundwater effluent lim-Itations

#### 702.22 Severability

#### Illatorical Note

Part repealed, now (iled: April 28, 1972; Feb. 25, 1974; repealed, new (§§ 702.1-702.22) filed Aug. 2, 1991 eff. 30 days after filing.

#### Section 702.1

Basis for derivation of water quality standards and guidance values. (a) The control of taste-, color- and odor-producing, toxic and other deleterious substances is implemented through the use of standards and guidance values. Standards and guidance values for such substances shall be derived according to the procedures set forth in this Part.

(b) The derivation of standards and guidance values will consider, to the extent possible, variations in natural or background conditions of waters, including but not limited to alkalinity, temperature, hardness and pH.

#### **Historical Note**

Sec. repealed, new filed: April 26, 1972; Feb. 26, 1974; amds. filed: Sept. 20, 1974; July 3, 1985; repoaled, new filed Aug. 2, 1991 eff. 30 days after filing.

702.2

Standards and guidance values for protection of human health and sources of potable water supplies. (a) Standards and guidance values for protection of the best usage as a source of poinble water supply shall protect human health and drinking water sources and are referred to as health (water source) values.

# **REFERENCE NO. 17**

.

W4

<u>م</u>ر

• • •

# STATE OF NEW YORK

. . . . . .

------

OFFICIAL COMPILATION

OF

# CODES, RULES AND REGULATIONS

GEORGE E. PATAKI Governor

ALEXANDER F. TREADWELL Secretary of State

Published by

DEPARTMENT OF STATE 162 Washington Avenue Albany, New York 12231

-----

1/1/95

. .

• •

.

. يستحدث فالمستحد فالترار . . . . .

.

بتدميت وراد ومقرو

Rf. 17

-

. ..

na se na na se na se na se na se na se na se na se na se na se na se na se na se na se na se na se na se na se Na se na se na se na se na se na se na se na se na se na se na se na se na se na se na se na se na se na se na s

_____

ويودهنهم ومعطيك ومحالة المراجع المراجع . . .

The second second and the second second second second

ليستبدعوا فأرعت الأداد الساديات

ومرجور والمعاملة والمراجع الرواحم والمراجع المراجع والمراجع

ي يكونيا للمعطورة الاحترار العار الهاج السريقات -----and a second second second second second second second second second second second second second second second Second second second second second second second second second second second second second second second second

مدروسية ومحاصين مرح

-----

-

• •

· · ·

-----

e Alexandre - Zear

بيوسويها والعجاجا المراجع المعاد 

pí

-----

and the second second and second

Title 6 Conservation Vol. D-1

.....

يدار مدار

. . . . .

. **.** .

Rsf. 12

• • •

- -

. . . . . . .

Printed in the United States of America by Lawyers Cooperative Publishing Aqueduct Building Rochester, New York 14694

Copyright 1995 by Secretary of State State of New York

. . . . .

p.2

Subchapter B Classes and Standards of Quality and Purity Assigned to Fresh Surface and Tidal Salt Waters (continued)

# SUBCHAPTER B

1-1-95

p. 3

Classes and Standards of Quality and Purity Assigned to Fresh Surface and Tidal Salt Waters (continued)

	VOLUME D-1	
Article 11	Mohawk River Drainage Basin Series	875
Article 12	Nassau County Waters	885 890
Article 13	New York City Waters Series	890

(Reissued 7/95)

.

Ref. 17

TIERRA-A-017774

18.017

Conservation

PART

875

PART

## ARTICLE 13

## New York City Waters Series

PART

. بر ع

4

890 New York City Waters

891 Jamaica Bay Drainage Basin

## **PART 890**

## NEW YORK CITY WATERS

(Statutory authority: Environmental Conservation Law, § 17-0301)

Sec.	
\$90.1	Adopting order
890.2	Designated waters
890.3	Definitions
890.4	Special conditions
890.5	Assigned classifications and standards of quality and purity
890.6	Table I
\$90.7	Map 1
890.8	Map 2
890.9	Map 3
\$90.10	Map 4
\$90.11	Quadrangle maps
	Historical Note

Part amd, filed June 20, 1988 eff. 30 days after filing. Amended statutory authority

#### § 890.1 Adopting order.

(a) Pursuant to article 12 of the Public Health Law, the Water Resources Commission, after proper study and following public hearings held on due notice, hereby adopts and assigns the following classifications and standards of quality and purity to all surface waters within the designated drainage basins of New York Bay. Raritan Bay and a portion of the Atlantic Ocean, including the subbasins of Arthur Kill, Kill Van Kull, the Harlem River and the Lower East River as hereinafter described.

(b) This adoption and assignment of standards of quality and purity to the above designated waters shall be effective December 22, 1964.

### § 890.2 Designated waters.

(a) The designated waters are within the following areas:

(1) the drainage basin of New York Bay below the mouth of the Hudson River at the south tip of Manhattan Island, including Gravesend Bay, Coney Island Creek, Atlantic Basin, Erie Basin, Gowanus Bay, Gowanus Canal, Upper New York Bay, Lower New York Bay, The Narrows and the Atlantic Ocean waters, including the drainage area off Coney Island and lying westerly of a north-south line from Light Inlet at the southeasterly tip of Coney Island peninsula to the southwesterly tip of Rockaway Point: thence along the jetty to Rockaway jetty light: thence due south to the New York - New Jersey boundary line;

(2) the lower East River drainage basin from the mouth to a line across the East River north of Wards Island between Stony Point in Bronx County and Lawrence Point in Queens County; and

(3) the drainage basins of Arthur Kill, Kill Van Kull, the Harlem River and Raritan Bay.

(b) The above designated waters are located as shown on Map 1, section 890.7 *mira*, and as contained within the topographical or basin limit line on the reproduced topographical reference maps set forth in section 890.11, *mira*. Classifications of primary waters are outlined on Map 3, section 890.9, *infra*.

1-1-95

(Reissued 7/95)

p. 4

18.399 Conservation

2.1.12

870.0 Table 1.

Ref. 17

1

ہ رہ

1-1-95

(Reissued 7/95)

18.403

Conservation

TABLE I

1 .

÷

CLASSIFICATIONS AND STANDARDS OF QUALITY AND PURITY ASSIGNED TO FRESH SURFACE WATERS AND TIDAL SALT WATERS, INCLUDING CERTAIN TIDAL WATERS OF THE INTERSTATE SANITATION DISTRICT WITHIN DESIGNATED DRAINAGE BASINS OF NEW YORK BAY, RARITAN BAY AND A PORTION OF THE ATLANTIC OCEAN, INCLUDING THE SUBBASINS OF ARTHUR KILL, KILL VAN KULL, THE HARLEM RIVER AND THE LOWER EAST RIVER, BRONX, KINGS, NEW YORK, QUEENS, RICHMOND AND WESTCHESTER COUNTIES, NEW YORK

ltem No.	Walers Indez Number	Name	Description	Map Ref. No.	Class	8 landarde
		ATL	ANTIC OCEAN AND NEW YORK BAY			• •
ł		Atlantic Ocean portion	That portion of the ocean within New York State opposite Rockaway peninsula bounded on the west by a line from the tip of Rockaway Point, thence south along the jetty to Rockaway jetty light, thence due south to the state boundary line; and bounded on the north by the shore of Rockaway peninsula from the western tip to the Nassau- Queens county line at East Rockaway Inlet; and bounded on the east by the Nassau-Queens county line along East Rockaway Inlet, thencesouth to the state boundary line.	S-24вw S-24ве	SA	SA
▶ 2		Allantic Ocean and Lower New York Bay east portions	Ocean and bay waters within New York State opposite Concy Island peninsula and Staten Island bounded on the west by a north-bouth line drawn from the bouth limits of Fort Wadsworth Military Reservation and passing through West Bank light to New York-New Jersey boundary line; and bounded on the north by a line drawn from the bouth limits of	S-235 <del>6</del> S-243 <del>w</del>	SB	SB

CHAPTER X DIVISION OF WATER RESOURCES

: 1

)

4

-§ 890.6

Table I.

TIERRA-A-017776

ဖာ 890.6

E TABLE I (cont'd) Waters Map llom Index Name Description Ref. Class Standards No. Number No. 2 Fort Wadsworth Military Reservation and extending (cont'd) southeasterly to Norton Point at the western tip of Coney Island peninsula near Sea Gate, thence extending the line along south shore of Coney Island to Light Inlet at southeasterly tip of Coney Island peninsula near Manhattan Beach; and bounded on east by north-south line beginning at described Light Inlet and extending southward to south tip of Rockaway jetty light, thence due south to New York-New Jersey boundary line. Lower New York Bay west That portion of Bay within New York State bounded S-23se 88 portion on east by north-south line drawn from south limits of S-23aw Fort Wadsworth Milliary Reservation and passing T-23nw

۴

1.1

σ

œ

18.404

Conservation

(Reissued 7/95)

1-1-95

through West Bank light to New York New Jersey T-23ne boundary line; and bounded on west by north-south line drawn from south tip of Crookes Point to Point Comfort at Keansburg, New Jersey.

SB

TIERRA-A-017777

1 1 1

· ·

.

-

:

.

ţ

÷

m
ω
8

TIERRA-A-017778

TABLE I (cont'd)

llem No.	Walers Index Number	Name	Description	Map Ref. No.	Class	Slandardı
<b>→</b> i		Lower New York Bay portion including Gravesend Bay	That portion of Bay south of The Narrows and bounded on north by line from tip of Fort Wadsworth to tip of Fort Hamilton; and bounded on south by line from south limits of Fort Wads- worth Military Reservation to Norton Point at western tip of Coney Island peninsula near Sea Gate, including Gravesend Bay.	S-233e S-245w	I	
6	LI 263	Coney Island Creek	Trib. of Gravesend Bay.	S-248w	ţ	1
		Upper New York Bay in- cluding The Narrows, Atlantic Basin, Gowanus Bay	That portion of Bay within New York bounded on south by line from tip of Fort Wadsworth to tip of Fort Hamil- ion; and bounded on west by shore of Staten Island north of tip of Fort Wads- worth, thence by north-south line across mouth of Kill Van Kull from northernmost point of Staten Island to easternmost point at Constable Point, Bayonne, New Jersey, thence by New York-New Jersey boundary line from mouth of Hudson River; and bounded on north by true east-west line passing through southernmost tip of Manhaltan Island at the Battery	S 23ne B-21ae S-24nw	I	I

ربه ف 1

1-1-95

(Reissued 7/95)

18,405

Conservation

R. 1.7

	18.406 Conservation							Walers				1	FABLE 1 (cor	nt'd)		Map		
, <b>I</b>	-				-	llem No.		Index Number		Name				Description		Ref. No.	Class	Slanda rds
	(Reissued 7/95)					e (cont	'd)						thence by li point at the Lower East 17 at Brooki by western	cting state boundary if ine extending from san Battory across mouth I River to western tip o lyn; thence bounded on shore of Brooklyn fron Fort Hamilton, excludi	ne of f pier i east n pier			
	35)				->	5.1			Eri	e Basin			bounded on western and and west by rates the Ba Red Hook c of the Basin by a line fro the Basin p western and	n of Upper New York E the north and east by in one of Brooklyn, on the v the peninsula which a asin from Gowanus Ba hannel, including the of the northernmost p eninsula to the point or one of Brooklyn defined lon of Van Brunt Street	the south epa- y and outlet west coint of n the d by	8-23ne	SD	SD
						7		LI I and tribs.	Qo	wanua Ca	ាត់		Trib. of Gov	wanus Bay.		9-24nw	SD	3D
	1-1-95																١	
•		•		•					; - :		4						3	
•		•	•			• • • •	•		:		:		:	۰.				
	1	-	1	ļ	!	ļ			· 1	-								TIERR

کا بار

P.8

i

§ 890.6

TITLE 6 CONSERVATION

Rf.17

1-1-95

**٩**.

(Reissued 7/95)

18,409 Conservation

----

* Segment of waters measured in miles upstream from month of Arthur Kill.

	lle <del>m</del> No.	Waters Index Number	Name	Description	Map Ref. No.	Class
			ARTHUR KILL	, NEWARK BAY AND KILL VAN KULL		
<b>→</b>	12	51 (0.0 - 2.0)* portion	Arthur KIII	That portion within New York State from mouth (at an east- west line drawn from southern- most point of Staten Island at Ward Point to southernmost point of Perth Amboy, New Jerscy, at Ferry Point) to Outerbridge Crossing.	S-228e S-238w T-22ne T-23nw	I
>	13	SI (2.0 - 1 <b>2.9)</b> portion	Arthur Kill	That portion within New York State from Outerbridge Crossing to Newark Bay outlet.	S 22se S 23sw S 23nw	SD
->	14	SI (22.9 - 14.6) portion	Newark Bay	Southern portion of Bay lying north of Staten Island within New York State between outlet to Arthur Kill and outlet to Kill Van Kull.	\$ 23nw	SD

TABLE I (cont'd)

2

6.068 §

ł

ţ

Slandards

I

SD

SD

TIERRA-A-017780

**0**.9

I

ŀ

1

18,410 Conservation

(Reissued 7/95)

1-1-95

.

.

ţ

. •

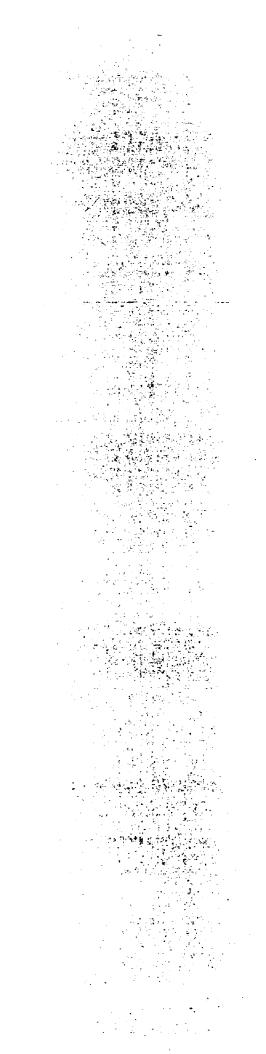
.

	llem No.	Walers Indez Numb <del>er</del>	Name	Description	Map Ref. No.	Class	Slundards
<b>→</b>	15	SI (14.6 -18.0) portion	Kill Ven Kull	That portion within New York State from outlet of Newark Bay to mouth of Kill Van Kull (at north-south line drawn from northernmost point of Staten Island to easternmost point at Constable Point, Bayonne, New Jersey).	S-23nw S-23ne	ຮບ	SD
			STATE	ISLAND TRIBUTARIES			
	18	SI P 1039 SI P 1039a SI P 1039b SI P 1040	Graamere Lake Ipes Pond Shore Acres Pond Cameron Lake	isolated bodies of water.	9-23se	B	В
	17	SI P 1040a, P 1040b, P 1040c, P 1040c	Tribs. of New Creek	Isolated ponds with New Creek watershed.	S-233e	В	в
	18	SI 1 and tribs.	New Creek	Tidal estuary and fresh water tribs. Tidal portion. Fresh waters portion.	S-23se	I C	1 C
	19	81 2	Great Kills Creek	Enters Groat Kills Harbor at Groat Kills Park.	S-238w S-2388	I	I

:

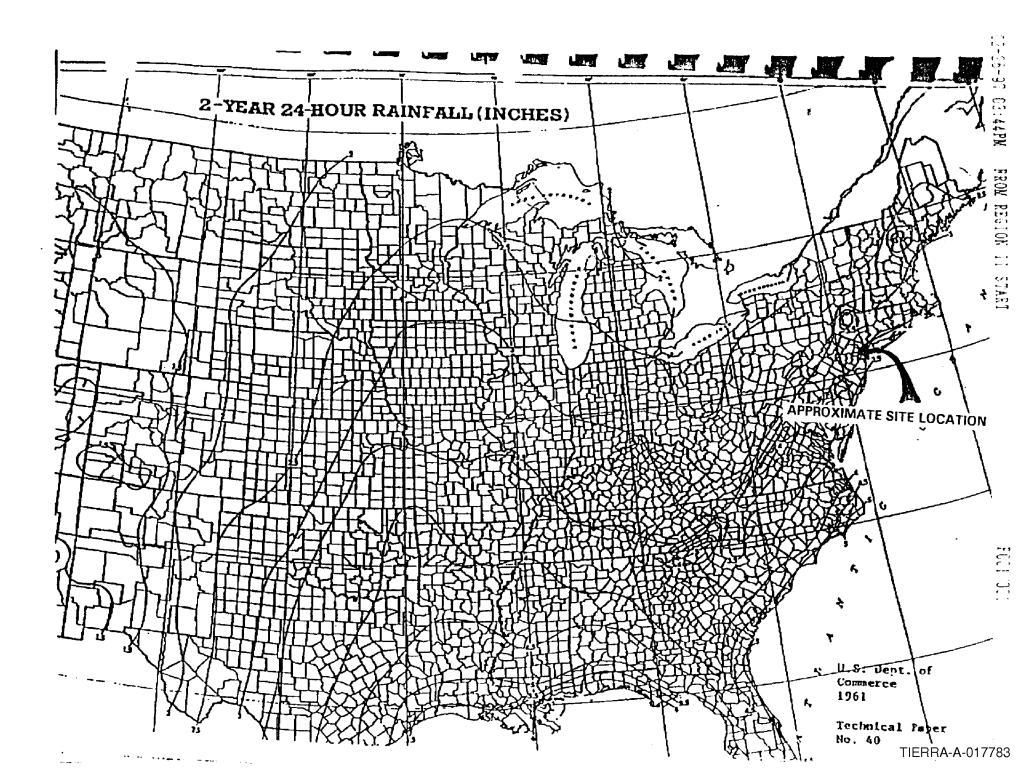
ł

Т


TABLE I (cont'd)

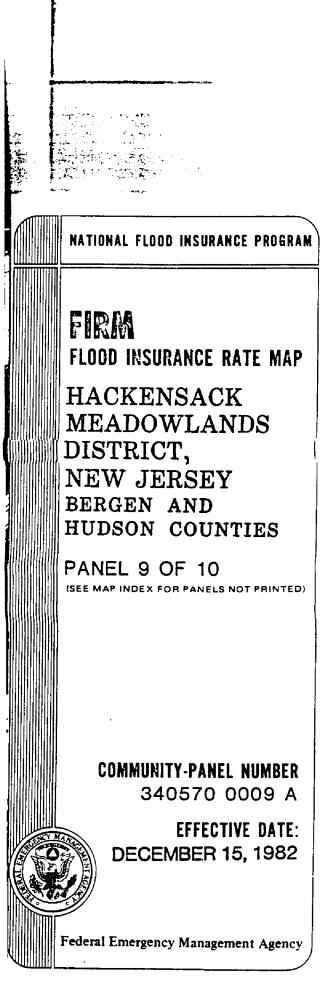
÷. .

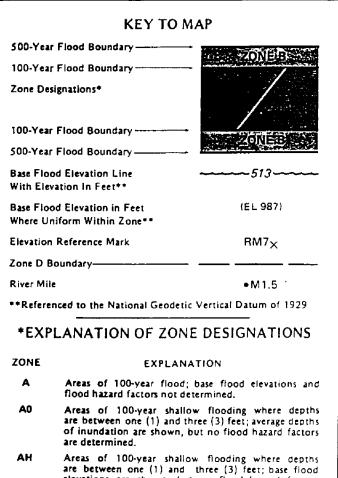
, ¹2,


§ 890.6

TITLE 6 CONSERVATION




1


**REFERENCE NO. 18** 

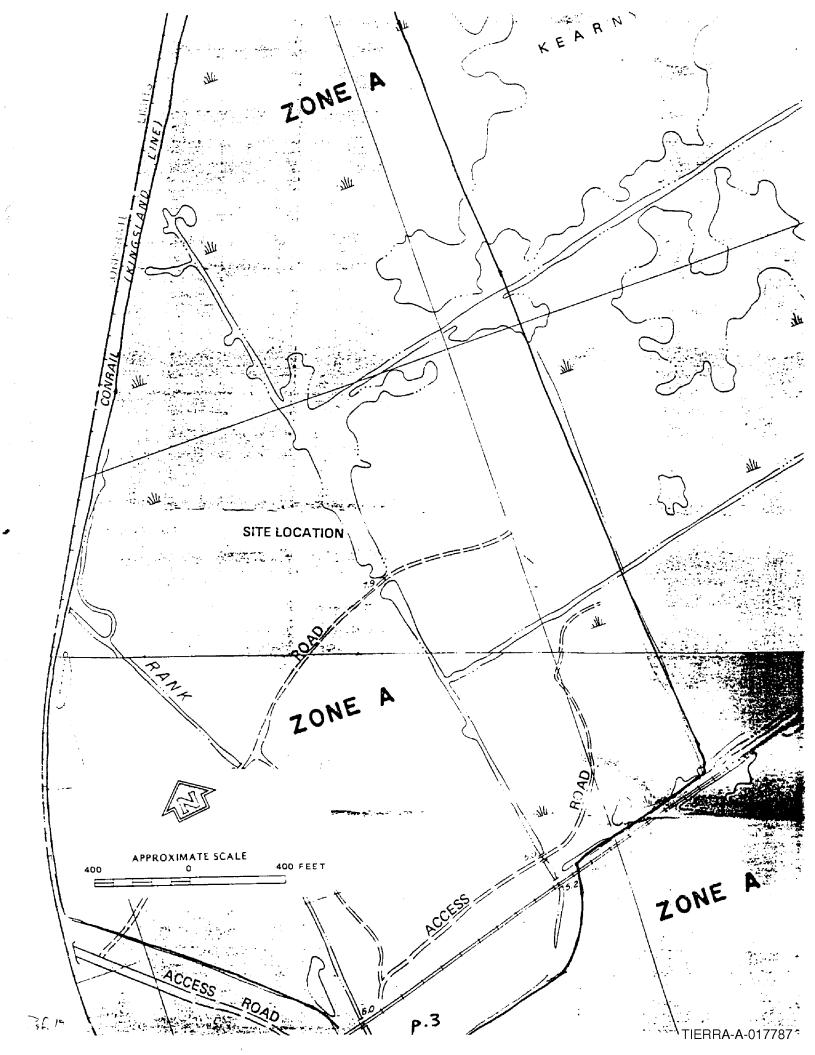




**REFERENCE NO. 19** 






- are between one (1) and three (3) feet; base flood elevations are shown, but no flood hazard factors are determined.
- A1-A30 Areas of 100-year flood; base flood elevations and flood hazard factors determined.
- A99 Areas of 100-year flood to be protected by flood protection system under construction; base flood elevations and flood hazard factors not determined.
- B Areas between limits of the 100-year flood and 500year flood; or certain areas subject to 100-year flooding with average depths less than one (1) foot or where the contributing drainage area is less than one square mile; or areas protected by levees from the base flood. (Medium shading)
- C Areas of minimal flooding. (No shading)
- D Areas of undetermined, but possible, flood hazards.
- V Areas of 100-year coastal flood with velocity (wave action); base flood elevations and flood hazard factors not determined.
- V1-V30 Areas of 100-year coastal flood with velocity (wave action); base flood elevations and flood hazard factors determined.

#### NOTES TO USER

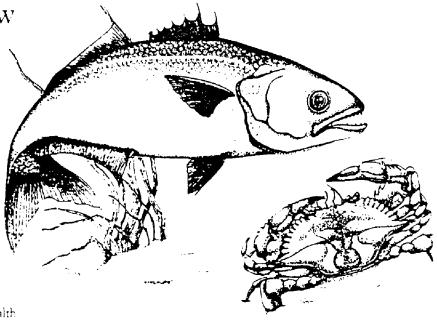
Certain areas not in the special flood hazard areas (zones A and  $V_{\rm c}$  may be protected by flood control structures.

This map is for flood insurance purposes only; it does not necessarily show all areas subject to flooding in the community or all planimetric features outside special flood hazard areas.

For adjoining map panels, see separately printed Index To Map Panels.






## **REFERENCE NO. 20**

# A GUIDE TO HEALTH ADVISORIES FOR Eating Fish and Crabs Caught in New Jersey Waters

What you need to know about recreational

March 1995 Edition

Prosting Todd Whitman, Governor Foresting Todd Whitman, Governor Foresti C. Shinn, Jr., Commissioner New Jersev Department of Environmental Protection Leo Fishman, Commissioner, New Jersev Department of Health



Location	Species	Advisory/Prohibition		
New Jersey-Statewide		General Population	High Risk Individua	
Note: local advisories may be more specific for the same species.	American eel	do not eat more than once a week	do not eat	
See below.	bluefish (over 6 lbs )	do not eat more than once a week	de not eat	
	striped bass *	consumption advisories vary by area: see below	consumption advisories by area: see below	
Newark Bay Complex			1	
This complex includes Newark Bay,	striped bass *	do not eat	do not eat	
Hackensack River downstream of Oradell Dam, Arthur Kill, Kill Van Kull, tidal portions of all rivers and	American eel *	do not eat more than once a week	do not ear	
streams that feed into these water	blue crab *	do not eat or harvest 2	do not eat or harvest?	
invites and	bluefish (over 6 lbs.), white perch and white cattish	do not eat more than once a week	do not cat	
Passaic River downstream of Dundee	all fish and shellfish *	do not eat	de not eat	
Dam and streams that feed into this section of the river.	blue crah *	do not eat or harvest	- do not eat or (harvest)	
Hudson River			-	
Hudson River includes the river downstream of NY-NJ border	American eel *	do not eat more than once a week	do not eat	
iabout 4 miles above Alpine, NJ) and Upper New York Bay.	striped bass *	do not eat more than once a week	de not eat	
	bluefish (over 6 lbs.), white perch and white catfish	do not eat more than once a week	do not eat	
	blue crab	do nor eat green gland (hepatopancreas)	do not eat green giand (hepatopancreas)	
Raritan Bay Complex				
This complex includes the New ersey portions of Sandy Hook and	striped bass *	do not eat more than once a week	do not eat	
Rantan bays, the tidal portions of the Rantan River (downstream of the Rte. 1 bridge in New Bringwick) and the	bluefish (over 6 lbs.), white perch and white cattish	do not eat more than once a week	do not ear	
tidal portions of all rivers and streams that feed into these water bodies.	blue crab	do not eat green gland (hepatopancreas)	do not eat green gland (hepatopancreas)	

.

P-[. 20 r 2

Northern Coastal Waters			and a start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the
This area includes all coastal waters from Rantan Bay south to the Barnegat Inlet.	striped bass *	do not cat more than once a week	do not cat
Camden Area			
This area includes Strawbridge Lake. Pennsauken Creek (north and south branches), Cooper River and its drainage. Cooper River Lake, Stewart Lake and Newton Lake.	all fish, shellfish and crustaceans *	do not eat	do not eat
Lower Delaware.River. & Bay			
Delaware River from Yardley, PA to the PA DE border	American eel	do not cat	de not eat
Celawate River from Yardley, PA (across from Ewing Twp., NJ) south to the Chesapcake and Delaware Canal	channel catrish * white catfish white perch	de pot eat	do not eat
Lower Delaware River includes the river renveen the PA Tumpike Bridge (1-276 milee) in Burlington Twp. (Burlington Delinty) and Birch Creek in Logan Twp. Dioucester County) about 2 miles below Commodore Barry Bridge.	channel catfish *	do nor ea:	do not eat
Delaware River from the DE/PA border south to the Delaware and Chesapeake Canal	striped bass *	de net eat	do not eat
Polawire River from the Chesapeake and Delaware Canal vacross from Salem, N ¹¹ south to mouth of the Polawire Bay	striped bass * channel carrish white carrish	do not eat more than tive province meals per veat	do not eat more than three 4-ounce meals per year Note. This person size differs from others littled in this fracture.

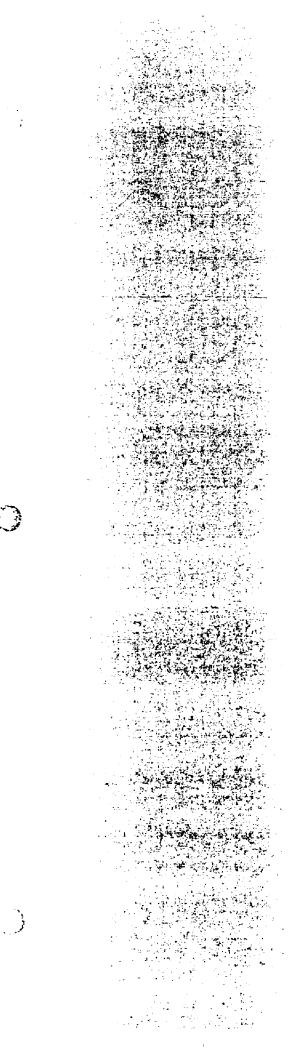
* Selling any of these species from designated water bodies is prohibited in New Jersey.

High rise individuals include: infants, children under the age of 15, pregnant women, nutsing mothers and women of childbearing age. They are advised nor to ear ansuch tish of crabs taken from the designated regions since these contaminants have a greater impact on the developing young Some types means no taking or attempting to take any blue crabs from these waters

commendation based on research showing elevated levels of chemical contaminants in the blue crab hepatop increas, also called the green gland

7

p. 3


-- - --



**REFERENCE NO. 21** 

NOTE
irface
· · · · · · ·

۰.



**REFERENCE NO. 22** 

SUPERFUND TECHNICAL ASSESSMENT AN	D RESPONSE TEAM	PROJECT NOTES
TO: DATE:	Page ] of 2	
Keegan Landfill file 05/12/97 FROM:		
K. Campbell		
SUBJECT:		
Sensitive Environments		····
REFERENCE		
Our office received information regarding sensitiv	e environments in the site vicinit	y from the NJ Natural
Heritage Program (NHP). As the NHP data are sensi	itive in nature, the original NHP	letter (5/1/97) is filed in the
"Confidential" subsection of this TDD file and a gene	ral summary of the NHP inform	ation is provided below:
Sensitive Environment	Distance from Site (mi.)	Water Body Type
(Air & Surface Water)		
State-listed endangered species habitat	0	Coastal/Tidal
(Pied-Billed Grebe - Podilymbus podiceps)		
Unique Biotic Community	0	Coastal/Tidal
(Coastal Heron Rookery - Kearny Marsh)		
(Air)	2.5	N/A
State-listed endangered species	2.5	IN/A
(Northern Harrier - Circus cvaneus)		
• State-listed endangered species	2.5	N/A
(Sedge Wren - Cistothorus platensis)		
• Federally-listed endangered species	3.5	N/A
(Percerine Falcon - Falco peregrinus)		
State-listed threatened species	1.5	N/A
(Savannah Sparrow - Passerculus sandwichensis)		
State-listed endangered species	1.5	N/A
(Minute Duckweed - Lemna perpusilla)		
• State-listed endangered species	3.5	N/A
(Downy Phlox - Phlox pilosa)		
* Estimated Values.		

*

SUPERFUND TECHNICAL ASSESSMENT	FAND RESPONSE TEAM	PROJECT NOTES
Keegan Landfill file 05/12/9	0	
FROM	·	· · · · · · · · · · · · · · · · · · ·
K. Campbell 🕑		
SUBJECT:		
Sensitive Environments		
REFERENCE		
Sensitive Environment	Distance from Site (mi.)	Water Body Type
(Air - Continued)		· · · · ·
• State-listed endangered species habitat	3.5	N/A
(Smooth Rattlesnake Root - Prenanthes racem	nosa)	·····
• State-listed endangered species habitat	3.5	N/A
(Salt Marsh Bulrush - Scirpus maritimus)		
(Surface Water)	· · · · · · · · · · · · · · · · · · ·	
Federally-listed endangered species	9	Coastal/Tidal
(Peregrine Falcon - Falco peregrinus)		
• State-listed endangered species	13	Coastal/Tidal
(Least Tern - Sterna antillarum)		
• State-listed endangered species	1.5	Coastal/Tidal
(Minute Duckweed - Lemna perpusilla)		
Unique Biotic Community	13	Coastal/Tidal
(Coastal Heron Rookery - Global Terminal)		
* Estimated Values.		
	· · · · · · · · · · · · · · · · · · ·	
·····	<u>````````````````````````````````</u>	

Ref. 22

 **REFERENCE NO. 23** 

.

.

· 🖬

.

# FROST ASSOCIATES

P.O.Box 495, Essex, Connecticut 06426 (203) 767-7644 FAX (203) 767-1971

March 28, 1997

To: Roy F. Weston Inc - Region II START 1090 King Georges Post Road, Suite 201 Edison, NJ

Attn: Subbarao Bhamidipati

Fr: Frost Associates P.O. Box 495 Essex, Conn 06426

Tel: (203) 767-1254 Fax: (203) 767-7069

Sub: Kearney, NJ

CERCLIS:

1

1

. _

Job: 1696

·	Site	Longitude:	74-08-04	74.134453
	Site	Latitude :	40-45-36	40.759998

The CENTRACTS report below identifies the population, households, and private water wells of each Block Group that lies within, or partially within, the 4, 3, 2, 1, .5, and .25, mile "rings" of the latitude and longitude coordinates above. CENTRACTS may have up to ten radii of any length. 1000 block groups, and 15000 block group sides.

CENTRACTS uses the 1990 Block Group population and Block Group house count data found in the Census Bureau's 1990 STF-1A files. The sources of water supply data are from the Bureau's 1990 STF-3A files. The boundary line coordinates of the Block Groups were extracted from the Census Bureau's 1990 TIGER/Line Files.

CENTRACTS reports are created with programs written by Frost Associates, P.O. Box 495, Essex, Conn. The code was written using Microsoft's Quick-Basic Ver. 4.5.

Latitude and Longitude coordinates identifying a site are entered in degrees and decimal degrees. One or more county files holding Block Group boundary lines are selected for use by CENTRACTS by determining whether the site coordinates fall within the minimum and maximum Lat\Lon coordinates of each county in the state.

Each Block Group line segment has Lat\Lon coordinates representing the "From" and "To" ends of that line. All coordinates from the selected county files are read and converted from degrees, decimal degrees to X\Y miles from the site location. Each line segment is then examined whether it lies within or partially within the maximum ring from the site.

The unique Block Group ID numbers of each line segment that lie within the maximum ring are retained. All Block Group boundary lines matching the Block Group numbers are then extracted from the respective county files to obtain all sides of the included Block Groups. Boundary records are then sorted in adjacent side order to determine the shape and area of each Block Group polygon.

Rof. 22

A method to solve for the area of a polygon is to take one-half the sum of the products obtained by multiplying each X-coordinate by the difference between the adjacent Y-coordinates. For a polygon with coordinates at adjacent angles A, B, C, D, and E. The formula can be expressed:

 $Area = \frac{1}{2} \{Xa(Ye-Yb) + Xb(Ya-Yb) + Xc(Yb-Yd) + Xd(Yc-Ye) + Xe(Yd-Ya)\}$ 

For each ring, the selected Block Groups will be inside, outside, or intersected by the ring. When a polygon is intersected, the partial Block Group area within that ring is calculated using the method described below.

When a ring intersects a Block Group, the intersect points are solved and plotted at the points where the ring enters and exits the shape. The chord line, a line within the circle connecting the intersect points is determined. This chord line is used to calculate the segment area, the half moon shape between the chord line and the ring, and the sub-polygon created by the chord line and the Block Group boundaries that lie outside the ring.

The segment area is subtracted from the sub-polygon area to determine the area of the sub-polygon outside the ring. The area outside the ring is then subtracted from the area of the entire polygon to arrive at the inside area. This inside area is then divided by the tract's total area to determine the percentage of area within the ring. This process is repeated for each block group that is intersected by one of the rings. The total area, partial area, and percentage of partial area of those block groups within, or partially within a ring, are held in memory for the report.

On occasion, the algorithm described above is unable to determine the area of the partial area. Within the report program is a "Paint" routine which allows an enclosed shape to be highlighted. Another routine calculates the percentage of highlighted screen pixels to the pixels within the polygon. A manual entry is allowed. Both the "paint" method and manual entry method over ride the calculated method.

CENTRACTS lists, starting on page 4, all Block Groups in State, County, Census Tract, and Block Group ID order that lie within, or partially within, the maximum ring. Each Block Group is identified by a City or Town name and by the Block Group's State, County, Tract and Block Group ID number. Following is the Block Group's 1990 populu tion and house count extracted from the Census Bureau's 1990 STF-1A files.

The next four columns display water source data from the 1990 STF-3A files. The first column is "Units with Public system or private company source of water", followed by "Units with individual well, Drilled, source of water"; "Units with individual well, Dug, source of water" and "Units with Other source of water".

For each ring, CENTRACTS then shows the Block Groups that are within that ring, the Block Group's total area in square miles, the partial area of the Block Group within that ring, and the partial percentage within the ring. The areas of the included Block Group and the partial areas are then totaled.

The last section tallies the demographic data within each ring. The percentage of area for each Block Group is multiplied times the census data for that Block Group and totaled for all Block Group's within the ring. Ring totals are then determined by subtracting the three mile data from the four mile, the two mile from the three mile, one from the two, etc... Population on private wells is calculated using the formula: ((Drilled + Dug Wells) / Households) * Population

.2-p.2

Kearney, NJ

.

÷ Population: 398451.00 Households: 157226.95 Drilled Wells: 75.03 Dug Wells: 10.54 Other Water Sources: 123.72 ---- Within Ring: 4 Mile(s) and 3 Mile(s) ----Households: 76373.18 Drilled Wells: 15.99 Dug Wells: 2.54 Other Water Sources: 62.27 ** Population On Private Wells: 45.50 ---- Within Ring: 3 Mile(s) and 2 Mile(s) ----E 128,230 Population: 128232.87 Households: 49619.38 Drilled Wells: 46.44 Dug Wells: 0.00 Other Water Sources: 42.90 ** Population On Private Wells: 120.00 ---- Within Ring: 2 Mile(s) and 1 Mile(s) ----Population: 63217.52 - 63,220 Households: 23694.14 Drilled Wells: 12.60 Dug Wells: 8.00 Other Water Sources: 18.55 ** Population On Private Wells: 54.95 ---- Within Ring: 1 Mile(s) and .5 Mile(s) ----Population: 17486.37 - 17,490 Households: 6737.39 Drilled Wells: 0.00 Dug Wells: 0.00 Other Water Sources: 0.00 ** Population On Private Wells: 0.00

REF. 23

. ×

• • •

---- Within Ring: .5 Mile(s) and .25 Mile(s) ----1823.32 - 1,820 Population: 709.94 Households: Drilled Wells: 0.00 Dug Wells: 0.00 Other Water Sources: 0.00 ** Population On Private Wells: 0.00 ---- Within Ring: .25 Mile(s) and 0 Mile(s) ----Population: 234.80 - 230 Households: 92.92 Drilled Wells: 0.00 Dug Wells: 0.00 Other Water Sources: 0.00 ** Population On Private Wells: 0.00

** Total Population On Private Wells: 220.45

<del>33-</del> р.ч



<u>.</u>

.

0

)

TIERRA-A-017802

1

= 149

DCN: START-02-F-01093 512-121

### FINAL SITE INSPECTION PRIORITIZATION REPORT KEEGAN LANDFILL KEARNY, HUDSON COUNTY, NEW JERSEY

CERCLIS ID No.: NJD981490428

Prepared by: **Region II Superfund Technical Assessment and Response Team** Roy F. Weston, Inc. Federal Programs Division Edison, New Jersey

prepared for:

### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

EPA Contract No.: 68-W5-0019 TDD No.: 02-96-11-0044 Document Control No.: START-02-F-01093

JUNE 1998

SUBMITTED BY:

Kathy A. Campbell

START Project Manager

W. Scott Butterfield, CMMM Site Assessment Team Leader

Date 07/1/18

Date 7/17/94

CCA000053

KEEGAN.SIP

## **REFERENCE NO. 24**

.

•

START - 02-221 Field Logbook for SIP Keegen Landfill Kearny, NJ

National®Brand	ACCOUNT BOOKS	95/8 × 57/4 "
Green Book Cloth		
Item No	Numbered Pages	Ruling
Item No 56-521	200	Record
Item No 56-522		Journai



Office Products

### Diamond Bar, CA

# **Product Guarantee**

Avery is committed to providing you with quality products, and will gladly replace any product which does not provide complete satisfaction. We also welcome your comments and suggestions. Please send your correspondence with product code to:

Avery Division, Consumer Service Center P.O. Box 5244 Diamond Bar, CA 91765-4000

G. Gilliland, Region IT START

July 1997

Rs-. 24

7/30/97 Keegan Landfill - field sampling to- SIP Bergen Avenue, Kenny, NJ 0730 START members, meet at office, lock up, go get trucks at EPA lot. START leaves for site. 0800 0900 START and site : G. Gilliand Site Mgr D. Fourter 550 Scaple- / Wetlands J. Dowfria J. Filosa Samples / Decan J. Leahy SMO The landfill access road is blocked with FB large cement blocks - immovable. Set up by truch in entrance just outside blacks, will try to access the hand fill from Itarrison Avenue or each of Berger Avenue. START begin to set up, in local at Bergen Ave access roul. 0905 Ildefonso Acesta and Colin Bergin of EPA Region 2 arrived at the site. 0930 JL, JF DF whethed TBOI 0935 11 collected FBOI from travel bowi, anger, dresge. 0940 GC, JD, and EPA went to recon sample points SWOL/SBUT WAS SHOW - SOK. 2955 Arrived at them? of Franks Creek to scope out to entrins There are puddies (imined, lenumate) on left (no-un sine it incose real but not a permanent stream, "Dilors a 'on path. Dram near some pultes in my used, also a drank ties (crease & small) all along the path. The debils i but despite this, main short. x.e. V. Guilie D. 7/20197

7/30/47 Truck breek appears to originate at the 115 south suite at the accoss was, no conduct or pipe leveling to it from under access roud. 10:30 JD takes pictures POl Leachate at had al Frank Creek; taing north. 12 F-02 Leachate at head at Frank Creek, with Creek in background ; facing South To south edge at londitics to scope out 1245 Swoilsboi lantion. Ne vill be able to access the location 1050 Tried to get access to a location milway along Frank Creek, but it is too overgrown and too for from access road. Buch to the command post Pick up DFEJE, 1120 bottles for Swol/SDOI and its field Inpliente Suro5/SDOJ. GG, DF, & JF 1130 arrived at Swel location. Readings: pH = 7 Coni = 60 mmhas Salt = < 0.5 ppthousand Temp= 22°L No readings above buckgroud on OLA or HNU in ansist in above Sn-je location 1175 Collecter Swar and Swar ( field dup). P-03 JF collecting Scrol. Sample location is approximately 30' north of concrete calvert that gots inver Ph fracks. No realing above background on HNIA, WUA. in unbient cir. NOS por on HNU off. the sample ._ - 7/30/97 Ind V. Gollen Ċ

7/30/97 1150 Young man rove notor bike along tracks to East and there's routh into the landfill access road. Sim great blue heren on these tracks earlier. GG back to common soit, picked of JD, then back to Swol. JF collected SNUL. OF & JF will when Swoppoor. 1205 GG, JD, IA, CB went to recon The landfill. We went just over tracks into landfill, turned right off Herrison Are access roud, to end of road where Grandwed can is. We walked a little further y, saw a makeshift house on the land fill. We called out as we approached, but got no answer. OG & CB heard a cough from inside the shack, we called out again, no answer usin. the returned to truck, continued to recon the land fill. 1220 Down unother access road, we found an open water wetland on both sites of read. We believe that this is the area that NUS called " unnamed creek ', but it really is an open wethind, appears to be connected to the remainder of the wetland. We conclude that NUS marie a mistake. We saw for great blue Heron, snowy egret, and a swan in the emergent wetland in the mikelle of the open water wetlend > picture Pict, fining north , 1300 We have driven on inll accoss reads (more then on map) and not found "innamed creek". IA, consulting with GG, decides to eliminate the SWOB and swich locations, will just get soliments from wethends (tomorrow). Also decides to cartak landfill waste samples from 3 locations to Genedit Gibler 7/30/57

3

4 7130197 1330 Back to command post for linch break. Notes: There was debris along all access rounds and evidence of debris within overgrowth next to all access routs. Some construction activis piles ( bricks, concrete, broken provement) locks recently deposited (no overgrowth) and access roads are all fairly clear, and as if they are used presently. Debris/refuse noted included: ash piles, fires, tods, brick, 54155, pavement scrap, abundoned car, car battery, cement, construction debris, mattress, bottles, bounds, plast is, metal pipes, fiberduss, beiding Note: at end of northwestern-most access rowing, JD saw a hagaker in open water wettind from top of a debres pile. 1340 hand . Inso sut scope of work with IA. . and 2 Suchgrounds off-side. - . _ Went to collect LFOI. Went to End 1440 - of southernmost access road. There's an apparent dumping area between the end of the row and the R& tracks, with some ironistained ponda' uniter. Uvere very close to the open-writer wetland ( About 20 feet west for a wetland channel). Garbage includes glass, tires, boards, pleastic bugs, -- . boots, crushed from ~ 5 feet from LFOI, Elmains of another. It approves location. . 1500 Collegted LFOI 1. P-075 JF collecting L=01 (location described above); facing south. Genel V. GRON TIERRA-A-01780 7/20/97

7/30/97 1530 Arrived at potential ocation for LEO2, at ashildebing file at end of mestern-most access roul, JF angue sown to determine comparties and Lepth of material. Ash ~ 1" IA consults with 66 and crew, decides to collect a source sample from ash at the edge of the pile. Main pile is about 4' high , long this pile running adjacent to it about I' high. (4540 JD collecto LFO2 about 30' from mainple. 1545 P-086 JD collecting LFOX, facing west. Sample is collected from low pile of esh debris. This material is not roversham, as if it was deposited within last 10 years (small trees, lear than 5' high ). 1350 Finished LFO2. The Fig P-Ob 7 Ash pile to extreme latt, simple location to extreme right ; fixing west . Went back to comment post. 1555 GG and IA walked footpath off to left (looking in) of min access road, closer to Regar Ave than Frank Creek. We found an area with numerous crushed drume & drum like among other landfill debris _ Will collect LFOShere. Malked buck to command past, get others. 1615 Collected LT-03 from location described above. P-048 JF willecting Lioz, Facing southeast. 1625 Finished collecting LFO3. DF & JF built to command post; IA, GC, JD & CB followed tootpeth west from LFUS, to path along RR tracks (abundanced, every and tracks). Tollowed the path a while and came across another wetland area. I'd sags it's probably Gener l'Guelle 7/solo7

6 r)30/47 We cantinued to walk along tracks, wetling . WI stunding water continued. Me walked ustil we encountered the conal that shows up as the upstream cal of Frank Creek on the myp. It is channelized of walls on appointe (north /right) side of tracks and also along its no thermost recil, within the lundfill. The JS said that the wetland area along the tracks, that we'll been following, is connected with the chamel and with the remainder of the wettends that we've seen (one by wettend system). IA mentioned that he will want to get simples from this side of the landfill. We began to wilk back. to the command post. 1650 Back at command post. IA will retlink the sampling plan overnight; GG to call him upon arrival at the site in the morning, prior to start of sampling activities. Will providely want to collect extra sediment samples, plus the background soil samples for compension with today's LF samples. 1700 START members have pulsed samples for FedEx shipping. Londing truche to leave site. EPA guze ( JA and (B) left the site at this time. 1710 START left the site. JD and JL will drop iff the samples at FOREX in Edison, NJ.

Caned V. Gill A 7/30/47

7/30/97

Summary of Keegan Landfill sampling - Day 1

A. Upon viewing the site throughout the day, and consulting with START member 6. Gilliland and other, I deterso Acosta of EPA decided to change the sampling plan is follows:

1) Eliminated sample locations SLUUS and SLEDY, und moved their corresponding sediments (SD03 end SDO4) to ather pointions at landfill .

2) Collected three landfill mate samples from the surface of the lunifill for source. These sumpts (LFOI, LFOD, LFOD) were added to the scope of work for source charactericistic. We will collect background soil samples from off-site tomorrow for comparison to LF samples. s) Will produkty request will hourd stamples to characterize continination of the wetland / sensitive environments in which the lundfill is situated. Gb will call IA tomorrow to confirm this part

B. Today's somples: Landt: 11 Simples LFUI LFUA LFU3 Sur /sed Samples Swoil/SDOI (Frank Creek Swod/SDUL (Freak Creek downsfream Suss/ SDUS (Duplicule of Swol/SDOI) WA samples FOU TBUI benied VGLC X 7/30/9-

of the plan.

8 Long S Hause This page was left blank intentionally. Que la Const V till A X risilar

g 7/31/97 0850 START crew arrived on site for Day 2 of Keegen Landfill SIP sampling. START members; G. Gilliland Site Mar Sampling / wetlands J. Durof No 550 D. Foerter Sampling / Decon J. Filosa SMO J. Leahy 0900 GG called Ildefonso Acost of EPA Rogin 2. IA directed GG to collect 2 samples from wetland area at west-northwest edge of ____ - Ignofill. These will be extra sediment Examples in addition to those glacedy in plan. Use from to document at least Oil mile of wetland frontage. Also use a existing samples from plan to document O.I mile of wetland. frontage at east edge of landfill (near lfor). Supe of work summery: 9 sediments, + 2 background soil samples for comparison to Indfill waste samples collected yesterday. _0910 GG off phone. DF goes to buy ice while others set up for sumpling. Weather: sunny, TOs to 80s, confortable .... 0935 GG and JA took suburban to go flag out sample locations SDOS, SDOH, and SDOG ( collected SDOS Jesterday is displicate of SDOI). JF, JL, and DF propping bottles, decoming, collecting field and trip blants. 1025 GG and J. Duch to comment post. We saw i bigg doy with colin near / in open-un ter wettend area down middle access road. At command post, grithered, bout, bottles, ote. 1040 GG, JB, JF, DF to Toution for SDO3 and acono + 1. Colle Q X 7/31/97 others.



1. 7/31/97 1050 At location 5003. 230' East of LFOI. DF peollects the sangle. P-039 DE collecting SDOS; facing East. Sample is dark brown, composed of silty much with some clay, some grossy regetation. 1105 Finished collecting SDO3. Cather 29 point for SD04, launied boat from makesh. It brackers bridge at and of this backers southernost access road. 1115 P-09 Licuncher boat, JD and JF going out to collect SDC4. P-510 JF and JS in boat on way to SDOU. Small stand of phingmittes in middle of water is about 300' north of bridge, from whence picture was to ken. Egnet, Swan, and heron have been seen on bright-green (energent) we thand in buckground. 1120 DF goes to collect SDOG from "boat launch" area ( just west of next access read Transcribed notes: 1125 DF collects SDOG. Funtle is composed of dark brown kilt with gray clay, made organic material. Surface sample at west conver of Gout low it. No picture of sumple. No reading, above bickground on HNU. Much debris in and around the boat lounch area, including a bobber and hole-punched coffee can lid. These two items were collected as writing that the open-water methand adjacent to the lumifiel is used as a fishery. Exhibits A (bubber) and B (can hild). 1730. DF finished collecting SDob. and UG A-017815

1. 7/31/97 1130 GG takes picture P-1011 Looking east from 5003 at open-maker/ Emergent we land used RR tracks to the right (south). Note: These tracks show evidence of current use, but no activity seen yet yesterday or tokey. 1140 DF returns to small bridge. JD and JF arrived at sample location SD04 and begin to collect sample. Simple locution is 500' from bridge; 550' north. of SDO3 along land fill edge of wetlend. They are hilden behind some phragmits; no picture taken. 1150 DF goes to command post to drop off samples 5003 and 5006 and to some decon. 1155 GG notes that JD and JF are returning from location 3004 in boat. 1200 P-4712 JD and JF attempting to return from sample location SDO4. Public sout out, DF returned, all headed over to launch boat for SDO7, SDO8, and SDO9. JE described sample SD04 as dark brown to very durk brown organic silt with debris (glacy plastic). Sample collected about 2.5' below a ter surface, about l' into servicinant. No even no reasing above such ground on IMU. Salining of worker about 1 ppt. 1230 JD and JF get in boat at \$Dob Location. Will measure 350 to 5007 them collect (") in a north - northwest il nection. Lourchel bout it this time. JD to take notes Ephotos. 1240 DF we GG propped off sample at comment post. Gener V. Great - 7/31/87

127/3, 197 1245 DF and GG arrived at wetlend on Mestern side of landfill. There is very little standing water ( much less than gester damp). 1305 GG goer to fixe a good location for SDII in wetland area. 1315 GC collects SDII from wetlend area. There is very little standing maker, but all ground is saturated and covered with tal' phragmites. JD has comere; no photo. Sample Location sleetch: Fruit Creek (Cenal) Fiore Kelgon LF Sample is very dank brown silty much, organic, with debres about 4" below ground surface. There is also debris scattered about surface. Debris includes. Show, bottles, sum wappers, paper. Sample is saturated, standing water in hole at ch. + 6" depth. 1335 DF collects SDID. Sample location is 600' southwest of location SD112 collected from edge of wetland area ~ 40' from RR path. Location the n russed half - drym, times, gunbage. ID had camera, so no photo 1345 DF finished collecting SDID. We want bruck up to RR tracks to pass off measurements. Camill. Clif - "TIERRA-A-01781

7/31/97 Measurements along R.2 trucks: Bergen the to trail where LFOB was collected. 300' Trail (LFOS) to SDIO - 400'. SDN to SDLA. 600' 1355 DF GAS_GG Duck to command post with --- Sampler SDII and SDID. DF goes to buy lunch, use bithroom. GG called JF and Jis. They have collected all 3 samples, scoped out. wetlands; now heading buck to boat knoch. 1400 GG goes to help JD and JF get boat out of whiter. Notes for collection of 5007, 5008, 5009, attached topp-17-20. 1430. Bout is out at water, onto truck, hered suck to command post. Commank pist, short lunch break. 1440 1500 Get ready to go set buckground soils and we thand sediment samples. DE, JD, and GC went to collect backgrounds. 1515 Arrived at location Parked along Iturnion 1530 Are und welked through tall phragmites on Block 286, Lot 47 to edge of open water. that lies in middle of this lot. 1540 JD collects SD12. P-19 JD collecting SDIL, facing northwest. Sample is at edge at open water area, now 4' in from where phragmites begins to grow Very dank brown silty much , organic, with rootis, trace peublec. There's a time about 2' from cample Location. 1550 Fingshul SDIZ - 1t's about 60' north-northlast of turn pike ramp just past intersection with Harlison (2 mill. (2 ~ 7/31/57

] [

14 7/3/97 . 1555 Collect BKO! at leading edge of wetland area near tumpile ramp. About 25' NE at ramp rouding, 15' NE of guerd mil. P-20 DF collects & BKOL tacing northeast Sample is dry to moist, very dark known sandy silt with little clay, numerous root fragments, no debris/retuge. 1605 Head back to commend post, dropped off Dennis. JF left site. JD and GC to other Lackground locations. 1610 1625 Arrived at end of Barczewski Stioff Rellevilletoin) This end of rond (deadent at tracks ) is closed, bumpy. Moved barrier to set to dead end. Will have to walk along trades to get to sediment location in wettend, [700 Loped it out, there's a trucking business on this side of tracks, Emall we thank areas to its east and west along tracks (small compared to Keegen site). Decide to collect sample at west edge of saturated without **.** ..... phragmites unen 75' north of tracks 1700 JD collects SP12. No apparent industry or durping hurd, within 100, if feet, except tracks. There's the trucking business ~ soo feet arong hulfill to the northeast is that. - See role * P-25 JD collecting SDIS, facing north net pase Sample is very dark brown, silty, organic nuck with vegerative roots/frequents, the saturated . 

107/31/97 1710 Finished collecting SD13. Walked back along tracks, looking for a good soil location for background. 1720 Back at truck, there are no good background locations. It's all wetlands, and opland artas are composed of debris fill material or are vory close to RR tracks. Decided not to. collect another sample. Head bank to command post. 1730 66 and JA but at comment mont. DF just left. JD, GG and JL pack up and ready samples 1755 Packed up, left site .. 1800 Stopped along Harrison Are to supe out Frank Greek. The Creek was along the LF access roul, then_ takes a jug just before Harrison Ave .- Flows into-a culvert unser therison Ave, but there is no exit. calitation other sile of the road -1810 At this time we left Kenning to bring the sample to Feltex, think. Cando V. Cillo 1/5/67 * Note: Photo, P-21 through P-24 were taken. by GG at approximately 1700 hears. They are all photos of the wetlands area adjacent to Keepin Landfill . Locking SW to SE from RR tracks north of the site Centr VGULD TO 7/21/97

16 Summary of Two Day Sampling Event Kergen Cand Fill Lollertex Land fill Samples LFOI 7/30/57 LFOI LF03 Background Soil SN/Sel Su BKOI 7/31/97 Swoil/SDOI(Frank Creek up) 7/30/97 Swos/SDO5 (dup) SW02/S002 (Frank (reelion) Schinent 5003 7/3//97 (Wetlands) 5004 Adjucent fo 5 AB BERT Keegn LF 3006 5007 2908 5009 LAKER SDio 5511 Beckground Sed 5012 Wettends 5013 remote from Keigen LF Canal VGlob 7/31/97 TIERRA-A-01782

ć.,, ÷., '

Proge 1 of 24 1241 Arrived at sectiment sample location SD07 Phragmites Photo # 13 00 hing Environt wationd Simple location SDOB Phraque ites Domple => Emergent of Decliment Location SDO7 Sample dok = 2/3/197 sample time = 1253 Sample depth = Approx. 1 - foot Distance from edge of bank = 2 feet Type of sample (composition) = dark brown; organic silt; / with fiberous organic roots (decompose phrag) with some morganic debri Any order to the sample = Smelled like hydrogen sulfide because of the enerobic conditions a No real exposure of land fill debri. Some plastic was = Dalinity 201 - at 5000 J. D'Onofrie 7/31/97 Depth of water = 21/2 test · (Trab sample with the soil Duger-a composited the sodiment sample in stainless steel bowl TIERRA-A-017822

page 2 of 2

1509 At sediment sample location SDOB which is 14 on the emergent island Photo # 13 Jediment Location SD08 SDO8 The back Scampte time 1310 depth by water 1 foot - N - N -I S depth of sample of I H. Composition = rich organic silt dant brown in rolon sample change more peat the in it (small fiberous root mass) Slight hydrogen sulfide odor = Mc debri in sediment just scattered surficial c debri (plastic bags) that washed up on shore Salinity 2 10% E Took sample with the soil arger and composited the sample in the stainless Steel boul · A fish was feedling in the shallow water just off the wetland (species untrown)

J. D'Onoprio 7/3, 47

Porte sal

1336 Arrived at Sediment station 5D09 -= mple flate 2/31/97 Sample time 1338 Composition -> rich organic Silt, dark brown in Color W/ Peat like rost mass -> slight hydrogen sulfide odor Dopth of water = 6 " Depth of sample = 0 to 2 foot · Nr. debri in sediment just some garbage Took sample with the soil auger and composited the sediment in a stainless steel baul before putting not the sample javs · Salinity = 1% · Photo # View northeast of great blue heren to feeding beer energent wetland Philo# Key East of wetlands with Manhattan syty me in baground Photo # 100 view west locking toward Keegen landfill Smoke stack in backgro thraqmites 150' <<u>N</u>-s · Creation the best at elfac

Page 40+4 400 Started inder up and to get in idea of the wetlands Photo # 20 View facing west of mute swan and wellowd avera just barely visible is the Varload embankment in the background 1411 Departing for boat bunch We did see signs of debri floating in the water and also an accessional time. Wildlife observations made white sampling and motoring around 1 Killdeer 1 Female mallard 2 mole swans 3 Great blue heron 3 Common equets Fish feeding along bank (species untrown) Red wing black birds Flack of Canada geese J. D'Onutrio Swallows ( D'Onofrio 2/2//an TIERRA-A-017825 Swallows

### **REFERENCE NO. 25**

and the second second second second second second second second second second second second second second second

ъ.

#### SAMPLING TRIP REPORT

SITE NAME:	Keegan Landfill Site
	DCN: START-02-F-01518
	TDD #: 02-96-11-0044B
	CASE NO.: 25601

**EPA^{*}I.D. NO.:** NJD981490428

SAMPLING DATES: 30 and 31 July 1997

- 1. Site Location: Refer to Figure 1
- 2. Sample Locations: Refer to Figure 2
- 3. Sample Descriptions: Refer to Table 1
- 4. Laboratories Receiving Samples:

Sample TypeName and Address of LaboratoryTarget Compound List<br/>(TCL)Southwest Labs of Oklahoma<br/>1700 West Albany<br/>Suite C<br/>Broken Arrow, OK 74012Target Analyte List (TAL)<br/>Metals (excluding cyanide)Sentinel, Inc.<br/>2800 Bob Wallace Avenue - Suite L3<br/>Huntsville, AL 35805

5. Sample Dispatch Data:

One aqueous rinsate, six soil/sediment, and three surface water samples were shipped to Sentinel, Inc. for TAL metal analysis on 30 July 1997 at 1730 hours via Federal Express (Air Bill No. 1550042524).

One aqueous rinsate and eleven soil/sediment samples were shipped to Sentinel, Inc. for TAL metal analysis on 31 July 1997 at 1830 hours via Federal Express (Air Bill No. 1550042513).

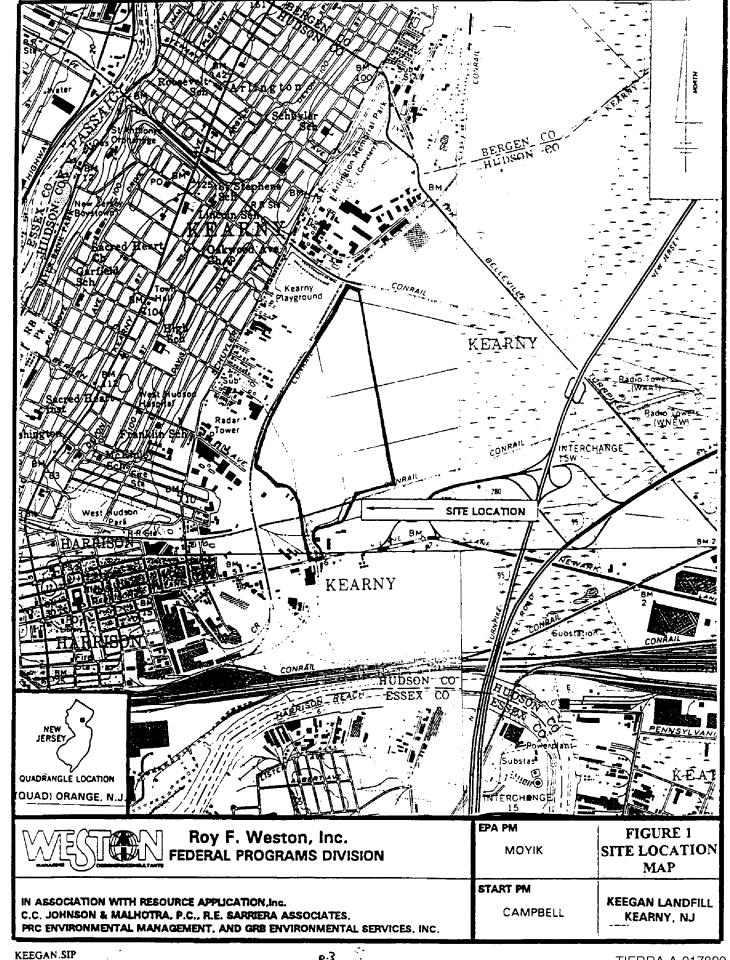
One aqueous rinsate, six soil/sediment, and three surface water samples were shipped to Southwest Labs of Oklahoma for TCL volatiles, BNA, and Pesticides/Polychlorinated biphenyls (PCB) analysis. A trip blank was also submitted for TCL volatiles analysis. The samples were shipped on 30 July 1997 at 1730 hours via Federal Express (Air Bill No. 1550042561).

One aqueous rinsate and eleven soil/sediment samples were shipped to Southwest Labs of Oklahoma for TCL volatiles, BNA, and Pesticides/PCB analysis on 31 July 1997 at 1830 hours via federal Express (Air Bill No. 1550042480).

6. On-Site Personnel:

Name	<u>Company</u>	Duties on Site
Ildefonso Acosta Gerry Gilliland Dennis Foerter Jennifer Leahy	Region II EPA Region II START Region II START Region II START	Representing EPA TM Task Manager Health and Safety Officer Sample Management Officer (SMO)
Joe Filosa Joanne D'Onofrio	Region II START Region II START	Sampler Sampler

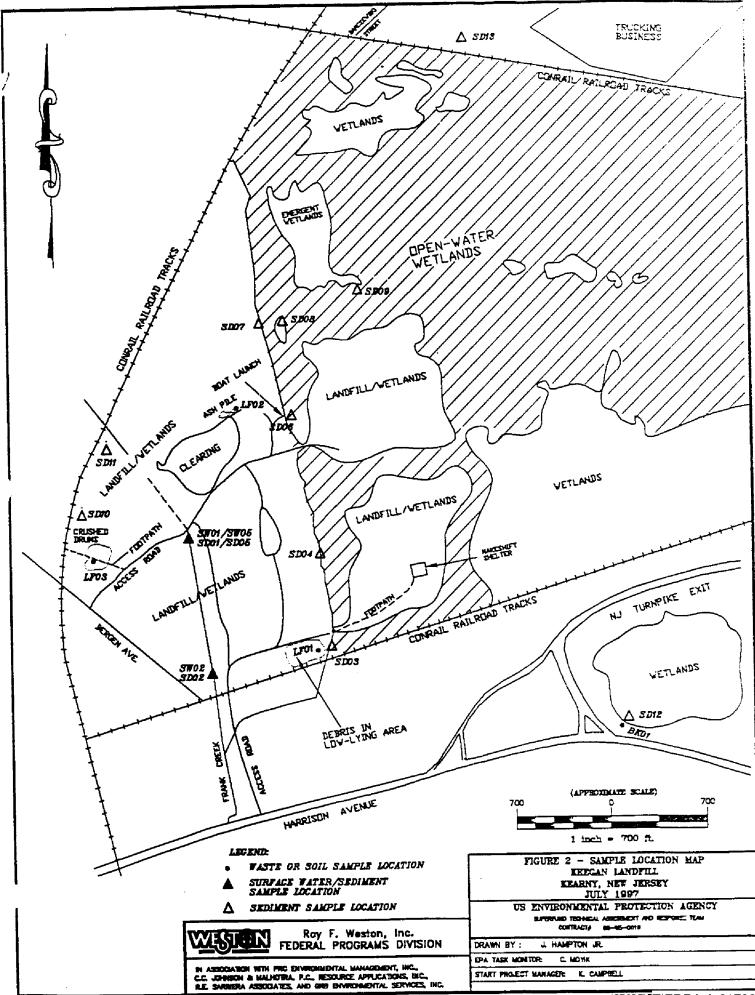
7. Additional Comments:


On 30 and 31 July 1997, the Region II Superfund Technical Assessment and Response Team (START) collected soil/sediment and surface water samples from the Keegan Landfill site. These samples were collected as part of a Site Inspection Prioritization (SIP). All samples were collected by Region II START and analyzed for Target Compound List (TCL) and Target Analyte List (TAL), excluding cyanide, parameters through the U.S. EPA Contract Laboratory Program. Organic and Inorganic Traffic Reports are attached.

A Sample Location Map will be prepared and submitted at a later date.

Report Prepared by: <u>General V Gill</u> Gerald V. Gilliland, P.G. 8. 12/4/97 Date: ____ Report Approved by: 14/2 9. Date: W. S. Butterfield, CHMM

p.2






}

j

. سرچا p.3



ISFG3.PLTTIERRA-A-017830

### TABLE 1 SAMPLE DESCRIPTIONS KEEGAN LANDFILL SITE KEARNY, NEW JERSEY

SAMPLE NUMBER	ORGANIC CLP NO.	INORGANIC CLP NO.	DATE	TIME	COMMENTS
FB-01	BSE 41	MBQK 46	7/30/97	0935	Field Blank collected from bowl, trowel and dredge for surface and subsurface collection.
FB-02	BSE 42	MBQK 47	7/31/97	0935	Field Blank collected from bowl and trowel
SD 01	BSE 27	MBQK 34	7/30/97	1205	Sediment at head of Frank Creek.
SD 05	BSE 31	MBQK 38	7/30/97	1205	Duplicate of SD 01 for QA/QC purposes.
SW 01	BSE 22	MBQK 29	7/30/97	1145	Surface water/leachate at head of Frank Creek
SW 05	BSE 26	MBQK 33	7/30/97	1145	Duplicate of SW 01 for QA/QC purposes.
SD 02	BSE 28	MBOK 35	7/30/97	1255	Frank Creek, downstream edge of site. MS/MSD.
SW 02	BSE 23	MBQK 30	7/30/97	1240	Frank Creek, downstream edge of site. MS/MSD.
LF 01	BSE 37	MBOK 44	7/30/97	1500	Landfill waste sample - debris.
LF 02	BSE 38	MBQK 45	7/30/97	1545	Landfill waste sample - ash pile
LF 03	BSE 43	MBQK 48	7/30/97	1645	Landfill waste sample - crushed drums.
TB01	BSE 39		7/30/97	0930	Trip Blank
SD 06	BSE 32	MBQK 39	7/31/97	1125	Wetland sediment sample.
SD 03	BSE 29	MBQK 36	7/31/97	1055	Wetland sediment sample.
SD 04	BSE 30	MBQK 37	7/31/97	1140	Wetland sediment sample.
SD 10	BSE 36		7/31/97	1335	Wetland sediment sample.
SD 11	BSE 46	MBQK 66	7/31/97	1315	Wetland sediment sample
SD 08	BSE 34	MBQK 41	7/31/97	1310	Wetland sediment sample.
SD 09	BSE 35	MBQK 42	7/31/97	1338	Wetland sediment sample.
SD 07	BSE 33	MBQK 40	7/31/97	1253	Wetland sediment sample.
BK 01	BSE 44	MBQK 49	7/31/97	1555	Off-site background soil sample.
SD 12	BSE 47	MBQK 67	7/31/97	1540	Off-site, background wetland sediment sample.
5.02	BSE 48	MBOK 68	7/31/97	1700	Off-site, background wetland sediment sample

# ATTACHMENT

# TRAFFIC REPORTS/CHAIN OF CUSTODY RECORDS

	Account Code	Environmental Pro lact Laboratory Pro		& Cham (For C Date Shipped)	of Custody R Drganic CLP Analys	ecord ^{is)}		25601	
l. Project Gode	Account Gode		Weston STARIT	7130197	FEULY		6. Matrix (Enter in Colum	nn A)	7. Preservative (Enter in Column D)
Tegional Information Ton-Superfund Prog Site Name DEEGUL		Sampler (Nam J. L(1) Sampler Sign  Jurpose lead SF PAP FED	nj aing paku	Scothe 1767 W		- OKIAIDAN , Suiti C Z	2. Grour 3. Leach 4. Field 5. Soil/S 6. Oll (H 7. Waste (High 8. Other	ate QC ediment Igh only)	1. HCI 2. HNO3 3. NaHSO4 4. H2SO4 5. Ice only 6. Other (Specily li Column D N. Not proserved
CLP Sample Numbers (from labels) A Matrix (from Diher:	Conc.: Sample Pre Low Type: val Med Comp./ (fre	ilve om v v d x 7) 0 v d.	Tracking	F I Speclfic Number Jumbers	G Station Location Identifier	H Mo/Day, Year/Tim Sample Collectio	e CLP Sar	Inorganič npte No.	J K iampler Field QC Inilials Qualifor D = Black 9 = B D = Chysicale II = Finale PE = Perkon E - Hote OC Fe
35E21   4  5E21   5  35E22   1  35E26   1  35E28   5  35E31   5  35E31   5  35E38   5  35E38   5  35E38   5  35E38   5  35E38   5  35E38   5	$   \begin{array}{c}             L \\             L \\         $		IA0,"002( IA0,"+015 TAGH+015 TAGH+026- TAGH=008 TAGH=019 TAGH=019 TAGH=030 TAGH=034 TAGH=034 TAGH=05 TAGH=05 TAGH=05 TAGH=05 TAGH=05 TAGH=05 TAGH=05 TAGH=05	617 028 -013 -024 hase -033 -051 5-051 9-061 03-065	$ \begin{array}{c}                                     $	- 1 30 97.1  - 7 30 12 - 9 30 12 - 1 30 12 - 1 30 15 - 7 30 15 - 7 30 15	2005 M.P. 2005 M.B. 445 M.B. 445 M.B. 255 M.B. 255 M.B. 40 M.B. 40 M.B. 40 M.B. 415 M.B. 45 M.B.	QK 34 $QK 38 QK 24 QK 33 QK 35 QK 30 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 44 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30 QK 30$	
elinquished by: (Sig	anaturo)	Date / Time	CI Received by: (Signature	HAIN OF CUSTO	DDY RECORD elinguished by: (Sig	nature)	Date / Time	Received b	y: (Signature)
the function of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	1/30	1 1145	Received by: (Signature		elinquished by: <i>(Sig</i>		Date / Time		y: (Signaturo)
lelinquished by: (Sig	poature) '	Date / Time	Received for Laboratory (Signature)	/ by:	Date / Time	Remarks is cus	itody seni inta	Icl? Y/N/none	

٢

NEFA United States Contr	Environmental Protection Ag act Enberatory Program	gency &	Chain o	: Traffic Repo of Custody Re ganlc CLP Analysis	cord	Case No. 25	w01	   	
1. Project Code Account Code Regional Information	Sampler (Name)	SIONSFARE 74 Airoili A	55004	Arrier FED ELD 480 -12:550		6. Matrix (Enter In Columi 1. Surfact 2. Ground 3. Leacha	Water Water	(En Col 1.   2.	servalive iter in 5 lumn D) ICI INO3 NaHSO4
Non-Superlund Program Sile Name <u>ALMAN</u> <u>ANX</u> /LLA City, Strile Silo Spill ID <u>2-</u> 2	Scrippler Sigbature		oslinuus 66 W ( noker (	t Labsor OKI Albanj, Sur Currow, OK CK-Hower		4. Fleid C 5. Soil/Se 6. Oli (Hi 7. Waste (High c	C diment gh only) only) (Specily	4.   5.   6. ( <i>N.</i>	12SO4 ce only Other (Specify in Column D) Not preserved
CLP Matrix Conc.: Sample (from Low Type: val		F Reglonal Spec Tracking Numl or Tag Numbe	ilic ber	G Station Location Identifier	H Mo/Day Year/Tin Sample Collectio	ne CLP II e Sam	I ponding torganic ple No.	J Sampler Iniliais	K Field QC Qualifier 8 - Blark + 8 - Spile D - Duplcate R = Riveate PE - Peytom Eval = Hot a QC Sample
BSE33 5 1 G F BSE33 5 L G F		- }-	078 086 090 090 090 -102 -102 -106 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107 -107	FBO2 SD 06 SD 03 SD 04 SD 10 SD 10 SD 11 SD03 SD03 SD09 SD09 SD09 SD09 SD09 SD09 SD09 SD01 BK 01 I Sampler Signature	7 31 97 7 31 97 7 31 97 7 31 97 7 31 97 7 31 97 7 31 97 7 31 97 7 31 97	1140 MB1 1335 MB6 1315 JABC 1315 JABC 1319 MB6 1336 MB6 1335 MB6 1355 MB	x 39 px 36 px 36 px 31 px 43 px 66		
Relinquished by:     (Signature)       Relinquished by:     (Signature)       Relinquished by:     (Signature)	Date / Time Reco	Ived by: (Signature)	Rel	DY RECORD linquished by: <i>(Sign</i> linquished by: <i>(Sign</i> Date / Time	nature)	Date / Time Date / Time	Received Received	by: (S/g	1
DISTRIBUTION: Nice - Region Copy White - Lab Copy for Re	Pink -	CLASS Copy v - Lab Copy for Return to	CLASS	EPA Form 9110-2	SEE NE •SEE NE	EVERSE FOR AD	DITIONAL S	E DEFINI	

-

PA United States	Environmental Protection Agency act Laboratory Program	anic Traffic Report & Criain of Custody Record (For Organic CLP Analysis)	Criso No. 25601
Project Code Account Code	2. Region No. Sampling Co.	1. Date Shipped Carrier - 73197- FEJ EX	6. Matrix 7. Preservative (Enter (Enter in In Column A) Column D)
Regional Information	Sampler (Namo)	Airbill Number 1550042480 5. Ship to Sathwest LABS of OKlakonia 1700 US Albany, Suite C BYDKIN, arrow OK 174012 The Calmark Harmon C	1. Surface Water 1. HCl 2. Ground Water 2. HNO3
	$\begin{array}{c c} W \\ DT \\ DT \\ T \\ T \\ T \\ T \\ T \\ T \\ T \\$	F G H nal Specific Station Mo/Day og Number Location Year/Tin y Numbers Identifier Sample Collectio	Image: Mark Stress         Corresponding Company         Sampler         Field QC         Field QC         Qualifier         Qualifier         Qualifier         Sample No.         Description Sample Sample         Sample Sample Sample         Sample Sample Sample         Sample Sample Sample         Sample Sample Sample Sample         Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample
35E485 1-6-6	XXX TAGH XXX TAGI		210 MBQK67 K- no MBQK68 fl- 16
hipment lor Case Page S omplete? ( Y/N)	ample(s) to be Used for Laboratory QC	Additional Sampler Signatures	Chain of Custody Seal Number(s)
	•	CHAIN OF CUSTODY RECORD	
Pernidix Lealer 1/31	Dale / Time Received by: (Signal		Date / Time Received by: (Signature)
lolin(hilshed t)): (Signature)	Date / Time Received by: (Signal		Date / Time Received by: (Signature)
telinguished by: (Signature)	Date / Time Received for Laborate (Signature)	ory by: Date / Time Romarks Is cu	istody seal Infact? Y/N/none

n

*SEE REVENSE FOR PURPOSE CODE DEFINITIONS 372313

€	United States Cor	Environmental Prote tract Laboratory Prog	iction Agoncy ram	Inorg & Chain (For li	Craffic of Custor norganic CLP	c Report ly Record Analysis)	Case No	). QJUDI		
Project Code	Account Code	2. Region No. S	Sampling Co.	4. Date Shipped		Ξx	6. Mai (En		) (Eni	servalive ler column D)
egional Information	• • • • • • • • • • • • • • • • • • •	Sampler (Name	r Leaky		42 524		1. S 2. C	urlace Water iround Water	1.H 2.H	
on-Superfund Prog le Name <u>KIEE (AU)</u> ity, State KALAN, AT		Sampler Signa		2800 ( Suite I Hughy	ille, HL	0112 35805 ilgore	4. F 5. S . 6. C 7. V 8. C	eachate leid QC oil/Sediment oil/Sediment vaste, (High only) vaste, (High nly) her (specily n Column A)	4.H 5.K 6.lc 7.O	2SO4 2CR2O7 e only thet (specify o Column D) lot preserved
CLP Sample M Numbers (I (from B	A B C atrix Conc. Sampl rom Low Type ox 6) Mod Comp High Grab	e Preser- volive 위 귀	AS Analysis: Low High only Only COV CON HIGH	F Regional Spe Tracking Num or Tag Numb	nber i	UG Station Location Identilier	H Mo/Day/ Year/Time Sample Collection	I Corresponding CLP Organic Sample No.	J Sampler Inillais	Field QC Qualifier 3 = Blank 8 = Spike D = Dipficale + H = Rinsate P = Perform, Eval - = Not a QC Bainple
1BQK HU	4LC	2 X	Tag	# 001			7/30/97093		JL_	B
1001-3-1	516	<u> </u>		<u>6#018</u>	··· ··· ·· ··	5005	7/30/17 1205 7/30/17 1205		Re	
1Bax 38	5	<u> </u>		5#029_ 5#=014_		5405_ 54101_	738101 1120	100.00		1
1Bar 29	RIL G	5-0-		$\frac{5}{6} \pm 025$	NOA VIAL	5005	7/30/97 1145		ΙX.	Dimote
189K331		62X X		5#033		SDOA	713097.65	BSE28	IX.	msimsb
NBQK30	11L G	$2 \times$		5#5052	-054	SU 62	7130/97.124	BSEZ3	<b>₩</b> .	msmsb
nBQK44	545	6 2		G# 058		LFOL	13097150			
MBQK-15	<u>5 L G</u>	6 7		GHE 0102	·	1F02	73097154	1556 30	- -₩	
neiqk42	51-15	$  \varphi   \chi$	Ised for Laboratory OC	(JH= Ololo	onal Sampler S	and the second second second second second second second second second second second second second second second	130197 1100	hain of Custody	Seal Nun	iber(s)
nipment for Gase omplete? ( Y.N.)					in a second second	i			•	
	of	magki	5 émbor	CHAIN OF CUS	TODY RECOR	D				<u> </u>
elinquished by: (S	Signature)	Date / Time	Received by: (Signa		Relinquished b		Date / 1	Ime Receive	d by: (Si	inalure)
		1. 1. 1. 1. 1. 1.		н -			<b>   </b> :			ал. 1919 — А. А. А. А. А. А. А. А. А. А. А. А. А.
LUNNULL	MALL	10/17/ 1.00 Dato / Timo	Received by: (Signa	nturo)	Rolinquished b	y: (Signaturo)	Dale / ,1	Ime Receive	d by: (Sl	gnaturo)
Quinning and the fe										
Inlinguished by: (S	Signature)	Date / Time	Received for Labora (Signature)	tory by:	Dale / Tim	e Remark	s is custody se	al Intact? Y/N/nd	on <b>e</b>	

White - Lab Copy for Return to Region

Yellow + Lab Copy for Helu

**36693**/ TIERRA-A-017836

1. Project Code	Account Codo	2. Region No.		4. Date Shipped	Carrier	P Analysis)	6. Mal			ervative
	·	d	STARTWRSK	Airblil Number	Fed	<u>CX</u>	(En in C	ler Column'A)	Ent in C	or olumn D)
Regional Informatio	n	Sampler (Name	1	1				utace Water	1. HC	х Г
		3100		5. Ship To	5004	2013		round Water Bachate	2. HN 3. Na	
Ion-Superfund Pro	gram	Simpler Signa		6 Gard	inel In	. ·	4. FI	eld QC oil/Sediment	4. H:	SO4 CR2O7
		3. Pilipose	Uly Action Long Ulim	2900	Likelia	CIVA :	6. Ö	il (High only)	l∶ 6.lce	a only
Sile Name	102011				Ukellac L3	e ave	0	/aste (High nty)	in	her (specily Column D)
KOLGON -	7\1)	_  SF   _  PNP   _	RI RD	1 Hunh	A MIL	35805	8. O	ther (specily Column A)	N. N	ot preserved
ny, signo Jacuny_NJ	22	ST FED		ATTN: B	everly R	lan		e 3	1	
	A B C	D E-1	AS Analysis	•• . F	. •	G	Mo/Day/	l Corresponding	J Samoler	K Field QC
	Aatrix Conc. Sample from Low Type:	Preser valive 읢 읢		Regional Spe Tracking Nur	nber	Station Location	Year/Time	CLP Organic	Inillais	Qualifier
(from B	lox 6) Med Comp./	valive 와 원 (from 왕 왕 Elox 7) 또 포		or Tag Numt	0015	Identifier	Sample Collection	Sample No.		3 - Blank - 5 - Spike O - Duplicate D - Nasate PE - Perform Eval
inders) (0	Nier	Other: S E	NO2.NO31 PH OD	·		1 - 1 ¹			<u></u>	PE = Perform Evel - = Not e QC Bampl
MibQK-18	11LC	2 X	T.	1617 07	5	FB02_	11311970735	_BSE 412_	<u>'k</u>	<u> </u>
1B0K31	5LG	6 X		6 17 07	-]	SDOLO	7131971125	PJSE 32	ĽC_	<u> </u>
neok 31	5LG	$\tilde{0}$	TA TA	6 # 083	5	· 51:03	7/21/97/055	BSE 29	12	<u>!</u> "
mbor3	5117	(0 X		14:1+ 08-	1	SDOJ	7 3191 1140	BSE30	1X_	
MBQK42	51.6	· 6   Y		A6#09		5010	7/31/971335		1K-	
MBQK W	514	6 X	1	1(- ++ O9:	5	SDIL	1131911315	BSE-LILO	LX_	1 i
NBQK-10	511/2	'6 X		26 # 09	9	SD 07	13197.1253	<u>BSE 33</u>		
NBQK41	SLA	6 8	1	NG # 10	3	<u>SD08</u>	731971310	BSE34	K	
nBox 12	5116	6 X	11117	AG # 10	ัก	SDGA	7/31/97 132	BSE 35	K	<u> </u>
MBQK49	SLG	$\overline{\boldsymbol{\omega}}$ X		AG # 11	(	BKOL	731971555		ĽK	
hipment for Case		سالية مالي فستستم المتجم مستكثيرهما	Ised for Laboratory QC		onal Sampler	Signatures	C	hain of Custody S	Seal Num	ber(s)
complete? (WN)	<u> </u>	•		··· ·	•					
i	······································	1		CHAIN OF CUS				······	•	
Rellinquished by: (S		Date / Time	Received by: (Signa	ture)	Relinguished	by: (Signature)	Dale /.T	me Received	iby: (Sig	nature) 👘
Non Nel	1 June 192	197 1830								,
Telinjuished by: (		Date / Time	Received by: (Signa	ituro)	Rolinguishod	by: (Signature)	Date / T	mo Rocolvoc	I by: (Sig	mature)
			•	·				lintani? V/N/m		· · ·
Relinguished by: (S	Signaturo)	Date / Time	Received for Laboral (Signature)	tory by:	Date / Ti	mo Hemark	s is custody se	al intact ( T/IN/NO	110	:
menniquisition by	Signaturoy .		(Signalure)	, .	1					;

366927

		1				(Sigi	าลไปเ	e)						l							
elinquished by: (	Signature)		Date / T	lime					Labo	pratory by:			ate / Tin	10	Remark	s isc	islody se	eal intac	t? Y/N/no	no	
alinquished (1): (	Signature)	U	Date / 1	011110		Hece	eived	Dy:	1210	gnature)		riem	- บเอายน เ	. (Di	gria (di Of						
pringel	<u>.ea.</u>	· • • • • • • • • • • • • • • • • • • •	1 1 1	1330		De			(6)			Halip	uished l	אר <u>(Si</u>	naturel		Date / T	[]me	Received	iby: (Si	gnature)
elinquished by: (3	Signature)	-11	Date / 1			Rece	eived	by:	(Sig	gnature)		Relind	juished t	oy: (Sig	nature)		Date / T	i im <del>0</del>	Received	i by: {Si	ynature)
		<u> </u>					;	ξ	. 1		OF CU		RECOP						16	1	
ompleto? (Y/N)	<u>_</u>	- <u>1</u>		.,				.) .) 	5				•	· · ·			•			1	
hipmont lor Case	   Pa		li Samplo(s	j s) to h	 o Us	I d	)r La	 bora	1	QC ·	Addi	ional S	ampler S	Signatur	05	L	· c	L Chain of	Custody S	1: Sool Nun	nber(s)
			<u>}</u>		_	. [			-				· ·		•.						-
		_				.		···									·				
									:	Ļ		•	i .	•				-		<u> </u>	· [
		-	; ;	-																1 3	
		-	 ;	-	-	-								1	<u>.</u>	·		-	. <u></u> .		
	5		<u>.(o_</u>	2	<u></u> اک	=	= =	= =		-TAG-1	<u>× 0</u>	12-3	· · · ·	(J	<u> </u>	<u>-513</u> 1	9=7	[ <b>_/_)</b> a	E-45	= <i> </i>	
BOKIOE	5L	10	_ف_	<u> </u>	<u> </u> _			<u>·</u>   ·	· · ·	TALI		10			213		17170		E 118	<b> ∦</b>	
DBQK67	5 L	6	(0							176-1	<u> Jo:</u>	115	····		212	וצוב	97 134	1 38	<u>E 47</u>	<u>-</u>  }	
	ther:	ו Grab	Box 7) Other:	Diss. Metals	Cyanit O	EON/2ON	Fluond	Conduct			. 1	:				۰.				1	R = Rinsete PE = Perform, E = Not a QC Se
Numbers	(from Lov lox 6) Me	/ Type: i Comp./	valive (from	letais		i onl	e P	High only ਹਿ		Track	ing Nu g Num	mber			ation ntiller	🦾 Sa	r/Time mple lection		Organic ple No.	Initials	Qualifier 3 = Blank 9 = D = Duplicati
CLP	A' B Aatrix Cond	C	D			S Ar			. 8	Regio	F nal Sp	ecilic	0	Sta	tion	i Mo	H /Day/			l J Sample	
ily siale) 1977NV NJ	Site Spi			D	X	ISI		E	_]08		13.	Kil	aule			- 10 - E		n Colun	m Ay		
flegen	LANO	<u> </u>			:=	REI   RI	М.	. –			M M	ille	AL	3580	کر		8.0	onty) Other (s	pecily ,	N.N	n Column D, Iol preserve
le Name	1	<u>~</u>	1.04d ()	pose'		CLE	:M	Lor Act	IFS	2	ST S	No	1190	ON6		•	; <b>7.</b> V	Dil (High Naste (H	ligh	i 7.C	e only ther (specil
on-Superfund Pro	grain		Samp	) VV (	يەر	X		lat	- 1		ient.	niul.	Inc. Naco AL			•	4.F	leid QC Soil/Sed	iment	<b>4</b> . H	2SO4 2CR2O7
				5-1	ابع	NU	<u>)</u>	·		5. Ship	15	550	0412	<u> 813</u>	<u> </u>		2.0	Ground N Ground N	Waler	· 2.1·I	NO3 aOH
egional Informatio	 n		Sampl				<u>V</u> C		<u> </u>		umb'er		-	1	·			<i>Columı</i> Surlac <b>e</b> V	•	in C   1.H	Column D)
Project Code	Account	Code	2. Reg	-	· .	amp⊪ L\QC	_	-	۲Ъ		31/12	1 4		Ex.			6. Ma <i>(Er</i>	trix nter		En (En	
	·		12.8							4. Date				Analys	ecord		€	256			

366928

#### U.S. EPA CLP DATA PACKAGE – TARGET COMPOUND LIST

۳.

*

#### START PM: Gerry Gilliland

## Sampling Date: July 30 & 31, 1997

#### SAMPLE #/CONCENTRATION (µg/Kg)

						SAIVIFLE	- 111		1111		<u></u>		
	Method	Soil		Soil		Soil		Soil		Soil		Soil	
		BSE46RE		BSE47		BSE48		BSE27	-	- BSE28		BSE29	
Volatiles	Detection	-				30412.12		30388.04		30388.05		30412.01	
Low Concentration	Limit	30412.10R	A	30412.11		76		50588.04		48		32	
Percent Moisture		66		64 1.0		1.0		1.0		1.0		1.0	
Dilution Factor	ļ	1.0		<u> </u>	<u> </u>	U 1.0		<u> </u>	J	16	J	i Ų	J
Chloromethane	10		<u> </u>		<u> </u>	<u> </u>		<u> </u>	Ĵ	U	J	U	J
Bromomethane	10	-		└ <u></u>	<u></u>	Ū		<u> </u>		U	J	U	J
Vinyl Chloride	10		<u> </u>			<u> </u>	- <u>j</u> -			Ū	J	U	J
Chloroethane	10	-	J	<u> </u>	_ <u>_</u>			<u> </u>		Ŭ		<u> </u>	J
Methylene Chloride	10		J	<u> </u>	<u> </u>	76 U	Ĵ	100		U	J	1 0	J
Acetone	10		J		<u></u>			0		U	J	I U	J
Carbon Disulfide	10			U U	<u></u>					Ū		i U	J
1,1-Dichloroethene	10	1	<u> </u>		<u></u> _		<u></u>	U U		U	J	Ū	J
1,1-Dichloroethane	10		J					Ŭ		<u> </u>	J	U	J
1,2-Dichloroethene (total)	10		J					<u> </u>		<del></del>		U	J
Chloroform	10	1	<u> </u>	-	- <u>-</u> -	+		<u> </u>		<del> </del>			J
1,2-Dichloroethane	10		J	U	- <u>_</u>	30		28		<del>                                     </del>	<u> </u>	U	J
2-Butanone	10		J	U				<u> </u>		Ū		<u> </u>	J
1,1,1-Trichloroethane	10		J	U		+				<u>+</u>	Ĵ	1 0	- J
Carbon Tetrachloride	10		J	U					_ <u>j</u> _	1 U			
Bromodichloromethane	10	-								<u> </u>		1 0	
1,2-Dichloropropane	10	1	<u> </u>					<u> </u>		<u> </u>		<u> </u>	J
cis-1,3-Dichloropropene	10		J	<u> </u>				<u> </u>		i ū		1 0	J
Trichloroethene	10		J	U	<u> </u>	<u>                                      </u>				<del>  ŭ -</del>		+ ū	j
Dibromochloromethane	10		j	U	<u> </u>					+ ŭ	<u>-</u>	<u> </u>	J
1,1,2-Trichloroethane	10		J	U			j	<u> </u>			<del>ت</del>	Ū.	
Benzene	10		J	U								<u> </u>	Ĵ
trans-1,3-Dichloropropene	10			U	<u> </u>					+ <u>ŭ</u>			j
Bromoform	10		J	U	<u>1</u>			<u> </u>		<u> </u>	Ĵ	<u> </u>	Ĵ
4-Methyl-2-Pentanone	1(			U						<u> </u>		<del>i</del> Ū	
2-Hexanone	10		J	U	J							<u> </u>	
Tetrachloroethene	10		Ĵ	Ŭ	J			<u> </u>				<u> </u>	
1,1,2,2-Tetrachloroethane	10	⁻ 1	j	U	1					- 8		<u> </u>	
Toluene	10		j	U	<u> </u>								
Chlorobenzene	10		J	U	ļ	-						<u> </u>	
Ethylbenzene	10	-	J	U	Ĵ		J			3		U U	j
Styrene	1		J	U	<u> </u>	<u> </u>	<u>ل</u>	-		4			
Total Xylenes	1 1	D U	J	U	J	Ŭ	J	0	J			<u> </u>	

U - non-detected compound

B - compound detected in the associated Method Blank

J - estimated value

JN - presumptive evidence of a compound

at an estimated value

Volatiles

Low Concentration Percent Moisture

Dilution Factor Chloromethane Deemanathana

#### START PM: Gerry Gilliland

Sampling Date: July 30 & 31, 1997

ily 30 & 3	31, 1997				SAMPLE	#/	CONCEN	ITR	ATION (	ıg/k		
Method Detection Limit	Soil BSE30 30412.02 60 1.0		Soil BSE31 30388.06 59 1.0		Soil BSE32 30412.03 24 1.0		Soil BSE33 30412.04 77 1.0		Soil BSE34 30412.05 90 1.0		Soil BSE35 30412.06 88 1.0	
					<u> </u>	J	U U	J	U	J	U	
10			<u> </u>	- <u>-</u>	<u> </u>	J	U	J	0	Ĵ	U	
10			<u> </u>		<u> </u>	<u> </u>	U		U	J	U	J
10					<u>u</u>	Ĵ	+	J	U	_1	<u> </u>	J
10	1 U	÷.			-		1	-	40			1

Bromomethane	10				- <u>-</u>	<u> </u>		U	J		J	U	Jļ
Vinyl Chloride	10	<u> </u>		<u>U</u>		<u> </u>	<u> </u>	<u>-</u>	<del></del>	U	J	Ū	J
Chloroethane	10	U	J						- 1	10	J	8	J
Methylene Chloride	10	3		<u> </u>		130	Ĵ			660	Jİ	230 U	J
Acetone	10	U		81		<u> </u>				19	Jİ		
Carbon Disulfide	10	U	J			<u> </u>	Ĵ	0	Ĵ	U	- J [	U U	J
1,1-Dichloroethene	10	Ū	J	<u> </u>			- <u> </u>	<u> </u>	- <del>]</del>	U	JÎ	U	J
1,1-Dichloroethane	10			<u> </u>		<u> </u>	- <u> </u>	Ų		U	J	U	J
1,2-Dichioroethene (total)	10	U	<u> </u>	<u> </u>		<u> </u>	Ĵ	Ū	J	U	J	U	J
Chloroform	10	<u> </u>	J	<u> </u>	<del>_</del>	<u> </u>		<u> </u>		<u></u>	J	U	J
1.2-Dichloroethane	10;	Ū	J	<u> </u>		41		U		200	J	U	J
2-Butanone	10,	Ü	J					<u> </u>	J	U	J L	- U	J
1,1,1-Trichloroethane	10	U	J			<u> </u>		Ū	Ĵ	0	JI	U	J
Carbon Tetrachloride	10	U	<u>.</u>			<u>+</u>		Ū	- L	υ	J	U	J
Bromodichloromethane	10	U	J			<u>+</u>		<u> </u>	Ĵ	U	J	<u>u</u>	J
1,2-Dichloropropane	10;	U	J				- <u> </u>			<u> </u>		<u> </u>	Ĵ
cis-1,3-Dichloropropene	10,	<u> </u>	J		ر ر			Ū	J	U	J	U	ړ
Trichloroethene	10	<u> </u>	J				<u> </u>	Ū		Ű	J	U	J
Dibromochloromethane	10	<u> </u>	J	<u> </u>				Ū		Ū	J	U	J
1,1,2-Trichloroethane	10	U				$+-\tilde{\mathbf{u}}$		Ū	J	U	J	U	J
Benzene	10	U				+			J	U	J	U	J
trans-1,3-Dichloropropene	10	<u> </u>	<u> </u>	<del></del>		$+$ $\overline{\mathbf{U}}$		Ū		U	J	U	J
Bromoform	10	U	J	<u>+</u>					J	U	J	U	J
4-Metnyl-2-Pentanone	10	<u> </u>	J			+		+	- <u>j</u>	U	J	U	J
2-Hexanone	10	<u> </u>	J			$+-\overline{\mathbf{u}}$		+ U	<u> </u>	U	J	U	
Tetrachloroethene	10,	U	J	U		$+$ $\overline{\mathbf{U}}$		- Ū	<u>j</u>	U		12	J
1,1,2,2-Tetrachloroethane	10:	U		<u> </u>		$+$ $ \overline{-}$				Ū	J	U	J
Toluene	10,	4	<u> </u>			$+-\ddot{\upsilon}-$		Ū	<u> </u>	140	J	<u> </u>	J
Chlorobenzene	10	<u> </u>	J	U	<u> </u>		j_	<u> </u>		U	J	<u> </u>	J
Ethylbenzene	10	U	J	U		$+$ $\ddot{-}$		- ŭ		Ū	<u>j</u>	U	
Styrene	101	ป	J	U						<u> </u>		U	Ĵ
Total Xylenes	10	U	J	U	J			<u> </u>		L			

U - non-detected compound

B - compound detected in the associated Method Blank

J - estimated value

JN - presumptive evidence of a compound

.

at an estimated value

R - rejected compound

r.:5

#### START PM: Gerry Gilliland

# Sampling Date: July 30 & 31, 1997

#### SAMPLE #/CONCENTRATION (µg/Kg)

					SHINILL .	#/CONCENTR		
	Method	Soil	Soi	1	Soil	Soil	Soil	1
	Detection	BSE36RE	BSE		-BSE38	BSE43RE	BSE44RE	
Volatiles	1		30388		30388.08	B0388.11RA	50412.09RA	
Low Concentration	Limit	30412.07RA 60	40		53	21	21	
Percent Moisture		1.0	1.0		1.0	1.0	1.0	
Dilution Factor	10				R	<u> </u>	U .	J
Chioromethane	10			<u>_</u>	R	U J	U .	J t
Bromomethane	10	-	- U		R	U J	0	J
Vinyl Chlonde	10	-			R	- U J	U U	J
Chloroethane	10			-	R		U	J
Methylene Chloride	10		-		R	U J	U	
Acetone	10				R	U J	U	J
Carbon Disulfide	10				R	J J	U U	J
1,1-Dichloroethene						U J	U	J
1,1-Dichloroethane	10	_					U U	J
1,2-Dichioroethene (total)	10	_			R	<u> </u>	U U	J
Chloroform		-			R	<del>- <u>u</u> <u>J</u></del>	U U	<b>J</b> i
1,2-Dichioroethane	10	-			R		U U	J
2-Butanone	10				R		U	J .
1,1,1-Trichloroethane	10			-	R			J
Carbon Tetrachloride	10				R		Ū	J
Bromodichloromethane	10						- <u> </u>	J
1,2-Dichloropropane	10				R		<u> </u>	J
cis-1,3-Dichloropropene	10				R		- Ū	J
Trichloroethene	10				R			J
Dibromochloromethane	10				R			J
1,1,2-Trichloroethane	10				R		<del></del>	J i
Benzene	10				R		Ū.	J
trans-1,3-Dichloropropene	10						<u> </u>	<u> </u>
Bromoform	10				R	<u> </u>	<u> </u>	
4-Methyl-2-Pentanone	10						<del>- u</del>	
2-Hexanone	10				R		<u> </u>	
Tetrachioroethene	1(				R			J
1,1,2,2-Tetrachloroethane	1(	-			R		<u> </u>	<u> </u>
Toluene	10			_	R R			<u> </u>
Chlorobenzene	11				R		<u> </u>	J
Ethylbenzene	1						0	<u> </u>
Styrene	1				R		<u> </u>	J
Total Xylenes	1		JU	J	R			<u> </u>

U - non-detected compound

B - compound detected in the associated Method Blank

J - estimated value

- JN presumptive evidence of a compound
- at an estimated value

R - rejected compound

p.10

## START PM: Gerry Gilliland

# ampling Date: July 30 & 31, 1997

### SAMPLE #/CONCENTRATION (µg/L)

							. 0/						
	Method	Water		Water		Water	- <u> </u>	Water		Water		Water	
		BSE22	-	BSE23		BSE26		BSE39		BSE41		BSE42	
Volatiles	Detection			30388.02		30388.03		30388.09		30388.10	, 1	30412.08	
Low Concentration	Limit	30388.01		30388.02	1	30366.03		50588.02				-	
Percent Moisture		-		1.0		1.0	I	1.0		1.0		1.0	
Dilution Factor		1.0		<u> </u>	_ <del></del>	<u> </u>		U	J	Ú	J	U	J
Chioromethane	10		<u></u>	0		<u> </u>	<u> </u>	U U	J	U	J	U U	J
Bromomethane	10	1				<u> </u>	<u> </u>	<u> </u>	Ĵ	U	J	U	J
Vinyl Chloride	10		J	<u> </u>		<u> </u>	_ <u>j</u> _		Ĵ	U	J	U	J
Chioroethane	10	_			<u> </u>	<u> </u>	Ĵ.	10	Ĵ	10	J	Ų	J
Methylene Chloride	10	-	<u> </u>	<u> </u>		<del>- ŭ</del>	_ <u>_</u>	<del>- <u>ii</u> -</del>	<u> </u>	3	J	5	J
Acetone	10	-	<u>_</u>	<u> </u>				Ū			J	i U	J
Carbon Disulfide	10		J			<u> </u>		Ū	Ĵ	<u> </u>	J	U	J
1,1-Dichloroethene	10	-		<u> </u>	_ <del></del>	<u> </u>	- <u>J</u>	<u> </u>	Ĵ	Ū	J	U	J
1,1-Dichloroethane	10		<u></u>		- J	U U	Ĵ	<u> </u>	_ <u>_</u> _	U U	J	U	J
Cis-1,2-Dichloroethene	10					<u> </u>	<u> </u>	<u> </u>	Ĵ		J		J
trans 1,2-Dichloroethene	10		J	<u> </u>	۔ ر	<u> </u>	Ĵ	3		3	J	U	J
Chioroform	10		Ļ				<u> </u>				J	U	J
1,2-Dichloroethane	10		J				<u> </u>	<u> </u>	- <u>-</u> -		J	<u> </u>	J
2-Butanone	10		<u> </u>	-				<u> </u>	<u> </u>			U U	J
1,1,1-Trichioroethane	10		J				<u>j</u>	<u> </u>			Ĵ	U	J
Carpon Tetrachloride	10			•		<u> </u>	- <u>-</u>	<u> </u>		<u>├── ਹ</u> ั──		U	J
Bromodichloromethane	10		J	<u> </u>		0				Ū	J	U	J
1,2-Dichloropropane	10			U		U			Ĵ			υ	J
cis-1,3-Dichloropropene	10		J	<u> </u>		U		2				U	J
Trichloroethene	10		J	U		<del></del>		<u>-</u>	j			U	ل -
Dibromochloromethane	10			<u> </u>	J							U	J
1,1,2-Trichloroethane	1(			i U	<u> </u>					<u> </u>		<u> </u>	
Penzene	10		J		<u> </u>		 					<u> </u>	J
ins-1,3-Dichloropropene	1(		J	U	L_						Ĵ	<u>i                                    </u>	J
.dremoform	1(		j				<u>J</u>	<u> </u>	Ĵ	t Ū		<u>i                                    </u>	J
4-Methyl-2-Pentanone	; 1(		J	1 U	Ĵ							<u> </u>	Ĵ
2-Hexanone	10	-	J	i U							Ĵ	<u> </u>	
Tetrachloroethene	1	-	J	U	<u> </u>	U						<u> </u>	Ĵ
1,1,2,2-Tetrachioroethane	1(		J	U	_ J							- Ū	Ĵ
Toluene	1		J	U U			J I	<u> </u>	<u> </u>	+ <del>-</del> -		<del>- ŭ</del>	
Chioropenzene	1 1		J	U	L L			<u> </u>		+			
Ethylbenzene	1		j	U	J	U	<u> </u>	-		+			Ĵ
Styrene		0; U	J	U	J	U	J	U	<u> </u>		 		
Total Xylenes	1	0 U	J	U	Ĵ	U	ູ	U	J	<u> </u>	J		

E - Concentration exceed the calibration range

U - non-detected compound

B - compound detected in the associated Method Blank

J - estimated value

JN - presumptive evidence of a compound

at an estimated value

### Project: Keegan Landfill Site

#### START PM: Gerry Gilliland

# Sampling Date: July 30 & 31, 1997

#### SAMPLE #/CONCENTRATION (µg/Kg)

								CONCER			- 3		
	Method	Soil		Soil		Soil		Soil	ĺ	Soil		Soil	
Semi-Volatiles	Detection	BSE46		BSE47		BSE48		BSE27		BSE28		BSE29	
	Limit -			30412.11		30412.12	)	30388.04	j	30388.05		30412.01	
Low Concentration		66		64		76	-	52		48		32	
Percent Moisture		1.0		1.0	:	1.0		1.0		1.0		1.0	
Dilution Factor	330		<del></del>	<u> </u>	<u> </u>	U		U	J	U	J	520	J
Phenol bis(2-Chloroethyl)ether	330	<u> </u>		<u> </u>	<u> </u>	υ	J	U	J	U	J	U	J
2-Chlorophenol	330	<u> </u>	Ĵ.	<u> </u>		U	J	U	J	U	J	U	J
1.3-Dichlorobenzene	330	<del>- ŭ-</del>	<u> </u>	<u></u>	_ <del>j_</del>	<u> </u>		U	J	U	J	U	j.
1,4-Dichlorobenzene	330	- ŭ	<u> </u>	<u> </u>	J	Ų	J	U	Ĵ	U	J	U	ີ ງ
1,2-Dichlorobenzene	330	<del>  <u> </u></del>	<u> </u>	<u> </u>	J	<u> </u>	J	<u> </u>	J	U	5	U	1
2-Methylphenol	330	<u> </u>	<u> </u>	<del> </del>	J	U U	J	U	J	U	J	U	J
2.2-oxybis(1-Chloropropane)	330	- ū		i	J	U	J	U	J	U	J	U	J
4-Methylphenol	330	<u> </u>	_ <u>j</u> _	<u> </u>		U	J	U	J	U	J	U	ل ب
N-Nitroso-di-n-propylamine	330	<u> </u>	_ <u>_</u>	U	J	U	J	U	J	υ	J	U	_ J _
Hexachloroethane	330	Ū	Ĵ	Ū	_ <del></del>	U	J	U	J	U	J	U	J
Nitrobenzene	330	Ū	Ĵ	U	J	U	J	U	J	U	J	ι υ	J
Isophorone	330		J	U	J	<u> </u>	J	U	J.	U	L_	l U	J
2-Nitrophenol	330	U U	J	U	J	U	Ĵ	U	Ĵ	U	J	U	
2,4-Dimethylphenol	330	U U	J	U	<u> </u>	U	J	U		U	J	U	ر
bis(2-Chloroethoxy)methane	330	<u> </u>	J	U	J	U	J	U	<u>ل</u>	U	J	U	
2.4-Dichlorophenol	330	U U	J	U	J	U	J	Ú	J	U	J	U	J
1.2.4-Trichlorobenzene	330	U	J	0	J	U	J	U	J	U	J	U	J
Naphthalene	330		1	U	Ĵ	U	J	U	J	U	J	U	J
4-Chloroaniline	330		J	U	J	U	J	U	J	U	<u> </u>	<u> </u>	
Hexachlorobutadiene	330	U	J	U	J	U	J	<u> </u>	J	U	J	<u> </u>	
4-Chioro-3-methylphenol	330		J	i U	_1	U	j	Ū	J	υ	J	U	
2-Methylnaphthalene	330		J	U	J	U	J	42	J	<u> </u>	ز	U	ل 
Hexachiorocyclopentadiene	330		J	U	J	U	J	U	J	U	J	U	<u>ن</u>
2,4,6-Trichlorophenol	330		J	Ŭ	J	U	J	U	J	U	J	U	
2,4,5-Trichlorophenol	830		J	υ	J	U	J	U	J.	U	J		
2-Chioronaphthalene	330		1	U	J	<u>υ</u>	J	U	J	U	J	-	-
2-Nitroaniline	830		J	U	<u> </u>	U	J	U		i u	<u>ر</u>		J
Dimethylphthalate	330		J	U	J	U	J	U	J	U	j		
Acenaphthylene	330		٦.	U	J	U	J	U	J	97			
2,6-Dinitrotoluene	330		J	U	J	Ű	<u> </u>	U	J	U			ر 
3-Nitroaniline	830	-	J	ί υ		U	J	U	J	U U	J		
Acenaphthene	330		J	U		U	J	85	J	130	J		
2,4-Dinitrophenol	830	-	J	U	J	U	J	U	J	U	J	-	
4-Nitrophenol	830	_	J	U	J	U	ار	U	J	U	J		
Dibenzofuran	330		J	U		U	L	U	۲	44	<u> </u>		
2,4-Dinitrotoluene	330		J	U	J	U		U	Ĵ	U	<u> </u>		
Diethyiphthalate	330		J	υ	_J	U	<u> </u>	U	J	<u> </u>	J	,	
4-Chlorophenyl-phenylether	330	) U	ſ	1 U	Ĵ	U	1	T U	ز 	U	J	: <u>U</u>	J

* - values transferred from the dilution analysis

- U non-detected compound
- B detected in the corresponding method blank

J - estimated value

JN - presumptive evidence of a compound

at an estimated value

### Project: Keegan Landfill Site

#### START PM: Gerry Gilliland

## Sampling Date: July 30 & 31, 1997

#### SAMPLE #/CONCENTRATION (µg/Kg)

						OLIME P	$= \pi r$	CONCEP	111		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
	Method	Soil		Soil		Soil		Soil		Soil		Soil	
	Detection	BSE46		BSE47		BSE48		BSE27		BSE28		BSE29	
Semi-Volatiles				30412.11		30412.12	,	30388.04		30388.05		30412.01	
Low Concentration	Limit	30412.10		50412.11 64		76	-	52		48		32	
Percent Moisture		66		1.0		1.0		1.0		1.0		1.0	
Dilution Factor		1.0		47	<u>J</u>	<u> </u>	J	92	J	79	J	U	J
Fiuorene	330	230	ا ز ار		<u></u>	U U		<u> </u>	<u> </u>	<u> </u>		U	J
4-Nitroaniline w	830					+ <u>0</u>		<u> </u>				<u> </u>	J
4,6-Dinitro-2-methylphenol	830				<u></u>			<u> </u>	- <u>j</u>	- Ū		Ū	J
N-Nitrosodiphenylamine	330	· · · · · · · · · · · · · · · · · · ·	J	<u> </u>				<u> </u>		<u> </u>		<u> </u>	Ĵ
4-Bromophenyl-phenylether	330		J	U				<u> </u>	Ĵ	Ū	<u>ل</u>	<u> </u>	
Hexachiorobenzene	330	U	J	U	_ <u>J</u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	J
Pentachlorophenol	830		J	U		U		1200		840	- <u>-</u>	340	Ĵ
Pnenanthrene	330		J	610	_ <u>J</u>	<u> </u>	J	240		230		100	<u> </u>
Anthracene	330		J	170	J	U				150		U	
Carbazole	330	430			J	U	<u> </u>	150		150	<u> </u>		
D-n-putyiphthalate	330		ر	U	J	U		1		1700		600	Ĵ
Fluorantnene	330	5800	J	1100	<u> </u>	390		2000		1800		820	- <u>J</u>
Pyrene	330	6000	J	1100	<u> </u>	380	J	2200	_ J	700	ر 	580	<del>-</del>
Butylbenzylphthalate	330	1900	J	230	J	120	J	<u> </u>				U 360	Ĵ
3.3-Dichlorobenzidine	1 330	U	J	U	J	U	J	U	J	U		400	J
Benzo(a)anthracene	330	3200	j	590	J	220	J	1100	J	940			
Chrysene	330	3700	J	660	J	280		1200	J	1200	J	420	لر ر
bis(2-Ethylhexyl)phthalate	330	6900	BJ	U	J	U	J	490		*9200	J	1400 U	
Di-n-octylphthalate	330	220		U	J	U	J	U	_ <u>_</u>	110	<u> </u>	<u> </u>	
Benzo(b)fluoranthene	1 330	3200		570	Ĵ	250	J	1000	J	1100	J	320	
Benzo(k)fluoranthene	330	2800	J	470	J	190	J	930	J	1100		320	j
Benzo(a)pyrene	330	3300	J	640	J	260	j.	1000	J	1200	J	420	<u> </u>
Ingeno(1,2,3-cd)pyrene	330	2400	J	440	J	180	J	780		920	J	300	J
Dipenz(a,h)anthracene	330	960	J	150	J	U	J	250	J	370	J	130	J
Benzo(g.h.i)perviene	330		J	550	J	230	J	880	J	1200	J	330	J
20. ED(3. http://www.													

* - values transferred from the dilution analysis

U - non-detected compound

B - detected in the corresponding method blank

J - estimated value

JN - presumptive evidence of a compound

at an estimated value

## Project: Keegan Landfill Site

#### START PM: Gerry Gilliland

# Sampling Date: July 30 & 31, 1997

SAMPLE #/CONCENTRATION (µg/Kg)

						SAIVIEL		CONCE	N LIN		112.		
	Method	Soil		Soil		Soil		Soil		Soil		So:	
		BSE30		BSE31		BSE32		BSE33		BSE34		BSE35	
Semi-Volatiles	Detection			30388.06		30412.03	1	30412.04		30412.0:	5	30412.05	
Low Concentration	Limit	30412.02		59		24	,	77		90	-	88	
Percent Moisture		60		1.0		1.0		1,0		1.0		1.0	
Dilution Factor		1.0			J			<u>u</u>	J	U	J	U	J
Phenol	330	<u> </u>			Ĵ	<u> </u>		Ū	J	Ŭ	J	U	J
bis(2-Chloroethyl)ether	330	<u> </u>	_ <u>j</u> -	<u> </u>	J	Ū	J		J	U	J	U	J
2-Chiorophenol	330	<u> </u>		<u> </u>	<u> </u>			Ū	J	Ú	J	υ	1
1,3-Dichlorobenzene	330	<u> </u>		Ū	<u> </u>	<u> </u>	J	88	J	U	J	U	J
1,4-Dichlorobenzene	330	<u> </u>		<u> </u>	Ĵ	ū	Ĵ.	U	J	U	J	0	J
1,2-Dichlorobenzene	330	-		<u> </u>	Ĵ	<u> </u>	Ĵ	U U		U	J	Ū	J
2-Methylphenol		<u> </u>	_ر	U	<u> </u>	Ū	J	Ū	J	Ú	J	υ	J
2,2-oxybis(1-Chioropropane)	330		"	Ū	Ĵ	Ū	j	U	J	U	J	i U	- <u>-</u>
4-Methylphenol	330	-	_ <del></del> _		Ĵ	<u> </u>		U U		U	J	U	Ĵ
N-Nitroso-di-n-propylamine	330	-			Ĵ	Ū	J	Ū	J	υ	J	U	J
Hexachloroethane	330	1 - 1		- Ŭ		<u> </u>		Ū	j		J	i U	J
Nitrobenzene	330		<u> </u>	<del>- 0</del>		<u> </u>	Ĵ		j	U		i U	Ĵ
Isophorone	330	. –	J		<u> </u>	<u> </u>	<u>-</u>	Ū.	J	U	J	U	J
2-Nitrophenol	330		J	<u>-                                    </u>		<u> </u>		Ū	J	U		U	
2,4-Dimethylphenol	330		J			<u> </u>			j	U		i U	J
bis(2-Chloroethoxy)methane	330					<u> </u>		Ū			J	U	J
2,4-Dichlorophenol	330		J	- U		Ū		<u> </u>	J	Ū	J	U	J
1,2,4-Trichlorobenzene	330		J			<u> </u>		600	J	U	J	U	J
Naphthalene	330			<u> </u>	- <u>-</u>	Ū	- <u></u>	<u> </u>	J	U	J		J
4-Chloroaniline	330					Ū		<del> </del>	- J	U	j	υ	J
Hexachlorobutadiene	330					- Ū	j	<u> </u>	Ĵ	Ü		<u> </u>	1
4-Chloro-3-methylphenol	330			70		U		230	<u> </u>	U	j	i U	J
2-Methylnaphthalene	330			- <del>10</del>	- <u>j</u> -	<u> </u>		<u> </u>	j	Ū	J	U	J.
Hexachlorocyclopentadiene	330				<u> </u>	<u> </u>		<del>ū</del>			J	U	J
2,4,6-Trichlorophenol	330		<u> </u>	<u> </u>		U U		<u> </u>		<u> </u>	J	. U	J
2,4,5-Trichlorophenol	830		<u></u>	U U	Ĵ	<u> </u>		l Ū		<u> </u>		U U	J
2-Chioronaphthalene	330		J				j	<u> </u>		<u> </u>	·	<u> </u>	Ţ
2-Nitroaniline	830					U U	Ĵ	<u> </u>	Ĵ	<u> </u>	<u> </u>	<u> </u>	
Dimethylphthalate	330		<u> </u>		<u> </u>	<u> </u>		420	<u>J</u>	<u> </u>	<u> </u>	· · · · ·	J
Acenaphthylene	330		<u> </u>		<u> </u>	<u> </u>		U U			<u>-</u>	Ū	J
2.6-Dinitrotoluene	330						j	<u> </u>	-j-	<u> </u>		1 U	Ĵ
3-Nitroaniline	830		J		<u></u>	<del></del>	— <u> </u>	790	Ĵ	Ū	- J	<u> </u>	Ĵ
Acenaphthene	330		J	<u> </u>		+ <u> </u>	<u>د</u> ا	130 U	- J	l Ū		<u> </u>	-j
2,4-Dinitrophenol	830	-	J	-	-				<u>j</u> _				Ĵ
4-Nitrophenol	830		J	<u> </u>	<u> </u>			520					
Dibenzofuran	330		J	U	1		-	<u>520</u>					
2.4-Dinitrotoluene	330		ſ	<u> </u>	Ĵ		J	1400	JB	<u> </u>	ر 		
Diethylphthalate	330		Ļ	υ	<u> </u>	U	J	1400 U	1 1			· U	
4-Chlorophenyl-phenylether	330		J	U	J	U	J	U		<u> </u>		· · · · · · · · · · · · · · · · · · ·	

* - values transferred from the dilution analysis

U - non-detected compound

B - detected in the corresponding method blank

J - estimated value

JN - presumptive evidence of a compound

at an estimated value

## Project: Keegan Landfill Site

#### START PM: Gerry Gilliland

## Sampling Date: July 30 & 31, 1997

#### SAMPLE #/CONCENTRATION (µg/Kg)

Method	Soil		Soil		Soil		Soil		Soil		Soil	
			BSE31		BSE32		BSE33		BSE34		BSE35	
						2			30412.05		30412.06	
Limit						,	(		90		83	
			1				1.0		1.0		1.0	
								J .	U	J	U	J
		-			-			Ĵ	U	J	U	J.
			_		-	-	_	J	U	J	U	ij
	-							1	Ū	J	U	J
	-	-	-		-	-		_			U	J
	-		_				_			<u> </u>		-j-
			_	-			1				-	Ĵ
	-		-	_						_	-	
										-		1
330		J	1					_	1		. –	
330	160	-		-				-	-			Ĵ
330	U	J				-						- <u>J</u>
330	2100	J				_						
330	2200	j	3000	-								
330	2500	J	U					_				
330	U	J	-		-	-	-					
330	1100	ť	1600	J			· · · · · · · · · · · · · · · · · · ·					
330	1100	J	1800	J	1	-						
330	*15000	J	660	J	_	<u> </u>			_			
330	U	J	U	J		J		-	-	-	-	ز
330	790	J	1600	J	U	J		-				<u>ل</u>
330	800	J	1300	J	1 0	J					-	J
330	1000	Ĵ	1600	J	190	J			1			J
	580	J	1200	J	U				_	-	-	J
		J	600	J		J			1			Ĵ
		J	1 400	Ĵ	i U	J	5500	J	<u> </u>	J	<u> </u>	J
	830 330 330 330 330 330 330 330 330 330	Detection         BSE30 30412.02 60 1.0           330         140           830         U           830         U           330         1600           330         1600           330         2000           330         2000           330         2000           330         100           330         1100           330         1100           330         790           330         580           330         1000           330         1000           330         580           330         290	Interior         BSE30           Limit         30412.02           60           1.0           330         140           830         U           330         140           830         U           330         U           330         U           330         U           330         U           330         U           330         1600           330         2100           330         200           330         200           330         200           330         200           330         200           330         200           330         200           330         100           330         100           330         100           330         100           330         790           330         300           330         1000           330         1000           330         580           330         293	Intensitie         BSE30         BSE31           Limit         30412.02         30388.06           60         59           1.0         1.0           330         140         J           830         U         J           830         U         J           330         140         J           830         U         J           330         1600         J           330         2100         J           330         2100         J           330         2000         3000           330         2000         J           330         1100         J           330         1000         J           330         1100         J           330         1100         J           330         1000         J	Intensol         BSE30         BSE31           Limit         30412.02         30388.06           60         59           1.0         1.0           330         140         J           830         U         J         U           830         U         J         U         J           830         U         J         U         J           330         1600         J         2000         J           330         160         J         270         J           330         2000         J         3000         J           330         2000         J         3000         J           330         2000         J         3000         J           330         100         J         100         J           3	Method         Son         Son         Son         BSE30         BSE31         BSE32           Limit         30412.02         30388.06         30412.02         30388.06         30412.02           60         59         24         1.0         1.0         1.0           330         140         J         150         J         U           830         U         J         U         J         U           830         U         J         U         J         U           330         1600         J         2000         J         U           330         2100         J         2900         J         U           330         200         J         U         J         U           330         200	Method         BSE30         BSE31         BSE32           Limit         30412.02         30388.06         30412.03           60         59         24           1.0         1.0         1.0           330         140         J         150         J         U           830         U         J         U         J         U         J           830         U         J         U         J         U         J           330         1600         J         2000         J         U         J           330         160         J         270         J         U         J           330         2100         J         2900         J         U         J           330         2100         J         U         J	Method         Soft         BSA         BSC         BSE31         BSE32         BSE33           Limit         30412.02         30388.06         30412.03         30412.04         30412.04           60         59         24         77           1.0         1.0         1.0         1.0         1.0           330         140         J         U         J         U         J           830         U         J         U         J         U         J         U           330         H         J         U         J         U         J         U           330         1600         J         270         J         U         J         14000           330         2100         J         2900	Method         Son         BSE30         BSE31         BSE32         BSE33           Limit         30412.02         30388.06         30412.03         30412.04           60         59         24         77           1.0         1.0         1.0         1.0         1.0           830         U         J         U         J         U         J           830         U         J         U         J         U         J         U         J           330         U         J         U         J         U         J         U         J         U         J           330         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J	Method         Soli         Soli         BSE30         BSE31         BSE32         BSE33         BSE33           Limit         30412.02         30388.06         30412.03         30412.04         30412.05           60         59         24         77         90           1.0         1.0         1.0         1.0         1.0         1.0           830         U         J         U         J         U         J         U           830         U         J         U         J         U         J         U         J         U           330         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J	Method         Soli         Bon         BSE33         BSE34         BSE34         BSE34         BSE34         30412.02         30388.06         30412.03         30412.04         30412.05          30412.04         30412.05          90           1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0	Method         Soll         Soll         BSI         BSE31         BSE32         BSE33         BSE33         BSE33         BSE33         BSE34         BSE35           Limit         30412.02         30388.06         30412.03         30412.04         30412.05         30412.05         30412.06           60         59         24         77         90         E8           1.0         1.0         1.0         1.0         1.0         1.0         1.0           830         U         J         U         J         U         J         U         J         U         J         U           830         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J         U         J

* - values transferred from the dilution analysis

U - non-detected compound

E - detected in the corresponding method blank

•

J - estimated value

JN - presumptive evidence of a compound

at an estimated value

## OTHER ALALY IT'S WORK TABLE

# Project: Keegan Landfill Site

### START PM: Gerry Gilliland

# Sampling Date: July 30 & 31, 1997

SAMPLE #/CONCENTRATION (µg/Kg)

					SA	WPLE #/					<u>.</u>	
	Method	Soil		Soil		Soil		Soil		Soil		
	Detection	BSE36		BSE37		BSE38		BSE43		BSE44		
Semi-Volatiles				30388.07		30388.08		30388.11	1	30412.09	1	
ow Concentration	Limit	30412.07		40		53		21	İ	21		
Percent Moisture		60		1.0		1.0		1.0		1.0	1	
Dilution Factor		10.0 U		<u> </u>		U	J	280	J	Ų	JI	
Phenoi	330 330			<del></del>	Ĵ	<u> </u>	- <u>-</u>	Ū U	J	- U	JI	
sis(2-Chloroethyl)ether	330			<u> </u>	Ĵ	<u>u</u>	J	<u> </u>	J	U	Ji	
-Chiorophenol	330	-	<u></u>	<u> </u>		—— <u>0</u> ——	Ĵ	i U	J	U	J	
,3-Dichiorobenzene	330		- <u>J</u>	<u> </u>	<u> </u>	<u> </u>	_ <u>j</u>	U	J	U	J	
,4-Dichlorobenzene	330	-	<u></u>	<u> </u>		<u> </u>	<u> </u>	Ū	J	U	Ji	
,2-Dichlorobenzene	330		<u></u> _	U U	<u> </u>	<u> </u>		<u> </u>	<u> </u>	36	JI	
2-Methylphenol		_		<u> </u>	Ĵ		J	<u> </u>	J	U	J	
2,2'-oxybis(1-Chloropropane)	330	_		<u> </u>	Ĵ	<u> </u>	- <u>-</u>	Ū	J	46	JH	
4-Methylphenol	330	-				<u> </u>		<u> </u>	J	- U	Ji	
N-Nitroso-di-n-propytamine	330					<u> </u>	<u>J</u>	<u> </u>	J	U	J	
Hexachioroethane						<u> </u>		Ū	J	U U	<u> </u>	
Nitrobenzene	330			<u> </u>	<u> </u>	<u> </u>	Ĵ	U	-j-	U U	J	
sophorone	330	-	-			<u> </u>		_		U	JI	
2-Nitrophenol	330				<u></u>	<u> </u>		i <u> </u>	- <del>.</del>	Ū	J	
2,4-Dimethylphenol	330		J				_ <u>_</u>			·	J	
bis(2-Chloroethoxy)methane	330	-	J				- <u>J</u>	<u> </u>		Ū	J	
2,4-Dichlorophenol	330						<u>j</u> -	- U		U	J	
1,2,4-Trichlorobenzene	330	-					<u> </u>	<u> </u>		<u> </u>	J	
Naphthalene	330							<u> </u>		<u> </u>		
4-Chloroaniline	330		j					<u> </u>		Ū	Ĵ	
Hexachlorobutadiene	330		<u> </u>					<u>,                                     </u>		<u> </u>	J	
4 Chloro-3-methylphenol	330		J	54	د ر	50	_ <u>j</u>	54		42	J	
2-Methylnaphthalene	330		J	<u>54</u>		<u> </u>		- <u>0</u> -				
Hexachlorocyclopentadiene	330		1									
2.4.6-Trichlorophenol	330		<u> </u>	U						<u> </u>		
2,4,5-Trichlorophenol	830		J	-					Ĵ	<del>- 0</del>		
2-Chloronaphthalene	330	1	J	U	J					<u> </u>		1
2-Nitroaniline	830		J	U	<u> </u>					<u> </u>		
Dimethylphthalate	330		<u> </u>	U	j			140		120	- <del>.</del> .	
Acenaphthylene	330		J		j			U		<u>  120</u>	Ĵ	. <u> </u>
2,6-Dinitrotoluene	330		J	U	<u> </u>				J	i ŭ		<u> </u>
3-Nitroaniline	830		J	U	<u> </u>		j			91		
Acenaphthene	330		J	560	_j	<u> </u>	J 			U 91		1
2,4-Dinitrophenol	830		J	<u> </u>	J	U		. –	<u></u>			<u></u>
4-Nitrophenol	830		j	υ	ل	U				52		<u> </u>
Dibenzofuran	330		J	240	J	U	Ĵ	· ·	J	<u> </u>		<u> </u>
2,4-Dinitrotoluene	330		ſ	U	J	U	j	U	<u> </u>		_	
Diethylphthalate	330		J	U	J	U		1600	J		<u> </u>	1
4-Chiorophenyl-phenylether	330	ט נ	J	i U	Ĵ	U	J	U	J	<u> </u>		

* - values transferred from the dilution analysis

U - non-detected compound

B - detected in the corresponding method blank

J - estimated value

JN - presumptive evidence of a compound

at an estimated value

### Project: Keegan Landfill Site

### START PM: Gerry Gilliland

## Sampling Date: July 30 & 31, 1997

#### SAMPLE #/CONCENTRATION (µg/Kg)

					_S⊁		FILU	NCENT			<u></u>	
	Method	Soil		i Soil		Soil		Soil		Soil		
		BSE36		BSE37		BSE38		BSE43		BSE44	:	
Semi-Volatiles	Detection					30388.08	,	30388.11	I	30412.09		
Low Concentration	Limit	30412.07		30388.07		50588.00	)	21		21		
Percent Moisture		60		40		1.0		1.0		1.0	i	
Dilution Factor		10.0		1.0		39	J	<u> </u>		74	J	
Fluorene	330					<u> </u>		<u> </u>	<u> </u>	U		
4-Nitroaniline	830			<u> </u>	<u> </u>	<u>├_ʊ</u>		<u> </u>			J	
4,6-Dinitro-2-metnyiphenol	830		J	0				1200	Ĵ	<u> </u>	JI	
N-Nitrosodiphenylamine	330		J	U	_ 	U U		U 1200	Ĵ,			
4-Bromophenyl-phenylether	330		٦	<u> </u>	J	U		- Ŭ	Ĵ	<u> </u>		
Hexachlorobenzene	330		J	<u> </u>	<u></u>		J			<u> </u>	Ĵ	
Pentachlorophenol	830		J	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	J			260	<u> </u>	1200	J	
Phenanthrene	330			3400	<u> </u>	380	J	120	<u> </u>	380	J	
Anthracene	330		J	870	J	87	J	120 U		110	J	
Carbazole	330		J		J	U	J	200	<del>.</del>	70	J	
Di-n-butylphthalate	330		J		J	U				1800		· · · _
Fiuoranthene	330		J	*2900	J	580		410		2200		
Pyrene	330	5400	J	4100	<u>່</u> ງ	630	<u>ر</u>	620		<u> </u>	- <u>J</u>	
Butylbenzylphthalate	330	2800	J		<u>ر</u>	U	J	*5300				
3.3-Dicnlorobenzidine	330	U	J		J	Ū	J	U		1300		
Benzo(a)anthracene	330	2800	J		J	260	J	350	<u> </u>	1300	<u>ر</u> ا	
Cnrysene	330	3100	J		J	300	J	440			BJ	
bis(2-Ethylhexyl)phtnalate	1 330	230000	Ĵ	1600	J	480	j	2000	J	1700		
Di-n-octylphthalate	1 330	7700	J		J	U	J	150		U		
Benzo(b)fluoranthene	330	2200	J	1800	J	260	J	470	J	1100		·
Benzo(k)fluoranthene	330	2600	J	1600	J	200	J	340	J	1100	<u>_</u>	
Benzo(a)pyrene	330	: 3000	J	2000	J	240	1_	420	J	1300	J	<u> </u>
Indeno(1,2,3-cd)pyrene	330		J	1200	J	160	J	360	J	850	J	
Dipenz(a,h)anthracene	330		J	520	J	U	J	130	J	350	J	i
Benzo(g,h,i)perylene	330		J	1300		200	J	540	J	980	J	
Senzo(g.n.i)peryiene												

* - values transferred from the dilution analysis

U - non-detected compound

B - detected in the corresponding method blank

J - estimated value

ŧ.

JN - presumptive evidence of a compound

at an estimated value

# Project: Keegan Landfill Site

,

#### START PM: Gerry Gilliland

# Sampling Date: July 30 & 31, 1997

SAMPLE #/CONCENTRATION (ug/L)

									<u> </u>		_	
	Method	Water		Water		Water		Water		Water	ļ	
	Detection	BSE22		BSE23		BSE26		BSE41		BSE42		
Semi-Volatiles		30388.01		30388.02		30388.03		30388.10		30412.08	i	
Low Concentration	Limit	30388.01						-		-	İ	
Percent Moisture		1.0		1.0		1.0	i	1.0		1.0	ł	
Dilution Factor				<u> </u>	J	<u> </u>	J	U	J	0	J	
Phenol	10	<u> </u>		<u> </u>	1		J	U	J	<u> </u>	J	
bis(2-Chloroethyl)ether	10	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	J	U	J	U	J	
2-Chlorophenol	10	_		<u> </u>	<u> </u>	<u> </u>		Ú	J	U	J	;
1,3-Dichlorobenzene	10	1 -		<del>  <u> </u></del>			- <u>j</u>	0	J	U	J	
1,4-Dichlorobenzene	10	-	- <u>-</u>		<u> </u>				J	U U	Jİ	
1,2-Dichlorobenzene	10				Ĵ	<u> </u>	Ĵ	<u> </u>	J	U	J	
2-Methylphenol	10			<del>- ŭ -</del>	Ĵ	<u> </u>	<u> </u>	U	J	U	J	
2,2-oxybis(1-Chloropropane)	10			0.8	Ĵ	- Ŭ	-j-		Ĵ	U	J	
4 Methylphenol	10			U U	Ĵ	<del>  0</del>		U	J	U	J	
N-Nitroso-di-n-propylamine	10	-	- <u>-</u>		<del>.</del>	t ŭ	Ĵ	<u>_</u>	Ĵ	U	3	
Hexachloroethane	10				Ĵ	<del> </del> _	J	Ū	J	U	J	
Nitrobenzene	10	-			- <u>J</u>			<u> </u>	Ĵ	U	Jİ	
Isophorone	10						Ţ,	Ū		U	J	
2-Nitrophenol					_ <u>j</u>	Ū	J	<u> </u>	Ĵ	U	J	1
2,4-Dimethylphenol	10				<u> </u>	Ū.	Ĵ	<u> </u>	Ĵ	υ	J	1
bis(2-Chloroethoxy)methane	10		<u> </u>		<u></u>			<del>- ŭ</del>	Ĵ	Ū	J	1
2,4-Dichlorophenol	10	-			- <u>J</u> -	t Ū	<u> </u>	t Ū	<u> </u>	Ū	J	<u>,</u>
1.2.4-Trichlorobenzene	10		<u> </u>					+ <u> </u>	_ <del>_</del>	<u> </u>	Ĵ	1
Naphthalene	10				<u></u>	<u> </u>		Ū Ū	- <u>-</u>		J	
4-Chloroaniline	10		-		_ <u>_</u>				<u> </u>	<u>+−-ū</u>		1
Hexachlorobutadiene	10							<u> </u>		Ū	J	
4-Chloro-3-methylphenol	10		<u> </u>			<u> </u>		Ŭ		†	J	<u> </u>
2-Methyinaphthalene	10		L					<u> </u>	Ĵ	Ū		
Hexachlorocyclopentadiene	10	-						<del>u</del>		1 0		1
4,6-Trichlorophenol	10	-	J			U U				+ 0	J	<u>· · · · · · · · · · · · · · · · · · · </u>
2.4.5-Trichlorophenol	25		ر 					<u> </u>	- <u>j</u>		Ĵ	1
2-Chioronaphthalene	10		-								J	1
2-Nitroaniline	29				ر ر		<del>ر</del> د	<u> </u>		<u> </u>	Ĵ	1
Dimethylphthalate	10	-	J					<u> </u>		<u> </u>	<u>-</u> j	<u> </u>
Acenaphthylene	10	-	<u> </u>					<del>  <u> </u></del>	<u> </u>	- <del>1</del>	Ĵ	
2,6-Dinitrotoluene	10		J		<u></u>	$+ \overline{\upsilon}$		<u></u>	Ĵ	- <del>1</del>	- Ĵ	÷
3-Nitroaniline	2		<u> </u>		J				Ĵ			1
Acenaphthene	10		ر	-	_			$+$ $\overline{u}$		+ <u> </u>	<u> </u>	
2,4-Dinitrophenol	2		J	<u> </u>	<u> </u>				Ĵ	- Ū		<u>+</u>
4-Nitrophenol	2		J	U						<u> </u>		
Dibenzofuran	1	-	J	U	<u> </u>							<u></u>
2,4-Dinitrotoluene	1		J	U	J							
Dietnylphthalate	1	-	]	U			J				_	1
4-Chlorophenyl-phenylether	1	0 U	J	U	Ĵ	U U	J	<u> </u>	<u></u>	<u> </u>		

DL- Dilution Analyses

U - non-detected compound

B - detected in the corresponding method blank

J - estimated value

JN - presumptive evidence of a compound

at an estimated value

## Project: Keegan Landfill Site

٠.

4

#### START PM: Gerry Gilliland

## Sampling Date: July 30 & 31, 1997

SAMPLE #/CONCENTRATION (µg/L)

								· • -			
Method	Water		Water		Water		Water		Water		
	1		BSE23		BSE26		BSE41		BSE42		
1-	_	1			1		30388 10				
Limit	50388.01		1 30368.02		50588.05		50588.10		-	Ì	
	-	•			10		10		10		
								1		<u> </u>	
							E		-		· · · · · · · · · · · · · · · · · · ·
				-	-	-	-				
	-					-	-		-		
1					-	<u> </u>	-				
	-	Ji		-	1	-					
			-		1	-			1 –		. <u></u>
		Ĵ I			-	-					
		Ĵ	_	-			-				
	-	5			-	· · · · ·					·
10		J	_		-	-	1	<u> </u>			
10		J			-			-	-		
10		J		_					1	-	
10	3	J	3	J		-		-		-	
10	U U	J	1	Ļ	-				_		
10	U	J		J	-		-		-		
10	1	J	1			_	1	-	-		
10		J	_	J							
10	3			J	1						
10	U	J	<u>ل</u>	J	-		-	-		-	
10	2	J	2	J		J			-		
10	1	J	-	1	-	J			1		
10	, 1	J		Ĵ	υ	J	-			- !	
10	0.6	J	3	J	I U	J	1 U	J			
10	Ų	J		Ĵ	U	J	U	J		J	<u> </u>
10	<u> </u>	J	3	J	U	J	; U	J	U	J	
	25 25 10 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	Detection         BSE22           Limit         30388.01           10         -           10         -           25         0           25         0           10         0           10         0           10         0           10         0           10         0           10         0           10         0           10         0           10         0           10         0           10         0           10         0           10         0           10         0           10         0           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10           10         10	Detection         BSE22           Limit         30388.01           -         1.0           10         U           25         U           10         U           25         U           10         U           10         U           25         U           10         U	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Method       Watch       BSE22       BSE23       BSE26         Limit $30388.01$ $30388.02$ $30388.03$ $30388.03$ -       -       -       -       -         10       U       J       U       J       U         25       U       J       U       J       U         10       U       J       U       J       U         10       U       J       U       J       U         10       U       J       U       J       U         10       U       J       U       J       U         10       U       J       U       J       U         10       U       J       U       J       U         10       U       J       U       J       U         10       U       J       U       J       U         10       U       J       U       J       U         10       U       J       U       J       U         10       U       J       U       J       U         10       U       J       U </td <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>Method         Water         Water         Water         Base of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Method         Water         Water         Water         Base of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

**DL- Dilution Analyses** 

U - non-detected compound

B - detected in the corresponding method blank.

J - estimated value

JN - presumptive evidence of a compound

at an estimated value

R - rejected compound

p.25

.

.

#### Project: Keegan Landfill

### START PM: Gerry Gilliland

## Sampling Date: July 30 & 31, 1997

#### SAMPLE #/CONCENTRATION (µg/Kg)

								SAIVIE		F/CONC	لااحجا	110/110	<u> </u>	<u>H9/1.9/</u>	
	Method	Soil		Soil		Soil		Soil		Soil		Soil		Soil	
<b>n</b>	Detection	BSE31		BSE32		BSE33		BSE34		BSE35		BSE36		BSE37D	L
Pesticides		1	-	30412.03	,	30412.04		30412.0	5	30412.06		30412.07	7	30388.07	DL
Low Concentration	Limit	30388.00	2	24	,	77	r	90	-	88		60		40	
Percent Moisture		59		1.0		1.0		1.0		1.0		1.0		10.0	
Dilution Factor		1.0		<u> </u>		<u> </u>	J	<u> </u>	J			<u> </u>	J	U	J
alpha-BHC	1.7		J	-		<u> </u>	_ <u>_</u>	Ū		Ū	<u>-</u> j		1	U U	J
beta-BHC	1.7	-		U		78		Ŭ		<u> </u>	Ĵ	Ū.	J	<u>t</u>	J
delta-BHC	1.7	•	J	U		58		<u> </u>		<u> </u>	<u> </u>	U	- <u>-</u>	<del>1 Ū</del>	
gamma-BHC (Lindane)	1.7		J	U						<del>- 0</del>		<u> </u>	_ <u>_</u>	U U	
Heptachior	1.7			U	J	•140	<u></u>	-			<u> </u>		<u> </u>	i ŭ	
Aldrin	1.7		J	<u> </u>	J	U	<u> </u>	U			<u> </u>			U U	
Heptachlor Epoxide	1.7		J	U	J	•210	JN	U	J	<u> </u>		28	<u> </u>	1 <u> </u>	
Endosulfan I	1.7	U	J	22	_ ປ_	•900	J	U	L	U	J	20		-	
Dieldrin	3.3	U	J	j U	J	**330	EJ	U	J	U	<u> </u>			56	D.
4.4'-DDE	3.3	U	J	U	J	•730	JN	U	_ 1	U		23			
Endrin	3.3	U	J	U	J	R		U		U		<u> </u>	J	120	
Endosulfan II	3.3	U	J	U	J		່ ၂	U	1	U	J	U	J	R	
4.4'-DDD	3.3	••130	ĒJ	U	J	*1300	J	U	J	81	<u> </u>	39	J	42	D,
Endosulfan Sulfate	3.3	U	Ĵ	U	J	16	J	U	J	U	J	<u> </u>	J	U	J
4.4'-DDT	3.3	R		9.5	J	•780	JN	υ	J	U	J	78	J	U	J
Methoxychlor	17.0	R		U	Ĵ	1 0	J	U	J	U		U	J	U	J
Endrin Ketone	3.3	U	J	U	J	47	J	U	J	U	J	U	J	U	J
Endrin Aldehyde	3.3	U U	J	U	J	*810	JN	) –	J	U	J	R		<u> </u>	J
alpha-Chlordane	1.7	-	J	22	J	*900	J	U	Ĵ	U	J	25	J	83	D.
gamma-Chlordane	1.7		J	20	JÑ	*870	J	U	J	Ű	1	26	J	63	١L
Toxaphene	170.0				J	i U	J	U	J	0	Ĵ	U	J	U	J
Arocior-1016	33.0	-	J	U U	J	i u	J	U	J	U	J	U	J	U	J
Arocior-1221	67.0			<del>; ū</del>	J	U	J	U	J	U	J	U U	J	j U	J
Arocior-1232	33.0		Ĵ			Ū	J	U		U	J	υ	J	U	
Aroclor-1242	33.0			U U	<u> </u>	<u> </u>	J	<u> </u>	J	U U	J	U	J	i U	J
Arocior-1242	33.0		Ĵ			U	J	U	<del>ر</del>	U	J	U	J	TU	J
Aroclor-1240	33.0			- U		<u> </u>	Ĵ	Ū	J	U		U	Ĵ	I U	Ĵ
	33.0			110	- J	*8100			J	+	J	350	J	650	D
Aroclor-1260	33.0	<u> </u>				1 0.00								<u> </u>	

* - Value transferred from dilution analysis.

** - Analyte not detected in dilution analysis, therefore value not transferred.

U - non-detected compound

S - detected in the corresponding method blank

J - estimated value

JN - presumptive evidence of a compound

at an estimated value

### Project: Keegan Landfill

### START PM: Gerry Gilliland

# Sampling Date: July 30 & 31, 1997

#### SAMPLE #/CONCENTRATION (µg/Kg)

								OVIAIL P	- L. T	FICONC				<u>- J.</u>	_
	Method	Soil		Soil		Soil		Soil		Soil		Soil		Soil	
		BSE46	1	BSE47		BSE48		BSE27		BSE28DI	<u> </u>	BSE29		BSE30	
Pesticides	Detection	1		_		30412.12		30388.04	L	30388.05	ו זם.	30412.01		30412.02	
Low Concentration	Limit	30412.10	, 1	30412.11 64		76	'	50500.04	r	48		32		60	
Percent Moisture		66		1.0		1.0		1.0		10.0		1.0		1.0	
Dilution Factor		1.0		<u>1.0</u>		1.0 U		U	<u> </u>	U	J	U	J	U	J
aipha-BHC	1.7		1		Ĵ	<u> </u>	<b></b>	— <u> </u>	<u> </u>	i ū –	J	U	J	I U	J
beta-BHC	1.7		J	<u> </u>	<u>_</u>	Ū	Ĵ		<u> </u>	<u> </u>	J	U	J	U	J
delta-BHC	1.7		1		- <del>]</del>				<u> </u>	<u> </u>	J	U	J	12	J
gamma-BHC (Lindane)	1.7	U	J	U	<u></u>	16	JN	<u> </u>	1		Ĵ	U	J	Ŕ	
Heptachlor	1.7	du a com	J	U	-		<u></u>	<u> </u>	Ĵ			4.9	J	31	JN
Aldrin	1.7	1	J	U	1		<u> </u>		<u> </u>	<u> </u>	<u>j</u>	3.5	<u> </u>	<u>'</u>	J
Heptachlor Epoxide	1.7		ЛГ	U	<u> </u>		<u> </u>				- <u> </u>	26	<u> </u>	17	JN
Endosulfan I	1.7		ĒJ	U	<u> </u>					100		14	JN	25	Ĵ
Dieldrin	3.3		J	U	J	U			JN			29	JN		<u>-</u> -
4,4'-DDE	3.3	1	ີ 1	U	Ĵ	20	JN				<u> </u>		1		Ĵ
Endrin	3.3			U	J	U		1 48 U							
Endosulfan II	3.3		7	U	J	26	NL	-	-	-	<u></u>		- <u>J</u>		Ĵ
4,4'-DDD	3.3		J	U	J	U	J	73	ИL ИL		<u></u>	<u></u>		<u> </u>	<u> </u>
Endosulfan Sulfate	3.3		J	U	J	<u> </u>	J	19		130		-		1	J
4.4'-DDT	3.3		J	48	<u></u>	R		93	<u> </u>	U 130			7		<u> </u>
Methoxychlor	17.0	1		U	J	U	<u> </u>	130							J
Endrin Ketone	3.3		່ <b>ງ</b>	U	J	<u> </u>	<u></u>	<u> </u>				31	-JN		
Endrin Aldehyde	3.3		_ J	72	Ĵ	U	J	<u> </u>		73	<u></u>			29	
alpha-Chlordane	1.7		J	U	J	Ŕ		<u> </u>		73	<u> </u>	,		1 16	
gamma-Chlordane	1.7		JN	-	J	U	J	U	<u> </u>			<u>24</u>			
Toxaphene	170.0		J	U	٦.	U	J	U	J	-					
Aroclor-1016	33.0		J	U	J	U	J		J	U	J				
Aroclor-1221	67.0		J	V	J	U	J	<u> </u>	J	i U		<u> </u>			
Aroclor-1232	33.0	5 0	J	U	Ĵ	<u> </u>	J	U	<u> </u>	U	J	<u> </u>	<u> </u>		
Arocior-1242	33.0	0 U	J	U	J	U	ز	U	<u>ر</u>	U	J	U	J		
Aroclor-1248	33.0		J	U	J	U	Ĵ	U		U		U	J	<u> </u>	ل
Arocior-1254	33.0	5 U	J	U	J	U U	J	U	J	0	ل	U	J	U	L L
Arocior-1260	33.0	690	J	320		1 350	J	530	Ĵ	450	. Dì	520	J	600	J

* - Value transferred from dilution analysis.

** - Analyte not detected in dilution analysis, therefore value not transferred.

U - non-detected compound

B - detected in the corresponding method blank

J - estimated value

JN - presumptive evidence of a compound

at an estimated value

R - rejected compound

p. 26

### Project: Keegan Landfill

#### START PM: Gerry Gilliland

# Sampling Date: July 30 & 31, 1997

#### SAMPLE #/CONCENTRATION (µg/Kg)

							OVIALL H	00110211		
	Method	Soil	Soil		Soil					
Pesticides	Detection	BSE38	BSE43DI		BSE44DI	[, '				
	Limit	30388.08	30388.11	DI.	B0412.09	DL		-	<b>.</b>	
Low Concentration Percent Moisture		53	21		21					
Dilution Factor		1.0	10.0		10.0					
alpha-BHC	1.7		U U	J	<u> </u>	J				
beta-BHC	1.7	1	- U	J	U	J				<u> </u>
detta-BHC	1.7		U	J	Ų	J				
gamma-BHC (Lindane)	1.7	UJ	- U	J	<u> </u>	J				<u> </u>
Heptachlor	1.7		U	J	U	J				
Aldrin	1.7	UJ	U	J	U	J				
Heptachlor Epoxide	1.7	U J	U U	J	U	J				
Endosulfan I	1.7	<u> </u>	0	ີ ງ	U U	J				
Dieldrin	3.3	U J	1 1		U	J				
4.4'-DDE	3.3	U J	1	DJ		J			 	
Endrin	3.3		300 D	JN		J				
Endosulfan II	3.3	i u j	R		U	J				
4.4-DDD	3.3		R		Τ U					
Endosulfan Sulfate	3.3		U	J	U	ີ				
4,4'-DDT	3.3		600 D	JN		JN				
Methoxychlor	17.0		U	J	U	<u> </u>			<u> </u>	
Endrin Ketone	3.3	มี ปี ป		J	U	J				
Endrin Aldehyde	3.3	J U J		D.		1				
alpha-Chlordane	1.7	<u>' U J</u>	190	D.		j			<u></u> _	
gamma-Chlordane	1.7		Ŕ		U	<u> </u>			<u> </u>	
Toxaphene	170.0	U J	U	J	U	J			<u> </u>	
Aroclor-1016	33.0		-	J	T U	L				
Aroclor-1221	67.0		U	J	U	J	Į		1	
Aroclor+1232	33.0			Ĵ	U	J	<u> </u>	<del>_</del>		
Aroclor-1242	33.0			j	U	J			ļ	
Arocior-1248	33.0			Ĵ	U				1	
Aroclor-1254	33.0		U	J		J	1			
Aroclor-1260	33.0		1800	D.	J 810	נס			<u> </u>	

* - Value transferred from dilution analysis.

** - Analyte not detected in dilution analysis, therefore value not transferred.

- U non-detected compound
- B detected in the corresponding method blank
- J estimated value
- JN presumptive evidence of a compound
- at an estimated value
- R rejected compound

p.28

### Project: Keegan Landfill Site

#### START PM: Gerry Gilliland

# Sampling Date: July 30 & 31, 1997

#### SAMPLE #/CONCENTRATION (µg/L)

						SHIVIE	LC #/	CONCL			199.5	<u> </u>	
	Method	Water		Water		Water		Water		Water			
	Detection	BSE22		BSE23		BSE26		BSE41		BSE42			
Pesticides			,		,	30388.0		30388.1	0	30388.08	3	1	
Low Concentration	Limit	30388.0	1	30388.02			5		•	-	-	l	
Percent Moisture		-		1.0		1.0		1.0		1.0		Ì	
Dilution Factor		1.0		1.0 U		U 1.0		U U	J	U	J		
alpha-BHC	0.050		<u> </u>		<u> </u>			<u> </u>		Ū		<u></u>	
peta-BHC	0.050		J		<u> </u>		_ <u>_</u>	U U		<u>+</u>	_ <u>_</u>	<u> </u>	
delta-BHC	0.050			0	-			<u> </u>	Ĵ	<del>1</del> - Ū	- <u>-</u>		
gamma-BHC (Lindane)	0.050	1	J	U	<u> </u>	Η Ŭ		U U		+	- <u>j</u>	<u></u> -	
Heptachlor	0.050		<u> </u>	U	<u> </u>	+				<u> </u>			
Aldrin	0.050	_		U	J					<u> </u>		+	
Heptachior Epoxide	0.050			U	<u> </u>	-					<u> </u>	<u></u>	····
Endosulfan I	0.050	1	J	U	1	U	<u> </u>					<u>}</u>	
Dieldrin	0.10		J	U	J	U					J		
4.4'-DDE	0.10		J	U		U	J	<u> </u>	<u> </u>		 	+	
Endrin	0.10	U		U		U	J	U			1		
Endosulfan II	0.10	U	J	U	1	<u> </u>	<u> </u>	U				1	
4,4-DDD	0.10	U	J	U	J	U	J	U	<u> </u>	<u> </u>			
Endosulfan Sulfate	0.10	U	J	U	ງ	υ	J	U	<u> </u>	_	-		
4.4'-DDT	0.10	U	J	U		U	J	U	J	U		<u> </u>	
Methoxychior	0.50	U	J	U	J	U		U		<u> </u>		<u> </u>	
Endrin Ketone	0.10	U	J	i U	J	V	J	U	j	U	J	<u> </u>	
Endrin Aldehyde	0.10	U	J	U	L	U	J	0	J	U	J	<u> </u>	
alpha-Chlordane	0.050	U	J	Ū	J	U	J	U		U		ļ	
gamma-Chlordane	0.050	U	J	U	J	U	J	U	ز	U		<u> </u>	
Toxaphene	5.0	U	J	U U	J	U	J	U	J	U	<u> </u>		
Arocior-1016	1.0	U	J	U	J	U	j	U	J	U	Ĵ		
Arocior-1221	2.0		J	i U	J	U	J	<u> </u>	J	U	j	1	
Arocior-1232	1.0	U U	J	U	J	U	J		J	U	J		<u>.                                    </u>
rocior-1242	1.0	U U	J		J	U	J	U	J	U	J		
Arocior-1248	1.0		J	U	J	U	J	U	J		J	<u> </u>	
Arocior-1254	1.0			<u>U</u>	L	U	J	U	J	U	J		
Aroclor-1260	1.0		J	- U		<u> </u>	j	U	J	U	J		
A:00001-1200								····					· · · · · · ·

U - non-detected compound

B - detected in the corresponding method blank

J - estimated value

.

9 Å

<u>__</u>_

JN - presumptive evidence of a compound

at an estimated value

# **RECORD OF COMMUNICATION**

REGIONAL SAMPLE CONTROL CENTER

DATE: SUBJECT:	AUG. 29, 1997 CLP Data Package for Quality Assurance Review	OCT 0 9 1997
FROM: TO:	RSCC / ESAT George Karras, Hazardous Waste Support Section	

÷

Attached is the following ORGANIC Data Package to be reviewed for Quality Assurance

SITE KEEGAN	LF	<u> </u>	/
CONTRACTOR J		<u>#SAMPLES</u>	MATRIX
PHASE SIP		6	LUATER
LAB SWOK	· · · · · · · · · · · · · · · · · · ·	FRACTION FU	LL TCL
		and the second second second second second second second second second second second second second second second	
· · · · · · · · · · · · · · · · · · ·	REGION II RSCC I	DATA TRANSFER LOG	
Relinquish	ed By	]	Received By
Signature	Date/Time	Signature	Date/Time
		John Balecy	3/21/91
John Balied	8/29/27	Franci Van G. K.	9/16/97
G. VuGh	- 10/6/97	- f. tull	Z 10/6/9-
	/	y Care	RA 10/7/97
b. Fara	24 10/8/97	/	/ /

(over for instructions) revised 7/96

RECEIVED

SOP NO. HW-6

Revision #11

May 1996

CLP ORGANICS DATA REVIEW AND PRELIMINARY REVIEW (CLP/SOW OLMO 3.2)

By:

By:

George Karras; Work Assignment Manager/Chemist Toxic and Hazardous Waste Section

12/96 Date: 6

Date: 6/17/96

Karen Taylor, Chemist Toxic and Hazardous Waste Section

CONCURRED BY: Kevin Kubik, Chief

Toxic and Hazardous Waste Section

APPROVED BY:

Robert Runyon, Chief Monitoring Management Branch

Date:

Date:

p. 31

#### TABLE OF CONTENTS

-

_ _ _

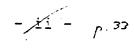
.

#### INTRODUCTION:

.

9

٦ ز


•

Scope and Applicability	1 1 1
DEFINITIONS:	
Acronyms	2 3
PACKAGE COMPLETENESS AND DELIVERABLES:	
<pre>1.0 Chain of Custody and Sampling Trip Report</pre>	4 4 5 6
<pre>1.0 Sample Conditions/Problems</pre>	7 9 11
PART B: BNA ANALYSES	
<pre>1.0 Sample Conditions/Problems</pre>	25 25 28 29 32 32 35 36 36
11.0 Standards Data (GC/MS)	37

- 1 - p.32

14.0 Internal Standard (Form VIII SV)	8 9 1
PART C: PESTICIDE/PCB ANALYSIS	
• • • • • • • • • • • • • • • • • • • •	2
	2
	3
	5 6
	7
	è
	5
	6
	7
	9
12.0 Compound Quantitation and Reported Detection Limits . 6	0
13.0 Field Duplicates	2
CLP Data Assessment	1
Organic Regional Data Assessment Summary Form Attachment	2
Data Rejection Summary Form Attachment	3

.



.

#### INTRODUCTION

#### Scope and Applicability

This SOP offers detailed guidance in evaluating laboratory data generated according to the methods in the "USEPA Contract Laboratory Program Statement of Work for Organics Analysis OLM03.2," August 1994. The validation methods and actions discussed in this document are based on the requirements set forth in the "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," February 1994. This document attempts to cover technical as well as contractual problems specific to each fraction and sample matrix; however, situations may arise where data limitations must be assessed based on the reviewer's professional judgement.

In addition to technical requirements, contractual requirements are also covered in this document. While it is important that instances of contract non-compliance be addressed in the Data Assessment, the technical criteria are always used to qualify the analytical data.

#### Summary of Method

To ensure a thorough evaluation of each result in a data case, the reviewer must complete the checklist within this SOP, answering specific questions while performing the prescribed "ACTIONS" in each section. Qualifiers (or flags) are applied to questionable or unusable results as instructed. The data qualifiers discussed in this document are defined on page 4 of the National Functional Guidelines mentioned above.

The reviewer must prepare a detailed data assessment to be submitted along with the completed SOP checklist. The Data Assessment must list all data qualifications, reasons for qualifications, instances of missing data and contract noncompliance. This information is further summarized on the Organic Regional Data Assessment Summary and Data Rejection Summary forms (see attached).

CADRE reports, when available, are to be incorporated into the Data Assessment. To generate CADRE reports for a particular SDG, follow the SOP for Validating RAS/CLP Data Cases with MAGIC, CARD and CADRE (see attached).

#### Reviewer Qualifications

This SOP is intended for use by organic data validators who have successfully completed the USEPA Region II data validation training program. Data reviewers must possess a working knowledge of the USEPA Statement of Work and National Functional Guidelines mentioned above.

- X - P.34

#### DEFINITIONS

#### Acronyms

BFB - bromofluorobenzene BHC - benzene hexachloride BNA - base neutral acid CADRE - Computer Aided Data Review and Evaluation CARD - CLP Analytical Results Database CCS - contract compliance screening CLASS - Contract Laboratory Analytical Services Support CLP - Contract Laboratory Program CRQL - Contract Required Quantitation Limit %D - percent difference DCB -decachlorobiphenyl DDD - dichlorodiphenyldichlcrcethane DDE - dichlorodiphenylethane DDT - dichlorodiphenyltrichloroethane GC - gas chromatography GC/EC - gas chromatograph/electron capture detector GC/MS - gas chromatograph/mass spectrometer GPC - gel permeation chromatography IS - internal standard kg - kilogram μg - microgram MAGIC - Mainframe Access Graphical Interface with CARD MS - matrix spike MSD - matrix spike duplicate  $\ell$  - liter me - mililiter PCB - polychlorinated biphenyl PE - performance evaluation PEM - Performance Evaluation Mixture QC - quality control RAS - Routine Analytical Services RIC - reconstructed ion chromatogram RPD - relative percent difference RRF - relative response factor RRF - average relative response factor (from initial calibration) RRT - relative retention time RSD - relative standard deviation RT - retention time RSCC - Regional Sample Control Center SDG - sample delivery group SMC - system monitoring compound SOP - standard operating procedure SOW - Statement of Work SVOA - semivolatile organic acld TCL - Target Compound List TCLP - Toxicity Characteristics Leachate Procedure TCX -tetrachloro-m-xylene TIC - tentatively identified compound

#### Acronyms (cont'd.)

4

TPO - technical project officer VOA - volatile organic acid - -- --VTSR - validated time of sample receipt WAM - EPA Work Assignment Manager

Data Qualifiers

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively dienrified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample guantitation limit. However, the reported guantitation limit is approximate and may or may not represent the actual limit of guantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

- J - P.36

2	ies	ď a	et	we	en
1	Re	200	rđ	s,	S

- 4 - p.37

ŪS	EPA	Region II	
Met	hod:	CLP/SOW	OLMO3.2

STANDARD OPERATING PROCEDURE

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

#### PACKAGE COMPLETENESS AND DELIVERABLES

CASE	NUMBER	2560	./
SITE	NAME:	Kelgen	Smilfill

LABORATORY:	SWOK
	BSEZZ, 46

1.0 Chain of Custody and Sampling Trip Reports

- 1.1 Are the Traffic Reports/Chain-of-Custody Records present for all samples?
- ACTION: If no, contact RSCC, or contact the WAM to obtain replacement of missing or illegible copies from the lab.
- 1.2 Is the Sampling Trip Report present for all samples and all fractions?
- ACTION: If no, contact either RSCC or ask the WAM to obtain this information from the prime contractor.

#### 2.0 Data Completeness and Deliverables

- 2.1 Have any missing deliverables been received and added to the data package?
- NOTE: The lab is required to submit data for only two analyses, for each fraction. (i.e., the original sample and one dilution, or the most concentrated dilution analyzed and one further dilution.)
- ACTION: Contact the WAM to obtain an explanation or resubmittal of any missing deliverables from the lab. If lab cannot provide them, note the effect on the review of the package in the Contract Problems/Non-compliance section of the Data Assessment and the Organic Regional Data Assessment Summary form.
- 2.2 Was CLASS CCS checklist included with package?
- 2.3 Are there any discrepancie the Traffic Reports/Chain-of-Custody F Sampling Report and Sample Tacs?

TIERRA-A-017863

STANDARD	OPERATING	PROCEDURE
----------	-----------	-----------

US EPA Region II Method: CLP/SOW OLMO3.2 Date: June 1996 SOP HW-6, Rev. 11

٦

YES NO N/A

--- ·

ACTION: If yes, contact the WAM to obtain an explanation or resubmittal of any missing deliverables from the laboratory.

#### 3.0 Cover Letter SDG Narrative

- 3.1 Is the Narrative or Cover Letter Present?
- 3.2 Are case number, SDG number and contract number contained in the SDG Narrative or cover letter (see SOW, Exhibit B, section 2.6.1)?
- 3.3 Does the narrative contain the following information:
  - VOA: description of trap and columns used during sample analyses?
  - BNA: description of columns used during sample analyses?
  - Pest: description of columns used during sample analyses?
- NOTE: As per section 6.23.3.1 SOW/p. D-11/Pest, Packed columns are not permitted.
- 3.4 Does the narrative, VOA and BNA sections, contain a list of all TICs identified as alkanes and their estimated concentrations?
- 3.5 Does the narrative contain a record of all cooler temperatures? If the temperature of a cooler was exceeded, > 10° C, the lab must list by fraction and sample number, all affected samples.
- 3.6 Does the narrative contain a list of the pH values determined for each water sample submitted for volatile analysis (SOW Exhibit B, section 2.6.1.2)?
- 3.7 Does the Case Narrative contain the statement, "verbatim", as required in Section B of the SOW?
- ACTION: If "No", to any question in this section, contact the WAM to obtain all necessary resubmittals. If information is not available, document in the Data Assessment under Contract Problems/Non-Compliance section.

- 5 - p.38

STANDARD C	DPERATING -	PROCEDURE
------------	-------------	-----------

US EPA Region II Method: CLP/SOW OLMO3.2

.

2 2 2

4 47 7 Date: June 1996 SOP HW-6, Rev. 11

		YES NO N/A
4.0 <u>Data</u>	Validation Checklist	
4.1	. Check the package for the following discrepancies:	
	a. Is the package paginated in ascending order starting from the SDG narrative?	<u> </u>
	b. Are all forms and copies legible?	<u></u>
	c. Is each fraction assembled in the order set forth in the SOW?	<u> </u>
	d. Is a Sample Data Summary Package submitted immediately preceding the Sample Data Package?	
	The following checklist is divided into three parts. Part A is for any VOA analyses, Part B is for BNAs and Part C is Pesticide/PCBs.	
	Does this package contain:	/
	VOA Data?	
	ENA Data?	$\angle_{i}$
	Pesticide/PCB data?	·

ACTION: Complete corresponding parts of checklist.

- 16 - p.34

#### STANDARD OPERATING PROCEDURE

US EPA Region II Method: CLP/SOW OLMO3.2 Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

Ar-1254 Cottantin

#### PART A: VOA ANALYSES

#### 1.0 Sample Conditions/Problems

- 1.1 Do the Traffic Reports/Chain-of-Custody Records, Sampling Report or Lab Narrative indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the guality of the data?
- ACTION: If any sample analyzed as a soil, other than TCLP, contains 50% - 90% water, all data should be flagged as estimated (J). If a soil sample other than TCLP contains more than 90% water, all data should be gualified as unusable (R).
- ACTION: If samples were not iced or the ice was melted upon arrival at the laboratory and the cooler temperature was elevated (> 10° C), then flag all positive results with a "J" and all nondetects "UJ".
- ACTION: If both VOA vials for a sample have air bubbles or the VOA vial analyzed had air bubbles, flag all positive results "J" and all non-detects "R".
- ACTION: The smallest soil size permitted is 0.5g. If any soil sample is smaller than 0.5g, document in the Data Assessment under Contract Problems/Non-Compliance.

#### 2.0 Holding Times

2.1 Have any VOA technical holding times, determined from date of collection to date of analysis, been exceeded?

Technical Holding Times: If unpreserved, aqueous samples, maintained at 4° C for aromatic hydrocarbons analysis must be analyzed within 7 days of collection. If preserved with HCl (pH < 2) and stored at 4° C, then aqueous samples must be analyzed within 14 days of collection. If uncertain about preservation, contact sampler to determine whether or not samples were preserved. The holding time for soils is 10 days from date of collection.

-x- P.40

#### STANDARD OPERATING PROCEDURE

US EPA Region II Method: CLP/SOW OLMO3.2 Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

Table of Holding Time Violations (See Chain-of-Custody Records)

Sample ID	Sample Matrix	Was Sample Preserved?	Date Sampled	Date Lab Received	Date Analyzed
22,23.26,39 HTG	b. 4Q	N Ə	<u>7/30/97</u>	8/1/97	8/8 5/- E
				<u> </u>	
			<u> </u>	,,, <b></b> _	
			<u> </u>		

- ACTION: If technical holding times are exceeded, flag all positive results as estimated "J" and sample quantitation limits as estimated "UJ", and document in the Data Assessment that holding times were exceeded. If analyses were done more than 14 days beyond holding time, either on the first analysis or upon re-analysis, the reviewer must use professional judgement to determine the reliability of the data and the effects of additional storage on the sample results. At a minimum, all results must be qualified "J", but the reviewer may determine that non-detect data are unusable "R". If holding times are exceeded by more than 28 days, all non detect data are unusable "R".
- NOTE: <u>Contractual Holding Times</u>: Analysis of water and soil/sediment samples must be completed within 10 days of Validated Time of Sample Receipt (VTSR). This requirement does not apply to Performance Evaluation (PE) samples.
- ACTION: If contractual holding times are exceeded, document in the Data Assessment and on the Organic Regional Data Assessment Summary form.
- NOTE: The data reviewer must note in the Data Assessment whether or not technical and contractual holding times were met.

- 8 - p. 41

US EPA R	STANDARD OPERATING PROCEDURE	Date:		
	CLP/SOW OLMO3.2	SOP HW-6	, Rev	·. 11
		YES	NO	N/3
3.0 <u>Syst</u>	em Monitoring Compound (SMC) Recovery (Form II)			
3.1	Are the VOA SMC Recovery Summaries (Form II) present for each of the following matrices:	/		
	a. Low Water?			
	b. Low Soil?	ĽŽ		
	c. Med Soil?	[_]		
3.2	Are all the VOA samples listed on the appropria System Monitoring Compound Recovery Summary for each of the following matrices:	te		
	a. Low Water?	<u>X 1</u>	, —	
	b. Low Soil?	<u>r.x</u>		<del></del>
	c. Med Soil?	<u>r 1</u>		
ACT	ION: Contact the WAM to obtain an explanation or resubmittal of any missing deliverables from the laboratory. If missing deliverables are unavailable, document the effect in the Data Assessment.	,		
3.3	Were outliers marked correctly with an asterisk	? . [1]	<u> </u>	
ACT	ION: Circle all outliers with red pencil.			
3.4	Was one or more VOA system monitoring compound recovery outside of contract specifications for any sample or method blank?		<u>1</u>	
	If yes, were samples re-analyzed?	<u>r./1</u>		 V
	Were method blanks re-analyzed?	<u>[]</u>	<u> </u>	_ <u>_</u>
ACT	ION: If recoveries are ≥ 10%, but 1 or more compounds fail to meet SOW specifications:			
	<ol> <li>All positive results are qualified as estimated "J".</li> </ol>			
	2. Flag all non-detects as estimated detectio limits "UJ" where recovery is less than the lower acceptance limit.	n		

-<u>e</u> - p.42

.

YES NO N/A

3. If SMC recoveries are above allowable levels, do not gualify non-detects.

If any system monitoring compound recovery is < 10%:

1. Flag all positive results as estimated "J".

2. Flag all non-detects as unusable "R".

Professional judgement should be used to qualify data that only have method blank SMC recoveries out of specification in both original and re-analyses. Check the internal standard areas.

NOTE: Contractual requirements state that if any SMC fails the acceptance criteria, the sample must be re-analyzed. If the affected sample was not reanalyzed, document in the Data Assessment under Contract Problems/Non-Compliance and in the Organic Regional Data Assessment Summary.

NOTE: The laboratory must submit the following data:

1. If SMC recoveries and internal standard responses meet the acceptance criteria in the reanalyzed sample, then the laboratory must submit only the re-analysis.

2. If an SMC recovery and/or internal standard response fails to meet the acceptance criteria upon re-analysis, then submit data from both analyses.

(Refer to section 11.4.3.2, page D-46/VOA of the SOW for more information.)

- 3.5 Are there any transcription/calculation errors between raw data and Form II?
- ACTION: If large errors exist, contact the WAM to obtain an explanation or resubmittal of corrected deliverables from the laboratory. Make any necessary corrections and note the effect in the Data Assessment.

$$-10 - p.43$$

US EPA Req Method: Cl	JION II LP/SOW OLMO3.2	Date: SOP HW-0		
. <u></u>		YES	NO	N/A
4.0 <u>Matris</u>	<u> Spikes (Form III)</u>			
4.1	Is the Matrix Spike/Matrix Spike Duplicate Recovery Form (Form III) present?	IЧ		,
4.2	Were matrix spikes analyzed at the required frequency for each of the following matrices:	/		
	a. Low Water?	<u>r /1</u>		
	b. Low Soil?	<u>r 1</u>		
-	c. Med Soil?	<u>r i</u>		
ACTIC	N: If any matrix spike data are missing, take the action specified in section 3.2 above.	9		
4.3	How many VOA spike recoveries are outside QC limits?			
	<u>Water</u> <u>Soils</u>			
Biez.	2 <u>0</u> out of 10 <u>0</u> out of 10			
4.4	BSEM: C How many RPDs for matrix spike and matrix spike duplicate recoveries are outside QC limits?			
	Water Soils			
BS€Z2: ACTIO	A out of 5 C out of 5 C out of 5 B:E46: N: No action is taken based upon MS/MSD data alone. However, using informed professional judgement, the MS/MSD results may be used in conjunction with other QC criteria to determine the need for qualification of the data.	ıe		
ACTIO	N: Circle all outliers with red <u>pencil</u> .			
5.0 <u>Blanks</u>	(Form IV)	;		
5.1	Is the Method Blank Summary (Form IV) present?	1		
5.2 .	Frequency of Analysis: for the analysis of VOA TCL compounds, has a reagent/method blank been analyzed for each SDG or every 20 samples of similar matrix (low water, low soil or medium soil), whichever is more frequent?	<u></u>		
	- <u>11</u> - <u>14</u>			
	- / - / - / - / - / - / - / - / - / - /		TIEDE	RΔ_Δ_01

1

STANDARD OPERATING PROCEDURE

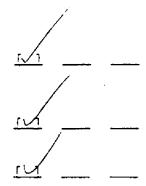
TIERRA-A-017870

Date: June 1996

Date: June 1996 SOP HW-6, Rev. 11

- YES NO N/A
- 5.3 Has a VOA method blank been analyzed at least once every twelve hours for each concentration level and GC/MS system used?
- 5.4 Was a VOA instrument blank analyzed after each sample/dilution which contained a target compound that exceeded the initial calibration range?
- 5.5 Was a VOA storage plank analyzed at the end of all samples for each SDG in a case?
- ACTION: If any method/instrument blank data are missing, contact the WAM to obtain any missing deliverables from the laboratory. If method blank data are not available, reject "R" all associated positive data. However, using professional judgement, the data reviewer may substitute field plank or trip blank data for missing method blank data.

If any instrument blank analyzed after a sample with high concentration is missing, contact the WAM to obtain any missing deliverables from the laboratory. If the instrument blank was not analyzed or not available, inspect the chromatogram of the sample analyzed immediately after this analysis for possible carryover. Use professional judgement to determine if any contamination occurred and qualify analyte(s) accordingly.


If storage blank data is missing, contact the WAM to obtain any missing deliverables from the laboratory. If unevailable, note in the Contract Problems/Non-Compliance section of the Data Assessment.

5.6 The validator should verify that the correct identification scheme for the EPA Blank samples were used. See page B-33, section 3.3.7.3 of the SOW for further information.

Was the correct identification scheme used for all VOA blanks?

- 22 - p.45

ACTION: Contact the WAM to obtain missing deliverables from the lab, or make the required corrections on the forms. Document in the Data Assessment under Contract Problems/Non-compliance if corrections were made by the validator.





US EPA Region II Method: CLP/SOW OLMO3.2 Date: June 1996 SOP HW-6, Rev. 11

N/AYES NO

- 5.7 Chromatography: review the blank raw datachromatograms (RICs), guant. reports or data system printouts and spectra. Is the chromatographic performance (baseline stability) for each instrument acceptable for VOAs?
- ACTION: Use professional judgement to determine the effect on the data.
- 5.8 Are all detected hits for target compounds in method, instrument and storage blanks less than the CRQL for that analyte?

Exception: Acetone and 2-butanone must be less than 5 times the CRQL, and methylene chloride must be less than 2.5 times its CRQL.

ACTION: If no, an explanation and laboratory's corrective actions must be addressed in the case narrative. If the narrative contains no explanation, then make a note in the Contract Problems/Non-Compliance section of the Data Assessment.

#### 6.0 Contamination

- NOTE: "Water blanks", "drill blanks", and "distilled _____ water blanks" are validated like any other sample, and are not used to qualify data. Do not confuse them with the other QC blanks discussed below.
- 6.1 Do any method/instrument/reagent/storage blanks have positive results (TCL and/or TIC) for VOAs?
- NOTE: When applied as directed in the table below, the contaminant concentration in these blanks are multiplied by the sample dilution factor and corrected for %moisture when necessary.
- NOTE: A contaminated instrument blank is not allowable under this SOW. See page D-48/VOA, section 12.1.2.4 for additional information. Document in the Data Assessment under Contract Problems/Non-Compliance if contaminated instrument blank was submitted.
- 6.2 Do any field/trip/rinse blanks have positive VOA results (TCL and/or TIC)?

- 23 - p.46



F 1

TIERRA-A-017872

YES NO N/A

- ACTION: Prepare a list of the samples associated with each of the contaminated blanks. (Attach a separate sheet.)
- NOTE: All field blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped and are not required for non-aqueous matrices. Blanks may not be qualified because of contamination in another blank. Field Blanks & Trip Blanks must be qualified for system monitoring compound, instrument performance criteria, spectral or calibration QC problems.
- ACTION: Follow the directions in the table below to qualify TCL results due to contamination. Use the largest value from all the associated blanks. If any blanks are grossly contaminated, all associated data should be qualified as unusable "R".

For:	Flag sample result with a "U" when:	Report CRQL & qualify "U" when:	No qualification is needed when:		
Methylene Chloride Acetone Toluene 2-Butanone	Sample conc. is > CRQL, but ≤ 10× blank value.	Sample conc. is < CRQL and ≤ 10× blank value.	Sample conc. is > CRQL and > 10× blank value.		
Other Conta- minants	Sample conc. is > CRQL, but ≤ 5× blank value.	Sample conc. is < CRQL and ≤ 5× blank value.	Sample conc. is > CRQL and > 5× blank value.		

- NOTE: Analytes qualified "U" for blank contamination are still considered as "hits" when qualifying for calibration criteria.
- ACTION: For TIC compounds, if the concentration in the sample is less than five times the concentration in the most contaminated associated blank, flag the sample data "R".

- 14 - p.47

US EPA Region II Method: CLP/SOW OLMO3.2 Date: June 1996 SOP HW-6, Rev. 11

- YES NO N/A
- 6.3 Are there field/rinse/equipment blanks associated with every sample?
- ACTION: For low level samples, note in the Data Assessment that there is no associated field/rinse/equipment blank. For samples with high concentrations of suspected blank contaminants, use professional judgement to qualify these values and make a note in the Data Assessment.

Exception: samples taken from a drinking water tap do not have associated field blanks.

- 7.0 GC/MS Instrument Performance Check (Form V)
  - 7.1 Are the GC/MS Instrument Performance Check Forms (Form V) present for Bromofluorobenzene (BFB)?
  - 7.2 Are the enhanced bar graph spectrum and mass/charge (m/z) listing for the BFB provided for each twelve hour shift?
  - 7.3 Has an instrument performance check been analyzed for every analytical sequence on each instrument?
  - ACTION: List date, time, instrument ID, and sample numbers for which associated GC/MS tuning data are unavailable.

DATE TIME INSTRUMENT SAMPLE NUMBERS

ACTION: Notify the WAM to obtain missing data, if possible. If the lab cannot provide the missing data, reject, "R", all data generated outside an acceptable twelve hour calibration interval.

- 7.4 Have the ion abundances been normalized to m/z 95 as specified in Exhibit D, page D-56/VOA?
- NOTE: All ion abundance ratios must be normalized to m/z 96, the nominal base peak, even though the

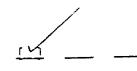
- 15 - p.48

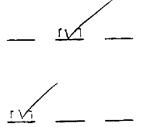
Date: June 1996 SOP HW-6, Rev. 11

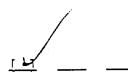
ion abundance of m/z 174 may be up to 120% that of m/z 95.

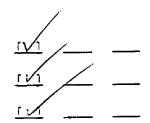
- ACTION: If mass assignment is in error, qualify all associated data as unusable "R".
- 7.5 Have the ion abundance criteria been met for each instrument used?
- ACTION: List all data which do not meet ion abundance criteria (attach a separate sheet).
- ACTION: If ion abundance criteria are not met, the Region II TPO must be notified.
- 7.6 Are there any transcription/calculation errors between mass lists and Form Vs? (Check at least two values, but if errors are found check more.)
- 7.7 Is the number of significant figures for the reported relative abundances consistent with the number given for each ion in the ion abundance criteria column?
- ACTION: If large errors exist, take action as specified in section 3.5 above.
- 7.8 Are the spectra of the mass calibration compound acceptable?

ACTION: Use professional judgement to determine whether associated data should be accepted, qualified, or rejected.


## 8.0 Target Compound List (TCL) Analytes (FORM I VOA)


- 8.1 Are the Organic Analysis Data Sheets (Form I VOA) present with required header information on each page, for each of the following:
  - a. Samples and/or fractions as appropriate?
  - b. Matrix spikes and matrix spike duplicates?


c. Blanks?


8.2 Are the VOA Reconstructed Ion Chromatograms, the mass spectra for the identified compounds, and the data system printouts (quant. reports) included in the sample package for each of the

- 16 - p.49







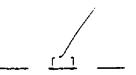


	STANDARD OPERATING PROCEDURE	Datas	<b>T</b>	1006
US EPA Reg Method: CL	ion II P/SOW OLMO3.2	Date: SOP HW-6		
	·	YES	NO	N/A
	· ·			
	following:	į		
	a. Samples and/or fractions as appropriate?	<u>r 1</u>	<u> </u>	
	b. Matrix spikes and matrix spike duplicates (mass spectra not required)?	<u>r í</u>		
	c. Blanks?	<u>r-1</u>	<del></del>	
ACTIO	N: If any data are missing, take action specific in 3.2 above.	≥d		
8.3	Are the response factors shown in the quant. report?	<u>[]</u>		
8.4	Is chromatographic performance acceptable with respect to:	į		
	a. Baseline stability?	<u>r/1</u>		
	b. Resolution?	<u>r'1</u>		
	c. Peak shape?	<u></u>	/	
	d. Full-scale graph (attenuation)?		<u> </u>	
	e. Other:?	<u>[]</u>	<u></u>	
ACTIO	N: Use professional judgement to determine the acceptability of the data.			
8.5	Are the lab-generated standard mass spectra of the identified VOA compounds present for each sample?	<u>1</u>	, 	
ACTIO	N: If any mass spectra are missing, take action specified in 3.2 above. If the lab does not generate its own standard spectra, document i the Contract Problems/Non-compliance section the Data Assessment and the Organic Regional Data Assessment Summary.	n		
ê.6	Is the RRT of each reported compound within 0.0 RRT units of the standard RRT in the continuing calibration?	16 <u>r / 1</u>		
8.7	Are all ions present in the standard mass spectrum at a relative intensity greater than 1 also present in the sample mass spectrum?	.0% /		

.

.

8.7 Are all ions present in the standard mass spectrum at a relative intensity greater than 10% also present in the sample mass spectrum?


- 21 - P.50

Date: June 1996 SOP HW-6, Rev. 11

- YES NO N/A
- 8.8 Do sample and standard relative ion intensities agree within ±20%?
- ACTION: Use professional judgement to determine acceptability of data. If it is determined that incorrect identifications were made, all such data should be rejected "R", flagged "N" (presumptive evidence of the presence of the compound) or changed to not detected "U" at the calculated detection limit. In order to be positively identified, the data must comply with the criteria listed in 8.6, 8.7, and 8.8.
- ACTION: When sample carry-over is suspected, use professional judgement determine if instrument cross-contamination has affected positive compound identifications.
- 9.0 Tentatively Identified Compounds (TIC)
  - 9.1 Are all Tentatively Identified Compound Forms (Form I Part B) present; and do listed TICs include scan number or retention time, estimated concentration and "JN" gualifier?
  - 9.2 Are the mass spectra for the tentatively identified compounds and associated "best match" spectra included in the sample package for each of the following:
    - a. Samples and/or fractions as appropriate?
    - b. Blanks?
    - c. Alkanes listed for each sample?
  - ACTION: If any TIC data are missing, take action specified in 3.2 above.
  - ACTION: Add "JN" gualifier to all chemically named TICs, if missing.
  - 9.3 Are any TCL compounds (from any fraction) listed as TIC compounds? (Example: 1,2- dimethylbenzene is xylene, a VOA TCL analyte, and should not be reported as a TIC.)

ACTION: Flag with "R" any TCL compound listed as a TIC.

9.4 Are all ions present in the reference mass

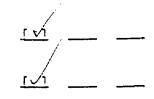


US EPA Region II Method: CLP/SOW OLMO3.2 Date: June 1996 SOP HW-6, Rev. 11

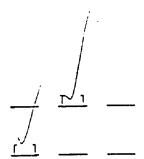
YES NO N/A

spectrum with a relative intensity greater than 10% also present in the sample mass spectrum?

- 9.5 Do TIC and "best match" standard relative ion intensities agree within ±20%?
- ACTION: Use professional judgement to determine the acceptability of TIC identifications. If it is determined an incorrect identification was made, change the identification to "unknown," or to some less specific identification as appropriate. (Example: "C3 substituted benzene.")


Also, when a compound is not found in any blank, but is detected in a sample and is a suspected artifact of a common laboratory contaminant, the result should be qualified as unusable "R". (E.g., Common Lab Contaminants: CO₂ (M/E 44), siloxanes (M/E 73) hexane, aldol condensation products, solvent preservatives, and related by-products - see the National Functional Guidelines for further guidance.)

9.6 Are TICs with responses < 10% of the internal standard (as determined by inspection of the peak areas or height) reported?


ACTION: If yes, cross out questionable TIC(s).

## 10.0 Compound Quantitation and Reported Detection Limits

- 10.1 Are there any transcription/calculation errors in Form I results? (Check at least two positive values. Verify that the correct internal standards, quantitation ions, and RRF were used to calculate Form I results.)
- 10.2 Are the CRQLs adjusted to reflect sample dilutions and, for soils, sample moisture?
- ACTION: If errors are large, take action as specified in section 3.5 above.
- ACTION: When a sample is analyzed at more than one dilution, the lowest CRQLs are used (unless a QC exceedance dictates the use of the higher CRQL data from the diluted sample). Replace concentrations that exceeded the calibration range in the original analysis by crossing cut







Date: June 1996 SOP HW-6, Rev. 11

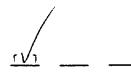
YES NO N/A

the "E" and its corresponding value on the original Form I and substituting the data from the diluted sample. Specify which Form I is to be used, then draw a red "X" across the entire page of all Form Is not to be used, including any in the data summary package.

#### 11.0 Standards Data (GC/MS)

- 11.1 Are the Reconstructed Ion Chromatograms, and data system printouts (quant. reports) present for each initial and continuing calibration?
- ACTION: If any calibration standard data are missing, take action specified in 3.2 above.

#### 12.0 GC/MS Initial Calibration (Form VI)


- 12.1 Are the Initial Calibration Forms (Form VI) present and complete at concentrations of 10, 20, 50, 100, 200ng for separate calibrations of low water/med soils (unheated purge) and low soils (heated purge)?
- ACTION: If any calibration standard forms are missing, take action specified in 3.2 above.
- 12.2 Were all low level soil standards, blanks and samples analyzed by heated purge?
- ACTION: If low level soil samples were not heated during purge, gualify positive hits "J" (estimated) and non-detects "R".
- 12.3 Are the % relative standard deviation (%RSD) values for VOAs ≤ 30% over the concentration range of the calibration?
- NOTE: Although 11 VOA compounds have a contractual minimum RRF and no maximum %RSD, the technical acceptance criteria are the same for all analytes.


ACTION: Circle all outliers with red pencil.

ACTION: If %RSD is > 30.0%, qualify associated positive results for that analyte "J" (estimated) and non-detects using professional judgement. When %RSD is > 90%, flag all non-detects for that analyte "R" (unusable) and positive hits "J".









US EPA Region II Method: CLP/SOW OLMO3.2

у.

Date: June 1996 SOP HW-6, Rev. 11

- NOTE: Analytes previously gualified "U" for blank contamination are still considered as "hits" when qualifying for initial calibration criteria.
- 12.4 Are any average RRFs < 0.05?
- ACTION: Circle all outliers with red pencil.
- ACTION: If the average RRF is < 0.05, then qualify associated non-detects with an "R" and flag associated positive data as estimated "J".
- NOTE: <u>Contract Requirement</u>: The SOW allows up to two of the <u>required</u> analytes to fail contractual %RSD or RRF criteria, provided the %RSD is ≤ 40% and RRF is ≥ 0.010. (See Table 5, page D-59/VOA and analytes marked with a "*" on Form VI for required analytes and contractual criteria.) Technical criteria, however, are the same for all analytes.
- ACTION: If more than two analytes failed %RSD or RRF criteria, document in the Data Assessment under Contract Problems/Non-Compliance and the Organic Regional Data Assessment Summary.
- 12.5 Are there any transcription/calculation errors in the reporting of average relative response factors (RRF) or %RSD? (Check at least 2 values, but if errors are found, check more.)

ACTION: Circle errors with red pencil.

- ACTION: If errors are large, contact the WAM to obtain an explanation/resubmittal from the lab, document in the Data Assessment under Contract Problems/Non-Compliance and in the Organic Regional Data Assessment Summary.
- 13.0 GC/MS Continuing Calibration (Form VII)
  - 13.1 Are the Continuing Calibration Forms (Form VII) present and complete for separate calibration of low water/med soil and low soil samples?
  - 13.2 Has a continuing calibration standard been analyzed for every twelve hours of sample analysis per instrument?

- 21 - p.54

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

- ACTION: If any forms are missing or no continuing calibration standard has been analyzed within twelve hours of every sample analysis, contact the WAM to request an explanation/resubmittal from the lab. If continuing calibration data are not available, flag all associated sample data as unusable "R".
- ACTION: List below all sample(s) that were not analyzed within twelve hours of the previous continuing calibration.

- 13.3 Do any volatile compounds have a percent difference (%D) between the initial and continuing RRF which exceeds the ±25% criteria?
- NOTE: Although 11 VOA compounds have a contractual minimum RRF and no maximum %D, the technical acceptance criteria are the same for all analytes.

ACTION: Circle all outliers with red pencil.

ACTION: Qualify both positive results and non-detects for the outlier compound(s) as estimated. When %D is > 90%, qualify all non-detects for that analyte unusable (R) and positive results estimated (J).

13.4 Are any continuing calibration RRFs < 0.05?

ACTION: Circle all outliers with red pencil.

- ACTION: If the RRF is < 0.05, qualify the associated non-detects as unusable "R" and the associated positive values "J".
- NOTE: <u>Contract Requirement</u>: The SOW allows up to two of the <u>required</u> analytes to fail contractual %D and RRF criteria, provided that the %D is ≤ 40% and the RRF is ≥ 0.010. (See Table 5 pg. D-59/VOA or analytes marked with a "+" on Form VI for required analytes.) Technical criteria, however, are the same for all analytes.

#### 8A

## VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Name: SWL-TULSAContract: 68-D5-0026Lab Code: SWOKCase No.: 25601SAS No.:SDG No.: ESE22Lab File ID (Standard): C25237.DDate Analyzed: 08/04/97Instrument ID: CTime Analyzed: 1649GC Column:DB-624ID: 0.53 (mm)Heated Purge: (Y/N) Y

-		IS1 (BCM)		IS2 (DFB)	1	IS3(CBZ)	
	·	AREA #	RT #	AREA #	RT #	AREA #	RT ≓
		==========	******	=========			======
	12 HOUR STD	270230	9.89	1229449	10.89	993340	13.53
	UPPER LIMIT	540460	10.39	2458898	11.39	1986680	14.03
	LOWER LIMIT	135115	9.39	614724	10.39	496670	13.03
		=======	======	===========	=======	========	=======
	EPA SAMPLE No.						
		=========	======	===========	======	==========	======
01	VBLK3	275793	9.90	1255234	10.91	990297	13.55
02	BSE27	200247	9.87	844241	10.89	507935	13.52
03	BSE31	232449	9.87	1072453	10.88	734422	13.51
04	BSE38		9.88	20127*	10.88		13.52
05	BSE43	86183*	9.87	293006*	10.87	<u>158756</u> 794 <u>859</u>	13.51
.06	BSE37 BSE38RE	215247	9.88	997677 92981*	10.88 10.87	-29757*	13.51
07 .)8	BSEJOKE	23210*	9.87		10.0/	29767	- 13.50
09				i			
10							
11		*****					
11 12							
13							
74							
15 15 15 17							
16		· · · ·					
17							
18							
19							
18 19 20 21 22							
21							
22		I		<u> </u>			

IS1 (BCM) = Bromochloromethane
IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

۰.

1

vage 01 of 01

.

ab Name: SWL-TULSAContract: 68-D5-0026Lab Code: SWOKCase No.: 25601SAS No.:SDG No.: BSE22Lab File ID (Standard): L27084.D- Date Analyzed: 08/06/97Instrument ID: LTime Analyzed: 1843GC Column:DB-624ID: 0.53 (mm)Heated Purge: (Y/N) Y

	IS1(BCM)		IS2(DFB)		IS3(CBZ)	
	AREA #	RT #	AREA #	RT #	AREA #	RT
	==========	======	=======	======	===========	======
12 HOUR STD	366771	9.08	1253506	10.27	1242418	13.53
UPPER LIMIT	733542	9.58	2507012	10.77	2484836	14.03
LOWER LIMIT	183386	8.58	626753	9.77	621209	13.03
		===	===========	=======		======
EPA SAMPLE						
No.						
NO.						
		======	1391993	10.26	1407364	13.52
VBLK5	438697	9.06			861627	13.52
ESE29	325622	9.03	1006279	10.24	001027	
BSE35RE	236793	9.02	626731*	10.23	442921*	13.50
BSE36RE	253616	9.03	730844	10.23	533978*	13.50
BSE44RE	223298	9.04	670557	10.23	466035*	13.50
						•
<del></del>				- <u>,</u>		
			<u>, , , , , , , , , , , , , , , , , , , </u>			
				<u> </u>		
<u> </u>						
	İ					<u> </u>

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

E Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

/age 01 of 01

FORM VIII VOA

OLM03.0

Lab Name: SWL-TULSAContract: 68-D5-0026Lab Code: SWOKCase No.: 25601SAS No.:SDG No.: ESE46Lab File ID (Standard): L27084.DDate Analyzed: 08/06/97Instrument ID: LTime Analyzed: 1843GC Column:DB-624ID: 0.53 (mm)Heated Purge: (Y/N) Y

	1		· · · · · · · · · · · · · · · · · · ·	IS2(DFB)	1	IS3(CBZ)	· · · · · · · · · · · · · · · · · · ·
		IS1 (BCM)	<b>DM</b> #	AREA #	RT #	AREA #	RT #
		AREA #	RT #	ARLA #	R1 #	AREA #	Ki t
	========	===================	======	=============	=======		======
	12 HOUR STD	366771	9.08	1253506	10.27	1242418	13.53
	UPPER LIMIT	733542	9.58	2507012	10.77	2484836	14.03
	LOWER LIMIT	183386	8.58	626753	9.77	621209	13.03
		=================			=======	===========	======
	EPA SAMPLE						
	No.						
	============	==========	=======	========	=======	=======================================	=======
01	VBLK1	438697	9.05	1391993	10.26	1407364 _156850* _455313*	13.52
02	BSE46	124367*	9.04	<u>28484</u> 9*	10.23	156850*	13.50
03	BSE47	249961	9.02	689142	10.23	455313.*	13.49
04	BSE48	346830	9.02	1152751	10.23	··81 <del>9</del> 137	13.50
05							
05				<u></u>			
07						· · · · · · · · · · · · · · · · · · ·	
08		·	i	······			
09	•						
10				, »			
11							
11 12					·		<u> </u>
12		<u> </u>					
	<b>_</b>	·····					
13 14 15 16 17							
16							
17							
18							
18 19 20							
20	i						
21		<u>-</u>					
21 22					[		
~~	I		I	I	i		¹

IS1 (BCM) = Bromochloromethane
IS2 (DFB) = 1,4-Difluorobenzene

.

IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

page 01 of 01

FORM VIII VOA

OLM03.0

÷~ 26

Tile: %D and RRF,

at resoment under a tot on the

wary form.

122 C

ο.

. . . . . . .

in

. 🗉

US EPA Region II Mothod: CLP/SOW OLMO3.2

.j

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

- ACTION: If more than two analyt criteria document in tr contract Problems/Non-C Organic Regional Data A
- 13.5 Are there any transcripti the reporting of RRF or % continuing RRFs? (Check if errors are found, chec)
- ACTION: Circle errors with red :
- ACTION: If errors are large, co: an explanation/resubmitt document in the Data As Problems/Non-Compliance

#### 14.0 Internal Standard (Form VIII)

14.1 Are the internal standard every sample and blank Wilimits (-50% to +100%) for calibration?

If no, was the sample fer:

ACTION: 1. Circle all outliers w

2. List all the outlier

- Sample # Internal Std.
- 05E38,43,38RE, 151-153
- 28,28MS,35,____
- <u>36.44 3588,</u>

3628, 4412, 46, 4628, 47mSD

(Attach additional or attach copi

- ACTION: If any sample was not : the Data Assessment und Problems/Non-Compliance
- ACTION: 1. If the internal standard as as outside the upper of Rever lim with all positive results quantitates such this

US EFA Region II Method: CLP/SOW OLMO3.2 Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

internal standard.

2. Do not qualify non-detects when associated IS area counts are > 100%.

3. If the IS area in the sample is below the "lower limit," < 50%, gualify all analytes associated with that IS estimated, "J". If the area counts are extremely low, < 25% of the area in the 12 hour standard, or if performance exhibits a major abrupt drop- off, flag all associated non-detects as unusable, "R", and positive hits estimated, "J".

- 14.2 Are the retention times of the internal standards within 30 seconds of the associated calibration standard?
- ACTION: Professional judgement should be used to gualify data if the retention times differ by more than 30 seconds.
- NOTE: Contractual requirements state that if any internal standard fails the acceptance criteria, the sample must be re-analyzed. If the affected sample was not re-analyzed, document in the Data Assessment under Contract Problems/Non-Compliance.
- NOTE: See Notes in section 3.4, page 7 for a description of sample data the laboratory must submit.

#### 15.0 Field Duplicates

- 15.1 Were any field duplicates submitted for VOA analysis?
- ACTION: Compare the reported results for field duplicates and calculate the relative percent difference.
- ACTION: Any gross variation between duplicate results must be addressed in the reviewer narrative. However, if large differences exist, identification of field duplicates should be confirmed by contacting the sampler.

- 24 - p.60

ab Name: SWL-TULSA

Contract: 68-D5-0026

SDG No.: BSE22 Case No.: 25601 SAS Nc.:

Date Analyzed: 08/03/97

Lab File ID (Standard): L26983.D

Instrument ID: L

Lab Code: SWOK

ID: 0.53 (mm) GC Column:DB-624

Heated Purge: (Y/N) Y

Time Analyzed: 2257

						700 0000	
		IS1(BCM)		IS2(DFE)		IS3(CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
			=======	==========	=======	===========	======
	12 HOUR STD	281029	9.12	945154	10.30	887009	13.58
	UPPER LIMIT	562058	9.62	1890308	10.80	1774018	14.08
	LOWER LIMIT	140514	8.62	472577	9.80	443504	13.08
	LOWER LIMIT	1 140014	C.02				=
		==========					
	EPA SAMPLE						
	No.						
		*=======	=======	==========	======	===========	=====
01	VBLK2	315685	9.13	978302	10.32	980 <u>154</u>	13.60
02	BSE28	160485	9.08	548355 432332*	10.29	363249*	
03	ESE28MS	149689	9.13	32332*	10.34	<u>354915*</u>	13.60
04	ESE28MSD	204370	9.12	603526	10.32	456184	13.59
04	ESEZOMSD	2045/0	2.12				
05			<u> </u>				
06							
07							
80						<u> </u>	
69							
10			····				
1 1							
12	·					· · · · · · · · · · · · · · · · · · ·	
12							
			<u> </u>				
14							
15	i						
15							· [
17							
18							
- 9							
8901234567890 0011111111112		<u></u>				*****	
21							
2 <u>1</u>							
22	l			l	·		ا  ا

IS1 (BCM) = Bromochloromethane
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

•

# Column used to flag values cutside QC limits with an asterisk. * Values outside of QC limits.

page 01 of 01

CLM03.0

ab Name: SWL-TULSA

Contract: 68-D5-0026

Lab Code: SWOK Case No.: 25601 SAS No.: Lab File ID (Standard): L27044.D Da Instrument ID: L Ti GC Column:DB-624 ID: 0.53 (mm) He

: SDG Nc.: ESE22 Date Analyzed: 08/05/97 Time Analyzed: 1349 Heated Purge: (Y/N) Y

							I
1		IS1(ECM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
			••••				=======
	================	*=======	======			851314	13.54
	12 HOUR STD	260484	9.08	847322	10.27		
	UPPER LIMIT	520968	9.53	1694544	10.77	1702625	14.04
		130242	8.58	423661	9.77	425657	13.04
	LOWER LIMIT	130242	0.20				=======
	============	=========	=======				
	EPA SAMPLE			•			
	No.	1					
				==========	======	========	======
~ ~		243442	9.06	760949	10.25	752440	13.52
01	VBLK4	241443	5.05	471106	10.26	369467-	13.54
02	BSE43RE	165436	9.06				13.52
03	BSE30	214828	9.05	602316	10.25	491013	13.52
04	BSE32	186629	9.05	647676	10.25	481963	13.51
05	BSE33	225106	9.05	796415	10.25	676895	13.54 13.52
05			9.05	698830	10.25	482352	13.52
06	BSE34	181173			10.24	316712*	13.52 13.52 13.53
207	BSE35	137367	9.05	424940			
08	BSE36	109505*	9.05	327533*	10.25	197696*	11.24
08 09	ESE44	72732*	9.04	_188341*	10.24	116262*	13.53
10		· · · · · · · · · · · · · · · · · · ·				· · · ·	
TO							
11 12	·						
12							
13 14 15 16 17							
14							
15							
10 10							
16				<u> </u>	i	<u> </u>	
17		l		. <u></u>		<u> </u>	
18							
19			]				
- 7	<u> </u>	<del>_</del>					
20							í i
21				l		<u></u>	İ
22							I I
	I	·	·				

IS1 (BCM) = Bromochloromethane
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk. * Values outside of QC limits.

,age 01 of 01

FORM VIII VOA

OLM03.C

.+

ab Name: SWL-TULSA Lab Code: SWOK Case No.: 25601 Lab File ID (Standard): C25331.D

GC Column:DB-624 ID: 0.53 (mm)

Instrument ID: C

ы. С. 11 д

 Contract: 68-D5-0026

SAS No.: SDG No.: BSE46 Date Analyzed: 08/07/97 Time Analyzed: 0956 Heated Purge: (Y/N) Y

· -

					700.000	
	IS1(BCM)		IS2(DFB)		IS3(CBZ)	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
					=========	=======
12 HOUR STD	134594	9.77	649653	10.78	538347	13.42 13.90
	194934	3.77	1299306	11.28	1076694	
UPPER LIMIT	269198	10.27				13.50
LOWER LIMIT	67297	9.27	324826	10.28	269174	12.92
	==========	======	=========			=======
EPA SAMPLE						
No.						
	===========	=======				
01 VELK2	140734	9.81	625972-	10.81	515038	13.45
02 BSE46RE	10000	9.79 9.77	202119*	10.80	75906*	13.41
03 BSE47MS	5=528	9.77	387510_	10.78	236195*	)13.42
04 BSE47MSD	5=528 54380*	9.78	-212344*+	10.79	112245*	/13.42
05 VHBLK1	<u> </u>	9.75	<u> </u>	10.77	467031	13.40
	113000	5.15	50-550	20.77	-00001	+2.40
06						
07						
80 90						
0.9						
- 01						
10 11 12 13						
						······
<u>+</u> <u></u>						
ī.3						
14 15 16						
15						
16						
17						
±//						<del></del>
±8				]		
18       19       20       21						
20						
21						
22					·	
<u>د د ا</u>	!	I	I	i	<u> </u>	

IS1 (BCM) = Bromochloromethane
IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

1

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk. * Values outside of QC limits.

page 01 of 01

FORM VIII VOA

CLM03.0

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

## PART B: BNA ANALYSES

### 1.0 Sample Conditions/Problems

- 1.1 Do the Traffic Reports/Chain-of-Custody records or laboratory SDG Narrative indicate any problems with sample receipt, condition of samples, analytical problems or special notations affecting the quality of the data?
- ACTION: If any sample analyzed as a soil, other than TCLP, contains 50% - 90% water, all data should be flagged as estimated "J". If a soil sample, other than TCLP, contains more than 90% water, all data should be qualified as unusable "R".
- ACTION: If samples were not iced or if the ice was melted upon arrival at the laboratory and the temperature of the cooler was elevated (> 10° C), flag all positive results "J" and all nondetects "UJ".

#### 2.0 <u>Folding Times</u>

2.1 Have any BNA technical molding times, determined from date of collection to date of extraction, been exceeded?

> <u>Technical Holding Time</u>: Continuous extraction of water samples for BNA analysis must be started within seven days of the date of collection. Soil/sediment samples must be extracted within 7 days of collection. Extracts must be analyzed within 40 days of the date of extraction.

> > Table of Holding Time Violations (See Chain of Custody Records)

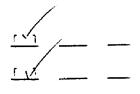
Sample Analyzed	Sample Matrix	Date Sampled	Date Lab Received	Date Extracted	Date Analyzed
<u> </u>		<u></u>	<u></u>		
		<u></u>			<u> </u>

- 25 - P.54

Date: June 1996 SOP HW-6, Rev. 11

YES NO K/P

- ACTION: If technical holding times were exceeded, flag all positive results as estimated (J) and sample quantitation limits as estimated (UJ), and document in the narrative that holding times were exceeded. If analyses were done more than 14 days beyond holding time, either on the first analysis or upon reanalysis, the reviewer must use professional judgement to determine the reliability of the data and the effects of additional storage on sample results. At a minimum, all results should be qualified "J", but the reviewer may determine that non-detect data are unusable "R". If holding times were exceeded by more than 28 days, all non-detect data must be cualified "R", unusable.
- NOTE: <u>Contractual Holding Times</u>: Extraction of water samples must be started within 5 days VTSR. Soil/sediment samples must be extracted within 10 days of VTSR. This requirement does not apply to Performance Evaluation (PE) samples. Water and soil/sediment extracts must be analyzed within 40 days following extraction.
- ACTION: If contractual holding times are exceeded, document in the Data Assessment and on the Organic Regional Data Assessment Summary form.
- NOTE: The data reviewer must note in the Data Assessment whether or not technical and contractual holding times were met.
- 3.0 Surrogate Recovery (Form II)
  - 3.1 Are BNA Surrogate Recovery Summaries (Form II) present for each of the following matrices:
    - a. Low Water?


b. Low Soil?

c. Med Soil?

3.2 Are all the BNA samples listed on the appropriate Surrogate Recovery Summaries for each of the following matrices:

a. Low Water?

b. Low Soil?



- 26 - p.65

		STANDARD OPERATING PROCEDURE	Deter	<b>T</b>	1005
		JION II LP/SOW OLMO3.2	Date: SOP HW-6		
-			YES	NO	N/A
					/
		c. Med Soil?	[ ]		
	ACTIC	ON: Contact the WAM to request an explanation or resubmittal of any missing deliverables from the laboratory. If missing deliverables are unavailable, document the effect in the Data Assessment.	/		
	3.3	Were outliers marked correctly with an asterisk	? <u>r.h</u>		
	ACTIC	N: Circle all outliers with red pencil.			
	3.4	Were two or more base-neutral <u>OR</u> acid surrogate recoveries out of specification for any sample method blank?	or -	<u>, ,</u>	
		If yes, were samples reanalyzed?	<u>[ ]</u>		$\frac{1}{1}$
		Were method blanks reanalyzed?	<u>r 1</u>		<u>./</u>
* . .*	ACTIC	N: If all BNA surrogate recoveries are ≥ 10%, bu two within the base-neutral or acid fraction not meet SOW specifications, for the <u>affected</u> <u>fraction only (i.e. acid or base-neutral</u> <u>compounds)</u> :	do		
		1. Flag all positive results as estimated (J)	•		
		2. Flag all non-detects as estimated detectio limits ("UJ") when recoveries are less than t lower acceptance limit.	n he		
		3. Do not qualify non-detects if recoveries a greater than the upper acceptance limit.	re		
		If any base-neutral <u>or</u> acid surrogate has a recovery of < 10%:			
		<ol> <li>Qualify positive results for that fraction as estimated (J).</li> </ol>			
		2. Qualify non-detects for that fraction as unusable (R).			
		Professional judgement should be used to qualify data that have method blank surrogate recoveries out of specification in both original and reanalyses. Check the internal standard areas.			

- 27 - p. 66

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/2

- NOTE: Contractual requirements state that if any surrogate fails acceptance criteria, the sample must be re-analyzed. If sample was not reanalyzed, document in the Data Assessment under Contract Problems/Non-Compliance.
- NOTE: The laboratory must submit the following data:

1. If surrogate recoveries and internal standard responses meet the acceptance criteria in the reanalyzed sample, then the laboratory must submit only the re-analysis.

2. If surrogate recoveries and/or internal standard responses fail to meet the acceptance criteria upon re-analysis, then submit data from both analyses.

- 3.5 Are there any transcription/calculation errors between raw data and Form II?
- ACTION: If large errors exist, contact the WAM to request an explanation or resubmittal of corrected deliverables from the laboratory. Make necessary corrections and note errors in the Data Assessment.

4.0 Matrix Spikes (Form III)

- 4.1 Is the Matrix Spike/Matrix Spike Duplicate Recovery Form (Form III) present?
- 4.2 Were matrix spikes analyzed at the required frequency for each of the following matrices:
  - a. Low Water?
  - b. Low Soil?
  - c. Med Soil?
- ACTION: If any matrix spike data are missing, take the action specified in 3.2 above.

<u>Soils</u>

RSEVI

out of 22

4.3 How many BNA spike recoveries are outside QC limits?

65=<u>72: 3</u> out of 22

Water

TIERRA-A-017893

How many RPDs for matrix spike and matrix spike

duplicate recoveries are outside QC limits?

US EPA Region II Method: CLP/SOW OLMO3.2

4.4

_ _ _ _ _

۰,

2

Date: June 1996 SOP HW-6, Rev. 11

> YES NO N/A

		Water	Soils			
		Sout of 11 N: No action is taken based <u>alone</u> . However, using i judgement, the data revi spike and matrix spike d conjunction with other Q determine the need for s the data.	nformed professional ewer may use the matrix uplicate results in C criteria and			
	ACTIO	N: Circle all outliers with	red <u>pencil</u> .			
5.0	<u>Blanks</u>	(Form IV)				
• •	5.1	Is the Method Blank Summar	y (Form IV) present?	<u>r</u>		<u></u>
•• =	5 <b>.</b> 2	Frequency of Analysis: Has blank analysis been report similar matrix, or concent each extraction batch?	ed per 20 samples of	<u> </u>		<u> </u>
	5.3	Has a BNA method blank been GC/MS system used? (See Section 12.1.2.)	n analyzed for each OW pg. D-54/SVOA,	r La		
	ACTION	N: If any method blank data the WAM to obtain an exp from the lab. If resubm use professional judgement associated sample data st	lanation/resubmittal ittals are unavailable, nt to determine if the			
	5.4	The validator should verify identification scheme for were used. See page B-33, SOW for further information	the EPA Blank samples sec. 3.3.7.3 of the	÷		
		Was the correct identificated all BNA blanks?	tion scheme used for	<u>, 1</u>		
	ACTIO	N: Contact the WAM to obtain lab or make the required forms. Document all corr validator in the Data As Problems/Non-Compliance.	corrections on the rections made by the			
		- 2	5 - p. 28		TIERR	<b>\-A</b> -01

US EPA Region II Method: CLP/SOW OLMO3.2

4

Date: June 1996 SOP HW-6, Rev. 11

			YES	NO	K/2
			•		
	5.5	<u>Chromatography</u> : review the blank raw data - chromatograms (RICs), quant. reports or data system printouts and spectra. Is the chromatographic performance (baseline stability) acceptable for each instrument?	<u>,</u>		
	ACTIC	DN: Use professional judgement to determine the effect on the data.			
	5.6	Are all detected hits for target compounds less than the CRQL for that analyte in all method blanks?	<u>-                                    </u>		
		Exception: Phthalate esters must be less than five times (5×) the CRQL.			
6.0	<u>Contam</u>	lination			
	NOTE:	"Water blanks", "drill blanks" and "distilled water blanks" are validated like any other sample and are <u>not</u> used to qualify data. Do not confuse them with the other QC blanks discussed below.			
	6.1	Do any method/reagent blanks have positive results (TCL and/or TIC)?		<u>[]</u>	
	NOTE:	<u>Water</u> : When applied as directed in the table below (page 29), the contaminant concentration in method, instrument/reagent blanks is multiplied by the same dilution factor, where necessary.			
		<u>Soil</u> : If the lab has not already done so, the contaminant concentration in <u>soil</u> blanks is multiplied by 33 times the sample dilution factor a corrected for %moisture (fraction of solid) where necessary. 30 grams of sodium sulfate (1 gram for medium level soils) are used to prepare the soil reagent/method blank as instructed on page D-54/SVC section 12.1.3. Contact the WAM to obtain resubmittals if the soil blanks are not reported in soil units ( $\mu$ g/kg).	)A,		
	6.2	Do any field/rinse blanks have positive BNA results (TCL and/or TIC)?	<u> </u>	<u>[]</u>	
	ACTIO	N: Prepare a list of samples associated with each contaminated blank. (Attach a separate sheet.)			
	NOTE:	All field blank results associated to a particular group of samples (may exceed one per case) must be			
		- 30 - p. 39			

.

US EPA Region II Method: CLP/SOW OLMO3.2 Date: June 1996 SOP HW-6, Rev. 11

YES NO  $N/\lambda$ 

used to qualify sample data. Do not convert <u>field</u> <u>blank</u> results to account for the difference in soil CRQLs. Blanks may not be qualified because of contamination in another blank. Field blanks must be qualified for surrogate, spectral, instrument performance or calibration QC problems.

ACTION: Follow the directions in the table below to qualify TCL results due to contamination. Use the largest value from all the associated blanks. If gross contamination exists, all data in the associated samples should be qualified as unusable "R".

For:	Flag sample result with a "U" when:	Report CRQL & qualify "U" when:	No qualification is needed when:
Common	Sample conc. is > CRQL, but $\leq 10 \times$ blank value.	Sample conc. is	Sample conc. is
Phthalate-		< CRQL and ≤ 10×	> CRQL and > 10×
"sters		blank value.	blank value.
Other	Sample conc. is	Sample conc. is	Sample conc. is > CRQL and > 5× blank value.
Conta-	> CRQL, but ≤ 5×	< CRQL and $\leq 5 \times$	
minants	blank value.	blank value.	

NOTE: Analytes qualified "U" for blank contamination are still treated as "hits" when qualifying for calibration criteria.

- ACTION: For TIC compounds, if the concentration in the sample is less than five times the concentration in the most contaminated associated blank, flag the sample data "R" (unusable).
- 6.3 Are there field/rinse/equipment blanks associated with every sample?
- ACTION: For low level samples, note in the Data Assessment that there is no associated field/rinse/equipment blank. For analytes with high concentration, use professional judgement on qualification of these values and make a note in the Data Assessment.

Exception: samples taken from a drinking water tap do not have associated field blanks.

- JT - P.23

<u>rı V</u>___

STANDARD	OPERATING	PROCEDURE
----------	-----------	-----------

Date: June 1996 SOP HW-6, Rev. 11

			YES	NO	N/2
7.0	GC/MS	Instrument Performance Check			
	7.1_	Are the GC/MS Instrument Performance C (Form V) present for Decafluorotriphen (DFTPP)?	heck Forms ylphosphine <u>rVi</u>	<u> </u>	
	7.2	Are the enhanced bar graph spectrum an mass/charge $(m/z)$ listing for the DFTP for each twelve hour shift?	d P provided $\sqrt{\frac{r-1}{r-1}}$		
	7.3	Has an instrument performance check so analyzed for every twelve hours of sam analysis per instrument?	lution been ple		
	ACTIO	N: List date, time, instrument ID, and number for which no associated GC/MS data are valid.	sample tuning		
	SAMPL	E NUMBERS DATE TIME INSTRU	MENT ID		

ACTION:	If the WAM	cannot	obtain	missing d	ata from	the
	lab, rejec					
	acceptable	twelve	hour ca	alibration	interval	

7.4 Have the ion abundances been normalized to m/z 198 (see SOW, page D-61/SVOA)?

NOTE: All ion abundance ratios must be normalized to m/z 198, the nominal base peak, even though the ion abundance of m/z 442 may up to 110% that of m/z 198.

ACTION: If mass assignment is in error, flag all associated sample data as unusable "R".

7.5 Have the ion abundance criteria been met for each instrument used?

ACTION: List all data which do not meet ion abundance criteria (attach a separate sheet).

- 32 - P.71

STANDARD (	PERATING	PROCEDURE
------------	----------	-----------

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

ເ¶ົາ

1 1

r /1

- ACTION: If ion abundance criteria are not met, the Region II TPO must be notified.
- 7.6 Are there any transcription/calculation errors between mass lists and Form Vs? (Check at least two values, but if errors are found check more.)
- 7.7 Is the number of significant figures for the reported relative abundances consistent with the number given for each ion in the ion abundance criteria column?
- ACTION: If large errors exist, take action as specified in section 3.5 above.
- 7.8 Are the spectra of the mass calibration compound acceptable?
- ACTION: Use professional judgement to determine whether associated data should be accepted, qualified, or rejected.
- 8.0 Target Compound List (TCL) Analytes (FORM I SV)
  - 8.1 Are the Organic Analysis Data Sheets (Form I SV) present with required header information on each page, for each of the following:
    - a. Samples and/or fractions as appropriate?
    - b. Matrix spikes and matrix spike duplicates?
    - c. Blanks?
  - 8.2 Has GPC cleanup been performed on all soil/ sediment sample extracts?
  - ACTION: If data suggests that GPC was not performed, use professional judgement. Make note in Contract Problems/Non-Compliance section of the Data Assessment and the Organic Regional Data Assessment Summary.
  - 8.3 Are the BNA Reconstructed Ion Chromatograms, the mass spectra for the identified compounds, and the data system printouts (quant. reports) included in the sample package for each of the following:
    - a. Samples and/or fractions as appropriate?

<u>1 \ 1</u> ____

STANDARD	OPERATING	PROCEDURE
----------	-----------	-----------

Date: June 1996 SOP HW-6, Rev. 11

		YES	NO	N/A
	b. Matrix spikes and matrix spike duplicates (mass spectra not required)?	<u> </u>		
	c. Blanks?	: 14		
ACTI	ON: If any data are missing, take action specified in 3.2 above.			/
8.4	Are the response factors shown in the quant. report?	<u>ز                                    </u>		
8.5	Is chromatographic performance acceptable with respect to:	/		
	Baseline stability?	$\frac{\sqrt{1}}{1}$		
	Resolution?	r vi	<u> </u>	
	Peak shape?	$\frac{1}{\sqrt{1}}$		
	Full-scale graph (attenuation)?	<u>r √1</u>		
	Other:?	<u>[]</u>		
ACTIC	DN: Use professional judgement to determine the acceptability of the data.			
8.6	Are lab-generated standard mass spectra of identified BNA compounds present for each sample?	<u>r 1</u>		
ል ርጥ ተ ር	N. If any mass spectra are missing, take action			

- ACTION: If any mass spectra are missing, take action specified in 3.2 above. Note under Contract Non-compliance if lab does not generate their own standard spectra. If spectra are missing, reject all positive data.
- 8.7 Is the RRT of each reported compound within 0.06 RRT units of the standard RRT in the continuing calibration?
- 8.8 Are all ions present in the standard mass spectrum at a relative intensity greater than 10% also present in the sample mass spectrum?
- 8.9 Do sample and standard relative ion intensities agree within ±20%?
- ACTION: Use professional judgement to determine acceptability of data. If it is determined that incorrect identifications were made, all

- 34 - p.73

US EPA Region II Method: CLP/SOW OLMO3.2

 $\langle \cdot \rangle$ 

1

Date: June 1996 SOP HW-6, Rev. 11

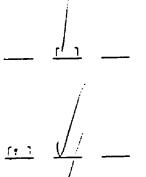
YES NO N/A

- such data should be rejected "R", flagged "N" (presumptive evidence of the presence of the compound) or changed to not detected "U" at the calculated detection limit. In order to be positively identified, the data must comply with the criteria listed in 8.7, 8.8, and 8.9.
- ACTION: When sample carry-over is a possibility, professional judgement should be used to determine if instrument cross-contamination has affected any positive compound identification.

## 9.0 Tentatively Identified Compounds (TIC)

- 9.1 Are all Tentatively Identified Compound Forms (Form I, Part B) present; and do listed TICs include scan number or retention time, estimated concentration and "JN" qualifier?
- 9.2 Are the mass spectra for the tentatively identified compounds and associated "best match" spectra included in the sample package for each of the following:

a. Samples and/or fractions as appropriate?


b. Blanks?

c. Alkanes listed for each sample?

- ACTION: If any TIC data are missing, take action specified in 3.2 above.
- ACTION: Add "N" qualifier to all chemically named TICs, if missing.
- 9.3 Are any TCL compounds (from any fraction) listed as TIC compounds? (Example: 1,2-dimethylbenzene is xylene - a VOA TCL - and should not be reported as a TIC.)

ACTION: Flag with "R" any TCL compound listed as a TIC.

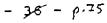
- 9.4 Are all ions present in the reference mass spectrum with a relative intensity greater than 10% also present in the sample mass spectrum?
- 9.5 Do TIC and "best match" standard relative ion intensities agree within ±20%?



Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

- ACTION: Use professional judgement to determine the acceptability of TIC identifications. If it is determined that an incorrect identification was made, change the identification to "unknown," or to some less specific identification (example: "C3 substituted benzene") as appropriate. Also, when a compound is not found in any blank, but is a suspected artifact of a common laboratory contaminant, the result should be gualified as unusable, "R".
- 9.6 Are any TICs with responses < 10% of the internal standard (as determined by inspection of the peak areas or height) reported?


ACTION: If yes, cross out questionable TIC(s).

# 10.0 Compound Quantitation and Reported Detection Limits

- 10.1 Are there any transcription/calculation errors in Form I results? (Check at least two positive values. Verify that the correct internal standard, quantitation ion, and RRF were used to calculate Form I result.)
- 10.2 Are the CRQLs adjusted to reflect sample dilutions and, for soils, sample moisture?
- ACTION: If errors are large, take action as specified in section 3.5 above.
- ACTION: When a sample is analyzed at more than one dilution, the lowest CRQLs are used (unless a QC exceedance dictates the use of the higher CRQL data from the diluted sample analysis). Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its associated value on the original Form I and substituting the data from the analysis of the diluted sample. Specify which Form I is to be used, then draw a red "X" across the entire page of all Form Is that should not be used, including any in the summary package.

## 11.0 Standards Data (GC/MS)

11.1 Are the Reconstructed Ion Chromatograms, and data system printouts (quant. reports) present for initial and continuing calibration?



US EPA Region II Method: CLP/SOW OLMO3.2

- **•** .

4. -

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

ACTION: If any calibration standard data are missing, take action specified in 3.2 above.

## 12.0 GC/MS Initial Calibration (Form VI)

- 12.1 Are the Initial Calibration Forms (Form VI) present and complete for the BNA fraction?
- ACTION: If any calibration standard forms are missing, take action specified in 3.2 above.
- 12.2 Are the % relative standard deviation (%RSD) values for BNAs ≤ 30% over the concentration range of the calibration?

ACTION: Circle all outliers with red pencil.

- NOTE: Although 21 BNA compounds have a contractual minimum RRF and no maximum %RSD, the technical criteria are the same for all analytes.
- NOTE: Eight BNA compounds do not require a 20ng standard. Refer to SOW section 7.2.4.5.1, page D-15/SVOA for a list of required compounds and contractual criteria.
  - ACTION: If the %RSD is > 30.0%, gualify positive results for that analyte "J" and non-detects using professional judgement. When %RSD is > 90%, flag all non-detect results for that analyte "R" (unusable) and all positive results -"J" (estimated).
  - NOTE: Analytes previously qualified "U" due to blank contamination are still considered as "hits" when qualifying for calibration criteria.

12.3 Are any average RRFs < 0.05?

ACTION: Circle all outliers with red pencil.

ACTION: If the average RRF is < 0.05 then:

1. "R" all non-detects.

2. "J" all positive results.

12.4 Are there any transcription/calculation errors in the reporting of RRFs and/or %RSDs? (Check at least two values; if errors are found check more.)

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

ACTION: Circle errors with red pencil.

ACTION: If errors are large, take action as specified in section 3.5 above.

- NOTE: <u>Contract Requirement</u>: The SOW allows up to four of the <u>required</u> analytes to fail contractual %RSD or RRF criteria provided the %RSD is ≤ 40% or RRF is ≥ 0.010. (See Table 5, page D-66/SVOA and analytes marked with a "*" on Form VI for a list of required analytes and contractual criteria.) Technical criteria, however, are the same for all analytes.
- ACTION: If more than four analytes fail %RSD or RRF criteria, document in the Data Assessment under Contract Problems/Non-Compliance and on the Organic Regional Data Assessment Summary form.

13.0 GC/MS Continuing Calibration (Form VII)

- 13.1 Are the Continuing Calibration Forms (Form VII) present and complete for the BNA fraction?
- 13.2 Has a continuing calibration standard been analyzed for every twelve hours of sample analysis per instrument?
- ACTION: List below all sample analyses that were not analyzed within twelve hours of a continuing calibration standard for each instrument used.

ACTION: If any forms are missing, or no continuing calibration standard has been analyzed within twelve hours of every sample analysis, contact the WAM to obtain an explanation/resubmittal from the lab. If continuing calibration data are unavailable, flag all associated sample data as unusable "R".

13.3 Does any BNA compound have a percent difference (%D) between the initial and continuing calibration RRFs which exceeds the ±25.0% criteria?

- 38 - P.77

US EPA Region II Method: CLP/SOW OLMO3.2

- N.

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

. .

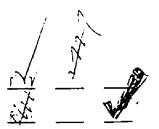
ACTION: Circle all outliers with red pencil.

ACTION: Qualify both positive results and non-detects for the outlier compound(s) as estimated "J". When %D is > 90%, reject all non-detects for that analyte, "R", and qualify positive results "J" (estimated).

13.4 Are any continuing RRFs < 0.05?

ACTION: Circle all outliers with red pencil.

ACTION: If the RRF is < 0.05, qualify as unusable (R) associated non-detects and "J" associated positive values.


NOTE: <u>Contract Requirement</u>: The SOW allows up to four of the <u>required</u> analytes to fail contractual %D and RRF criteria, provided that the %D is ≤ 40% and the RRF is ≥ 0.010. (See Table 5 page D-66/SVOA or analytes marked with a "*" on Form VI for a list of the required analytes.) Technical criteria, however, are the same for all analytes.

- ACTION: If more than four analytes failed %D and RRF criteria, document in the Data Assessment under Contract Problems/Non-Compliance and on the Organic Regional Data Summary Form.
- 13.5 Are there any transcription/calculation errors in the reporting of average relative response factors (RRF) or %difference (%D) between initial and continuing RRFs? (Check at least two values, but if errors are found, check more.)

ACTION: Circle errors with red pencil.

- ACTION: If errors are large, take action as specified in section 3.5 above.
- 14.0 Internal Standards (Form VIII)
  - 14.1 Are the internal standard areas (Form VIII) of every sample and blank within the upper and lower limits (-50% to +100%) for each continuing calibration?

If no, was sample re-analyzed?



ריז

STANDARD	OPERATING	PROCEDURE
----------	-----------	-----------

YES NO N/A

ACTION: 1. Circle all outliers with red pencil.

- - - - --

2. List all the outliers below.

ACTION: If sample was not reanalyzed, document in Data Assessment in Contract Problems/Non-Compliance.

Sample #	Internal Std.	Area	Lower/Upper Limit
			/
			/
			/
			· /

(Attach additional sheets if necessary.) (or attach copies of Form VIIIs)

ACTION: 1. If the internal standard area count is outside the "upper" or "lower" limit, flag with "J" all positive results and non-detects quantitated with this internal standard.

2. Do not qualify non-detects associated with IS area > 100%.

3. If the IS area in the sample is < 50%, qualify all analytes associated with that IS estimated (J). If area counts are extremely low (< 25% of the area in the 12 hour standard), or if performance exhibits a major abrupt drop-off, flag all associated non-detects as unusable (R) and positive hits estimated (J).

- 14.2 Are the retention times of the internal standards within 30 seconds of the associated calibration standard?
- ACTION: Professional judgement should be used to qualify data if the retention times differ by more than 30 seconds.
- NOTE: Contractual requirements state that if any internal standard fails the acceptance criteria, the sample must be re-analyzed. If the affected sample was not re-analyzed, document in the Data Assessment under Contract Problems/Non-Compliance.

- 40 - p.79

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

NOTE: See Notes in section 3.4, page 24 for a description of sample data the laboratory must submit.

### 15.0 Field Duplicates

_____;

- 15.1 Were any field duplicates submitted for BNA analysis?
- ACTION: Compare the reported results for field duplicates and calculate the relative percent difference.
- ACTION: Any gross variation between field duplicate results must be addressed in the reviewer narrative. However, if large differences exist, identification of field duplicates should be confirmed by contacting the sampler.

- AI - p.85

TIERRA-A-017906

### US EPA Region II Method: CLP/SOW OLMO3.2

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/2

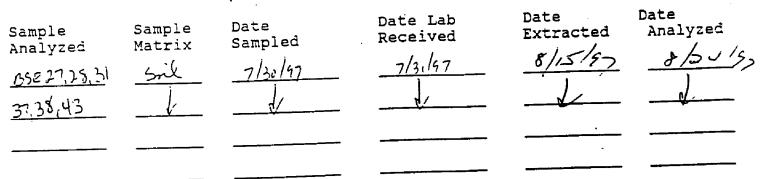
## PART C: PESTICIDE/PCB ANALYSIS

### 1.0 Sample Conditions/Problems

- 1.1 Do the Traffic Reports/Chain-of-Custody Records or SDG Narrative indicate any problems with sample receipt, condition of the samples, analytical problems or special circumstances affecting the quality of the data?
- ACTION: If any sample analyzed as a soil, other than TCLP, contains 50% - 90% water, all data should be qualified as estimated "J". If a soil sample, other than TCLP, contains more than 90% water, all data should be qualified as unusable "R".
- ACTION: If samples were not iced, or if the ice was melted upon arrival at the laboratory, and the temperature of the cooler was elevated > 10° C, flag all positive results "J" and all nondetects "UJ".
- ACTION: Check aqueous extraction log for sample pH, if adjustment was needed, it should have been noted in the SDG Narrative. If more information is needed, notify the WAM to contact the lab.

### 2.0 Holding Times

- 2.1 Have any PEST/PCB technical holding times, determined from date of collection to date of extraction, been exceeded?
- NOTE: <u>Technical Holding Times</u>: Water and soil samples for PEST/PCB analysis must be extracted within 7 days of the date of collection. Extracts must be analyzed within 40 days of the date extraction.
- ACTION: If technical holding times are exceeded, flag all positive results as estimated "J" and sample quantitation limits "UJ" and document in the narrative that holding times were exceeded. If analyses were done more than 14 days beyond holding time, either on the first analysis or upon re-analysis, the reviewer must use professional judgement to determine the reliability of the data and the effects of


- 42 - p.81

US EPA Region II Method: CLP/SOW OLMO3.2

YES NO N/A

additional storage on the sample results. At a minimum, all the data should at least be qualified "J", but the reviewer may determine that non-detects are unusable "R".

Table of Holding Time Violations (See Chain-of-Custody Records)



- NOTE: <u>Contractual Holding Times</u>: Extraction of water samples must be completed within 5 days VTSR. Soil/sediment samples must be extracted within 10 days of VTSR. This requirement does not apply to Performance Evaluation (PE) samples. Extracts of water and soil/sediment samples must be analyzed within 40 days following start of extraction.
- ACTION: If contractual holding times are exceeded, document in the Data Assessment and Organic Regional Data Assessment Summary form.
- NOTE: The data reviewer must note in the Data Assessment <u>whether or not</u> technical and contractual holding times were met.

3.0 Surrogate Recovery (Form II)

3.1 Are the PEST/PCB Surrogate Recovery Summaries (Form II) present for each of the following matrices:

a. Low Water?

b. Soil?

3.2 Are all the PEST/PCB samples listed on the appropriate Surrogate Recovery Summary for each of the following matrices:

- AJ - p. 82

### US EPA Region II Method: CLP/SOW OLMO3.2

Date: June 1996 SOP HW-6, Rev. 11

NO

YES

N/2

b. Soil?

ACTION: Contact the WAM to obtain an explanation or resubmittal of any missing deliverables from the laboratory. If missing deliverables are unavailable, document the effect in the Data Assessment.

3.3 Were outliers marked correctly with an asterisk? ACTION: Circle all outliers with red <u>pencil</u>.

- 3.4 Were surrogate recoveries of TCX or DCB outside of the contract specification for any sample, method blank or sulfur clean-up blank (30-150%)?
- ACTION: In the absence of matrix interference, qualification of the data is <u>not</u> required in the following three situations:
  - 1. When surrogates on both columns are diluted out.

2. When <u>one surrogate</u> on <u>one column</u> was outside (either above or below) the contract limits but above 10%.

3. When the same surrogate on both columns is above the contract limit.

If the same surrogate on both columns is below the contract limit but above 10%, check chromatograms for interference. The reviewer may use professional judgement, and qualify only those analytes which elute in the region of the GC chromatogram where interference was observed.

If the same surrogate on both columns is below the contract limit but above 10% (with no interference), qualify non-detects and positive hits "J" (estimated).

If recoveries for <u>both surrogates</u> on <u>both columns</u> are below the contract limit but above 10%, flag positive results and non-detects for that sample "J".

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

If recoveries are above the contract limit for <u>both surrogates</u> on <u>both columns</u>, then qualify positive values "J".

If both surrogates on one column are below the contract limit but above 10%, then use the data from the other column, providing both surrogates on that column are within contract limits. The validator must check from which column the concentration is reported for each analyte. If the value is reported from the failed column, then cross it out and use the value from the other column. Document this change in the Data Assessment.

If recovery is below 10% for <u>either surrocate</u> on <u>any column</u>, qualify positive results "J" and flag non-detects "R".

- 3.5 Were surrogate retention times (RT) within the windows established during the initial 3-point analysis of Individual Standard Mixture A (see Form VI Pest-1)?
- ACTION: If the RT limits are not met, positive results and non-detects for that sample may be qualified unusable, "R", based on professional judgement.
- ACTION: If large errors exist, contact the WAM to obtain an explanation or resubmittal of corrected deliverables from the laboratory. Make any necessary corrections and document the effect in the Data Assessment.
- 4.0 Matrix Spikes (Form III)
  - 4.1 Is the Matrix Spike/Matrix Spike Duplicate Recovery Form (Form III) present?
  - 4.2 Were matrix spikes analyzed at the required frequency for each of the following matrices (one MS/MSD must be performed for every 20 samples of similar matrix or concentration level):

- 45 - p.84

a. Low Water?

STANDARD	OPERATING	PROCEDURE

•

. . . 5..

.

•

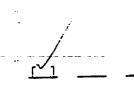
1

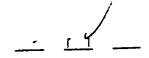
	YES	NO	N/A
	-	<u>,</u>	
b. Soil?	<u> </u>	_	
ACTION: If any matrix spike data are missing, take the action specified in 3.2 above.			
ACTION: Circle all outliers with red pencil.			
4.3 How many PEST/PCB spike recoveries are outside QC limits?			
<u>Water</u> <u>Soil</u>			
$BSE22$ d out of 12 $\frac{7}{6}$ out of 12			
4.4 How many RPDs for matrix spike and matrix spike duplicate recoveries are outside QC limits?			
<u>Water</u> <u>Soil</u>			
$\mathcal{B} = \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}_{\text{out of 6}} \underbrace{3}$			
ACTION: No action is taken on MS/MSD data alone. However, using informed professional judgement, the data reviewer may use the matrix spike and matrix spike duplicate results in conjunction with other QC criteria and determine the need for some qualification of the data.			
0 Blanks (Form IV)			
5.1 Is the Method Blank Summary (Form IV) present?	<u>[ ]</u>	. <u></u>	<u> </u>
5.2 <u>Frequency of Analysis</u> : Has a reagent/method blank been analyzed for each SDG, every 20 samples of similar matrix and concentration level or each extraction batch, whichever is more frequent?	<u>[]</u>		
ACTION: If any blank data are missing, take action as specified above in section 3.2. If blank data is not available, reject "R" all associated positive data. However, using professional judgement, the data reviewer may substitute field blank data for missing method blank data.			

5.3 A separate Form IV should be present if part of an extraction batch required sulfur removal. In such cases some samples will be listed on two blank summary forms - once under the method

Date: June 1996 SOP HW-6, Rev. 11

ſ 1


### YES NO N/A


blank, and once under the sulfur clean-up blank (PCBLK). Was this additional blank raw data and Form IV submitted when required?

- ACTION: If sulfur clean-up blank data and Form IV are missing, take action as specified in 3.2 above.
- 5.4 Has a PEST/PCB instrument blank been analyzed at the beginning of every 12 hr. period following the initial calibration sequence (minimum contract requirement)?
- ACTION: If any blank data are missing, take action as specified in section 3.2 above.
- 5.5 Was the correct identification scheme used for all Pest/PCB blanks? (See page B-33, sec. 3.3.7.3 of the SOW for further information.)
- ACTION: Contact the WAM to obtain resubmittals or make the required corrections on the forms. Document in the Data Assessment under Contract Problems/Non-Compliance all corrections made by the validator.
- 5.6 <u>Chromatography</u>: review the blank raw data chromatograms, quant. reports and data system printouts. Is the chromatographic performance (baseline stability) for each instrument acceptable?
- ACTION: Use professional judgement to determine the effect on the data.

### 6.0 Contamination

- NOTE: "Water blanks", "distilled water blanks" and "drilling water blanks" are validated like any other sample and are <u>not</u> used to qualify the data. Do not confuse them with the other QC blanks discussed below.
- 6.1 Do any method/reagent, instrument, or cleanup blanks show positive hits for pest/PCBs?
- 6.2 If any method blanks and/or sulfur clean-up blanks contain "hits" for target compounds, are these hits greater than the CRQL for that





- 47 - p.86

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

analyte?

- 6.3 In any instrument blanks, is the concentration of any target hit > 0.5 times CRQL for that analyte (see SOW, section 12.1.4.4.2, page D-77/PEST)?
- NOTE: Most labs will report 0.5 times CRQLs on the instrument blank Form I instead of the actual method CRQLs. If the lab reported the actual CRQLs, then check if any detected hits are above 0.5 times the CRQLs reported on the Form I.
- ACTION: If yes to any of the above questions: note in the Data Assessment under Contract Problems/Non-Compliance if any method or clean-up blanks contain hits > the CRQL, or of instrument blank contained hits > 0.5 times CRQL for that analyte.
- 6.4 Do any field/rinse blanks have positive pest/PCB results?
- ACTION: Prepare a list of the samples associated with each contaminated blank. (Attach a separate sheet)
- NOTE: All field blank results associated to a particular group of samples (may exceed one per case or one per day) may be used to qualify data. Do not convert <u>field blank</u> results to account for the difference in <u>soil CRQLS. Blanks may not be qualified because of</u> contamination in another blank. Field blanks must be qualified for surrogate, and/or calibration QC problems.
- ACTION: Follow the directions in the table below to qualify TCL results due to contamination. Use the largest value from all the associated blanks.
- NOTE: When applied as directed in the table below, the contaminant concentration in method/instrument/ reagent/cleanup blanks is multiplied by the sample dilution factor, where necessary.

If the laboratory has not already done so, the contaminant concentration in <u>soil</u> blanks is multiplied by 33 times the sample dilution factor and corrected for %moisture (fraction of solid) where necessary. 30 grams of sodium sulfate are used to prepare each soil reagent/method blank as instructed on page D-72/PEST, section 12.1.2.3.1. Ask the WAM

US EPA Region II Method: CLP/SOW OLMO3.2

YES

NO

N/A

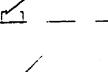
to contact the laboratory if the soil blanks are not reported in soil units  $(\bar{\mu}g/kg)$ . No qualification Report CRQL & Flag sample result is needed: qualify "U": with a "U": Sample conc. > CRQL Sample conc. < CRQL & Sample conc. > CRQL, & > 5× blank value. is ≤ 5× blank value. but  $\leq 5 \times$  blank. NOTE: If gross blank contamination exists, all data in the associated samples should be qualified as "R", unusable. Are there field/rinse/equipment blanks associated 6.5 r 1 with every sample? ACTION: For low level samples, note in the Data Assessment that there is no associated field/rinse/equipment blank. For analytes with high concentrations, use professional judgement to qualify these values and document in the Data Assessment. Exception: samples taken from a drinking water tap do not have associated field blanks. 7.0 Calibration and GC Performance Are the following Gas Chromatograms and Data 7.1 Systems Printouts for both columns present for all samples, blanks and MS/MSD: a. Peak resolution check? b. Performance evaluation mixtures? REFER c. Aroclor 1016/1260? d. Aroclors 1221, 1232, 1242, 1248, 1254? e. Toxaphene? f. Low points individual mixtures A & B? g. Med points individual mixtures A & B? h. High points individual mixtures A & B? 1/1

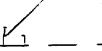
- 24- - 24- - 28

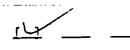
STANDARD	OPERATING	PROCEDURE
----------	-----------	-----------

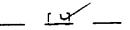
Date: June 1996

N/A


- SOP HW-6, Rev. 11 YES NO
- i. Instrument blanks?
- j. Were the appropriate GC columns used as specified on pg. D-11/PEST, sections 6.23.3.1 to 6.23.3.7, in the SOW?
- Do the chromatograms for all Individual Standard 7.2 Mixtures and PEM analyses display single component analytes at > 10% but < 100% of full scale (see sections 9.3.5.8.1 thru 9.3.5.8.4, pages D-32 & 33/PEST)?


Have chromatograms for Individual Standard Mixtures and PEM analyses been replotted, showing scaling factor(s), to meet the above requirements when necessary?


- NOTE: All standard chromatograms must clearly display all peaks at > 10% but < 100% of full scale, and replotted if necessary to accommodate peaks not properly scaled in the initial chromatogram(s). Both the initial and replotted chromatograms must be submitted with the data package.
- ACTION: If all single component peaks are not clearly displayed on chromatograms for all Individual Standard Mixtures and PEM analyses, notify the WAM to obtain resubmittal of the necessary data.
- Are Forms VI PEST 1-7 present and complete for 7.3 each column and each analytical sequence?


ACTION: If no, take action as specified in 3.2 above.

- Are there any transcription/ calculation errors 7.4 between raw data and Forms VI?
- ACTION: If large errors exist, take action as specified in section 3.6 above.
- Do all standard retention times, including each 7.5 pesticide in each level of Individual Mixtures A & B, fall within the windows established during the Initial Calibration (see Form VI PEST-1)?
- ACTION: If no, all samples in the entire analytical sequence are potentially affected. Check to see if the chromatograms contain peaks within an expanded window surrounding the expected











US EPA Region II Method: CLP/SOW OLMO3.2 Date: June 1996 SOP HW-6, Rev. 11

<u>r 1</u>

YES NO N/A

retention times. If no peaks are found and the surrogates are visible, non-detects are valid. If peaks are present and cannot be identified through pattern recognition or using a revised RT window, qualify all positive results "JN" and non-detects as unusable (R). For aroclors, the RT may be outside the window, but the aroclor may still be identified from its distinctive pattern.

- 7.6 Are the linearity criteria for the initial analyses of Individual Standards A & B within limits for both columns? (%RSD must be  $\leq 25.0$ for alpha and delta BHC,  $\leq 30.0$  for the two surrogates and  $\leq 20\%$  for all other analytes.)
- NOTE: Contractual requirements allow up to two single component TCL compounds, but not surrogates, on each column to exceed the criteria provided the %RSD is ≤ 30%. (See page D-28/Pest, sec. 9.2.5.7 in the SOW.) Technical criteria, however, are the same for all analytes.
- ACTION: If technical criteria were not met, gualify all associated positive results generated during the entire analytical sequence "J" and all non-detects "UJ". When \$RSD > 90%, flag all nondetect results for that analyte "R" (unusable).
- ACTION: If more than two analy es failed %RSD, document in the Data Assessment Contract Problems/Non-Compliance section and Organic Regional Data Assessment Summary for
- 7.7 Is the resolution betwee each pair of adjacent peaks in the Resolution check Mixture ≥ 60.0% for both columns? (See Form ∵I PEST-4.)
- ACTION: If no, qualify positive results for compounds that were not adequately resolved "J". Use professional judgement to determine if nondetects which elute in areas affected by coeluting peaks should be qualified "N" as presumptive evidence of presence or unusable (R).
- 7.8 Is Form VI PEST-5 present and complete for each Performance Evaluation Mixture (PEM) standard used for <u>both initial and continuing</u> calibrations (see SOW section 3.12,4.4, page B-52)?

- 51 - p.90

### US EPA Region II Method: CLP/SOW OLMO3.2

Date: June 1996

SOP HW-6, Rev. 11 N/AYES NO ACTION: If no, take action as specified in section 3.2 above. For each PEM standard, was the resolution between 7.9 each pair of adjacent peaks ≥ 90.0% on both columns? ACTION: Qualify positive results for compounds not adequately resolved estimated (J). Qualify non-detects based on professional judgement. 7.10 Have Forms VI PEST-6 & PEST-7 been completed for all midpoint Individual Standards A and B used for initial calibration? For each standard, was the resolution between each pair of adjacent peaks ≥ 90.0% on both columns? ACTION: If no, qualify positive results for compounds that were not adequately resolved estimated (J). Use professional judgement to determine if non-detects which elute in areas affected by co-eluting peaks should be qualified "N" as presumptive evidence of presence or unusable "R". 7.11 Is Form VII Pest-1 present and complete for each PEM standard analyzed during the analytical -sequence for both columns? Was the %Breakdown of DDT and Endrin calculated using the equations given on page D-26/PEST, sec. 9.2.4.8 in the SOW? Were all pesticides and surrogates in each PEM standard within the RT windows established during the Initial Calibration? ACTION: If no, take action as specified in 3.2 above. 7.12 Has the individual percent breakdown for DDT/Endrin exceeded 20.0% in any PEM on either column? (See Form VII PEST-1.) - for 4,4'-DDT? - for Endrin? Has the combined percent breakdown for DDT/Endrin

US EPA Region II Method: CLP/SOW OLMO3.2 Date: June 1996 SOP HW-6, Rev. 11

### YES NO N/A

exceeded 30.0% in any PEM on either column (required for all PEM analyses)?

ACTION: 1. If any percent breakdown has failed the QC criteria in either PEM in steps 2 and 17 in the <u>initial calibration</u> sequence (page D-28/Pest, sec. 9.2.5.6 in the SOW), qualify <u>all samples</u> in the entire analytical sequence as described in sections 2.a, b and c below.

2. If any percent breakdown failed the QC criteria in a PEM <u>calibration verification</u> analysis, review data beginning with the samples which followed the last in-control standard until the next acceptable PEM and qualify the data as described below.

- a. <u>4,4'-DDT Breakdown</u>: If DDT breakdown was > 20.0%:
  - i. Qualify all positive results for DDT with "J". If DDT was not detected, but DDD and DDE are positive, then qualify the quantitation limit for DDT unusable, "R".
  - ii. Qualify positive results for DDD and/or DDE as presumptively present at an approximated quantity "JN".
- b. <u>Endrin Breakdown</u>: If endrin breakdown was > 20.0%:
  - i. Qualify all positive results for endrin with "J". If endrin was not detected, but endrin aldehyde and endrin ketone are positive, then qualify the quantitation limit for Endrin as unusable "R".
  - ii. Qualify positive results for endrin ketone and endrin aldehyde as presumptively present at an approximated quantity "JN".
- c. <u>Combined Breakdown</u>: If the combined 4,4'-DDT and endrin breakdown is greater than 30.0%:
  - i. Qualify all positive results for DDT and Endrin with "J". If endrin was not detected, but endrin aldehyde and endrin ketone are positive, then qualify the quantitation limit for endrin as unusable

62

-

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

"R". If DDT was not detected, but DDD and DDE are positive, then qualify the quantitation limit for DDT as unusable "R".

- ii. Qualify positive results for endrin ketone and endrin aldehyde as presumptively present at an approximated quantity "JN". Qualify positive results for DDD and/or DDE as presumptively present at an approximated quantity "JN".
- 7.13 Are all percent difference (%D) values for PEM analytes and surrogates on both columns ≥ -25% and ≤ +25.0%? (See Form VII PEST-1.)
- ACTION: If no, qualify all associated positive results generated during the analytical sequence "J" and sample quantitation limits "UJ".
- NOTE: If the failing PEM is part of the initial calibration, all samples are potentially affected. If the offending standard is a calibration verification, the associated samples are those which followed the last in-control standard until the next passing standard.

_____

7.14 Is Form VII Pest-2 present and complete for each INDA and INDB calibration verification analyzed?

ACTION: If no, take action specified in 3.2 above.

- 7.15 Are there any transcription/calculation errors between raw data and Form VII Pest-2?
- ACTION: If large errors exists, take action as specified in section 3.6 above.
- 7.16 Do all standard retention times for each INDA and INDB calibration verification fall within the RT windows established during the initial calibration sequence? (See Form VII PEST-2.)
- ACTION: If no, beginning with the samples which followed the <u>last in-control standard</u>, check to see if the chromatograms contain peaks within an expanded window surrounding the expected retention times. If no peaks are found and the surrogates are visible, non-detects are valid. If peaks are present and cannot be identified through pattern recognition or using a revised

- 54 - p. 93

TIERRA-A-017919

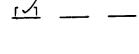
Date: June 1996 SOP HW-6, Rev. 11

### YES NO N/A

RT window, qualify all positive results and non-detects as unusable (R).

- 7.17 Are all %D values for INDA and INDB calibration verification compounds ≥ -25.0% and ≤ +25.0%?
- ACTION: If the %D is outside the ±25.0% range for any compound(s), qualify associated positive results for that compound "J" and non-detects "UJ". The "associated samples" are those which followed the <u>last in-control standard</u> up to the next passing standard containing the analyte(s) in question. If the %D is > 90%, flag all nondetects for that analyte "R" (unusable).

# 8.0 Analytical Sequence Check (Form VIII-PEST)


8.1 Is Form VIII present and complete for each column and each period of analyses?

ACTION: If no, take action specified in 3.2 above.

- 8.2 Was the proper analytical sequence followed for each initial calibration and subsequent analyses, and all standards analyzed at the required frequency for each GC/EC instrument used.? (See SOW pages D-23 & D-58/PEST.)
- ACTION: If no, use professional judgement to determine the severity of the effect on the data and qualify accordingly. Generally, the effect is negligible unless the sequence was grossly altered and/or the calibration was out of QC limits.
- 8.3 Were all samples analyzed within a 12 hour time period beginning with the injection of an instrument blank and bracketed by acceptable analyses of the proper standards?
- ACTION: If no, use professional judgement to determine the severity of the effect on the data and qualify accordingly. Document in the Data Assessment under Contract Problems/Non-Compliance and Organic Regional Data Assessment Summary.
- 8.4 If a multi-component analyte was detected in a sample, was a matching multi-component standard analyzed within 72 hours of the injection of the

- 55 - p.94

r n



STANDARD	OPERATING	PROCEDURE
----------	-----------	-----------

### Date: June 1996 SOP HW-6, Rev. 11

# YES NO N/A

sample and within a valid 12 hour sequence?

NOTE: This additional standard is for identification purposes only. Positive results for Aroclors and Toxaphene are quantitated from the initial calibration.

ACTION: If no, document in the Data Assessment under

Contract Problems/Non-Compliance and on the Organic Regional Data Assessment Summary form.

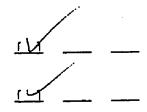
## 9.0 <u>Cleanup Efficiency Verification (Form IX)</u>

9.1 Is Form IX PEST-1 present and complete for each lot of Florisil Cartridges used? (Florisil Cleanup is required for <u>all Pest/PCB extracts</u>.)

> Are all samples listed on the Pesticide Florisil Cartridge Check Form?

- ACTION: If no, take action specified in 3.2 above. If data suggests florisil clean-up was not performed, document in the Data Assessment under the Contract Non-compliance section.
- 9.2 Are percent recoveries (%REC) of the pesticide and surrogate compounds used to check the efficiency of the florisil clean-up procedure within QC limits of 80 - 120%?

ACTION: Qualify only the analyte(s) which failed the recovery criteria as follows:


If %REC is < 80%, qualify positive results "J" and non-detects "UJ".

If any pesticide %REC was zero, flag non-detects "R" for that compound.

Use professional judgement to qualify positive results if any recoveries are > 120%.

NOTE: Sample data should be evaluated for potential interferences if recovery of 2,4,5-trichlorophenol was > 5% in the Florisil Cartridge Performance Check analysis. Document any problems found in the Data Assessment under the Contract Problems/Non-Compliance section.

- 56 - p.95

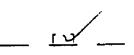


US EP Metho	A Regi d: CLH	STANDARD OFERALING INCOLOUL on II P/SOW OLMO3.2			June 5, Rev	
-				YES	NO	N/A
	9.3	If GPC Cleanup was performed (mandatory for all soil sample extracts), is Form IX Pest-2 present	:?	<u>L)</u>		
		Are all soil samples listed on Form IX Pest-2?		<u>[]</u>		
	ACTION	I: If no, take action specified in 3.2 above. If data suggests GPC clean-up was not performed when required, document in the Data Assessment under the Contract Problems/Non-Compliance section and Organic Regional Data Assessment Summary.				
	·	Are the %REC values for all pesticides in the GM calibration solution between 80 - 110%?	PC	[]		
,	ACTION	N: Qualify only those analytes which failed the recovery criteria as follows:				
		If %REC are < 80%, qualify positive results ": and non-detects "UJ".	Ţ"			
		If any pesticide %REC was zero, flag non-detects "R" for that compound.				
		Use professional judgement to qualify positive results if any recoveries are > 110%.	8			
	NOTE:	An Aroclor mixture containing Aroclors 1016 and 1260 is also analyzed during GPC calibration; however, Aroclor data is not listed on Form IX PEST-2. The raw GPC data for Aroclors 1016/1260 must be evaluated for pattern similarity with				
	9.4	The validator should verify that the correct identification scheme for the EPA Blank samples were used. See page B-35, sec. 3.3.7.8 and 3.3.7.9 of the SOW for further information.				
		Was the correct identification scheme used for GPC and Florisil blanks?		<u>[ ]</u>	. <u>.</u>	
10.0	Pesti	cide/PCB Identification				
		Is Form X complete for every sample in which a pesticide or PCB was detected?		<u>[ ]</u>	•	. <u></u>
	ACTIO	N: If no, take action specified in 3.2 above.				

.

- 57 - P. 96

1


Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

- 10.2 Are all sample chromatograms properly scaled, attenuated, etc. as required for proper identification of single and multi-component analytes? (Refer to SOW sections 11.3.7.1 thru 11.3.7.8, page D-70/Pest for specific details.)
- NOTE: Proper verification of Pest/PCB results depends on clear, legible presentation of the raw data. Single component pesticides and all peaks chosen for quantitation of multi-component analytes must appear at less than full scale. Toxaphene and PCB patterns must be clearly visible to enable comparison with standard chromatograms.
- ACTION: If retention times or apex of peaks cannot be verified, or if multi-component peak patterns cannot be discerned, contact the WAM to obtain rescaled chromatograms from the lab.
- 10.3 Are there any transcription/calculation errors between raw data and Forms 10A and 10B?
- ACTION: If large errors exist, take action as specified in section 3.6 above.
- 10.4 Are RTs of sample compounds within the established RT windows for analyses on both columns?

Was GC/MS confirmation provided when required (when compound concentration is > 10 ug/mt in the final extract)?

- ACTION: Use professional judgement to qualify positive results which were not confirmed by GC/MS analysis. Qualify as unusable (R) all positive results which were not confirmed on a second GC column. Also qualify as unusable (R) all positive results which do not meet RT window criteria, unless associated standard compounds are similarly biased. Use professional judgement to assign an appropriate quantitation limit.
- 10.5 Is the percent difference (%D) calculated for the positive sample results on both columns > 25.0%?
- ACTION: If the reviewer finds neither column shows interference for the positive hits, the data should be flagged as follows:



[ ]

YES NO N/A

	· · · · · · · · · ·
1 Difference	<u> Oualifier</u>
<u>% Difference</u>	None
0 - 25%	иди
25 - 70%	"NT"
70 - 100%	"R"
> 100%	"JN"
100 - 200% (Interference detected)*	"U"
> 50% (Pesticide value is < CRQL)**	Ŭ

* When the reported %D is 100 - 200%, but interference is detected on either column, qualify the data with "J".

** When the <u>reported pesticide value</u> is lower than the CRQL, and the %D is > 50%, raise the value to the CRQL and qualify "U", undetected.

NOTE: For Aroclors, if the %D is > 50%, but the pattern of GC peaks on both columns indicates a specific Aroclor is present, qualify that Aroclor "J".

NOTE: The lower of the two values is reported on Form I. If using professional judgement, the reviewer determines that the higher result was more acceptable, the reviewer should replace the value and indicate the reason for the change in the Data Assessment.

- 10.6 Check chromatograms for false negatives, especially the multiple-peak compounds (Toxaphene and the PCBs). Were there any false negatives?
- ACTION: Use professional judgement to decide if the compound should be reported. If the appropriate PCB standards were not analyzed within 72 hrs. of the sample(s) in question, qualify the data unusable "R".

Also note in Data Assessment under Contract Problems/Non-Compliance if the lab failed to analyze Aroclor standards when required.

# 11.0 Target Compound List (TCL) Analytes

11.1 Are the Organic Analysis Data Sheets (Form I Pest) present with required header information on each page, for each of the following:

a. Samples and/or fractions as appropriate?

b. Matrix spikes and matrix spike duplicates?

STANDARD	OPERATING	PROCEDURE
----------	-----------	-----------

Method: CLP/SOW OLMO3.2 N/A YES NO c. Blanks? d. Instrument Blanks (per column & analysis)? Are the Pest chromatograms and quant. reports 11.2 included in the sample data package for each of the following: a. Samples and/or fractions as appropriate? b. Matrix spikes and matrix spike duplicates? c. Blanks? d. Instrument Blanks (per column & analysis)? ACTION: If any data are missing, take action specified in 3.2 above. 11.3 Are the calibration factors shown in the quant. reports? Is chromatographic performance acceptable with 11.4 respect to: a. Baseline stability? b. Resolution? c. Peak shape? d. Full-scale graph attenuation? ? ٦ e. Other: 11.5 Were any electropositive displacement (negative peaks) or unusual peaks seen? ACTION: Use professional judgement to determine the acceptability of the data. Address comments under System Performance section of the Data Assessment.

12.0 Compound Quantitation and Reported Detection Limits

12.1 Are there any transcription/calculation errors in Form I results? Check at least two positive results. Were any errors found?

- 50 - p.99

· __ __ __ __ __ __

US EPA Region II Method: CLP/SOW OLMO3.2 Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

- NOTE: Single-peak pesticide results can be checked for rough agreement between quantitative results obtained on the two GC columns. Use professional judgement to decide whether a large discrepancy indicates the presence of an interfering compound. If an interfering compound is visible on the chromatogram, the lower of the two values should be reported and qualified as presumptively present at an approximated quantity "JN". This necessitates a determination of an estimated concentration on the confirmation column. The narrative should indicate that the presence of interferences has interfered with the evaluation of the second column confirmation.
- 12.2 Are the CRQLs adjusted to reflect sample dilutions?
- ACTION: If large errors exist, take action as specified in section 3.6 above.
- ACTION: When a sample is analyzed at more than one dilution, the lowest CRQLs are used (unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample). Replace concentrations which exceed the calibration range in the original analysis by crossing out the "E" value on the original Form I and substituting it with the result from the diluted sample. Specify which Form I is to be used, then draw a red "X" across the entire page of all Form I's that should not be used, including those in the data summary package.
- ACTION: Quantitation limits affected by large, off-scale peaks should be qualified as unusable (R). If the interference is on-scale, the reviewer may offer an approximated quantitation limit (UJ) for each affected compound.
- NOTE: If a sample required greater than a 10 times dilution, then a 10 times more concentrated analysis must also be performed and submitted (see SOW, page D-60/PEST, section 10.2.3.5).
- ACTION: If a more concentrated analysis is unavailable, document in the Contract Problems/Non-Compliance section of the Data Assessment. Use professional judgement to qualify non-detects and positive hits below the CRQL.

- EI - p.100

STANDARD	OPERATING	PROCEDURE
----------	-----------	-----------

Date: June 1996 SOP HW-6, Rev. 11

YES NO N/A

### 13.0 Field Duplicates

13.1 Were any field duplicates submitted?

- ACTION: Compare the reported results for field duplicates and calculate the relative percent difference.
- ACTION: Any gross variation between field duplicate results must be addressed in the reviewer narrative. However, if large differences exist, identification of field duplicates should be confirmed by contacting the sampler.

- 62 - p.101

;

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY

[x]FYI

CASE/SAS NO.: 25601	LABORATORY: SWOK
SDG NO.: BSE22	DATA USER: EPA Region II
SOW: <u>OLM03.2</u>	REVIEW COMPLETION DATE: 10/1/97
NO. OF SAMPLES:	6 WATER 14 OTHER
PEVIEWER: [ ] ESD	[x] ESAT [] OTHER, CONTRACTOR

QC ITEM	VOA	BNA	PEST	
HOLDING TIMES	0	0	0	
GC-MS PERFORMANCE	0	0	NA	
INITIAL CALIBRATIONS	0	0	c	
CONTINUING CALIBRATIONS	0	0	×	
FIELD BLANKS (F = N/A)	0	0	<u> </u>	
LABORATORY BLANKS	0	0	<u> </u>	
SURROGATES	0	0	0	
MATRIX SPIKE/DUPLICATES	0	0	0	
QC SAMPLES(LCS, PVS)	NA	NA	NA	
INTERNAL STANDARDS	Z	0	NA	
COMPOUND IDENTIFICATION	0	0	м	
COMPOUND QUANTITATION	0	0	0	
SYSTEM PERFORMANCE	0	0	0	
OVERALL ASSESSMENT	<u>Z</u>		M	

O = No problems or minor problems that do not affect data usability.

X = No more than about 5% of the data points are qualified as either estimated or unusable.

M = More than about 5% of the data points are qualified as either estimated or unusable.

Z = More than about 5% of the data points are qualified as unusable.

DPO ACTION ITEMS: VOA: 1) Sampling contractor should be questioned about failure to preserve acqueous volatile samples, while marking them as preserved on COC (see Data Assessment, Sec. 11). 2) It should be determined if the lab analyzed the VOA vial with the air bubble (see Traffic Report, page 40). Further rejection of data may be required.

AREAS OF CONCERN BNA: Excessive TICs found in method blanks. Many TICs in samples flagged "B" did not correspond to those found in associated method blanks. PEST: PCB contamination caused problems during sample analysis. All PCB hits in these samples should be regarded as suspect, especially if these are not analytes of concern based on previous site investigations.

### DATA REJECTION SUMMARY

Type of Review: Organic

Date: 10/1/97 Case/SDG No.: 25601/BSE22

Site Name: Keegan Landfill

Reviewer's Initials:

Lab Name: <u>SWOK</u>

Number of Samples: 20

## Analytes Rejected Due to Exceeding Review Criteria For:

	•				No. of Compounds/No. of Fractions (Samples)										
, <u>, , , , , , , , , , , , , , , , , , </u>	Surrogates	Holding Time		Calibra- tion	Contamina- tion	ID	Internal Standards		Total # of Samples		ejected/Total 11 Samples	L #			
VOA (33)						79		20	79 / 0	660 = 12	olo				
ACID(14)			1					19	0 / 3	266 = 0	e e				
B/N(50)								19	0 /	950 = 0	oto				
PEST(21)			6		14			19	20 /	399 = 5	ş				
PCB(7)								19	0 /	133 = 0	ojo				

NOTE: ASTERISK (*) INDICATES ADDITIONAL EXCEEDANCES OF REVIEW CRITERIA.

3

## Analytes Estimated Due to Exceeding Review Criteria For:

					No. of Compounds/No. of Fractions (Samples)									
	Surrogates	Holding Time	Calibra- tion		tamina- tion	ID	Internal Standards	Other *	Total # of Samples		# Estimat in All Sau	ed/Total #		
VOA (33)								581	20	581	/ 660	= 88 %		
ACID(14)			[					266	19	266	/ 266	= 100 %		
B/N(50)			-					.950	19	950	/ 950	= 100 <b>%</b>		
PEST(21)		<u> </u>		1		26		353	19	379	/ 399	= 95 %		
PCB (7)	-		1	1				133	19	133	/ 133	= 100%		

NOTE: ASTERISK (*) INDICATES ADDITIONAL EXCEEDANCES OF REVIEW CRITERIA.

* Elevated cooler temperature.

### DPO: []ACTION

:

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY

[]FYI

CASE/SAS NO.: 25601_	LABORATORY: SWOK
SDG NO.: <u>BSE46</u>	DATA USER: EPA Region II
SOW: OLM03.2	REVIEW COMPLETION DATE: 10/1/97
NO. OF SAMPLES: WATE	R <u>3</u> SOIL OTHER
REVIEWER: [ ] ESD [x] ESAT	[] OTHER, CONTRACTOR _

QC ITEM	VOA	BNA	PEST		
HOLDING TIMES	0	0	0		
GC-MS PERFORMANCE	0	0	NA		
INITIAL CALIBRATIONS	0	0	o		
CONTINUING CALIBRATIONS	0	0	×		
FIELD BLANKS ( $F = N/A$ )	0	0	0		
LABORATORY BLANKS	0	0	<b>o</b>		
SURROGATES	0	0	0		
MATRIX SPIKE/DUPLICATES	0	0	0		
QC SAMPLES (LCS, PVS)	NA	NA	NA		
INTERNAL STANDARDS	Z	0	NA		
COMPOUND IDENTIFICATION	0	0	×		
COMPOUND QUANTITATION	0	0	0	1	
SYSTEM PERFORMANCE	0	0	0		
OVERALL ASSESSMENT	Z	M	М	<u> </u>	

0 - No problems or minor problems that do not affect data usability.

X - No more than about 5% of the data points are qualified as either estimated or unusable.

M - More than about 5% of the data points are qualified as either estimated or unusable.

Z - More than about 5% of the data points are qualified as unusable.

DPO ACTION ITEMS:

AREAS OF CONCERN BNA: Excessive TICs found in method blanks. Many TICs in samples flagged "B" did not correspond to those found in associated method blanks. PEST: PCB contamination caused problems during sample analysis. All PCB hits in these samples should be regarded as suspect, especially if these are not analytes of concern based on previous site investigations.

p.104

### DATA REJECTION SUMMARY

 Type of Review: Organic
 Date: 10/1/97
 Case/SDG No.: 25601/BSE46

 Site Name: Keegan Landfill
 Lab Name: SWOK

 Reviewer's Initials: A
 Number of Samples: 3

## Analytes Rejected Due to Exceeding Review Criteria For:

							No	of Compounds/No. of Fractions (Samples)							
	Surrogates	Holding Time	Calibra- tion	Contamina- tion	ID	Internal Standards	Other	Total # of Samples	Total	. # R in A	ejec 11 s	ted/Tota amples	1 #		
VOA (33)		i				36		3	36	7	99	= 36	. <b>°</b> 5		
ACID(14)								3	0	1	42	= 0	0)0		
B/N(50)		ļ						3	0	1	150	= 0	oto		
PEST(21)	-	-	1		2			3	3	1	63	= 5	o)e		
PCB(7)								3	0	/	21	= 0	Ŷ		

NOTE: ASTERISK (*) INDICATES ADDITIONAL BICKEDANCES OF REVIEW CRITERIA.

## Analytes Estimated Due to Exceeding Review Criteria For:

			No	No. of Compounds/No. of Fragtions (Samples)											
	Surrogates	Holding Time	Calibra- tion	Contamina- tion	ID	Internal Standards			tal # of Samples	Total			nated/ Sampl		1 #
VOA (33)			-			-	63	Γ	3	63	1	99	=	64	0)0
ACID(14)							42		3	42	/	42	=	100	) %
B/N(50)					*		150	1	3	150	/	150	) =	100	) %
PEST(21)					5	-	55	T	3	60	1	63	=	95	ojo
PCB(7)							21	T	3	21	/	21		10(	) %

NOTE: ASTERISK (*) INDICATES ADDITIONAL EXCEEDANCES OF REVIEW CRITERIA.

* Elevated cooler temperature.

TIERRA-A-017931

Page 1 of 13

## ____CLP DATA ASSESSMENT

Functional Guidelines for Evaluating Organic Analysis

CASE No.: 25601 SDG No.: BSE22, 46 LABORATORY: SWOK

SITE: Keegan Landfill

DATA ASSESSMENT

The current SOP HW-6 (Revision 11) June 1996, USEPA Region II Data Validation SOP for Statement of Work OLMO3.2 for evaluating organic data have been applied.

All data are valid and acceptable except those analytes rejected "R" (unusable). Due to the detection of QC problems some analytes may have the "J" (estimated), "N" (presumptive evidence for the presence of the material at an estimated value) flag. All action is detailed on the attached sheets.

The "R" flag means that the associated value is unusable. In other words, significant data bias is evident and the reported analyte concentration is unreliable.

Reviewer's Date: 10/2/1997 Signature: Date: 1019 Verified By:

p. 106

### 1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

The following action was taken in the samples and analytes shown due to excessive holding time.

#### SDG BSE22

PEST:

See CADRE Holding Time Report.

#### 2. SURROGATES:

All samples are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below.

### **BSE22**

VOA, BNA: All hits and non-detects were previously qualified "J" for high percent moisture. No further qualification of the data was necessary.

**PEST:** See CADRE SMC/Surrogates Report.

### <u>BSE46</u>

VOA, BNA, PEST: All hits and non-detects were previously qualified "J" for high percent moisture. No further qualification of the data was necessary.

				Bolding Ti	he Report	LABORATORY: SNL-TO	LSA
DG NO:	BSE22					AGENCY INPUT FILE: BS	
ASE NO:	25601					AGENCI INPOT FILE.	
					<u></u>		
HOLDING TIME							
Volatile							
Preserved							
••••							
Water		28 28					
Soil	14	20					
		matic					
Unpreserved							
Water		2 8 2 8					
Soil	10	28	10	20			
Semivolatile							
		action					
	-	Expanded					
Water		28 28					
Soil	/	26		••			
Pesticide							
	Bxtz	action	Ana	lysis			
		Expanded					
				 60			
Water Soil	777	28	40	60			
2011	,					2	
DC-163: The	following	pesticide s	oil sample	s are outsid	primary .	: ( Aller l.	$' \tau'' /$
extr	action hol	ding time c	riteriaan	CN CUTSIDE cts are qual	contract criter	a. yeren y	n n
Hits	are qual:	IIIEG "J" AN	a non-dete	cca are duar		Corles to	En D.
				E29DLMS, B5E		ia. ) Alrealy Corler to	
BSI	28MS, BSE	EMSD, BSE31	, BSE31DL,	BSE37, BSE3	TDL	]	
BSI	38, BSE381	DL, BSE43, B	SE43DL				

:,

ŧ,

•

۰.

.

JA

1

SWL-TULSA

AGENCY INPUT FILE: BSE22.0AS

LABORATORY:

DC-35: The following volatile samples have system monitoring compound	· · · · · · · · · · · · ·
recoveries above the upper limit of the criteria window.	
Hits are qualified "J" and non-detects are not flagged.	<i>4</i> /
	All Arenally All Arenally Constructed
BSEAGRE - NO hits. BSE3BRE - +	, ,
BSEAGES	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DC-174: The following pesticide samples have surrogate percent recoveries	
DC-174: The following pesticide samples have surveyed percent the	$\chi $ $\varphi $
which exceed the upper limit of the criteria window.	Sont Son
If %R for both surrogates on both columns are > contract limit,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hits are flagged "J".	् २ २
	$\rightarrow$ $\langle \varphi$
BSE27, BSE27DL, BSE28, BSE28DL, BSE28MS, BSE28MSD	\$ V. \$
BSE31, BSE31DL, BSE32, BSE33DL, BSE34DL, BSE35DL	~ ~ ~
BSE36DL, BSE37, BSE37DL, BSE38, BSE43, BSE43DL	
BSE44, BSE44DL, BSE46DL, BSE47DL, BSE48DL	
	-
DC-175: The following undiluted pesticide samples have surrogate percent	
recoveries of less than 10%.	
Hits are qualified "J" and non-detects are qualified "R".	
BS528, BS517, BS543, BS544	
DC-176: The following diluted pesticide samples have surrogate percent	
recoveries of less than 10%. Profassional judgement is	
recommended.	
Hits and non-detects are not flagged.	
BSE27DL, BSE28DL, BSE28DLMS, BSE28DLMSD, BSE31DL, BSE32DL	
BSE37DL, BSE43DL, BSE47DLMSD	
DC-178: The following pesticide samples are not fully qualified for	
surrogate RT because of missing RT information. Visual inspec-	
tion of the data is required. Samples with surrogates falling	
outside the RT window should be qualified based on professional	
judgement.	
BS527DL, BS528, BS520DL, BS520DLMS, B\$520DLMSD, BS529	
BSE29DL, BSE30D, BSE30DL, BSE31DL, BSE32, BSE32DL	
BSE33, BSE33DL, BSE34, BSE34DL, BSE35, BSE35DL	
BSE36, BSE36DL, BSE37, BSE37DL, BSE43, BSE43DL	
BSE44, BSE44DL, BSE47DLMSD	
·	
Filename: BSE22 Date: 03/13/37 Time: 05:03 CADRE: 2.3.1	Page

SNC/Surrogate Report

1

_ _ _ _ _

SDG NO:

;

۰.

B5E22/85E46 25601

CASE NO:

## 3. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

No qualification necessary.

### 4. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than 5 times the blank contaminant level (10 times for common contaminants), the analytes are qualified as non-detects, "U". The following analytes in the sample shown were qualified with "U" for these reasons:

### A) Method blank contamination:

#### SDG BSE22

BNA: BSE29, 32, 34, 35 - bis(2-ethylhexyl)phthalate.

One TIC each in the following samples was rejected: BSE23, 27, 30.

Two TICs each in the following samples were rejected: BSE37, 43, 29.

Four TICs were rejected in BSE32.

Five TICs were rejected in BSE38.

### SDG BSE46

BNA: BSE47, 48 - bis(2-ethylhexyl)phthalate.

One TIC was rejected in BSE46.

Two TICs each were rejected in BSE47 and 48.

## B) Field or rinse blank contamination:

Note: The field blanks collected with this case are associated with the soil samples only.

### SDG BSE22

BSE28, 33, 35, 36, 36RE - Acetone.

### SDG BSE46

VOA:

/ BSE48 - Acetone.*

* This sample was qualified due to contamination in field blank BSE42, which was analyzed in SDG BSE22.

C) Trip blank contamination:

SDG BSE22

🖌 BSE26 - Methylene chloride..

D) Storage blank contamination:

### SDG BSE22, BSE46

No problems.

### 5. MASS SPECTROMETER TUNING:

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is (BFB) Bromofluorobenzene and for semi-volatiles Decafluorotriphenylphosphine (DFTPP).

If the mass calibration is in error, all associated data will be classified as unusable "R".

No qualification necessary.

6. CALIBRATION:

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for the Target Compound List (TCL) must be  $\geq 0.05$  in both initial and continuing calibrations. A value < 0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound will be rejected "R".

No problems.

Page 6 of 13

# CLP DATA ASSESSMENT

#### 7. CALIBRATION:

Percent Relative Standard Deviation (%RSD) and Percent B) Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 30% and %D must be < 25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, nondetects data may be qualified "R". For the PEST/PCB fraction, if %RSD exceeds 20% for all analytes

except for the two surrogates (which must not exceed 30% RSD), qualify all associated positive results "J" and non-detects "UJ". The following analytes in the sample shown were qualified for %RSD.

# SDG BSE22*

VOA: VBLK1 - Chloromethane, vinyl chloride, acetone and 2-hexanone were

VBLK4 - Chloromethane and 2-hexanone were qualified "J" for %D.

VBLK6 - Chloromethane and vinyl chloride were qualified "J" for %D.

VBLK7 - 2-Hexanone and 2-butanone were qualified "J" for %D.

VBLK8, VHBLK1 - Chloromethane was qualified "J" for %D.

BNA: SBLK2 - 2-Methylphenol, 2,2'-oxybis(1-chloropropane),

hexachlorocyclopentadiene and fluorene were qualified "J" for %D.

PEST: BSE31, 38 - DDT was qualified "R" for % breakdown in the associated PEM standard; methoxychlor was qualified "R" for %D.

							44
DG NO: CASE NO:	85822-/4-6 25601		Calibration	Report	LABORATORY: 51 AGENCY INPUT FILE:	TL-TULSA BSE22.0AS	
CALIBRATION	TRITERIA						
Volatile							
		Primary	Expanded				
		0.05	0.05				
Minimum RRF	(initial calibration)	30	90				
	continuing calibration)	25	90				
Calibration		12					
Serivolatile							
		Primary	Expanded				
Minimum RRF		0.05	0.05				
	(initial calibration)	-30	90				ļ
Maximum %D (	continuing calibration)	25	90				
Calibration	time period	12					
Pesticide							
	) (initial calibration) -	TCL analy	tes 20				
Maximum WKSI		surrogate					
Maximum RPD	(continuing calibration)	-	25				
	ercent resolution		90				
	calibration sequence time	·	12				
cali Hits	following volatile sample bration percent differenc are qualified "J" and no 846R5	e (%D) out on-detects	side prima are qualif	ry criteria. ied "WJ".			
BS	Chloromethane, Carbon Di E47MS Chloromethane, Carbon Di E47MSD	isulfide	) ijin J čo	andy give	Infiert for mp.		
	Chloromethane, Carbon D:	isulfide					

VBLK2

Chloromethane, Carbon Disulfide

.

Filename: BSE22

.

ļ

.

-

• • •

• .

. .

-----

1

SDG NO: CASE NO:

Date: 09/18/37 Time: 09:51 CADRE: 2.3.1

Page 1

6B Calibration Report SWL-TULSA LABORATORY : BSE27 BSE22.OAS SDG NO: AGENCY INPUT FILE: 25601 CASE NO: VHBLK1 Chloromethane, Carbon Disulfide DC-100: The following semivolatile samples are associated with a continuing calibration percent difference (%D) outside primary criteria. Hits are qualified "J" and non-detects are qualified "W". BSE46 Hexachlorocyclopentadiene, 2,4-Dinitrophenol Altersky qualified **BS547** Hexachlorocyclopentadiene, 2,4-Dinitrophenol BSB47MS 2,4-Dinitrophenol, 4-Nitrophenol, 4,6-Dinitro-2-methylphenol BSE47MSD 2,4-Dinitrophenol, 4-Nitrophenol, 4,6-Dinitro-2-methylphenol BSE48 Hexachlorocyclopentadiene, 2,4-Dinitrophenol SBLK1 4-Nitrophenol SBLK2 2,4-Dinitrophenol, 4-Nitrophenol, 4,6-Dinitro-2-methylphenol DC-168: The following pesticide samples are associated with an incorrect initial calibration sequence. Visual inspection is recommended. BSE27, BSE27DL. BSE28, BSE28DL. BSE28DLMS, BSE28DLMSD BSE28MS, BSE28MSD, BSE31, BSE31DL, BSE37, BSE37DL BSE38, BSE38DL, BSE43, BSE43DL, PBLKSF DC-193: The following pesticide samples are associated with an incorrect continuing calibration sequence. Use professional judgement to determine the effect on the data. BSE27, BSE28, BSE28MS, BSE28MSD, BSE31, BSE37 BSE38, BSE43 DC-195: The RPD between the nominal and the calculated amount of an ÷ 2 Page Date: 09/18/97 Time: 09:51 CADRE: 2.3.1 Filename: BSE22

GC/MS

l run.

chan a

...dard

anuing

-50% to

mositive

fied as

Lare is a

se than 30

aat sample

. o determine

lauing

# CHP DATA ASSESSMENT

## SDG BSE46*

VOA, BNA: See CADRE Calibration Report.

PEST: BSE48 - DDT was qualified "B" for % breakdown in the associated PEM standard.

* NOTE: All other results in all samples were previously qualified "J" for elevated cooler temperature. No find the qualification of the data is necessary.

## 8. INTERNAL STANDARDS PERFC

Internal standards (IS) perfo sensitivity and response are The internal standard area factor of 2 (-50% to +10( calibration standard. The re must not vary more than ±30 s calibration standard. If the +100%) range of the associresults for compounds quanti estimated, "J", and all non-( severe loss of sensitivity.

If an internal standard **xet** seconds, the reviewer will us either partial or total **xe**j fraction.

> SDG BSE22* VOA: BSE36 - Non-detects as BSE38, 38RE - Non-detects a "R."

BSE43 - Non-detects associat

BSE44 - Non-detects associat

ied "R."

## 1. IS2 and IS3 were qualified

. ( . . .

1S3 were qualified "R."

### and IS3 were qualified "R."

#### CLP DATA ASSESSMENT

BNA: BSE23MS - Non-detects associated with IS1 and IS2 were qualified "R."

#### SDG BSE46*

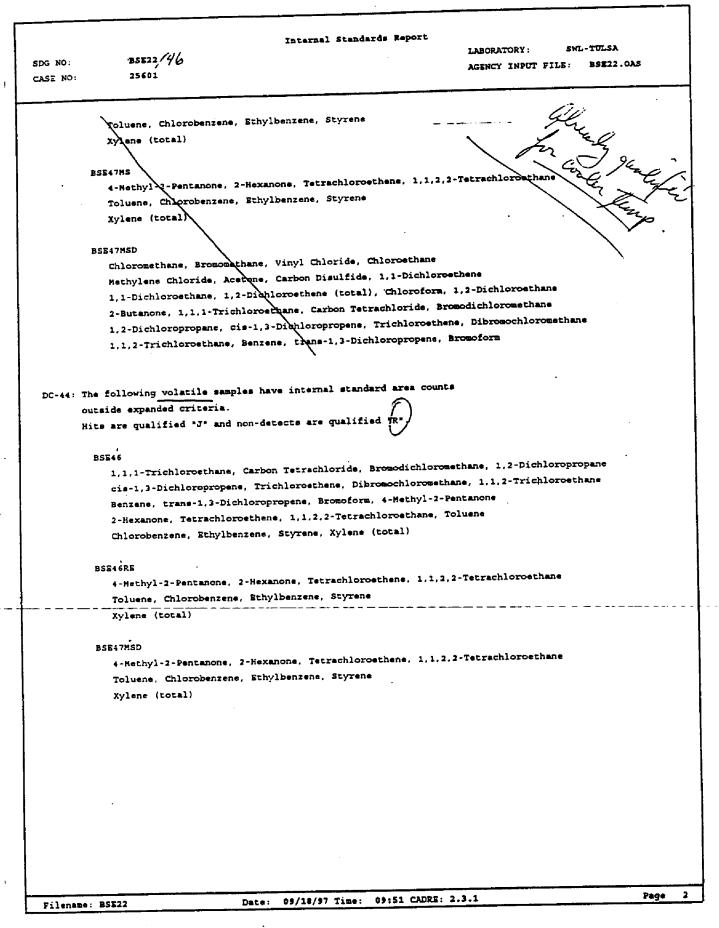
VOA: See CADRE Internal Standards Report.

* Note: All results for all samples in both SDGs were previously qualified "J" for elevated cooler temperature. Additional "J" qualification for internal standard criteria was not necessary.

#### 9. COMPOUND IDENTIFICATION:

## A) Volatile and Semi-Volatile Fractions:

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within  $\pm$  0.06 RRT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications.


## SDG BSE22

BNA: One TIC each in BSE23, 31, 36DL, 37, 37DL, 41, 43 and 43DL, labeled as a laboratory artifact, was gualified "R."

Two TICs each, determined to be laboratory artifacts, were qualified "R" in BSE27, 28, 28DL, 29, 30, 33, 33DL, 34, 35, 36, 38 and 44.

#### SDG BSE46

**BNA:** Two TICs each, determined to be laboratory artifacts, were qualified "R" in BSE46, 47 and 48.



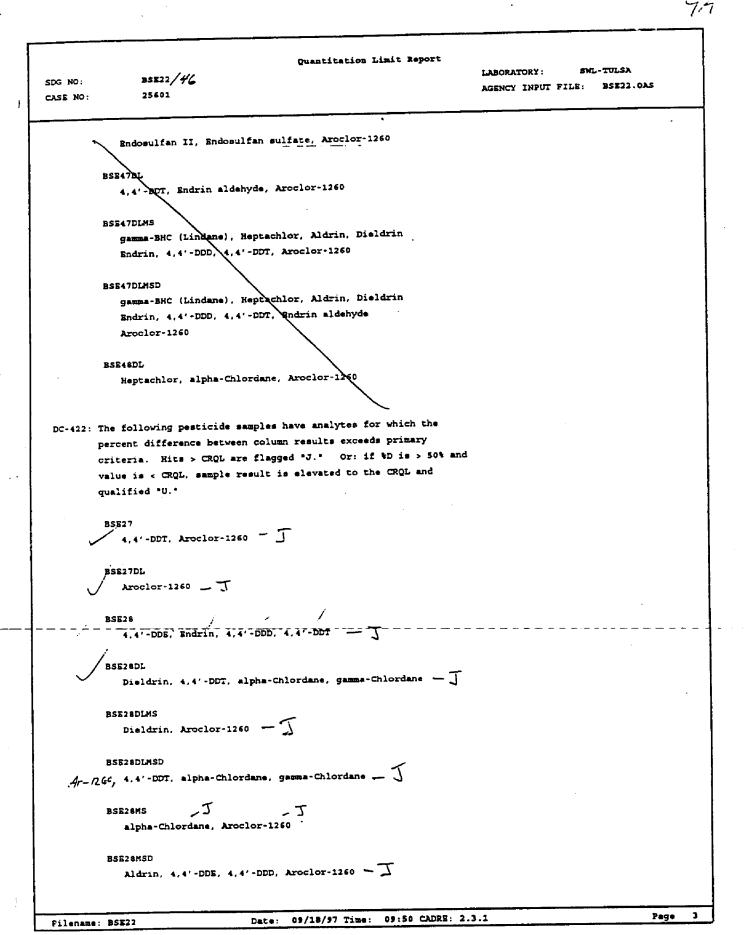
#### CLP DATA ASSESSMENT

#### B) Pesticide Fraction:

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns and a GC/MS confirmation is required if the concentration exceeds 10ng/ml in the final sample extract.

#### SDG BSE22, BSE46

See CADRE Quantitation Limit Report.


# 10. CONTRACT PROBLEMS NON-COMPLIANCE:

#### SDG BSE22

#### BNA:

- Alkanes in samples BSE29, 32 (see pages 1051, 1302) were not reported separately in the SDG Narrative as required by SOW Section 2.6.1, page B-13.
- b. SBLK1 An <u>alkyl halide</u> TIC was improperly reported separately as an <u>alkane</u> (page 34). This caused problems during data review, since the same TIC, when found in the samples, was reported on Form 1F and flagged "B" (see example page 1810), instead of being reported separately as in the case of the method blank. Since the corresponding blank TIC could not be found on Form 1F, it was not possible to determine whether the sample concentrations were < 5× the blank amount. The TIC concentration for the blank was manually calculated and entered on Form 1F (page 2214) so that the sample data could then be properly qualified.</li>
- c. The "B" flag was not properly applied to sample Forms 1F, as required by SOW Sec. 3.4.2.18, page B-39. The "B" flags for the number of TICs indicated for the following samples were crossed out, since these TICs did not match any retention times or spectra in the associated method blanks:

BSE23 - 1 TIC; 26 - 2 TICs; BSE27 - 1 TIC; BSE30 - 1 TIC; BSE31 - 2 TICs; BSE34 - 2 TICs; BSE35 - 1 TIC; BSE37 - 1 TIC; BSE38 - 4 TICs; BSE43 - 4 TICs.



Quantitation Limit Report SWL-TULSA LABORATORY : BSE22/46 SDG NO: AGENCY INPUT FILE: BSE22.0AS 25601 CASE NO: ٦, ٦, <u>٦</u> B6529 Heptachlor epoxide, Aroclor-1260 ر تكمنول ر S29DL J J J Heptachlor epoxide, Endosulfan I, 4,4'-DDE, alpha-Chlordane BSE29DL Aroclor-1260 - J BSE30 Endrin ketone, Aroclor-1260 - J BSE30DL J U J gamma-BHC (Lindane), Endosulfan I. 4.4'-DDT, Aroclor-1260 BSE32 4,4'-DDT, Aroclor-1260 - J BSB32DL JJ JU alpha-Chlordane, gamma-Chlordane BSE33 delta-BHC, Endosulfan I — J gamma-BHC (Lindame), Heptachlor epoxide, alpha-Chlordane, gamma-Chlordane  $\begin{cases} - J \end{cases}$ BSE33DL Aroclor-1260 B5236 4.4'-DDE, 4.4'-DDD, 4.4'-DDT, alpha-Chlordane - J alpha-Chlordane, gamma-Chlordane - 5- 6 . ______ BSE37 Methoxychlor, alpha-Chlordane - J BSE37DL Bndrin, 4,4'-DDD - J BSE43 Bndrin - J BSE43DL alpha-Chlordane - J BSE44 544 4.4'-DD5 - ゴ Page 4 Date: 09/18/97 Time: 09:50 CADRE: 2.3.1 Filename: BSE22

di i

p. 121

9B

Quantitation Limit Report SWL-TULSA LABORATORY : BSB22/46 SDG NO: BSE22.0AS AGENCY INPUT FILE: 25601 CASE NO: BSE44DL Aroclor-1260 - T BSB46 Dieldrin, Endosulfan II, Aroclor-1260 - ( BSE46DL Heptachlor epoxide, Dieldrin, Endosulfan II, Endrin aldehyde 7 T alpha-Chlordane 4,4'-DDT, Endrin aldehyde, Aroclor-1260 BSE47 BSE 47DL Endrin aldehyde, Aroclor-1260 - J BSE47DLMSD Dieldrin, Endrin, 4,4'.DDT -BSE47MS Keptachlor, Dieldrin, 4,4'-DDD, 4,4'-DDT - J BSE47MSD Heptachlor, Dieldrin, Aroclor+1260 ______ BSE48DL Aroclor-1260 - J DC-423: The following pesticide samples have analytes for which the percent difference between column results exceeds expanded criteria. Hits > CRQL are flagged "NJ;" or "R" when %D > 100; or "NJ" when %D is between 100 - 200 (interference detected). Hits < CRQL are elevated to the CRQL and qualified "U." BSE27 A JN JN JN Dieldrin, 4.4'-DDE, 4.4'-DDD, Endosulfan sulfate BSE28 R JJN JN Dieldrin, alpha-Chlordane, gama-Chlordane BSE28DLMS 4.4'-DDT, gamma-Chlordane - IN BSE28MS JN A JN AJdrin, Dieldrin, Endosulfan II. 4.4'-DDD Date: 09/18/37 Time: 09:50 CADRE: 2.3.1 5 Page Filename: BSE22

シン Quantitation Limit Report LABORATORY : SWL-TULSA BSE22/46 AGENCY INPUT FILE: BSE22.0AS 25601 4,4'-DDT, gamma-Chlordane - JN BSE28MSD Dieldrin, Endrin, 4,4'-DDT, alpha-Chlordane { JN gamma-Chlordane Dieldrin, 4,4'-DDE, 4,4'-DDT, Endrin aldehyde alpha-Chlordana, gamma-Chlordane BSE29DL JN K 4,4'-DDT, Endrin aldehyde, gamma-Chlordane - " BSE30 F JN F Heptachlor, Aldrin, Endosulfan I, Methoxychlor Aldrin, Methoxychlor, Endrin aldehyde, alpha-Chlordane BSEJODL JP BSE31DL 4,41-000 -UL gamma-Chlordane - JN BSEJJ Heptachlor, Heptachlor epoxide, Endrin, 4,4'-DDT Sndrin aldehyde, gamma-Chlordane, Aroclor-1260 JN JN JN JN BSE3JDL JJ JN JH Heptachlor, Aldrin, 4,4"-DDE, Endrin 4,4'-DDT, Endrin aldehyde 🗸 🗸 724 23N BSE35DL 1.1'-DDD - U BSEJ6 JP Dieldrin, Bndrin aldehyde BSE36DL 4,4'-DDE, Endrin aldehyde 💶 🍕 Dieldrin, Endosulfan II, gamma-Chlordane - R

Filename: BSE22

BS537

SDG NO:

1

CASE NO:

BSE29

BSE32

Page 6

Quantitation Limit Report SHL-TULSA LABORATORY : BSE22/46 SDG NO: AGENCY INPUT FILE: BSE22.0AS 25601 CASE NO: 1,F V-JN 17 BSE37DL Dieldrin, Endosulfan II, gamma-Chlordane BSE43 JN Dieldrin, Endosulfan II. 4.4'-DDD, 4.4'-DDT gamma-Chlordane <u>^</u>۳ BSE43DL R JN - R Dieldrin, Endrin, Endosulfan II. 4.4'-DDD A.4'-DDT. gamma-Chlordane BSE44 4.4'-DDT - JN BSE44DL 4.4 - DDT - JN BSE46 YE -BSE46DL V / JN Endosulfan I, Endrin, Endosulfan sulfate, gamma-Chlordane BSE47MSD 4.4'-DDT - JN BSE48 JN JN JN P Heptachlor, 4,4'-DDE, Endosulfan II, alpha-Chlordane BSE48DL Reptachlor, alpha-Chlordane - C Page 7 Date: 09/18/97 Time: 09:50 CADRE: 2.3.1 Filename: BSE22

CLP DATA ASSESSMENT

PEST:

- d. Samples BSE27, 28, 31, 37, 38 and 43 were re-extracted past the contract holding time due to Aroclor-1254 contamination from another sample.
- e. PEMs PEM7J and PEM7K did not meet technical acceptance criteria; however, a new initial calibration and re-injection of the affected samples (see analytical sequence (pages 2730 and 2731) were not analyzed as required by SOW Sec. 9.3.6.4, page D-33/PEST:

### SDG BSE46

BNA:

- f. An alkanes in sample BSE48 (see page 367) was not reported separately in the SDG Narrative as required by SOW Sec. 2.6.1, page B-13. This caused confusion during data review, since the sample TIC was flagged "B", but the corresponding TIC in the associated blank was reported in the Narrative and not on Form 1F.
- g. The "B" flag was not properly applied to sample Forms 1F, as required by SOW Sec. 3.4.2.18, page B-39. One "B" flag was crossed out in sample BSE48 (see page 367), since this TIC did not match any retention time or spectrum in the associated method blank.
- h. PEMs PEM6E and PEM6F did not meet technical acceptance criteria; however, a new initial calibration and re-injection of the affected samples (see analytical sequence (page 731) were not analyzed as required by SOW Sec. 9.3.6.4, page D-33/PEST.
- 11. FIELD DOCUMENTATION:

SDG BSE22

VOA:

a. BSE22, 23, 26, 39, 41 - Traffic reports, pages 40 and 41, indicate that

#### CLP DATA ASSESSMENT

these samples were preserved with HCI; however, the laboratory's pH log, page 37, indicates they were not.

- b. BSE26 Traffic report, page 40, indicates that the VOA vial had air bubbles. It could not be determined from the available documentation if more than one vial was delivered, and if this vial was used for analysis. The problem was not mentioned in the SDG narrative. No action was taken on the data; however, further rejection of data may be applicable, depending on whether the lab analyzed this vial.
- 12. OTHER PROBLEMS:

### SDG BSE22, 46

VOA, BNA, PEST:

a. The temperature of the five shipping coolers ranged between 14 and 21° C upon receipt at the lab (see pages 3342 and 3343 of SDG BSE22). Positive results and non-detects for all samples in all fractions, including MS/MSD samples, were qualified "J."

#### SDG BSE22

## VOA:

b. BSE22, 23, 26, 39, 41 - Traffic reports, pages 40 and 41, indicate that these samples were preserved with HCl. Of these, BSE22, 23 and 26 were analyzed past the seven-day holding time for aromatics. No action was required, however, since all samples were already qualified "J" for cooler temperature.

#### VOA, BNA:

c. The CADRE Percent Moisture Report did not list samples to be qualified for these two fractions; however, positive results and non-detects for all samples were already qualified for the high temperature of the shipping cooler (see 12.a, above).

# CLP DATA ASSESSMENT

BNA:

d. There was excessive TIC contamination in the method blanks, including alkanes. However, many of the TICs flagged "B" in the samples did not correspond to any of those reported on Form 1F of the associated method blanks. (See example pages 1810 and 1811, where four "B" flags were deleted.)

It was later determined that some of these TICs did not appear on method blank Forms 1F because they were alkanes, which were reported separately in the SDG narrative (see pages 34 - 36). The lab failed to recognize that the corresponding sample TICs were also alkanes and reported them on Forms 1F (see example, page 1051), instead of separately as in the case of the method blanks. Still, other sample TICs are neither alkanes, nor are they found in the associated blank, yet they were flagged "B." This caused a great deal of confusion in reviewing the data, since sample TICs labeled "B" could not be located on the method blank TIC forms to determine whether the concentration was < 5 × the blank contamination amount.

Also, the "A" flag was not always applied where necessary to designate laboratory artifacts (see example, page 1810).

PEST:

e.

See CADRE Percent Moisture Report.*

- f. Samples BSE27, 28, 31, 37, 38 and 43 were re-extracted past the holding time due to Aroclor-1254 contamination from another sample. (See SDG Narrative, page 6.) All PCB hits in these as well as all other samples in this SDG, although they are not Ar-1254 hits, should be regarded as suspect.
- g. The following pesticide samples apparently did not require analysis: BSE27DL, 29DL, 30DL, 32DL, 34DL, 35DL, 36DL and 38DL. The chromatography of the undiluted samples is satisfactory, provided the proper scaling factor is used. For example, the chromatograms for BSE32, page 2492, are on scale and Form I, page 2489, shows no hits exceeding the linear range of the calibration. Only when a lower scaling factor is used, page 2493, do the peaks appear to be off scale. The PCB pattern is also clearly visible in the original sample (page 2494).

Percent Moisture Report LABORATORY: SWL-TULSA BSE22 146 SDG NO: AGENCY INPUT FILE: BSE22.0AS 25601 CASE NO: PERCENT MOISTURE LIMITS Expanded Primary . . . . . . . . -----901 50% VOA 90% 50% BNA 89% 49% PES DC-126: Percent moisture content of the following volatile soil samples Anny is the how have exceeds primary criteria. Hits are qualified "J" and non-detects are qualified "UJ". BSE46, BSE46RE, BSE47, BSE47MS, BSE47MSD, BSE48 27, 30, 31, 33, 34, 35, 35RE, 34, 36RE, 38,38RE DC-128: Percent moisture content of the following semivolatile soil samples exceeds primary criteria. Hits are qualified "J" and non-detects are qualified "UJ". BSE46, BSE47, BSE47MS, BSE47MSD, BSE48, DC-184: Percent moisture content of the following pesticide soil samples exceeds primary criteria. Hits are qualified "J" and non-detects are qualified "UJ". BSE27, BSE27DL, BSE30, BSE30DL, BSE31, BSE31DL, ESE34, CSE34DL BSE33, BSE33DL, BSE35, BSE35DL, BSE36, BSE36DL BSE38, BSE38DL, BSE46, BSE46DL, BSE47, BSE47DL BSE47DLMS, BSE47DLMSD, BSE47MS, BSE47MSD, BSE48, BSE48DL DC-185: Percent moisture content of the following pesticide soil samples exceeds expanded Criteria. Nits are gualified "J" and non-detects are gualified "R". BSE14 BSE14DL 22, 90°G -- to mowhere was 1 09/18/97 Time: 09:50 CADRE: 2.3.1 Page Filename: BSE22 Date:

## CLP DATA ASSESSMENT

#### SDG BSE46

VOA, BNA, PEST:

h. See CADRE Percent Moisture Report.*

* Note: All samples in all fractions were previously qualified for the high temperature of the shipping cooler upon receipt (see 12.a, above).

#### PEST:

- i. BSE47DL, 47DLMS, 47DLMSD, 48DL Analysis of this diluted sample was apparently not necessary. There were no hits in BSE47 or BSE48 exceeding the linear range of the calibration. See Sec. 12.f, above, for more details.
- 13. This package contains reextractions, reanalyses or dilutions. Upon reviewing the QA results, the following Form 1(s) are identified to be used.

#### SDG BSE22

VOA: BSE35, 36RE, 38, 43RE and 44RE

BNA: BSE28, 30, 36, 37and 43.

**PEST:** BSE27, 28DL, 28MS, 28MSD, 29, 30, 31, 32, 33, 34, 35, 36, 37DL, 38, 43DL and 44DL.

#### SDG BSE46

VOA: BSE46RE

PEST: BSE46, 47, 47MS, 47MSD, 48.

RECEIVED

AUG 2 1 1997

## SOUTHWEST LABORATORY OF OKLAHOMA 1700 West Albany, Suite A / Broken Arrow, OK 74012 918-251-2858

## SDG NARRATIVE August 13, 1997

CONTRACT NO.:	68-D5-0026
CASE NO.:	25601
SAMPLE NOS .:	BSE46, BSE46RE, BSE47, BSE47MS, BSE47MSD, BSE48
SDG NO.:	BSE46

## VOLATILE FRACTION

Three soil samples were submitted for Volatile Organic Analysis. The samples were analyzed by GC/MS following the OLM03.2 CLP Statement of Work.

Alternate columns used for the analysis of volatile compounds by Method OLM03.2 are the Restek XTI-5 (bonded 5% phenyl-95% dimethyl polysiloxane), 30m, 0.25mm ID, 1um film thickness (Restek #12253) and the DB624, 75m, 0.53mmID Megabore, 3um film thickness (J&W 125-1374).

An alternate trap used for the analysis of volatile compounds by method OLM03.2 is the Vocarb 3000 (Carbopack B/Carboxen 1000 & 1001; Tekmar #2-1066).

The following samples in this SDG (labeled with an "RE") are considered billable since reanalysis was performed to verify internal standard areas: BSE46

No major problems occurred during the analyses of these samples

Blanks: VHBLK1 contained low level Methylene Chloride below the CRQL and one Tentatively Identified Compound (TIC) at an estimated concentration of 46ug/Kg.

Surrogates: Sample BSE46 contained internal standard areas outside QC Area Recovery Limits. It was reanalyzed and duplicated the original results, but also contained one surrogate out. Both analyses are being submitted.

Matrix Spikes: No problems.

Internal Standards: Sample BSE46 contained internal standard areas outside QC Area Recovery Limits. It was reanalyzed and duplicated the original results verifying a matrix effect. Both analyses have been submitted. Sample BSE47 also contained internal standard areas outside QC Area Recovery Limits. It used its corresponding matrix spike and duplicate (BSE47MS and BSE47MSD) for duplication and verification of matrix effect.

NOTE: All manual integrations in this data package for GC/MS Volatiles have been performed for one of the following reasons:

a. Data system missed peak during acquisition.

b. Data system improperly integrated peak.

If water samples are contained in this case, their pH data is included on the page accompanying this SDG narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager, or his designee, as verified by the following signature.

. . .

Hany m-boy

Harry M. Borg Organic Program Manager August 13, 1997

## SOUTHWEST LABORATORY OF OKLAHOMA 1700 West Albany, Suite A / Broken Arrow, OK 74012 918-251-2858

### SDG NARRATIVE August 13, 1997

CONTRACT NO.: 68-D5-0026

CASE NO.: 25601

SAMPLE NOS.: BSE46, BSE47, BSE47MS, BSE47MSD, BSE48

SDG NO.: BSE46

## SEMIVOLATILE FRACTION

Three soil samples were submitted for Semivolatile Organic Analyses. The samples were analyzed by GC/MS following the OLM03.2 CLP Organic Statement of Work.

The following column is used for the semivolatile analysis: Restek XTI-5 (bonded 5% phenyl-95% dimethyl polysiloxane), 30m, 0.25mm ID, 0.25um film thickness (Restek #12223).

No major problems occurred during the analyses of these samples. Sample coolers arrived at 20 and 21 degrees Celsius.

The following samples had alkanes reported and the reports are included at the end of this SDG Narrative: BSE46, BSE47, BSE48, SBLK1, SBLK2

Blanks: SBLK1 had low level phthalate contamination below CRQL.

Surrogates: No problems.

Matrix Spikes: No problems.

Internal Standards: No problems.

NOTE: All manual integrations in this data package for GC/MS Volatiles/Semivolatiles have been performed for one of the following reasons:

- a. Data system missed peak during acquisition.
- b. Data system improperly integrated peak.

If water samples are contained in this case, their pH data is included on the page accompanying this SDG narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager, or his designee, as verified by the following signature.

P.132

Hamp M- borg

Harry M. Borg Organic Program Manager

August 13, 1997

# Southwest Laboratory of Oklahoma

SDG Narrative

Case:25601SDG:BSE46Contract:68-D5-0026Samples:BSE46, BSE47, BSE48.Fraction:Pesticide/PCB

SDG BSE46 consisted of 3 soil samples plus dilutions which were analyzed for pesticide/PCBs. All samples, blanks and spikes were extracted and analyzed according to EPA SOW OLM03.2. The samples were analyzed on J&W Scientific dual analytical columns (30m x 0.32mm ID, 0.25µm film thickness, DB-17 and DB-1701). The DB-17 phase consists of (50%-Phenyl) Methylpolysiloxane and the DB-1701 phase consists of (14%-Cyanopropylphenyl) Methylpolysiloxane. These columns were specifically designed for pesticide/PCB separation as required by the EPA's SOW. All applicable manufacturer's instructions were followed for the analysis of pesticides/PCBs. Manufacturer provided information concerning the performance characteristics of the column are kept on site. Hydrogen was used as the carrier gas for instrument HP-15. Helium was used as the carrier gas for all other instruments.

Surrogate recoveries of all method blanks were within limits. Two compounds of twelve spiked were outside of control limits in the MS/MSD of sample BSE47.

It should be noted that when multi-responding compounds are present in a sample, false positives of single response compounds are common. The number of false positives may be reduced by employing a ratio technique in samples which are "clean", containing minimally more peaks than the multi-responder of interest, and do not contain environmentally altered multiresponders. However, "real-life" samples are typically not as previously described. Many times they exhibit highly complex chromatograms and environmentally altered multiresponders to be ratioed with a great deal of accuracy. Since ECD detection is not a definitive means of detection, single-response analytes in the presence of multi-responders will be reported (as per the method, if a peak is within a target analyte's retention time window on both columns, then it is reported as that target analyte). This alleviates the possibility that false negative results will be reported. However, this may lead to false positives. The end data user should be aware of the limitations of the method and take appropriate care.

All samples in this SDG caused extremely high breakdown of 4,4'-DDT, methoxychlor, and several other pesticides in the continuing standards following their injection. The continuing standards analyzed before these samples met OLM03.2 continuing calibration criteria. When diluted 10X (in order to achieve satisfactory chromatography as per D-59/PEST, 10.2.3.1), the samples met OLM03.2 acceptance criteria. A non-compliant undiluted analysis and a 10X compliant analysis was performed for these samples. Forms for the undiluted and the 10X data have been submitted.

All samples in this SDG, as noted above, required dilution. This was performed per D-59/PEST, 10.2.3.1, which states that all samples must be analyzed at the most concentrated level that is consistent with achieving satisfactory chromatography. These samples were diluted in order to allow for the continuing calibration to be compliant. Therefore, the dilutions are billable.

1700 W. Albany	Broken Arrow, OK.	74012-1421	(918)251-2858
	p.133		

The following tables list the total nanograms injected on column for each calibration standard based upon amount injected on column, 0.5µL, 1µL, or 2µL:

# **RESOLUTION CHECK**

Compounds	Total nanograms	Total nanograms (1µL)	Total nanograms
Compounds	(0.5µL)	(IµL)	(2µL)
gamma-Chlordane	0.005	0.01	0.02
Endosulfan I	0.005	0.01	0.02
4,4'-DDE	0.01	0.02	0.04
Dieldrin	0.01	0.02	0.04
Endosulfan Sulfate	0.01	0.02	0.04
Endrin Ketone	0.01	0.02	0.04
Methoxychlor	0.5	0.1	0.2
Tetrachloro-m-xylene	0.01	0.02	0.04
Decachlorobiphenyl	0.01	0.02	0.04

## PERFORMANCE EVALUATION

Compounds	Total nanograms (0.5µL)	Totāl nanograms 📬 (1µL)	Total nanograms (2µL)
gamma-BHC	0.005	0.01	0.02
alpha-BHC	0.005	0.01	0.02
4,4'-DDT	0.05	0.1	.02
beta-BHC	0.005	0.01	0.02
Endrin	0.025	0.05	0.1
Methoxychlor	0.125	0.25	0.5
Tetrachloro-m-xylene	0.01	0.02	0.04
Decachlorobiphenyl	0.01	0.02	0.04

## INDIVIDUAL STANDARD MIXTURE A -- LOW

Compounds	Total nanograms	Total nanograms	Total nanograms
r	(0.5µL)	(̵L)	(2µL)
alpha-BHC	0.0025	0.005	0.01
Heptachlor	0.0025	0.005	0.01
gamma-BHC	0.0025	0.005	0.01
Endosulfan I	0.0025	0.005	0.01
Dieldrin	0.005	0.01	0.02
Endrin	0.005	0.01	0.02
4,4'-DDD	0.005	0.01	0.02
4,4'-DDT	0.005	0.01	0.02
Methoxychlor	0.025	0.05	0.1
Tetrachloro-m-xylene	0.0025	0.005	0.01
Decachlorobiphenyl	0.005	0.01	0.02

Broken Arrow, OK. 74012-1421 (918)251-2858 1700 W. Albany p.134

TIERRA-A-017960

## INDIVIDUAL STANDARD MIXTURE B -- LOW

ς.

а. 1

Ξ.

Compounds	Total nanograms (0.5µL)	Total nanograms (1µL)	Total nanograms (2µL)
beta-BHC	0.0025	0.005	0.01
delta-BHC	0.0025	0.005	0.01
Aldrin	0.0025	0.005	0.01
Heptachlor epoxide	0.0025	0.005	0.01
alpha-Chlordane	0.0025	0.005	0.01
gamma-Chlordane	0.0025	0.005	0.01
4,4'-DDE	0.005	0.01	0.02
Endosulfan sulfate	0.005	0.01	0.02
Endrin aldehyde	0.005	0.01	0.02
Endrin ketone	0.005	0.01	0.02
Endosulfan II	0.005	0.01	0.02
Tetrachloro-m-xylene	0.0025	0.005	0.01
Decachlorobiphenyl	0.005	0.01	0.02

## INDIVIDUAL STANDARD MIXTURE A -- MEDIUM

Compounds	Total nanograms	Total nanograms	Total nanograms (2µL)
	(0.5µL)	(ìµL)	(2µL)
alpha-BHC	0.01	0.02	0.04
Heptachlor	0.01	0.02	0.04
gamma-BHC	0.01	0.02	0.04
Endosulfan I	0.01	0.02	0.04
Dieldrin	0.02	0.04	0.08
Endrin	0.02	0.04	0.08
4,4'-DDD	0.02	0.04	0.08
4,4'-DDT	0.02	0.04	0.08
Methoxychlor	0.1	0.2	0.4
Tetrachloro-m-xylene	0.01	0.02	0.04
Decachlorobiphenyl	0.02	0.04	0.08

## INDIVIDUAL STANDARD MIXTURE B -- MEDIUM

Compounds	Total nanograms (0.5µL)	Total nanograms (1µL)	Total nanograms (2µL)
beta-BHC	0.01	0.02	0.04
delta-BHC	0.01	0.02	0.04
Aldrin	0.01	0.02	0.04
Heptachlor epoxide	0.01	0.02	0.04
alpha-Chlordane	0.01	0.02	0.04
gamma-Chlordane	0.01	0.02	0.04
4,4'-DDE	0.02	0.04	0.08

1700 W. Albany

1

Broken Arrow, OK. 74012-1421 p.135

(918)251-2858

TIERRA-A-017961

# Southwest Laboratory of Oklahoma

	the second second second second second second second second second second second second second second second se		
Endosulfan sulfate	0.02	0.04	0.08
Endrin aldehyde	0.02	0.04	0.08
Endrin ketone	0.02	0.04	0.08
Endosulfan II	0.02	0.04	0.08
Tetrachloro-m-xylene	0.01	0.02	0.04
Decachiorobiphenyl	0.02	0.04	0.08

# INDIVIDUAL STANDARD MIXTURE A -- HIGH

Compounds	Total nanograms	Total nanograms	Total nanograms
	(0.5µL)	(1µL)	(2µL)
alpha-BHC	0.04	0.08	0.16
Heptachlor	0.04	0.08	0.16
gamma-BHC	0.04	0.08	0.16
Endosulfan I	0.04	0.08	0.16
Dieldrin	0.08	0.16	0.32
Endrin	0.08	0.16	0.32
4,4'-DDD	0.08	0.16	0.32
4,4'-DDT	0.08	0.16	0.32
Methoxychlor	0.4	0.8	1.6
Tetrachloro-m-xylene	0.04	0.08	0.16
Decachlorobiphenyl	0.08	0.16	0.32

## INDIVIDUAL STANDARD MIXTURE B -- HIGH

Compounds	Total nanograms	Total nanograms	Total nanograms
	(0.5µL)	(1µL)	(2µL)
beta-BHC	0.04	0.08	0.16
delta-BHC	0.04	0.08	0.16
Aldrin	0.04	0.08	0.16
Heptachlor epoxide	0.04	0.08	0.16
alpha-Chlordane	0.04	0.08	0.16
gamma-Chlordane	0.04	0.08	0.16
4,4'-DDE	0.08	0.16	0.32
Endosulfan sulfate	0.08	0.16	0.32
Endrin aldehyde	0.08	0.16	0.32
Endrin ketone	0.08	0.16	0.32
Endosulfan II	0.08	0.16	0.32
Tetrachloro-m-xylene	0.04	0.08	0.16
Decachlorobiphenyl	0.08	0.16	0.32

## MULTI-RESPONSE STANDARD MIXTURES

Compounds	Total nanograms	Total nanograms	Total nanograms
	(0.5µL)	(1µL)	(2µL)
Aroclor-1016	0.05	0.1	0.2

1700 W. Albany Bro

Broken Arrow, OK. 740

p.136

74012-1421 (918)251-2858 .

# Southwest Laboratory of Oklahoma

Aroclor-1221	0.1	0.2	0.4
Aroclor-1232	0.05	0.1	0.2
Aroclor-1242	0.05	0.1	0.2
Aroclor-1248	0.05	0.1	0.2
Arocior-1254	0.05	0.1	0.2
Aroclor-1260	0.05	0.1	0.2
Toxaphene	0.25	0.5	1.0

All manual integrations in this data package for GC/EC have been performed for one of the following reasons:

- a. Data system missed a peak during processing.
- b. Data system improperly integrated a peak.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Brett R Dees GC Laboratory Supervisor August 20, 1997

Matrix : SOIL

CAS #	Compound	R.T.	Estimated Conc.
1) $638-67-5$	Tricosane	16.35	2474.65
2) $112-95-8$	Eicosane	17.49	1448.08
3) $601-58-1$	Stigmastane	17.55	1129.67
4) $36441-74-4$	Baccharane	18.07	1018.07
5) $112-95-8$	Eicosane	18.57	1989.11
6) $36728-72-0$	28-Nor-17.beta.(H)-hopane	18.78	2326.63
7) $36728-72-0$	28-Nor-17.beta.(H)-hopane	19.23	2215.49
8) $473-55-2$	Bicyclo[3.1.1]heptane, 2,6,6-trimethyl-	21.88	1083.54

Concentration Units: Water: UG/L Soil: UG/KG

Data file : v18472.d

. .

.9 Û

Data file : v18477.d

Matrix : SOIL

:			Estimated
CAS #	Compound	R.T.	Conc.
1) 921-47-1 2) 2216-33-3 $\overline{}$ 79-34-5 4) 2216-34-4 5) 565-75-3 6) 17312-55-9 7) 629-94-7 8) 13475-76-8 9) 2146-39-6	Hexane, 2,3,4-trimethyl- Octane, 3-methyl- <u>Ethane, 1,1,2,2-cætrachloro-</u> Octane, 4-methyl- Pentane, 2,3,4-trimethyl- Decane, 3,8-dimethyl- Heneicosane Docosane, 11-butyl- Bicyclo[2.2.1]heptæne, 2-ethenyl-	3.082 3.125 3.427 3.513 3.588 16.34 17.49 18.55 21.93	256.07 271.33 1041.018-3-5; 477.43 511.62 333.79 305.74 519.51 551.38

.

.

Concentration Units: Water: UG/L Soil: UG/KG

-、'

#### æ # 10-

Matrix : SOIL

				Estimated
	CAS #	Compound	R.T.	Conc.
1) 2) 4) 5) 7) 9)	$\begin{array}{c} 619 - 99 - 8\\ 2216 - 33 - 3\\ 16747 - 31 - 2\\ 473 - 55 - 2\\ 74764 - 47 - 9\\ 1560 - 92 - 5\\ 112 - 95 - 8\\ 630 - 01 - 3\\ 69466 - 45 - 1\end{array}$	Hexane, 3-ethyl- Octane, 3-methyl- Hexane, 3,3,4-trimethyl- Bicyclo[3.1.1]heptane, 2,6,6-trimethyl- Cyclopentane, 1-methyl-1-(2-methyl-2-pro Hexadecane, 2-methyl- Eicosane Hexacosane 1,2-Dithiacyclotetradecane	3.081 - 3.124 - 3.587 - 10.32 - 10.69 - 16.34 - 17.48 - 18.55 - 20.50 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000	612.82 475.71 847.41 725.64 486.87 520.73 415.67 816.83 651.84

· •

÷

Concentration Units: Water: UG/L Soil: UG/KG

Data file : v18478.d

.

.

۴^{.140}

•

•

1

11 10.00 

÷

	Data file	: v18387a.d . Matrix : SOIL		
<b>`</b>	CAS #	Compound	R.T.	Estimated Conc.
1) 2) 3) 4) 5) 6) 7}	2216-33-3 619-99-8 2216-34-4 2216-33-3 760-21-4 61142-21-0 590-66-9	Octane, 3-methyl- Hexane, 3-ethyl- Octane, 4-methyl- Octane, 3-methyl- Pentane, 3-methylene- Cyclohexane, (1,2,2-trimethylbutyl)- Cyclohexane, 1,1-dimethyl-	2.953- 3.082- 3.125- 3.168- 3.265- 3.631- 3.663-	329.51 209.20 102.46 92.66 77.73 269.82 407.90

.

Concentration Units: Water: UG/L Soil: UG/KG

÷

ŧ

.

. .

,

•

1

p- 141

•

.

12 -

•

Alkane Report for Sample : SBLK 42Page: l 8/13/2 SOIL Matrix : Data file : v18424.d Estimated Conc. R.T. Compound CAS # 170.28 66.71 2216-30-0 Heptane, 2,5-dimethyl-3074-71-3 Heptane, 2,3-dimethyl-2216-33-3 Octane, 3-methyl-<u>79-34-5 Ethane, 1,1,2,2-tetrachloro-</u> 16747-31-2 Hexane, 3,3,4-trimethyl-2.933-1) 3.105-2) 80.72 3.148-8-12 306.66 3) 3.450 کھ 4١ 124.61 3.611-5) 16747-31-2 143.34 4291-79-6 Cyclohexane, 1-methyl-2-propyl-3.643-6)

Concentration Units: Water: UG/L Soil: UG/KG

<del>.</del> ۲۰

•

4 2 .

13 '

AT1 3.8

# SAMPLE DELIVERY GROUP (SDG) TRAFFIC REPORT (TR) COVER SHEET

LAB NAME: SOUTHWEST LABORAT	FORY OF OKLAHOMA	CONTRACT NO .:	68-D5-0026	,
LAB CODE: <u>swok</u>	CASE NO.: 25601	SAS NO.:	<u>k</u>	- {
FULL SAMPLE ANALYSIS PRICE	E IN CONTRACT:		. <b>.</b>	(
SDG No./First Sample in SDG: (Lowest EPA Sample Number in first shipment of samples received under SDG).	BSE46	Sample Receipt Date:	08/01/97 (мм/dd/yy)	_ `
Last Sample in SDG: (Highest EPA Sample Number in last shipment of samples received under SDG).	BSE48	Sample Receipt Date:	08/01/97 (MM/DD/YY)	

EPA Sample Numbers in the SDG (listed in alphanumeric order):

1) <u>BSE46 -</u>	11)
( 2) <u>BSE47 -</u>	12)
3) <u>BSE48</u>	13)
4)	14)
5)	15)
6)	16)
7)	17)
8)	18)
9)	19)
10)	20)

Note: There are a maximum of 20 field samples in a SDG.

Attach Traffic Reports to this form in alphanumeric order (i.e., the order listed on this form).

Sample Custodiar

· ``.

<u>8.6-97</u> Date

## 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

VOLATILE	ORGANICS ANALL	BID DAIA CHILLI	1		
Jab Name: SWL-TULSA		Contract: 68-D5	-0026	BSE4	16RE
Lab Code: SWOK Cas	e No.: 25601	SAS No.:	SDG	No.: BS	SE46
			mple ID:		
Matrix: (soil/water) SC	DIL			•	
Sample wt/vol:	5.0 (g/mL) G		le ID:		
Level: (low/med) LC	י איכ ר		eceived		
<pre>% Moisture: not dec. 66</pre>	5)		nalyzed		/97
GC Column:DB-624 II	D: 0.53 (mm)		on Facto		
Soil Extract Volume:	(uL)	Soil A	liquot V	Volume:	(uL)
CAS NO.	COMPOUND	CONCENTRATIC (ug/L or ug/	N UNITS Kg) UG/1	: KG	Q1
74 - 87 - 3	Bromomethane Vinyl Chlorid Chloroethane Methylene Chl Acetone Carbon Disulf 1,1-Dichloroe 1,2-Dichloroe Chloroform 1,2-Dichloroe Chloroform 1,2-Dichloroe 2-Butanone 1,1,1-Trichlo Carbon Tetrac Bromodichloro 1,2-Dichlorop cis-1,3-Dichl Trichloroethe Dibromochloro 1,2-Trichlo Benzene trans-1,3-Dic Bromoform 4-Methyl-2-Pe 2-Hexanone Tetrachloroet 1,1,2,2-Tetra Toluene Chlorobenzene Ethylbenzene Styrene	e oride thene thane thane thane thane thane roethane oropropene ne ne ne ne hloropropene hloropropene hloropropene hloropropene		29 29 29 29 29 29 29 29 29 29 29 29 29 2	

1

P-144

-- - - --

۰,

OLM03.0

35

TIERRA-A-017970

FORM I VOA-TIC	OLM03.0
۲ ^{.145}	r a 36
	TIERRA-A-017971

ab Name: SWL-TULS	SA	Contract: (	58-D5-0026	l	
	Case No.: 25601	SAS No.:	SDC	G No.: BSE46	
atrix: (soil/wate				D: 30412.10R	
ample wt/vol:	5.0 (g/mL) G	Ŀ	ab File ID:	C25341.D	
evel: (low/med)		Da	ate Received	<b>1:</b> 08/01/97	
Moisture: not de	ec. 66	Da	ate Analyze	d: 08/07/97	
C Column:DB-624	ID: 0.53 (mm)	D	ilution Fact	tor: 1.0	
Soil Extract Volum	ne:(uL)	S	oil Aliquot	Volume:	(uL)
Number TICs found		CONCENT (ug/L o	RATION UNIT. r ug/Kg) UG	S: /KG	<del></del> 1
CAS NUMBER	COMPOUND N	•		EST. CONC.	Q
1.         2.         3.         4.         5.         6.         7.         8.         9.         10.         11.         12.	Cyclotrisiloxane Cyclotetrasiloxane UNKNOWN		12.542 14.729 16.552	31 32 34	J J             
13 14 15.					

EPA SAMPLE NO.

BSE46RE

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

ab

16.] 17. 18. 19. 20. 21.

22.__ 23.__ 24.__

25. 26. 27. 28. 29. 30.

ŝ

.

## 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

ł

EPA SAMPLE NC.

	•					
	ame: SWL-TULSA		Contract:	68-D5-0026	BSE4	.7
		Case No.: 25601	SAS No.:	SDG	No.: BS	SE46
						-
Matrix	x: (soil/water)	SOIL		Lab Sample ID		
Sample	e wt/vol:	5.0 (g/mL) G		Lab File ID:		
Level	: (low/med)	LOW	, I	Date Received	: 08/01/	'97
% Moi:	sture: not dep.	64	·	Date Analyzed	: 08/06/	<b>'9</b> 7
GC Col	lumn:DB-624	ID: 0.53 (mm)	I	Dilution Facto	or: 1.0	
Soil 1	Extract Volume:	(uL)		Soil Aliquot `	Volume:	(ບ
			CONCEN	TRATION UNITS	:	
	CAS NO.	COMPOUND	(ug/L (	or ug/Kg) UG/	KG	Q
	74-87-3	Chloromethane			28	미丁
	74-83-9	Bromomethane_			28	υŢ
	75-01-4	Vinyl Chlorid	e		28	U
	75-00-3	Chloroethane_			28	U
	75-09-2	Methylene ChI	oride		28	U
	67-64-1	Acetone			28	U
	75-15-0	Carbon Disulf	ide		28	U
•	75-35-4	1,1-Dichloroe	thene		28	U
	75-34-3	1,1-Dichloroe	thane		28	U
	540-59-0	1,2-Dichloroe	thene (tota	al)	28	U
	67-66-3	Chloroform		—	28	U
	107-06-2	1,2-Dichloroe	thane		28	U
	78-93-3	2-Butanone			28	U
	71-55-6	1,1,1-Trichlo	roethane		28	ט   ט
	56-23-5	Carbon Tetrac	hloride —		28	U
	75-27-4	Bromodichloro	methane		28	וט
	78-87-5	1,2-Dichlorop	ropane		28	U
	10061-01-5	cis-1,3-Dichl	oropropene		28	U
		Trichloroethe			28	ן ט
	124-48-1-5	Dibromochloro	methane		28	<b>U</b>
		1,1,2-Trichlo			28	ט ע
	71-43-2				28	ען ד
	10061-02-6	trans-1,3-Dic	hloroprope	ne	28	U
		Bromoform	morofrofo		28	U 1
	108 10 1	4-Methyl-2-Pe	ntanone		28	U
		2-Hexanone			28	U
	1 22 10 4	Tetrachloroet	hene	<b></b>	28	· Ū
		1,1,2,2-Tetra	chloroetha	ne	28	Ū
	/9-34-5	1,1,2,2-1eLId	CHIOLOCCHA	**~	28	ΰ
	108-88-3			i	28	Ŭ
	1 100-00-7	Chlorobenzene	<u></u>			
					/ ¥ ·	111 1
	100-41-4	Ethylbenzene			28	
	100-41-4	Ethylbenzene			28 28 28	U U U

FORM I VOA

1

OLM03.0

MA 43

	18		EPA SAMPLE NO.
VOL T	1E ATILE ORGANICS ANAL ENTATIVELY IDER ^{(TIFI}	YSIS DATA SHEET ED COMPOUNDS	BSE47
ab Name: SWL-TUL	SA	Contract: 68-D5-0026	
Lab Code: SWOK	Case No.: 25601	SAS No.: SI	G No.: BSE46
Matrix: (soil/wat		Lab Sample I	D: 30412.11
	5.0 (g/mᠠ) ල	Lab File ID:	L27093.D
Level: (low/med		Date Receive	ed: 08/01/97
% Moisture: not d		Date Analyze	d: 08/06/97
	ID: 0.53 (miff))	lilution Fac	tor: 1.0
Soil Extract Volu		Soil Aliquot	Volume:(uL)
Number TICs foun		CONCENT FION UNIT	NS : 2 XG
CAS NUMBER         1.         2.         3.         4.         5.         6.         7.         8.         9.         10.         11.         12.         13.         14.         15.         16.         17.         18.         19.         20.         21.         22.         23.         24.         25.         26.         27.         28.			ST. CONC.       Q

•

し

FORM I VOA-TIC

p.147

1

OLM03.0

## 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		DODAD
Lab Name: SWL-TULSA	Contract: 68-D5-002	BSE48 6
Lab Code: SWOK Case No.: 25601	SAS No.:	SDG NO.: BSE46
Matrix: (soil/water) SOIL	Lab Sample	ID: 30412.12
Sample wt/vol: 5.0 (g/mL) G	Lab File I	D: <b>L27094.D</b>
Level: (low/med) LOW		ved: 08/01/97
* Moisture: not dec. 76	Date Analy	zed: 08/06/97
GC Column:DB-624 ID: 0.53 (mm)		
Soil Extract Volume:(uL)	Soil Aliqu	ot Volume:(uI
CAS NO. COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)	
74-87-3Chloromethane         74-83-9Bromomethane         75-01-4Vinyl Chlori         75-00-3Chloroethane         75-09-2Methylene Ch         67-64-1Acetone         75-15-0Carbon Disul         75-35-41,1-Dichloro         75-34-31,2-Dichloro         67-66-3Chloroform         107-06-2	de loride fide ethene ethane ethane oroethane onoethane omethane oropane loropropene ene omethane chloropropene ene onoethane ene chloropropene entanone thene e	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

FORM I VOA

1

OLM03.0

47

p. 148

·· 🖻

### EPA SAMPLE NO.

# 1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

BSE48

ab Name: SWL-TULSA	Contract: 68-D5-0026	
Lab Code: SWOK Case No.: 25601	SAS No.: SDG No.: BSE46	
Matrix: (soil/water) SOIL	Lab Sample ID: 30412.12	
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: L27094.D	
Level: (low/med) LOW	Date Received: 08/01/97	
% Moisture: not dec. 76	Date Analyzed: 08/06/97	
GC Column:DB-624 ID: 0.53 (mm)	Dilution Factor: 1.0	
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)	
	CONCENTRATION UNITS:	

Number TICs found: 0

.

1`

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT ========	EST. CONC.	Q =====
1.				
2 3				
4 5 6				
7				
9 10				
11.				
13				
15 16				
17 18 19				
20. 21.				
22				<u> </u>
24 25.	· · · · · · · · · · · · · · · · · · ·			
26 27				
28 29				
30				

FORM I VOA-TIC

OLM03.0

*" ** 48

TIERRA-A-017975

	EPA SAMPLE NO.	
SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET	BSE46	
ab Name: SWL-TULSA Contract: 68-D5-0026		
Lab Code: SWOK Case No.: 25001 Bho Horr	No.: BSE46	
Matrix: (soil/water) SOIL Lab Sample ID:	30412.10	
Sample wt/vol: 30.1 (g/mL) G Hub 1120 200		
Level: (low/med) LOW Date Received:		
<pre>% Moisture: 66 decanted: (Y/N) N Date Extracted:</pre>	:08/04/97	
Concentrated Extract Volume: 500(uL) Date Analyzed:	08/12/97	
Injection Volume: 2.0(uL) Dilution Factor	r: 1.0	
GPC Cleanup: (Y/N) Y pH: 7.0		
CAS NO. COMPOUND (ug/L or ug/Kg) UG/K	G Q	
108-95-2Phenol         111-44-4bis(2-Chloroethyl)Ether	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

**r**-150

ļ

1

*ک* 

OLM03.0

220

EPA SAMPLE NO.

1C SEMIVOLATILE ORGANICS ANALYS	EPA SAMPLE NO.
	BSE46
ab Name: SWL-TULSA C	ontract: 68-D5-0026
Lab Code: SWOK Case No.: 25601	SAS No.: SDG No.: BSE46
Matrix: (soil/water) SOIL	Lab Sample ID: 30412.10
Sample wt/vol: 30.1 (g/mL) G	Lab File ID: V18472.D
Level: (low/med) LOW	Date Received: 08/01/97
<pre>% Moisture: 66 decanted: (Y/N) N</pre>	Date Extracted:08/04/97
Concentrated Extract Volume: 500(u	L) Date Analyzed: 08/12/97
Injection Volume: 2.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) Y pH: 7.0	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
51-28-52,4-Dinitropher 100-02-74-Nitrophenol_ 132-64-9Dibenzofuran_ 121-14-22,4-Dinitrotolu 84-66-2Diethylphthalat	100         J           iene         970         U           ce         970         U

100-02-74-Nitrophenol		
132-64-9Dibenzofuran	100	A I
121-14-22,4-Dinitrotoluene	970	
121414-2-1-1-2,4 Dimitrocollons	970	ט ט
84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether	970	U
	230	J
86-73-7Fluorene	2400	ט   ט
100-01-64-Nitroaniline	2400	ווט
534-52-14,6-Dinitro-2-methylphenol	970	U
86-30-6N-Nitrosodiphenylamine (1)	970	Ū
101-55-34-Bromophenyl-phenylether	970	Ŭ
118-74-1Hexachlorobenzene	2400	υ
87-86-5Pentachlorophenol	3100	Ŭ I
85-01-8Phenanthrene		— <del>,</del>
120-12-7Anthracene	750	PAT
86-74-8Carbazole	430	
84-74-2Di-n-butylphthalate	580	4
206-44-0Fluoranthene	5800	
120-00-0PVTERE	6000	11
85-68-7Butylbenzylphthalate 91-94-13,3'-Dichlorobenzidine	1900	
91-94-13.3'-Dichlorobenzidine	970	U
56-55-3Benzo(a)anthracene	3200	
119-01-9Chrysene	3700	
117-81-7bis(2-Ethylhexyl)phthalate 117-84-0Di-n-octylphthalate	6900	B
117-84-0Dieneoctv)phthalate	220 -	ا کر
205-99-2Benzo(b)fluoranthene	3200	
207-08-9Benzo(k)fluoranthene	2800	
50-32-8Benzo(a)pyrene	3300	
193-39-5Indeno(1,2,3-cd)pyrene	2400	
53-70-3Dibenz(a,h)anthracene	960	<b>Z</b>
191-24-2Benzo(g,h,i)perylene	3000	N.V
[ 131-54-5	- · · · · · · · · · · · · · · · · · · ·	V

(1) - Cannot be separated from Diphenylamine

1

--- 221

1F DATA	SHEET
SEMIVOLATILE ORGANICS ANALYSIS DATA TENTATIVELY IDENTIFIED COMPOUN	NDS BSE46
b Name: SWL-TULSA Contract:	: 68-D5-0026
Lab Code: SWOK Case No.: 25601 SAS No.:	•
Matrix: (soil/water) SOIL	Lab Sample ID: 30412.10
Sample wt/vol: 30.1 (g/mL) G	Lab File ID: V18472.D
Level: (low/med) LOW	Date Received: 08/01/97
<pre>% Moisture: 66 decanted: (Y/N) N</pre>	Date Extracted:08/04/97
Concentrated Extract Volume: 500(uL)	Date Analyzed: 08/12/97
Injection Volume: 2.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) Y pH: 7.0	

1F

Number TICs found: 35

ì

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT ========	EST. CONC.	Q	2
1. 141-79-7 2. 123-42-2 3. 4. 5. 6. 7. 8. 9. 72-54-8 10.	3-Penten-2-one, 4-methyl- 2-Pentanone, 4-hydroxy-4-met -AnhydrobetaD-glucopyran UNKNOWN ORGANIC ACID UNKNOWN ORGANIC ACID UNKNOWN PAH UNKNOWN 1,1-Dichloro-2,2-bis(p-chlor UNKNOWN AMIDE	14.362	4400 7300 2400 1600 980 1100 1400 1500 1300 11000		
11. 50-29-3 12. 13. 14. 15. 16. 17. 18. 19. 0-00-0 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.	Chlorophenothane UNKNOWN UNKNOWN UNKNOWN UNKNOWN -Dodecatrienol, -trimethy UNKNOWN PAH 1-Methyl-2,6-diphenyl-4,4-pe UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN PAH UNKNOWN PAH UNKNOWN PAH	14.491 15.072 15.675 15.750 15.826 15.923 17.193 17.763 18.021 18.301 18.409 18.656 18.828 19.054 19.668 19.786 19.851 19.926 20.185	1900 1400 1300 1800 1800 900	ז ס ס ס ס ס ס ס ס ס ס ס ס ס ס ס ס ס ס	

1

- 1

222 1. 11

EPA SAMPLE NO.

BSE46

		_		
SEMIVOLATILE OR	GANICS	ANALYSIS	DATA SHEET	
TENTATIVE	LY IDEN	NTIFIED C	OMPOUNDS	

1F

Contract: 68-D5-0026 ab Name: SWL-TULSA SDG No.: BSE46 Case No.: 25601 SAS No.: Lab Code: SWOK Lab Sample ID: 30412.10 Matrix: (soil/water) SOIL V18472.D Lab File ID: 30.1 (g/mĽ) G Sample wt/vol: Date Received: 08/01/97 Level: (low/med) LOW Date Extracted:08/04/97 decanted: (Y/N) N % Moisture: 66 Date Analyzed: 08/12/97 Concentrated Extract Volume: 500(uL) Dilution Factor: 1.0 Injection Volume: 2.0(uL) GPC Cleanup: (Y/N) Y pH: 7.0

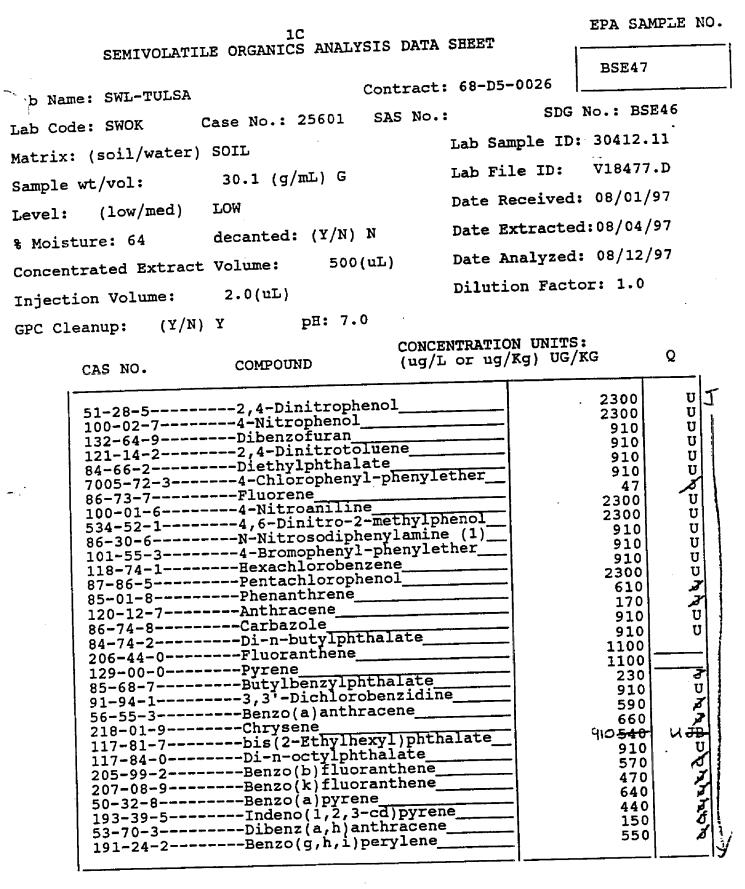
Number TICs found: 35

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q EST. CONC.  $\mathbf{RT}$ COMPOUND NAME CAS NUMBER ______ ᆕ프블루블루프블루블로블로블르프르프르프트블루블루블루 ====== ************** J 800 20.357 UNKNOWN 1. 1200 J 20.658 UNKNOWN 2. 2200 J 20.863 UNKNOWN з. J 1000 21.089 UNKNOWN 4. J 1400 22.412 UNKNOWN 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

)


ì

BSE47

-					<b>B</b> 564/	
hab Name	e: SWL-TULSA		Contract	: 68-D5-0026	l	
Lab Code		Case No.: 2560	1 SAS No.	-	No.: BSE	•
Matrix:	(soil/water)	SOIL -		Lab Sample ID	: 30412.1	1
Sample V		30.1 (g/mL)	G	Lab File ID:	V18477.	D.
	•			Date Received	: 08/01/9	97
	(low/med)		<b></b>	Date Extracte		
€ Moist	ure: 64	decanted: (Y/	N) N			
Concent	rated Extract	Volume: 5	00(uL)	Date Analyzed		<i>,</i>
Injecti	on Volume:	2.0(uL)		Dilution Fact	or: 1.0	
GPC Cle	anup: (Y/N)	Y pH:	7.0			
<b>—</b> — — — — — — — — — — — — — — — — — —	_		CONCE	NTRATION UNITS		_
	CAS NO.	COMPOUND	(ug/I	or ug/Kg) UG/	KG	Q
	95-57-8 541-73-1 95-50-1	Phenol bis(2-Chlor 2-Chlorophe 1,3-Dichlor 1,2-Dichlor 1,2-Dichlor 2,2'-oxybis 	nol cobenzene cobenzene cobenzene nol ti-n-propyla thane thane nol ylphenol rophenol hlorobenzene butadiene hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol hlorophenol	copane) amine thane col iene	910 910 910 910 910 910 910 910 910 910	<u>מ</u> מממממממממממממממממממממממ ממממממממממממ
۱.						

1

OLM03.0



(1) - Cannot be separated from Diphenylamine

~ 297

TIERRA-A-017981

BSE47

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1F

Contract: 68-D5-0026 b Name: SWL-TULSA SDG No.: BSE46 Case No.: 25601 SAS No.: Lab Code: SWOK Lab Sample ID: 30412.11 Matrix: (soil/water) SOIL Lab File ID: V18477.D 30.1 (g/mL) G Sample wt/vol: Date Received: 08/01/97 (low/med) LOW Level: Date Extracted:08/04/97 decanted: (Y/N) N % Moisture: 64 Date Analyzed: 08/12/97 Concentrated Extract Volume: 500(uL) Dilution Factor: 1.0 Injection Volume: 2.0(uL) pH: 7.0 (Y/N) Y GPC Cleanup:

Number TICs found: 33

ŧ

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

F* 298

TIERRA-A-017982

EPA SAMPLE NO.

BSE47

		1F	· .			
SEMIVOLATILE	ORGAN	IICS	ANALYSI	:s	DATA	SHEET
TENTATILE TENTATI	IVELY	IDE	<b>F</b> TIFIED	CC	MPOOR	1DS

Contract: 68-D5-0026 b Name: SWL-TULSA SDG No.: BSE46 Case No.: 25%601 SAS No.: Lab Code: SWOK Lab Sample ID: 30412.11 Matrix: (soil/water) SOIL Lab File ID: V18477.D 30.1 (g/mL) G Sample wt/vol: Date Received: 08/01/97 Level: (low/med) LOW Date Extracted:08/04/97 decanted: (Y/N) N % Moisture: 64 Date Analyzed: 08/12/97 Concentrated Extract Volume: 500(uL) Dilution Factor: 1.0 Injection Volume: 2.0(uL) . GPC Cleanup: (Y/N) Y pH: 7.0

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Number TICs found: 33

EST. CONC. RT 0 COMPOUND NAME CAS NUMBER ==== _____ _____ ______ J 510 21.078 UNKNOWN 1. J 220 21.121 UNKNOWN 2. J 330 21,971 UNKNOWN PAH з. 4. 5._ 6._ 7. 8._ 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

BSE48 Contract: 68-D5-0026 ab Name: SWL-TULSA SDG No.: BSE46 Case No.: 25601 SAS No.: Lab Code: SWOK Lab Sample ID: 30412.12 --Matrix: (soil/water) SOIL Lab File ID: V18478.D 30.0 (g/mL) G Sample wt/vol: Date Received: 08/01/97 (low/med) LOW Level: Date Extracted:08/04/97 decanted: (Y/N) N % Moisture: 76 Date Analyzed: 08/12/97 Concentrated Extract Volume: 500(uL) Dilution Factor: 1.0 Injection Volume: 2.0(uL) GPC Cleanup: (Y/N) Y рН: 7.2 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q COMPOUND CAS NO. UI 1400 -95-2----Phenol

108-95-2Phenot	1400	וס	
111-44-4bis(2-Chloroethy1)Ether	1400	υ	1
o5-57-82-Chlorophenol	1400	υ	<b> </b>
= 41_72_11.3-Dichlorobenzene	1400	Ŭ	1
L soc sc 7	1400	Ŭ	1
[ 95-50-11,2-Dichiorobenzene]		U	1
	1400	U	Į
108-60-12,2'-oxybis(1-Chloropropane)	1400	U	1
108-60-12,2'-oxybis(1-Chloropropane) 106-44-54-Methylphenol	1400		
621-64-7N-NITIOSO-GI-n-propylamine	1400	U U	ţ
67-72-1Hexachloroethane	1400		(
98-95-3Nitrobenzene	1400	U U	1
78-59-1Isophorone	1400		1
88-75-52-Nitrophenol	1400	U	1
105-67-92,4-Dimethylphenol	1400	U	
1 111_01_1bis/2-Chloroethoxy)methane	1400	U	
120-83-22,4-Dichlorophenol 120-82-11,2,4-Trichlorobenzene	1400	U	
120-82-11,2,4-Trichlorobenzene	1400	U	
1 01_20_3NADhthalene	1400	U	
106-47-84-Chloroaniline	1400	U	1
1 o7_69_3Hexachlorobutadlene	1400	U	
1 59-50-74-Chloro-3-Methylphenol	1400		
01-57-62-Methylnaphthalene	1400		
1 77-47-4Hexachlorocyclopentadiene	1400	U	
l ee_n6_22,4.6-Trichlorophenol	1400		
l of of American 2 4 5-Trichlorophenol	3400		
01-58-72-Chloronaphthalene	1400		
88-74-42-Nitroaniline	3400		
131_11_3Dimethvlphthalate	1400		
208-96-8Acenaphthylene	1400		
208-96-8Acenaphthylene 606-20-22,6-Dinitrotoluene 99-09-23-Nitroaniline	1400		$\Lambda I =$
00-09-23-Nitroaniline	3400		M
83-32-9Acenaphthene	1400	י די	N N
			1

FORM I SV-1

1C SEMIVOLATILE ORGANICS ANALYSIS DATA	SHEET	EPA SA	MPLE NO.
· · · ·	: 68-D5-0026	BSE48	
D Name: Swl-1010A	_	No.: BS	E16
Lab Code: SWOK Case No.: 25601 SAS No.:	-		•
Matrix: (soil/water) SOIL	Lab Sample_ID:		
Sample wt/vol: 30.0 (g/mL) G	Lab File ID:	V18478	.D
Level: (low/med) LOW	Date Received	: 08/01/	97
& Moisture: 76 decanted: (Y/N) N	Date Extracte	1:08/04/	97
Concentrated Extract Volume: 500(uL)	Date Analyzed	: 08/12/	97
Injection Volume: 2.0(uL)	Dilution Fact	or: 1.0	
GPC Cleanup: (Y/N) Y pH: 7.2			
CONCE	NTRATION UNITS or ug/Kg) UG/	: KG	Q1
51-28-52,4-Dinitrophenol	e	3400 3400 1400 1400 1400 1400 3400 3400	40444084044044400000000000000000000000

(1) - Cannot be separated from Diphenylamine

1

OLM03.0

366

1.4

EPA	SAMPLE	NO.
-----	--------	-----

BSE48

1F	
SEMIVOLATILE ORGANICS	ANALYSIS DATA SHEET
TENTATIVELY TOE	NTIFIED COMPOUNDS

Contract: 68-D5-0026 `ab Name: SWL-TULSA Case No.: 25601 SAS No.: Lab Code: SWOK Matrix: (soil/water) SOIL 30.0 (g/mL) G Sample wt/vol: Level: (low/med) LOW decanted: (Y/N) N % Moisture: 76 Concentrated Extract Volume: 500(uL) Injection Volume: 2.0(uL) GPC Cleanup: (Y/N) Y pH: 7.2

68-D5-0026 SDG No.: BSE46 Lab Sample ID: 30412.12 Lab File ID: V18478.D Date Received: 08/01/97 Date Extracted:08/04/97 Date Analyzed: 08/12/97 Dilution Factor: 1.0

Number TICs found: 33

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT =======	EST. CONC.	Q ======	_
	3-Penten-2-one, 4-methyl-	2.727	1 <del>1000</del>	- NJAB	R
1. 141-79-7	UNKNOWN	2.791	2300	JB	
2.	UNKNOWN	2.888	5700	JB	
3. 4. 123-42-2	2-Pentanone, 4-hydroxy-4-met	2,996	<del>7700</del>	NJAB	र
	UNKNOWN	3.049	1300	J	
- 5.	UNKNOWN	3.426	1300	<del>-</del> 3B	٢.
6.	UNKNOWN	3.512	750	JB JB	
7.	UNKNOWN AW. C-YE	3.631	1700	JB J	
×8.	UNKNOWN	4.244	580	J	
9.	UNKNOWN ORGANIC ACID	8.366	420	J	
10.	UNKNOWN	10.529	340	J	
11.	Hexadecanoic acid	11.337	430	ИЈ	~
	UNKNOWN AMIDE	14.350	-550		Æ
13.	UNKNOWN	15.426	320		
14.	UNKNOWN	15.642	540		
15.	UNKNOWN	16.944	490		
16.	-Dodecatrienol,-trimethy	17.181	1000	J J	
17.	UNKNOWN	18.203	370	J	i
18.	UNKNOWN	18.300	370	1 J	l
19.	UNKNOWN	18.784	510		ł
20.	UNKNOWN	18.892	670	J	ĺ
21.	UNKNOWN	19.043	1100	J	
22.	UNKNOWN	19.226	3.70	J J	ļ
23.	UNKNOWN	19.817	380	J	
24.		19.904	390	J	
25.	UNKNOWN	20.173	870	JJ	
26.	UNKNOWN	20.226	460		
27.	UNKNOWN	20.646		Ĵ	1
28.	UNKNOWN	20.851		J J	1
29.	UNKNOWN	21.077		J J	
30.	UNKNOWN	21.0//			
		I		- 1	•

1F SHEET	EPA SAMPLE NO.
SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS	BSE48
Tab Name: SWL-TULSA Contract: 68-D5-0026	
Lab Code: SWOK Case No.: 25601 SAS No.: SDG	No.: BSE46
Matrix: (soil/water) SOIL Lab Sample ID	30412.12
Sample wt/vol: 30.0 (g/mL) G Lab File ID:	V18478.D
Level: (low/med) LOW Date Received	l: 08/01/97
<pre>% Moisture: 76 decanted: (Y/N) N Date Extracte</pre>	ed:08/04/97
Concentrated Extract Volume: 500(uL) Date Analyzed	1: 08/12/97
Injection Volume: 2.0(uL) Dilution Fact	cor: 1.0
GPC Cleanup: (Y/N) Y pH: 7.2	

Number TICs found: 33

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

EPA SAMPLE NO.

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q ======
2. [t	JNKNOWN JNKNOWN JNKNOWN	21.453 21.862 23.326	560 4600 540	J J 
5 6 7				
10 11				
13 14 15 16				
17. 18. 19. 20.				
21.         22.         23.         24.         25.				
26 27 28 29				
30				

368

TIERRA-A-017987

۴.,

Q

		LD		
PESTICIDE	ORGANICS	ANALYSIS	DATA	SHEET

BSE46 Contract: 68-D5-0026 ,b Name: SWL-TULSA SDG No.: BSE46 SAS No.: Case No.: 25601 Lab Code: SWOK Lab Sample ID: 30412.10 Matrix: (soil/water) SOIL Lab File ID: 30.0 (g/mL) G Sample wt/vol: Date Received: 08/01/97 decanted: (Y/N) N % Moisture: 66 Date Extracted:08/04/97 SONC Extraction: (SepF/Cont/Sonc) Date Analyzed: 08/17/97 Concentrated Extract Volume: 5000 (uL) Dilution Factor: 1.0 Injection Volume: 0.5(uL) Sulfur Cleanup: (Y/N) N GPC Cleanup: (Y/N) Y pH: 7.0 CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	319-85-7beta-BHC         319-86-8delta-BHC         58-89-9gamma-BHC (Lindane)         76-44-8gamma-BHC (Lindane)         309-00-2Aldrin         1024-57-3Heptachlor epoxide         959-98-8Endosulfan I         60-57-1Dieldrin         72-20-8Endrin         33213-65-9Endosulfan II         72-54-84,4'-DDD         1031-07-8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
11096-62-5 ALCOLOL		1031-07-8Endosulfan sulfate         50-29-3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Final + From ESE #426. + * Analytic met attected - CSE 4634

623

TIERRA-A-017988

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

BSE47

.

1b Name: SWL-TULSA	Contract: 68-D5-0026 [
Lab Code: SWOK Case No.: 25601	SAS NO.: SDG NO.: BSE46
Matrix: (soil/water) SOIL	Lab Sample ID: 30412.11
Sample wt/vol: 30.0 (g/mL) G	Lab File ID:
<pre>% Moisture: 64 decanted: (Y/N) 1</pre>	N Date Received: 08/01/97
Extraction: (SepF/Cont/Sonc) SONC	Date Extracted:08/04/97
Concentrated Extract Volume: 5000	(uL) Date Analyzed: 08/17/97
Injection Volume: 0.5(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) Y pH: 7.0	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

· • .... ·

1

#### EPA SAMPLE NO. 1D PESTICIDE ORGANICS ANALYSIS DATA SHEET BSE48 Contract: 68-D5-0026 ib Name: SWL-TULSA SDG No.: BSE46 Case No.: 25601 SAS No.: Lab Code: SWOK Lab Sample ID: 30412.12 Matrix: (soil/water) SOIL

30.0 (g/mL) G Sample wt/vol: decanted: (Y/N) N % Moisture: 76 Extraction: (SepF/Cont/Sonc) SONC Concentrated Extract Volume: 5000(uL) Injection Volume: 0.5(uL) GPC Cleanup: (Y/N) Y pH: 7.2

CAS NO.

COMPOUND

Lab File ID: Date Received: 08/01/97 Date Extracted:08/04/97 Date Analyzed: 08/17/97 Dilution Factor: 1.0 Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

			-
319-84-6alpha-BHC         319-85-7beta-BHC         319-86-8delta-BHC         58-89-9gamma-BHC (Lindane)         76-44-8gamma-BHC (Lindane)         76-44-8gamma-BHC (Lindane)         76-44-8	$\begin{array}{c} 7.1\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 16\\ 7.1\\ 7.1\\ 7.1\\ 7.1\\ 14\\ 20\\ 14\\ 26\\ 14\\ 14\\ 26\\ 14\\ 14\\ 14\\ 26\\ 14\\ 14\\ 26\\ 7.1\\ 71\\ 14\\ 14\\ 26\\ 7.1\\ 710\\ 140\\ 280\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 14$	ממממה שממ שמ שמש שמת שממש מממש ממש שמש שמש שממש שמ	
11104-28-2Aroclor-1221	280 140	ט ט. ט ט ט	

REVENLE

AUG 2 7 1997

## SOUTHWEST LABORATORY OF OKLAHOMA 1700 West Albar Suite A / Broken Arrow, OK 74012 918-251-2858

August 13, 1997

4

•		
CONTRACT NO .:	68-D5-0026	
CASE NO.:	25601	·
SAMPLE NOS.:	BSE22. BSE23. <b>BS</b> F BSE28MSD. <b>BSE3</b> 1 BSE43RE, B <b>SE29.</b> F BSE36, BSE36RE, F	BSE38RE BSE39, BSE41, BSE43, BSE38RE BSE39, BSE41, BSE43, BSE38RE BSE35, BSE35RE,
SDG NO.:	BSE22	
VOLATILE FRACT	<u>10N</u>	
Fourteen soil samples were analyzed by GC/	and six water samples w MS following the OLM0	The samples
Alternate columns use (bonded 5% phenyl-9)	d for the analysis of vola 5% dimethyl polysiloxanc 0.53mmID Megabore, 31	Lie the Fisher 1 MTI- 11 (1997) (19253)
An alternate tran 11500	for the analysis of volation 1000 & 1001, Tekmar	57000 2069 
The following sample	s in this SDG (labeled w. ternal standard areas: E.	a was
No major problems of	courred during the analys	
Tentatively Identified	ained low level Xylene(T ^{C)} Compounds (TIC's) at é ow level Methylene Chlo	uis and Clymane Marka and State and State Anna Claug Landard (State and State and State Anna State and State and State and State and State and State and State and State and State and State and State
contained all surroga Area Recovery Limit standard areas outsid	BSE36 contained one sur- tes within limits, but both s requiring both analyses e QC Area Recovery Lim e surrogate out. Both an.	Jam Jizec III III Ji
Matrix Spikes: No p	roble <b>ms</b> .	

Internal Standards: Samples BSE38, BSE43, etc. and the standard standards in ternal standard standards. They are brief and the standard standard standard standard standard areas outside QC Area Recovery Limits. It uses the courtespice of the standard standard areas outside QC Area Recovery Limits. It uses the courtespice of the standard standard areas outside QC Area Recovery Limits. It uses the courtespice of the standard standard standard areas outside QC Area Recovery Limits. It uses the courtespice of the standard standard standard areas outside QC Area Recovery Limits. It uses the courtespice of the standard standard standard standard areas outside QC Area Recovery Limits. It uses the courtespice of the standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard standard stand

1

T

NOTE: All manual integrations in this data package for GC/MS Volatiles have been performed for one of the following reasons:

- a. Data system missed peak during acquisition.
- b. Data system improperly integrated peak.

If water samples are contained in this case, their pH data is included on the page accompanying this SDG narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager, or his designee, as verified by the following signature.

Hang m -boy

1

Harry M. Borg Organic Program Manager

August 13, 1997

Д

## SOUTHWEST LABORATORY OF OKLAHOMA 1700 West Albany, Suite A / Broken Arrow, OK 74012 918-251-2858

## SDG NARRATIVE August 13, 1997

CONTRACT NO.: 68-D5-0026

CASE NO.: 25601

SAMPLE NOS.: BSE22, BSE23, BSE23MS, BSE23MSD, BSE26, BSE27, BSE28, BSE28DL, BSE28MS, BSE28MSD, BSE29, BSE30, BSE30DL, BSE31, BSE32, BSE33, BSE33DL, BSE34, BSE35, BSE36, BSE36DL, BSE37, BSE37DL, BSE38, BSE41, BSE42, BSE43, BSE43DL, BSE44

SDG NO.: BSE22

### SEMIVOLATILE FRACTION

Fourteen soil and five water samples were submitted for Semivolatile Organic Analyses. The samples were analyzed by GC/MS following the OLM03.2 CLP Organic Statement of Work.

The following column is used for the semivolatile analysis: Restek XTI-5 (bonded 5% phenyl-95% dimethyl polysiloxane), 30m, 0.25mm ID, 0.25um film thickness (Restek #12223).

The following samples in this SDG (labeled with a DL) are considered billable since these samples were diluted to bring target analytes within linear range. BSE28DL, BSE30DL, BSE33DL, BSE36DL, BSE37DL, BSE43DL

No major problems occurred during the analyses of these samples. Sample coolers arrived at 14, 15, 19, 20 and 21 degrees Celsius. The following samples had secondary dilutions analyzed for target compounds above linear range: BSE28, BSE30, BSE33, BSE36, BSE37, BSE43.

The following samples had alkanes reported and the reports are included at the end of this SDG Narrative: BSE22, BSE23, BSE26, BSE27, BSE28, BSE28DL, BSE29, BSE30, BSE30DL, BSE31, BSE32, BSE33, BSE33DL, BSE34, BSE35, BSE36, BSE37, BSE37DL, BSE38, BSE41, BSE42, BSE43, BSE43DL, BSE44, SBLK1, SBLK2, SBKL3

Blanks: SBLK3 had low level phthalate contamination below CRQL. SBLK4 had low level phthalate contamination above CRQL but below 5X CRQL..

Э

Surrogates: BSE26, BSE22, BSE23, BSE23MS, and BSE23MSD had low recovery of Terphenyl-d14 at 25%, 25%, 26%, 22%, and 30%, respectively. BSE23MS had low recovery of 2-fluorobiphenyl at 39%.

Matrix Spikes: BSE23MS had low recovery of 1,2,4-trichlorobenzene at 36% and high recovery of 4-nitrophenol at 100%. BSE23MSD had low recovery of N-nitroso-di-n-propylamine at 32%. BSE23MS/MSD had high RPDs for 4-chloro-3-methylphenol at 46%, 4-nitrophenol at 63%, and 2,4-dinitrotoluene at 40%.

Internal Standards: BSE23MS and BSE23MSD had low recovery of internal standard areas.

NOTE: All manual integrations in this data package for GC/MS Volatiles/Semivolatiles have been performed for one of the following reasons:

- a. Data system missed peak during acquisition.
- b. Data system improperly integrated peak.

If water samples are contained in this case, their pH data is included on the page accompanying this SDG narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager, or his designee, as verified by the following signature.

Harry M. Borg

Hany m- Bry

Organic Program Manager hb August 13, 1997

4

# Southwest Laboratory of Oklahoma

SDG Narrative

•	25601 BSE22 68-D5-0026 BSE22, BSE23, BSE26, BSE27, BSE28, BSE31, BSE37, BSE38, BSE41, BSE43, BSE29, BSE30, BSE32, BSE33, BSE34, BSE35, BSE36, BSE42, BSE44. Pesticide/PCB
Fraction:	Pesticide/PCB

SDG BSE22 consisted of 14 soil samples and 5 water samples plus dilutions and re-extracts which were analyzed for pesticide/PCBs. All samples, blanks and spikes were extracted and analyzed according to EPA SOW OLM03.2. The samples were analyzed on J&W Scientific dual analytical columns (30m x 0.32mm ID, 0.25µm film thickness, DB-17 or DB-17MS and DB-1701 or DB-XLB). The DB-17 phase consists of (50%-Phenyl) Methylpolysiloxane and the DB-1701 phase consists of (14%-Cyanopropylphenyl) Methylpolysiloxane. The DB-XLB is a proprietary phase pesticide column. These columns were specifically designed for pesticide/PCB separation as required by the EPA's SOW. All applicable manufacturer's instructions were followed for the analysis of pesticides/PCBs. Manufacturer provided information concerning the performance characteristics of the column are kept on site. Hydrogen was used as the carrier gas for instruments HP-7 and HP-15. Helium was used as the carrier gas for all other instruments. Three major problems occurred during the analysis of samples in this case. They are described in the following paragraphs.

Surrogate recoveries of all method blanks were within control limits. Percent recoveries for the water MS/MSD were within control limits. The soil MS/MSD exhibited erratic recoveries due to matrix effect.

It should be noted that when multi-responding compounds are present in a sample, false positives of single response compounds are common. The number of false positives may be reduced by employing a ratio technique in samples which are "clean", containing minimally more peaks than the multi-responder of interest, and do not contain environmentally altered multi-responders. However, "real-life" samples are typically not as previously described. Many times they exhibit highly complex chromatograms and environmentally altered multi-responders which are unable to be ratioed with a great deal of accuracy. Since ECD detection is not a definitive means of detection, single-response analytes in the presence of multi-responders will be reported (as per the method, if a peak is within a target analyte's retention time window on both columns, then it is reported as that target analyte). This alleviates the possibility that false negative results will be reported. However, this may lead to false positives. The end data user should be aware of the limitations of the method and take appropriate care.

5

All soil samples in this SDG caused exercemely high breakdown of 4,4'-DDT, methoxychlor, and several other pesticides in the continuing standards following their injection. The continuing standards analyzed before these samplers met OLM03.2 continuing calibration criteria. When diluted 10X (in order to achieve satisfactory chromatography as per D-59/PEST, 10.2.3.1), the samples met OLM03-2 acceptance criteria except for 4,4'-DDT on the DB-17 column (samples affected the calibration verification to³ excepts degree because of dilution, but affected them nonetheless). An undiluted analysis area a 10X analysis was performed for these samples. Forms for the undiluted and the 10X data have been submitted.

All samples in this SDG, as noted above, required dilution. This was performed per D-59/PEST, 10.2.3.1, which states that all samples must be analyzed at the most concentrated level that is consistent with achieving satisfactory chromatography. These samples were diluted in order to allow for the continuing calibration to be compliant. Therefore, the dilutions are billable.

The original extracts of soil samples BSE₂₇, BSE28, BSE31, BSE37, BSE38, and BSE43 and their accompanying method blanks and MIS/MSDs exhibited Arocior 1254 contamination. This contamination was traced to another client's sample. This sample was shipped to the lab for OLM03.2 analysis with no warning that if may contain high levels of target analyte. In fact, this sample was pure Aroclor 1254. Since pure PCBs are "sticky", normal glassware washing procedures were not adequate, and thus the contamination. For this reason, the samples and MS/MSDs were re-extracted (outside hold time). The re-extracts are reported on forms for the undiluted and 10X analyses and the original extracts accompany the data package in the extra data section. The high-level Aroclor contamination also contributed to the lateness of this case.

Upon final review of the re-extracted samples, it was noted that one column on instrument HP-7 was not resolved (endosulfan sulfate and methoxychlor). Due to the unusually dirty nature of the samples, they were not re-analyzed. The forms generation software did not work properly for the resolution check and PEMs for instrument HP-7. The data integrator was not able to separate endosulfan sulfate and methoxychlor which kept the form from printing properly. The PEMs would not print properly because the sample caused high breakdown and the 4,4'-DDT and methoxychlor peaks were no longer present to calculate a resolution.

The following tables list the total nanograms injected on column for each calibration standard based upon amount injected on column,  $\theta$ .  $5\mu$ L,  $1\mu$ L, or  $2\mu$ L:

Compounds	Total manograms	Total nanograms	Total nanograms
Compoands	(0.5µL)	(1µL)	(2µL)
gamma-Chlordane	0.005	0.01	0.02
Endosulfan l	0.005	0.01	0.02
4,4'-DDE	0.01	0.02	0.04
Dieldrin	0.01	0.02	0.04
Endosulfan Sulfate	0.01	0.02	0.04
Endrin Ketone	0.01	0.02	0.04
Methoxychlor	0.5	0.1	0.2
Tetrachloro-m-xylene	0.01	0.02	0.04
Decachlorobiphenyl	0.01	0.02	0.04

#### **RESOLUTION CHECK**

1700 W. Albany Broker Arrow, OK. 74012-1421 (918)251-2858

1_

## PERFORMANCE EVALUATION

Compounds	Total nanograms	Total nanograms	Total nanograms
Componitios	(0.5µL)	(1µL)	(2µL)
gamma-BHC	0.005	0.01	0.02
alpha-BHC	0.005	0.01	0.02
4,4'-DDT	0.05	0.1	.02
beta-BHC	0.005	0.01	0.02
Endrin	0.025	0.05	0.1
Methoxychlor	0.125	0.25	0.5
Tetrachloro-m-xylene	0.01	0.02	0.04
Decachlorobiphenyl	0.01	0.02	0.04

# INDIVIDUAL STANDARD MIXTURE A -- LOW

Compounds	Total nanograms	Total nanograms	Total nanograms
Compounds	(0.5µL)	(1µL)	(2µL)
alpha-BHC	0.0025	0.005	0.01
Heptachlor	0.0025	0.005	0.01
gamma-BHC	0.0025	0.005	0.01
Endosulfan I	0.0025	0.005	0.01
Dieldrin	0.005	0.01	0.02
Endrin	0.005	0.01	0.02
4,4'-DDD	0.005	0.01	0.02
4,4'-DDT	0.005	0.01	0.02
Methoxychlor	0.025	0.05	0.1
Tetrachloro-m-xylene	0.0025	0.005	0.01
Decachlorobiphenyl	0.005	0.01	0.02

## INDIVIDUAL STANDARD MIXTURE B -- LOW

Compounds	Total nanograms	Total nanograms	Total nanograms
Compounds	(0.5µL)	(1µL)	(2µL)
beta-BHC	0.0025	0.005	0.01
delta-BHC	0.0025	0.005	0.01
Aldrin	0.0025	0.005	0.01
Heptachlor epoxide	0.0025	0.005	0.01
alpha-Chlordane	0.0025	0.005	0.01
gamma-Chlordane	0.0025	0.005	0.01
4,4'-DDE	0.005	0.01	0.02
Endosulfan sulfate	0.005	0.01	0.02
Endrin aldehyde	0.005	0.01	0.02
Endrin ketone	0.005	0.01	0.02
Endosulfan II	0.005	0.01	0.02
Tetrachloro-m-xylene	0.0025	0.005	0.01

(918)251-2858

# Southwest Laboratory of Oklahoma

				and the second second second second second second second second second second second second second second second	_
1		vl 0.005	0.01	0.02	
1	Decachlorobiphen	yi   0.005	0.01		

## INDIVIDUAL STANDARD MIXTURE A -- MEDIUM

Compounds	Total nanograms (0.5µL)	Total nanograms (1µL)	Total nanograms (2µL)
alpha-BHC	0.01	0.02	0.04
Heptachlor	0.01	0.02	0.04
gamma-BHC	0.01	0.02	0.04
Endosulfan I	0.01	0.02	0.04
Dieldrin	0.02	0.04	0.08
Endrin	0.02	0.04	0.08
4,4'-DDD	0.02	0.04	0.08
4,4'-DDT	0.02	0.04	0.08
Methoxychlor	0.1	0.2	0.4
Tetrachloro-m-xylene	0.01	0.02	0.04
Decachlorobiphenyl	0.02	0.04	0.08

# INDIVIDUAL STANDARD MIXTURE B -- MEDIUM

Compounds	Total nanograms (0.5µL)	Total nanograms (1µL)	Total nanograms (2µL)
beta-BHC	0.01	0.02	0.04
delta-BHC	0.01	0.02	0.04
Aldrin	0.01	0.02	0.04
Heptachlor epoxide	0.01	0.02	0.04
alpha-Chlordane	0.01	0.02	0.04
gamma-Chlordane	0.01	0.02	0.04
4,4'-DDE	0.02	0.04	0.08
Endosulfan sulfate	0.02	0.04	0.08
Endrin aldehyde	0.02	0.04	0.08
Endrin ketone	0.02	0.04	0.08
Endosulfan II	0.02	0.04	0.08
Tetrachloro-m-xylene	0.01	0.02	0.04
Decachlorobiphenyl	0.02	0.04	0.08

## INDIVIDUAL STANDARD MIXTURE A -- HIGH

Compounds ·	Total nanograms	Total nanograms	Total nanograms
	(0.5µL)	(1µL)	(2µL)
alpha-BHC	0.04	0.08	0.16
Heptachlor	0.04	0.08	0.16
gamma-BHC	0.04	0.08	0.16
Endosulfan I	0.04	0.08	0.16
Dieldrin	0.08	0.16	0.32
Endrin	0.08	0.16	0.32

1700 W. Albany Broken Алтоw, ОК. 74012-1421 (918)251-2858

## Southwest Laboratory of Oklahoma

4,4°-DDD	0.08	0.16	0.32
4,4'-DDT	0.08	0.16	0.32
Methoxychlor	0.4	0.8	1.6
Tetrachloro-m-xylene	0.04	0.08	0.16
Decachlorobiphenyl	0.08	0.16	0.32

## INDIVIDUAL STANDARD MIXTURE B -- HIGH

Compounds	Total nanograms	Total nanograms	Total nanograms
	(0.5µL)	(1µL)	(2µL)
beta-BHC	0.04	0.08	0.16
delta-BHC	0.04	0.08	0.16
Aldrin	0.04	0.08	0.16
Heptachlor epoxide	0.04	0.08	0.16
alpha-Chlordane	0.04	0.08	0.16
gamma-Chlordane	0.04	0.08	0.16
4,4'-DDE	0.08	0.16	0.32
Endosulfan sulfate	0.08	0.16	0.32
Endrin aldehyde	0.08	0.16	0.32 ·
Endrin ketone	0.08	0.16	0.32
Endosulfan II	0.08	0.16	0.32
Tetrachloro-m-xylene	0.04	0.08	0.16
Decachlorobiphenyl	0.08	0.16	0.32

#### MULTI-RESPONSE STANDARD MIXTURES

Compounds	Total nanograms (0.5µL)	Total nanograms (1µL)	Total nanograms (2µL)
Aroclor-1016	0.05	0.1	0.2
Aroclor-1221	0.1	0.2	0.4
Aroclor-1232	0.05	0.1	0.2
Aroclor-1242	0.05	0.1	0.2
Aroclor-1248	0.05	0.1	0.2
Aroclor-1254	0.05	0.1	0.2
Aroclor-1260	0.05	0.1 ·	0.2
Toxaphene	0.25	0.5	1.0

All manual integrations in this data package for GC/EC have been performed for one of the following reasons:

- a. Data system missed a peak during processing.
- b. Data system improperly integrated a peak.

l certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

-

Brett[®]R Dees GC Laboratory Supervisor August 26, 1997