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Executive Summary

A research team from Sharma & Associates, Inc. is developing an analytical framework to
understand the mechanisms limiting the life of freight railroad wheels due to rolling contact
fatigue and crack initiation and growth leading to fracture. The research effort comprises two
phases: (I) a framework to develop an advanced railway wheel life model for the crack initiation,
and (II) expanding Phase I and creating the model to simulate crack propagation under developed
wheel operation scenarios. Finally, crack initiation life from Phase I and crack propagation life
cycle from Phase II will be combined to develop the baseline for a North American wheel life
model.

This report describes Phase I work, which focuses on the literature describing mechanisms and
phenomenon affecting wheel life and analytical methods to understand how wheel material
properties, manufacturing process, and mechanical and thermal loads in service — along with the
operating environment — determine wheel life.

Researchers conducted analytical modeling to estimate the residual stresses induced during
quenching and heat treatment, which can delay contact fatigue and crack initiation. They found
that residual stresses reduced tread surface and subsurface stresses due to wheel-rail contact
loads. Although the thermal load under drag-braking, normal service, and emergency stop
conditions introduced significant thermal stresses in the tread and rim areas, the wheel generally
remained in an elastic state, i.e., the beneficial residual stresses developed during the
manufacturing process did not diminish.

However, severe thermal loading conditions, such as when the hand brakes are left applied, can
significantly diminish the beneficial hoop residual stress in the tread and rim and even result in
tensile stresses, depending on the duration and magnitude of the applied hand brake force. Such
loading early in the life of a wheel would tend to promote premature crack initiation and crack
growth on the tread and in the rim.

The team used shakedown theory to predict the conditions for rolling contact fatigue (RCF).
Traction loads generated under heavy braking and during curve negotiation result in the
accelerated shakedown on the tread surface. When longitudinal traction loads occur due to
braking and under curving traction, lateral wheel loads are mostly generated under curving.
Thus, a wheel in railroad service, where high degree curves are frequently encountered, would
experience significant traction loads. These loads tend to be higher when wheel-rail interface
conditions are dry, i.e., with high friction coefficients.

A model to predict RCF crack initiation as a function of wheel load, material strength, traction
coefficient, and hoop residual stress on the wheel tread surface is proposed. Although it cannot
quantitatively determine the fatigue life of the wheel, it can provide the state of wheel condition
indicating potential for RCF crack initiation. Further, the model can be used in a comprehensive
approach to estimate wheel fatigue life and allow improvements in the safety and service life of
wheels.

Phase II will focus on developing the model to simulate crack propagation by including
phenomena such as modeling of metallurgical defects, fluid entrapment, and to estimate crack
propagation life under developed wheel operation scenarios.



1. Introduction

This report describes the first phase of a two-phase project to develop a method for calculating
railway wheel life given the design, manufacturing process, and operating environment.

1.1 Background

Railway vehicles, using steel wheels rolling on steel rails, constitute the most fuel-efficient
transportation system for moving large volumes of goods over long distances. Over time, the
tonnage carried per wheel has increased, thus subjecting the wheel-rail contact area to higher and
higher stresses. These higher stresses have accelerated the problem of rolling contact fatigue
(RCF). From 2000 through 2020, there were 1,051 wheel-related derailments in the U.S. [1], 409
of which were caused by broken wheels (flange, rim, tread, or plate parts of wheel as shown in
Figure 1-1). The majority of these 409 derailments were due to a broken rim, such as a shattered
or vertical split rim — a manifestation of RCF. Wheel tread shells resulting from RCF and other
tread defects such wheel flats result in high wheel impact loads. These loads can range from 2 to
3 times the static wheel load and accelerate wheel failures that annually cost North American
freight railroads $400 million [2].

Rim Back

Rim Edge
Rim Face
Plate (Web)

. Tread
Rim Edge

Flange

Figure 1-1. Anatomy of a railway wheel

Wheel life has improved over the years, despite increased axle loads, owing to RCF research
programs supported by the Federal Railroad Administration (FRA) and the Association of
American Railroads (AAR). However, the consequences of RCF still remain the significant
cause of wheel-related derailments and one of the major rolling stock maintenance cost in North
America. Therefore, there is a need for a comprehensive analytical methodology to understand
and quantify the mechanics and root causes of RCF within the context of North American heavy-
haul practices.

Organizations such as International Heavy Haul Association have published best practices [3] to
reduce RCF in heavy-haul service; the recommendations have been primarily based on test
studies and wheel and rail maintenance practices. An analytical model supported by test results
would provide capabilities to evaluate design and service condition changes to develop improved
maintenance plans and practices to minimize wheel failure.



Several practices can extend wheel life, including the introduction of high-performance wheels,
steering trucks, top-of-rail lubrication units for friction management at curves, track geometry
improvements, and superelevation optimization. However, the estimation of the benefits
resulting from these improvements is not straightforward. A wheel life model envisioned and
pursued in this research effort can provide the critical quantitative information to design safer
and more efficient operating and maintenance strategies.

1.2 Objectives

The overall objective of this research is to develop a framework and analytical model for
estimating life of wheels in North American freight rail service. The objective of Phase I is to
conceptually develop a railway wheel life model and investigate factors leading to RCF and
crack initiation. Identifying the forces and contact environment that delays crack initiation can
lead to developing guidelines for optimum wheel and rail interface management procedures and
safety improvements.

1.3 Overall Approach

The approach for Phase I was to review the published works in the field of wheel RCF, wear, and
crack propagation. The literature search and review allowed researchers to develop a
methodology to estimate manufacturing residual stresses, contact stress under mechanical and
thermal loads and their combination. Finite element analysis (FEA) software was used to
investigate the load conditions that result in stress-state controlling crack initiation and growth
potential due to the wheel tread surface and sub-surface RCF.

1.4 Scope

The scope of this research project includes wheels in freight interchange service in North
America. The wheels are subject to tread-braking. Their material properties conform to the
relevant Association of American Railroads standards.

A typical wheel is used to demonstrate the analytical methods described in this report. The wheel
is Class C with 36-inch diameter.

1.5 Organization of the Report
This report is divided into the following sections:

Section 2 summarizes the relevant literature, including published academic papers, institutional
and industry research reports, and conference proceedings.

Section 3 discusses the wheel manufacturing process, including the heat treatment used to impart
compressive residual stresses to the tread and rim area. It describes an analytical approach to
estimate these stresses.

Section 4 shows the effect of wheel-rail contact forces on the compressive hoop residual stresses
in the wheel.

Section 5 includes analysis of wheel thermal loading due to tread-braking and its effects on the
compressive hoop residual stresses in the wheel.



Section 6 describes the combined effects of wheel-rail contact forces and tread-braking on the
compressive hoop residual stresses in the wheel.

Section 7 discusses shakedown theory and a proposed RCF crack initiation model.

Section 8 gives a conclusion for Phase I and outlines the work planned for Phase II.



2. Literature Review

Wheel performance is controlled and affected by a myriad of factors, as shown in Figure 2-1.
Based on the wheel metallurgy and operating conditions [4] such as truck steering
characteristics, wheel and rail interface coefficient of friction (lubrication practices,
contamination, weather, etc.), track geometry, axle load, speed, route (number and sharpness of
curves, grades, loaded traffic direction, etc.), train handling, brake applications, and track
grinding and profiling practices, the wheel failure mechanism and life can change significantly.

There are specifications for wheel design load, geometry, and properties of the wheel steel
material. Wheels are replaced in service for various reasons, the major ones being wear, fatigue,
and fracture, with well-defined sub-causes as follows:

e Wear: Thin rim, thin flange, high flange, vertical flange, and tread hollow
e Fatigue and fracture: Thermal cracks, rim cracked, rim shattered, and tread shelled

Besides these well-defined phenomena and associated measurable parameters, there are 18 other
causes defined in the Association of American Railroads (AAR) Field Manual [5] for which a
wheel should be taken out of service and replaced, confirming the difficulty of establishing a
universal definition of wheel life. However, the most significant factors affecting the in-service
performance of wheels are as follows:

e Residual stress state from manufacturing

e Material properties

e Wheel and rail profiles

e Wheel-rail contact forces

e Operating environment including speed and braking

There is a significant volume of published material on wheel RCF and wear. A thorough
literature search revealed over 330 articles published in various journals, presented at
international and domestic conferences and in-house research reports, were gathered for this
literature survey. These research articles were sorted into six major categories corresponding to
the most significant factors listed above. Further sorting of these items has been conducted where
a study or investigation was found to cover more than one category. Also, these articles have
been ranked in chronological order to provide a guide as to how the state of research has evolved
and progressed with advances in material properties characterization, failure mode models, and
more computationally-efficient analytical software.

This literature compilation helped in understanding the various modeling techniques used in
wheel life modeling research and to refine the framework for studying wheel failure
mechanisms.

This report focuses on determining (1) the residual stress state in wheels from the effects of
manufacturing and service conditions, (2) wheel-rail contact stresses, and (3) crack initiation
phenomenon induced by RCF. The following sub-sections discuss the published works in these
areas.



Figure 2-1. Wheel life flowchart
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2.1 Residual Stresses in the Wheel

Residual stresses exist in the body of a structure after removing applied loads. For wheels, these
stresses can develop during the manufacturing process and can be controlled to create a stress
state that improves wheel performance.

The initial residual stress can be modified after exposure to service conditions and mechanical
and thermal loads if the loading conditions result in non-elastic stresses due to overload or a
change in material properties such as elevated temperature.

In general, compressive residual stresses help prevent the formation and growth of cracks in the
wheel tread and rim area. Since the residual stresses are not visible and difficult to measure, a
theoretical method is useful to estimate them.

Kuhlman et al. [6] described an analytical model to estimate stresses during the quenching and
tempering of a railroad wheel. In the study, the effects of time-dependent deformation and
temperature-dependent properties on the residual stress were determined. The paper includes the
change in characteristics such as the specific heat and thermal conductivity during material phase
transformation as the temperature of wheel changed. Further, the paper emphasizes that time-
dependent creep significantly affects the circumferential (hoop), axial, and radial residual
stresses.

Gordon et al. [7] conducted a detailed study of the estimation of residual stresses in railroad
commuter car wheels during the manufacturing process with consideration for the time-
dependent creep effect introduced by Kuhlman et al [6]. The effect of carbon content on the
changes in microstructure during transformation was analyzed in detail.

Wang et al. [8] conducted FEA for the heat treatment process of a 36-inches (91.44-cm) Class C
freight wheel. This study evaluated the effects of ideal and non-ideal heat treatment on the
residual stress distribution in a wheel with the time-dependent thermal and mechanical material
properties.

In addition, Wang et al.[8] investigated the effect of thermal load due to tread-braking on the
residual stress level on the tread surface, and included the initial residual stress in the wheel. In
this analysis, the heat treated material properties were considered. They observed that the hoop
residual stress in the wheel tread and rim can change from compression to tension under severe
braking.

Gordon et al. [9] also investigated the effects of service conditions on the residual stress
distribution in commuter car wheels with initial residual stress from the manufacturing process.
The analytical work considered contact loads due to wheel and rail interaction and thermal loads
from tread-braking. The results indicated that the initial compressive hoop residual stress was
reversed to tension. It showed that the predicted depth of tensile residual stress agreed well with
the depth of thermal cracking observed on the wheel.

2.2 Wheel and Rail Contact Stresses

RCF causes premature wheel and rail failures. Repeated application of excessive contact
pressure and shear stresses under traction loads on the wheel and rail surfaces leads to RCF,
which is a combination of multiaxial fatigue and wear mechanisms.



Safety risks associated with RCF in North American freight railways can be mitigated by
implementing the appropriate wheel and rail interface management strategies and operational
practices. With the trend of increasing axle loads, RCF is likely to remain as a major source of
safety risk. Thus, there has been significant research into rolling contact mechanics since the
pioneering works of Kalker [10] and Johnson [11].

The program CONTACT [12] uses the rolling contact mechanics theories of Kalker. It can solve
three-dimensional frictional rolling contact problems to determine the stress-strain environment
in the wheel and rail contact zone [13].

Then, Kalker [14] developed the Future Automotive Systems Technology Simulator (FASTSim)
tool for a simplified theory of rolling contact. A second version of FASTSim was developed by
Vollebregt et al. [15] to obtain more accurate results of contact forces. It is the standard tool for
multibody vehicle dynamics wheel and rail force simulations to determine the wheel-rail contact
creep force.

Lundén [16] and Gordon et al. [9] used FEA to determine the shakedown residual stress states on
wheels for the combined effect of contact forces and braking. Temperature-dependent material
data for a wheel steel were used for both studies. Hertz theory was used for the contact model of
the wheel and rail contact interference. However, while Gordon et al. [9] considered the existing
initial residual stresses induced by the heat treatment process, Lundén [16] assumed the wheel
had no residual stresses. In both analyses, the axisymmetric geometry and loading were assumed,
to reduce modeling complexity and computational time.

2.3 Rolling Contact Fatigue Crack Initiation

Wheel (rim and tread) damage can occur due to both fatigue and wear failure mechanisms. For
railway vehicle wheels, repeated high stresses accelerate RCF. Wang et al.[8], Gordon et al. [9],
Kabo et al. [17], and Ekberg et al. [18] indicated a reduction in protective residual stresses under
tread-braking and the presence of metallurgical defects (non-metallic inclusions and voids)
promote subsurface and surface crack initiation and propagation.

The propagation of surface-initiated cracks can be exacerbated by the ingress of water, ice,
grease, and other contaminants. Crack-tip pressurization and crack surface friction reduction, due
to an entrapped substance, are expected to accelerate crack propagation [18, 19].

Another scenario is subsurface crack formation and propagation. Ekberg et al. [18] investigated
that a subsurface crack tip frequently turns toward the surface, and shelling occurs. Another
possibility is the merging of subsurface and surface-initiated cracks near the tapeline zone of the
wheel tread. Infrequently, a subsurface crack tip turns toward the hub and results in a broken
wheel rim.

RCEF initiation can be predicted using shakedown theory [11, 20, 21, 22, 23, 24]. In metal
plasticity theory, elastic shakedown is a stress limit above a material’s yield strength where the
material behaves elastically with some residual stresses developed under initial yield.

Johnson and his co-researchers [20, 21, 22, 23, 24] applied this plasticity phenomenon to rolling
continuum mechanics and determined a shakedown limit, as shown in Figure 2-2. The x-axis of
the shakedown diagram is a traction coefficient, which is the ratio between tangential and normal
force. It can be interpreted as the demand for adhesion. This value is bound by the available



friction coefficient. The y-axis is the ratio between maximum contact pressure and the shear
yield strength of the material.

Rolling and sliding point contacts
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Figure 2-2.  Shakedown diagram for point contact [21]

As long as the contact conditions remain below the elastic shakedown limit, maximum fatigue
life (theoretical infinite life) is expected. If contact conditions exceed the elastic shakedown limit
then surface or subsurface RCF can be expected. Sabri et al. [4] used shakedown theory to
predict RCF initiation for a 36-inch wheel under cyclic normal and traction loads. The load
datasets were collected from two revenue service tests on a car equipped with non-steering trucks
and steering truck, respectively.

However, this approach has limitations due to assumptions used for several factors, such as
contact geometry changes during service, the reduction in residual stresses from the
manufacturing process, and the effects of extreme tread-braking events [6, 7, 8, 9].



3. Estimation of Residual Stress: Manufacturing Process

Compressive hoop residual stresses in wheel treads delay crack initiation and propagation.
During manufacturing of wheel, whether forged or cast, heat treatment through rim quenching
followed by whole wheel annealing is used to develop such stresses in the wheel rim and at the
tread surface.

This section describes simulations of heat treatment during the wheel manufacturing process to
determine the residual stress distribution in a wheel using an FEA tool for thermal and stress
analyses.

3.1 Manufacturing Process Model

For heat treatment, a two-step approach is applied for estimating the residual stresses resulting
from the quenching process:

(1) A heat transfer analysis in which the transient temperature distributions as a function of
time during the heat treatment process are estimated.

(2) A stress analysis which uses these temperature distributions to estimate the development
of the residual stresses after the heat treatment process.

The predicted residual stresses due to the heat treatment are basically the results of the heat
transfer and stress analyses. The residual stresses are affected by metallurgical aspects of the
process in which the microstructure of a material is transformed depending on temperature to
change the mechanical properties.

3.1.1 Wheel Manufacturing Process

Wheels are manufactured using a multi-step process to form the final shape either through the
casting or forging process. At the end of either process, the wheel is transferred into a furnace
and is uniformly reheated to a high temperature of around 1500 °F (816 °C) to remove undesired
residual stresses.

Then the tread of the wheel is quenched by a water spray. The duration of quenching depends on
the rim thickness and the wheel diameter. Following quenching, the wheel is placed in a furnace
for several hours to reduce the levels of residual stress, a process known as annealing. After
annealing, the wheel is left under ambient conditions to cool down to room temperature.

When the tread surface of wheel rim is quenched by the water spray, the outer part of wheel rim
is cooled and shrinks. However, the inner parts of rim, plate, and hub are still hot and have the
lower yield strength due to the high temperature. After quenching, the wheel is tempered in a
furnace to reduce brittleness and to increase toughness. Then the wheels are allowed to cool to
room temperature for several hours. This heat treatment results in:

(1) Increased strength of the steel
(2) Improved wear resistance

(3) Desirable compressive hoop residual stress in the wheel rim
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In general, the heat treatment process is considered to create or control the magnitude of residual
stresses in a target component material [7, 8, 25, 26]. For a wheel, the heat treatment is used to
develop compressive residual stresses in the rim and tread. These residual stresses prevent or
delay the formation of fatigue cracks and also slow down the growth of these cracks. Thus, the
residual stresses in the as-manufactured condition of wheels must be accounted for when
assessing the performance of wheels in service.

3.1.2 Candidate Wheel Design for Analyses

The gross rail load for a majority of the current North American freight car fleet is 286,000 lbs
(1,272 kN). In this study, a 36-inch (91.44-cm) freight wheel with a wide-flange single-wear rim
1.5-inch (38-mm) thick and parabolic plate for 286,000-1b (1,272-kN) gross rail load (GRL)
service was c