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Executive Summary 

From August 2019 through February 2021, researchers at the University of South Carolina 
developed an innovative Intelligent Crossing Assessment and Traffic Sharing System (i-CATSS) 
that can detect and predict highway-rail blockages at grade crossings and provide first responders 
with real-time information of traffic conditions at crossings. The system evaluates the total 
expected delay time due to both passing trains and vehicle congestion in front of the railroad 
crossing. 
The research team developed a graphic user interface to display the estimated arrival time of the 
train and the estimated departure time for the monitored crossing, given the information shared 
from the partner railroad. Traffic status is consistently updated when new incoming information 
is received. 
The team also developed an artificial intelligence (AI) model to detect the number of vehicles 
waiting in front of the blocked crossing. The system automatically starts whenever a train is 
detected within the area of interest by the surveillance camera. The correlations between the 
number of the waiting vehicles and the delay time are established based on the AI model. The 
model training and validation are performed using the surveillance videos recorded at the 
crossing of interest. 
First responders from Columbia, SC, offered opinions on the impact of the unexpected railroad 
blockages through a survey. They also assisted in system development. The South Carolina 
Department of Transportation for the City of Columbia assisted in location identification and 
video collection. Industry partner CSX provided the train operation information for system 
development and improvement. 
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1. Introduction  

1.1 Background 
According to the Federal Railroad Administration (FRA), there were about 210,000 public and 
private grade crossings nationwide, and most of them were public-approachable (Ogden, B. D., 
& Cooper, C., 2019). Since the 1980s, highway-rail collisions at grade crossings have been 
decreasing continuously as a result of upgrading many unprotected crossings. However, the cost 
of upgrading existing systems, including signaling units and gate arms, can easily exceed 
$200,000 per crossing. Although there are significant improvements for railroad safety over the 
past decades, crashes at grade crossings are still one of the leading causes of railroad-related 
fatalities. According to FRA, in the U.S. from 2010 to 2014 there were approximately 2,100 
collisions between trains and motor vehicles per year (Baron, W., & da Silva, M., 2019) (Brabb, 
D. C., Vithani, A., & Martin, K., 2017). More than 250 people were killed per year, which 
translates to an average of about 5 fatal accidents per week. These collisions disrupt both 
highway and rail operations and damage local economies and communities. 
Today, trespass casualties represent roughly 70 percent of accidents on railroad rights-of-way 
(ROW) in North America. Ironically, more than 60 percent of collisions occur at crossings with 
automatic warning systems, and 34.7 percent occur at crossings that have flashing lights and 
gates (Federal Railroad Administration, 2019). There are several issues with the existing grade 
crossing warning system, including:  

1) Flashing lights and gate arms only indicate an approaching train without quantitative 
information of estimated arrival time of the train. Out of all highway-rail collisions, 94 
percent can be attributed to driver behavior or poor judgment (Federal Railroad 
Administration, 2019). On many occasions, poor judgment was mostly caused by the lack 
of quantitative situational awareness, especially when an approaching train was beyond 
sight of the driver or pedestrian. The availability of such information and corresponding 
alerts could potentially enhance situational assessment and rational decisions made by the 
drivers before entering the crossing or abandoning a vehicle promptly to avoid 
catastrophic consequences. 

2) Current systems are limited by “one-way” communication—that is, they only offer 
warning signals to the vehicles and pedestrians while trains are not notified about any 
real-time information at the crossings. Onboard engineers can respond only when unusual 
activities at the crossing occur within their sight, which often is too late for taking 
effective countermeasures. Indeed, under many circumstances, collisions could be 
prevented if the early, real-time traffic information were exchanged between the train and 
vehicles and/or pedestrians through “two-way” communication. 

3) The current system does not have self-diagnosis capabilities and relies on fixed 
inspection and maintenance schedules to ensure proper operation as in the video “Truck 
Breaks Crossing Gate During Malfunction.” For instance, FRA requires railroads to 
perform monthly tests of automatic warning devices. Therefore, an “intelligent” system 
for automatic grade crossing surveillance, mutual and quantitative information sharing, 
and self-diagnosis for condition-based maintenance (CBM), is strongly needed. 

Many studies (Eluru, N., Bagheri, M., Miranda-Moreno, L. F., & Fu, L., 2012) (Haleem, K., 
2016) (McCollister, G., & Pflaum, C., 2007) (Ogden, B. D., Korve Engineering, a Division of 

https://youtu.be/PUqZR4HkGJw
https://youtu.be/PUqZR4HkGJw
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DMJM + Harris, 2007) (Yan, X., Richards, S., & Su, X., 2010) on highway-railroad grade 
crossing safety led by FRA, the U.S. Department of Transportation (USDOT), and/or 
public/private educational institutions have been conducted to understand and reduce collisions 
at the grade crossings. However, most of those studies focused on accident severity or frequency 
analysis. 
Some researchers have investigated the impact of traffic congestions on highway safety 
(Marchesini, P., & Weijermars, W. A. M., 2010) (Cambridge Systematics, Inc., & Meyer, M. D., 
2008) (Wang, C., 2010). However, at present, there is no systematic study to quantify traffic 
congestion in front of the grade crossing and assess its impact on railroad safety or public 
concerns.  
To address such an urgent need, in 2018 the research team proposed the first-ever Intelligent 
Camera Aided Railway Emergency System (i-CARES), relying on image-based monitoring and 
surveillance, quantitative situational awareness assessment, and direct, two-way communication 
and information sharing. i-CARES features salient wireless communication, computer vision, 
Artificial Intelligence (AI) innovation, and in-situ preventive actions on an embedded and 
autonomous “cyber-physical systems/CPS” platform installed at grade crossings, and represents 
a holistic solution to grade crossing safety that has never been explored before for railroad 
engineering. Other innovations and benefits offered by i-CARES include automatic fault 
detection and notification for CBM and imagery evidence for trespassing violation (similar to the 
Electronic Police Reports Online [ePRO] system). This project will be focusing on developing 
the automatic target recognition algorithm and the AI to track vehicles to analyze vehicle 
behavior at railroad crossings. 

1.2 Objective 
Researchers set out to develop an affordable and field-deployable Intelligent Crossing 
Assessment and Traffic Sharing System (i-CATSS) that can detect and predict highway-rail 
blockages at grade crossings due to a slow-moving or stopped train, and provide real-time 
information of traffic conditions at crossing to facilitate route planning/reconfiguration for 
motorists, especially first responders. 

1.3 Overall Approach 
The system will integrate low-cost surveillance camera, real-time communication unit, and an AI 
model on a secured computing platform.  

1.4 Scope 
Research activities in this project consisted of three work packages. 
Work Package 1 (WP1) established a communication channel between a railroad signaling and 
control unit and i-CATSS in order to obtain train operation information. Note that WP1 only 
established one-way communication – that is, reading the information from the Positive Train 
Control (PTC) system or other similar train signal systems without interference to normal train 
operations. The information obtained from WP1 was passed to WP3 to determine the possible 
delaying situation. 
Work Package 2 (WP2) evaluated the traffic flow through the grade crossing by detecting 
moving vehicles. WP2 used a similar automatic target recognition (ATR) technique previously 



 

4 

used in other engineering disciplines (i.e., detection and recognition of small moving vehicle or 
aircraft using machine learning techniques). 
Work Package 3 (WP3) developed a self-learning AI and situational awareness capability that 
extracted models for predicting total delay/waiting time based on the estimated time of arrival 
(ETA), passing time of the train (ETP), traffic intensity Q, PTC schedule, and historical values. 
The developed software can perform in-situ mobile computing for real-time sharing of traffic 
information. 

1.4.1 Train Information Extraction and Estimated Train Arrival Time Calculation 
Train information was extracted by the industry partner from its dispatching system and shared 
with the research team. To calculate the estimated train arrival time for a specific crossing, the 
current position and moving speed were needed. Because the PTC system contains multiple 
layers and more information than just the train real-time location and speed, part of the PTC 
information was decoded by the industry partner, and the train location and speed information 
was shared with the team with a refreshing time interval of approximately 1 minute. With the 
train location and moving speed, the estimated train arrival time to a monitored crossing could be 
calculated. 

1.4.2 Street Traffic Detection and Vehicle Counting 
In rural area, street traffic clearance time is not very important. However, for a populated urban 
area, it would take longer for the street traffic to go back to normal after a train has passed a 
crossing. For first responders, time is of the essence, and the traffic decongestion time may alter 
their route selection. Thus, a computer vision-based monitoring system was developed to detect 
and count vehicles waiting in the crossing. 

1.4.3 Artificial Intelligence Model for Decongestion Time Estimation 
Based on the recorded vehicle number and the time needed for street traffic to return to normal 
after a train passing, an AI model can be developed to correlate the detected vehicles and the 
estimated traffic decongestion time. The traffic decongestion time and the time for a train to pass 
a specific crossing would be the total expected delay time. Depending on the street traffic 
condition, train length, and train speed, the time component may be different from case to case. 

1.5 Organization of the Report 
Section 2 provides a literature review of both train control systems and the applications of AI in 
traffic monitoring. Section 3 describes the train information shared from the industry partner and 
how the estimated train arrival time and departure time were calculated. Section 4 gives the 
details of how the street traffic was monitored and the model that was developed to predict the 
traffic decongestion time. Section 5 summarizes the findings and offers suggestions for future 
studies. Appendix A provides the survey questionnaire and Appendix B contains the survey 
results. 
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2. Background and Literature Review 

Decongestion time is a crucial component for intelligent crossing assessment and traffic sharing 
systems at a grade crossing. Predicting decongestion time facilitates evaluating the severity of 
traffic blockage and is the key to taking proactive measures that mitigate potential delays. There 
are roughly 210,000 public and private grade crossings in the U.S. (Ogden, B. D., & Cooper, C., 
2019), and each train can easily take 5–10 minutes or more to pass. Thus, providing real-time 
information about traffic conditions at grade crossings to motorists, and especially first 
responders (i.e., firefighters, police, and ambulance) for route planning is indeed important 
(Gephardt, M., & Poe, M., 2018) (U.S. Department of Transportation, 2020a). In 2015, former 
FRA Administrator Sarah E. Feinberg acknowledged that the most serious consequence of grade 
crossing blockage was the delay caused to first responders in the case of emergency (Njus, E., 
2019). 
Unfortunately, due to a variety of reasons, railroads’ operating information is typically not 
shared with the public. There are no navigation apps in the market to assess delays at a railroad 
grade crossing or to plan traffic rerouting. Consequently, severe traffic jams occur around grade 
crossings in highly populated areas (Arnott, R., De Palma, A., & Lindsey, R., 1991). Even worse, 
trains can move at an extremely slow speed or stop at the grade crossing, leading to an extended 
period of traffic blockage and adding large uncertainties to the delay time prediction. Train 
blockages can last for hours, rendering it difficult for motorists to make a rational decision 
between waiting and taking an alternative route; the scenario is far more critical when first 
responders are involved. The situation assessment at a blocked crossing essentially depends on 
the real-time information from two sources: the estimated time of the train operation and the 
traffic flow through the crossing. A robust and reliable intelligent transportation system should 
provide quantitatively accurate traffic condition assessment in a complex grade crossing 
environment that involves the train, vehicles, pedestrians, gates, road signs, and unforeseen 
circumstances. Furthermore, to avoid the unnecessary delay, it will also be beneficial to share the 
processed traffic information with the first responders for their decision making (Njus, E., 2019). 

2.1 Positive Train Control System 
As described in a report by Association of American Railroads (2021), PTC systems aims to 
automatically stop a train to prevent accidents due to human errors or poor judgements. PTC 
systems facilitate several key functions, including command, control, communications, and 
information sharing. With data interchanged among subsystems, PTC can accurately control the 
operation of a train. With PTC systems, certain types of accidents could be prevented, especially 
those due to human errors or lack of communication. Because of the great potential advantages 
to improve operation safety and efficiency, the Rail Safety Improvement Act of 2008 (RSIA) 
originally set December 31, 2015, as the deadline for PTC implementation, but extensions were 
granted later due to technical and practical reasons. 
The are several key components of the PTC system, as shown in Figure 1 (Zhang, Z., Liu, X., & 
Holt, K., 2018)—the on-board computer, wayside device, communication channels, and back 
office. The on-board computer communicates with other components from the train to report 
information such as speed, train length, origin, and destination, while the wayside devices 
monitor track information at specific locations, such as the switch and signal information, and 
pass that information to the train and the back office. The back office is a data processing and 
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communication center which handles all the information from all the trains and other devices in 
the network and coordinate all the parties to work together. To facilitate reliable 
communications, a proper network is required to transmit and receive all the signals. The 
network could use different ways to transmit PTC information, such as radio (specified at 220 
MHz), Wi-Fi, or cellular service. 

 
Figure 1. Schematic illustration of a general PTC system (Zhang, Z., Liu, X., & Holt, K., 

2018) 

2.1.1 Brief History of PTC Development in the U.S. 
A system that can automatically handle train operation to avoid man-made mistakes has been 
planned for decades. Three decades ago, the National Transportation Safety Board described 
PTC as an important technology that would improve train operation safety, and stimulated its 
development and implementation in the years that followed. Earlier attempts included the 
Advanced Civil Speed Enforcement System and the Incremental Train Control System for 
passenger service by Amtrak and the onboard GPS system for freight service by CSX 
Transportation, Inc. (CSX). 
After a collision accident between a Metrolink commuter train and a Union Pacific Railroad train 
in 2008, Congress passed the Rail Safety Improvement Act later that year (U.S. Congress, 
RSIA), which requires approximately 58,000 miles of railroad track equipped with PTC by the 
end of 2015. Although the specific deadline was extended multiple times due to technical and 
practical challenges, this act greatly accelerated PTC development and implementation. 
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2.1.2 Current PTC Implementation Status in the U.S. 
Driven by congressional expectations and the railroads’ motivations to improve the safety, PTC 
systems were installed for all required routes by the end of 2018 (Federal Railroad 
Administration, 2020). According to FRA data, PTC systems in 91 percent of the required routes 
in Class I railroads are already in service (see Figure 2 for the latest status). It is expected all the 
installed PTC systems in the required Class I railroad tracks will be in working condition to 
assist train operation by the end of 2020 (Federal Railroad Adminstration, 2020). 

 
Figure 2. PTC Interoperability status – based on railroads’ self-reported progress as of 

September 30, 2019 (Federal Railroad Administration, 2020) 

2.1.3 Possible Improvement on PTC for Railroad Crossing 
According to Barkouk et al. (2017), PTC systems were  under development to better exchange 
information and improve efficiency. Currently, communications for all the installed or working 
PTC systems are limited within the railroad system. In other words, the information between the 
train, wayside devices, and the back office is kept within the loop and is not shared with other 
systems. Note the airline operations information, such as the flight status, and street traffic 
information, such as the congestion condition, is available to the public. Railroads are not 
integrated into the grand transportation systems even within current PTC systems. As Barkouk et 
al. (2017) pointed out, currently, there is no information exchange between street vehicles and 
PTC systems. If train operation information can be exchanged with street traffic information, it 
may benefit both the street traffic management and the train operations. For example, if the PTC 
system can obtain and share the information that a certain segment of track or a certain crossing 
is blocked by a vehicle, an accident may be prevented. Alternatively, if the traffic management 
system could obtain the crossing blockage time and duration due to an incoming train, the 
congestion could be reduced in front of the crossing if the traffic can be directed properly. Thus, 
to develop systems that can securely facilitate the information sharing between the railroads and 
other transportation modes would extend the function of the PTC data and potentially benefit 
both the railroads and the public. Possible extension may include: 
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• Information exchange directly between the trains and street vehicles 

• Information exchange between the trains and street vehicles through PTC back office  

• Information exchange between the trains and street vehicles through street traffic 
management office  

• Information exchange between the PTC back office and the street traffic management 
office 

Figure 3 illustrates possible ways of communication between PTC system and the street traffic 
proposed by Barkouk et al. (2017). 

 
Figure 3. Example of PTC function extension (Barkouk, H., En-Naimi, E.M., & Mahboub, 

A., 2017) 

2.2 Vehicle Detection and Counting 
According to a report, in general, there are two categories of conventional practices for traffic 
counting: intrusive and non-intrusive methods (Leduc, G., 2008). Intrusive methods consist of a 
data recorder and a counting sensor placed on or embedded in the pavement. Most commonly 
used intrusive methods include but are not limit to pneumatic road tubes, piezoelectric sensors 
and magnetic loops, etc. Although these intrusive methods have been successfully employed for 
many years with their high accuracy nature, note that some limitations on urban applications still 
exist: 

• These intrusive detectors can provide accurate data only when properly installed (e.g., 
traffic counting using existing video detection cameras). However, in practice, not only 
the installation process of sensors causes pavement damage but also the lane closure will 
have an impact on the detectors’ position and data accuracy. 

• The pavement maintenance will be influenced because of their intrusive nature, 
especially for quick maintenance during the peak hours. 
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• In a busy traffic section, retrieving data will be very inconvenient, as each lane is 
embedded with a detector. 

• Extreme weather conditions like rain or snow can cause the pavement surface to become 
wet which leads to miscounting and misclassification. Meanwhile, the removal of snow 
and other maintenance process can break the sensors embedded in the pavement. 

• All intrusive practices have potential safety concerns. Installing intrusive detectors in a 
heavy traffic area is very difficult, as there is little time window for staff to safely install 
sensors. 

• The limited budget of transportation agencies allows for few locations to install traffic 
counting detectors, which means that there is not enough data for researchers and 
government agencies to fully understand the real-world traffic situation, not to mention 
future traffic planning and management needs. 

Non-intrusive methods are traffic detection sensors that cause minimal disruption to normal 
traffic operations during installation, operation, and maintenance (Minge, E., Kotzenmacher, J., 
& Peterson, S., 2010). Most of the non-intrusive methods are based on remote observations and 
include but not limit to manual counts, passive and active infrared, passive magnetic, microwave 
radar, and video image detection, etc. As its definition and purpose for the traffic survey, non-
intrusive methods can be more safely utilized than intrusive practices. Since non-intrusive 
methods do not need to cut the pavement to install sensors, it minimizes traffic disruption and 
minimizes cost. The advantages and disadvantages include: 

• Manual counting is the most common practice. It does not need the complex equipment 
for the observer, and the test station is much more flexible. However, this practice would 
be time-consuming, and it cannot provide more information like vehicle occupation, 
vehicle classification even for a trained observer compared with auto counting. 

• Passive and active infrared/laser can detect traffic volume, length, speed, and the number 
of axles by detecting the infrared/laser energy whose frequencies range from 1,011 to 
1,014 Hz from the detection region. It can work well both day and night; however, it is 
limited by occlusions, road dirt on the lens, and extreme weather conditions. 

• A passive magnetic infra-red laser can be used to detect the presence, speed, type, and 
number of vehicles by using the magnetic flux change measured by the corresponding 
changes in electric fields in the sensors. The installation is relatively complicated as it 
needs to be fixed on or under the top of roadbed, and it cannot detect stopped cars as 
there is no change on the magnetic flux. 

• Radar can detect the presence, volume, classification, speed of vehicles by using the 
particular signal to calculate the time delay and the return signal. It can detect stationary 
vehicles but cannot detect the vehicles in the “dead zone” – like areas with obstructions 
or barriers. 

• Video-based image processing analyzed the video image on a target area and compared 
the change of the same target area to collect more traffic information like presence, 
volume, speed, density, occupation, queue length, vehicle number, acceleration, 
classification by analyzing the video contents. However, it can be easily affected by the 
poor video quality caused by meteorological and environmental conditions like rain, 
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snow, poor light etc. Proper installation and calibration are important for video system to 
collect accurate traffic data. 

2.2.1 Object Detection with Deep Learning Networks 
Deep learning is an advanced subset of machine learning in AI and is largely based on the 
artificial neural networks (ANN), inspired by the human biological systems (Dabiri, S., 2019) 
(O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V., Krpalkova, L., 
Riordan, D., & Walsh, J., 2019). Deep learning networks have multiple hidden layers which are 
hidden in between the input layer and outer layer to perform computations on the weighted 
inputs and produce net input for activation functions. They integrate feature learning and model 
construction in one model by selecting different kernels or tuning the parameters via end-to-end 
optimization Wang et al., 2018). In DL’s deep networks, the multiple hidden layers are used to 
map original input data to its new representations and then are transferred to higher layers to 
extract more efficient features. Finally, these abstracted representations are mapped into the outer 
layer to finish its classification and regression. In short, DL architecture learns features directly 
from the training data via the end-to-end process with minimum human inference (Hwang et al., 
2019; Wang et al., 2018). Compared with conventional intrusive, non-intrusive detectors and 
especially the classical video-based image processing system, deep learning networks can 
operate in real time, work on end-to-end, collect much more traffic information, and achieve 
high accuracy with superior flexibility (Dabiri, S., 2019) (O’Mahony, N., Campbell, S., 
Carvalho, A., Harapanahalli, S., Hernandez, G. V., Krpalkova, L., Riordan, D., & Walsh, J., 
2019) (Wang et al., 2018). Figure 4 shows the workflows of traditional computer vision and deep 
learning (Wang et al., 2018). 

 
Figure 4. a) Workflow of traditional computer vision and b) workflow of end-to-end deep 

learning structure (Wang et al., 2018) 

2.2.2 Real-Time Traffic Data Collection via Deep Learning Networks 
Huang et al. (2014) first applied deep learning methods on transportation research. To solve the 
previous issues in transportation modeling they proposed a deep learning architecture, including 
a deep brief network (DBN) and a multitask task regression layer. Specifically, DBN is 
responsible for unsupervised feature learning, which can help researchers get rid of the hand-
engineered feature extraction and selection. The multitask regression layer is responsible for 
supervised training. The network structure is shown in the Figure 5. In addition, the idea of 
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multiple-task learning (MTL) was absorbed into their deep architecture and proved MTL was 
useful in improving overall performance. Experimental tests showed that MTL has a 5 percent 
improvement compared with competing approaches. 

 
Figure 5. Deep architecture for traffic flow prediction: a) DBN structure and b) multitask 

regression layer (Huang, W., Song, G., Hong, H., & Xie, K., 2014) 
Yi et al. (2017) used a deep learning neural-network based on the newest TensorFlow libraries to 
predict real-time traffic flow conditions. In their paper, congested and non-congested traffic 
conditions were distinguished by using the proposed deep learning architecture and logistic 
regression analysis. The experimental results demonstrated that the model’s accuracy rate can 
achieve 99 percent; however, these results are based on each day’s 1 percent traffic data as the 
limitations of memory storage. Note that even though their data processing has much room to 
improve, it still shows considerable potential for the application of the state-of-the-art 
TensorFlow library on transportation. 
Lv et al. (2014) proposed a novel deep learning-based method which first applied autoencoders 
as building blocks on a deep architecture model to predict traffic flow conditions. In their 
approach, the SAE model, which can discover the nonlinear, spatial, and temporal correlations to 
represent latent traffic flow features, was used for the prediction work. Greedy layer-wise 
unsupervised learning was applied to pre-train the network and the fine-tuning process was 
employed to update the model’s parameters for improving prediction performance. The 
experimental results showed their method was better than competing ones such as SVM, BP NN, 
etc. The architecture can be seen in the Figure 6 (Lv, Y., Duan, Y., & Kang, W., 2014). 
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Figure 6. Deep learning architecture for traffic flow prediction (Lv, Y., Duan, Y., & Kang, 

W., 2014) 
Polson et al. (2017) showed that deep learning can contribute precise, short-term traffic flow 
predictions in two cases with their developed model, which combined a linear model for 
regularization and a sequence of tanh layers. To capture the nonlinear spatio-temporal features in 
traffic flow, they carried the first layer to identify spatio-temporal relations, and other layers 
were used to model nonlinear relations. According to their tests, deep learning showed a great 
improvement over linear models. The recurrent neural network (RNN) and a long short-term 
memory (LSTM) network can work better on time-series data. They also mentioned one 
drawback of their model was its low explanatory power.  

2.2.3 Possible Improvement on Vehicle Counting for Railroad Crossing 
Presently, the research and development of intelligent transportation assessment systems is 
mainly focused on highway intersections rather than grade crossings (i.e., highway-railroad 
crossing), and the applications primarily concentrate on traffic flow prediction (U.S. Department 
of Transportation, 2020b), autonomous driving (Hoel, C.-J., Driggs-Campbell, K., Wolff, K., 
Laine, L., & Kochenderfer, M. J., 2019), traffic signal control (Wan, J., Yuan, Y., & Wang, Q., 
2017), and others. Previous research efforts on theories, algorithms, and implementations of 
traffic analysis have been developed using mathematical models or DNN models. In the past few 
years, a prevalent trend in intelligent transportation system development has seen a shift from 
conventional methods (Hensher, D. A., & Mannering, F. L., 1994) (Paselk, T. A., & Mannering, 
F. L., 1994) to deep learning (Gruden, C., Otković, I. I., & Šraml, M., 2020) (Khan, A. M., 2010) 
approaches. The traditional congestion analysis methods build a dynamical model of traffic 
congestion based on the equation of motion of each vehicle (Bando, M., Hasebe, K., Nakayama, 
A., Shibata, A., & Sugiyama, Y., 1995) (Komatsu, T. S., & Sasa, S.-i, 1995). The simulated 
model can observe the evolution of traffic congestion with the elapse of time. However, with this 
approach, the model performance might deteriorate with an increase in the number of vehicles. 
The deep learning-based congestion analysis (Wan, J., Yuan, Y., & Wang, Q., 2017), (Ma, X., 
Yu, H., Wang, Y., & Wang, Y., 2015) and related studies, such as traffic congestion detection 
and prediction (Bauza, B., & Gozalvez, J., 2013) (Kurniawan, J., Syahra, S. G., & Dewa, C. K., 
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2018) (Ma, X., Yu, H., Wang, Y., & Wang, Y., 2015) (Wang, J., Gu, Q., Wu, J., Liu, G., Xiong, 
Z., 2016) (Wang, Q., Wan, J., & Yuan, Y., 2018) and traffic flow prediction (Zhang, S., Yao, Y., 
Hu, J., Zhao, Y., Li, S., & Hu, J., 2019), (Polson, N. G., & Sokolov, V. O., 2017) have also been 
developed to improve the intelligent transportation system. However, to the authors’ knowledge, 
studies on analyzing and predicting traffic decongestion time is limited. Huang et al., 2014 
proposes to predict decongestion time using congestion patterns. However, this method might 
not be suitable for complex crossing scenes due to limited congestion patterns.  
It is often challenging to extract key quantitative information from a complex video scene for 
traffic assessment. Counting vehicles is one way to estimate traffic flow. To provide accurate and 
robust traffic information, deep learning-based vehicle counting is utilized in the proposed 
framework. A rich body of literature in crowd counting has been published recently, and vehicle 
crowd counting methods can be classified into three categories: detection-based counting, direct 
count regression, and density map estimation. Individual detection and tracking-based counting 
algorithms in general are not accurate for dense crowds, and hence, are not well-suited for 
addressing congested scenes (Lee, K., Hong, B., Jeong, D., & Lee, J., 2014) (Li., Y., Zhang, X., 
& Chen, D., 2018). Besides, it also requires bounding annotation, which is a laborious and 
ambiguous process due to the heavily overlapped vehicles. To avoid explicit detection of 
individuals, regression methods (Chan, A. B., Liang, Z.-S. J., & Vasconcelos, N., 2008) (Ge, W., 
& Collins, R. T., 2009) are proposed to estimate the number of people directly from low-level 
features, such as texture, color, and gradient. But their results are less interpretable. Density map-
based methods are currently the most popular approach to crowd counting since its performance 
can be dramatically improved by utilizing spatial information. Density maps are typically 
generated by convolving the dot maps with Gaussian kernels, in which each dot represents an 
object (or a person) in an image (Chan, A. B., & Vasconcelos, N., 2009). Different network 
architectures are designed to handle various challenges, such as the scale changes (Babu Sam, 
D., Surya, S., & Babu, R. V., 2017) (Lempitsky, V., & Zisserman, A., 2010) (Li., Y., Zhang, X., 
& Chen, D., 2018) (Babu Sam, D., Sajjan, N. N., Babu, R. V., & Srinivasan, M., 2018), the poor 
quality of density maps (Jiang, X., Xiao, Z., Zhang, B., Zhen, X., Cao, X., Doermann, D., & 
Shao, L., 2019) (Walach, E., & Wolf, L., 2016), and limited contextual information (Liu, C., 
Weng, X., & Mu, Y., 2019) (Ranjan, V., Le, H., & Hoai, M., 2018) (Xiong, F., Shi, X., & 
Yeung, D.-Y., 2017). 
Almost all research in intelligent transportation systems are conducted for highway intersections. 
There are scarce efforts on analyzing the temporal behavior of the congestion events caused by 
the passing trains at the grade crossing despite their importance in real world. One of the major 
challenges of studying this problem is the lack of traffic congestion data at grade crossings. For 
example, recent advancements in intelligent transportation systems are driven by deep learning 
(Jin, J., & Ma, X., 2019) (Li, Y., 2017) (Lin, Y., Dai, X., Li, L., & Wang, F.-Y., 2018) (Veres, 
M., & Moussa, M., 2019) (Zhao, Z., Chen, W., Wu, X., Chen, P. C., & Liu, J., 2017). Deep 
learning-based methods are data-driven and entail a large number of instances (and data) to 
achieve a relevant performance through end-to-end training (Wu, C., Kreidieh, A., Parvate, K., 
Vinitsky, E., & Bayen, A. M., 2017). This requirement is important because it prohibits it from 
being applied to congestion behavior analysis, decongestion time prediction, and traffic 
condition understanding due to the lack of an extensive dataset consisting of different grade 
crossing scenes and instances for each scene. Another challenge related to this problem is that 
railroad crossing environments vary. Take the scene in Figure 7 below as an example—the 
vehicles can choose to wait until the traffic congestion clears or take an alternative route (turn 
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left), as shown by red arrows in Figure 7. The complex behaviors of each vehicle make the 
traffic behavior and decongestion time even harder to model. Under these circumstances, there 
appears to be a need to propose a comprehensive system for traffic behavior understanding and 
decongestion time prediction at the grade crossing. 

 
Figure 7. A railroad grade crossing scene at the intersection between Catawba Street and 

the Assembly Street in Columbia, SC 
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3. Train Information and Estimated Train Arrival Time Calculation 

The ETA of the approaching train and the estimated total time (ETT) of the whole blockage 
counted from the current time are important for situational awareness assessment and need to be 
shared with the first responders, i.e.,  

 (1) 
where ETP is the estimated time of passing of the train, and can be readily computed using the 
length and the current speed of the train. ETC is the estimated time of clearance (or 
decongestion). The most critical finding from Eq. (1) is that if the notified drivers cannot cross 
the track line before ETA, the total time they have to wait would be ETT regardless of their 
current location. The result, F in Eq. (1) that will be used to predict ETC is nonlinear and will be 
determined through a training process using the self-learning AI engine in an autonomous 
manner. First, ETA and ETP will be evaluated using information from the information shared by 
the railroads, and then the computer-vision-based traffic monitoring system will compute Q and 
ETC by analyzing collected videos at the grade crossing without human intervention. The 
mapping relationship F will be established using the machine learning techniques, such as ANN 
and support vector regression, which will construct a quantitative mapping relationship between 
the estimated time of clearance (ETC) and the traffic intensity Q and the estimate time of passing 
(ETP) of the train. 

3.1 Identify the Potential Crossing 
To develop the proposed system, a  railroad crossing needs to be identified so the railroad can 
share their train information with the research team. Due to many railroad crossings within the 
City of Columbia, a survey was distributed to the first responders as the “Railroad Grade 
Crossing Congestion Condition Assessment.” This survey helped the research team to better 
understand the crossing delay issue to the first responders and identify the most troublesome 
crossing in town. A complete survey form and the results are attached in Appendix A and 
Appendix B. Based on the number of responses from the survey. three crossings: CSX 634647A, 
634632K and 634630W, located on Assembly Street, were identified as the potential crossings to 
monitor.   

3.2 Information Shared by the Railroad 
Once the grade crossings had been identified, CSX provided the relevant train information. As 
mentioned earlier, instead of directly communicating with the PTC system, which is still under 
development, CSX extracted the information needed for this study—train location, operation 
speed, and train length. The information was passed directly to the research team, and sample 
data is shown in Figure 8, while sample train length data is shown in Figure 9. Please note all the 
train information shown in this report has been modified to not reflect the actual information per 
the request from CSX due to security reasons. The system was developed based on the true data 
shared by CSX.  

https://docs.google.com/forms/d/e/1FAIpQLSe1Epxurmtb_c_y7EM7xi1kLUNr9kZPuHb8CXTdqCJmBNp9ZQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSe1Epxurmtb_c_y7EM7xi1kLUNr9kZPuHb8CXTdqCJmBNp9ZQ/viewform
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Figure 8. Sample train location, speed, and GPS information 

 
Figure 9. Sample train length information 

It was relatively simple to calculate the estimated arrival time of any train once the GPS location, 
the train speed, and the train length were known. Note the train information was dynamically 
updated; thus, the calculated estimated arrival time and departure time were also updated based 
on the newest information received. 
The estimated arrival time can be calculated as: 

Estimated arrival time =  (2) 
Once a train has reached a certain crossing, that crossing is blocked until the entire train passes 
that crossing. The time the entire train passes a crossing is defined as the estimated departure 
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time. To estimate departure time by train, one needs both the train length and speed and 
calculated the time with the equation below: 

Estimated passing crossing time by train =  (3) 
An example of calculated train arrival time of the selected crossings are given in Figure 10. 

  
Figure 10. Example of the calculated estimated train arrival time 

3.3 Graphic User Interface Development 
Although the calculated train arrival time is a valuable reference for a dispatching center, it is not 
very intuitive. Especially when there is an emergency call, more information may overwhelm the 
dispatcher to make the best decision. Thus, a graphic user interface (GUI) was developed for this 
project.  
Based on GoogleMapPlotter package, new features have been implemented to display train and 
the three selected crossing locations on Google Maps. A pop-up information window on Google 
Maps with train estimated arrival and departure times for each crossing will be shown once a 
new train enters the area of interest, as shown in Figure 11. The green label denotes train location 
at a certain timestamp and the red labels denote the three crossings. The fist value in the 
information box is estimated arrival time and the second value is estimated departure time. For 
example, (09:26:12, 09:31:25) means train CSXT934 is expected to arrive at the crossing at 
09:26:12 and depart at 09:31:25. The GUI may help first responders better understand the 
estimated delay and make a better decision accordingly. 
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Figure 11. Example GUI pop-up window to show the crossing and train locations 

3.4 Train Trajectory and Estimated Arrival Time for Other Crossings 
For this project, only three crossings were selected for developing the system. However, it is 
possible to extend the information to construct the train trajectory and calculate the estimated 
arrival time for other crossings or any locations for future transportation planning. 
To make the best use of the train information shared from the industry partner, the 
GoogleMapPlotter Python package was further customized by creating another Python drawing 
script. This script can read the updated train longitude and latitude information from the file 
shared from CSX and display train location on Google Maps under each timestamp (each small 
red dot is the train location when last updated). By showing all the locations of a specific train, it 
is easy to see the train trajectory and predict the direction the train. Thus, future crossing 
blockages along the route can be estimated. Figure 12 and Figure 13 give two examples of the 
reconstructed train route. Again, the information could be used for proactive traffic planning 
ahead of a crossing blockage instead of rerouting the highway during the blockages. 
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Figure 12. Example train movement route on November 4, 2020 

 
Figure 13. Example train movement route on November 4, 2020 
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4. Traffic Monitoring and AI-based Decongest Time Calculation 

4.1 Traffic Monitoring Site and Video Collection 
The test grade crossing in this research is located at the intersection of Catawba Street and 
Assembly Street in Columbia, SC, near the University of South Carolina campus (Figure 14). 
Traffic video data was collected using the COUNTcam2 traffic recorder provided by the City of 
Columbia, and the surveillance camera was installed on a power pole. A total of 96 hours of 
video records were collected in two sets, from 10:44 a.m., November 19, 2019, to 10:44 a.m. to 
November 21, 2019 (dataset 1), 12:03 a.m., December 3, 2019, to 12:03 a.m. December 5, 2019 
(dataset 2). The camera’s battery allows it to continuously monitor the traffic for up to 50 hours. 
Note that incoming trains do not follow any specific schedule. Therefore, the time of a train 
approaching the selected crossing in this study was random, which is typical for most of the 
crossings. In the future, a telecommunication unit facilitating communication with the onboard 
PTC system will be integrated with the camera to automatically trigger the video recording when 
a train is approaching the crossing. 

 
Figure 14. Site of grade crossing at Columbia, SC (map data: 2019 Google maps) 

Figure 15(a)(b) show two examples of collected data under the normal and congested traffic 
conditions, respectively. In the former, the vehicles cross the grade crossing continuously with a 
relatively constant spacing; while in congested traffic, vehicles were stopped in front of the 
crossing gate due to a passing train. Vehicles could either wait until the train completely passed 
or take an alternative route by turning left (as shown by the black sedan at the right of the figure). 
Correspondingly, the number of vehicles would be different under the normal and congested 
conditions. 
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(a) (b) 

Figure 15. Examples of collected data during normal and congestion traffic condition. (a) 
Normal traffic condition (NTC); and (b) congested traffic condition when a train was 

passing 

 
Figure 16. A schematic of congestion based on the variation in the number of vehicles 

Based on these observations, a mathematical model is proposed to decipher and assess the 
temporal behavior of the traffic condition and the number of vehicles at the grade crossing as 
shown by the bold curve in Figure 16, which then can be used to estimate decongestion time. 
Figure 16 shows that when the train arrives and the grade crossing gate lowers, all the vehicles 
yet to pass the gates will slow down and eventually stop, leading to traffic congestion. As a 
result, the vehicle number in front of the gate will increase, which will continue during the entire 
period of the train’s passing. Once the train completely passes through the grade crossing and the 
gate rises up, the vehicles at the front of the queue will move first and the congested traffic starts 
to be cleared. The process of decongestion will continue until the traffic flow returns to the 
normal condition, viz., the number of the vehicles in the images becomes similar to that prior to 
the congestion event. Therefore, as revealed by Figure 16, the ETT of a congestion event 
includes two parts: the ETP and the estimated time of decongestion (ETD), i.e., Eq. (4). 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸.   (4) 
Normally, the time of train passing is difficult to predict unless the dispatch center of the railroad 
company shares train operation information. Such a platform of information sharing, however, is 
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currently unavailable and will be developed in this project’s future work. Therefore, in the 
present research, the ETP is estimated by detecting the moving train in the recorded videos.  
The ETD is defined as the period between the time when the train completely transits the grade 
crossing and the time when the traffic returns to the normal condition. The present research aims 
to establish a mathematical model for predicting the ETD that needs to be shared with first 
responders the moment the train passes through the grade crossing (or the crossing gate raises 
up) for their situational assessment and decision-making. The research team hypothesizes that 
the ETD may follow a predictable pattern F and depend on two parameters, i.e., the NTC and 
ETP, where the NTC represents the number of vehicles on the road before the train arrives, i.e., 
the NTC at the grade crossing. It will take more time to decongest the accumulated traffic if the 
normal traffic is busier (e.g., rush hours) and/or the ETP is longer, because both contribute to 
more serious vehicle blockage (but to different extents). The relationship F can be expressed as 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐹𝐹(𝑁𝑁𝐸𝐸𝑁𝑁, 𝐸𝐸𝐸𝐸𝐸𝐸) (5) 

4.2 The Proposed System for Decongestion Time Estimation 
The proposed system and the specific methods to model the NTC, ETP, and ETD are discussed 
in this section. The constructed models can then be used for predicting ETD. As show in Figure 
17, the proposed system includes two stages:  

(1) The offline model generation stage. In this stage, ground truth (GT) values of the NTC, 
the number of vehicles during non-normal traffic condition (NNTC) (i.e., during 
congestion), ETP and ETD, are manually extract from recorded video clips. The GT-
NNTC is found by counting the number of vehicles during congestion events. The GT-
NTC is obtained by averaging the number of vehicles in each frame before the train 
arrives or the frame without a congestion event at all. The GT-ETP, i.e., the black arrow 
labeled “1” in Figure 16, is directly observed from the video. To obtain the GT-ETD, the 
GT-NTC and GT-ETP are employed to measure the period between the moment the train 
leaves the ROI and the moment the traffic condition returns normal during a congestion 
event, i.e., the black arrow labeled “2” in Figure 16. With these GT data, three models are 
built during the offline stage, including (i) the deep convolutional neural network (CNN) 
for vehicle crowd counting, which is trained using GT-NTC and GT-NNTC. Note that a 
large amount of vehicle traffic data (including before and during the congestion or 
without congestion at all) is available to train the deep CNN; (ii) the train detection 
model built by the running average-based motion detection using GT-ETP; and (iii) the 
ETD prediction model to establish the relationship F between GT-ETD and (GT-NTC, 
GT-ETP) in Eq. (5). Due to data deficiency (30 congestion events in this study), it would 
be a formidable task to build a DNN model; instead, a multi-variate polynomial 
regression model is constructed to fit the extracted values. Note that the present method 
combines different image analysis and modeling approaches to tackle the challenge 
associated with the limited data of congestion events; such a hybrid method is different 
from the solely end-to-end deep learning and represents the most tangible novelty of the 
present study. 

(2) The online testing stage using the offline generated to predict the ETD. In this stage, 
the two quantitative features – the NTC and the ETP – need to be attained in an 
automated manner without human intervention. Specifically, the deep CNN and the train 
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motion detection model constructed offline are used to count the number of vehicles at 
the NTC and the ETP in the images, both were used as the inputs of the regression model, 
i.e., F to predict the ETD. 

 
Figure 17. Proposed learning-based method for decongestion time prediction 

4.2.1 Image Preprocessing 
As shown in Figure 15, the images captured from the designated grade crossing contains a 
variety of information, including the lanes, railroad, trees, buildings, and parking area. The 
irrelevant background could degrade the model performance without preprocessing on the 
original imagery data. For example, the railroad is located at the upper left corner of the image, 
and will be analyzed by the motion detection algorithm to evaluate ETP, which might be 
influenced by moving vehicles on the lane. Moreover, changes in illuminating conditions and 
shadows of buildings and/or trees would also compromise the detection performance. Thus, an 
image preprocessing step that marks the ROIs and appropriately processes the raw images is 
necessary. Figure 18(a)(b) presents an example of the captured raw frames at the grade crossing 
and its corresponding ROI in the lane area, respectively. Note that the whole lane area is labeled 
as the ROI for the offline training of the deep CNN, since as many instances as possible are 
needed to improve the model. While extracting NTC for decongestion time estimation in the 
online stage, the ROI is limited to the left lane because it is adequate for studying the congestion 
event. 
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(a) (b) 

Figure 18. Image preprocessing: (a) Raw images of the grade crossing from camera feed; 
and (b) Region of Interest (ROI) for the offline training at the grade crossing 

Another preprocessing step is to mark the railroad area as the ROI, which only contains the trains 
without other moving objects and is then used to evaluate ETP. Figure 19 illustrates two 
candidate ROIs for the railroad area, although there might be other choices. In this work, ROI 2 
is selected since it minimizes the effect of background changes on train detection. In ROI 1 there 
are other moving objects, such as vehicles and pedestrians, and the motion detector might falsely 
count them as the moving train, leading to overestimation of ETP. In contrast, the background of 
ROI 2 is free of external disturbance and is stable. 

 
Figure 19. Two candidate ROIs for train passing time estimation 

4.2.2 Vehicle Counting for NTC Estimation 
Vehicle counting is an important component of the proposed framework, and it produces a key 
quantitative feature (i.e., the NTC), in a given frame for modeling and predicting the ETD. As 
mentioned, the deep CNN-based vehicle crowd-counting has three options: counting by 
detection, by regression, and by estimation of the density map. In this work, the density map 
approach was adopted. 
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(a) (b) 

Figure 20. Example of a grade crossing frame and its corresponding density map 

Density map estimation needs a set of annotated images, where all the vehicles are marked by 
dots. In this scenario, the GT density map 𝐸𝐸𝐼𝐼 for an image 𝐼𝐼, is defined as a sum of Gaussian 
functions centered on each dot annotation, 

    (6) 

where 𝑁𝑁(𝑝𝑝; 𝜇𝜇, 𝜎𝜎) represents a normalized 2D Gaussian function, with standard deviation 𝜎𝜎, 𝐾𝐾𝐼𝐼, is 
the set of 2D points annotated for image 𝐼𝐼, and 𝑝𝑝 is the pixel position. Unlike the geometry-
adaptive kernels used in the literature, the research team used the fixed standard deviation value 
𝜎𝜎= 5 considering the relatively small number of objects in the scenes. With a density map 𝐸𝐸𝐼𝐼

𝐺𝐺𝐺𝐺, 
the total object count 𝑀𝑀𝐼𝐼

𝐺𝐺𝐺𝐺 can be directly obtained by integrating the density map values in 𝐸𝐸𝐼𝐼
𝐺𝐺𝐺𝐺 

over the entire image: 

   (7) 
Figure 20(a)(b) show an example image at the grade crossing and its corresponding density map. 
Given the input image and the density map, a deep CNN architecture is constructed to learn the 
nonlinear mapping relationship 𝐻𝐻. Once trained, model 𝐻𝐻 takes an image 𝐼𝐼 as an input, and 
returns an object density map prediction  , 

 (8) 

where 𝜔𝜔 is the set of model parameters. 



 

26 

 
Figure 21. Architecture of deep CNN for density map estimation 

The CSRNet was adopted for density map estimation, and its architecture is shown in Figure 21. 
The convolutional layers’ parameters are denoted as “Conv(kernel size)-(number of filters).” The 
pooling layers are conducted over a 2 × 2 pixel window with stride 2. The front-end part of the 
model uses normal convolution, the back-end part use dilated convolution with a dilation rate of 
𝑟𝑟 = 2. The CSRNet contains a front-end network and a back-end network. The VGG-16 network 
was chosen as the front-end because of its strong transfer learning ability and its flexibility for 
easily concatenating the back-end to generate the density map. Similar to the configuration of the 
CSRnet, the front-end network in this work has 10 convolutional layers, and each convolutional 
layer has a 3 × 3 kernel. Note that there are three max-pooling layers in the front-end, and 
therefore the output size of the front-end network is 1/8 the original input size. To avoid further 
shrinkage of the density map size, CSRNet employed dilated convolutional layers as the back-
end for extracting deeper information of saliency and maintaining the output resolution. A 2D 
dilated convolution can be defined as follows: 

 (9) 

where 𝑂𝑂(𝑚𝑚, 𝑛𝑛) is the output of dilated convolution from the input and a filter 𝑥𝑥(𝑚𝑚, 𝑛𝑛) and the 
filter has a length and a width of 𝑀𝑀 and 𝑁𝑁, respectively. The parameter 𝑟𝑟 is the dilation rate, 
where 𝑟𝑟 = 1 indicates that dilated convolution turns into normal convolution. 𝑟𝑟 = 2 is chosen in 
our work. In the end, a 1 × 1 convolutional layer is added as an output layer to generate the 
density map. 
The Euclidean distance is chosen to measure the difference between the GT and the generated 
density map. The loss function is given as follow: 

 (10) 

where 𝑁𝑁 is the size of a training batch and 𝐸𝐸𝑖𝑖𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 is the density map predicted by the DNN 
model, and 𝐸𝐸𝑖𝑖𝐺𝐺𝐸𝐸 is the true density map of the ith input image. To train this network, the pre-
trained VGG-16 model was used to initialize the front-end network. For the rest of the layers, the 
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initial values came from a Gaussian initialization with a standard deviation value of 0.01. 
Stochastic gradient descent was applied with a fixed learning rate of 𝑝𝑝−7. 

4.2.3 Estimated Time of Train Passing 
Given the marked ROI of the railroad, the next task was to extract another important feature: the 
ETP. Due to the limited data of congestion events, it would be challenging to adapt or retrain a 
DNN for train detection and tracking for two reasons: first, it normally requires a diverse set of 
annotated data associated with different congestion events; and second, the well-trained models 
that could be fine-tuned to solve the ETP estimation problem in this scenario is indeed scarce. 
Therefore, project researchers proposed an economic motion detection model to estimate the 
ETP, which has a lower data requirements and circumvents the need for data annotation or a 
training process. 
The acquired videos recorded the duration of the train presence during a congestion event, 
including the train approaching, passing, and leaving the scene. Hence, the research team defines 
the ETP as the time interval between the two instants the train appeared and vanished in the ROI. 
As discussed above, the selected ROI had a relatively stable background compared to the road, 
and the train presence could be detected by measuring the difference between two frames, which 
then could be used to estimate ETP. The idea was to construct a background model, and then 
identify pixels in the current frame that differed from those in the background to indicate the 
presence of the train. Therefore, the quality of the background model dictated the accuracy of the 
ETP estimation. The analysis shows that the use of a single stationary image as the background 
yielded poor performance due to the changes in illuminating conditions at two different time 
scales and the extremely slow-moving trains. In the short time scale, i.e., during the period when 
the train passed through the grade crossing, the instantaneous changes in the pixel intensity 
between two neighboring frames, e.g., signal impulse and drift in pixels could be caused by the 
varying illuminating conditions due to reflection and refraction of vehicles on the road and the 
shade of an approaching train. In the long term, the illuminating conditions vary with the time of 
the day, due to the sun orientations, cloud, and other conditions. Therefore, image preprocessing 
and dynamic background models need to be developed to address these issues.  
To mitigate the effect of the illuminating changes in the short term, the captured video frames 
were first converted from three channels to a single channel, since one channel frame would be 
sufficient for motion detection. Then a Gaussian filter was applied on the grayscale patches in 
the ROI to smooth out the impulse signal caused by the instantaneous illuminating changes: 

 (11) 

where the Gaussian filter 𝐺𝐺2𝐸𝐸 has a 9 × 9 kernel, the 𝐴𝐴, and 𝐴𝐴𝑔𝑔 is the corresponding input and 
output image. This process smooths the ROI patch and improves the image quality for motion 
detection. Then, a dynamic background based on the running average of the previous frames was 
employed to further tackle the problem due to the short-term drift of light intensity, i.e., 

   (12) 
 

where 𝑅𝑅(𝑡𝑡) is the running average, 𝐴𝐴𝑔𝑔(𝑡𝑡) is the frame being added to the running average. The 
current running average at the time (i.e., $t$) is the weighted sum of the running average at 𝑡𝑡−1 
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and the current frame 𝐴𝐴𝑔𝑔(𝑡𝑡). 𝑅𝑅(𝑡𝑡) might look similar to the current frame since it incorporates 
the current frame into the background model. Different from the Gaussian filtering, Eq. (11) 
smooths the data in the time to further reduce the drift in illumination when the train is passing 
through the grade crossing. Thus, 𝑅𝑅(𝑡𝑡) represents a short-term, dynamic background updating, 
which reflects the instantaneous image characteristics near the current frame. 𝛼𝛼 is a parameter 
that decides how much weight should be assigned to the new frame: a large 𝛼𝛼 value will reduce 
the difference between the current frame and running average. The parameter 𝛼𝛼 was set to 0.1 in 
the experiments. 

  
(a)  (b) 

Figure 22. (a) Gray-level image of the frame and (b) threshold the absolute difference 
between the smoothed frame and the running average to yield the binary map 

Pixels in the current frame that show distinction from the background are identified by 

   (13) 

Where 𝐸𝐸(𝑡𝑡) is the difference between the current frame 𝐴𝐴𝑔𝑔(𝑡𝑡) and the running average 𝑅𝑅(𝑡𝑡). A 
threshold value of 20 is applied on the 𝐸𝐸(𝑡𝑡) to classify the pixels into the moving object and the 
background, as shown by the binary motion map in Figure 22. Figure 23(a) shows the ratio of the 
motion pixels in ROI over time. The original fractions (blue curve in the Figure 23) are the ratio 
of the detected motion pixels to the overall pixels in the ROI. The smoothed fractions (orange 
curve in the Figure 23) are the result of averaging the original fraction value with five previous 
fraction values, aiming to reduce the effect of impulse noises. The research team denoted the 
smoothed fractions as $t$. As shown in Figure 23, the GT of the train passing time of the 
example is from frame No. 100 to No. 717. A threshold line in green with a value of 0.025 is 
drawn in the figure to separate the frames with the low and the high ratio of motion pixels. Note 
that the threshold value is an empirical parameter and dependent on specific grade crossings. 
Thus, the ETP can be estimated by counting the number of frames, whose fraction of motion 
pixels is above the threshold line. However, the example in Figure 23(a) clearly shows that this 
fraction value for frame No. 150 to No. 650 is much lower than the threshold line, although the 
train is indeed present in the image. In real application scenarios, the train might move extremely 
slowly or even stop at the grade crossing. Then the detector that only consider a few previous 
frames would not work since no moving objects are detected in the ROI. 
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(a)      (b) 

Figure 23. Fraction of motion pixels over time. GT and ETP mean the ground truth and 
estimated train passing time; (a) motion difference is calculated by Eq. 10, and (b) motion 

difference is calculated by Eq. 12 

An explicit approach to resolve this problem is to compare the current frames 𝐹𝐹𝑔𝑔(𝑡𝑡) with another 
background image that does not contain the train, and this background is termed the offset 
background hereafter to distinguish from the short-term background above. However, the offset 
background varies with the time of day and the weather condition, such as sun orientation, cloud, 
etc., i.e., the long time-scale effect of the illuminating conditions. Therefore, to accommodate 
this, the offset background 𝐵𝐵(𝑡𝑡) also needs to be updated by the running average around the 
clock when the scene does not contain a train. As an initial condition 𝑡𝑡 = 0, assume there is no 
train in the ROI and set 𝐵𝐵(0) = 𝐴𝐴𝑔𝑔(𝑡𝑡), and then 𝐵𝐵(𝑡𝑡) is updated by adding the current frame 
𝐴𝐴𝑔𝑔(𝑡𝑡): 

𝐵𝐵(𝑡𝑡) = [𝐵𝐵(𝑡𝑡) + 𝐴𝐴𝑔𝑔(𝑡𝑡)]/2,   (14) 

Note that operation in Eq. (11) will be performed only if the previous fraction 𝐸𝐸(𝑡𝑡−1) < 0.01, 
where 0.01 is an empirical parameter. One special circumstance is that the train is not present in 
the frame at 𝑡𝑡−1, but appears in the frame 𝑡𝑡, then the train-contained ROI patch will be added to 
𝐵𝐵(𝑡𝑡). In fact, this would not affect the offset background significantly, since the faction 𝐸𝐸(𝑡𝑡) 
would become larger than 0.01, and no more train-contained patch after 𝑡𝑡 will be added to 𝐵𝐵(𝑡𝑡). 
In other words, the offset background is only updated during NTCs without congestion, and 
becomes “frozen” when a train is passing. Compare to the background 𝑅𝑅(𝑡𝑡) in Eq. (12), which 
only considers the short-term changes in illuminating conditions near the current frame; the 
offset background 𝐵𝐵(𝑡𝑡) considers the long-term environmental variation before the train arrives. 
Eventually, those two backgrounds are combined for calculating the motion difference. The new 
difference for motion detection is written as: 

𝐸𝐸(𝑡𝑡) = (1 − 𝛽𝛽)|𝐴𝐴𝑔𝑔(𝑡𝑡) − 𝑅𝑅(𝑡𝑡)| + 𝛽𝛽|𝐴𝐴𝑔𝑔(𝑡𝑡) − 𝐵𝐵(𝑡𝑡),  (15) 

where 𝛽𝛽 is a weight parameter ranging from 0 to 1. Note that 𝛽𝛽 is an empirical coefficient and 
depends on the specific grade crossing and camera location and orientation relative to the rail, 
which needs to be determined during the calibration stage of the system. Here researchers chose 
𝛽𝛽 = 0.3. 

Figure 24(b) shows the fraction ratio of the motion pixels in each frame over time. In this figure, 
the offset background patch was applied to detect the motion pixels. The value of the fraction 
ratio in Figure 24(b) was larger than the fractions in Figure 24(a), indicating the moving train 
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was detected in the ROI. By incorporating the offset ground, the frames even with slowly 
moving trains could be easily distinguished from the background frames subjected to the 
threshold value. Specifically, the ETP time predicted by the proposed method was 620 
seconds—very close to the ground truth value 617 seconds. 
Algorithm1: Proposed algorithm for the train passing time estimation.  

1. Mark the ROI for railroad area.  
2. For {t = 1:N} do \%\% $N$ is the number of frames  

a. Convert the frame to one channel (gray scale). 
b. Smooth the gray scaled image with a Gaussian kernel using Eq. 11. 
c. Develop a model of background by running average of the previous frames and current  

frame; see Eq. 12. 
d. Develop an offset background model by updating the frames during NTCs; see Eq. 14. 
e. Identify the overall difference using Eq. 15, then calculate the original fraction value.  

f. Smooth the original fraction value to obtain the averaged fraction 𝐸𝐸. 

3. End For 
4. Threshold the smoothed fraction curve, and calculate the train passing time. 

Algorithm 1 summarizes the entire process of the ETP estimation. Lines 3 and 4 describe the 
preprocessing step for each input frame. Lines 5 and 6 establish the background model 𝑅𝑅(𝑡𝑡) and 
the offset background model 𝐵𝐵(𝑡𝑡), where both the short-term illumination changes and long-term 
environmental variations are taken into consideration. Line 7 and 8 identify the motion 
difference and calculate the smoothed fraction of motion pixels. In the end, line 10 calculates the 
ETP by counting the number of frames above the threshold line. 

  
(a) (b) 

Figure 24. Fraction of motion pixels over time. GT and ETP mean the ground truth and 
estimated train passing time; (a) motion difference is calculated by Eq. 10, and (b) motion 

difference is calculated by Eq 15 

4.2.4 Estimated Time of Decongestion 
As shown in Eq. 2, the ETD depends on the estimated number of vehicles in the NTC before a 
train arrives (i.e., the NTC) and the ETP. A model that can learn the relationship 𝐹𝐹 between these 
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three parameters needs to be built. There are plenty of techniques to determine 𝐹𝐹, such as the 
regression model and the neural network. In this report, the regression model is selected for the 
following reasons. First, the mapping relationship 𝐹𝐹 is relatively simple and only involves two 
inputs (NTC and ETP) and one output, while neural networks are normally used for more 
complex problems. Second, the regression features a simple model structure and algorithm (i.e., 
least squares) that requires less data for modeling and is more effective for mitigating the data 
deficiency issue associated with a limited number of the congestion events in the present study. 
Third, the neural network has more hyperparameters to determine before training, such as the 
number of layers and the number of neurons in each layer, in order to mitigate the risk of 
overfitting and improve model accuracy, which in general is not required for the regression 
model of a low-order polynomials with fewer inputs. Last, the computing requirements for the 
regression model is much lower, rendering it well-suited for estimation and prediction in real-
time on cost-effective edge computing platforms. More specifically, a quadratic polynomial 
regression form that takes the ETP and NTC as the inputs and the ETD as the output is adopted 
to capture the mapping relationship 𝐹𝐹, i.e., 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑎𝑎∙𝑁𝑁𝐸𝐸𝑁𝑁2 + 𝑏𝑏∙𝐸𝐸𝐸𝐸𝐸𝐸2 + 𝑐𝑐∙𝑁𝑁𝐸𝐸𝑁𝑁∙𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑝𝑝∙𝑁𝑁𝐸𝐸𝑁𝑁 + 𝑝𝑝∙𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑓𝑓  (16) 

where the variables from 𝑎𝑎 to 𝑓𝑓 are regression parameters, which are determined by the least 
squares methods. Once fitted, Eq. (16) can be used for the ETD prediction. Note that due to the 
lack of the information of the train operation, it cannot predict the ETD if the train is still passing 
the grade crossing. Therefore, as indicated by Figure 16, the ETD should be evaluated at the 
moment the crossing gate raises up or the train just passes through the railroad ROI. Thus, the 
ETP can be estimated accurately using the motion detection algorithm in Section 4.2.3.  

4.3 Results and Discussion 
This section presents the experimental details and evaluation results using the collected imagery 
dataset at the designated grade crossing. The performance of the deep CNN-based vehicle 
crowd-counting algorithm for the NTC assessment is first evaluated, and the quantitative error is 
measured using a standard mean absolute error (MAE) metric. Secondly, the train motion 
detection algorithm to estimate the ETP is examined by comparing the prediction results with the 
ground truth. Finally, the prediction of the ETD in the congestion events using the regression 
model and the extracted quantitative features is verified. 

4.3.1 Experimental Results of Vehicle Crowd Counting 
The performance vehicle crowd counting is characterized in this section. The dataset contains 
1,000 annotated images for nearly 20,000 vehicles. MAE was used as the metric for assessing the 
performance: 

 (17) 

where 𝑀𝑀𝑖𝑖𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 is the model-predicted vehicle number, and 𝑀𝑀𝑖𝑖𝐺𝐺𝐸𝐸 is the vehicle count from human-
labeled annotations. Note that 𝑀𝑀𝑖𝑖𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 predicted by the DNN can take a continuous number while 
the ground truth is always an integer. MAE is an indicator of the accuracy of the predicted 
vehicle count across the test frames. Extensive experiments are conducted, and the dataset is 
divided into three parts: training, validation, and testing sets. The training set has 700 images, 
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with the validation set and the testing set containing 150 images each. The pre-trained VGG-16 
model is used to initialize the front-end network, while the remaining part of the model is 
initialized by a Gaussian kernel with a standard deviation value of 0.01. A stochastic gradient 
descent optimizer with a fixed learning rate 1 × 𝑝𝑝−7 is employed to update the model. The mask 
of the ROI is applied to each image in the dataset. 

 
Figure 25. Comparison of density map between model prediction and GT. Top row: 

Sample input image from the grade crossing dataset with ROI. Second row: GT. Third 
row: Estimated density map 

Figure 25 illustrates four example images with the increasing number of vehicles in the scene 
(from the left to the right of the figure), and the comparison between the ground truth (the second 
row) and the predicted density map (bottom row). Note that the CSRNet has three max-pooling 
layers, which means that the output size of the front-end network is 1/8 of the original input size. 
Thus, the target density map needs to be resized to keep consistent with the original image, 
leading to the less smooth density distribution in the output image. The model-predicted density 
maps followed the spatial distribution of the vehicles visually, and matched the ground true very 
well. The MAE errors of the four examples were all less than one (and 1.16 vehicle across the 
test set), confirming that the model based on the CSRNet was accurate for vehicle crowd 
counting in the grade crossing being considered. 

4.3.2  Experimental Results of ETP Estimation 
The proposed motion detection algorithm to evaluate ETP was examined using test dataset 
collected during 30 congestion events. The captured video clips had a frame rate of 24 frames 
per second. Due to the slow-moving nature of the train in several congestion events, the 
difference between the adjacent frames was too small to detect. Moreover, running the 
algorithms on every single frame required more computing power and might not meet the 



 

33 

requirement of real-time processing in our future efforts. Thus, video clips were downsampled 
by extracting 1 out of every 24 frames. In other words, only one frame was processed in each 
second—greatly reducing computational loads and improving the detection efficiency without 
compromising the predication accuracy because the ETP was typically at the magnitude of 
minutes and even tens of minutes. Figure 26 presents six examples of the testing result with GT 
and ETP provided in each case. The ETP value was calculated by counting the frames of the 
smoothed fraction curve that exceeded the threshold value of 0.025 in all the cases. The ground 
truth and estimated ETP are provided in each sub-figure, and the average MAE of the ETP in 
these six examples was 5.83 seconds (and 8.42 s across the entire testing dataset), indicating that 
the proposed algorithm produced fairly good estimations. In Figure 26(c)and (f), impulse noise is 
observed near frame No. 50 and frame No. 25, respectively, which may be attributed to the 
sudden change of the illumination intensity or the vibration of the camera. Fortunately, the 
duration of the impulse noise was very short, and smoothing the original fraction curve could 
dramatically alleviate its effect on ETP estimation. 

 
Figure 26. Fraction of motion pixels within the ROI over time for evaluating ETP 

4.3.3 Experimental Results of ETD Prediction 
In this section, the traffic behavior of the vehicle numbers during the congestion events and its 
dependence on the ETP is analyzed. The results of extracting the ETD are presented, and the 
performance of the proposed framework for ETD regression and prediction using the two 
quantitative features, i.e., the NTC and the ETP, is characterized. 
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Figure 27. Variation of vehicle numbers against the number of frames 

Prior to discussing the results, the hypothesis proposed in Figure 27 to assess the traffic behavior 
during a congestion event was examined first using the collected imagery data and the deep CNN 
vehicle crowd counting. Six representative congestion events were selected for analysis and 
visualization, among which three had a regular ETP around 120 s, two had a longer ETP over 
300 s, and one extreme case had an ETP over 1,370 seconds. The selected cases had a large 
range of the ETP, which covered almost all the congestion events that occurred at this specific 
grade crossing. Figure 27 describes the variation of the number of vehicles versus the number of 
frames (corresponding to the time) for these six events. The green horizontal dash line 
demonstrates the normal traffic flow obtained by averaging the vehicle numbers predicted by the 
density map before train arrival. The red vertical dash line indicates the moment the train began 
to pass the grade crossing, and the yellow vertical dash line represents the complete transit of the 
train through the grade crossing. The curves in Figure 27(a)–(e) follow the traffic pattern as 
proposed in Figure 27 during the congestion event. The number of the vehicle increases during 
the time while the train is passing (i.e., between the red and the yellow dash line), and peaked 
near the moment when the gate raised up. Note that the number of vehicles did not increase 
monotonically, indicated by many local variations in the curves. This is mainly because the 
motorists might have taken an alternative route rather than waiting until the train passed through.  
Once the traffic behavior was examined, next the research team analyzed the pattern of the ETD 
and its dependence on the ETP and NTC. Recall that the ETD was defined as the period between 
the moments when the train completely passes through the grade crossing and the traffic returns 
to the normal condition. The team expected it would take a longer ETD to clear the blocked 
traffic if the time of train passing is longer. For the three cases in Figure 26(a)–(c), the ETPs 
range from 100 to 150 seconds, and the corresponding ETD was 31, 40, and 41 seconds, 
respectively. In Figure 27(d)(e), the ETPs increase to nearly 350 s, and as a result, the ETD also 
rose to 48 and 47 seconds, respectively. Those results confirm that the ETD was strongly related 
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to the ETP. However, Figure 27(f) shows a very special scenario, and its traffic behavior did not 
follow the proposed pattern in Figure 27, which can be attributed to the prolonged period of the 
ETP. The train took around 1,370 s to cross the grade crossing, leading to more serious 
congestion that needed 260 s to be cleared. The drastic oscillation in the number of detected 
vehicles reflected the slow-moving traffic and “move-stop-move” behavior. As a result, the 
decongestion time was much longer than in other cases.  

 
(a) (b) 

Figure 28. ETD surface plot and regression result: (a) 3D surface plot using GT-ETP, GT-
NTC, and GT-ETD; (b) regression analysis of ETD 

The data collected in 30 congestion events were separated into training data (23 instances) and 
testing data (7 instances). Given the GT values of the training data (GT-ETD, GT-NTC and GT-
ETP), the regression model in Eq. (13) can be fitted using the training data in the offline stage, 
shown as the 3D surface plot in Figure 28(a). Red dots in the figure is the congestion data point 
for 3D surface fitting. In the online stage, the quantitative features NTC and ETP extracted 
automatically by the deep CNN vehicle crowd-counting and the train motion detection model, 
which are entered as inputs to the regression model for ETD prediction. Figure 28(b) shows the 
comparison of the GT-ETD and the predicted ETD, the training data and testing data are both 
plotted in the figure. The ETD values are obtained by entering the ETP and NTC extracted by the 
proposed system to the regression model. The blue dots are training data for fitting the regression 
model, the testing data is marked in red dots. The prediction performance can be evaluated by 
measuring the distance between the dots and GT line. Note that the unusual cases like that in 
Figure 27(f) with the extremely long ETP and ETD, which cannot be accommodated by the 
proposed hypothesis of the congestion behavior or accurately captured by the model formulation 
in Eq. 16, were not included in the regression model in order not to compromise the model 
accuracy. For instance, MAE of training data, including all the congestion data is 67.23 seconds, 
in which the special case in Figure 27(f), yielded an absolute error of 380.4 s. After removing it, 
the MAE of training data dropped to 19.44 seconds. The fitted regression model was then 
examined with the testing data. As shown in Figure 28(b), the data points are at the vicinity of 
the GT line, quantitatively, corresponding to an MAE of 18.98 seconds, indicating good 
agreement between the predicted and GT results. These observations confirm that the proposed 
framework was able to reliably estimate NTC, ETP and ETD during the online model utilization 
stage. In the future, a more sophisticated model formation and structures including additional 
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factors needs to be developed with more congestion event data to consider the special cases. 
Figure 28 also provides valuable insights to understand the characteristics of decongestion at the 
grade crossing. Most importantly, the ETD increased almost linearly with the ETP. This 
observation is consistent with the common knowledge that more vehicles accumulate in front of 
the crossing gate if it takes more time for the train to pass. Second, the number of vehicles before 
the congestion, obtained by averaging the vehicle counts predicted by the deep CNN model, 
accurately represents the NTC at the grade crossing. Similarly, the ETD also depends on the 
number of vehicles during the NTC, but in a strong and nonlinear fashion, and the nonlinearity 
becomes more apparent at the larger NTC and ETP values, where the ETD rapidly increases. 

4.4 Improve the Existing EDT Model 
In this section, the research team introduces the techniques developed to improve the current 
decongestion time prediction method (Section 4.2) and the specific deep learning models used to 
assist the EDT method to enhance accuracy. The main improvement includes two aspects: 
automatic road ROI generation and anomaly detection-based ETP estimation. 

4.4.1 Automatic Road ROI Generation Using Deep Learning with Attention 
In Section 4.2.2, a deep learning-based method is introduced for NTC value estimation. In this 
method, the road ROI of input images need to be manually labeled before applying vehicle 
counting algorithms. However, it would pose extra challenges for deploying the vehicle-counting 
model at a grade crossing that has been trained. For example, any small vibration of the camera 
caused by bad weather or changes in a camera’s positions after battery replacement requires 
recalibration of the road ROI to ensure correct NTC estimation. To solve this problem, the team 
proposes a U-net architecture with an attention mechanism to estimate the road ROI. The 
architecture of the proposed method can be found in Figure 29. 

 
Figure 29. U-Net architecture with attention mechanism for current frame prediction and 

attention map estimation 
The key goal of U-net is to use attention maps to identify and exploit the effective spatial 
information extracted by CNN to predict the current frame image. This approach is premised on 
the hypothesis that it would be beneficial to identify ROI in the image and enlarge their 
influence, while suppressing the irrelevant and potentially confusing information in other 
regions. Thus, the team studied a trainable attention estimator and developed an approach to 
integrate it into U-Net to improve output prediction. 



 

37 

The road ROI generation takes advantage of the prediction of the current frame. For a given 
input image sequence 𝐼𝐼 = {𝐼𝐼𝑛𝑛−1, 𝐼𝐼𝑛𝑛−2, 𝐼𝐼𝑛𝑛−3, 𝐼𝐼𝑛𝑛−4}, the U-Net model output the current frame 𝐼𝐼𝑛𝑛. 
That is, four previous frames are sent to the network as inputs to predict the current frame. The 
set of feature map  denote as the feature vectors extracted at a given convolutional 
layer 𝑠𝑠 ∈{1,...𝑆𝑆}. Here, each  is the vector of output activations at the spatial location 𝑖𝑖 of k total 
spatial location in a layer. For each of one or more layers 𝑠𝑠, the set of compatibility scores 

, where 𝑔𝑔 is a global image descriptor which is derived from input image 
and passed through a fully connected layer to obtain prediction probabilities. The compatibility 
scores are then normalized by a soft-max operation: 

 (15) 

The normalized compatibility scores  are corresponding to the attention as 
defined. The attention blocks are used after each convolutional blocks, but before their 
corresponding max-pooling operation. Note also that the use of the softmax function in 
normalizing the compatibility scores enforces 0 ≤ 𝑎𝑎𝑖𝑖 ≤ 1 ∀𝑖𝑖 ∈ {1, . . . ,𝑛𝑛} and Σ𝑖𝑖 𝑎𝑎𝑖𝑖 = 1, that is, the 
combination of feature vectors is convex. 
To incorporate attention into the  model, the max-pooling layers were moved after each attention 
block to ensure that the local layers used for estimating attention have a higher resolution. The 
model has 16 convolutional layers, includes 8 encoder layers and 8 decoder layers; the feature 
map 2, 4, 6, and 8 are selected for generating attention, where 𝑔𝑔𝑠𝑠 is calculated by sending 𝐿𝐿𝑠𝑠 to 
another convolutional layer for mapping the feature to the given dimensionality. Figure 30 shows 
the results of prediction and the corresponding attention map generated from attention block 3. 
The attention was mainly localized in the vehicle areas of the input image, indicating that a high 
probability was assigned to those spots via soft-max operation. This is consistent with the 
knowledge that the moving vehicles in the input frames contain a lot of details that makes the 
prediction error higher than other areas—and hence, needs to receive more attention. 
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(a)    (b) 

Figure 30. Predicted image and the corresponding output of attention estimator 3: (a) the 
predicted images and (b) attention map 

The experimental results above demonstrate that the attention block can localize the moving 
vehicles in the predicted frame. By accumulating all the attentions across the frames into a single 
map, a comprehensive road ROI will be generated according to the relative position of attention 
in each frame. Figure 31 shows the generated road ROI map by super imposing the attentions at 
each attention estimator across all the input frames. The road ROI maps become more 
comprehensive with the increase of convolutional layers, and the ROI estimated by attention 3 
can cover almost all the road area. The automatically generated road ROI (from attention 3) can 
be easily combined with NTC model for vehicle counting. 
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Figure 31. Road ROI map generation: (a) ROI road map on attention estimator 1; (b) ROI 

road map on attention estimators 2; (c) ROI road map on attention estimator 3 

4.4.2 ETP Estimation Using Anomaly Detection 
In Section 4.2.3, the ETP estimation using motion detection is sensitive to the change in 
background. Thus, for the ROI labeling to evaluate ETP, it is necessary to exclude as much 
background as possible. Considering that the image data at the NTCs (without the train-induced 
congestion) is available, and therefore, a deep anomaly detection model was developed for 
passing train detection. 
ETP estimation was formulated as a problem of anomaly detection based on the fact that the 
number of train-contained video clips (less than 5 percent of all the videos) were significantly 
less than the normal traffic data. For a given input image 𝐿𝐿𝑡𝑡, the model provided an output image 

, which was the reconstructed version of the input image. The key idea of anomaly detection is 
that the model trained on normal data would generate large reconstruction error if used on 
abnormal data. Thus, the team defines the NTC (without train) as a normal event and a congested 
condition (train passing) as abnormal. An eight-layer convolutional neural network was 
developed for anomaly detection, which contains four encoders and four decoders, as shown in 
Figure 32. 

 
Figure 32. ROI patch for anomaly detection model for ETP estimation 

An appropriate image preprocessing step was required for better detection results. Unlike the 
image preprocessing step introduced in Section 4.2.1, where backgrounds were excluded in the 
ROI, the ROI for anomaly detection-based ETP prediction can include more background areas 
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without influencing the ETP prediction result. Figure 32 shows the ROI patch used for anomaly 
detection. 
To evaluate the reconstruction performance, the MSE was calculated first for each frame, then 
the peak-signal-to-noise ratio (PSNR) was used to measure the normality score: 

 (16) 

Where 𝑀𝑀𝑎𝑎𝑥𝑥𝑓𝑓 is the maximum value of mean square error. Figure 33 gives the normality score for 
four cases where a train enters or leaves the ROI at specific moment. By observing the normality 
curve and ground truth value, researchers selected the threshold value 0.4 to distinguish the 
normal and abnormal frames. They found anomaly detection-based ETP prediction were 
comparable with the motion detection-based method, while the anomaly detection method was 
more stable and robust with the changing of ROI. 

 
Figure 33. Normality score for four test cases where train enters or leaves the ROI at 

specific frame: (a) the ground truth value is (a) train enters ROI at frame 486; (b) train 
leaves ROI at frame 196; (c) train leaves ROI at frame 241; (d) train leaves ROI at frame 

400 
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5. Conclusion 

Railroad crossings may cause unexpected blockages and considerable traffic delays, especially in 
urban areas. There is no established system available to share the potential crossing blockage 
information with the public. Unexpected railroad crossing blockages may cause significant 
difficulties to first responders while they respond to emergencies. This research project aims to 
develop an affordable and field-deployable i-CATSS that can detect and predict highway-rail 
blockages at grade crossings and provide real-time information of traffic conditions to first 
responders. The key findings of the study are: 

1. An information sharing channel has been established between the railroads and the 
system to receive train operation information from the industry partner. The shared train 
information, including GPS locations, train speed, and train length, were used to calculate 
the ETA and the ETD for the monitored railroad crossing. 

2. A survey has been performed with the inputs of the first responders in Columbia, SC, to 
better understand the issues with unexpected congestion at railroad crossings and how 
this type of study can assist them. The crossing of interest in this study was selected 
based on the responses from first responders. 

3. A novel AI model was developed based on video recorded at the crossing of interest to 
automatically detect the number of vehicles waiting in the queue during crossing 
blockages. The AI model operation was automatically triggered by an approaching train 
detected from the surveillance camera. 

4. An adaptive model was developed to predict the total delay time due to potential railroad 
crossing blockages. This information can be shared with the first responders to assist with 
vehicle dispatching and rerouting for rapid situational assessment and decision-making 
during an emergency. 

This study established an information-sharing mechanism between the railroad and first 
responders that depends on the railroads to update their train operation information. It is possible 
to extend this study in the future to directly read PTC signals from the wayside to make the 
system fully automated. 
This study focuses on predicting the total delay time for the grade crossings under monitoring. 
However, to make it more practical, it was necessary to extend the predictions to different 
crossings along the railroad track. First responders could use delay time information collected at 
the blocked crossings en route to the destination to enhance the responsiveness. 
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Appendix A. 
Survey Questionnaire To First Responders 

Part I: Background information  
1. Which department are you serving? 

Police  □ 
Fire  □ 
EMD  □ 
Other   □ 

If “other,” please specify: _______________ 

2. How long have you served?  

 Less than 6 months □ 
 6 months to 1 year  □ 
 1 years to 2 years    □ 
 2 years to 3 years   □ 
 3 years to 5 years   □ 
 5 years to 10 years  □ 
 more than 10 years □ 

3. Have you ever experienced congestion at the railroad crossings due to trains? 

 Yes  □ 
 No (skip 3-8)  □ 

4. How many times on a monthly base? 

 Less than 5     □ 
 5-10      □ 
 10-20 □ 
 20-30   □ 

 More than 30    □ 

5. Typically, how long did you have to wait on average? 

 Less than 5 mins  □ 
 5-10 mins     □ 
 10-20 mins  □ 
 20-30 mins   □ 
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6. The longest time you had to wait: 

 ___________mins 

7. Do you think congestions at railroad crossing is a problem? 

 Yes   □ 

 No   □ 

8. What would you do while experiencing congestion at grade crossing? 
   Make a U-turn  □ 

  Wait the clearance  □ 

   Don’t know what to do □ 

Part II: Please answer question 1-15 based on the experience 
WHILE YOU ARE ON DUTY 

1. Have you ever experienced congestion at the railroad crossings WHILE ON DUTY? 

 Yes    □ 
 No (skip 2-4)    □ 

2. Approximately how many times?  

 Less than 5   □ 
 5-10     □ 
 10-20    □ 
 20-30     □ 
 More than 30  □ 

3. Typically, how long did you have to wait on the average? 

 Less than 5 mins□ 
 5-10 mins   □ 
 10-20 mins   □ 

20-30 mins □ 

4. The longest time you had to wait: 

 ___mins 
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5. Do you think congestions at railroad crossing is a problem for first responders? 

 Yes   □ 

 No    □ 

6. Do you have any way to know the expected delay time due to moving or stopped 
trains? 

 Yes   □ 

 No    □ 

If Yes, please specify: ________________________________________________________ 
_________________________________________________________________ 

7. What would you do while you are waiting at grade crossing? 

    Make a U-turn  □ 

   Wait for clearance  □ 

   Don’t know what to do□ 

8. Which crossing gave you the most trouble (please give the street name) 
 __________________ 

 No   →  END 

9. Do you think it would be helpful to provide first responders the potential crossing 
congestion information while they respond to an emergency?  

 Yes  □ 
 No  □ 

10. Would you like to receive the information of potential crossing congestion from the 
dispatching center while responding to an emergency? 

 Yes  □ 

 No  □ 

11. What specific information do you want to receive from the dispatching center? 
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________ 
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12. Would you like to install an app on your phone that can automatically send 
information of potential crossing congestion while you are on duty? 

    Yes     □ 
    No    □ 

13. Do you think it would be helpful to also notify the public of the crossing congestion 
condition at the crossing during your response to an emergency?  

 Yes     □ 

  No     □ 

14. What specific features do you want to have in this app? 
____________________________________________________________________
____________________________________________________________________ 

15. Do you have any comments/suggestions on the development of real time traffic 
information sharing system for grade crossing? 
____________________________________________________________________ 

______________________________________________________________________________
______________________________________________________________________________
__________________________________________________________________ 
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Appendix B. 
Survey Results 
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Abbreviations and Acronyms 

ACRONYMS EXPLANATION 

AI Artificial Intelligence  
ANN Artificial Neutral Networks 
ATR Automatic Target Recognition 
CBM Condition-based Maintenance 
CNN Convolutional Neural Network 
CV Computer Vision 
CSX CSX Transportation, Inc. 
DBN Deep Brief Network 
ePRO Electronic Police Reports Online 
EMD Emergency Medical Department 
ETA Estimated Time of Arrival 
ETC Estimated Time of Clearance 
ETD Estimated Time of Decongestion 
ETT Estimated Total Time 
ETP Estimated Time of Passing 
FRA Federal Railroad Administration 
GIS Geological Information System 
GPS Global Positioning System 
GT Ground Truth 
GUI Graphic User Interface 
i-CARES Intelligent Camera Aided Railway Emergency System 
i-CATSS Intelligent Crossing Assessment and Traffic Sharing System 
LSTM Long-term Short-term Memory 
MAE Mean Absolute Error 
MTL Multiple-task Learning 
NNTC Non-normal Traffic Condition 
NTC Normal Traffic Condition 
PSNR Peak-signal-to-noise Ratio 
PTC Positive Train Control  
RSIA Rail Safety Improvement Act of 2008 
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ACRONYMS EXPLANATION 
RNN Recurrent Neutral Network 
ROW Rights-of-Way 
USDOT United States Department of Transportation 

 


	Intelligent Crossing Assessment and Traffic Sharing System (i-CATSS)
	METRIC/ENGLISH CONVERSION FACTORS
	Acknowledgments
	Contents
	Illustrations
	Executive Summary
	1. Introduction
	1.1 Background
	1.2 Objective
	1.3 Overall Approach
	1.4 Scope
	1.4.1 Train Information Extraction and Estimated Train Arrival Time Calculation
	1.4.2 Street Traffic Detection and Vehicle Counting
	1.4.3 Artificial Intelligence Model for Decongestion Time Estimation

	1.5 Organization of the Report

	2. Background and Literature Review
	2.1 Positive Train Control System
	2.1.1 Brief History of PTC Development in the U.S.
	2.1.2 Current PTC Implementation Status in the U.S.
	2.1.3 Possible Improvement on PTC for Railroad Crossing

	2.2 Vehicle Detection and Counting
	2.2.1 Object Detection with Deep Learning Networks
	2.2.2 Real-Time Traffic Data Collection via Deep Learning Networks
	2.2.3 Possible Improvement on Vehicle Counting for Railroad Crossing


	3. Train Information and Estimated Train Arrival Time Calculation
	3.1 Identify the Potential Crossing
	3.2 Information Shared by the Railroad
	3.3 Graphic User Interface Development
	3.4 Train Trajectory and Estimated Arrival Time for Other Crossings

	4. Traffic Monitoring and AI-based Decongest Time Calculation
	4.1 Traffic Monitoring Site and Video Collection
	4.2 The Proposed System for Decongestion Time Estimation
	4.2.1 Image Preprocessing
	4.2.2 Vehicle Counting for NTC Estimation
	4.2.3 Estimated Time of Train Passing
	4.2.4 Estimated Time of Decongestion

	4.3 Results and Discussion
	4.3.1 Experimental Results of Vehicle Crowd Counting
	4.3.2  Experimental Results of ETP Estimation
	4.3.3 Experimental Results of ETD Prediction

	4.4 Improve the Existing EDT Model
	4.4.1 Automatic Road ROI Generation Using Deep Learning with Attention
	4.4.2 ETP Estimation Using Anomaly Detection


	5. Conclusion
	6. References
	Appendix A. Survey Questionnaire To First Responders
	Appendix B. Survey Results
	Abbreviations and Acronyms

