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Executive Summary

On November 2019, the Federal Railroad Administration contracted Transportation Technology
Center, Inc. to develop the test plan and manage the entire program, while Nippon Steel
Technology Co., Ltd. (NSTEC) conducted all the lab testing using the twin disc test machine to
investigate how wheel temperature affects wheel surface performance (i.e., development of
rolling contact fatigue [RCF] and wear). Testing was completed with two different types of
wheel steels (i.e., cast and forged) under a range of temperatures, ambient to 800 °F, and slip
ratios from 0 to 0.75 percent. This testing program included a total of 32 tests, covering two
types of wheel materials, four different temperatures, four slip ratios, and various traction
coefficients as a ratio of longitudinal and vertical wheel/rail contact forces.

Test results showed that the number of loading cycles required to generate RCF (i.e., RCF life)
decreased with the increase of the traction coefficient at all temperatures for both cast and forged
wheel steels. However, the effect of traction coefficient appeared more significant at ambient and
300 °F than at 600 °F and 800 °F. RCF life of wheels also decreased with the increase of wheel
temperature at the lowest traction coefficient. At other traction coefficients, however, wheel
temperature did not appear to have much effect on RCF life.

Results indicated that the wear rate of wheels increased with the increase of traction coefficient
at all temperature conditions. The increase of wear rate at 800 °F, however, was lower than at
other temperatures. No significant difference of wear rate was observed between the cast and
forged wheel steels. Wear rate increased with the increase of wheel temperature at the largest
traction coefficient of 0.30. At other traction coefficients, wear rate was not affected by wheel
temperature.

Finally, the tests showed that the traction coefficient had more effect on RCF life and wear rate
of the wheels than the temperature under the testing scenarios considered.



1. Introduction

This report presents the results and findings from a testing program that was conducted by
Transportation Technology Center, Inc. (TTCI) and Nippon Steel Technology Co., Ltd.
(NSTEC) on November 2019 to investigate how wheel temperature may affect wheel surface
performance (i.e., development of rolling contact fatigue [RCF] and wear). A twin disc test
machine was used to test two different types of wheel steels (i.e., cast and forged) under a range
of temperatures (ambient to 800 °F) and slip ratios from 0 to 0.75 percent. This testing program
included a total of 32 tests, covering 2 types of wheel materials, 4 different temperatures, 4 slip
ratios, and various traction coefficients as a ratio of longitudinal and vertical wheel/rail contact
forces.

1.1 Background

Impact wheel loads above 400 kN are the primary cause for wheelset removals in the North
American freight railroad industry. The impact loads generated by the wheels can also affect
other components of rolling stock such as roller bearings, as well as track components (e.g., rail).
The source of impact loads has been studied extensively, and it is generally agreed that wheel
spalling and shelling contribute to the problem of impact loads [1]-[4].

Shelling is a fatigue process, often generated from RCF on the wheels [4-5] in which cracks
initiate at or near the tread surface of the wheel and propagate until pieces of the wheel tread
surface break out. Both material strength and residual stress are thought to be important factors
in a wheel’s ability to resist damage from RCF [6] [7]. These properties can be affected by
changes in temperature.

Twin disc roller machines have been used for decades in the laboratory to study RCF [8] [9]. A
twin disc roller machine consists of two rollers that are pressed together while the discs are
rotated to simulate wheel/rail contact. One disc represents the wheel and the other disc represents
the rail. Such machines can provide fast, cost-effective results due to relatively small size of the
discs and their continuous rolling action. Using twin disc roller machines, the effects of contact
pressure, slip ratio, and lubrication on the development of RCF cracks have been studied by
many researchers. Recently, the owner of a twin disc roller machine added an induction heating
coil to control the temperature of the “wheel” disc [10]. This twin disc roller machine provides
an ideal test environment to quantify the relationship between wheel temperature and the number
of load cycles required to generate RCF (i.e., RCF life of wheel).

1.2 Objectives

The objective of this testing program was to investigate wheel performance in terms of the
resistance to RCF and wear under various temperatures and slip ratios for two types of freight car
wheel steels: cast and forged steels using a twin disc RCF testing machine developed by NSTEC,
while TTCI conducted the earlier work [11]-[13].

1.3 Overall Approach

Wheel discs machined from the cast and forged wheels from freight cars in North America were
tested with the twin disc machine, until occurrences of RCF, under various wheel temperatures



and slip ratios. The effects of elevated temperature and slip ratio on RCF live of wheel
specimens were assessed based on the test results obtained.

1.4 Scope

Results and findings reported in this document were specific to the specimens prepared under
this testing program, using the testing machine described, and with the test variables considered.
Neither modeling, nor full-scale testing programs were conducted to collaborate the results
obtained under this laboratory testing.

1.5 Organization of the Report

Section 1 introduces the testing program. Section 2 describes the testing method and test matrix.
Section 3 presents the test results and findings. Section 4 summarizes the work performed and its
completion. Appendix A includes the test data for all the 32 tests conducted.



2. Testing Method and Testing Matrix

This section documents the wheel and rail test specimens used for this project, as well the testing
procedure applied to all 32 tests.

2.1 Wheel and Rail Test Specimens (Discs)

The wheel discs used in this testing were Association of American Railroads’ (AAR) Class C
wheel steels, both cast and forged, from the wheels used in the North American freight railway
industry. Hardness of all wheel discs were measured in terms of Rockwell hardness (HRC).
Measured positions were along the center line between the inner and outer diameters on the side
surfaces of the disc, as shown in Figure 1. There were five measured positions per disc.

Figure 1. Measurement Positions of Rockwell Hardness on Wheel Disc

The average Rockwell hardness of all tested wheel discs was HRC 35.0—or Brinell hardness
(HB) 327—for the cast steel, and HRC 31.7 (HB 299) for the forged steel.

The rail discs used in testing were 0.7 percent C steel with pearlite structure, which is like Class
C wheel steel. The average Rockwell hardness of the tested rail discs was HRC 38.3 (HB 356).
This hardness was higher than what is required for the intermediate strength rails (HB 350), but
lower than what is required for the high strength rails (HB 370) for applications in North
America.

Because a rail disc diameter of 200 mm is required in twin disc testing, steel materials equivalent
to the high strength rail for this size were not easily available for the preparation of the rail discs
as the actual rail heads are smaller than the rail disc size. Test results of RCF life of wheel discs
could be different if the high strength rail material was used as the rail discs. However, for the
effects of elevated temperature and slip ratio, the hardness of the rail discs used was considered
adequate.

Table 1 shows the mechanical properties of the rail disc material used. Again, these properties
indicate that the rail discs had properties like those of the intermediate strength rails.



Table 1. Mechanical Properties of Rail Disc Material

. . . Elongation Reduction of Area
Yield Stress Ultimate Tensile Strength (%) (%)
693 MPa 1,035 MPa 17.6 474
2.2 Test Disc

Wheel discs were cut from the area close to the actual wheel tread (see Figure 2). Rail discs were
taken from roughly cut wheel materials after quenching and tempering. Figure 3 shows the
dimensions of both the wheel and rail test discs—the wheel disc was 120 mm in diameter, and
the rail disc was 200 mm in diameter. The contact width of the discs is 5 mm with a flat-shaped
surface at the cross section. Thermocouples were embedded 6 mm deep from the outer surface of
wheel disc to measure wheel temperature during testing. Figure 4 provides photos of the test

discs.
Wheel discs are taken from
near the tread surface f

Figure 2. Schematic of Wheel Disc Sampling Position

Hole for thermocouple ¢1.6xL10

gl o sid 520

— 5120 _...| Unit:mm I__— 6200 —..I Unit:mm

(a) Wheel Disc (b) Rail Disc
Figure 3. Schematic of Wheel and Rail Test Discs



(a) Wheel Disc (b) Rail Disc
Figure 4. Photos of Wheel and Rail Test Discs

2.3 Testing Procedure

Figure 5 illustrates the twin disc test machine. Induction heating was applied to elevate the
temperature of the wheel disc during testing. For each test, the vertical load was 7.8 kN,
corresponding to a Hertzian contact stress of 1,200 MPa.

-

Induction
heating Coil
equipment L
| _— Wheel
disc
— v Water
spray
\\-Rail nozzle
[ ] disc

Figure 5. Schematic of the Twin Disc Testing Machine

Table 2 lists all 32 tests conducted. The test matrix included two types of wheel steels, four
different wheel temperatures, and four different slip ratios (Sr). The slip ratio is defined in
Equation 1.

Sr=Vr—=Vw) X 100 (1)
Vr+Vw)/2

Where:
VR is the rotation speed of the rail disc, and Vw is the rotation speed of the wheel disc.

For any test, the wheel disc was set at a rotation speed of 700 rpm, but the rotation speed of the
rail disc was adjusted to achieve a target slip ratio. The rotation speeds of the wheel and rail discs



remained constant during each test, although the wheel disc may have experienced a change in
diameter due to thermal expansion under elevated temperature.

Vertical load was measured by a load cell mounted on the bearing. Traction was measured by a
torque meter mounted on the wheel disc axle. K-type thermocouples were used for measurement
of wheel disc temperature. Vertical load was applied by a hydraulic cylinder. Wheel and rail
discs were driven independently by two electrical motors.

For a given test, the temperature and wet/dry condition of wheel disc were varied, as illustrated
in Figure 6. During each thermal cycle, elevated temperature was held for 5 minutes for all tests.
Water was supplied after cooling the wheel disc to room temperature to accelerate crack
propagation while discs were rotating under loaded contact. Air was used to avoid rapid cooling.
Flow rate of air was 0.0024 Nm?*/min, and flow rate of water was 1 L/min. Duration of the air
cooling was 5 minutes, and water was supplied for 10 minutes in a 35-minute thermal cycle. The
temperatures of air and water were not controlled, and they were essentially room temperature.

Accelerometers installed on the bearing were used to detect vibrations that might be early
indicators of RCF damage. RCF life was defined as the number of load cycles when the vibration
of the testing machine exceeded 20 m/s?. A test would be stopped when the vibration exceeded
25 m/s?. The maximum number of load cycles, however, was set at 2x10° cycles, even if RCF
damage did not occur. One load cycle is equivalent to one turn of wheel disc.

Data was gathered continuously while the testing machine was running. All channels were
sampled at 500 Hz, and the average value of the sampled data over each minute was used for
further analysis.

1000 2
800°F -
£
o 800 115 E
o 600 Water @
E T o
T 400 =
Qo ©

41 05
£ 200 3
= Ambient temperature L

0 = ()

0 10 20 30

Time (min.)

Figure 6. Thermal Cycle of Wheel Disc and Variation of Water Flow



Table 2. Test Matrix

Test ID | Specimen | Temperature Slip Ratio Revolution (rpm)
Wheel Rail

1 Forged Ambient 0% 700 420.0
17 Cast

2 Forged 300 °F 0% 700 420.0
18 Cast

3 Forged 600 °F 0% 700 420.0
19 Cast

4 Forged 800 °F 0% 700 420.0
20 Cast

5 Forged Ambient 0.25% 700 421.05
21 Cast

6 Forged 300 °F 0.25% 700 421.05
22 Cast

7 Forged 600 °F 0.25% 700 421.05
23 Cast

8 Forged 800 °F 0.25% 700 421.05
24 Cast

9 Forged Ambient 0.5% 700 422.10
25 Cast
10 Forged 300 °F 0.5% 700 422.10
26 Cast
11 Forged 600°F 0.5% 700 422.10
27 Cast
12 Forged 800 °F 0.5% 700 422.10
28 Cast
13 Forged Ambient 0.75% 700 423.15
29 Cast
14 Forged 300 °F 0.75% 700 423.15
30 Cast
15 Forged 600 °F 0.75% 700 423.15
31 Cast
16 Forged 800 °F 0.75% 700 423.15
32 Cast




3. Results

This section outlines the results for all 32 tests, while Appendix A contains more in-depth data.
This also provides the test matrix listed in Table 1 that were obtained with a slip ratio of 0.25
percent to illustrate the analysis of the test results.

3.1 Test at Ambient Temperature with 0.25 Percent Slip Ratio

Vertical load was almost constant during the test. Figure 7 shows time histories of vertical load,
torque of wheel disc, wheel disc temperature, and vibration acceleration of the testing machine
using the cast steel at ambient temperature with 0.25 percent slip ratio (Test ID 21). Average
Hertzian stress calculated from the Hertzian theory was 1,217 MPa. The torque of wheel disc
changed with the load cycle—this was considered an effect of alternating dry and wet conditions,
particularly when the contact surface roughness increased. The vibration acceleration of the
machine rapidly increased when RCF damage occurred.

Figure 8 shows the contact surfaces of the wheel and rail discs after testing. The wheel disc had
obvious fatigue damage at the contact surface. The rail disc, on the other hand, had a relatively
clean surface.

Figure 9 shows the profiles of the contact surfaces of the wheel and rail discs. The profiles of the
contact surfaces of both the wheel and rail discs changed due to wear.

Results of the forged steel under the same test conditions were similar for the cast steel.
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3.2 Test at 300 °F with 0.25 Percent Slip Ratio

Figure 10 shows time histories of vertical load, torque of wheel disc, wheel disc temperature, and
vibration acceleration of testing machine using cast steel at 300 °F, with 0.25 percent slip ratio
(Test ID 22). The vertical load slightly varied during the test—this was caused by the change of
wheel disc temperature. The range of variation was approximately 4 percent, and this was
thought to have a minor effect on RCF life. Average Hertzian stress calculated from the Hertzian
theory was 1,125 MPa. The torque of wheel disc varied and was caused by change in the wheel
disc temperature (i.e., the diameter of wheel disc changed with the temperature). The
temperature of the wheel disc was well controlled during the test. The vibration acceleration of
the test machine rapidly increased when RCF damage occurred.

Figure 11 shows photos of the contact surfaces of the wheel and rail discs after the test. The
wheel disc had severe fatigue damage at the contact surface, whereas, the rail disc had a clean
surface.

Figure 12 shows the contact surface profiles of the wheel and rail discs; both profiles changed
due to wear.

Results of the forged steel under the same test conditions were like the results of the cast steel.

11



1ooaa 120
— ! 100 F
= 2000 .
B goon AW s
3 L
24000
5 5 40
= =
2000 0
D M 2 L L [ M L L L D L L L L i L L L L
0.E+10 5.E+15 1.E+lB 0.E+0 5.E+05 1.E+HIB
Number of cycles (cycle) Humber of cycles (owele)
(a) Vertical load (b) Torque of wheel disc
350 & 4
g 300 b g
£7 0 t g 3
2 i =
T 200 g,
= ® 150 =
T g g
§ g 100 ? 1
a0 o
0 : — 0 —
0.0E+00 5.0E+HI5 1.0E+E 0.E+00 5.E+45 1.E+06
Mumber of cycles (cycle) Humber of cycles (oycle)
(c) Wheel disc temperature (d) Vibration acceleration of testing machine

Figure 10. Time Histories of Measurements
(Cast Steel at 300 °F with 0.25 Percent Slip Ratio)
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Figure 11. Photos of Test Discs
(Cast Steel at 300 °F with 0.25 Percent Slip Ratio)
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3.3 Test at 600 °F with 0.25 Percent Slip Ratio

Figure 13 shows time histories of vertical load, torque of wheel disc, wheel disc temperature, and
acceleration using the cast steel at 600 °F with 0.25 percent slip ratio (Test ID 23). The vertical
load varied during the test, and was approximately 9 percent, which was larger than that for the
test at 300 °F. This was because the increase of wheel disc temperature was larger in this test.
The average Hertzian stress calculated from the Hertzian theory was 1,183 MPa. The torque of
wheel disc varied while testing and was larger than the test at 300 °F. Moreover, the torque
showed a negative value under this test condition. This indicated that the direction of
longitudinal force reversed from the tests conducted at 300 °F and at ambient temperature. The
vibration acceleration of the machine rapidly increased when RCF damage occurred.

Figure 14 shows the contact surfaces of the wheel and rail discs after the test. The wheel disc had
minor fatigue damage at the contact surface, whereas, the rail disc had severe fatigue damage.
This may have been caused by the reversed direction of longitudinal force.

Figure 15 shows the profiles of the contact surfaces of the wheel and rail discs. The change of
profiles was relatively small.

Results of the forged steel under the same test condition were like that of the cast steel.
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3.4 Test at 800 °F with 0.25 Percent Slip Ratio

Figure 16 shows time histories of vertical load, torque of wheel disc, wheel disc temperature, and
acceleration for the test using the cast steel at 800 °F with 0.25 percent slip ratio (Test ID 24).
The vertical load varied during the test and was approximately 12 percent, which was larger than
the test at 600 °F, because the increase of wheel disc temperature was larger in this test. Average
Hertzian stress calculated from the Hertzian theory was 1,253 MPa. The torque of wheel disc
varied significantly during testing. This variation was larger than that at 600°F. The torque
showed both positive and negative values as the direction of longitudinal force changed during
testing. The temperature of the wheel disc was well-controlled. The vibration of acceleration of
machine rapidly increased when RCF damage occurred.

Figure 17 shows the contact surfaces of the wheel and rail discs after test. The wheel disc had
severe fatigue damage at the contact surface, whereas, the rail disc had only minor fatigue
damage.

Figure 18 shows the profiles of the contact surfaces of the wheel and rail discs. Wear depths of
the discs were larger than those tested at 600 °F.

Results of the forged steel under the same test condition were similar that of the cast steel.
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3.5 Rolling Contact Fatigue Life

Figure 19 shows the results of RCF life of the wheel and rail discs as a function of traction
coefficient. Traction coefficient was calculated as the average ratio of the longitudinal force
obtained from the measured torque over the vertical force. The increase of vibration to detect
RCF damage may include the influence of uneven wear of a test disc. However, RCF damage
was the dominant factor for the increase of vibration when vibration rapidly increased toward the
end of the disc life. If wear were the main cause of the increase of vibration, it would only
increase slightly during testing.

As shown, RCF life of the discs decreased with the increase of traction coefficient at all
temperatures and for both wheel steel materials. However, the effect of traction coefficient was
larger at the ambient temperature and at 300 °F than at 600 °F and 800 °F. In the case of negative
traction coefficient, RCF damage occurred on the surface of the rail disc.

Figure 20 shows RCF life of wheel discs as a function of wheel temperature. RCF life were
categorized by values of traction coefficient. As shown, RCF life decreased with the increase of
wheel disc temperature at the lowest traction coefficient. At the other traction coefficients,
however, the wheel disc temperature had minimal effect on the RCF life. These results suggested
that the traction coefficient had more effect on the RCF life of the wheel discs than temperature
in this test scenarios considered.
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3.6 Wear

Figure 21 shows wear rate test results of wheel and rail discs as a function of traction coefficient.
Wear rate was calculated as the ratio of weight loss of disc over the rolling distance. As shown,
wear rate of wheel discs increased with the increase of traction coefficient at all temperatures.
However, the increase of wear rate at 800 °F was lower than the increase at other temperatures.
There were no significant differences of wear rate between the cast and forged steels. Wear rate
of rail discs also increased with the increase of traction coefficient, although there was

significant variation of wear rate test results for the rail discs.

Figure 22 shows wear rate test results of wheel discs as a function of wheel disc temperature.
Wear rates were categorized by the traction coefficients. Wear rate increased with the increase of
wheel disc temperature at the traction coefficient of 0.30. At other traction coefficients, however,
wear rate was not affected by wheel disc temperature. These results indicated that the traction
coefficient had more effects on the wear rate than temperature in this test scenarios.
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4. Conclusion

On September 2019, the Federal Railroad Administration contracted TTCI and NSTEC to
investigate how wheel temperature affects wheel surface performance (i.e., the development of
RCF and wear). During testing, RCF life of the wheel discs decreased with the increase of
traction coefficient at all temperatures and for both cast and forged wheel steels. Traction
coefficient had a larger effect on the RCF life of wheel discs at ambient temperature and 300 °F
than at 600 °F and 800 °F. In the case of negative traction coefficient, RCF damage occurred on
the rail discs.

RCEF life of wheel discs decreased with the increase of wheel temperature at the lowest traction
coefficient. At other traction coefficients, wheel disc temperature had no significant effect on the
RCF live of wheel discs.

Wear rate of wheel discs increased with the increase of traction coefficient at all temperatures.
The increase of wear rate at 800 °F was lower than increases at other temperatures. There was no
significant difference of wear rates of the discs between the cast and forged wheel steels.

Wear rate of wheel discs increased with the increase of wheel disc temperature at the largest
traction coefficient of 0.30. At other traction coefficients, wear rates of wheel discs were not
affected by wheel disc temperature.

Test results indicated that the traction coefficient had more effect on RCF life and wear rate of
the wheel discs than temperature, for the test scenarios considered.
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Appendix A.
Test Results for All the Tests
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Abbreviations and Acronyms

ACRONYMS
AAR

HB

NSTEC

HRC

RCF

Sr

TTCI

EXPLANATION

Association of American Railroads
Brinell Hardness

Nippon Steel Technology Co., Ltd.
Rockwell Hardness

Rolling Contact Fatigue

Slip Ratio

Transportation Technology Center, Inc.
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