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Executive Summary 

Researchers at Transportation Technology Center, Inc. (TTCI) evaluated proposed adaptive 
braking enforcement algorithm processes for freight trains to identify potential risks that may be 
introduced by the use of an adaptive braking enforcement algorithm.  Two main hazards, relating 
to the prediction of stopping distance, were identified when using an adaptive braking enforcement 
algorithm.  The first hazard identified was the inaccurate estimation of train braking characteristics 
during an adaptive calculation.  The second was a change in conditions affecting the train stopping 
distance after an adaptive calculation has been made, such as a change in ambient pressure, 
ambient temperature, the coefficient of friction (COF) between the brake shoe and the wheel, train 
brake pipe pressure leakage, speed accuracy, track grade profile accuracy, and brake pipe pressure 
sensor accuracy.  Researchers identified methods of evaluating these hazards and when production 
adaptive braking enforcement algorithms are available for evaluation, they can be analyzed 
through simulations with minor updates to the simulation methodology.   
Researchers conducted a sensitivity analysis for the hazard where conditions change after an 
adaptive calculation has been made.  Findings showed that changes in the COF between the brake 
shoe and wheel had the greatest influence on train stopping distance, followed by changes in train 
brake pipe pressure leakage.  Other factors such as ambient pressure and temperature and track 
grade errors also influenced train stopping distance, but to a lesser degree.   
After gaining insights on the potential risks, the research team evaluated numerous scenarios using 
Monte Carlo stop distance simulations to generate representative distributions of stopping locations 
relative to a target for both a nonadaptive algorithm and an adaptive algorithm.  The team used 
these distributions to determine if there was an increased risk of overrunning a target when using 
an adaptive algorithm in cases where conditions change after the adaptive calculation has been 
made.   
A comparison of the distributions of stopping location relative to a target showed that the adaptive 
algorithm distribution always had a wider range, meaning there was the potential for more extreme 
outliers with adaptive algorithms, albeit with low probability of occurrence.  Comparing the 
standard deviation of the distributions of stopping location relative to a target showed that adaptive 
algorithm distributions can have a smaller standard deviation than the nonadaptive distributions in 
scenarios where train consists have a wide range of variation.  The team saw this in some of the 
scenarios with longer manifest freight trains.  In other scenarios with less variation in the train 
consist, such as a unit coal train consist, the adaptive algorithm distributions had larger standard 
deviations than nonadaptive algorithms.   
The Monte Carlo analysis assumed that the distribution types and ranges for parameters that can 
change after an adaptive calculation had been made were the same as the distribution types and 
ranges for these parameters more generally (in other words, there were no constraints on the 
amount a parameter could change following the adaptive calculation).  This assumption resulted in 
the most conservative results, but the authors recommend future work to determine if these 
distributions should be constrained and how those constraints would affect the adaptive stopping 
distance distribution profiles. 
The research team recommends adaptive braking enforcement algorithm calculations and 
performance be tested initially through simulations and, once proven in the simulation 
environment, with field testing.   
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1. Introduction 

This report describes analyses performed to support the practical implementation of an adaptive 
predictive braking enforcement algorithm for freight train Positive Train Control (PTC) 
applications.  TTCI engineers identified potential hazards associated with the use of an adaptive 
braking enforcement algorithm, quantified risks, and determined potential risk reduction strategies.  
This report describes the work performed to address the potential causes of safety hazards that 
differ between conventional (nonadaptive) braking enforcement algorithms and the proposed 
adaptive braking enforcement algorithms, to support a safety case for implementing the adaptive 
braking enforcement algorithm. 

1.1 Background 
One of the primary issues with PTC braking enforcement algorithms contributing to operational 
inefficiencies is the reliance on assumed values for parameters that are not known by the braking 
enforcement algorithm.  Adaptive braking enforcement algorithms have the potential to improve 
the accuracy of the stopping distance prediction by measuring key performance characteristics of 
the train and adapting the algorithm to predict the stopping distance based on these characteristics, 
rather than relying on the assumed values.  The concept of using adaptive functions was 
investigated in previous Federal Railroad Administration (FRA) research projects [1].  At the 
conclusion of these projects, adaptive functions were defined to improve the accuracy of the 
following parameters used by the braking enforcement algorithm: 

• Brake pipe propagation time – defined as the time from when the penalty air brake 
application is initiated to when the brakes have reached full-service brake force on all of the 
cars in the train. 

• Brake efficiency – defined as the full-service brake force for the train. 
Although there are several other parameters for which the enforcement algorithm has assumed 
values, the brake pipe propagation time and brake efficiency adaptive functions represent the most 
significant parameters that can be practically measured.  These two adaptive routines also 
compensate for various other parameters that can vary from the assumed values in the enforcement 
algorithm.  For example, the adaptive brake efficiency function not only corrects for potential 
errors in the assumed train brake force but can also compensate for errors in the assumed values for 
the number of operable brakes, train weight, and the number of loaded and empty cars. 
During the previous research on adaptive braking enforcement algorithms, these concepts were 
developed and implemented in a test application, followed by simulation and field testing, which 
demonstrated significant improvements when using the adaptive functions as compared with 
conventional (nonadaptive) techniques. 
The previous work on the adaptive functions did not include any study to consider potential 
hazards introduced with use of the adaptive calculations and the effects of these hazards.  This 
project examined these hazards to determine if they can be mitigated to help create a safety case 
for implementing adaptive functions into a braking enforcement algorithm. 
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1.2 Objectives 
The objective of this project was to conduct a safety analysis to support the practical 
implementation of adaptive braking enforcement algorithms in PTC applications. Specifically, 
this included: 

• Conducting a safety analysis to identify risks associated with using adaptive braking 
enforcement algorithms as compared to conventional (nonadaptive) methods 

• Quantifying the risks identified 

• Identifying potential mitigations for risks  

1.3 Overall Approach 
The general flow of the work performed: 

• Create a project advisory group (AG) with representatives from FRA, Class I freight 
railroads, shortline railroads, and commuter/passenger railroads. 

• Using adaptive braking functions from previous FRA research, conduct a safety analysis to 
identify the risks associated with using adaptive braking enforcement algorithms as 
compared to conventional (nonadaptive) methods. 

o Run Train Operations and Energy Management (TOES) sensitivity braking 
simulations with predetermined parameters using flat distributions. 

o Conduct a 2k design of experiment to quantify potential risks.  
o Run Monte Carlo simulations using TOES for train types identified to have greatest 

risk from changes to initial train braking parameters.  

• Theorize mitigation concepts where possible. 
• Develop final report and propose next steps. 

1.4 Scope 
The scope of this project included tasks to identify potential hazards associated with the use of an 
adaptive braking enforcement algorithm, quantify risks, and determine potential mitigation 
strategies. Specifically, this project addressed the potential causes of safety hazards that differ 
between conventional (nonadaptive) braking enforcement algorithms and the proposed adaptive 
braking enforcement algorithms, to support a safety case for implementing the adaptive braking 
enforcement algorithm in freight operations.  The scope of this project did not include any 
implementation of mitigations or field testing. 

1.5 Organization of the Report 
This document has been organized into three sections.  Section 2, Adaptive Braking Enforcement 
Algorithms, describes the differences between the nonadaptive and adaptive braking algorithms as 
well as simulation testing and testing process.  Section 3, Identification of Potential Hazards 
Associated with Adaptive Braking Enforcement Algorithms, gives and overview of potential 
hazards and describes methods and simulation tools used by the researchers to determine these 
hazards.  Section 4, Proposed Methodology for Evaluating Adaptive Braking Enforcement 
Algorithms, describes how the current Monte Carlo braking simulation process could be utilized 
for further testing of the nonadaptive braking algorithm.  This section also describes the 
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modifications to the current Monte Carlo simulation process that will be required for future testing. 
The Conclusion summarizes the findings about the nonadaptive braking algorithm by the 
researchers as well as recommends further future simulation testing of the nonadaptive braking 
algorithm.   
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2. Adaptive Braking Enforcement Algorithms 

The adaptive braking enforcement algorithm approaches in this analysis used two methods to tune 
the braking enforcement algorithm inputs: adaptive brake propagation time and adaptive brake 
efficiency.  Brake propagation time is the amount of time it takes from the onset of a brake 
application until the brakes are applied throughout the train.  Brake efficiency is the amount of 
brake force applied by the train once train brakes are fully applied.  Both brake propagation time 
and brake efficiency are influenced by mechanical and environmental factors.   

2.1 Differences between Nonadaptive Braking Enforcement Algorithms and 
Adaptive Braking Enforcement Algorithms 

Conventional nonadaptive braking enforcement algorithms rely on summary train consist 
information to make assumptions about train braking characteristics.  Those assumptions are used, 
along with track profile information under and ahead of the train and current train status (e.g., 
speed, tractive effort, and air brake settings), to estimate the stopping distance and determine if a 
warning or brake enforcement is needed.  The main assumptions made for a given train include 
how long it will take to apply the brakes and how much brake force is applied.  Train consist 
information used for these assumptions includes: 

• Locomotive information for each locomotive in the train consist: 
o Length, weight, position in train, run status, horsepower 

• Number of loaded and empty railcars 
• Number of axles 
• Trailing tonnage 
• Train length 
• Train type 
• Back office brake force (optional) 

North American freight operations include a pool of over 1 million freight cars that are 
interchangeable between the railroads.  The mechanical equipment that relates to brake 
propagation and brake efficiency can vary among cars based on the date a railcar was built or 
rebuilt and the railcar characteristics.  With the vast number of interchange cars and the limitations 
of the summary information supplied to the braking enforcement algorithm, there are many 
different train makeups with different braking characteristics that are possible, given the summary 
train consist information provided.  Typically, the assumptions for brake propagation time and 
brake efficiency are tailored toward the poorer performing trains within a train type to make sure 
there is a high probability of stopping trains short of a target.  With these assumptions, trains with 
better braking performance will be forced to apply brakes earlier than necessary and stop further 
short of the target stopping location. 
Besides train makeup, the stopping distance of a train can vary on the basis of conditions of the 
train at the time of a brake enforcement such as ambient pressure and temperature, COF between 
the brake shoe and the wheel, train brake pipe pressure leakage, speed accuracy, track grade 
profile accuracy, and brake pipe pressure sensor accuracy.  These conditions can change over 
time and/or geographical location and can cause the actual stopping distance of a train to be 
shorter or longer than the predicted stopping location.  Typically, this variance in train stopping 
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performance is handled through a target offset using the summary train consist information 
provided and current in-route train data such as speed, grade, tractive effort, and brake settings.  
Figure 1 gives an overview of a sample scenario with the predicted stopping profile and target 
offset for a given train consist.   

 
Figure 1. Stopping Profile and Target Offset 

If a train consist matches the onboard brake propagation and brake efficiency assumptions, then the 
actual stopping location of the train would fall within the stopping distribution shown in Figure 1.  
If the train consist braking characteristics are better than the onboard assumptions, then the 
stopping profile in Figure 1 would be shifted to the left, which would result in stops further from 
the target for those train consists.  Better braking characteristics in a train consist make the 
nonadaptive braking enforcement algorithm more conservative. 
A method for reducing conservatism from current nonadaptive braking enforcement algorithms is 
to use an adaptive braking enforcement algorithm that uses brake sets from the train to gain 
information about the braking characteristics of the train.  Once a brake set is made and the 
adaptive braking enforcement algorithm successfully calculates new values for brake propagation 
time and/or brake efficiency, the assumptions for the train are updated and used for future stopping 
predictions.  Taking the example of a train with better-than-assumed braking characteristics, in a 
nonadaptive braking enforcement algorithm the stopping distribution would be shifted to the left in 
Figure 1, but in an adaptive braking enforcement algorithm the enforcement point could be delayed 
on the basis of the updated assumptions for the braking characteristics of the train, bringing the 
stopping distribution back to the right, eliminating some of the conservatism.  By using 
information gathered from a train brake set, the adaptive braking enforcement algorithm also 
accounts for the other conditions for the train at that time such as ambient pressure and 
temperature, COF between the brake shoe and wheel, train brake pipe pressure leakage, speed 
accuracy, track grade profile accuracy, and brake pipe pressure sensor accuracy.  In the near term, 
accounting for these conditions improve the adaptive braking enforcement algorithm stopping 
prediction of the train and will result in a tighter stopping distribution, but over time these 
conditions can change, causing the stopping distribution to grow.   
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2.2 Overview of Simulation Testing for Nonadaptive Braking  
Enforcement Algorithms 

This section provides an overview of the simulation process, consisting of background information 
that originally appeared in the final report from previous FRA-funded braking enforcement 
algorithm research. [1] 
The simulation testing component of the braking enforcement algorithm evaluation methodology 
uses a set of computer software tools to employ a Monte Carlo simulation process, resulting in a 
set of output data that can be analyzed to identify the statistical probability and confidence that the 
algorithm will meet the specified safety and performance criteria.  The Monte Carlo method 
involves running large numbers of simulations with inputs to the simulations randomly assigned 
using the practical and physical distributions and limits that define the system.  Because of the 
wide range of parameters that affect the stopping distance of a freight train and the 
interdependence of these parameters, a deterministic evaluation is not feasible, making the Monte 
Carlo simulation process the preferred method of evaluating the braking enforcement algorithm. 

 
The simulation testing process is intended to evaluate the braking enforcement algorithm over the 
full range of operating scenarios the system is expected to encounter and consider the practical 
variability of the parameters that can have a significant effect on the stopping distance of the train.  
The simulations are organized into test scenarios, each representing a potential operating scenario 
for the system to encounter.  The test scenario is defined by the nominal train consist, the nominal 
track profile, the initial speed and location of the train, and the target stopping position.  These 
scenarios have been created to effectively cover the wide range of operations that are run daily in 
revenue service, as well as account for the less common extreme cases, such as steep track grades, 
higher speeds, and specialized train consist makeups.   
Multiple braking enforcement simulations are run for each test scenario.  The values of the 
parameters that can have a significant effect on train stopping distance are randomly selected for 
each simulation from distributions that represent the practical range of values for the given 
parameter.  In some cases, the distribution of values for a parameter is affected by the value 
randomly selected for a different, related parameter. 
The test scenarios that make up the complete simulation test matrix are intended to include the 
boundary operating conditions and represent the full range of conditions that can be experienced.  
To make the simulation process more efficient, the test scenarios are organized into batches that 
are executed together.  A batch could contain any number of test scenarios, each representing a 
different nominal operating scenario, and each test scenario could contain any number of 
individual simulations, each representing a potential specific instance of the test scenario.  Figure 2 
illustrates the relationship between batches, test scenarios, and simulations. 
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Figure 2. Organization of Simulations 

For each individual simulation test, the train consist is modeled approaching the target at the 
defined initial speed, the braking enforcement algorithm triggers a brake application to prevent a 
violation of the stop target, and the response of the train is modeled.  The result of the individual 
simulation represents a single possible stopping location for the given test scenario with the given 
braking enforcement algorithm.  The aggregate result of the simulations for the entire test scenario 
then defines the distribution of possible outcomes.  This data is analyzed to determine the safety 
and performance characteristics of the braking enforcement algorithm for the given test scenario.  
These characteristics can then be analyzed together to quantify the overall safety and performance 
characteristics of the braking enforcement algorithm. 

 
The simulation testing portion of the braking enforcement algorithm evaluation methodology 
requires the following three components, as Figure 3 illustrates: 

• A proven, validated train action simulation model that accurately models the response of a 
given train under given conditions, with the ability to modify train, track, and 
environmental characteristics that can affect the stopping distance of the train 

• A test controller/logger (TCL) software application that can generate the simulation inputs 
to the model from input provided by the user, run large batches of simulations using Monte 
Carlo simulation techniques, and log the required output 

• The braking enforcement algorithm under evaluation, implemented as a standalone 
software application incorporating a common interface to the simulation test components to 
receive train status and command brake enforcement applications 
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Figure 3. Simulation Testing Components 

 
To model any given braking enforcement scenario, the chosen simulation model must accurately 
model the response of the train to given inputs, be capable of modeling the specific characteristics 
of each component of each railcar within the train consist and the specific characteristics of the 
track, and be capable of reporting train status data at regular, frequent intervals.  Therefore, TOES 
was the simulation model selected for braking enforcement algorithm evaluation.  TOES is a 
longitudinal train dynamics model developed by the Association of American Railroads that 
models the status of every railcar in a given train consist at every time step of the simulation.  
Railcar status data includes location, velocity, acceleration, forces acting on the car, and brake 
system component status. 
The model allows the user to enter specific characteristics for each railcar in the train consist, 
including car weights and dimensions, aerodynamic properties, truck characteristics, coupler and 
draft gear characteristics, and brake system components and characteristics.  This flexibility allows 
the user to model essentially any currently used freight railcar and arrange the railcars into any 
train consist desired.  The model also allows the user to enter track characteristics that affect the 
longitudinal motion of the train, i.e., track grade and curve, allowing any section of track to be 
modeled.  Finally, the model allows the user to enter environmental conditions that can affect the 
longitudinal motion of the train, such as ambient temperature and the COF between the wheels and 
brake shoes.  The TOES model allows the user to enter train handling commands, such as throttle 
and brake settings, at any time step in the simulation and models how the train reacts to these 
commands. 
The components that make up the TOES model include some of the most accurate and proven 
models currently available to the railroad industry.  These include a variety of draft gear models, 
multiplatform cars, an aerodynamic drag routine, and a variety of user-customizable car 
components.  TOES also includes a theoretical fluid dynamics model of the air brake system.  This 
model has been shown to be a significant improvement over similar models empirically derived 
from test data.  The air brake model within TOES can simulate the automatic and independent air 
brakes, a range of brake valve and brake shoe types, any length of brake pipe, brake cylinder 
dimensions, and reservoir volumes.  

 
A custom software application was necessary to manage the vast number of simulations required to 
generate the necessary statistical significance for the safety and performance of the enforcement 
algorithm over the entire range of potential operating scenarios.  To support the industry in the 
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development and testing of a safe and operationally efficient braking enforcement algorithm, TTCI 
developed (using internal research and development funds) a TCL software application with the 
capability to generate and execute thousands of braking enforcement simulations using a Monte 
Carlo method, using operating scenarios and parameter variation distributions entered by the user.  
The TCL application performs the following three major functions: 

• Generation of random simulation inputs 
• Execution of individual simulations 
• Logging of output data 

To generate simulation input data, the user sets up a batch of test scenarios to be evaluated.  The 
user selects a train consist and track profile and enters the initial train speed and location, as well as 
the target stopping location for each test scenario in the batch. 
The train consists are defined by the user by selecting the desired railcars and arranging them in the 
desired order.  Each railcar is defined by the nominal components and characteristics of the railcar 
and the potential variation of these components and characteristics, also defined by the user.  The 
variation of the railcar components and characteristics can be represented by a variety of 
distributions, allowing the user to define the variability of a given parameter to match its actual, 
real-world variation.  The user also defines the potential variation of environmental characteristics 
and the variation because of errors in reported data, such as track characteristics, train speed, and 
location. 
The user selects how many simulations the TCL software will run for each test scenario in the 
Monte Carlo process.  The TCL software then generates the simulation input data for each 
simulation within each test scenario by randomly selecting values for the variable parameters from 
the input distributions defined by the user. 
Once the simulation input data is generated, the user can run the batch through the TCL software.  
The TCL application runs each simulation for each test scenario individually in the simulation 
model by advancing the train toward the target at a given speed.  At each second of simulation 
time, the simulation model reports train status data to the TCL, which is then passed along to the 
braking enforcement algorithm.  When the braking enforcement algorithm predicts an impending 
target overrun, it sends a command to initiate a penalty brake enforcement to the TCL application, 
which executes the penalty in the simulation model.  The TCL continues to advance the simulation 
until the train is stopped.  The braking enforcement algorithm can also send a command to initiate 
an emergency brake enforcement, which TCL then executes in the simulation model. 
Once the train has stopped, the simulation is complete, and the TCL software logs the output data 
in a database for post-process analysis.  

 
The intent of the braking enforcement algorithm evaluation methodology is that it can be applied to 
evaluate any braking enforcement algorithm for any North American freight PTC implementation.  
As such, the methodology treats the software implementation of the braking enforcement algorithm 
as a black box that communicates with the simulation testing components over an open 
communications interface.  A document that details the communications process and protocols was 
prepared for use by developers of braking enforcement algorithm software to be evaluated using 
the methodology. 
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To allow for the most flexibility in the test setup, the interface was designed with communications 
over transmission control protocol/internet protocol (TCP/IP).  This allows for the braking 
enforcement algorithm to be implemented as an executable software application running on the 
same machine as the TCL software, as a virtual machine with a separate IP address, but operating 
on the same hardware as the TCL software, or as software running on separate hardware that 
communicates over TCP/IP. 
The interface was also designed with flexibility for initializing the simulation test process, to allow 
for more efficient execution of the simulations.  The TCL software can execute the braking 
enforcement algorithm software directly, if it is run on the same machine as the TCL software.  
Alternatively, a braking enforcement algorithm initialization module was developed that sends an 
initialization message to the braking enforcement algorithm software, indicating that the previous 
simulation is complete, and the new simulation is beginning.  This allows the braking enforcement 
algorithm software to re-initialize internal parameters, etc., for the new simulation. 
To ease the integration of an untested braking enforcement algorithm with the TCL software setup, 
a protocol test application was developed.  The protocol test application replicates the 
communications to and from the TCL software with the current protocols, but without the additional 
functionality of the TCL software.  This allows the developer of the braking enforcement algorithm 
software to test its communications interface and debug any issues locally, resulting in reduced time 
and cost associated with the integration process.  The source code for the protocol test application is 
also available, to support the development of the interface on the braking enforcement algorithm 
side without releasing the proprietary TCL software source code. [1] 

2.3 Simulation Modifications for Adaptive Braking Enforcement Algorithms 
Two modifications to TCL were made to support running simulations for adaptive braking 
enforcement algorithms.  
The first modification was to allow a user to build a scenario that includes a user-specified number 
of simulations in which each simulation uses the same train consist, where parameters within the 
consist are not modified from simulation to simulation.  This option is necessary for evaluating 
adaptive braking enforcement algorithms because the assumption is that a train consist will not be 
modified once the train has been assembled and adaptive calculations have been made.  With this 
option, Monte Carlo simulations can be run where the train consist is held constant, but the other 
parameters that can change are varied on the basis of their distribution types and ranges. 
The second modification runs the adaptive simulations for the first simulation in a scenario and 
stores the adaptive values calculated by the algorithm for brake propagation time and brake 
efficiency.  The other simulations for that scenario are then executed using the adaptive values 
calculated in the first simulation.  This change was necessary to run simulations where 
conditions such as ambient pressure and temperature, COF between the brake shoe and wheel, 
train brake pipe pressure leakage, speed accuracy, and/or track grade profile accuracy had 
changed since the adaptive values were calculated and evaluate how these changes affected the 
stopping location of the train. 
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3. Identification of Potential Hazards Associated with Adaptive 
Braking Enforcement Algorithms 

Two main hazards were identified with using train brake sets to update the braking characteristics 
of the train: The miscalculation of the braking characteristic values in the adaptive braking 
enforcement algorithm and the potential change in conditions after an adaptive calculation has 
been made. 

3.1 Miscalculation of Adaptive Values 
Hazards introduced from a miscalculation of either brake propagation time or brake efficiency or 
both could result in an unsafe outcome.  For example, if the algorithm calculates a brake 
propagation time that is faster than the actual train brake propagation time or brake efficiency that 
is greater than the actual train brake efficiency, the stopping distribution shown in Figure 1 could 
end up shifted further to the right, increasing the probability of a train to overrun the target.  The 
following subsections describe considerations for calculating adaptive values. 

 
For trains operating with head-end power, the adaptive braking enforcement algorithm must 
accurately determine the time of the initiation of a brake application and the amount of brake pipe 
pressure reduction, as well as accurately monitor head-end and end-of-train brake pipe pressure 
throughout the brake application.  From this data, the adaptive braking enforcement algorithm 
calculates the estimated brake propagation time for a full-service brake application.  If the 
calculation is performed on a brake application with a brake pipe pressure reduction less than a 
full-service application, the adaptive routine must extrapolate to determine the propagation time for 
a full-service application. 
Often trains are operated with distributed power, which allows a brake application to be applied 
simultaneously by the locomotives distributed throughout the train.  For trains operating with 
distributed power, the adaptive braking enforcement algorithm depends on the ability to apply a 
head-end-only brake application with the rear locomotive reporting end-of-train brake pipe 
pressure.  Alternatively, a new method of calculating brake propagation time without monitoring 
the end-of-train brake pipe pressure could be developed and implemented.  After the brake pipe 
propagation time calculation is made for the head-end only application, a further calculation is 
required to account for the brake propagation time for the distributed power train. 
Comprehensive simulation and testing of a brake propagation time adaptive routine can be used to 
verify the accuracy and potential for miscalculation.  Braking enforcement algorithms that 
implement a brake propagation time adaptive routine can be evaluated through the current Monte 
Carlo simulation process with a few updates to the data recorded for each simulation.  To evaluate 
this specific functionality, the algorithm must output the calculated brake propagation time for each 
simulation, and TCL can be used to record the actual brake propagation time for the simulation 
using data from TOES.  The two values can be compared to analyze the accuracy of the adaptive 
braking enforcement algorithm in calculating the brake propagation time.  Initial development and 
evaluation could make use of simulations until confidence is gained in the process, followed by 
testing on actual trains.   
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Additional mitigations for potential adaptive brake propagation time miscalculations: 

• Determine the worst-case and best-case brake propagation values for the given train consist 
and verify that any value calculated by the algorithm falls within the range of possible 
values defined by the worst case and best case. 

• Make smaller adjustments from the assumed value, as opposed to simply accepting the 
calculated value.  Further adjustments can be made as more brake applications are made 
after verifying that data from the previous brake sets are consistent.  

 
To calculate brake efficiency, the train must be moving with a brake application in place for a 
sufficient time duration to collect data for the adaptive algorithm.  The algorithm must accurately 
account for the variety of forces acting on the train to calculate the force from the train brakes.   
Similar to the brake propagation time, comprehensive simulation and testing of a brake efficiency 
adaptive routine can be used to verify the accuracy and potential for miscalculation. Braking 
enforcement algorithms that implement a brake efficiency routine can be evaluated through the 
existing Monte Carlo simulation process with updates to the outputs of the simulations.  The 
algorithm must output the calculated brake efficiency, which can be compared to the actual train 
brake efficiency used in the simulation.  Initial development and evaluation could make use of 
simulations until confidence is gained in the process, followed by testing on actual trains.   
As with the brake propagation time routine, additional mitigations for potential adaptive brake 
efficiency miscalculations include the following: 

• Determine the worst-case and best-case brake efficiency values for the given train consist 
and verify that any value calculated by the algorithm falls within the range of possible 
values defined by the worst case and best case. 

• Make smaller adjustments from the assumed value, as opposed to simply accepting the 
calculated value.  Further adjustments can be made as more brake applications are made 
after verifying that data from the previous brake sets are consistent.  

3.2 Change in Conditions after Adaptive Values Have Been Calculated 
The second hazard identified was a change in conditions, such as ambient pressure and 
temperature, COF between the brake shoe and wheel, train brake pipe pressure leakage, speed 
accuracy, and/or track grade profile accuracy after adaptive values have been calculated.  
Typically, braking enforcement algorithms handle the uncertainty of these (and other) conditions 
through the addition of a target offset.  With adaptive braking enforcement algorithms, these 
conditions influence the adaptive values calculated during a brake set and changes in these 
conditions after adaptive values have been calculated and stored will affect the braking 
characteristics of the train.  The more time elapsed and distance traveled after the adaptive values 
are calculated, the greater the potential for conditions to change.  For this reason, additional 
research into how these conditions affect the stopping distance of a train was conducted through a 
sensitivity analysis, an expanded design of experiment for the sensitivity analysis, and Monte Carlo 
simulations of select scenarios. 
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The sensitivity analysis started with identifying parameters used in the current Monte Carlo 
process that can change throughout a train trip, as opposed to those that can vary from one train 
consist to another, but do not change for a given train consist throughout a single trip.  Below is a 
list of parameters used in the current Monte Carlo process that can change after the adaptive values 
are calculated: 

• Ambient pressure 
• Ambient temperature 
• COF between brake shoe and wheel 
• Brake pipe pressure leakage 
• Speed reporting error 
• Train position reporting error 
• Brake pipe pressure sensor error 
• Track grade error 

Speed reporting error, brake pipe pressure sensor error, and train position reporting error were 
excluded from this study.  These three parameters were not considered for this study for various 
reasons, but primarily because when each of them is considered in isolation, they have less 
influence on the train stopping distance than the other parameters.   
A portion of the speed reporting error comes from calibration error on the locomotive tachometer, 
which on the same locomotive should change very little over time.  Other speed reporting errors 
can come from GPS readings, but previous experience with modeling brake algorithms, the speed 
reporting error, in isolation, has a small effect on train stopping distance. 
The train position reporting error has a range of approximately plus or minus 11 feet, which results 
in a small influence on train stopping distance. 
The brake pipe pressure sensor errors are due to calibration errors on the locomotive brake pipe 
pressure sensors and calibration errors on the end-of-train brake pipe pressure sensors.  It is 
expected that the calibration errors for a given train consist will change very little over time, and 
from previous experience the influence of this parameter on stopping distance will be minimal.  

The remaining five parameters were evaluated further through TOES simulations, a targeted design 
of experiment, and limited Monte Carlo analysis. 

 
An analysis was performed using simulations, including scenarios with different speed and grade 
combinations across unit, intermodal, and mixed manifest freight trains.  The purpose of this 
analysis was to investigate the interaction of the parameters that influence stopping distance with 
an emphasis on parameters set toward their extremes.  To limit the number of simulations and raise 
the probability a parameter would be selected toward the outer limits of its range, parameters that 
have a normal Gaussian distribution type were modified to a flat distribution type with the range 
extending to the four standard deviation points.  Only a single train consist makeup was used for 
each scenario and that exact train consist was used for every simulation within a scenario.  Using 
the new distribution types and ranges, 100 simulations were created and executed for each 
scenario. 
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The analysis of the parameters selected for each simulation shows that the extremes of each 
parameter were present, but there were not enough simulations created to get cases where all of the 
parameters were at their extremes in different combinations at the same time.  The results of these 
simulations did provide useful data and trends, indicating which parameters had the most influence 
on stopping distance. 
One identified trend was that the longest stopping distance for each scenario commonly had the 
COF parameter toward the low extreme.  Other parameters ranged up and down for these 
simulations, indicating that their influence on stopping distance was less than the COF parameter.  
Another trend was identified when looking at the stopping distance for simulations with similar 
COF values.  For these simulations, longer stopping distances commonly had ambient temperature 
and brake pipe pressure leakage toward their low extreme, indicating that after the COF parameter, 
these two would be considered the next dominant parameters.  
Looking beyond these trends with this dataset was difficult because of the limited similar 
parameter combinations.    

 
Knowing the parameters and extreme values of interest, a design of experiment was created to test 
the extreme levels in combinations that might have been missed from the previous Monte Carlo 
simulations that used a flat distribution.  The full factorial 2k design of experiment was selected to 
ensure all combinations of the five parameters, set to their high and low values, would be 
simulated.  Simulations were run for 612 scenarios (combination of train consists, speeds, and 
grade) at all combinations of factors at high and low levels.  Using the five parameters of interest, 
all in combination of high and low levels resulted in 32 (25) permutations per scenario.  Each 
permutation was set up in TCL by selecting the exact value desired for each parameter and then 
running a simulation for each scenario for that permutation before moving onto the next and 
repeating the process.  Table 1 shows the high and low levels for each factor that was considered in 
the model analysis.  Table 2 shows the different permutations for the full factorial 2k design of 
experiment.  

Table 1. Factor Levels for Simulation and Design of Experiment Modeling 

Parameter Setting 
Ambient Pressure (High) 14.7 
Ambient Pressure (Low) 8.7 
Ambient Temperature (High) 97.3 
Ambient Temperature (Low) 10.9 
Brake Pipe Pressure Leakage (High) 5.82 
Brake Pipe Pressure Leakage (Low) 0.1 
Coefficient of Friction (High) 26.68 
Coefficient of Friction (Low) -26.68 
Grade Error (High) 0.05 
Grade Error (Low) -0.05 



 

15 

Table 2. Design of Experiment Parameter Permutations 

Run 
Order 

Ambient 
Pressure  

(psi) 

Ambient 
Temperature 

(°F) 

Brake Pipe 
Leakage Rate 

(psi/m) 

Shoe/Wheel COF 
(% from nominal) 

Track Grade Error 
(% from nominal) 

1 8.7 10.9 0.1 -26.68 -0.05 
2 14.7 10.9 0.1 -26.68 -0.05 
3 8.7 97.3 0.1 -26.68 -0.05 
4 14.7 97.3 0.1 -26.68 -0.05 
5 8.7 10.9 5.82 -26.68 -0.05 
6 14.7 10.9 5.82 -26.68 -0.05 
7 8.7 97.3 5.82 -26.68 -0.05 
8 14.7 97.3 5.82 -26.68 -0.05 
9 8.7 10.9 0.1 26.68 -0.05 
10 14.7 10.9 0.1 26.68 -0.05 
11 8.7 97.3 0.1 26.68 -0.05 
12 14.7 97.3 0.1 26.68 -0.05 
13 8.7 10.9 5.82 26.68 -0.05 
14 14.7 10.9 5.82 26.68 -0.05 
15 8.7 97.3 5.82 26.68 -0.05 
16 14.7 97.3 5.82 26.68 -0.05 
17 8.7 10.9 0.1 -26.68 0.05 
18 14.7 10.9 0.1 -26.68 0.05 
19 8.7 97.3 0.1 -26.68 0.05 
20 14.7 97.3 0.1 -26.68 0.05 
21 8.7 10.9 5.82 -26.68 0.05 
22 14.7 10.9 5.82 -26.68 0.05 
23 8.7 97.3 5.82 -26.68 0.05 
24 14.7 97.3 5.82 -26.68 0.05 
25 8.7 10.9 0.1 26.68 0.05 
26 14.7 10.9 0.1 26.68 0.05 
27 8.7 97.3 0.1 26.68 0.05 
28 14.7 97.3 0.1 26.68 0.05 
29 8.7 10.9 5.82 26.68 0.05 
301 14.7 10.9 5.82 26.68 0.05 
31 8.7 97.3 5.82 26.68 0.05 
32 14.7 97.3 5.82 26.68 0.051 

 Simulation results from the design of experiment were analyzed using Minitab statistical software.  
The simulations were grouped by train type, speed, and grade for this analysis.  This grouping was 
selected based on similar analysis completed on target offsets, in previous braking enforcement 
algorithm modeling efforts, which also used stop distance simulations.  The end goal of this 
analysis was to provide models or regression equations that could be used to estimate the change in 
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stopping distance by modifying parameters from known values to values of interest to show how 
the change in parameters after an adaptive calculation is made can change the stopping distance.  
Analysis of the effects of each parameter from one of the simulation groupings is shown in Figure 
4.  This figure shows for each factor how the stopping distance would change from the nominal 
stopping distance, using a value change of that factor.  Also, the steepness of the line indicates the 
amount of influence on stopping distance that factor has.  Figure 4 shows that the stopping distance 
of a train would increase if the pressure increased, the temperature decreased, the brake pipe 
pressure leakage decreased, COF decreased, or grade error decreased. 

 
Figure 4. Typical Parameter Effects Plot Result for Simulation Grouping 

The design of experiment Minitab analysis results provided a pareto chart for each group; Figure 5 
shows a typical result.  The chart shows the ranking of the standardized effects for each factor.  
Factors with a larger standardized effect number had a stronger effect on the change of stopping 
distance from nominal.  When looking at the sum of standardized effects overall for all different 
speeds and grades, change in COF had, by far, the strongest effect, followed by brake pipe pressure 
leakage change, ambient temperature change, and grade error change.  Ambient pressure was 
sometimes significant, but not as strong an effect.  

 
Figure 5. Typical Pareto Chart of Standardized Effects 
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Using the data from the design of experiment, Minitab was used to create regression equations 
for each grouping that included coefficients for each pareto value deemed relevant for that 
grouping.  These equations were intended to estimate the change in stopping distance caused 
by changes in parameters.  For most of the equations created by Minitab there was a constant 
value associated with the equation, meaning that if none of the parameters had changed, the 
equation would still be estimating a change in stopping distance.  Because of this result, some 
additional simulations were run in TOES for each of the factors using additional intermediate 
points instead of extreme settings only.  This smaller set of simulations showed that changing 
the COF and the change in brake pipe pressure leakage for longer trains did not change the 
stopping distance with a linear relationship.  The nonlinearity of these variables violates the 
fundamental assumption of linearity put forth by the design of experiment.  Therefore, any 
regression equation coefficients (slopes) obtained through the design of experiment may not be 
correct if the accompanying variable does not have a linear relationship with the change in 
stopping distance.  However, the coefficients developed in the equations could still be used to 
calculate an approximate change in stopping distance and the results for relative strength and 
significance of factors still stand with the COF being, by far, the most significant factor, 
followed by brake pipe pressure leakage. 
Being able to estimate the change in stopping distance on the basis of the change in a 
parameter or parameters could be useful for adaptive braking enforcement algorithms if 
methods are available for monitoring the parameters of interest.  In the absence of monitoring 
these parameters, which is the current case for nonadaptive braking enforcement algorithms, 
this data could still prove useful in understanding how far parameters need to change to 
negatively affect the stopping distance difference. 

 

The Monte Carlo process was used to see how the distribution of stopping locations relative to a 
target location would change when using an adaptive algorithm.  Monte Carlo stopping distance 
simulations were run on a limited number of scenarios, and the results were used to create stopping 
distance distributions.  The stopping distributions were then analyzed to estimate the distribution of 
stopping locations relative to a target location for a nonadaptive braking enforcement algorithm 
and an adaptive braking enforcement algorithm.  The process is first explained for a single train 
consist within a single scenario and then is expanded to include the full range of potential train 
consists that can be seen within the scenario. 
For a single train consist, an example scenario of a 100-car manifest freight train on level track, 
operating at 50 mph, was chosen.  Normally, in the Monte Carlo process, a scenario would consist 
of 100 simulations, but for this study the number of simulations was increased to 2,000 to define 
the stopping distance distribution more accurately.  All simulations were built using the same train 
consist, while only parameters identified as being able to change following an adaptive calculation 
were varied for each simulation using the Monte Carlo process.  Stop distance simulations were 
executed and the results from the simulations were analyzed in MATLAB to create the histogram 
shown in Figure 6, which shows the stopping distance distribution for this nonadaptive braking 
enforcement algorithm scenario and single train consist.   
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Figure 6. Stopping Distance Distribution for a Nonadaptive Braking Enforcement Algorithm 

(Single Train Consist) 
If a nonadaptive braking enforcement algorithm is used in this scenario, the location where the 
algorithm applies the penalty brake enforcement would be the same for all simulations, as the 
nonadaptive braking enforcement algorithm would have the same inputs for each simulation within 
the scenario.  Assuming the nonadaptive braking enforcement algorithm nominally predicts the 
stopping distance to be the mean of the stopping distance distribution (with no target offset 
applied), the stopping location relative to the target for any individual simulation would be the 
difference between the stopping distance for that simulation and the mean stopping distance (where 
a negative value indicates a train stopping short of the target and a positive value indicates a train 
stopping beyond the target).  Applying this to the stopping distance distribution in Figure 6 resulted 
in the distribution of assumed stopping locations relative to the target shown in Figure 7.  As 
expected, the shape of the stopping distance distribution and the distribution of stopping locations 
relative to the target were the same for a nonadaptive braking enforcement algorithm, with the only 
difference being the values on the independent axis.  
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Figure 7. Distribution of Stopping Locations Relative to the Target for a Nonadaptive 

Braking Enforcement Algorithm (Single Train Consist) 
To create a distribution of stopping locations relative to the target that would be representative of 
an adaptive braking enforcement algorithm, it was assumed that the adaptive braking enforcement 
algorithm would update the estimated braking characteristics for the train such that the predicted 
stopping distance would equal the stopping distance from the simulation used to update the braking 
characteristics (with no target offset applied).  In this case, the stopping location relative to the 
target for any individual simulation would be the difference between the stopping distance for that 
simulation and the stopping distance for the simulation used to update the braking characteristics 
using the adaptive algorithm (again, a negative value indicates a train stopping short of the target 
and a positive value indicates a train stopping beyond the target).  Therefore, if a single simulation 
is chosen as representative of the conditions when the adaptive braking enforcement algorithm 
updates the braking characteristics, the other Monte Carlo simulations can be used to determine the 
stopping location relative to the target for cases where changes to the conditions occur after the 
adaptive calculations are performed.   
This analysis assumes that the distribution types and ranges for parameters that can change after an 
adaptive calculation has been made are the same as the distribution types and ranges for these 
parameters more generally (in other words, there were no constraints on the amount a parameter 
could change following the adaptive calculation).  It is reasonable to expect that, for at least some 
of these parameters, the distribution of potential values would be more tightly grouped around the 
measured value.  Therefore, the assumption is considered to be conservative, but further research is 
needed to determine if the distribution types and ranges should be constrained and how those 
constraints would affect the distribution of stopping locations relative to the target for the adaptive 
braking enforcement algorithm analysis.   
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Using these assumptions, a MATLAB program was developed and implemented to step through 
each of the simulations, using the stopping distance from that simulation as the predicted stopping 
distance for the adaptive braking enforcement algorithm and the other simulations as representative 
of stopping distances with changes to the conditions after the adaptive calculations have been 
made.  For each simulation selected as the adaptive simulation, the program calculated the stopping 
location relative to the target for all other simulations, generating 2,000 stopping locations for each 
simulation selected as the adaptive simulation.  Therefore, a total of 4 million stopping locations 
were generated from the 2,000 stopping distance simulations.  Figure 8 shows the resulting 
histogram, with the histogram from Figure 6 shown above for easy comparison.  
 

 
Figure 8. Comparison of Distributions of Stopping Locations Relative to the Target for 

Nonadaptive and Adaptive Braking Enforcement Algorithms (Single Train Consist) 
Figure 8 shows that, for a single train consist, the stopping distribution was wider for the adaptive 
algorithm compared to the nonadaptive algorithm, which was expected because adaptive 
algorithms take into account the current conditions at the time of the adaptive calculations, which 
creates a larger potential change in conditions after the adaptive calculations have been made, due 
to the assumption that the distributions of potential values are not constrained. 
This method was expanded to look at the full range of train consists that can exist within the 
scenario, as opposed to a single train consist, as described above.  The same scenario of a 100-car 
manifest freight train on level track, operating at 50 mph, was used.  Figure 9 shows the histogram 
of stopping distances for these simulations a nonadaptive braking enforcement algorithm. 
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Figure 9. Stopping Distance Distribution for a  
Nonadaptive Braking Enforcement Algorithm 

The same method was used to determine the distribution of stopping locations relative to the target 
representative of the nonadaptive braking enforcement algorithm, and the MATLAB program was 
again used to generate distribution of stopping locations relative to the target representative of the 
adaptive braking enforcement algorithm.  Figure 10 shows the resulting distributions of stopping 
locations relative to the target for both the nonadaptive and adaptive braking enforcement 
algorithms. 

 
Figure 10. Comparison of Distributions of Stopping Locations Relative to the Target for 

Nonadaptive and Adaptive Braking Enforcement Algorithms 
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Figure 10 shows that the distribution of stopping locations relative to the target was still slightly 
wider for the adaptive braking enforcement algorithm, but the standard deviation for the adaptive 
braking enforcement algorithm was closer to the standard deviation of the nonadaptive algorithm. 
The process was completed on a variety of 100-car manifest freight trains and 100-car unit freight 
trains on flat grade at varying speeds.  The results showed that the range of the distribution of 
stopping locations relative to the target was always larger for the adaptive braking enforcement 
algorithm distribution, meaning there was a chance for more extreme outliers, albeit at a low 
probability of occurrence.  The standard deviation for the distribution of stopping locations relative 
to the target was larger for the adaptive braking enforcement algorithm distribution in some cases 
and the nonadaptive braking enforcement algorithm distribution in others.  Looking further into the 
scenarios, the standard deviation was larger for the nonadaptive algorithm distributions in 
scenarios where there was a wider variation of varied parameters within a train consist – for 
example, in longer manifest freight trains.  Scenarios where the variation in parameters was 
narrower – for example, in unit freight trains, tended to result in a larger standard deviation for the 
adaptive braking enforcement algorithm distribution. 
Adaptive braking enforcement algorithms may need to account for the larger range in stopping 
location relative to the target and the difference in standard deviation, especially for cases where 
the standard deviation may be larger.  It is recommended that a modified Monte Carlo analysis be 
used to evaluate adaptive braking enforcement algorithms, along with some level of field testing, to 
help support the safety case for using an adaptive braking enforcement algorithm. 

3.3 Risk Reduction Methods 
The two main hazards identified in this project are inaccurate estimations for braking 
characteristics of a train during an adaptive calculation and conditions that can affect train braking 
distance changing after an adaptive calculation is made, such as changes in ambient pressure and 
temperature, COF between the brake shoe and wheel, train brake pipe pressure leakage, speed 
accuracy, and/or track grade profile accuracy.  
The following concepts may be used to limit the risk of inaccurate estimations for braking 
characteristics of a train during an adaptive calculation: 

• Account for known errors or variances in input data. 
• Make smaller incremental changes to braking characteristic values as more is learned about 

the train consist. 
• Bound the minimum and maximum expected values for a train consist and compare 

calculated values to limits. 
• Trending multiple brake sets before updating values  

The following ideas may be used to reduce risk associated with conditions changing after an 
adaptive calculation has been made: 

• Develop methods to monitor parameters, record parameter values at the time of adaptive 
calculation, and modify stopping distance prediction based on the change in parameters. 

• Develop an uncertainty value that grows with train run time, since adaptive calculations 
have been made or transition adaptive calculations back toward original assumed values as 
time from adaptive calculations increases. 
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• Develop new target offsets used for adaptive braking enforcement algorithms that could 
help mitigate this risk. 

• Evaluate whether the emergency brake backup can compensate for the risk associated with 
a change in conditions. 

Ultimately, whatever risk mitigations are used, adaptive braking enforcement algorithms 
should go through an evaluation using Monte Carlo simulations to demonstrate safety and 
performance metrics. 
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4. Proposed Methodology for Evaluating  
Adaptive Braking Enforcement Algorithms   

4.1 Evaluation of the Accuracy of Adaptive Calculations 
The current Monte Carlo process can be leveraged to run a wide range of simulations that can be 
used to evaluate the accuracy of a braking enforcement algorithm in calculating adaptive values.  
The simulation tools can be modified to record the brake propagation time and brake efficiency 
values calculated by the adaptive braking enforcement algorithm and compare against the actual 
values used in the TOES simulation.  Initial evaluation can be completed solely with simulations 
until adaptive performance is considered sufficient, and then limited field testing is recommended 
to supplement simulation testing. 

4.2 Monte Carlo Simulations to Evaluate Adaptive Braking Enforcement 
Algorithm Performance 

For evaluating adaptive braking enforcement algorithms through Monte Carlo simulations, the 
current Monte Carlo simulation process will need to be updated per the following: 

• Review parameter distribution types and ranges and research the extent that each parameter 
can change, given the value for the parameter was recently calculated by an adaptive 
braking enforcement algorithm.  Using this information, develop the parameter distribution 
types and ranges representing the potential change for a train that has parameters updated 
based on adaptive calculations. 

• Modify the simulation process to use each of the 100 simulations normally created for a 
scenario as a simulation to calculate adaptive values and then create 100 simulations for 
each one based on the parameter distribution types and ranges representing the potential 
change, as defined above.  This results in 100 simulations for each of the original 
simulations in a scenario, for a total of 10,000 simulations per scenario. 

Simulation results would still be analyzed to report the probability of stopping a train short of the 
target with the adaptive braking enforcement algorithm, and performance results would be 
compared to the nonadaptive braking enforcement algorithm. 
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5. Conclusion 

Adaptive braking enforcement algorithms have the potential to improve the accuracy of the 
predicted stopping distance of a train, allowing trains to stop closer to the target stopping locations.  
However, modifying the assumed braking characteristics in real time as the train is operating 
creates potential hazards that must be considered.  Hazards that influence the predicted stopping 
distance identified in this project are (a) inaccurate braking characteristic calculations made by the 
adaptive braking enforcement algorithm and (b) changes in conditions that can affect train braking 
distance after the adaptive calculations have been made.  
For the first hazard (inaccurate braking characteristic calculations), analysis that compares 
adaptive calculated values to the actual (or simulated) values for a train over a broad range of 
scenarios and conditions can increase confidence in the performance of the adaptive braking 
enforcement algorithm in performing the adaptive calculations.  Existing Monte Carlo 
simulation processes can be employed to perform this analysis, followed by limited field 
testing with actual equipment.  With a sufficient confidence in a particular braking 
enforcement algorithm in performing these calculations, the risk associated with this hazard 
can be managed. 
For the second hazard (changes in conditions that can affect train braking distance after the 
adaptive calculations have been made), modifications to the current Monte Carlo simulation 
process can be made to evaluate the performance of the adaptive braking enforcement algorithm 
that considers the potential change in conditions.  The analysis performed in this project indicates 
that the distribution of stopping locations relative to the target for an adaptive braking enforcement 
algorithm can be narrower than a nonadaptive braking enforcement algorithm (for scenarios where 
there is wide train consist variation, e.g., manifest freight), but can also be wider than a 
nonadaptive braking enforcement algorithm (for scenarios where there is less train consist 
variation, e.g., unit freight).   
However, this analysis is conservative in that it assumes the distribution types and ranges for 
parameters that can change after an adaptive calculation has been made are the same as the 
distribution types and ranges for these parameters more generally (in other words, there were no 
constraints on the amount a parameter could change following the adaptive calculation).  It is 
reasonable to expect that, for at least some of these parameters, the distribution of potential values 
would be more tightly grouped around the measured value.  The research team recommends that 
further research examine the extent that each parameter can change, given that the value for the 
parameter was recently calculated by an adaptive braking enforcement algorithm.  The team also 
recommends that the Monte Carlo process be modified both to incorporate these distributions and 
to perform simulations where adaptive values are calculated, and then the full range of potential 
conditions (including potential changes to parameter values) can be simulated for each simulation 
where adaptive calculations are performed. 
The team recommends that adaptive braking enforcement algorithms be evaluated through a Monte 
Carlo simulation methodology to evaluate against these hazards and report the safety and 
performance statistics of such algorithms.   
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Abbreviations and Acronyms 

ACRONYM EXPLANATION 
AG Advisory Group 
BPP Brake Pipe Pressure 
COF Coefficient of Friction 
FRA Federal Railroad Administration 
IP Internet Protocol 
PTC Positive Train Control 
TCP/IP Transmission Control Protocol/Internet Protocol 
TCL Test Controller Logger 

TOES Train Operations and Energy Management 

TTCI Transportation Technology Center, Inc. 
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