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THE EXPERT LOCOMOTIVE ENGINEER’S 
MENTAL MODEL 

 means thSUMMARY 
Researchers from General Electric (GE) 
Research and the Massachusetts Institute of 
Technology (MIT) Human Systems Lab are 
studying ways to improve the man-machine 
interface for the locomotive driving task and train 
handling with the assistance of advanced 
automation. This man-machine collaborative 
approach to the design of automated control 
systems promises improved locomotive control 
for both experienced engineers and those new 
to the job. The system design approach is to 
build-in and take advantage of expert drivers’ 
knowledge and skills and the machine’s ability to 
execute instructions more precisely than the 
engineer to provide better overall safety and 
efficiency. From October 2019 to July 2020, the 
team conducted the experiments at the Federal 
Railroad Administration’s (FRA) Cab Technology 
Integration Lab (CTIL) (Figure 1). These 
experiments put expert and novice drivers in the 
simulated cab, allowing each to drive while 
blocking the view out the window from the driver 
(i.e., forcing interaction with the non-driving 
participant) and recording their interactions for 
analysis. 

BACKGROUND 
Automated systems for locomotives must be 
comprehensible and intuitive. To achieve the 
research goals, researchers recognized that the 
expert engineer’s mental model of how to drive 
the train needed to be sufficiently well 
understood, thus motivating Price (2020) and its 
results as a necessary precursor for the GE 
study to prototype an enhanced automated 
control system. 

For example, the ability to communicate an 
upcoming signal status to the engineer or in-cab 

automation at both the human and the 
automation can adapt to situations as they 
evolve, allowing for more flexible control modes 
New safety challenges have spurred interest in 
the development of operating modes and 
automated driver aids that increase both safety 
and efficiency without diminishing the engineer’s 
skills. 

OBJECTIVES 
Price (2020) describes the early stages of 
research for developing a shared control model 
for freight rail where the engineer can continually 
adjust the goals of the automated system to 
achieve safe and efficient management of the 
train’s movement. For a shared control mode to 
be effective, the engineer would need a 
functional mental model of the automation—that 
is, the ability to understand and predict the 
behavior of the automation (for example, how it 
may change the speed of the train) given the 
engineer’s inputs. This could be more readily 
achieved if the design of the enhanced 
automation was to behave in a manner that 
reflected the intentions and goals of the human 
engineer. In other words, building recognizable 
expert driving strategy and mental models into 
the automation facilitates a shared 
understanding of the world between the operator 
and the automation. 

METHODS 
The objective of the experiment was to identify 
the external factors, such as environmental 
cues, that are part of the engineer’s mental 
model and control strategies when driving a 
route. Unlike other methods that treat tasks as 
independent of the overall context, both spatial 
and temporal position are important for analysis 
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of the engineer’s mental model. This study 
paired volunteer expert freight engineers with 
novice subjects with very little knowledge of rail 
operations as the operating crew of a freight 
train. The subject pair drove two routes together 
in the CTIL simulator (see Figure 1): one with 
the novice operator controlling the train (NAC, or 
“novice-at-the-controls”) and the other with the 
expert engineer controlling the train (EAC, or 
“expert-at-the-controls”). The participant 
operating the train controls was unable to see 
the external environment, thus participants had 
to orally communicate necessary information to 
enable an appropriate control action. 

 
Figure 1. The right side of the CTIL, where the 

engineer typically sits 

From the NAC scenario, the expectation was 
that the expert engineer, through their inquiries 
and instructions to the novice operator, would 
reveal the cognitive processes underlying key 
driving decisions, e.g., what information cued 
the decision, and how using the information led 
to a decision. In the EAC scenario, the 
expectation was that the content and timing of 
the information requests from the expert 
engineer would illuminate both the information 
engineers rely on for decision-making processes 
and the frequency at which they updated their 
mental models. Five expert/novice pairs drove 
the route, in addition to one expert/novice pair 
that participated in a pilot study that allowed the 
research team to refine the study methods. After 
each experiment, every interaction between the 
two subjects was coded using linguistic markup 

by the type of interaction and its context, where 
Level 1 codes roughly corresponded to syntactic 
information, and Level 2 codes to semantics. 
Interactions were then analyzed, along with train 
handling data, to discern driving strategies and 
common elements of the mental model and 
control strategies. 

Table 1. Sub codes used in linguistic markup to 
annotate domain-specific content of each 

interaction. 

Controls Displays Track Train 
Air brake 

Dynamic 
brake 

Throttle 

Notch 

TO Display 

Accelero-
meter 

Counter-
Distance 

Measuring 
Device 

Turn out 

Curve 

Grades 

Switch 

Mile post 

Speed flags 

Speed 
restriction 

Track speed 
limit 

Speed 

Train type 

Slack 
action 

Train 
forces 

Train 
breakage 

Front, 
end, or 

middle of 
train 

RESULTS 
While space constraints prohibit detailed 
analysis here, some of the analysis results 
included (for EAC): 

• Before conducting the experiment, 
researchers hypothesized that the 
frequency of query codes would serve as 
a proxy for the frequency with which an 
expert subject updated his or her mental 
model. However, the observed frequency 
was too low, possibly because the expert 
subject had access to external information 
most notably the modified track chart, to 
use the query codes frequency as a 
heuristic. 

• For semantic (“Level 2”) codes, “check 
precondition” (CKP), which implies a 
particular planned action is in mind if the 
precondition exists, was by far the most 
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common code, at 68 percent of all 
interactions with a Level 2 label. This 
might include environmental cues, train 
status, or information from paperwork; the 
complete list of sub codes in Table 1 
illustrates possible subjects of these 
checks. 

• The next most frequent codes were 
“clarify plan” (CLF), “confirm plan” (CNF), 
and “explain plan” (EXP), with 9, 9, and 8 
percent of Level 2 codes, respectively. 
Plan-level actions are generally concerned 
with determining what to do if something 
occurs and when. As with the NAC 
scenario, the high frequency of “check 
precondition” codes indicated that the 
expert subject was generally following a 
predetermined plan and the intention for 
most interactions were to assess a 
situation. See Figure 2. 

• The content of the query codes was 
captured by the use of sub codes (Table 
1), which identified the set of wayside 
objects, such as signals, or physical 
characteristics affecting train state, such 
as grade, that were the subject of the 
query. The most common sub codes for 
queries were “milepost,” “signal,” “grade,” 
and “speed restriction” indicating that 
these environment attributes are the most 
important for the engineer to update in 
real-time. 

• Engineers vary greatly in their preferred 
speed profiles, as evidenced by the 
variation in where engineers began 
slowing their train. As a result, the location 
and nature of braking also varied. Different 
engineers also used different 
combinations of dynamic and air train 
braking. The lack of consistency makes it 
difficult to identify distinct overall driving 
strategies from only five subjects. This 
also suggests that a shared control 
system should enable engineers to modify 
driving profiles to align with their 
preferences. 

For the NAC experiments, the most common 
interactions were CKP at 28 percent and EXC at 
55 percent of all interactions with a Level 2 label. 
The frequency of EXC is unsurprising, as most 
control actions by the novice would have been 
prompted by an EXC interaction from the expert. 
The CKP interaction indicates an assessment of 
the current situation for cues that would trigger a 
pre-defined action sequence. The key idea is 
that the current mental task is to maintain 
situational awareness. The dominance of the 
CKP interaction over planning-focused 
interactions indicates that the expert’s primary 
task en route was looking for situational cues 
that might trigger strategic or tactical planning. 

 
Figure 2. Frequency of the CKP interaction in 
novice-at-the-controls scenario, at temporary 

speed restriction. 

CONCLUSIONS 
The high frequency of the CKP interaction 
suggests that much of the freight engineer’s 
strategy rests on sets of triggers that determine 
the timing and type of actions that are made to 
accomplish the task goals. The situation is 
continually reassessed to determine if additional 
preconditions have been met and actions must 
be taken at that time. High-level decisions such 
as when to begin slowing the train are generally 
planned in advance, as are the set of 
preconditions that trigger an action plan. The 
driving strategy of a particular engineer will be 
determined by his or her own internalized goals, 
including, e.g., to stay below all applicable 
speed limits, but the frequency and consistency 
of the CKP interaction suggests that repeatedly 
checking cues to see if they satisfy 



 RR 21-15 | August 2021 
 

RESEARCH RESULTS 4 | P a g e  

preconditioned schema is fundamental to train 
handling behavior (Endsley, 1995). The 
implication of the data from this study is that 
engineers largely act as situation assessors. In 
other words, train driving skill requires the 
execution of a pre-defined set of actions 
pursuant to a set of preconditions, and it is the 
engineer’s job to identify these preconditions 
and determine if they have been met. 

FUTURE ACTION 
Previously in this project, researchers created a 
prototype of a shared speed control system that 
incorporated insights from this work. Specifically, 
the system conveyed information, facilitated 
re-planning (i.e., according to preconditions), 
and enabled driving preference adjustments 
consistent with the patterns observed in this 
study. It also introduced a new layer of 
information that summarized the goals in 
different segments of the automatically 
generated plan (e.g., “save fuel,” “go fast”). 
Finally, a second study will need to be 
conducted in the CTIL to test how the improved 
transparency and flexibility affect trust in and 
usage of the automated system, as well as 
overall performance with experts and novices. 
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