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Executive Summary 

Emerging advanced Positive Train Control (PTC) systems may enable North American railroads 
to introduce moving blocks that allow for shorter train headways in the future. Although 
operating fleets of trains at shorter headways can conceptually increase mainline capacity, small 
fluctuations in the speed of the lead train may be amplified as each following train reacts and 
attempts to maintain safe braking headway. The resulting rapid changes in throttle and brake 
settings can reduce following train fuel efficiency, generate in-train forces, and, as headways 
fluctuate, diminish any capacity gains from shortened headways. To address this challenge, this 
research leverages emerging highway vehicle platooning technology to improve the efficiency 
and effectiveness of fleeting trains at minimum headways under moving blocks. The research 
aims to better understand how closely following trains respond to different throttle and brake 
control algorithms, and, using insights gained from automobile and truck platooning technology, 
develop improved train control algorithms balancing fuel efficiency and train headway. A project 
team led by the University of Illinois at Urbana-Champaign, and including the University of 
Illinois at Chicago, Michigan Technological University, Vanderbilt University and the New 
York Air Brake Corporation, conducted the research between January 2020 and January 2021. 
From an extensive literature review, the project team found that improved following train control 
algorithms under moving blocks have not been previously researched within the North American 
heavy-haul freight and passenger railway context. Past research has been limited to heavy-rail 
transit (subway) and high-speed passenger rail applications, mainly in the international context. 
Because of the types of rail vehicles involved and their performance characteristics, researchers 
have adapted car following models to the problem of controlling transit and high-speed rail train 
headways in a string stable manner. A key difference between light-duty highway vehicle 
following models and the requirements of a heavy-haul freight rail application is the need to 
consider in-train forces, a finite number of throttle settings, more complicated braking systems, 
and additional lag time in response to control inputs.  
To evaluate following train control algorithms, the project team developed a detailed multi-train 
performance simulator by adapting previous University of Illinois train performance simulation 
work and making improvements with the aid of insights and validation data from New York Air 
Brake. The multi-train model simulated the performance of individual trains within a fleet 
subject to different throttle and brake inputs as they attempted to follow a lead train with a 
specified throttle/brake plan and speed profile. A following train control algorithm determined 
the throttle and brake commands for following trains. The algorithm attempted to minimize train 
headway while still enforcing the moving-block safe braking distance, not exceeding the 
maximum authorized speed, and not generating excessive in-train forces. To compare different 
control algorithms, the model output performance metrics, inclding average train separation, 
number of following train incursions into the safe braking distance (PTC braking enforcement), 
fuel consumption, and standard deviation of throttle and dynamic brake notch settings. 
As a baseline, the project team simulated a naïve algorithm designed to mimic the performance 
of a train crew reacting solely to the position of the train ahead. This approach required rapid 
oscillations between throttle and dynamic braking to manage train headways. This operating 
pattern was not fuel efficient, may place excessive strain on locomotive components, and may 
also create excessive in-train forces. Following trains amplified the behavior of preceding trains, 



 

2 

demonstrating string instability and increasingly aggressive control actions leading to PTC 
braking enforcements. 
To improve on this behavior, the project team adapted highway vehicle platooning control 
methods to the heavy-haul freight rail domain. To investigate different families of control laws, 
the team formulated five following train control algorithms that more intelligently considered 
information on the status of the train ahead when specifying throttle or brake settings for each 
following train. A stability analysis determined the combined range of control algorithm 
parameters over which a fleet of trains was expected to exhibit string stability. With string 
stability, following trains attenuated the actions of preceding trains, and each successive train 
required less aggressive acceleration and braking rates to maintain headways.  
To evaluate and compare all control algorithms, the multi-train model simulated each algorithm 
over a series of 18 different train fleeting scenarios. Each scenario involved a different factorial 
combination of freight train type, maximum and minimum throttle/brake notch, and number of 
acceleration and braking cycles over a 200-mile tangent route with zero gradient. The team 
simulated two different communication topologies, one where following trains only had 
information on the position of the train ahead, and a second where additional speed, acceleration, 
and throttle/brake status could be communicated between trains. 
The simulation results suggest that certain families of control laws were better than others at 
managing train separation and fuel consumption within train fleets. Certain controllers were fast-
acting but demonstrated notch instability when attempting to minimize headways. Other 
controllers were slow-acting and required a large baseline train spacing to avoid an incursion into 
the safe braking distance and a corresponding PTC braking enforcement. While all cases 
required additional train spacing beyond the minimum safe braking distance to account for train 
control actions, certain following train control algorithms helped minimize this distance. The 
control laws developed through this research exhibited an efficiency and headway tradeoff that 
may allow railway operators to optimize performance according to their specific business 
objectives by changing algorithm parameters. Relative to the scenario where only information on 
the position of the train ahead is known, the headway and fuel efficiency performance of the 
train control algorithms could be improved by communicating additional information on the 
speed and acceleration of the train ahead. These benefits of additional communication were 
enhanced when the frequency of train position reports and controller updates were increased. 
This result suggests that enhanced communication may be essential to effectively managing train 
fleets and achieving the full capacity benefits of moving blocks.  
Additional research and simulation experiments should be conducted to evaluate the most 
promising control algorithms on actual rail corridor topography and train fleet operating 
conditions. The results of this research would allow industry practitioners to develop improved 
locomotive driver advisory and semi-autonomous adaptive train cruise control systems for the 
operation of fleets of trains under moving blocks, and railroad operators to make more informed 
decisions regarding the potential fuel efficiency and capacity benefits of these systems.  
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1. Introduction 

This Technical Report summarizes the research, development, and simulation of following train 
control algorithms for moving block operations. The research was conducted to improve the 
efficiency and effectiveness of fleeting trains at minimum headways under future moving-block 
control systems. In developing and evaluating potential control algorithms to adapt to heavy-haul 
freight rail applications, the research leveraged existing and developing connected highway 
vehicle and truck platooning technology. Research was conducted between January 2020 and 
January 2021 by a consortium led by the University of Illinois at Urbana-Champaign and 
including the University of Illinois at Chicago, Michigan Technological University, and 
Vanderbilt University as academic partners, and the New York Air Brake Corporation as an 
industry partner. The research was sponsored by the Federal Railroad Administration (FRA) 
through the 2018 Broad Agency Announcement (BAA) on Intelligent Railroad System Research. 

1.1 Background 

1.1.1 Research Motivation 
North American railroads face increasing demand for safe, efficient, and reliable freight and 
passenger transportation. Rising energy costs and competition from other transportation modes 
give railroads an economic incentive to optimize train handling for maximum fuel efficiency. 
Similarly, the high cost of constructing additional track infrastructure to increase capacity and 
improve reliability provides railroads with a strong financial motivation to increase the 
productivity of their existing mainlines by reducing the headway between trains. 
Facing similar efficiency and capacity demands, highway transportation has turned to intelligent 
transportation systems technology. Adaptive cruise control systems developed for highway 
vehicles are being combined with other technologies to support autonomous highway vehicle 
operations. These systems react to the surrounding terrain and traffic stream to control the 
vehicle throttle and brake in a manner that promotes fuel efficiency. More advanced versions of 
these systems use connected vehicle technology to form platoons of closely spaced highway 
vehicles that travel together in a coordinated manner. The reduced spacing between highway 
vehicles in a platoon decreases aerodynamic drag, increasing fuel efficiency, and creates capacity 
for additional vehicles. When a small number of autonomous vehicles operating in an ideal fuel-
efficient manner are introduced into a traffic stream, they help to regulate the actions of all 
drivers, improving the overall flow and fuel efficiency of the traffic stream. 
To improve the fuel efficiency of rail transportation, railways have implemented similar driver 
advisory systems to advise locomotive operators on optimal throttle and brake commands. 
Systems such as LEADER from New York Air Brake have become progressively more 
sophisticated in their ability to support semi-autonomous adaptive train cruise control and even 
full autonomous “auto pilot” capability under test conditions in Western Australia. While 
systems such as LEADER can improve fuel efficiency, their ability to reduce train headway and 
increase capacity is constrained by the existing wayside block signal system used to control 
railway traffic and maintain safe separation between trains. Advanced Positive Tran Control 
(PTC) systems currently under development may replace this wayside system with virtual or 
moving blocks that allow for shorter train headways. Conceptually, eliminating the headway 
inefficiency of fixed signal blocks with lengths established by the braking distance of the 
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poorest-performing train allows trains to follow each other at minimum safe braking distances 
(Figure 1). The reduced headway between trains can increase capacity on double-track main 
lines, such as those found on key freight corridors with high traffic density or lines in urban areas 
with combinations of freight and commuter rail service (Dick, 2000; Dingler et al., 2009; Dingler 
et al., 2010; Dick et al., 2019; Diaz de Rivera and Dick, 2021). 

 
Figure 1. Train Operations and Headway Under a) Fixed Wayside Signal Blocks  

and b) Moving Blocks 
Although operating highway and rail vehicles at shorter headways can conceptually increase 
capacity, it is difficult to implement in practice. In actual operating settings, the lead vehicle 
rarely maintains a perfectly constant speed due to changes in grade, curvature, and wind speed 
and direction. Small fluctuations in the speed of the lead vehicle are amplified by each trailing 
vehicle as they react and attempt to maintain a minimum required headway. Tests of highway 
vehicles with adaptive cruise control have shown that platoons of vehicles exhibit a “rubber 
band” effect where the headway between subsequent vehicles rapidly expands and shrinks as 
following vehicles attempt to match the speed of the lead vehicle. The rubber band effect 
becomes more pronounced for each subsequent vehicle in the platoon, with the final car or truck 
requiring frequent throttle and brake adjustments to rapidly change speed and maintain the 
desired headway. Under these unstable conditions, the fuel efficiency of the vehicles at the end 
of the platoon can deteriorate and, as headways begin to fluctuate, any capacity gains from 
shortened headways are diminished. Recent research has attempted to minimize these effects and 
improve the efficiency and effectiveness of platooning through vehicle-to-vehicle 
communication. Connecting vehicles to share throttle and brake commands can allow for new 
control algorithms that improve fuel efficiency and the ability of the vehicles to maintain a 
constant minimum headway. This research aims to learn more about these vehicle control 
algorithms and how they can be used to solve similar problems when fleets of closely following 
trains are operated under advanced PTC systems. 
A naïve implementation of PTC with moving blocks is likely to encounter similar problems with 
varying headway and decreased fuel efficiency. These effects are likely to be more pronounced 
in a railway environment compared to a highway application. Due to their lower power-to-
weight ratio, trains are more sensitive to changes in grade and curvature than highway vehicles, 
and locomotives have a limited number of throttle settings, making it more difficult for the lead 
train to maintain a constant speed. While highway vehicles respond rapidly to changes in throttle 
and brake settings, the size and inertia of diesel-electric locomotive prime movers makes them 
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slow to respond to changes in throttle settings, and it may take many seconds for all of the brakes 
on a train to apply or release. With longer reaction times to control inputs, the following trains 
are likely to experience difficulty in maintaining the minimum headway distance. Additional 
complications arise from the sensitivity of train braking distance to small changes in gradient and 
train speed. To avoid an enforcement brake application from the PTC system, a train-following 
at the minimum headway when cresting a vertical curve will need to reduce speed and increase 
headway as its safe braking distance increases. Subsequent following trains will need to match 
this new lower speed but may also be able to follow at closer headways as their safe braking 
distance becomes shorter at lower speeds.  

1.1.2 Technological Challenge 
Technology to control fleets of closely spaced trains with moving blocks has been advanced in 
urban transit operations. Moving-block operations and coordinated train control has been 
demonstrated and deployed on several subway lines worldwide, including the Docklands Light 
Railway in London, the L Line in New York, and Subway Line 2 in Beijing (Gao et. al., 2015). 
Although these transit installations involve many of the same component technologies as a 
moving-block system on a conventional mainline railway (such as moving-block train control 
architecture, train-to-train communication, and driver advisory or automated control systems 
with underlying control algorithms), they are applied to a more highly constrained operating 
environment than a conventional railway. Since transit systems typically feature vehicles of 
similar length, acceleration and braking properties, consistent speeds, highly structured 
schedules, and dedicated guideways, there are fewer technical challenges to address when 
developing control algorithms for fleeting trains under moving blocks. 
In Europe, provision for operations with moving blocks is made via the European Train Control 
System (ETCS) Level 3. ETCS is characterized by bidirectional information transmission 
between the train and the radio block center (RBC), train positioning by EUROBALISES 
(beacons) installed every 1,000 meters between the rails, continuous and safe speed control, 
onboard train integrity check, and virtual block control by RBCs. Currently, there are no plans to 
introduce ETCS Level 3 on any European rail lines in the short term. However, a number of lines 
are expected to test ETCS levels with moving blocks in the coming years. Like previous transit 
applications, the ETCS experience is not directly applicable to mainline heavy-haul freight 
railways. European railway operations typically use electric traction; have a focus on short, fast, 
and light passenger trains; and impose limits on the length and weight of freight trains that 
constrain train sizes to be far less than those operated on North American railways. Greater 
homogeneity in train size and weight normalizes train performance. More consistent train 
braking and throttle response removes one additional source of complexity for the train-
following control algorithm. 
In the context of mainline line-haul freight and commuter, regional, and intercity passenger rail 
operations in North America, technology to control fleets of closely spaced trains with moving 
blocks is still under development. Locomotive driver advisory systems have been in operation 
for the past 10 to 15 years on several of the major Class I railroads to improve fuel efficiency. 
However, because of the constraints of the wayside block signal control system, these systems 
have not been optimized to the specific problem of managing headways between following trains 
under moving-block PTC.  
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Outside North America, tests of locomotive auto-pilot systems on iron ore railway lines in 
Western Australia have been conducted under moving-block PTC. Although these lines are 
heavy-haul freight operations, the trains are of relatively consistent length and weight and use 
electronically controlled pneumatic (ECP) brakes. In contrast, North American line-haul freight 
and passenger operations involve train fleets with a wider range of performance characteristics 
and standard air brakes that have a less predictable reaction time and performance compared to 
ECP brakes. Thus, continued refinement and development of following train control algorithms 
is still required to effectively and efficiently operate closely spaced trains under moving blocks. 
Through transit operations and demonstration applications in Europe and Australia, the relevant 
component technologies for operating closely spaced trains under moving blocks have been 
demonstrated in a relevant operating environment, but there is room for additional development 
and improvement of train-following control algorithms to improve overall performance.  
Within the context of highway intelligent transportation systems, various tests and 
demonstrations of passenger vehicle platooning technology have been conducted over the past 20 
years. Platoons of heavy commercial trucks are a more recent phenomenon, with several research 
and demonstration projects over the past 5 years, and efforts by private firms to commercialize 
truck platooning technology. Developing control algorithms that account for the mass, 
acceleration, braking, and control response characteristics of heavy trucks has proven to be a 
challenge compared to those for passenger vehicles. The extreme physical and performance 
characteristics of heavy-haul freight trains compared to trucks and passenger vehicles reinforce 
the need and challenge of developing efficient following train control algorithms that are the 
subject of this research.  

1.1.3 Development of Highway Vehicle Platooning and Control 
The idea of highway vehicle platooning with coordinated control can be traced to a 
demonstration in New York City in 1925, when a driverless automobile was remotely controlled 
by an operator in a trailing vehicle using radio waves. The system, developed by the Houdina 
Radio Control Company, was mainly used for advertising and publicity stunts, but the U.S. 
military explored various practical applications of the technology. The idea of autonomous 
vehicles was popularized during the 1939 World’s Fair, when the American industrial designer 
Norman Bel Geddes proposed automatic highway vehicles guided by magnetic rails embedded in 
the road. In the 1960s, researchers at Ohio State University realized this idea when they 
developed an automated automobile with computer-controlled electro-hydraulic steering, 
acceleration, and braking. The automatic steering system used coils that sensed magnetic fields 
generated by cables embedded in the pavement. To maintain separation between vehicles when 
traveling in a platoon, a physical reel-type measuring device stretched between the lead human-
controlled vehicle and the trailing automated test vehicle monitored headway distance and 
relative speed. An onboard computer running a basic control algorithm used the measured 
distance and speed (and their respective instantaneous rates of change) to control the vehicle’s 
accelerator and brake automatically. Although the physical measuring system was impractical, 
this research forms the foundation of subsequent research on algorithms to control closely spaced 
platoons of highway or railway vehicles. The researchers themselves acknowledged that more 
sophisticated control algorithms would be required to achieve the roadway capacity and 
efficiency benefits of automated vehicles (Fenton and Olson, 1969). 
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In 1972–73, the European ARAMIS project platooned 25 small transit vehicles on a French test 
track. The vehicles used ultrasonic and optical range sensors to operate at 50 mph with a 
separation distance of 1 foot between each vehicle. The European Prometheus Project (1980–
1995) advanced communications, vehicle control, and artificial intelligence to create intelligent 
vehicles designed to run on an advanced road system. The vehicles had fully automated steering 
and longitudinal control, and Volkswagen conducted test-track trials at highway speed.  
Experiments to develop better platooning technologies have continued in the U.S. Most notably, 
the Partners for Advanced Transportation Technology (PATH) project at UC Berkeley started in 
1986 as a collaboration between State and local governments and pioneered several intelligent 
systems. The collaboration developed the Automated Highway System that was used to 
demonstrate four-car platoons in 1994 and eight-car platoons in 1997. The project was recently 
used to demonstrate three-truck platoons operating at 14-foot intervals. 
Ongoing research at Michigan Technological University involves developing model predictive 
control models, implementing real-time solution algorithms, and conducting real-world testing 
and simulation analysis for connected and automated vehicles. This research includes developing 
algorithms to support platoon driving or cooperative and adaptive cruise control (CACC) 
applications. An optimal control model based on model predictive control (MPC) has been 
developed and implemented for the CACC application using vehicle-to-vehicle communication 
technology. The MPC-based CACC control model aims to improve stability, robustness, driving 
safety, and energy efficiency of a platoon of CAVs. The control model is formulated with the 
objective of maintaining a constant time headway and is solved in real-time with a rolling 
horizon framework. A fleet of eight fully connected Chevrolet Volt vehicles is employed in real-
world road testing of the control algorithms. Based on this testing, Zhao and Zhang (2018; 2020) 
have reported on the performance of the MPC-based CACC model and real-time solution 
algorithms under uncertain traffic conditions. Although it may be more challenging to maintain a 
constant time (or distance) headway for fleets of trains compared to highway vehicle platoons 
due to the low power-to-weight ratio of trains, this framework provides key insights for 
developing train fleeting control algorithms. 
Practical implications and performance of highway vehicle platoons and their overall effect on 
the traffic stream are the subject of past and ongoing investigations at Vanderbilt University. The 
research has investigated the instability observed in vehicle platoons and the impact of traffic 
waves resulting from this “rubber band” effect on vehicle braking events and fuel economy 
(Stern et al., 2018). The research has progressed to examine how a number of autonomous and 
connected vehicles operating with appropriate control algorithms can minimize the occurrence 
and impact of these traffic waves, even if human drivers still control several of the vehicles in the 
platoon. Through field experiments, the team has developed control strategies to dampen the 
effect of traffic waves and produce more stable vehicle platoons. Since the overall stability of a 
train fleet and the ability of trains to maintain minimum headway is key to achieving the 
potential capacity benefits of PTC with moving blocks, these developments also influence the 
design of the train fleeting control algorithms. 

1.1.4 Development of Train Fleets with Moving Blocks 
Within the rail mode, the ability of North American railway operators to form platoons of trains 
traveling together at minimum headways has been constrained by railway traffic control systems 
that operate on fixed or discrete control blocks that can be occupied by only one train at a time. 
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Although fleets of trains can be operated together in close succession, the wayside signal block 
control system and track circuits found on most high-density rail lines in North America have 
limited ability to determine the exact location of each train. To ensure safety and adequate 
separation between trains, the block signal control system creates additional spacing between 
trains beyond the minimum safe braking distance. Thus, true “train platoons” at minimum 
headways analogous to those achieved with highway vehicles have not been possible in the 
North American freight and passenger railway operating environment.  
PTC, or related advanced communications-based train control systems that use GPS and other 
positioning technologies to continuously monitor the precise location of each train, have the 
potential to unlock the benefits of train platoons. Although the current implementation of PTC 
systems on U.S. railways are primarily designed to function as a safety overlay on existing block 
signal control systems, advanced versions of PTC may eliminate the fixed control blocks and 
adopt a moving-block control architecture. The moving-block concept allows a train to receive a 
movement authority between any two locations, rather than being constrained to the fixed-block 
boundaries of conventional signaling. In addition, movement authority limits update 
automatically and more frequently than in conventional wayside signal systems. By dynamically 
creating control blocks based on the exact location and braking performance of each train, and 
continuously moving these control blocks along with each train, advanced PTC systems are 
being developed with moving blocks that can facilitate train fleets that function as platoons at 
minimum headways.  
In the early 2000s, the North American Joint Positive Train Control (NAJPTC) project was 
conducted to develop, test, and demonstrate PTC capabilities – including flexible block 
operations – in a corridor with both freight and passenger service (Polivka et al., 2009). In 2001, 
the NAJPTC system was developed and tested on a 120-mile corridor of the Union Pacific 
Railroad in Illinois that also hosted regional intercity passenger service. Development work 
moved to the Transportation Technology Center in 2006. Although current PTC installations 
incorporate many elements developed under the NAJPTC project, the moving-block architecture 
was not among them. The NAJPTC project highlighted many important technical challenges 
associated with moving blocks, including the bandwidth of the radio links, data latency, and the 
need for more adaptive and robust braking and control algorithms.  
Maximizing capacity benefits while minimizing train headways under moving blocks requires 
trains to operate right at the edge of the safe braking distance enforced by the PTC system. To 
avoid repeated enforcement brake applications while maintaining minimum headways, it is 
envisioned that train crews will be aided by driver advisory systems or semi-autonomous, 
adaptive train cruise control systems. The development of these types of systems began with the 
first implementation of automated driverless train operations on transit systems during the 1960s. 
In addition to the transit systems mentioned previously in Section 1.1.2, the SkyTrain in 
Vancouver, Canada, opened in 1986, is notable for its use of both autonomous trains and moving 
blocks managed from a wayside computer control system. North American freight applications 
of automated trains have been limited to industrial railway operations with dedicated trains 
operating on closed-loop systems using electric traction. Examples of these systems include the 
Carol Lake Railway in Canada and the Muskingum Electric Railroad in Ohio. Although closed 
in 2002, the Muskingum Electric was the first automated freight railway in the U.S. when it 
opened in 1968.  
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While autonomous applications have been limited, the North American railway industry has 
focused on developing locomotive driver advisory systems and technology-assisted train 
operations to improve train handling and energy efficiency. In the 1970s, the railway industry 
began to develop computer programs to simulate the physics of train movements in detail. These 
programs allowed railroads to refine train makeup and locomotive assignments, minimize in-
train forces, and determine the set of throttle and brake commands to optimize train speed, 
schedule, and fuel efficiency. As computing power increased and hardware became smaller and 
more durable, computers onboard locomotives could be used for optimal driving strategies in 
real-time and provide control instructions to the train crew.  
New York Air Brake began the development of its Locomotive Engineer Assist/Display & Event 
Recorder (LEADER) driver advisory system in the late 1990s, based on earlier train dynamics 
software first developed in the 1970s. LEADER uses integrated GPS train location information 
and a detailed database of track geometry and maximum authorized speeds to assist locomotive 
engineers in reducing fuel consumption while effectively managing trip time and minimizing in-
train forces. Over the past 20 years, LEADER has evolved from an information-only display to a 
proactive system that assists train crews in selecting throttle and brake settings. Through 
continuing research and development on the iron ore railways in Australia, LEADER is currently 
evolving into the prototype for a full autopilot system capable of autonomous train operations. 
Under development for over a decade, testing of the New York Air Brake autonomous train 
system began in 2014. In 2017, an Australian iron ore train successfully operated in autonomous 
mode for 60 miles with no crew members on board the locomotive. In July 2018, trains began to 
make the entire 175-mile trip from Rio Tinto’s Tom Price mine to the port of Cape Lambert in 
autonomous mode without a train crew on board. The train was monitored remotely by the 
operations center in Perth, more than 900 miles away. The LEADER system currently uses a 
simulation approach to make throttle and brake decisions; at a given instant, computers on board 
the locomotive simulate the results of possible throttle and brake adjustments and then select the 
alternative that produces the best outcome with respect to the track topography, maximum 
authorized speed, movement authority, and train operating plan. 
One justification for advanced PTC with moving blocks is the capacity benefit of operating fleets 
of closely spaced trains (Diaz de Rivera et al., 2020a; 2020b). To realize this benefit, the next 
step for systems such as LEADER and Trip Optimizer from GE Transportation is to integrate 
their locomotive control optimization framework with moving-block PTC to more effectively 
and efficiently manage the separation distance between trains in a fleet. Currently, driver 
advisory systems independently optimize the performance of a single train relative to the 
topography, maximum authorized speed, and limits of movement authority. With the exception 
of a pace setting to avoid excess idling when meeting opposing trains on a single track, the 
systems have limited ability to coordinate operations with other trains for greater overall 
efficiency. The next step in advancing these systems is to leverage train-to-train communication 
and connected vehicle technologies to develop control algorithms for more effective and efficient 
train fleeting with moving blocks.  

1.2 Objectives 
The objective of this research was to leverage existing and developing connected highway 
vehicle platooning technology to improve the efficiency and effectiveness of fleeting trains at 
minimum headways under moving blocks. The research aimed to better understand how closely 
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following trains respond to different throttle and brake control algorithms, and, using insights 
gained from connected automobile and truck platooning technology, develop improved train 
control algorithms that allow railway operators to optimally balance fuel efficiency and train 
headway. The results of this research will allow industry practitioners to develop improved 
locomotive driver advisory and semi-autonomous adaptive train cruise control systems for the 
operation of fleets of trains under moving blocks, and railroad operators to make more informed 
decisions regarding the potential fuel efficiency and capacity benefits of these systems. 

1.3 Overall Approach 
To improve the efficiency and effectiveness of operating fleets of closely spaced trains with 
moving bocks, this research used simulation to better understand the baseline headway and fuel 
efficiency implications of this type of operation. The project team then developed and simulated 
improved “train-following ” control algorithms to better manage train fleeting operations, 
adapting published approaches to highway vehicle platooning where applicable.  
In implementing this approach, the project was divided into three major tasks. In the first task, 
the project team reviewed published research literature to better understand the algorithms and 
quantitative approaches used by state-of-the-art car following and truck platooning models. The 
literature review also examined published research on train-following models and algorithms to 
optimize train energy efficiency and locomotive driver advisory systems. 
In the second task, the project team adapted an existing train performance calculator into a 
multiple-train simulation model to specifically model the headway and energy consumption of a 
train fleet as it traverses a representative mainline study route. Modifications included 
developing a low-level controller to interpret the desired acceleration and braking rates requested 
by the following train control algorithm into specific locomotive throttle notch and brake settings 
for simulated freight trains. The model initially used naïve following train control logic to 
demonstrate the effect of aggressive train operator behavior on overall fuel consumption and 
time spent at the minimum safe braking distance headway as the train fleet traversed a study 
route under advanced PTC with moving blocks. 
In the third task, the project team developed a series of new train-following algorithms designed 
to balance fuel consumption and time at the minimum headway for heavy-haul freight trains on 
mainline corridors. In adjusting the traction and braking force of each train along the study route, 
the algorithms must account for the instantaneous location and speed of all trains and preserve 
the minimum instantaneous safe stopping distance between any two successive trains. Based on 
the literature review and past project team experience with control algorithms for platoons of 
connected highway vehicles, the team explored various algorithmic approaches. Control 
algorithms were first formulated analytically and then, where possible, analyzed for the stability 
of following vehicle performance. During this formulation process, the control algorithms were 
coded into the multiple-train simulation model to observe the efficiency and headway 
performance of simulated train fleets. The observed performance was used to refine and improve 
the algorithm formulation and adjust control parameters in an iterative manner. A total of six 
control algorithms were fully developed for two different scenarios: the reactive case, where 
following trains responded to observed changes in the speed of the train ahead; and the 
connected case, where train-to-train communication was used to inform following trains of 
changes in the throttle and brake settings of the train ahead. Once fully developed, each 
following train control algorithm was implemented with the multiple-train-following model, and 
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18 different train-following scenarios were simulated to evaluate and compare the fuel efficiency 
and headway performance of each algorithm. Comparison of simulation results between the 
controllers suggests that certain families of control algorithms offer the most promising 
performance, and that control parameters can be adjusted to favor headway of fuel efficiency 
performance based on the business objectives of a particular railroad or train operator. 

1.4 Scope 
Since this is an initial investigation of train-following control algorithms for heavy-haul freight 
applications, the focus was on screening and identifying families of control algorithms that show 
potential for good train-following performance. To reduce the complexity of the train-following 
scenarios considered by the control algorithms, various simplifying assumptions were made to 
limit the scope of the project. The study corridor consists of level, tangent tracks, so that grade 
and curve resistance could be neglected. Each simulated train fleet consists of identical trains, 
eliminating heterogeneity in train performance within a fleet. Lead train behavior was limited to 
scenarios using throttle and dynamic brakes. Algorithms that perform poorly under these ideal 
conditions could be screened out – as they are unlikely to perform well under more complex and 
realistic scenarios involving actual route topography, heterogeneous trains, and lead trains 
making air brake applications. Although the scope of simulation scenarios used to evaluate and 
compare the train fleeting algorithms only involved three types of heavy-haul freight trains (i.e., 
intermodal, bulk unit, and manifest trains), the team anticipated that similar control laws could 
be applied to operations involving passenger of commuter rail operations.  
The project scope was limited to two different communication topology scenarios: a basic 
scenario where following trains only had information about the position of the train ahead at 
discrete intervals, and a scenario with train-to-train communication of throttle and brake actions 
to following trains. The latter scenario may allow the following trains to anticipate changes in the 
speed of the lead train and make more efficient and timely control decisions that preserve both 
headway and fuel efficiency. While such train-to-train communication is difficult today, the 
communication network provided by future advanced PTC systems with moving blocks may 
facilitate this type of coordination in the future. 

1.5 Organization of the Report 
The remainder of the technical report is organized into sections corresponding to the main 
project tasks. Section 2 reviews published literature on railway train control algorithms, car-
following models with and without connected vehicle technology, and truck platooning control. 
Section 3 describes the multi-train-following simulation model developed to evaluate the train-
following control algorithms. Section 4 details the development and formulation of the six 
control algorithms posited through this research. Section 5 outlines the train-following 
simulation experiments and summarizes and compares the performance of the six control 
algorithms. Section 6 summarizes the conclusions of this research. 
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2. Literature Review 

The project team conducted an extensive literature review to determine the current state of 
knowledge regarding control algorithms for closely following trains, light-duty highway 
vehicles, connected light-duty highway vehicles, and heavy trucks. Specifically, the literature 
review was targeted at four distinct topic areas covering previous research on optimizing the 
energy efficiency and headway of closely following groups of different vehicles: 

• Railway train control algorithms 

• Car-following models 

• Car-following models that leverage connected vehicle technology. 

• Truck platooning control algorithms 
The following sections summarize the key findings of the literature review in each of these four 
topic areas. 

2.1 Railway Train Control Algorithms 
The papers collected on the topic of railway train control algorithms (Table 1) can be classified 
by the scale of the operation they consider (single train, train-following, or network) and on the 
approach used (control algorithm or optimization). While this project focuses on the train-
following problem, and thus papers describing train-following algorithms are most relevant, 
select references on single-train models and overall train network models can provide important 
insights on approaches and key assumptions germane to all train performance simulation and 
train control algorithm development efforts. Papers on single trains and train networks will be 
summarized first before the more detailed discussion of the train-following research is presented. 

2.1.1 Single Trains 
As described by Albrecht et al. (2016), the classic single-train control problem is to minimize the 
energy required to drive a train from one station to the next within a given time. The authors 
summarized previous research to support the optimal heavy-haul freight train control strategy of 
applying maximum power to reach maximum authorized track speed, then reducing power to 
hold speed constant, then coasting followed by applying maximum braking force. Speed-holding 
must be interrupted by pulses of power to overcome steep grades and periods of coasting to 
negotiate steep downhill sections. In this manner, the optimal throttle and braking strategy for a 
given train over a given route becomes a problem of determining the optimal time and location to 
switch between maximum power, maximum brake, speed holding, and coasting. In introducing a 
general solution to this optimization problem, the authors discuss the relative differences 
between modeling a heavy-haul freight train as a distributed mass compared to a point mass. The 
authors also indicate that there are still unsolved problems relating to optimal driving strategies 
for fleets of trains: “The most pressing research challenges for the future in this area are to 
develop optimal control policies for trains traveling in the same direction on the same line in 
such a way that safe separation is maintained between trains.” 
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Table 1. Classification of Railway Train Control Algorithm Papers  

Scope Control Optimization 

Single Train Barney et al., 2001  
Jaekel & Albrecht, 2014  
Panou et al., 2013  
Song et al., 2011  
Xia & Zhang, 2011  
Zhuan & Xia, 2006 

Albrecht et al., 2016 

Train-Following  Alikoc et al., 2013  
Durmus et al., 2013  
Gao et al., 2015  
Ho, 1998  
Karredla & Srinivas, 2014  
Li & Guan, 2009  
Li & Gao, 2007  
Li & Gao, 2013  
Li et al., 2005  
Li et al., 2011  
Li et al., 2015 
Liu, 2016  
Ning, 1998 
Pan & Zheng, 2014 
Takagi, 2012 
Tang & Li, 2007  
Wang et al., 2012 
Xu et al., 2014 
Xun et al., 2013  
Yang et al., 2010  
Ye & Li, 2013  
Zhao et al., 2016  
Zhou & Mi, 2012 

Kraay et al., 1991 
Tang et al., 2015  
Wang & Goverde, 
2016 

Train Network Gordon & Lehrer, 1998  
Polivka et al., 2009  
Su et al., 2015  
Takeuchi et al., 2003 

Wang, 2014 
Wang et al., 2013a 
Wang et al., 2013b 
Wang et al., 2014 
Ye et al., 2013 

Jaekel and Albrecht (2014) also discussed the relative merits of modeling a freight train as a 
distributed “mass strap” compared to a point mass, documenting specific deviations between the 
two approaches over a study route. This comparison was made in the context of evaluating three 
different approaches to calculating the movement of a train over a route: infinitesimal calculus, 
the explicit time-step Euler method (based on piece-wise constant acceleration), and Gauss-
Legendre-quadrature. Barney et al. (2001) described how simplifying assumptions must be made 
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when implementing these approaches to calculate train braking distances and perform other train 
performance calculations. 
A shortcoming of modeling a freight train as a point mass is that in-train forces cannot be 
considered. Zhuan and Xia (2006) concluded that optimizing the speed profile of a single heavy-
haul freight train requires managing in-train forces in addition to minimizing energy 
consumption. The authors noted that in-train forces are rarely considered in non-heavy-haul 
scenarios, limiting the utility of the work in the passenger and transit domain. Trains can be 
modeled as a set of point masses connected by non-linear springs. In a subsequent paper, Xia and 
Zhang (2011) developed a linear-quadratic regulator (LQR) controller to optimize a compound 
objective function that weights the relative importance of minimizing energy and managing in-
train forces for a single train. However, Song et al. (2011) argued that it is infeasible to fully 
model and control a train as a set of spring-connected masses because the control laws become 
complex, given the precision of braking and acceleration controls available. This paper 
highlights the need to consider the actual control “notches” in train acceleration and braking 
when developing a law to control a real train. The authors use complex mathematical reduction 
to develop a relatively simple single-train control law and validate its effectiveness through 
simulation. 
Finally, Panou et al. (2013) investigated some practicalities of implementing an optimal single-
train control algorithm that is relevant to this research effort. The authors considered the pros and 
cons of computing optimal speed profiles on board the train, off board at a central location, or off 
board at one of many distributed locations across the network. There were advantages and 
disadvantages to each approach, mainly due to the tradeoff between limited computation power 
on board the train and higher data transmission requirements for off board solutions. Polivka et 
al. (2009) described how radio frequency bandwidth is limited and the radios and protocol that 
can transmit and receive adequate amounts of data over the extremely varied and relatively long 
distances required are very hard to develop. Polivka et al. further discussed how these and other 
technical challenges must be overcome before a standalone vital moving-block control system 
can be developed and implemented. 

2.1.2 Train Networks 
The train network control and optimization problem attempts to simultaneously determine a 
speed profile for each train operating on a given segment with the objective of minimizing the 
global energy consumption without sacrificing running time performance. This is most critical 
for railway operations that use electric traction power systems and have the capability to capture 
and reuse regenerated braking energy (Su et al., 2015). Gordon and Lehrer (1998) used a neural 
network to increase headway between trains and reduce wasted energy consumed by following 
trains speeding up and slowing down too often. Takeuchi et al. (2003) examined this problem in 
the context of moving- and fixed-block control systems, noting that multiple trains accelerating 
at close headways in moving blocks can draw high peak power loads. The authors noted that 
moving block offers the highest capacity, but train acceleration should be limited to avoid 
propagating delays between trains when short headways are implemented. Ye et al. (2013) 
proposed optimizing the system by adding a term to the standard car following model to account 
for regenerative braking and the ability of accelerating trains within the same substation region to 
use this energy. 



 

15 

Wang et al. (2013a) developed a mixed-integer linear program (MILP) to simultaneously 
optimize the trajectories of a leading and following train to lower overall energy consumption 
with regenerative braking under moving block signals within the context of the Beijing subway 
system. The authors noted that as the number of trains in this fleet grows, the size of the problem 
grows very quickly and computation time will be substantially larger. Subsequent research 
described a suboptimal control scheme with mode vector constraints to decrease MILP solution 
times for controlling multiple trains under moving blocks, again in the transit context (Wang et 
al., 2013b). The authors then implemented a greedy approach that first solves the optimal 
trajectory of the lead train. Then, based on the optimal control inputs of the leading train, the 
trajectory planning problem for the following train is solved (Wang et al., 2014). The research 
also compared pseudospectral approaches to the MILP formulation, noting that although they 
both have similar control performance, the MILP requires less computation time. Wang (2014) 
further extended this research to determine the optimal train schedule for a single, electrified 
subway line under moving blocks. The resulting problem is nonlinear and nonconvex, requiring 
a new iterative convex programming (ICP) approach to solve. 

2.1.3 Train-Following  
The train-following problem attempts to determine an optimal set of throttle and brake settings 
for a following train given a fixed lead train trajectory. In one of the earliest descriptions of the 
train-following problem, Kraay et al. (1991) noted that pacing trains can result in energy savings. 
The authors proposed set generation with heuristic filtering to effectively solve the problem of 
optimal train trajectories under pacing. Wang and Goverde (2016) developed a multiple-phase 
optimal control model to enforce a “green wave” policy of clear signals for a following train 
under fixed blocks. The authors used the pseudospectral method to convert the complex problem 
into a non-linear programming problem to be solved more quickly and efficiently. 
Published research on these types of train control algorithms has mainly focused on rail transit 
applications. Since transit systems operate on fixed schedules with a limited variety of small, 
responsive, lightweight vehicles using electric traction and regenerative braking, there are fewer 
variables to consider compared to typical line-haul railway applications. Thus, published 
research on transit control algorithms has focused on pre-calculation of an optimal driving 
strategy with dynamic programming or genetic algorithms as opposed to algorithms that function 
in real time and are “in the loop,” providing recommended control inputs based on current 
operating conditions.  
As an example, Tang et al. (2015) optimized the energy efficiency of a subway system operating 
with regenerative braking on close headways by developing an optimal throttle and brake control 
algorithm. Several versions of the algorithm were developed. The first version independently 
optimized the energy efficiency of the following train with no information on the throttle and 
brake status of the lead train. The second version optimized the energy efficiency of the 
following train with information on the throttle and brake status of the lead train transmitted via 
train-to-train communications. The final version coordinated control of both the lead and 
following trains via train-to-train communications to optimize the overall energy efficiency of 
the system. In all cases, the algorithm enforced minimum safe headway distances between trains 
and the inter-station travel times dictated by the subway schedule.  
While the optimization approach to train-following has merits due to its high solution quality, 
locomotives have very limited processing ability on board. Additionally, quicker updates on 
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board the locomotive to control the train as well as more rapid occupancy updates could allow 
trains to run closer together. Thus, a control-based approach rather than an optimization 
approach has the potential to perform better while also avoiding costly investments in 
locomotive computing power or radio frequency bandwidth and the back office. 
Research into this area commenced around the time moving-block systems were first being 
developed and deployed because rapid and continual state updates are a prerequisite of most 
control algorithms. Ning (1998) compared two possible types of moving block system – absolute 
or relative braking distance – and links the train-following control problem to the most basic car-
following model, where acceleration is related to following speed difference with a reaction time 
delay included. Ho (1998) showed that moving-block systems can substantially increase track 
capacity over fixed-block systems through a multi-train movement simulator, a technique that 
many researchers will continue to use. Simulation is required for evaluating these sorts of 
problems because they are simply too complex for an analysis-based approach to yield results. 
Seven years after these two papers, Ning and others at Beijing Jiaotong University adapted the 
NaSch probabilistic cellular automaton model, which is normally used to describe single-lane 
highway traffic, to the railway domain to describe one single-direction track of a moving-block 
signaled railway (Li et al., 2005). While this first paper allowed overlapping braking curves like 
in highway traffic, a series of papers over the following years continued to adapt and extend the 
model. Li and Gao (2007) added a term to better capture the safety distance requirements of 
moving block, allowing them to better model a railway station. Tang and Li (2007) allowed an 
instantaneous braking rate, but calculated proper safety distances under this assumption. Li and 
Guan (2009) adapted the optimal velocity control form of the car-following equation to the 
cellular automaton model and allowed using the true safety stopping distance. Li et al. (2011) 
modified the optimal velocity control form of the car following equation in a different manner to 
obtain slightly better performance. Li and Gao (2013) extended these models to simulate a 3-
aspect, fixed-block railway by adding different speed targets for each of the aspects that are all 
based on the optimal velocity car following equation. Ye and Li (2013) proposed a different form 
of the modified optimal velocity, car-following equation based on a planned travel time. 
Other researchers also picked up the cellular automaton framework for moving-block railway 
simulation. Zhou and Mi (2012) utilized tempo-spatial constraints to represent movement 
authority and track speed restrictions, which allows for limiting train braking rates to reasonable 
values. Wang et al. (2012) used the existing cellular automaton models to analyze a mixture of 
trains with different maximal speeds and evaluate the effect of changing station density. Train 
overtaking was allowed at stations. They found that increasing station density results in a lower 
average speed and that decreasing the ratio of slow trains to fast trains results in lower average 
speeds for the slow trains and little change to the average speed of the fast trains. They 
demonstrated that existing cellular automaton models were good enough for analysis of a railway 
network. Zhao et al. (2016) utilized these models to compare the capacity of fixed-block, 
moving-block, and train convoy signaling. Train convoy signaling is also commonly referred to 
as virtual coupling. They found that train convoy signaling had 1.25 times the capacity of 
moving block, 3.75 times the capacity of fixed block, and the highest robustness to delay 
disturbances. 
In addition to the cellular automaton simulation technique, more traditional simulation 
techniques have been used to analyze this problem. Yang et al. (2010) implemented a discrete, 
time-based simulation and found that the backwards propagation of train delay resulted in 
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suboptimal accelerations and decelerations with simple control laws. Takagi (2012) showed that 
simple kinematic equation-based control laws were enough assuming perfectly synchronous 
control of multiple trains. They also proposed a group local service that could effectively take 
advantage of this control methodology while still serving all stations. This service is also referred 
to as a skip-stop service. Pan and Zheng (2014) used an empirical safe following distance 
formula to derive simple control laws which were enough for control, assuming these trains 
could respond instantly and effectively to the requested accelerations. However, this specific safe 
following distance formula was limited to flat ground and identical trains. Karredla and Srinivas 
(2014) proposed a quasi-moving-block system to increase track utilization over fixed block, 
calculated an instantaneous adequate distance formula, and computed the steady-state capacity of 
the system. Liu (2016) proposed and evaluated a possible algorithm for ERTMS Level 3 
(moving block), finding that the range of stable parameters was relatively limited and varied with 
desired headway. Thus, they concluded that proper train-following control parameters would be 
critical for the success of ERTMS Level 3. 
While simulations are very useful for validating control laws, robust stability analysis based on 
mathematical control theory can be performed to prove the effectiveness of a set of control laws 
under all possible conditions. These formal proofs are most informative when supported by 
simulations demonstrating good performance. Alikoc et al. (2013) used the cluster treatment of 
characteristic roots (CTCR) to analytically determine the region of stability for moving-block 
trains following in a circle and in a straight line and validated using simulation. Durmus et al. 
(2013) used an adaptive PD controller to control train separation in moving block and found that 
it effectively mitigated measurement noise and step and sinusoidal disturbances. Xun et al. 
(2013) proposed a train headway adjustment model based on linear quadratic optimal control. 
Using a cellular automaton simulation model to test the headway adjustment approach, they 
found that delay time could be reduced by 11.8 percent when the dispatching headway was 75 
seconds, and that computation time was not excessive even for large numbers of trains in the 
fleet. Xu et al. (2014) proposed using single-train, optimal-speed profiles to advance each train, 
with recalculations occurring at discrete events. They found that a discrete event-based train 
movement simulator was less computationally expensive than a discrete time-based simulator, 
and that simple control strategies still resulted in excessive accelerations and decelerations. 
Additionally, this paper shows that a hybrid approach between optimization and control may be 
possible given a good train simulator. Li et al. (2015) used an artificial potential function that 
used the locations of the two neighboring trains in addition to minimum and maximum headway 
constraints to coordinate cruise control over a fleet of trains. However, they found that the 
algorithm required changing the target speed if large disturbances were introduced into the 
system. Gao et al. (2015) proved that string stability was possible to achieve in moving-block 
railway operations with only the location information of the preceding and succeeding train 
using the Lyapunov stability theorem. They also found that using information from both the 
preceding and the succeeding trains was generally more stable than just using information from 
the preceding train, and that the addition of speed and acceleration information only marginally 
improved performance. Lastly, they used simulation to demonstrate the effectiveness of the 
proposed control laws. 

2.2 Car-Following Models without Connected Vehicles 
This section briefly summarizes some of the relevant developments in the fields of car-following 
modeling of vehicles on uninterrupted roadways and an automated vehicle technology known as 
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adaptive cruise control (ACC). The two fields are closely related. Car-following models are used 
to describe the following behavior of a vehicle, which often results in a model that describes the 
vehicle’s motion (e.g., velocity or acceleration) as a function of the car and the vehicle ahead. In 
contrast, ACC is a control strategy that describes how the acceleration of the vehicle should 
change to achieve a desired car-following behavior. The main distinction is that the car-
following models are descriptive methods that describe how vehicles behave under human 
control, whereas adaptive cruise control algorithms are prescriptive techniques that describe how 
the vehicle should accelerate and decelerate to achieve a desired behavior. Below is a description 
of the developments of car-following models and then a summary of key adaptive cruise control 
algorithms. 

2.2.1 Car-Following Models 
The modeling of the longitudinal behavior of human drivers in vehicles is referred to as car-
following. These models are typically written as ordinary differential equations or discrete 
difference equations that describe the trajectory of a vehicle as a function of the properties of the 
vehicle and the car ahead. Common forms of the models describe how the velocity or 
acceleration of a vehicle changes as a function of the current vehicle velocity, the distance to the 
vehicle ahead, and/or the relative velocity to the vehicle ahead. 
A historical overview of the development of car-following models is provided in Brackstone and 
McDonald (1999), with an emphasis on the experiments and data used to design the models. 
While a large number of car-following models exist, this section points out some of the most 
influential models. In 1958, Chandler, Herman, and Montroll introduced a seminal car-following 
theory known as a follow-the-leader (FTL) model, where vehicles are assumed to accelerate or 
decelerate to match the speed and/or a desired spacing to the vehicle ahead. The article is one of 
the foundations of transportation science because it 1) introduced a model for car-following; 2) 
illustrated that some car-following models (e.g., those that keep a constant spacing or those that 
keep a sufficiently small time headway) will give rise to string instability commonly recognized 
today as a phantom traffic jam; 3) used data collected from human driving studies to fit the 
model; and 4) determined that human drivers operate near the boundary of a regime that is string 
unstable. Later, Gazis et al. (1959) used the FTL model to show that the car-following behavior 
at the level of the vehicle is related to the macroscopic traffic flow properties of the link, 
described by the fundamental diagram. 
An alternative to the FTL car-following model is the family of models known as the optimal 
velocity (OV) model (Bando et al., 1995), which assumes that a vehicle accelerates or decelerates 
to match the current speed to a desired or optimal velocity given the distance to the vehicle 
ahead. The models are simple but powerful; they also exhibit string instabilities depending on the 
parameters of the model. In other words, small disturbances in the traffic stream (when all 
vehicles operate according to the OV) can result in large speed variations that lead to phantom 
traffic jams. To experimentally demonstrate the string instability phenomenon, Sugiyama et al. 
(2008) placed 22 vehicles on a short, single-lane, circular track. Initially, drivers could maintain 
a uniform speed, but quickly the traffic on the ring degraded into a phantom traffic jam. A 
general approach to determine if a car-following model is string stable is provided in Wilson and 
Ward (2011). In Jiang et al. (2001), the OV model was extended to include a term that accounts 
for the relative velocity to the car ahead in addition to the space gap. The extended model, 
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known as a full velocity difference model (FVDM) is important from a control point of view 
because some ACC control policies can be viewed as variations of the FVDM. 
Two popular models in the traffic simulation community are worth mentioning. First, the Gipps 
model (Gipps, 1981) was designed specifically for increased speed when simulating a large 
number of vehicles on a roadway, and modified versions of the model now form the starting 
point of models used in commercial traffic simulation products such as TSS Aimsun. Second, the 
intelligent driver model (IDM) car-following model was proposed in Treiber et al. (2000). 
Unlike other models, the IDM was derived from the standpoint of reasoning about observed 
traffic behavior rather than trying to reason about human driving behavior directly. It has since 
become a widely used model in traffic simulation and analysis. 

2.2.2 Adaptive Cruise Control 
Many important steps have been taken in developing vehicle automation systems that 
longitudinally control the vehicle, known as adaptive cruise control (ACC) (Rajamani, 2011). 
Initially proposed in the research community, these systems are now widely available on many 
of the best-selling vehicles in the U.S. market either as a standard or optional feature. The 
commercially implemented systems typically rely on a sensor (such as a radar) to measure the 
space gap and relative velocity to the vehicle ahead, and a control algorithm to accelerate or 
decelerate the vehicle to maintain a desired following behavior. The systems do not use any 
communication between the vehicles, and thus are easy to deploy gradually (i.e., all vehicles do 
not need to be equipped for the system to work). 
One of the core design principles of ACC is that the control design should be string stable. If the 
controller is string stable, then collections of ACC vehicles will not create phantom traffic jams 
when following one another. It is widely known that control policies that try to maintain constant 
spacing between the vehicles do not lead to string stable behavior. In contrast, constant time 
headway policies can be made to be string stable provided that the time headway between 
vehicles is sufficiently large. These concepts are the cornerstone of the autonomous intelligent 
cruise control (AICC) system developed in Ioannou and Chien (1993). Later, Swaroop et al. 
(1994) showed that the desired control torques were inversely proportional to the headway time. 
Liang and Peng (1999) introduced an ACC system that included two different forms of system 
delay. One, called system delay, is used to model delays in sensor measurements of the vehicle’s 
state. The other, called parasitic delay, is used to describe delays between a commanded 
acceleration action and the actual acceleration the vehicle experiences. An analysis was provided 
to show how string stability could be achieved by selection of the control parameters to account 
for the delays. The results of the controller were validated in simulation. Zhou and Peng (2005) 
developed a string stable adaptive cruise control system that offers string stability at higher flow 
rates than traditional, constant-time, headway-based controllers. It achieves better performance 
by considering that the actuation delay (servo-loop time constant) is not perfectly known, but the 
acceleration of the controlled vehicle is known. This information is then exploited in the design 
of the ACC system. 
An interesting extension of ACC is the bilateral controller (Wang and Horn, 2019). Unlike 
standard ACC systems which only use information on the vehicle ahead, the bilateral controller 
also uses sensors to measure information to the vehicle behind. The authors illustrated how to 
design a string stable adaptive cruise control system using this additional information. 
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Because ACC systems will be implemented on vehicles with different performance 
characteristics, extensions of ACC have been proposed in Xiao and Gao (2011) that account for 
vehicle heterogeneity. The vehicles in the traffic stream are provided with different control 
parameters and are subject to different parasitic time delays and lags with different values of the 
following time headway. The article provides an approach to verify the string stability of a 
heterogeneous platoon of vehicles. 
Given that commercial ACC systems are now being deployed on the roadways, there is a 
growing interest to use vehicle control systems to improve overall traffic flow. It was shown in 
theory (Wu et al., 2018) and in practice (Stern et al., 2018) that the introduction of a small 
fraction (as low as 5 percent) of longitudinally controlled vehicles can stabilize traffic flow and 
reduce the occurrence of phantom jams caused by non-controlled vehicles. In the experimental 
tests reported in Stern et al. (2018), the controlled vehicle could reduce fuel consumption of the 
total traffic stream by approximately 40 percent by eliminating the stop-and-go driving present 
before the control vehicle was activated. While the above control algorithms relied on classical 
model-based control approaches, there is now a growing interest in designing longitudinal 
control systems powered by artificial intelligence methods such as deep reinforcement learning 
(Wu et al., 2017). 

2.3 Car-Following Models with Connected Vehicles 
This section of the review focuses primarily on coordinated vehicle control algorithms with 
communication. Pervasive wireless communication technologies, including vehicle-to-vehicle 
(V2V) and vehicle-to-infrastructure (V2I), allow individual vehicles to exchange information 
among other vehicles and infrastructures for cooperative automated driving decisions to improve 
safety, mobility, and energy efficiency. Shladover et al. (2012) provided definitions and 
operating concepts of cooperative adaptive cruise control (CACC) using communication-enabled 
vehicle-following and speed control in a communication environment. The literature on 
designing coordinated vehicle control algorithms considering wireless communication mainly 
addresses three issues: 1) the latency and quality of communication; 2) the string stability of 
control models; and 3) real-world road testing. Each topic is briefly summarized in the following 
sections. 

2.3.1 Latency and Quality of Communication 
The issue of latency and quality of vehicular communication in coordinated vehicle control 
systems has been extensively studied. To reduce the negative effects of attacked or failed 
communication links in the vehicular communication networks, multiple papers discuss 
alternative designs of CACC explicitly considering these effects (Guo and Yue, 2014; van der 
Heijden et al., 2017; Gong et al., 2019). To significantly reduce inter-vehicle gaps, Milanés et al. 
(2014) designed a CACC controller introducing feedforward terms with wireless communication 
and confirmed improvements through road testing. To improve existing traffic flow modeling 
and communication, Jia and Ngoduy (2016a, 2016b) evaluated an enhanced cooperative driving 
system using V2X communication under various traffic scenarios. Qin et al. (2017) focused on 
the stability and frequency response of CACC under stochastic communication delays and then 
investigated a CACC design incorporating stochastic delay variations. 
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2.3.2 String Stability 
String stability is a key property of longitudinal controllers for CAV platoons. Ge and Orosz 
(2014) considered an acceleration-based connected cruise control (CCC) design and compare the 
string stability of platoons with different structures of connectivity. Considering local and multi-
criteria string stability, Zhou et al. (2019) presented a model predictive control approach and 
provide mathematical proofs to verify its effectiveness. From previous studies, significant 
increases in highway capacity under different conditions by employing CACC systems were 
demonstrated through several experiments (Ploeg et al., 2011; Shladover et al., 2015). Talebpour 
and Mahmassani (2016) investigated the string stability of mixed traffic streams with varying 
percentages of different vehicle types and found the throughput increased as the market 
penetration rate of CAVs increased. Assuming detected information is shared with others via 
V2V and V2I communication, Zhou et al. (2017) proposed a rolling horizon stochastic optimal 
control strategy for both ACC and CACC systems under uncertainty and then proved they had 
better performance than deterministic controllers through simulations. Zhao and Zhang (2020) 
formulated a distributionally robust optimization-based model predictive control model to 
address CACC under traffic uncertainty and conduct an empirical analysis of string stability 
under traffic oscillations with multiple traffic shocks.  

2.3.3 Real-World Testing 
Several CACC algorithms have been implemented in real-world road testing. Based on 
implementing existing technologies, Chang et al. (1991) used two Ford cars to show that the 
automated following vehicle successfully followed the manually driven lead vehicle through 
several different kinds of maneuvers. Öncü et al. (2014) used two CACC-equipped prototype 
vehicles to demonstrate the validity of their presented networked control system framework. 
Naus et al. (2010) tested two CACC-equipped vehicles to validate the proposed decentralized 
CACC design. Milanés and Shladover (2014) deployed four vehicles equipped with a 
commercial ACC system and a newly developed CACC controller to measure the actual 
responses of vehicles.  

2.4 Truck Platooning Control Algorithms 
Empowered by recent advances in V2V communication and control technologies, interest in 
platooning possibilities within the trucking sector has grown. This part of the review mainly 
focuses on truck platooning control algorithms. Feritz (1999) presented longitudinal and lateral 
control of heavy-duty trucks for vehicle following, followed by Gehring and Fritz (1997), where 
practical results of a longitudinal control concept for truck platooning were obtained. The authors 
used distance measurement between trucks and vehicle-to-vehicle communication but did not 
consider road infrastructure. A two-layer control structure was proposed. The inner control loop 
includes a nonlinear acceleration controller linearizing a large part of the nonlinearities. Due to 
the different actuator systems, the dynamic behaviour of a truck was different during acceleration 
and braking. Furthermore, each truck may have had a different power train and load. Additional 
disturbances may also occur. A robust platoon controller was then introduced for the outer 
control loop by using sliding mode control design. Practical results of a platoon consisting of 
seven trucks showed that by using the proposed control concept, string stability could be 
achieved. Along this line of thought, subsequent papers studied further control algorithm designs 
for heavy duty vehicles. Liang et al. (2016) discussed a fuel-efficient control of heavy-duty 
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vehicle platoons. The authors tested some of the presented methods on real vehicles in traffic 
with experimental results on automatic control of heavy-duty vehicle platoons on a Swedish 
highway. 
Cooperative driving, aiming at the compatibility of safety and efficiency of road traffic, means 
that automated vehicles drive by forming a flexible platoon over a couple of lanes with a short 
inter-vehicle distance while performing lane changing, merging, and leaving the platoon. The 
vehicles for a demonstration of this concept were equipped with automated lateral and 
longitudinal control functions with localization data by the differential global positioning system 
(DGPS) and the inter-vehicle communication function with 5.8-GHz dedicated short-range 
communication (DSRC) designed for the dedicated use in the demonstration. Kato et al. (2002) 
described the technologies of cooperative driving with automated vehicles and inter-vehicle 
communications for cooperative driving with automated vehicles and inter-vehicle 
communications. Xu et al. (2018) presented a robust control method for heterogeneous vehicle 
platoon subject to varying road slopes, aerodynamic drag, and wireless communication delay. 
Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a 
vision-based intelligent vehicle, Zhang et al. (2017) proposed a novel advanced emergency 
braking system based on a nonlinear model predictive algorithm and established a vision-based 
longitudinal vehicle dynamics model considering the nonlinearities of vehicle dynamics. Lima 
(2018) designed a smooth and accurate model predictive controller tailored for industrial 
vehicles, where the main goal was to reduce the vehicle “wear and tear” during operation. The 
author showed controller effectiveness both in simulation and experimentally in a Scania 
construction truck. This doctoral dissertation showed that the proposed controller had promising 
performance in real experiments. 
From previous studies, significant increases were demonstrated in highway capacity under 
different conditions by employing different control algorithms. Johansen et al. (1998) performed 
a linearization of a time-invariant nonlinear system and local control design in conventional 
gain-scheduled control design for the resulting set of linear time-invariant systems at a set of 
equilibrium points. Ying et al. (2014) applied a robust control technique to solve the problem of 
platoon system instability caused by velocity changes. The robust control strategy adopted in this 
paper was sliding mode control, which had the robustness with respect to its system parameters 
change and external disturbances. Wang and Nijmeijer (2015) studied a heterogeneous vehicle 
platoon equipped with CACC systems. Deng (2016) used a simulation framework to study HDV 
platooning and established the corresponding concept and operations. Finally, Ramezani et al. 
(2018) developed a micro-simulation model for truck CACC and platooning and studied their 
traffic impacts through a case study. It incorporated truck-following models that have been 
recently developed for the separate automated modes of CACC, ACC, and CC. 

2.5 Conclusions from the Literature Review 
Improved train control algorithms to optimally balance train headway and fuel efficiency under 
moving blocks have not been previously researched within the North American heavy-haul 
freight and passenger railway context. Train-following under wayside block signal systems has 
been considered in optimizing individual freight train trajectories for energy efficiency. Research 
on train-following algorithms under moving blocks has been limited to heavy-rail transit 
(subway) and high-speed passenger rail applications. Because of the types of rail vehicles 
involved and their performance characteristics, transit and high-speed rail applications have 
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certain commonalities with highway applications of car-following models. Therefore, 
researchers have adapted car-following models to the problem of controlling transit and high-
speed rail train headways. A common theme among many of the documented rail, highway, 
connected vehicle, and truck algorithms is the concept of string stability. To fill the identified 
knowledge gap and meet the objectives of this project, this research must consider how these 
models translate to the unique characteristics of the North American operating environment and 
the extreme performance characteristics of heavy-haul freight trains. A key difference between 
light-duty highway vehicle-following models and the requirements of a heavy-haul freight 
application is the need to consider in-train forces, a finite number of throttle settings, more 
complicated braking systems, and additional lag time in locomotive and train response to control 
inputs. While highway models do not model the vehicle in detail and typically assume it is a 
point mass, heavy-haul freight algorithms will need to consider the composition of the train and 
internal forces in greater detail. Heavy truck platooning models, which are more sensitive to 
vehicle performance characteristics, are a key bridge between current car-following models and 
future heavy-haul freight train-following algorithms. 
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3. Multiple-Train Simulation Model and Baseline Simulation 

Following the completion of the literature review, the second project task included three main 
components: 

• Further develop and improve the capabilities of an existing single-train performance 
calculator previously developed by the University of Illinois.  

• Adapt this calculator into a multi-train-following simulation model. 

• Use the new model to simulate the baseline behavior of following trains under moving 
blocks without any intelligent control algorithms. 

The following sections summarize the development of the multi-train-following simulation 
model used to evaluate potential train control algorithms for fleets of trains under moving blocks. 
The final sub-section presents the results of an example baseline simulation exhibiting poor 
train-following behavior. This baseline performance is presented to serve as a motivation for 
developing improved train control algorithms, as outlined in the following section. 

3.1 Simulation Model Development 
To evaluate the effectiveness of various train control algorithms, a detailed, discrete, time train 
performance simulator was developed in C++. A discrete time simulation approach was selected 
because train performance depends on numerous factors with non-linear and piecewise 
relationships, making an analytical solution to train performance intractable. Time was selected 
as the discretization variable, as opposed to distance or speed, because multiple subsystems, 
including the locomotive diesel prime movers and the train brake pipe, have performance that 
depends solely on time. The C++ language and programming environment was used for 
implementation to ensure that the simulation would run quickly while also allowing for a high 
level of detail in the model. 
The train-following simulator was composed of two main components: the trains and a track 
network. Each train contains all parameters needed to calculate its performance, including 
aerodynamic, bearing, and rolling resistance coefficients, locomotive tractive effort curves, brake 
valve, brake pipe, and brake shoe characteristics, and the upcoming path through the network. 
The track network contained all turnouts, track segments, and all currently granted movement 
authorities. The approaches used to incorporate each of these subcomponents in the train-
following simulator are explained in detail in the remainder of this section. 

3.1.1 Trains 
The overall train performance framework was adapted from previous train performance 
simulation work conducted by the University of Illinois and improved with the aid of insights 
and validation data provided by industry partner New York Air Brake. 

Resistance to Motion 
The four main components of train resistance are bearing and rolling resistance, aerodynamic 
resistance, grade resistance, and curve resistance.To simplify the scope of this project, the train 
control algorithms were tested on straight and level track, meaning that grade and curve 
resistance had no impact on performance.  



 

25 

Bearing resistance was computed for each axle on each railcar in the train as a constant 18 lbf. 
Rolling resistance was computed as 𝟏𝟏.𝟓𝟓 𝐥𝐥𝐥𝐥𝐥𝐥/𝐭𝐭𝐭𝐭𝐭𝐭 ×  𝑾𝑾, where W is the weight supported by the 
axle (including its own weight) in tons. Aerodynamic resistance was computed for each railcar in 
the train and considered both the perpendicular surface area not occluded by the preceding railcar 
and the surface area parallel to the direction of travel (skin friction). 

Locomotive Tractive Effort 
Tractive effort curves are used to determine the force output of each locomotive given its throttle 
notch or dynamic brake setting and speed. To determine the force output when changing notches, 
limits were set on the rate of increase and decrease of tractive effort, engine power, and dynamic 
brake force. During the simulation, the value of each of these variables at the previous time step 
were stored to enforce these limits. Engine power is related to the tractive effort curve using the 
relationship 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 = (𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞) × 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬/𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞, where 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 = 𝟎𝟎.𝟗𝟗. 
Additionally, the model enforced timeouts (on the order of seconds) when switching from power 
throttle to dynamic braking. 

Air Brakes 
For modeling purposes, train air brakes were divided into four main components: 

• Main reservoir and equalizing reservoir on each locomotive 

• Brake pipe 

• Control valves and downstream empty/load sensors and pistons 

• Brake rigging and brake shoes 

The locomotive independent brake components are currently not simulated as a separate system 
by the model. To account for these braking forces in the model, the locomotive brakes were 
connected to the train brake pipe and act as if they were just a railcar at the start of the train. 

To reduce the complexity of air brake calculations in the model, the main reservoirs and 
equalizing reservoirs were modeled in a simplified manner. The main reservoirs were not 
simulated, the equalizing reservoirs instantly responded to control changes, and the equalizing 
reservoirs had an infinite supply of air at the specified pressure. These assumptions were 
reasonable, as most of the simulated train-following scenarios only require the use of dynamic 
brakes to maintain train speed control and ensure a safe following distance between trains. 

Brake Pipe 
The brake pipe was simulated as the combination of a simple reservoir that was always in 
equilibrium, and a set of waves traveling at a set speed marking increases or decreases in 
pressure. There was a “tap” from the pipe at each connected component (control valve and 
equalizing reservoir) that stored the current pressure in the brake pipe at that position. 

When air is taken from (or added to) the brake pipe, the model considers the tap pressure and 
total brake pipe volume in determining the resulting brake pipe pressure. Using an equation for 
air power transmitted given upstream pressure, downstream pressure, and the minimum cross-
section connecting them, the maximum energy exchanged in one time step is calculated. This 
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energy is then limited by the total energy required to reach equilibrium between the connected 
reservoirs, which is why total volume must be known. Once this energy change is calculated for 
each component connected to the brake pipe, a full energy balance is performed on the brake 
pipe to ensure the total energy taken out of the brake pipe still leaves the average pressure above 
atmospheric pressure. The new average brake pipe pressure is then set using these values. 

With the energy taken from (and added to) the brake pipe at each tap all properly limited, the 
appropriate pressure waves (one in each direction along the brake pipe) can be added at each tap. 
The pressure change that this wave propagates is calculated as the quotient (𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜)/
(𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯). This pressure change is used because it is equal to the change in 
average brake pipe pressure due to this energy change. Thus, when all waves have reached the 
ends of the brake pipe, each tap pressure will exactly match the average brake pipe pressure. 

Control Valves 
Each control valve has three states: release, apply, and emergency. State changes occur in 
response to pressure differences between various components at the control valve. The connected 
auxiliary and emergency reservoirs are included in the simulation of the control valves. In each 
of the three states, different connections are open between various components. The energy 
transferred between each of these components is calculated using the air power through a cross-
section equation and is limited according to equilibrium. To simplify calculations, all 
components connected to the brake cylinder outlet of the control valve have a constant combined 
volume of 40 percent the size of the auxiliary reservoir (i.e., the standard design ratio). Since 
these downstream components are also only a short distance from the control valve, air pressure 
values can be sent directly from the control valve with no need for the pressure wave modeling 
used in the train brake pipe. 

Depending on the characteristics of each railcar, some number of empty-load sensors and brake 
pistons are connected to the brake cylinder outlet of the control valve. Each empty-load sensor 
has a specified proportioning ratio, empty-load changeover mass evaluated against specific axles 
on the railcar, and minimum activation pressure. Each brake piston has a bore, a constant 
pressure loss, and an efficiency. These are used to convert the applied air pressure to a force 
applied to the brake rigging. 

Overall Train Force 
The train was modeled as a series of rigidly-connected masses. Each locomotive and railcar had 
its own mass and was subject to its own resisting and braking forces. The couplers were modeled 
as rigid links between each railcar mass, so that all of the locomotives and railcars behaved as 
one rigid body and had to move together at the same speed and acceleration. Thus, to obtain the 
net acceleration on the train, the net force was computed as the sum of all forces listed above, 
and then Newton’s second law was applied. Importantly, to reduce errors near zero speed, the 
forces that always resist motion were summed as resistances and were separate from pure forces. 
The following equations summarize these terms: 

∑ force = ∑ (∑ (tractive effort)axles )railcars   (1) 

 



 

27 

∑ resistance = ∑ (∑ (bearing resistance + rolling resistance +axlesrailcars
dynamic braking + air braking) + aerodynamic resistance + grade resistance +
curve resistance)   

(2) 

To properly apply Newton’s second law, an adjustment must be made to the total mass of the 
system to capture the rotational inertia of the axles. Once the base acceleration was computed 
using 𝑎𝑎 = ∑ force+∑resistance

𝑚𝑚
, the velocity after one time step was checked to see if it switched 

sign. If so, an adjusted acceleration was computed that ensured the resistances always opposed 
the direction of motion. This adjusted acceleration was finally used to compute the new velocity 
and position for each railcar by using the standard kinematic equations and assuming 
acceleration was constant for the time step. 

In-Train Forces 
Even though the train was modeled as a rigid body, the forces on each coupler could be 
computed by sequentially applying Newton’s second law to each railcar, as was done for the 
entire train. These computations were necessary to ensure the train would not split in two from 
excessive force.  

In the future, the model can be further improved by modeling in-train forces in more detail, 
including simulation of the draft gear and coupling systems. 

3.1.2 Network 
The track network contained all turnouts, track segments, and track blocks. Turnouts form the 
nodes in the network while track segments formed the links and were directional. Turnouts, 
while included in the network, are currently not being used as, for the purposes of this research, 
all following trains were assumed to traverse the same path through the network. Track segments 
stored information including elevations, headings, and track block entry points. Track blocks 
were non-overlapping portions of track segments that stored authorities and referenced all other 
track blocks that lockout each other’s usage. These blocks served as reference points for 
authorities under moving-block operations and should not be confused with traditional fixed, 
wayside signal blocks. 

Paths 
To simplify calculations, each train had a planned set of track segments it traversed as it moved 
through the network. This set plan was transformed into the path for a train by condensing all 
characteristics defined by the track segments into what was effectively one large segment 
combining all segments that the train would traverse. The path also stored a copy of all 
authorities granted to the train at the entry point to each block with authority granted. This path 
structure was useful for performing calculations because multiple track segments do not have to 
be considered when finding a specific offset and because all properties are sorted and have 
offsets relative to the train origin rather than multiple points (i.e., the start of each successive 
track block). 
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Authorities 
Each track block contained the set of all authorities currently granted within it. Each authority 
contained the start offset and end offset relative to the start of the track block, the train index, the 
direction, and the sequence index. The direction was used to define how the authority could grow 
and shrink. The sequence index differentiates between multiple authorities for one train that are 
necessary if, for example, the train is moving around a loop track. Because these authorities are 
used directly to prevent collisions, all trains must always have an authority for all track that they 
are occupying. 

3.1.3 Simulation Model Loop 
The outer network loop, the middle controller loop, and the inner train loop together form the 
overall simulation model loop. All three loops were synchronized in time but operated with 
different time steps such that the inner (train) loop ran an integer number of times per middle 
(controller) loop and the middle (controller) loop ran an integer number of times per outer 
(network) loop. 

Outer Network Loop 
The outer network loop synchronized all trains within the network. First, the “used” authority for 
each train as it moves forward was removed up to the current position of the back of that train. 
Next, the authority for each train was extended as far as possible along the path that this train 
would travel (i.e., end of train ahead). Lastly, the middle controller loop was called to run the 
controller and update the state of each train to the next network time step. 

Middle Controller Loop 
The middle controller loop is responsible for running the controller, sending commands to the 
train, and calling the inner train loop until reaching the next controller time step. The following 
five steps were perfomed in sequence to accomplish this. 

1. Run high-level control law to determine the desired acceleration. 
2. Run low-level controller to convert desired acceleration into notch setting. 
3. Run speed controller to reduce notch setting if near speed limit. 
4. Run coupler force controller to shift notch toward zero to limit coupler force. 
5. Send final notch setting to all control groups as the current command. 

Inner Train Loop 
The inner train loop is responsible for the discrete time simulation of each train. When the inner 
loop is called, the first step is to run the train controller and send updated commands to the train 
if applicable. Afterwards, the following eight steps were executed in a loop until the total time 
elapsed reaches the next network time step. 

1. Command sent from future commands to appropriate locomotives. 
2. Locomotive power and dynamic braking state update 
3. Train brake state update 
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4. Locomotive independent brake state update 
5. Axle force calculation 
6. Railcar force calculation 
7. Railcar acceleration, position, speed, and coupler forces update 
8. Update current time and future command sequence. 

These eight steps can also be viewed as a summary of Section 3.1.1. 

3.2 Baseline Simulation 
To test the multi-train-following simulation and illustrate the behavior of a naïve train control 
algorithm, baseline simulations were conducted. The detailed results of one particular baseline 
simulation scenario is presented here as an illustrative example. 

3.2.1 Baseline Scenario 
The baseline network had two track segments, one in each direction, to represent a 60-mile-long, 
straight and level hypothetical rail corridor. The baseline network used one track block for the 
entire corridor. The maximum authorized speed was set to 60 mph so as to be above the 
balancing speed for the selected train consist, avoiding the need for the speed controller. 
Four heavy-haul freight trains at 10,000-foot spacing were started from rest at one end of the 60-
mile segment. Each train consisted of two ES44AC locomotives followed by 100 loaded, 
covered, 286,000-pound gross rail load grain hoppers. This consist corresponded to an overall 
train length of 6,151 feet and an overall gross weight of 14,732 tons. Each train had 8,800 of 
available horsepower, yielding a power-to-weight ratio of 0.6 horsepower per ton (hp/ton). 
In the simulation, the network time step was set to 4 seconds, the controller time step was also 
set to 4 seconds, and the train time step was set to 0.1 second. 
The first train in the four-train fleet was pre-programed with a fixed control plan. This plan 
specified that the lead train use throttle notch 6 between mileposts 0 and 20, notch 4 between 
mileposts 20 and 40, and notch 6 between mileposts 40 and 60. A PTC enforcement, consisting 
of a full-service brake application plus the current level of dynamic braking, was used to stop the 
lead train prior to the end of the 60-mile segment. 
The three following trains were all controlled by the same naïve algorithm; the train was set to 
full power throttle (notch 8) unless it was within 1,000 feet of the start of a PTC enforced brake 
application, in which case it was put into full dynamic braking (notch -8). In the case of this 
train-following simulation, the trains continued at full throttle until they were only separated 
from the preceding train by the safe braking distance (calculated at each time step based on 
individual train speed and characteristics) plus a 1,000-foot buffer. Once the train encroached on 
the train ahead to be separated by less than the combined braking distance and 1,000-foot buffer, 
the dynamic brake was applied to slow the train. After applying the dynamic brake, the 
combination of decreased train braking distance as decreased speed relative to the preceding 
train would eventually increase the train separation to the point where the following train could 
resume power throttle. 
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This naïve control algorithm was designed to emulate the potential behavior of a train crew that 
has little information about the action of the preceding train other than the position of its last car 
(corresponding to the end of movement authority for the following train) and the corresponding 
PTC enforcement distance. As the following train closes on the enforcement distance to the train 
ahead, the crew will likely brake to avoid an enforcement. When the crew observes that the 
distance to the preceding train is increasing, they will likely increase throttle to bring the train 
back up to its balancing or maximum authorized speed. 

3.2.2 Baseline Simulation Results 
The baseline simulation run required approximately 2 minutes of computer time to complete, 
with most of the running time spent on computing PTC braking distances. This processing time 
is required because the PTC braking distance is currently computed by copying the train state, 
making a full-service brake application, and simulating that condition until the train stops. A 
simpler and faster PTC braking distance calculator was developed later in the process to alleviate 
this computation bottleneck. 
To evaluate the effectiveness of the control algorithm, several properties of each train were 
output at each network time step. Time and distance data facilitated creation of a string-line 
diagram showing the spatial progression of all four trains in time (Figure 2). 

 
Figure 2. Stringline Diagram for Four-Train Baseline Simulation 

All headways between trains appeared to be low and consistent, indicating good performance. 
However, the scale of the string-line diagram was quite coarse, possibly obscuring many 
important features. Thus, the absolute speed of each train and the relative speed between each 
pair of trains in sequence were also plotted (Figure 3). 
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Figure 3. Absolute and Relative Train Speed over Time for Baseline Simulation 

The results now looked much worse for the controller. At the start of the simulation, there were 
progressively increasing speed differences between each pair of following trains. These 
increasing speed differences may indicate that the controller was string unstable. Additionally, 
there were clear high-frequency oscillations in the speed difference graph all throughout the rest 
of the simulation. This sort of behavior is not good for minimizing energy consumption. To 
determine the source of this oscillation, the combined throttle and dynamic braking notch for 
each train were graphed versus time (Figure 4). 
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Figure 4. Throttle Notch Position for First 1,000 Seconds and Full Baseline Simulation 

As expected, considering the design of the naïve train controller, the notch setting switched 
rapidly between power throttle 8 and dynamic brake -8. This throttle and brake behavior 
approximated a pulse-width modulation (PWM) signal evaluated every 4 seconds, that varied 
based on the distance between and relative speed of the following and preceding train. This 
signal was the source of the speed difference oscillations seen in Figure 3. Since these throttle 
inputs were generated by the control algorithm, there may also have been some signature of the 
oscillations in the inputs to the control algorithm. The main input to the control algorithm was 
the distance remaining before PTC enforcement for each train, also referred to as the safety 
distance (Figure 5). Additionally, the entire train spacing, including the PTC braking distance 
(free distance), is plotted over time for comparison. 
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Figure 5. Train Spacing and Distance to PTC Enforcement for Baseline Simulation 

Substantial oscillations quite like those shown by the controller were clearly visible in the safety 
distance metric for each train. The graph of free distance shows only very minor oscillations, 
indicating that most of the safety distance oscillations were due to changes in the PTC braking 
distance. The rapid changes arose because the PTC braking distance was calculated by applying 
a full-service brake application on top of the current level of dynamic braking. When a train 
switched from notch 8 to notch -8 and began to slow down, the PTC braking distance decreased 
because there was more available braking effort. This strongly amplified the small change in 
train spacing caused by slowing down, thus giving the high-frequency and relatively high-
amplitude oscillations shown above in the safety distance plot. It also accounted for at least some 
of the high-frequency oscillation in the notch output from the controller. 
The plot of safety distance in Figure 5 also illustrates the difficulty of maintaining a minimum 
safe braking distance headway under moving blocks. The naïve control algorithm took actions 
that attempted to maintain an additional 1,000 feet of train separation above the minimum safe 
braking distance. Due to the time required to implement brake actions and achieve the required 
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deceleration, following trains are often separated by less than 1,000 feet of safety distance (in 
addition to the safe braking distance), as the fluctuating relative speed changes braking distance.  
Near the start and end of the simulation, subsequent trains followed at even closer distances. The 
behavior between 300 and 600 seconds – as each successive train begins to encounter the 
controlling effect of its respective preceding train – was particularly illustrative of the need for 
an additional safety buffer. Each successive train encountered larger speed differentials and less 
safety distance as the control actions of preceding trains were amplified through the train fleet. 
Had the trains attempted to follow at a minimum safe braking distance without any additional 
safety distance, subsequent trains would have encountered PTC enforcements, since the dynamic 
brakes were not sufficient to provide the required deceleration to match the speed of the 
preceding train. The need for additional safety distance to allow for these control actions and 
relative train speeds increased the overall headway required under moving blocks. These 
increased headways reduced the potential capacity benefits of moving blocks under this naïve 
train control algorithm. 

3.2.3 Baseline Simulation Conclusions 
There is clearly room for improved train control algorithms that offer better performance than the 
naïve algorithm. Although the naïve algorithm successfully managed train headways to typically 
follow a 1,000-foot safety distance beyond minimum train braking distance, this was achieved by 
consistent rapid oscillations between full throttle and full dynamic braking. These train control 
inputs were not fuel-efficient and may place excessive strain on the mechanical and electrical 
components of diesel-electric locomotives. Although not modeled in the simulation in detail, the 
rapid throttle and brake inputs may also create resonant in-train forces that pose a train 
separation or derailment hazard. The lack of control over air braking and the substantial high-
frequency oscillations generated in the system also create situations where following trains 
amplify the behavior of preceding trains and begin to incur further and further into the safety 
distance. With a sufficient number of following trains, trains may quickly encounter a PTC 
enforcement because the naïve train control algorithm cannot command sufficient decelerating 
force in a timely manner. 
This concept of “actuator delay” is central to light-duty highway vehicle and heavy-truck 
platooning control algorithms. Thus, as described in Section 4, the project team adapted these 
highway approaches to following vehicle control to the heavy-haul freight rail domain and 
formulated various high-level control frameworks. Section 5 implements these improved control 
algorithms into the multi-train-following simulation to compare how they performed relative to 
the baseline for various combinations of train and route characteristics and leading train 
behavior. Implementation of the various high-level controller algorithm designs also required 
development of a low-level controller to transform the acceleration (or deceleration) specified by 
the analytical equations of the high-level controller into specific throttle and brake commands 
(including dynamic brakes and/or train air brakes). Both the high- and low-level controllers were 
implemented in the C++ framework to provide a consolidated multi-train-following simulation 
model. 
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4. Following Train Control Algorithm Development 

Based on the literature review, multiple following train control algorithms were formulated and 
analyzed for their stability. A total of six control algorithms were fully formulated for 
investigation and evaluation with the multiple-train-following simulation model: 

• Naïve Controller 

• Proportional Derivative (PD) Controller 

• Modified Proportional Derivative (MPD) Controller 

• Cooperative Adaptive Cruise Control (CACC) Controller 

• Predictive Cooperative Adaptive Cruise Control (PCACC) Controller 

• Kinematic Adaptive Cruise Control (KACC) Controller 
The naïve controller described in Section 3.2.1 represents the baseline condition of a train crew 
attempting to manually manage the relative speed and distance to the train ahead based solely on 
its last reported position. The naïve controller formulation will not be repeated here. The other 
five controllers were formulated to make more intelligent use of position, speed, acceleration, 
and other information on the status of the train ahead when specifying the throttle or brake 
setting of a following train. The following sections describe the general control objective and 
then present the analytical formulation and stability analysis of the remaining five train-
following control algorithms. 

4.1 Following Train Control Problem and Objectives 
The dynamics of train 𝑖𝑖 in a fleet of n trains can be expressed as follows: 

�
𝑥̇𝑥𝑖𝑖(𝑡𝑡) = 𝑣𝑣𝑖𝑖(𝑡𝑡)            

𝑀𝑀𝑖𝑖𝑣𝑣
.
𝑖𝑖(𝑡𝑡) = 𝐹𝐹𝑖𝑖(𝑡𝑡) − 𝑓𝑓𝑏𝑏(𝑣𝑣𝑖𝑖) − 𝑓𝑓𝑒𝑒(𝑣𝑣𝑖𝑖 , 𝑥𝑥𝑖𝑖 , 𝑡𝑡)

 (3) 

where 𝑥𝑥𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡), and 𝑀𝑀𝑖𝑖 are the position, speed, and mass of train 𝑖𝑖 at time 𝑡𝑡. 𝐹𝐹𝑖𝑖 is the force 
imposed (traction or braking force), 𝑓𝑓𝑏𝑏(𝑣𝑣𝑖𝑖) is the specific basic and aerodynamic resistances, and 
𝑓𝑓𝑒𝑒(𝑣𝑣𝑖𝑖 , 𝑥𝑥𝑖𝑖 , 𝑡𝑡) is a combination of external resistance forces caused by track gradient and curve 
alignment (Gao et al., 2016). Generally, the control input to be designed contains two parts: an 
inner-loop part responsible for the compensation of the nonlinear basic and aerodynamic 
resistances and external disturbances, and an outer-loop in charge of inner-separation control 
among trains. From a technical point of view, the target is to design cooperative control laws for 
multiple trains such that the following are achieved: 

(i) For the following trains (𝑖𝑖 = 2, . . . ,𝑛𝑛 in the first equation), based on the safety principle 
of moving-block operations, the target is to maintain the position of train 𝑖𝑖 with a desired 
separation from the preceding train, the minimum value of which should be the sum of 
the train length, braking distance, redundant safety allowance, and positioning error 
distance.  

(ii) Stability for each train is guaranteed in the sense that the control instructions in the 
closed-loop system for each train are kept bounded and do not exceed the maximum 
acceleration or braking performance capabilities of the train. 
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(iii) String stability of the train fleet (platoon) is guaranteed. 
From the energy and economic perspectives, it may also be desired to minimize train energy 
consumption through throttle and brake control instructions. However, this objective may not be 
entirely in line with the three objectives above.  

4.1.1 Stability and Control Architecture 
The train-following control law is said to provide individual train stability if the space gap error 
of trains converges to zero when the preceding train is operating at a constant speed (Rajamani, 
2011). The space gap (𝜀𝜀) in this definition means the distance between the back of the preceding 
train and front of the control train. Also, space gap error (𝛿𝛿) refers to the difference between 
space gap (𝜀𝜀) and the desired space gap (𝑆𝑆𝑑𝑑). 

Consider a string of trains on the railway using a longitudinal control system for train-following. 
Let 𝑥𝑥𝑖𝑖 be the location of the front of the 𝑖𝑖th train measured from an inertial reference. Consider 
train 𝑖𝑖 as the one we want to control. Its preceding train is train 𝑖𝑖 − 1. Also, the length of the 
preceding train is 𝐿𝐿𝑖𝑖−1. The space gap between the two trains is thus 𝜀𝜀𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑖𝑖 − 𝐿𝐿𝑖𝑖−1. Note 
that both 𝜀𝜀𝑖𝑖 and 𝐿𝐿𝑑𝑑𝑒𝑒𝑒𝑒 are measured between the back of the preceding train and front of the 
following one. Then the space gap error relative to the desired space gap (𝑆𝑆𝑑𝑑𝑖𝑖) for the 𝑖𝑖th train is 
𝛿𝛿𝑖𝑖 = 𝑆𝑆𝑑𝑑𝑖𝑖 − 𝜀𝜀𝑖𝑖 = 𝑆𝑆𝑑𝑑𝑖𝑖 + 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 + 𝐿𝐿𝑖𝑖−1. The control law is said to provide individual train 
stability if the following condition is satisfied: 

𝑥̈𝑥𝑖𝑖−1 → 0 ⟹  𝛿𝛿𝑖𝑖 → 0 (4) 

If the train-following control law ensures individual train stability, the space gap error should 
converge to zero when the preceding train tends to move at a constant speed. However, the space 
gap error is expected to be non-zero during the acceleration or deceleration of the preceding 
train. It is important then to describe how the space gap error would propagate from one train to 
the next train in a string of trains that use the same space gap policy and control law (Rajamani, 
2011). The string stability of a string of trains refers to a property in which space gap errors are 
guaranteed not to amplify as the space errors propagate toward the tail of the string (for a 
detailed explanation, see Feng et al., 2019). To envision a causal understanding, string stability 
ensures that any error in space gap between the second and third trains does not amplify into a 
larger space gap error between the seventh and eighth trains in the string. 
There are multiple architectures to shape the information transmission between following trains. 
In the setup of train-following under a moving-block signaling system with a wayside unit, it 
may be possible to make information on the location, speed, and acceleration of all trains 
available to all other trains. We begin with the simplest architecture, in which the control train 
has just received the location and speed of its preceding train. For that, the input variables are the 
inter-train spacing, the speed of the train under control, and the speed of the preceding train. 
Within this architecture, designing the controller for train-following is much like the one for 
ACC systems. An ACC system is an extension of the standard cruise control system where the 
driver sets a constant desired vehicle moving speed. The cruise control system then automatically 
controls the throttle to maintain the desired speed. An ACC-equipped train uses the space gap 
information (i.e., the space between the back of the preceding train and front of the following 
train) on a track. In the absence of a preceding train, an ACC train travels at a user-set speed 
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under a speed control using throttles and brakes, much like a train with a standard cruise control 
system. However, if a preceding train is detected, the ACC system determines whether the train 
can continue to travel safely at a pre-specified speed. If the preceding train is too close to the 
following train or moving too slowly, then the ACC system of the following train switches from 
speed control to spacing control, to maintain the minimum safety spacing from the preceding 
train. Since train fleeting is under consideration here, discussions focus on spacing control. 
A train-following control system architecture is typically designed hierarchically, with an upper-
level controller and a lower-level controller. The upper-level controller determines the desired 
acceleration for each train. The lower-level controller determines the throttle and/or brake 
commands required to track the desired acceleration. The train dynamic model is used by the 
lower-level controller to calculate real-time brake and throttle inputs to track the desired 
acceleration. Since it is at the core of this research, this section focuses on the upper-level control 
design.  
The objective of the upper-level controller is to determine desired train acceleration such that 
two performance requirements are met: individual stability and string stability. Individual 
stability aims to asymptotically achieve and maintain a desired spacing from the preceding train. 
String stability in our context aims to ensure that, when many trains with the same controller 
move in a fleet on a rail corridor following the same control law, the disturbances in the state 
(e.g., speed and acceleration) of the leading train of a string will attenuate as one moves to later 
trains in the string (Swaroop, 1995). As far as the upper-level controller is concerned, the plant 
model (i.e., the train dynamics model) used for the control design is: 

𝑥̈𝑥𝑖𝑖 = 𝑢𝑢 (5) 

In Eq. (5), subscript 𝑖𝑖 denotes the 𝑖𝑖th train in the string. The acceleration of the train, 𝑢𝑢, is the 
control input. This acceleration should be realized by using lower-level control. An important 
variable for lower-level control is the bandwidth of the control system, which determines how 
fast the train responds to changes in the input command. The bandwidth of the control loop 
determines how quickly the system responds to changes in the variables being controlled (e.g., 
dynamic brake and throttle notches). Due to the finite bandwidth associated with the lower-level 
controller, some actuation delay is expected. Thus, a train will track its desired acceleration only 
imperfectly and have deviations from the set output in the upper-level controller. 
The objective of the upper-level controller design is stated as the objective of meeting 
performance specifications robustly in the presence of a first-order actuation delay, 𝑇𝑇, from the 
lower-level controller performance, which will be further explained in Section 4.2.1: 

𝑥̈𝑥𝑖𝑖 =
1

𝑇𝑇𝑇𝑇 + 1
𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 =

1
𝑇𝑇𝑇𝑇 + 1

𝑢𝑢𝑖𝑖 (6) 

Here, 𝑥̈𝑥𝑖𝑖 is the actual acceleration of the controlled train, 𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 is the desired acceleration of the 
train, 𝑇𝑇 is the actuation delay in implementing the control law, and 𝑠𝑠 is a complex variable.  

The performance requirements (i.e., individual and string stability) must be met under the actual 
plant model given by Eq. (6). For example, one can assume an actuation delay of 𝑇𝑇 = 4 seconds 
for the analysis and simulation. The maximum possible acceleration and deceleration must be 
pre-specified. Since in this partthe team has not considered any communication delay between 
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trains, there is no need for any communication delay parameter related to the input. In this part, 
the control inputs (i.e., train position) are assumed to transmit instantaneously. 

4.2 Proportional Derivative Controller 
Desired space gap (𝑆𝑆𝑑𝑑𝑖𝑖) can be characterized either as a constant value or a function of speed. It 
can be shown that considering a constant 𝑆𝑆𝑑𝑑𝑖𝑖 would yield control laws which are not string stable 
(Rajamani, 2011). For that, one can consider a desired space gap policy that may ensure both 
individual train stability and string stability, named the constant time-gap (CTG) policy. In the 
CTG policy, the desired inter-train spacing is not constant but varies linearly with speed: 

𝑆𝑆𝑑𝑑𝑖𝑖 = ℎ𝑥̇𝑥𝑖𝑖 + 𝑆𝑆0𝑖𝑖 (7) 

where 𝑆𝑆0𝑖𝑖 is the safety distance (space gap at initial time) and the parameter ℎ is referred to as the 
constant-time-gap. Eq. (7) means that the inter-train spacing is the safety distance plus the 
distance traveled by the control train at speed 𝑥̇𝑥𝑖𝑖 for time ℎ. Based on 𝑆𝑆𝑑𝑑𝑖𝑖, the space gap error 𝛿𝛿𝑖𝑖 
varies with the speed and is defined as 

𝛿𝛿𝑖𝑖 = 𝑆𝑆𝑑𝑑𝑖𝑖 − 𝜀𝜀𝑖𝑖 = ℎ𝑥̇𝑥𝑖𝑖 + 𝑆𝑆0𝑖𝑖 − 𝜀𝜀𝑖𝑖 (8) 

where 𝜀𝜀𝑖𝑖 is the space gap between the rear of the preceding train and the front of the control 
train: 𝜀𝜀𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑖𝑖 − 𝐿𝐿𝑖𝑖−1.  

The controller based on the CTG policy was developed by Ioannou and Chien (1993). The CTG 
policy can be represented by the following control law: 

𝑥𝑥𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 = −
1
ℎ

(𝜀𝜀𝑖̇𝑖 + 𝜆𝜆𝛿𝛿𝑖𝑖) (9) 

where 𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 is desired acceleration of controlled train, ℎ is the headway between the controlled 
train and its preceding train, 𝜀𝜀𝑖̇𝑖 is the first derivative of 𝜀𝜀𝑖𝑖, 𝛿𝛿𝑖𝑖 is the space gap error and 𝜆𝜆 is a 
design parameter. Factoring out the input parameters for control law gives the following function 
representation of the law: 

𝑃𝑃𝑃𝑃(ℎ, 𝜏𝜏𝑠𝑠, 𝑠𝑠0) (10) 

where ℎ is headway, 𝜏𝜏𝑠𝑠 = 1
𝜆𝜆
 is the spacing weight, and 𝑠𝑠0 = 𝑆𝑆0𝑖𝑖 is the global safety distance. 

This control law includes proportional and derivative terms of the space gap error in addition to 
the headway between two successive trains. With this control law, it can be shown that the space 
gap errors of successive train 𝛿𝛿𝑖𝑖 and 𝛿𝛿𝑖𝑖−1 are independent of each other (Rajamani, 2011). This 
suggests that in a string of more than two trains, we do not need the space gap error of the 
preceding train to calculate the desired acceleration of the following train, i.e., the control law is 
autonomous (Rajamani, 2011). Under this control law, we can show the string stability of the 
system. 
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4.2.1 String Stability Analysis of PD Controller 
In the presence of the lower controller and actuator dynamics, the desired acceleration is not 
obtained instantaneously but instead satisfies the dynamics approximated by Eq. (6): 

𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑥̈𝑥𝑖𝑖 = 𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 (11) 

Substituting for 𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 from Eq. (7). we obtain 

𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑥̈𝑥𝑖𝑖 = −
1
ℎ

(𝜀𝜀𝑖̇𝑖 + 𝜆𝜆𝛿𝛿𝑖𝑖) (12) 

Also, differentiating 𝛿𝛿𝑖𝑖 twice from Eq. (8), we obtain 

𝛿̈𝛿𝑖𝑖 = 𝜀𝜀𝑖̈𝑖 + ℎ𝑥𝑥𝑖𝑖 (13) 

Substituting for 𝑥𝑥𝑖𝑖 from Eq. (11), we find that the relation between 𝜀𝜀𝑖𝑖 and 𝛿𝛿𝑖𝑖 is given by 

𝜀𝜀𝑖̈𝑖 = 𝛿̈𝛿𝑖𝑖 +
1
𝑇𝑇

(𝜀𝜀𝑖̇𝑖 + ℎ𝑥̈𝑥𝑖𝑖 + 𝜆𝜆𝛿𝛿𝑖𝑖) (14) 

or 

𝜀𝜀𝑖̈𝑖 = 𝛿̈𝛿𝑖𝑖 +
1
𝑇𝑇
�𝛿̇𝛿𝑖𝑖 + 𝜆𝜆𝛿𝛿𝑖𝑖� (15) 

The difference between errors of successive trains can be written as 

𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑖𝑖−1 = 𝜀𝜀𝑖𝑖 − 𝜀𝜀𝑖𝑖−1 + ℎ(𝑥̇𝑥𝑖𝑖 − 𝑥̇𝑥𝑖𝑖−1) (16) 

or 

𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑖𝑖−1 = 𝜀𝜀𝑖𝑖 − 𝜀𝜀𝑖𝑖−1 + ℎ𝜀𝜀
.
𝑖𝑖 (17) 

Using Eq. (16) to substitute in Eq. (17) to calculate 𝜀𝜀𝑖𝑖 in terms of 𝛿𝛿𝑖𝑖 and 𝜀𝜀𝑖𝑖−1 in terms of 𝛿𝛿𝑖𝑖−1, 
dynamic relation between 𝛿𝛿𝑖𝑖 and 𝛿𝛿𝑖𝑖−1 can be obtained. In the transfer function domain, this 
relation is 

𝐻𝐻(𝑠𝑠) =
𝛿𝛿𝑖𝑖
𝛿𝛿𝑖𝑖−1

=
𝑠𝑠 + 𝜆𝜆

ℎ𝑇𝑇𝑠𝑠3 + ℎ𝑠𝑠2 + (1 + 𝜆𝜆ℎ)𝑠𝑠 + 𝜆𝜆
 (18) 

The string stability of this system can be analyzed by looking at the above transfer function and 
checking if its magnitude is always less than 1. Substituting 𝑗𝑗𝑗𝑗 for 𝑠𝑠 and evaluating the 
magnitude of the above transfer function, it is shown in Swaroop & Hedrick (1995) that the 
magnitude is always less than or equal to unity at all values for 𝑠𝑠 only if: 

ℎ ≥ 2𝑇𝑇 (19) 
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Further, if Eq. (19) is satisfied, then it is guaranteed that one can find a value of 𝜆𝜆 such that 
��𝐻𝐻�(𝑠𝑠)��

∞
≤ 1. Thus, the condition of Eq. (19) is both necessary and sufficient with an 

appropriate value of 𝜆𝜆 (Swaroop & Hedrick, 1995). In practice, string stability can be maintained 
only if the time-gap is larger than 2𝑇𝑇.  

4.2.2 Pseudocode of PD Controller 
The pseudocode for the PD controller is presented in Figure 6. 
 

Calculate 𝑇𝑇 from the below equation numerically 
𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑥̈𝑥𝑖𝑖 = 𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 

For 𝑖𝑖 = 2:𝑛𝑛 use below definitions: 
𝑥𝑥𝑖𝑖=location of train 𝑖𝑖 
𝑥̇𝑥𝑖𝑖=speed of train 𝑖𝑖 
𝐿𝐿𝑖𝑖−1=length of train 𝑖𝑖 − 1 (unchanging) 
𝑆𝑆0𝑖𝑖=prespecified unchanging constant safety spacing 
ℎ=prespecified constant time gap (we can change it, ℎ > 2𝑇𝑇) 
𝜆𝜆=prespecified design parameter (we can change it) 
𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑=desired acceleration (control input) 
Read 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖−1, 𝑥̇𝑥𝑖𝑖, 𝑥̇𝑥𝑖𝑖−1 
Set 𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 = − 1

ℎ
�𝑥̇𝑥𝑖𝑖−1 − 𝑥̇𝑥𝑖𝑖 + 𝜆𝜆�ℎ𝑥̇𝑥𝑖𝑖 + 𝑆𝑆0𝑖𝑖 + 𝐿𝐿𝑖𝑖−1 + 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1�� 

End 

Figure 6. PD Controller Pseudocode 

4.3 Modified Proportional Derivative Controller 
The main drawback of the PD controller is that the controller formulation has headway and 
speed weighting terms as the same. Consequently, we cannot change headway without changing 
the speed weight. Moreover, when the train ahead is going faster, the PD controller will instruct 
the following train to go faster, which may not be desirable for the following train movement. 
The MPD controller is proposed to address these two issues and also solve the issues about PTC 
enforcement laws. In this controller, the spacing is defined as: 

𝑠𝑠 = 𝑥𝑥𝑖𝑖𝑡𝑡 − 𝑠𝑠0 − ℎ𝑥̇𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑠𝑠 (20) 

where 𝑥𝑥𝑖𝑖𝑡𝑡 is the location of the back of train 𝑖𝑖 − 1 interpolated over the network update interval, 
𝑥𝑥𝑖𝑖𝑠𝑠 is the stop position for train 𝑖𝑖, and 𝑠𝑠0 is the stopped safety distance.  

By modifying the PD controller as described above, the MPD controller formulation is: 

𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 =

⎩
⎨

⎧
1

 𝜏𝜏𝑣𝑣
(𝑥̇𝑥𝑖𝑖−1 − 𝑥̇𝑥𝑖𝑖) +

1
𝜏𝜏𝑣𝑣𝜏𝜏𝑠𝑠

𝑠𝑠, 𝑥̇𝑥𝑖𝑖−1 < 𝑥̇𝑥𝑖𝑖
1
𝜏𝜏𝑣𝑣𝜏𝜏𝑠𝑠

𝑠𝑠, 𝑥̇𝑥𝑖𝑖−1 ≥ 𝑥̇𝑥𝑖𝑖
 (21) 
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The function representation of this controller is as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏𝑣𝑣, 𝜏𝜏𝑠𝑠,ℎ, 𝑠𝑠0) (22) 

In this controller, the headway ℎ and the spacing weight 𝜏𝜏𝑣𝑣 are separate variables. As with the 
PD controller, 𝜏𝜏𝑠𝑠 is the spacing weight and 𝑠𝑠0 is the minimum safety distance. With these 
modifications to the PD controller, the issue of PTC enforcements during acceleration is solved 
without affecting the string stability of the controller. 

4.4 Cooperative Adaptive Cruise Control Controller 
CACC is a natural extension to ACC based on obtaining other vehicle information via wireless 
communication. We first consider a constant time-gap policy in our CACC controller for 
cooperative train-following. To improve train platooning safety, one should ensure that the 
CACC controller design and corresponding parameter specification for a platoon of trains is 
string stable. Consider the following model of train i within a platoon of 𝑛𝑛 trains: 

�
𝑑̇𝑑𝑖𝑖
𝑣̇𝑣𝑖𝑖
𝑎̇𝑎𝑖𝑖
� = �

𝑣𝑣𝑖𝑖−1 − 𝑣𝑣𝑖𝑖
𝑎𝑎𝑖𝑖

−
1
𝜏𝜏 𝑎𝑎𝑖𝑖 +

1
𝜏𝜏 𝑢𝑢𝑖𝑖

� , 𝑖𝑖 ∈ 𝑆𝑆𝑛𝑛\{1} (23) 

Here, 𝑑𝑑𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑖𝑖 − 𝐿𝐿𝑖𝑖−1 is the distance between train 𝑖𝑖 and train 𝑖𝑖 − 1, where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖−1 are 
the position of the front of trains 𝑖𝑖 and 𝑖𝑖 − 1, respectively, and 𝐿𝐿𝑖𝑖−1 is the length of train 𝑖𝑖 − 1. 𝑣𝑣𝑖𝑖 
is the speed and 𝑎𝑎𝑖𝑖 is the acceleration of train 𝑖𝑖. Moreover, 𝑢𝑢𝑖𝑖 is the train input, which can be 
interpreted as the actual acceleration for train 1 (based on the platoon maneuver) and as the 
desired acceleration for the following trains. 𝜏𝜏 is the time constant representing the locomotive 
traction drive dynamics, including actuation lag. Also, the following constant headway policy is 
adopted for the spacing: 

𝑑𝑑𝑑𝑑,𝑖𝑖(𝑡𝑡) = 𝑟𝑟 + ℎ𝑣𝑣𝑖𝑖−1(𝑡𝑡), 𝑖𝑖 ∈ 𝑆𝑆𝑛𝑛\{1} (24) 

where 𝑑𝑑𝑑𝑑,𝑖𝑖(𝑡𝑡) is the desired distance between train 𝑖𝑖 and 𝑖𝑖 − 1, ℎ is the time headway (to be 
determined), and 𝑟𝑟 is the standstill distance. The main objective is to regulate the distance 𝑑𝑑𝑖𝑖 to 
𝑑𝑑𝑑𝑑,𝑖𝑖(𝑡𝑡), i.e., 

𝑒𝑒𝑖𝑖(𝑡𝑡) = 𝑑𝑑𝑖𝑖(𝑡𝑡)− 𝑑𝑑𝑑𝑑,𝑖𝑖(𝑡𝑡) → 0 as 𝑡𝑡 → ∞ (25) 

where 𝑒𝑒𝑖𝑖(𝑡𝑡) is the spacing error. This equation may only be satisfied if the leading train moves 
with a constant speed, i.e., 𝑎𝑎1 = 0. In Ploeg et al. (2011), it is shown that the following dynamic 
controller achieves this train-following objective: 

𝑢̇𝑢𝑖𝑖 = −
1
ℎ𝑢𝑢𝑖𝑖 +

1
ℎ �𝑘𝑘𝑝𝑝𝑒𝑒𝑖𝑖 + 𝑘𝑘𝑑𝑑𝑒̇𝑒𝑖𝑖 + 𝑘𝑘𝑑𝑑𝑑𝑑𝑒̈𝑒𝑖𝑖� +

1
ℎ𝑢𝑢𝑖𝑖−1 (26) 

where 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑑𝑑, and 𝑘𝑘𝑑𝑑𝑑𝑑 are the controller coefficients. The function representation of this 
controller is as follows: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜏𝜏𝑣𝑣, 𝜏𝜏𝑠𝑠,𝑘𝑘𝑑𝑑𝑑𝑑 ,ℎ, 𝑠𝑠0) (27) 

where 𝜏𝜏𝑣𝑣 is the speed weight, 𝜏𝜏𝑠𝑠 is the spacing weight, ℎ is the headway, 𝑠𝑠0 = 𝑟𝑟 is the minimum 
spacing, 𝑘𝑘𝑝𝑝 = 1

𝜏𝜏𝑣𝑣𝜏𝜏𝑠𝑠
, and 𝑘𝑘𝑑𝑑 = 1

𝜏𝜏𝑣𝑣
. Ploeg et al. (2011) showed that for a bounded 𝑢𝑢𝑖𝑖−1, the spacing 

error reached zero for 𝑎𝑎1 = 0 if the following constraints held: 𝑘𝑘𝑝𝑝, 𝑘𝑘𝑑𝑑 > 0,𝑘𝑘𝑑𝑑𝑑𝑑 + 1 > 0, and 
(1 + 𝑘𝑘𝑑𝑑𝑑𝑑)𝑘𝑘𝑑𝑑 − 𝑘𝑘𝑝𝑝𝜏𝜏 > 0. 

The transfer functions in the block diagram (Figure 7) for this controller are as follows: 

𝐺𝐺(𝑠𝑠) =
𝑋𝑋𝑖𝑖(𝑠𝑠)
𝑈𝑈𝑖𝑖(𝑠𝑠) =

1
𝑠𝑠2(𝜏𝜏𝜏𝜏 + 1) (28) 

𝐻𝐻(𝑠𝑠) = ℎ𝑠𝑠 + 1 (29) 

𝐾𝐾(𝑠𝑠) = 𝑘𝑘𝑝𝑝 + 𝑘𝑘𝑑𝑑𝑠𝑠 + 𝑘𝑘𝑑𝑑𝑑𝑑𝑠𝑠2 (30) 

𝐷𝐷(𝑠𝑠) = 𝑒𝑒−𝜃𝜃𝜃𝜃 (31) 

Here, 𝑋𝑋𝑖𝑖(𝑠𝑠) and 𝑈𝑈𝑖𝑖(𝑠𝑠) are the Laplace transforms of the train position 𝑥𝑥𝑖𝑖(𝑡𝑡) and the desired 
acceleration 𝑢𝑢𝑖𝑖(𝑡𝑡) respectively. The train transfer function 𝐺𝐺(𝑠𝑠) follows the form 𝑥⃛𝑥𝑖𝑖 = − 1

𝜏𝜏
𝑥̈𝑥𝑖𝑖 +

1
 𝜏𝜏
𝑢𝑢𝑖𝑖, as in Eq. (23). The spacing policy transfer function 𝐻𝐻(𝑠𝑠) related to Eq. (24) and the 

controller 𝐾𝐾(𝑠𝑠) represents the error feedback in Eq. (26). Also, 𝜃𝜃 is the time delay induced by 
the wireless communication network. In order to consider the actuation delay in our formulation, 
we need to add another term to the transfer function 𝐺𝐺(𝑠𝑠). Hence, we modify the transfer 
function into: 

𝐺𝐺(𝑠𝑠) =
1

𝑠𝑠2(𝜏𝜏𝜏𝜏 + 1) 𝑒𝑒
𝜙𝜙𝜙𝜙 (32) 

where 𝜙𝜙 is the train actuation delay. 

 

 
Figure 7. Block Diagram of CACC Controller 
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4.4.1 String Stability Analysis of the CACC Controller 
Let the train acceleration be taken as a basis for string stability, i.e., 𝑦𝑦𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑖𝑖(𝑡𝑡) ∀𝑖𝑖 ∈ 𝑆𝑆𝑛𝑛. The 
corresponding string stability measure is given by: 

Γ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠) =
𝐴𝐴𝑖𝑖(𝑠𝑠)
𝐴𝐴𝑖𝑖−1(𝑠𝑠) =

1
𝐻𝐻(𝑠𝑠)

𝐺𝐺(𝑠𝑠)𝐾𝐾(𝑠𝑠) + 𝐷𝐷(𝑠𝑠)
1 + 𝐺𝐺(𝑠𝑠)𝐾𝐾(𝑠𝑠)  (33) 

where 𝐴𝐴𝑖𝑖(𝑠𝑠) and 𝐴𝐴𝑖𝑖−1(𝑠𝑠) are the Laplace transforms of 𝑎𝑎𝑖𝑖(𝑡𝑡) and 𝑎𝑎𝑖𝑖−1(𝑡𝑡), respectively. Without 
loss of generality, we may assume 𝑟𝑟𝑖𝑖 = 𝐿𝐿𝑖𝑖−1 = 0,∀𝑖𝑖 ∈ 𝑆𝑆𝑛𝑛\{1}. The corresponding string stability 
criterion is then: 

|𝛤𝛤𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑗𝑗𝑗𝑗)|𝐻𝐻∞ ≤ 1 (34) 

We can numerically show that with some parameters 𝑘𝑘𝑝𝑝,𝑘𝑘𝑑𝑑 ,𝑘𝑘𝑑𝑑𝑑𝑑 , 𝜏𝜏,𝜃𝜃,𝜙𝜙,ℎ, the requirement of 
Eq. (34) would be satisfied. 

4.4.2 Pseudocode of CACC Controller 
The pseudocode for the CACC controller is presented in Figure 8. 

4.5 Predictive Cooperative Adaptive Cruise Control Controller 
Based on the original CACC algorithm, a new modified CACC controller following a constant 
spacing policy was proposed by Sybis et al. (2019) to improve performance of CACC systems in 
highway vehicles. In this approach, the instantaneous acceleration values were replaced by the 
desired ones in the controller formulation. According to their published results, this modification 
over instantaneous controller (which does not have predictive terms) had a significant impact on 
the performance of platoons of highway vehicles.  

 
 

For 𝑖𝑖 = 2:𝑛𝑛 use below definitions: 
𝑥𝑥𝑖𝑖=front location of train 𝑖𝑖 
𝑥̇𝑥𝑖𝑖=speed of train 𝑖𝑖 
𝑥̈𝑥𝑖𝑖=acceleration of train 𝑖𝑖 
𝐿𝐿𝑖𝑖−1=length of train 𝑖𝑖 − 1 (unchanging) 
𝑏𝑏𝑖𝑖=braking distance 
𝑟𝑟=some extra prespecified safety distance 
ℎ=prespecified constant time gap (we can change it) 
𝑘𝑘𝑝𝑝,𝑘𝑘𝑑𝑑 ,𝑘𝑘𝑑𝑑𝑑𝑑=prespecified design parameter (we can change it) 
𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝, 𝑡𝑡𝑏𝑏, and 𝑡𝑡𝑟𝑟=prespecified PTC enforcement safety distance 

parameters (𝑡𝑡𝑏𝑏 ≈ 35 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑡𝑡𝑟𝑟 ≈ 10 𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝 ≈ 0.3 𝑚𝑚/𝑠𝑠2) 
𝑢𝑢𝑖𝑖=desired acceleration (control input) 
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Read 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖−1, 𝑥̇𝑥𝑖𝑖, 𝑥̇𝑥𝑖𝑖−1, 𝑥̈𝑥𝑖𝑖, 𝑥̈𝑥𝑖𝑖−1,𝑢𝑢1 
Set  
𝑑𝑑𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑖𝑖 − 𝐿𝐿𝑖𝑖−1, 
If 𝑥̇𝑥𝑖𝑖 ≤

𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑏𝑏
2

, 

   𝑏𝑏𝑖𝑖(𝑥̇𝑥𝑖𝑖) = 2
3
𝑥̇𝑥𝑖𝑖�

2𝑡𝑡𝑏𝑏𝑥̇𝑥𝑖𝑖
𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝

+ 𝑥̇𝑥𝑖𝑖𝑡𝑡𝑟𝑟 

   𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑏𝑏𝑖𝑖 = 𝑥𝑥𝚤̇𝚤
1
2 ∗ 𝑥𝑥𝚤̈𝚤 ∗ �

2𝑡𝑡𝑏𝑏
𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝

�
1
2

+ 𝑥𝑥𝚤̈𝚤 ∗ 𝑡𝑡𝑟𝑟 

   𝑑𝑑2

𝑑𝑑𝑡𝑡2
 𝑏𝑏𝑖𝑖 = 1

2
𝑥𝑥𝚤̇𝚤−

1
2 ∗ 𝑥̈𝑥𝑖𝑖2 ∗ �

2𝑡𝑡𝑏𝑏
𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝

�
1
2

+ 𝑥𝑥𝚤⃛𝚤 ∗ 𝑥𝑥𝚤̇𝚤
1
2 ∗ � 2𝑡𝑡𝑏𝑏

𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝
�
1
2

+ 𝑥𝑥𝚤⃛𝚤 ∗ 𝑡𝑡𝑟𝑟 

Else, 

  𝑏𝑏𝑖𝑖(𝑥̇𝑥𝑖𝑖) = 𝑥̇𝑥𝑖𝑖
2

2𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝
+ 𝑥̇𝑥𝑖𝑖 �𝑡𝑡𝑟𝑟 + 𝑡𝑡𝑏𝑏

2
� − 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑏𝑏

2
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𝑑𝑑
𝑑𝑑𝑑𝑑 𝑏𝑏𝑖𝑖 =

𝑥𝑥𝚤̈𝚤 × 𝑥̇𝑥𝑖𝑖
𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝

+ 𝑥̈𝑥𝑖𝑖 �𝑡𝑡𝑟𝑟 +
𝑡𝑡𝑏𝑏
2 � 

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑏𝑏𝑖𝑖 =
𝑥𝑥𝑖𝑖 × 𝑥̇𝑥𝑖𝑖 + 𝑥̈𝑥𝑖𝑖2

𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝
+ 𝑥𝑥𝑖𝑖 �𝑡𝑡𝑟𝑟 +

𝑡𝑡𝑏𝑏
2 � 

𝑑𝑑𝑑𝑑,𝑖𝑖 = 𝑟𝑟 + 𝑏𝑏𝑖𝑖(𝑥̇𝑥𝑖𝑖), 
𝑒𝑒𝑖𝑖 = 𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑑𝑑,𝑖𝑖, 
𝑢̇𝑢𝑖𝑖 = − 1

ℎ
𝑢𝑢𝑖𝑖 + 1

ℎ
�𝑘𝑘𝑝𝑝𝑒𝑒𝑖𝑖 + 𝑘𝑘𝑑𝑑𝑒̇𝑒𝑖𝑖 + 𝑘𝑘𝑑𝑑𝑑𝑑𝑒̈𝑒𝑖𝑖� + 1

ℎ
𝑢𝑢𝑖𝑖−1. 

 End 

Figure 8. CACC Controller Pseudocode 

In this formulation, 𝑥𝑥𝑖𝑖𝑡𝑡 is the target position for train 𝑖𝑖 and 𝑥𝑥𝑖𝑖𝑠𝑠is the stop position for train 𝑖𝑖. 
Under the constant spacing policy, the desired spacing between successive trains is defined as 
𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑. The formula for PCACC is: 

𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 = (1 − 𝐶𝐶1)𝑥̈𝑥(𝑖𝑖−1)𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝐶𝐶1𝑥̈𝑥𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑 − �2ξ − C1 �𝜉𝜉 + �𝜉𝜉2 − 1��𝜔𝜔𝑛𝑛𝛿̇𝛿𝑖𝑖

− �𝜉𝜉 + �𝜉𝜉2 − 1�𝜔𝜔𝑛𝑛𝐶𝐶1(𝑥̇𝑥𝑖𝑖 − 𝑥̇𝑥𝑙𝑙) − 𝜔𝜔𝑛𝑛2𝛿𝛿𝑖𝑖 
(35) 

where 𝛿𝛿𝑖𝑖 is the spacing error of the 𝑖𝑖-th train and defined as: 𝛿𝛿𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑡𝑡(𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑠𝑠(𝑡𝑡) − 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑. 
Consequently, the first derivation of spacing error is 𝛿̇𝛿𝑖𝑖 = 𝑥̇𝑥𝑖𝑖 − 𝑥̇𝑥𝑖𝑖−1.  

In this formulation, the subjects of tuning are the constants 𝐶𝐶1, 𝜉𝜉 and 𝜔𝜔𝑛𝑛. Gain 𝐶𝐶1 is the weight of 
the preceding and leading train accelerations and speeds. Gain 𝜉𝜉 is the damping ratio and can be 
set to one for critical damping, i.e., the threshold between overdamping and underdamping in 
which the system returns to the equilibrium position as quickly as possible, passing it at most 
once without oscillating. Gain 𝜔𝜔𝑛𝑛 is the bandwidth of the controller. The function representation 
of this controller is as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡𝑟𝑟 ,𝐶𝐶1, 𝜉𝜉, 𝑠𝑠0) (36) 
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where 𝑡𝑡𝑟𝑟 = 1
𝜔𝜔𝑛𝑛

 is the resolution time and 𝑠𝑠0 is the minimum spacing. 

Here, the modifications over instantaneous CACC controller are replacements of 𝑥̈𝑥𝑖𝑖−1 and 𝑥̈𝑥𝑙𝑙 
with 𝑥̈𝑥(𝑖𝑖−1)𝑑𝑑𝑑𝑑𝑑𝑑

 and 𝑥̈𝑥𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑, respectively. 

Although the introduced modification changes the instantaneous CACC controller formula only 
slightly, its impact on the platoon performance is meaningful. This is because the predictive 
formula considers not only the current time but also how dynamics of the platoon should evolve 
in the close future. In the instantaneous CACC controller, transmitted acceleration values express 
the state of the train at the time of transmitting the message (neglecting sensor delay and 
processing time), while in the predictive version of CACC each train disseminates the 
information on its desired acceleration values. As a result, significantly improved information is 
broadcast as compared with information on the current acceleration value. Thus, the following 
train can update its behavior and adapt in advance to that what will presumably occur in the close 
future. In this scenario, it has been assumed that the acceleration value transmitted to the 
following trains will be achieved in the near future. However, such an assumption does not 
always hold, due to the residual error in tracking the acceleration command by the lower-level 
controller. This issue can be regarded as another degree of freedom in the simulation scenario. 

4.5.1 String Stability Analysis of the PCACC Controller 
To analyze the string stability of the PCACC control law, recall Eq. (35) and formulate a similar 
equation for train 𝑖𝑖 − 1. The subtraction of the latter one side-by-side from Eq. (35) lead us to the 
formula for the desired acceleration difference between the 𝑖𝑖-th and (𝑖𝑖 − 1)-th trains: 

𝛿̈𝛿𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑥̈𝑥(𝑖𝑖−1)𝑑𝑑𝑑𝑑𝑑𝑑

= (1 − 𝐶𝐶1)𝛿̈𝛿(𝑖𝑖−1)𝑑𝑑𝑑𝑑𝑑𝑑 − �2𝜉𝜉 − 𝐶𝐶1 �𝜉𝜉 + �𝜉𝜉2 − 1��𝜔𝜔𝑛𝑛�𝛿̇𝛿 − 𝛿̇𝛿𝑖𝑖−1�

− �𝜉𝜉 + �𝜉𝜉2 − 1�𝜔𝜔𝑛𝑛𝐶𝐶1𝛿̇𝛿𝑖𝑖 − 𝜔𝜔𝑛𝑛2(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑖𝑖−1) 

(37) 

Assuming that the train engine reacts to the desired acceleration signal as a first order inertial 
system, the lag is modeled as a low-pass filter applied to the output of the control law: 

𝑃𝑃(𝑠𝑠) =
𝐴𝐴𝑖𝑖(𝑠𝑠)
𝐴𝐴𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) =

1
𝜏𝜏𝜏𝜏 + 1 (38) 

where 𝐴𝐴𝑖𝑖(𝑠𝑠) = ℒ[𝑎𝑎𝑖𝑖], 𝐴𝐴𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠) = ℒ�𝑎𝑎𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑� and 𝜏𝜏 is the actuation lag. Based on Eq. (38), we can 
write the following equation: 

𝛿̈𝛿𝑖𝑖 + 𝜏𝜏𝛿𝛿𝑖𝑖 = (1 − 𝐶𝐶1)�𝛿̈𝛿𝑖𝑖−1 + 𝜏𝜏𝛿𝛿𝑖𝑖−1� �2𝜉𝜉 − 𝐶𝐶1 �𝜉𝜉 + �𝜉𝜉2 − 1��𝜔𝜔𝑛𝑛�𝛿̇𝛿 − 𝛿̇𝛿𝑖𝑖−1�

− �𝜉𝜉 + �𝜉𝜉2 − 1�𝜔𝜔𝑛𝑛𝐶𝐶1𝛿̇𝛿𝑖𝑖 − 𝜔𝜔𝑛𝑛2(𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑖𝑖−1) 
(39) 

According to Sybis et al. (2019), the calculation of the Laplace transform of Eq. (39) leads to the 
following equation reflecting dependency 𝐸𝐸𝑖𝑖(𝑠𝑠) = ℒ[𝛿𝛿𝑖𝑖] on 𝐸𝐸𝑖𝑖−1(𝑠𝑠) = ℒ[𝛿𝛿𝑖𝑖−1] 
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𝐸𝐸𝑖𝑖(𝑠𝑠) = 𝐸𝐸𝑖𝑖−1(𝑠𝑠)𝐻𝐻(𝑠𝑠) + 𝐼𝐼(𝑠𝑠) (40) 

where  

𝐻𝐻(𝑠𝑠) =
(1 − 𝐶𝐶1)(𝜏𝜏𝑠𝑠3 + 𝑠𝑠2) + �2𝜉𝜉 − 𝐶𝐶1�𝜉𝜉 + �𝜉𝜉2 − 1��𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2

𝜏𝜏𝑠𝑠3 + 𝑠𝑠2 + 2𝜉𝜉𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2
 (41) 

and 

𝐼𝐼(𝑠𝑠) = 𝛿𝛿(0)
𝜏𝜏𝑠𝑠2 + 𝑠𝑠 + 2𝜉𝜉𝜔𝜔𝑛𝑛

𝜏𝜏𝑠𝑠3 + 𝑠𝑠2 + 2𝜉𝜉𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2

− 𝛿𝛿𝑖𝑖−1(0) ×
(1 − 𝐶𝐶1)(𝜏𝜏𝑠𝑠2 + 𝑠𝑠) + (2𝜉𝜉 − 𝐶𝐶1�𝜉𝜉 + �𝜉𝜉2 − 1�𝜔𝜔𝑛𝑛

𝜏𝜏𝑠𝑠3 + 𝑠𝑠2 + 2𝜉𝜉𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2
 

(42) 

The above calculations have been performed assuming that in a steady state of the train platoon 
for 𝑡𝑡 = 0 the derivatives of the distance errors are zero. 

The train platoon is string stable if: 

|𝐻𝐻(𝑗𝑗𝑗𝑗)| ≤ 1 (43) 

Finding the ranges of parameters 𝜉𝜉, 𝜔𝜔𝑛𝑛, 𝜏𝜏, and 𝐶𝐶1 for which Eq. (43) holds is not straightforward, 
as the numerator and denominator in Eq. (41) are third-order polynomials, and setting 
requirement Eq. (43) would lead to a complicated inequality in which all the parameters appear 
concurrently. Instead, we can use numerical and graphical solutions. Based on Sybis et al. (2019) 
calculations, the platoon is string stable if the actuation lag 𝜏𝜏 does not exceed certain limits. For 
example, with parameters 𝜉𝜉 = 1, 𝐶𝐶1 = 0.5, and 𝜔𝜔𝑛𝑛 = 0.5, the platoon is string stable if 𝜏𝜏 <
1.5 sec. 

4.6 Kinematic Adaptive Cruise Control (KACC) Controller 
Previous controllers had no guarantees of safety, and gain parameters depended at least partially 
on the specific safe braking distance formulation. Ideally, the same parameters would work 
independently of the particular function 𝑏𝑏𝑖𝑖 to ensure that the formulation and parameters will 
work with the real PTC braking distance function. 
A system of equations was developed to solve this problem based on the following assumptions: 
If trains have identical performance, safety is guaranteed so long as the train behind can match 
the speed of the train in front within the current spacing between them. This can be converted 
into a desired acceleration. The train accelerates from its current position and velocity at the 
desired acceleration for some specified look ahead time and then immediately decelerates at the 
maximum rate to reach the desired velocity after covering the desired spacing. The following 
equations formulate this idea mathematically: 
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�
𝑠𝑠1 = 𝑣𝑣0𝑡𝑡𝑙𝑙 +

𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑
2

𝑡𝑡𝑙𝑙2

𝑣𝑣𝑓𝑓2 − 𝑣𝑣𝑚𝑚2 = 2𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚�𝑠𝑠𝑓𝑓 − 𝑠𝑠1�
𝑣𝑣𝑚𝑚 = 𝑣𝑣0 + 𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑙𝑙

 (44) 

where 𝑡𝑡𝑙𝑙 is the look ahead time, 𝑠𝑠𝑓𝑓 is the full spacing, 𝑣𝑣0 is the starting velocity of the following 
train, 𝑣𝑣𝑓𝑓 is the target velocity for the following train, 𝑣𝑣𝑚𝑚 is the max velocity reached, 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 is the 
maximum deceleration, and 𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 is the desired acceleration. After testing, the following 
equations were used to define these parameters. 

𝑠𝑠𝑓𝑓 = 𝑥𝑥𝑖𝑖𝑡𝑡 − 𝑥𝑥𝑖𝑖 − 𝑠𝑠0 − ℎ𝑥̇𝑥𝑖𝑖 (45) 

𝑠𝑠𝑒𝑒 = min�𝑠𝑠𝑓𝑓 , 𝑥𝑥𝑖𝑖𝑡𝑡 − 𝑥𝑥𝑖𝑖𝑠𝑠 − 𝑠𝑠0� (46) 

𝑡𝑡𝑙𝑙 = max �𝑡𝑡𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 ,
𝑠𝑠𝑓𝑓 − 𝑠𝑠𝑒𝑒
𝑥̇𝑥𝑖𝑖

� (47) 

Here, 𝑥𝑥𝑖𝑖𝑡𝑡 is the target position for train 𝑖𝑖 (i.e., the location of the back of train 𝑖𝑖 − 1 interpolated 
over the network update interval), 𝑠𝑠0 is the stopped safety distance, and 𝑥𝑥𝑖𝑖𝑠𝑠 is the stop position 
for train 𝑖𝑖, which is the location of the front of train 𝑖𝑖 plus its braking distance: 𝑥𝑥𝑖𝑖𝑠𝑠 = 𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖(𝑥̇𝑥𝑖𝑖). 
Additinoally, 𝑠𝑠𝑓𝑓 is the full spacing, 𝑠𝑠𝑒𝑒 is the excess spacing, 𝑡𝑡𝑙𝑙 is the look ahead time, and 𝑡𝑡𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 
is the minimum look ahead time. To calculate the desired acceleration, the intermediate term 𝑥̈𝑥𝑖𝑖𝑝𝑝 
is calculated as follows: 

𝑥̈𝑥𝑖𝑖𝑝𝑝 =

⎩
⎪
⎨

⎪
⎧𝑥̈𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

2 −
1
𝑡𝑡𝑙𝑙
�𝑥̇𝑥𝑖𝑖 − �𝑥̇𝑥𝑖𝑖−12 + 𝑥̈𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 �𝑡𝑡𝑙𝑙𝑥̇𝑥𝑖𝑖 +

𝑡𝑡𝑙𝑙2𝑥̈𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

4 − 2𝑠𝑠𝑓𝑓�� , 𝑠𝑠𝑓𝑓 > 𝑡𝑡𝑙𝑙
𝑥̇𝑥𝑖𝑖 + 𝑥̇𝑥𝑖𝑖−1

2

𝑥̇𝑥𝑖𝑖−12 + 𝑥̇𝑥𝑖𝑖2

2𝑠𝑠𝑓𝑓
, 𝑠𝑠𝑓𝑓 ≤ 𝑡𝑡𝑙𝑙

𝑥̇𝑥𝑖𝑖 + 𝑥̇𝑥𝑖𝑖−1
2

 (48) 

To reach the final desired acceleration value, a spacing-based acceleration limit derived from the 
MPD controller is applied for when the following train going slower than the preceding train, as 
follows: 

𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 = min �𝑥̈𝑥𝑖𝑖𝑝𝑝 ,
𝑠𝑠𝑒𝑒
𝜏𝜏𝑠𝑠2
� (49) 

where 𝜏𝜏𝑠𝑠 is spacing weight. The function representation of this controller is as follows: 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾�ℎ, 𝜏𝜏𝑠𝑠, 𝑡𝑡𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑠𝑠0� (50) 

where ℎ is the headway, 𝜏𝜏𝑠𝑠 is the spacing weight, 𝑡𝑡𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum look ahead time, and 𝑠𝑠0 
is the minimum spacing. 
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With this controller, we have the same parameters for all trains. Moreover, parameters are 
independent of braking distance function 𝑏𝑏𝑖𝑖, which ensures that the formulation and parameters 
will work with actual PTC braking distance functions (not known exactly to the research team) 
in practice. In fact, a virtual coupling scenario (PTC braking distance of zero) was tested to 
validate and no collisions or PTC enforcements occurred. 

4.6.1 String Stability Analysis of the KACC Controller 
Taking the train acceleration as a basis for string stability, the corresponding string stability 
measure is given by: 

Γ𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑠𝑠) =
𝐴𝐴𝑖𝑖(𝑠𝑠)
𝐴𝐴𝑖𝑖−1(𝑠𝑠) (51) 

where 𝐴𝐴𝑖𝑖(𝑠𝑠) and 𝐴𝐴𝑖𝑖−1(𝑠𝑠) are the Laplace transforms of 𝑎𝑎𝑖𝑖(𝑡𝑡) and 𝑎𝑎𝑖𝑖−1(𝑡𝑡), respectively. The 
corresponding string stability criteria is then: 

|𝛤𝛤𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑗𝑗𝑗𝑗)|𝐻𝐻∞ ≤ 1 (52) 

Similar to CACC and PCACC, we may find numerically the parameters for ℎ, 𝑠𝑠0, 𝜏𝜏𝑠𝑠 which 
satisfy the requirement of Eq. (52). 

4.6.2 Pseudocode of KACC Controller 
The pseudocode for the KACC controller is presented in Figure 9. 

 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾�ℎ, 𝜏𝜏𝑠𝑠, 𝑡𝑡𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑠𝑠0� 
𝑠𝑠𝑓𝑓 = 𝑥𝑥𝑖𝑖𝑡𝑡 − 𝑥𝑥𝑖𝑖 − 𝑠𝑠0 − ℎ𝑥̇𝑥𝑖𝑖 
𝑠𝑠𝑒𝑒 = min�𝑠𝑠𝑓𝑓 , 𝑥𝑥𝑖𝑖𝑡𝑡 − 𝑥𝑥𝑖𝑖𝑠𝑠 − 𝑠𝑠0� 

𝑡𝑡𝑙𝑙 = max �𝑡𝑡𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 ,
𝑠𝑠𝑓𝑓 − 𝑠𝑠𝑒𝑒
𝑥̇𝑥𝑖𝑖

� 

If 𝑠𝑠𝑓𝑓 > 𝑡𝑡𝑙𝑙
𝑥̇𝑥𝑖𝑖+𝑥̇𝑥𝑖𝑖−1

2
: 

𝑥̈𝑥𝑖𝑖𝑝𝑝 =
𝑥̈𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

2 −
1
𝑡𝑡𝑙𝑙
�𝑥̇𝑥𝑖𝑖 − �𝑥̇𝑥𝑖𝑖−12 + 𝑥̈𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 �𝑡𝑡𝑙𝑙𝑥̇𝑥𝑖𝑖 +

𝑡𝑡𝑙𝑙2𝑥̈𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

4 − 2𝑠𝑠𝑓𝑓�� 

Else: 

𝑥̈𝑥𝑖𝑖𝑝𝑝 =
𝑥̇𝑥𝑖𝑖−12 + 𝑥̇𝑥𝑖𝑖2

2𝑠𝑠𝑓𝑓
 

𝑥̈𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 = min �𝑥̈𝑥𝑖𝑖𝑝𝑝 ,
𝑠𝑠𝑒𝑒
𝜏𝜏𝑠𝑠2
� 

𝑡𝑡𝑙𝑙=look-ahead time 
𝑠𝑠𝑓𝑓=full spacing 
𝑠𝑠𝑒𝑒=excess spacing 
ℎ=headway 
𝑠𝑠0=minimum spacing 
𝑡𝑡𝑠𝑠=controller time step 
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𝑥𝑥𝑖𝑖𝑡𝑡=target offset for the following train 
𝑥𝑥𝑖𝑖𝑠𝑠=offset of the start of PTC enforcement for the following 
𝑥̈𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥̈𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 are computed based on the current state of 

train 𝑖𝑖 
𝑥𝑥𝑖𝑖𝑡𝑡 and 𝑥̇𝑥𝑖𝑖−1 are smoothed over the network time step based on 

current and previous values 
 

Figure 9. KACC Controller Pseudocode 
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5. Simulated Performance of Following Train Control Algorithms 

To effectively evaluate each proposed control algorithm, a battery of tests was developed based 
on a factorial design. This was accomplished by testing values for scenario parameters which 
seemed most likely to produce undesirable results from the control algorithms and then 
iteratively determining which of these values consistently resulted in undesirable behavior. By 
focusing on these values only, the total number of simulations needed to fully evaluate control 
algorithm behavior was greatly reduced, especially because the set of scenarios to be tested is 
defined by all possible combinations of the scenario parameters. The following sub-sections 
detail the baseline setup, the set of scenarios used, the metrics used to evaluate control algorithm 
performance, and the plan to compare control algorithms. Afterwards, the results of each test 
plan will be described and analyzed, with each test plan getting its own sub-section. 

5.1 Experimental Design 
Two main parameters defined a scenario. The first of these was the train plan. This parameter 
fully specified each train within a single simulation. To further simplify the requirements for the 
control algorithm, train plans were required to have all trains be identical (except for starting 
position). This ensured that following trains would have enough braking effort to match that of 
the trains in front so long as they were traveling the same speed. In a real-world scenario, this 
limitation could be imposed by artificially limiting the deceleration rate of all trains in a platoon 
to the worst performing one. Three different train plans, comprising a range of train 
performance, were used to evaluate each controller. These are summarized in Table 2 below. 

Table 2. Summary of Train Plans 

 
The second parameter was the front train profile. This parameter defined the notch setting and 
train brake setting that the lead train would follow based on its location. Train brakes were not 
used by the lead train to ensure the following trains can match performance. To make the train 
wait after stopping, another parameter was used to indicate how long to keep the control setting 
once the train stops. A total of six front train profiles were used to evaluate each controller. The 
first set of three profiles had two cycles of control while the second set had eight cycles of 
control. Within these sets, the first profile had a control cycle of notch 8 followed by notch 0, the 
second profile had a control cycle of notch 8 followed by notch -8, and the third profile had a 
control cycle of notch 5 followed by notch -8. Each of these control cycles required 120 seconds 
of dwell when changing from the notch 0 or notch -8 component and a required dwell of 2,000 
seconds at the end of the profile to standardize the total fuel usage across controllers. Each 
control cycle was spaced approximately evenly over 100 miles. 
All scenarios were set up on a 200-mile segment of perfectly straight and level track. This was a 
long enough segment of track to conduct all the desired tests since the control actions were 
placed within the first 100 miles. Straight and level track was used to ensure that only dynamic 
braking would be necessary to control train speed. Note that all trains were equipped with AC 
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traction locomotives that had effective dynamic braking down to 0.5 mph. Trains started at 
10,000-foot, front-to-front spacing with the back of the last train placed at the start of the track 
segment. Note that this initial spacing was longer than each of the trains to be tested. 
Combining the 3 train plans and the 6 front train profiles gives a grand total of 18 simulations per 
controller and set input values. The values for each of the 18 simulations are summarized in 
Table 3 below. Additionally, several metrics were developed to summarize controller 
performance over the set of 18 simulations. These are detailed in the next section. 

Table 3. Summary of Simulation Scenarios 

 

5.1.1 Performance Metrics 
Four main metrics were used to compare controller performance and to find the best set of input 
values for a given controller. This “best set of input values” was based on testing a range of 
values for the most influential parameters and then balancing the importance of the four metrics. 
These four metrics are defined below and are presented in order of decreasing importance. 
The first of these was whether the simulation had a PTC failure, defined as any PTC enforcement 
event. Since the original assumptions specified that a good controller could avoid causing any 
PTC enforcements, the ideal controller and set of input values would have no PTC failures across 
all simulations tested. Thus, this metric was used to immediately disqualify sets of input values 
and to filter subsequent results tables. 
The second of these metrics was average separation. This was defined by averaging the distance 
between the front of the train and the start of the PTC braking curve for each following train at 
each time step. The result of each simulation was averaged with the others to aggregate. The 
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ideal controller would have a low average separation, corresponding to increased train 
throughput. 
The third of these metrics was fuel consumption. Since the simulator had detailed fuel 
consumption calculations, this was simply the total amount of fuel consumed by all trains in the 
specified simulation. To aggregate across simulations, the total fuel consumption was simply 
averaged. The ideal controller would have a low average fuel consumption to save on fuel costs. 
However, since moving-block systems will typically be implemented on very dense corridors, 
average separation was given a higher importance than fuel consumption. 
The fourth and final metric was the standard deviation of notch difference. This was defined by 
taking the standard deviation of the difference between all time-adjacent notch settings for each 
following train. To aggregate across the 18 simulations, these standard deviation values were 
simply averaged. This metric will be large when there are large and frequent changes in the 
notch setting. Thus, the ideal controller would have a low standard deviation of notch difference. 
Since the standard deviation of notch difference is not a standard metric used to evaluate train 
performance, it was given the lowest importance. 

5.1.2 Test Plans 
To efficiently determine which controller has the best performance, a series of four test plans 
were developed. First, the naïve controller was compared to the PD controller to show that large 
gains in performance are possible even with a quite simple controller design. Second, the PD, 
MPD, CACC, and KACC controllers were compared while allowing only position information to 
be communicated from preceding train to following train. The research team found that the MPD 
and KACC controllers performed quite similarly to each other and better than the other two. 
Third, the MPD, KACC, and PCACC controllers were compared while allowing any information 
to be communicated between any trains. The team found that the MPD and KACC controllers 
performed similarly to each other and better than the PCACC controller. Fourth, the performance 
impact of varying controller time step and interpolation methods was determined. 
For each test plan, the best set of input values was first derived for each controller to be 
compared by balancing the importance of the four metrics described above. Next, the values for 
these metrics were compared across all the controllers to be compared to find which performs the 
best. Lastly, the behavior of each controller versus time was compared for a selected scenario. 
The values compared were excess spacing, defined for each following train as the difference 
between the target offset and the front of the train (like the average separation metric), and the 
notch setting of each train. 
To limit the number of values that needed to be tested while keeping a level playing field, the 
minimum spacing parameter, 𝑠𝑠0, was set to be at least 2 meters for all controllers. While 𝑠𝑠0 
should be minimized in general, several controllers had issues when using 𝑠𝑠0 = 0 m that did not 
occur when using 𝑠𝑠0 = 2 m. 

5.2 Simulation Experiment Results 

5.2.1 Naïve versus Proportional Derivative Controller 
In this test plan, the network time step was set to 4 seconds and the controller time step was also 
set to 4 seconds, meaning that no interpolation was needed. The only communication path 
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allowed was from preceding train to adjacent following train and only position was 
communicated. Change in position over one network time step was used to by the following train 
to derive the approximate velocity of the preceding train. Similarly, change in approximate 
velocity over one network time step was used as approximate acceleration of the preceding train. 
Because the naïve controller was very simple, it was not possible to select a minimum spacing 
under 1,000 meters that avoids PTC enforcements for all 18 scenarios. This is exemplified in 
scenario number 1, which had eight loaded grain trains and a front train profile of two notch 8 to 
notch -8 cycles, because the speed difference between preceding and following trains during a 
braking event was larger than the specified spacing was capable of handling. 𝑁𝑁(𝑠𝑠0 = 500 𝑚𝑚) 
was used as the input for the naïve controller. For comparison, the PD controller with parameter 
values 𝑃𝑃𝑃𝑃(ℎ = 20 sec, 𝜏𝜏𝑠𝑠 = 60 sec, 𝑠𝑠0 = 2 m) is shown. This set was the best at balancing the 
various performance metrics, as will be discussed in the next section, while also not causing any 
PTC enforcements in any of the 18 scenarios. The notch performance is shown in Figure 10 
below and the excess spacing is shown afterwards in Figure 11. 

 
Figure 10. Naïve Controller versus PD Controller Notch Performance 

The PD controller had superior notch stability, which is quite important to both reduce fuel 
consumption and manage in-train forces. This was as expected because the naïve controller can 
only output either full power or full deceleration, which is simply not enough granularity for 
effective train control. 



 

54 

 
Figure 11. Naïve Controller versus PD Controller Excess Spacing 

For nearly the entire simulation run, the excess spacing of the PD controller was lower than that 
of the naïve controller, which corresponded to lower average separation and increased train 
throughput. Additionally, PTC enforcements (a PTC failure) occurred at around 6,800 seconds 
for the naïve controller. 
Overall, it was clear the naïve controller had quite poor performance and that even a control 
algorithm as simple as the PD controller could greatly improve performance. Because of this, the 
naïve controller was included in any subsequent comparisons. 

5.2.2 Position-only Comparison 
Of all the controllers developed, only the naïve, PD, MPD, CACC, and KACC controllers were 
designed to operate using only preceding train position information. Like the naïve versus PD 
controller test plan, the network time step was set to 4 seconds and the controller time step was 
also set to 4 seconds, meaning that no interpolation was needed. The only communication path 
allowed was from preceding train to adjacent following train and only position was 
communicated. Approximate velocity and acceleration were derived as described in the previous 
test plan. The tables used to determine the best set of input values for each controller are shown 
below. 
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For the PD controller, variation of parameters ℎ and 𝜏𝜏𝑠𝑠 are shown. The last parameter, 𝑠𝑠0 was set 
as 𝑠𝑠0 = 2 m. Thus, the set of results shown below in Table 4 were generated from inputs of the 
form 𝑃𝑃𝑃𝑃(ℎ, 𝜏𝜏𝑠𝑠, 𝑠𝑠0 = 2 m). Using the table,  the research team determined that the best set of 
input values for the PD controller was 𝑃𝑃𝑃𝑃(ℎ = 20 sec, 𝜏𝜏𝑠𝑠 = 60 sec, 𝑠𝑠0 = 2 m). These results are 
bolded to highlight them. 

Table 4. Position-Only Test Plan, PD Controller Parameter Variation 
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For the MPD controller, the set of results shown below in Table 5 were generated from inputs of 
the form 𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏𝑣𝑣, 𝜏𝜏𝑠𝑠,ℎ = 0 sec, 𝑠𝑠0 = 2 m). ℎ = 0 sec was chosen for testing because lower ℎ 
results in lower average separation. Using the table, the team determined that the best set of input 
values for the MPD controller was 𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏𝑣𝑣 = 12 sec, 𝜏𝜏𝑠𝑠 = 90 sec,ℎ = 0 sec, 𝑠𝑠0 = 2 m), which 
has its results bolded. 

Table 5. Position-Only Test Plan, MPD Controller Parameter Variation 
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For the KACC controller, the set of results shown below in Table 6 were generated from inputs 
of the form 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(ℎ, 𝜏𝜏𝑠𝑠, 𝑡𝑡𝑚𝑚 = 10 sec, 𝑠𝑠0 = 2 m). The value of 𝑡𝑡𝑚𝑚 = 10 sec was chosen because 
it was a small value that avoided PTC failures for most combinations of ℎ and 𝜏𝜏𝑠𝑠 values. Using 
the table, it was determined that the best set of input values for the KACC controller was 
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(ℎ = 8 sec, 𝜏𝜏𝑠𝑠 = 22 sec, 𝑡𝑡𝑚𝑚 = 10 sec, 𝑠𝑠0 = 2 m), which has its results bolded. 

Table 6. Position-Only Test Plan, KACC Controller Parameter Variation 
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For the CACC controller, the set of results shown below in Table 7 were generated from inputs 
of the form 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜏𝜏𝑣𝑣, 𝜏𝜏𝑠𝑠,𝑘𝑘𝑑𝑑𝑑𝑑 = 0.3,ℎ = 15 sec, 𝑠𝑠0 = 450 m). The values for 𝑘𝑘𝑑𝑑𝑑𝑑, ℎ, and 𝑠𝑠0 
were also chosen by testing many different combinations. Note that because there were five total 
parameters to optimize, these values for 𝑘𝑘𝑑𝑑𝑑𝑑, ℎ, and 𝑠𝑠0 were very probably not optimal. 
However, the results were much worse than those for the other controllers in this test plan. Thus, 
there was not a combination of 𝑘𝑘𝑑𝑑𝑑𝑑, ℎ, and 𝑠𝑠0 values that could match the performance of the 
other controllers. Using the table, the team decided that the best set of input values for the CACC 
controller was 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜏𝜏𝑣𝑣 = 20 sec, 𝜏𝜏𝑠𝑠 = 110 sec,𝑘𝑘𝑑𝑑𝑑𝑑 = 0.3,ℎ = 15 sec, 𝑠𝑠0 = 450 m), which 
has its results bolded. 

Table 7. Position-Only Test Plan, CACC Controller Parameter Variation 
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For reference, the best set of input values for each controller are summarized below in Table 8. 
Additionally, Table 9 summarizes the results for these inputs, facilitating direct comparison 
between controllers. Overall, the MPD controller and the KACC controller perform the best by 
far and perform very similarly to each other. The PD controller performed third-best and the 
CACC controller performed substantially worse than the other three for all metrics. 

Table 8. Position-Only Test Plan, Best Input Values Summary 

𝑃𝑃𝑃𝑃(ℎ = 20 sec, 𝜏𝜏𝑠𝑠 = 60 sec, 𝑠𝑠0 = 2 m) 

𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏𝑣𝑣 = 12 sec, 𝜏𝜏𝑠𝑠 = 90 sec,ℎ = 0 sec, 𝑠𝑠0 = 2 m) 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(ℎ = 8 sec, 𝜏𝜏𝑠𝑠 = 22 sec, 𝑡𝑡𝑚𝑚 = 10 sec, 𝑠𝑠0 = 2 m) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜏𝜏𝑣𝑣 = 20 sec, 𝜏𝜏𝑠𝑠 = 110 sec,𝑘𝑘𝑑𝑑𝑑𝑑 = 0.3,ℎ = 15 sec, 𝑠𝑠0 = 450 m) 
 

Table 9. Position-Only Test Plan, Results Summary 

 
The PD controller had larger average separation and lower fuel consumption compared to MPD 
and KACC controller performance. However, there was no way to reduce the average spacing of 
the PD controller to anywhere near that of the MPD or KACC controllers, no matter what input 
values were used. Additionally, the lower fuel consumption of the PD controller should have 
been achievable by either the MPD controller or the KACC controller by adding an extra 
headway, as was done for the PD controller. Thus, the MPD and KACC controllers performed 
better than the PD controller. 
The KACC controller had a substantially lower standard deviation of notch difference and a 
slightly higher average separation and fuel usage compared to the MPD controller. While the 
standard deviation of notch difference is not a typical metric used in evaluating train 
performance, it can be considered a proxy for effective in-train force management. Additionally, 
for the MPD controller to hit this standard deviation of notch difference, it needs to use the same 
amount of fuel as the KACC controller and have a slightly larger average separation than the 
KACC controller has. Thus, there was no clear overall performance advantage between the MPD 
controller and the KACC controller. 
To compare the notch and spacing performance of the controllers versus time, one of the 18 
scenarios must be selected. Scenario 1, which had eight loaded grain trains and a front train 
profile of two cycles of notch 8 to notch -8, did a good job of stressing controllers that lacked a 
velocity difference term. In fact, this scenario was the reason that 𝑠𝑠0 = 450 m had to be used for 
the CACC controller. Figure 12 and Figure 13 below show the notch and spacing performance 
respectively for the PD, MPD, KACC, and CACC controllers. 
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Figure 12. Position-Only Test Plan, Notch Performance Comparison 
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Figure 13. Position-Only Test Plan, Spacing Excess Comparison 
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Of the four controllers, the CACC controller had the worst performance because it had clear 
notch instability during all deceleration events and some acceleration events and because it 
required far more spacing at high speed as compared with the other controllers. Between the PD 
and the MPD controller, the MPD controller more closely matched the notch of the lead train. 
The MPD controller also had lower excess spacing for the entire simulation. Thus, as with the 
results from analysis of metrics, the CACC controller had the worst performance, followed by 
the PD controller. 
Comparing the MPD controller and the KACC controller, the MPD controller had lower spacing 
everywhere except at the end of deceleration events. However, the KACC controller had better 
reactions during deceleration events in terms of notch performance. Additionally, the KACC 
controller generally tracked the lead train notch setting more closely. Thus, there was no clear 
overall performance advantage between the MPD controller and the KACC controller. 
Combining the results from all comparisons in this test plan, the MPD and KACC controllers 
performed similarly to each other and substantially better than either the PD controller or the 
CACC controller. Therefore, only the MPD and KACC controllers were considered in 
subsequent test plans. 

5.2.3 More Communication Comparison 
Once the infrastructure is in place to send authority updates to trains at a 4-second update 
interval, it should be straightforward to add extra information to each message. This could 
include current velocity, current acceleration, desired acceleration, train brake state, etc. 
Additionally, it should be feasible to send information along more paths than just from preceding 
train to following train.  
To determine the benefits of this sort of setup, the MPD and KACC controllers were tested under 
the scenario where messages contain more information. The PCACC controller was also added 
to the test plan because this test plan was the first one so far that can support it. This was because 
the PCACC controller required information from the leading train in the platoon. 
To change the minimal number of variables at once, the network time step was again set to 4 
seconds and the controller time step was again set to 4 seconds, still meaning that no 
interpolation was needed. All possible communications paths were allowed, and any variable 
could be sent along any of these paths. In practice, only current position, velocity, acceleration, 
and desired acceleration were communicated, and the only new communication paths used were 
from the leading train to each following train, not quite doubling the original number 
communication links. 
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For the MPD controller, the set of results shown below in Table 10 were generated from inputs 
of the form 𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏𝑣𝑣, 𝜏𝜏𝑠𝑠,ℎ = 0 sec, 𝑠𝑠0 = 2 m). ℎ = 0 sec was chosen for testing because a lower 
ℎ resulted in lower average separation. Using the table, researchers determined that the best set 
of input values for the MPD controller was 𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏𝑣𝑣 = 12 sec, 𝜏𝜏𝑠𝑠 = 90 sec,ℎ = 0 sec, 𝑠𝑠0 =
2 m), which has its results bolded. This was the same set of input values as for the position only 
test plan. 

Table 10. More Communication Test Plan, MPD Controller Parameter Variation 
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For the KACC controller, the set of results shown below in Table 11 were generated from inputs 
of the form 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(ℎ, 𝜏𝜏𝑠𝑠, 𝑡𝑡𝑚𝑚 = 10 sec, 𝑠𝑠0 = 2 m). The value of 𝑡𝑡𝑚𝑚 = 10 sec was the same as in 
the position only test plan. Using the table, researchers determined that the best set of input 
values for the KACC controller was 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(ℎ = 8 sec, 𝜏𝜏𝑠𝑠 = 22 sec, 𝑡𝑡𝑚𝑚 = 10 sec, 𝑠𝑠0 = 2 m), 
which has its results bolded. This was the same set of input values as for the position only test 
plan. 

Table 11. More Communication Test Plan, KACC Controller Parameter Variation 
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For the PCACC controller, the set of results shown below in Table 12 were generated from 
inputs of the form 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡𝑟𝑟 ,𝐶𝐶1, 𝜉𝜉 = 1, 𝑠𝑠0 = 200 m). 𝜉𝜉 = 1 corresponds to critical damping 
and was found to be the best from other testing. 𝑠𝑠0 = 200 m was the minimum workable value 
when 𝜉𝜉 = 1. Using the table, researchers determined that the best set of input values for the 
PCACC controller was 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡𝑟𝑟 = 30 sec,𝐶𝐶1 = 0.2, 𝜉𝜉 = 1, 𝑠𝑠0 = 200 m), which has its results 
bolded. 

Table 12. More Communication Test Plan, PCACC Controller Parameter Variation 
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For reference, the best set of input values for each controller are summarized below in Table 13. 
Additionally, Table 14 summarizes the results for these inputs, facilitating direct comparison 
between controllers. Overall, the MPD controller and the KACC controller again performed very 
similarly to each other. The PCACC controller performed quite a bit worse than both the MPD 
controller and the KACC controller. 

Table 13. More Communication Test Plan, Best Input Values Summary 

𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏𝑣𝑣 = 12 sec, 𝜏𝜏𝑠𝑠 = 90 sec,ℎ = 0 sec, 𝑠𝑠0 = 2 m) 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(ℎ = 8 sec, 𝜏𝜏𝑠𝑠 = 22 sec, 𝑡𝑡𝑚𝑚 = 10 sec, 𝑠𝑠0 = 2 m) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡𝑟𝑟 = 30 sec,𝐶𝐶1 = 0.2, 𝜉𝜉 = 1, 𝑠𝑠0 = 200 m) 
 

Table 14. More Communication Test Plan, Results Summary 

 
Compared to the MPD controller, the KACC controller had a lower standard deviation of notch 
difference and the same fuel usage, but a higher average separation. Thus, the KACC controller 
should have been better at managing in-train forces but at the cost of increasing train separation 
slightly. Since managing in-train forces and minimizing train separation are both important 
goals, choosing between the MPD controller and the KACC controller will depend on the 
specific requirements of the railroad and the corridor that moving block is to be implemented on. 
In contrast, the PCACC controller had worse performance than either the MPD controller or the 
KACC controller because it had higher average separation, higher fuel usage, and a higher 
standard deviation of notch difference. 
To compare the notch and spacing performance of the controllers versus time, one of the 18 
scenarios must be selected. Scenario 5, which had eight loaded grain trains and a front train 
profile of two cycles of notch 5 to notch -8, showed all important operating situations for the 
controller, and so was used for comparison. This was because following trains can catch up to 
the leading train during acceleration but must react very quickly to deceleration events and 
decelerate at near the max rate. Additionally, using a different scenario than the one used for the 
position-only test plan means that new information can be learned about the MPD and KACC 
controllers. Note, however, that this scenario does not show why 𝑠𝑠0 = 200 m was necessary for 
the PCACC controller. That is scenario 13, which had eight intermodal trains and a front train 
profile of two cycles of notch 8 to notch -8. The point of minimum spacing occurred in the early 
stages of accelerating after the first intermediate stop. Figure 14 and Figure 15 below show the 
notch and spacing performance respectively for the MPD, KACC, and PCACC controllers. 
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Figure 14. More Communication Test Plan, Notch Performance Comparison 
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Figure 15. More Communication Test Plan, Spacing Excess Comparison 
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Of the three controllers, the PCACC controller had the worst performance because it had clear 
notch instability during all acceleration and deceleration events and because it required more 
spacing than either of the other two controllers during the entire simulation. 
Between the MPD and the KACC controller, the KACC controller again had higher notch 
stability throughout the simulation and tracked much closer to the lead train. Additionally, the 
KACC controller used less spacing than the MPD controller during deceleration events. 
However, the MPD controller kept excess spacing near zero at high speed much more effectively 
than the KACC controller. This was because the acceleration specified by the KACC controller 
was insufficient to overcome the discretization method used by the lower level controller, which 
involves selecting the notch that produces acceleration as close to the target as possible without 
going over. An improved version of either the KACC controller or the lower level controller 
should be able to overcome this issue, though the authors were not successful in developing a 
solution that improved overall performance of the KACC controller. 
In summary for this test plan, the MPD and KACC controllers performed similarly to each other 
and substantially better than the PCACC controller. Therefore, only the MPD and KACC 
controllers will be considered in subsequent test plans. 

5.2.4 Controller Time Step and Interpolation Method 
In addition to improving performance through changing the control law, the network time step, 
the allowed communication paths, and the variables communicated, there may be potential to 
improve performance by running the controller more often than once per network update. This 
has the potential to enable faster and more precise reactions by the train. However, to reduce the 
controller time step without a large performance regression, some sort of method must be 
developed to interpolate the communicated variables between network time steps. 
Three interpolation methods were developed to do this. The first was the baseline method of 
independent linear interpolation of each variable. The second was designed for the position-only 
communication type and ensures that the target position is completely correct when the 
preceding train either has constant velocity or constant acceleration. The equation is as follows: 

𝑥𝑥𝑡𝑡 = max �𝑥𝑥0, min �𝑥𝑥1, 𝑥𝑥0 + 𝑡𝑡
𝑥̇𝑥𝑡𝑡 + 𝑥̇𝑥1

2 �� (53) 

In this equation, 𝑡𝑡𝑛𝑛 is the network time step, 𝑡𝑡 is time and 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑛𝑛, 𝑥𝑥𝑡𝑡 is the interpolated 
offset at time 𝑡𝑡, 𝑥𝑥0 is the previous communicated position of the preceding train, 𝑥𝑥1 is the current 
communicated position of the preceding train, 𝑥̇𝑥1 is the approximate velocity of the preceding 
train calculated for the current network time step, and 𝑥̇𝑥𝑡𝑡 is the interpolated velocity for time 𝑡𝑡 
calculated using simple linear interpolation between 𝑥̇𝑥0 and 𝑥̇𝑥1. 
The third was designed for when position, velocity, and acceleration are communicated. The 
position function is the quintic spline polynomial defined by the boundary conditions of previous 
and current position, velocity, and acceleration. Interpolated velocity and acceleration are 
calculated as the derivative and second derivative of this polynomial respectively. The following 
four equations define this quintic spline polynomial: 
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𝑥𝑥𝑡𝑡 = 𝑎𝑎 �
𝑡𝑡
𝑡𝑡𝑛𝑛
�
5

+ 𝑏𝑏 �
𝑡𝑡
𝑡𝑡𝑛𝑛
�
4

+ 𝑐𝑐 �
𝑡𝑡
𝑡𝑡𝑛𝑛
�
3

+ 𝑥̈𝑥0
𝑡𝑡𝑛𝑛2

2 �
𝑡𝑡
𝑡𝑡𝑛𝑛
�
2

+ 𝑥̇𝑥0𝑡𝑡𝑛𝑛 �
𝑡𝑡
𝑡𝑡𝑛𝑛
� + 𝑥𝑥0 

𝑎𝑎 =
𝑡𝑡𝑛𝑛2

2
(𝑥̈𝑥1 − 𝑥̈𝑥0) − 3𝑡𝑡𝑛𝑛(𝑥̇𝑥1 + 𝑥̇𝑥0) + 6(𝑥𝑥1 − 𝑥𝑥0) 

𝑏𝑏 = −𝑡𝑡𝑛𝑛2 �𝑥̈𝑥1 −
3𝑥̈𝑥0

2 � + 𝑡𝑡𝑛𝑛(7𝑥̇𝑥1 + 8𝑥̇𝑥0) − 15(𝑥𝑥1 − 𝑥𝑥0) 

𝑐𝑐 =
𝑡𝑡𝑛𝑛2

2
(𝑥̈𝑥1 − 3𝑥̈𝑥0) − 2𝑡𝑡𝑛𝑛(2𝑥̇𝑥1 + 3𝑥̇𝑥0) + 10(𝑥𝑥1 − 𝑥𝑥0) 

(54) 

In these equations, 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 are substituted into the top equation for 𝑥𝑥𝑡𝑡 to get the full equation, 
𝑡𝑡𝑛𝑛 is the network time step, 𝑡𝑡 is time and 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑛𝑛, 𝑥𝑥𝑡𝑡 is the offset at time 𝑡𝑡, 𝑥𝑥0, 𝑥̇𝑥0, 𝑥̈𝑥0, 𝑥𝑥1, 𝑥̇𝑥1, 
and 𝑥̈𝑥1 are the previous and current communicated position, velocity, and acceleration 
respectively. The derivative and second derivative of this equation that define 𝑥̇𝑥𝑡𝑡 and 𝑥̈𝑥𝑡𝑡 
respectively are not shown. 
Both the MPD controller and the KACC controller were used to evaluate the effectiveness of 
decreasing controller time step and changing interpolation method. To keep the total number of 
simulations manageable, the only controller time step tested was 1 second, four times smaller 
than the network time step. For each controller for this time step, each of the two communication 
types were tested with each of their two interpolation methods, giving eight more simulation 
runs. To effectively summarize these results, only the results from the best set of inputs are 
shown. The same criteria as before was used to determine the best set of input values for each set 
of simulation runs. Table 15 and Table 16 below summarize the MPD and KACC controller 
results, respectively. 

Table 15. Time Step and Interpolation Method, MPD Controller Summary 

 
 

Table 16. Time Step and Interpolation Method, KACC Controller Summary 
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For both controllers, the position-only communication type had lower average separation and 
higher fuel consumption compared to the corresponding controller time step and interpolation 
type simulations. This was somewhat surprising, as it indicates that using more up-to-date 
velocity and acceleration information resulted in larger train separation and minimal change in 
the standard deviation of notch difference rather than resulting in an improvement to all metrics. 
When moving to a smaller controller time step, both controllers showed substantial 
improvements in average separation and standard deviation of notch difference. For the MPD 
controller, fuel usage also decreased, while it stayed nearly constant for the KACC controller. 
Thus, there were clear benefits to reducing the controller time step. Note that the observed 
reduction in standard deviation of notch difference was likely due to bias in the metric itself. 
This was because it assigned a higher weight to large notch shifts over a single time step, which 
will typically be spread out more when using a smaller time step. 
For the position-only communication type with a controller time step of 1 second, there was 
essentially no benefit to using the improved interpolation method (the second interpolation 
method). This indicates that it was simply not possible to do better than simple linear 
interpolation when receiving position-only information. In contrast, for the all variables 
communication scenario with a controller time step of 1 second, there was a measurable 
reduction in the standard deviation of notch difference, though average separation and fuel usage 
changed very little. It was valid to make this conclusion because the comparison was occurring 
between simulations that used the same controller time step. 

5.2.5 Spacing and Fuel Consumption Tradeoff 
To illustrate how controllers can be customized to meet specific business objectives, the fuel 
used was plotted versus average separation below in Figure 16. Data was generated from inputs 
of the form 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(ℎ, 𝜏𝜏𝑠𝑠, 𝑡𝑡𝑚𝑚 = 10 sec, 𝑠𝑠0 = 2 m) using the more communication test plan. 

 
Figure 16. Average Separation and Fuel Consumption Tradeoff for KACC Controller 

For the KACC controller, the parameter ℎ directly controled the tradeoff between train 
separation and fuel consumption. This made sense because increasing train-following headway 
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should increase train separation while also decreasing fuel consumption by smoothing 
oscillations more aggressively. In contrast, the parameter 𝜏𝜏𝑠𝑠 controled the amount of spacing 
while only marginally affecting fuel consumption, with higher values corresponding to larger 
spacing. This also made sense because in the formulation, 𝜏𝜏𝑠𝑠 was only used to moderate how fast 
following trains approached zero excess spacing to prevent PTC enforcements.  
Together, the settings of these two control parameters defined a pareto-optimal frontier with 
respect to the objective of minimizing both fuel consumption and average train separation. Using 
this tradeoff, individual railroads and train operators can tune the performance of following train 
control algorithm depending on their desired business objectives. On a capacity-contrained 
corridor where minimum headway is a priority, lower values of the parameter h may be specified 
at the expense of increased fuel consumption. Larger values of parameter h and parameter 𝜏𝜏𝑠𝑠 
may be specified on corridors where increased train spacing can be tolerated but the cost of fuel 
consumption (and resulting emissions) is of primary importance. 

5.3 Results Summary 
Of the six controllers developed and evaluated through this research, the MPD controller and the 
KACC controller consistently exhibited similar performance and substantially better 
performance than all other controllers tested for all metrics considered. Of the four remaining 
controllers, the naïve controller had by far the worst performance because it required a large 
amount of excess spacing and rapidly commanded large changes in throttle and brake status. 
Between the PD controller and the CACC controller, the PD controller performed better in all 
metrics, as shown in Table 9 for the position-only test plan. While this test plan did not include 
the PCACC controller, the results of Table 14 for the more communication test plan can be 
considered directly by noting that the MPD and KACC controller performance is quite similar in 
both Table 9 and Table 14. Thus, the PCACC controller performed better than the CACC 
controller but worse than the PD controller. Overall, the naïve controller performed the worst, 
followed by the CACC controller, the PCACC controller, the PD controller, and both the MPD 
and KACC controllers, which performed the best. 
Between the MPD controller and the KACC controller, both had advantages and disadvantages. 
While the KACC controller generally had slightly larger average train separation, this mostly 
occurred when trains were moving at high speed – rarely the limiting factor for capacity. 
Additionally, it had a lower standard deviation of notch difference, it was designed to ensure safe 
train separation for logically reasonable parameters, and it was successfully tested in virtual 
coupling scenarios where the MPD controller failed unless headway was increased to a value 
substantially higher than what was used for the KACC controller. Thus, a controller based on the 
KACC controller that fixes the train separation at high speed should be developed and should 
convincingly outperform the MPD controller in all metrics used. 
As compared to ideal moving block with no excess spacing, the MPD and KACC controllers 
both performed very well because their average separation was on the order of 100 meters. 
Considering that moving-block calculations typically use a conservative value for braking 
distance, it was clear that well-designed moving-block systems will be able to very nearly reach 
the theoretical performance if calculated using the longest braking distance for any train that will 
traverse the network. More simulations and controller changes need to be conducted to determine 
how close real-world systems can come to theoretical moving block with fully customized 
braking distances. 
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6. Conclusion 

Directly adapting highway vehicle platooning controllers to the heavy-haul freight and passenger 
railway domain is difficult due to the orders of magnitude difference in highway and rail vehicle 
performance. However, highway controllers do suggest families of control laws can be adapted 
to the train-following problem. The simulation results suggested that a series of control laws 
were better than others at managing the train separation and fuel consumption within train fleets. 
Certain controllers were fast-acting but demonstrated notch instability when attempting to 
minimize headways, while other controllers were slow-acting and required a large baseline train 
spacing to avoid an incursion into the minimum safe braking distance and a corresponding PTC 
enforcement. While moving blocks require additional train spacing beyond the minimum safe 
braking distance to account for train control actions, certain following train control algorithms 
can help minimize this distance. The developed control laws also exhibited a tradeoff that may 
allow railway operators to change algorithm parameters and balance fuel efficiency and train 
headway to meet their specific business objectives.  
Relative to the scenario where only information on the position of the train ahead was known, 
the headway and fuel efficiency performance of the best following train control algorithms could 
be improved by communicating additional information on the speed and acceleration of the train 
ahead. These benefits were enhanced when the frequency of train position reports and controller 
updates was increased. This result suggeseds that enhanced communication may be essential to 
effectively managing train fleets and achieving the full capacity benefits of moving blocks. 
The above conclusions are subject to the limitations of this research scope. The best-performing 
train fleeting algorithms within the limited scope of this research should be subjected to more 
complex conditions involving actual rail corridor grade and curve topography as part of future 
research and development of following train control algorithms for moving blocks. While this 
research only included heavy-haul freight trains, future research and development work should 
consider passenger and commuter trains to determine if their distinct performance characteristics 
can still be managed with the same types of control algorithms but using different control 
algorithm parameters. 
The train-following control algorithms developed through this research are critical to future 
attempts to increase capacity and efficiency through advanced train control systems with moving 
blocks. By allowing trains to maintain minimum headways, the best train-following algorithms 
will help the rail industry achieve the anticipated capacity benefits of advanced PTC with 
moving blocks without sacrificing energy efficiency. The algorithms developed through this 
research will also help maintain railway safety by reducing the number of repeated, successive 
brake applications made by closely following trains that fail to properly anticipate the speed of 
trains operating ahead of them in a fleet. With additional research and development, researchers 
anticipate that locomotive manufacturers, and other third-party vendors of locomotive and train 
control systems, will use the best-performing families of algorithms identified through this 
research as a starting point for their control laws as moving blocks enter test implementation. 
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Abbreviations and Acronyms 

ACRONYMS EXPLANATION 
AAR Association of American Railroads 
ACC Adaptive Cruise Control 
CACC Cooperative Adaptive Cruise Control 
CAV Connected and Automated Vehicles 
ETCS European Train Control System 
FRA Federal Railroad Administration 
KACC Kinematic Adaptive Cruise Control 
LEADER Locomotive Engineer Assist/Display & Event Recorder 
MPD Modified Proportional Derivative (controller) 
PCACC Predictive Cooperative Adaptive Cruise Control 
PD Proportional Derivative (controller) 
PTC Positive Train Control 
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