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Executive Summary 

Measuring accelerations on railcars is an increasingly common practice among those involved 
with track research, maintenance, and safety because these acceleration measurements provide 
means for finding anomalous track conditions.  Accelerations are oftentimes measured from the 
car body of a rail vehicle, which is mounted above one or more suspension systems.  Measuring 
accelerations in the car body is largely done for convenience, as mounting an accelerometer to a 
truck or axle of a railcar is more cumbersome than simply placing an accelerometer inside the 
railcar body.  However, a railcar suspension system acts as a filter which passes low frequencies 
and attenuates high frequencies.  To complicate matters further, the railcar body, in combination 
with the suspension system, has several natural modes of vibrations.  The mode of interest in this 
report is the vertical natural frequency, which is commonly known as the “bounce” mode of the 
vehicle. 

As a result of this vertical natural frequency, some vertical accelerations measured from the 
railcar body that exceed a predefined threshold do not correlate with track conditions.  Such 
events can be viewed as false alarms (or false positives) since an exception was measured on the 
car body but no significant defective track condition exists.1  In addition, higher frequency 
accelerations due to high frequency impacts, for example, are attenuated by the suspension 
system, and accelerations exceeding the predefined threshold may not be recorded in the 
acceleration measurements taken on the car body.  Such events can be classified as misses (or 
false negatives).  For obvious reasons, track inspectors and maintenance personnel wish to 
minimize such spurious or erroneous readings.  This report puts forth a simplified model of a 
railcar and a corresponding filter, known as a deconvolution filter, which theoretically 
eliminates, or at least reduces, the amplification and attenuation effects of the railcar suspension 
system.  This modification allows the system to obtain an approximation of the unsprung mass 
accelerations and displacements, which are those experienced below the suspension system by an 
unsprung mass, such as the truck or axle of a railcar. 

The effectiveness of the deconvolution filter at finding vertical track deviations (known as track 
profile deviations or track surface deviations) was determined by collecting vertical railcar body 
acceleration data on one of Amtrak’s geometry cars.  The exception locations output by the 
deconvolution filter were compared with the profile exceptions output by Amtrak’s geometry 
car, and signal detection theory was used to quantify the effectiveness of the deconvolution filter 
at detecting track profile exception locations output by the geometry car.  The results are 
promising and represent a substantial improvement over the traditional method of simply using 
peak-to-peak thresholds of low-pass filtered railcar body accelerations to detect defective track 
profile conditions. 

Future efforts will be directed at further demonstrating the potential advantages and benefits of 
the deconvolution filter.  For example, repeatability of the filter’s function on two different 
railcars in the same consist may be investigated.  In addition, researchers may evaluate the 
performance of the deconvolution filter on vertical acceleration data collected on other types of 
railcars besides passenger railcars. 

                                                 
1 An “exception” refers to an event in which a predefined threshold is exceeded. 
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1. Introduction 

1.1 Background and Objectives 
Measuring accelerations on railcars is an increasingly common practice among those involved 
with track research, maintenance, and safety because these acceleration measurements provide 
means for finding anomalous track conditions.  Accelerations are oftentimes measured from the 
car body of a rail vehicle, which is mounted above one or more suspension systems.  Measuring 
accelerations on the body of a railcar is largely done for convenience, as mounting an 
accelerometer to a truck or axle of a railcar is more cumbersome than simply placing an 
accelerometer inside the railcar body.  However, a railcar suspension system acts as a filter 
which passes low frequencies and attenuates high frequencies.  To complicate matters further, 
the railcar body, in combination with the suspension system, has several natural modes of 
vibrations.  The mode of interest in this report is the vertical natural frequency, which is 
commonly known as the “bounce” mode of the vehicle. 

Because of this vertical natural frequency, some vertical accelerations measured from the railcar 
body which exceed a predefined threshold do not correlate with track conditions.  Such events 
can be viewed as false alarms (or false positives) since an exception was measured on the car 
body but no significant defective track condition exists.2  In addition, higher frequency 
accelerations due to high frequency impacts, for example, are attenuated by the suspension 
system, and accelerations exceeding the predefined threshold may not be reflected in 
acceleration measurements taken on the car body.  Such events can be classified as misses (or 
false negatives).  An approach to minimize such misses and false alarms is desired.  This report 
puts forth a simplified model of a railcar and a corresponding filter, known as a deconvolution 
filter, which theoretically eliminates, or at least reduces, the amplification and attenuation effects 
of the railcar suspension system.  This new model therefore allows researchers to obtain an 
approximation of the unsprung mass accelerations and displacements, which are the 
accelerations and displacements experienced below the suspension system by an unsprung mass 
such as the truck or axle of a railcar. 

GPS systems are currently very common and affordable and are relevant to the application of a 
deconvolution filter because they can provide approximate speed of the vehicle on which railcar 
body accelerations are being measured.  Knowing the speed of the vehicle allows for the 
conversion from time as the independent variable to distance as the independent variable.  In 
addition to unsprung mass accelerations, the deconvolution filter also outputs unsprung mass 
vertical velocity and unsprung mass vertical displacement.  Presenting the unsprung mass 
displacement as a function of distance, rather than time, allows for approximation of the vertical 
track geometry3 of the overall track.  Obtaining vertical track geometry as an output is important 
because Federal regulations put forth in 49 CFR 213 (otherwise known as the “Track Safety 
Standards”) lay out specific standards and thresholds for track geometry. 

                                                 
2 An “exception” refers to an event in which a predefined threshold is exceeded. 
3 “Track geometry” is a railroad term that refers to the vertical and lateral displacement of each of the rails with 
respect to distance.  In other words, the term refers to the vertical and lateral deviations of the left rail and the right 
rail in space. 
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In summary, application of the deconvolution filter to measured railcar body vertical 
accelerations, coupled with speed information obtained with a GPS sensor, allows for the 
construction of an approximate vertical track geometry signal, which is important for the 
maintenance and safety of railroad operations.  Furthermore, the deconvolution filter provides a 
method to obtain this acceleration information using a single-axis accelerometer, a GPS 
positioning sensor, and easily portable hardware. 

1.2 Organization of the Report 
Section 2 of the report identifies the assumptions regarding the physical characteristics of the 
railcar.  Section 3 uses the assumptions put forth in Section 2 to design a deconvolution filter.  
Section 4 shows some preliminary results of applying the deconvolution filter to measured 
railcar body accelerations.  Section 5 documents a data collection effort that took place on 
Amtrak’s geometry car as well as the results of the data analysis effort that followed.  Section 6 
provides some concluding remarks. 
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2. Simplified Railcar Model 

For the purposes of this analysis, the railcar will be modeled simply as a linear, damped, 
harmonic oscillator.  This is a single degree of freedom model which only takes into 
consideration rigid body vertical displacements.  The model consists of a mass, a linear spring, 
and a linear viscous damper (Figure 1). 

 

 

 

 

 

 

 

 

Despite its simplicity, the model might suffice for the purposes of more accurately correlating 
vertical track geometry deviations (also known as “track surface” or “track profile” deviations) 
with measured vertical railcar body accelerations, as will become more evident in the discussion 
of the deconvolution filter in the following sections.  However, due to the linearity assumption, 
the model being used more accurately applies to a well-performing suspension system, such as 
the suspension system of a passenger railcar; the suspension system of freight cars are oftentimes 
highly non-linear.  A more complex model that takes into account multiple modes of vibration 
(bounce and pitch, for example) may be used, and the overall methodology of the analysis 
presented in this paper could still be applied as long as the model being used is linear.  A model 
with multiple modes of vibration will most likely require accelerometers to be used at multiple 
locations on the car.  Using the simplified single mode vibration model requires using only a 
single accelerometer. 

Ideally, the accelerometer would be placed in the car body directly above one of the trucks.  This 
placement would allow the accelerometer to receive as much of the input signal from the track as 
possible.  If the accelerometer were placed a significant distance from either truck, it is likely 
that the input signal from the track would be significantly attenuated because of damping from 
non-rigid deformation modes of the railcar body.  Since the current approach only considers 
vertical accelerations, any reference to “accelerations” or “displacements” in the rest of this 
paper refers to vertical accelerations and vertical displacements, unless otherwise stated. 

The linear harmonic oscillator model used in this analysis is represented mathematically as a 
linear, second-order ordinary differential equation:4 

                                                 
4 Further explanation of this equation can be found in textbooks, such as the introductory textbook by Rao (1986), 
on mechanical vibrations. 

Mass 

Spring Damper 

Figure 1.  Mass-spring-
damper system 
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( ) ( )
dt

dfctkftky
dt
dyc

dt
ydm IN

IN +=++2

2

 

Equation 1 
m is the mass of the body, c is the damping coefficient, and k is the spring stiffness.  y(t) is the 
displacement of the harmonic oscillator sprung mass.  fIN(t) represents the vertical displacement 
of the track with respect to time and may be thought of as the average vertical displacement of 
the left and right rails. 

The characteristics of the harmonic oscillator, including transient response and steady state 
response, are determined primarily by the natural frequency, as well as the damping ratio.5  The 
natural frequency of the railcar can be estimated using a Fast Fourier Transform (FFT) 
algorithm.  The mass of a railcar vehicle is typically known (or can be estimated) and then the 
spring constant can be calculated using Equation 2. 

m
k

n =ω  

Equation 2 
ωn is the natural frequency in radians per second.  Freight railcars and locomotives typically have 
a natural frequency of about 2 Hz (12.6 radians per second) in the rigid body vertical 
displacement mode, and passenger railcars typically have a natural frequency around 1.5 Hz (9.4 
radians per second).  The data analysis portion of this report will deal with data collected on a 
passenger railcar.  Figure 2 shows an example FFT of the data that was collected on this 
passenger railcar.  As shown, the natural frequency appears to be approximately 1.4 Hz.  
Therefore, for the purposes of this analysis, a natural frequency of 1.4 Hz (8.8 radians per 
second) will be assumed. 

 
 

                                                 
5 Further explanation of these terms can be found in introductory textbooks on mechanical vibrations, such as Rao 
(1986) or Hartog (1985). 

Figure 2.  Results of performing FFT on measured 
acceleration data 
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The weights of railcars vary greatly.  Typically, however, accelerations are measured from a 
locomotive or passenger railcar.  A typical locomotive or loaded freight railcar weighs between 
300,000 and 400,000 lb, and a typical passenger railcar weighs between 100,000 and 200,000 lb.  
As stated previously, the data analysis portion of this report deals with data collected on a 
passenger railcar, so a numerical value of 130,000 lb (~59,000 kg) will be assumed in this 
analysis. 

The spring coefficient k can be determined by using Equation 2 and solving for k.  Plugging in 
the appropriate numerical values results in a value of approximately 4,569,000 kg/s2 for k.  The 
critical damping value can be calculated using Equation 3. 

m
kmccritical 2=  

Equation 3 
Plugging in the appropriate values for k and m results in a value of 1,038,400 kg/s for ccritical. 

The damping ratio can be estimated by examining the vertical transient response of the railcar on 
which data is being collected.  Figure 3, Figure 4, and Figure 5 show plots of measured and 
modeled transient response.  The measured transient response (red plot) is the same in each of 
the three figures.  This data was collected on the passenger railcar used for data collection 
purposes (see Section 5).  However, the modeled transient response (purple plot) varies between 
each of the three figures.  Figure 3 shows the modeled transient response of a harmonic oscillator 
assuming a damping ratio of 5 percent.  Figure 4 and Figure 5 show the same plots for damping 
ratios of 15 percent and 25 percent, respectively. 

 

Figure 3.  Modeled transient response with 5 percent damping ratio 
 



 

 8 

 

Figure 4.  Modeled transient response with 15 percent damping ratio 
 

 

Figure 5.  Modeled transient response with 25 percent damping ratio 
As the results show, the best visual match appears to be with the 15 percent damping ratio 
(Figure 4).  Therefore, a damping ratio of 0.15 will be assumed, and a damping value of 155,760 
kg/s, which is 15 percent of the critical damping value, will be used for c.  Table 1 summarizes 
the numerical values assigned to the various physical constants. 
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Table 1.  Numerical values of physical constants 

Physical Constant Numerical Value 

Mass m  (kg) 59,0006 

Stiffness k  (kg/s2) 4,569,000 

Critical damping ccritical  (kg/s) 1,038,400 

Damping Ratio 0.15 

Damping c  (kg/s) 155,760 

 

The plot in Figure 6 represents the frequency response of the linear harmonic oscillator with the 
prescribed values for m, c, and k in Table 1.  The frequency response plot clearly shows that 
there is a predominant natural frequency, and frequencies above the natural frequency are 
attenuated.  These characteristics are typical of damped, linear harmonic oscillators.  Figure 7 
shows the same plot in log-log coordinates. 

 
 

 

 

                                                 
6 It is interesting to note that the mass of the railcar does not have to be estimated.  In other words, any number could 
be used for the mass m.  Once the natural frequency ωn is specified and a mass m is assumed, then the spring 
stiffness k can be calculated using Equation 2, and the critical damping value ccritical can be calculated using Equation 
3.  For example, setting ωn to 8.8 radians per and the damping ratio to 0.15, then assuming a mass m, and finally 
calculating the corresponding values for spring stiffness k and critical damping value ccritical, a harmonic oscillator 
with the frequency response shown in Figure 6 and Figure 7 will result. 

Figure 6.  Frequency response of damped harmonic 
oscillator 
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Figure 7.  Frequency response of damped harmonic 
oscillator in log-log coordinates 
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3. Deconvolution Filter Design 

In order to remove the effects of the railcar’s suspension system, a filter must be designed with a 
gain which, when multiplied by the gain of the damped harmonic oscillator (Figure 7), will 
produce a resultant gain of unity for all the frequencies of interest.  Such a filter is called a 
deconvolution filter7 (also referred to as an inverse filter), and it can be achieved using Laplace 
transform theory and pole-zero plots. 

Figure 8 shows a simple block diagram approach to the overall setup of the problem.  Signal A 
represents the input to the harmonic oscillator.  Signal B represents the output of the harmonic 
oscillator and the input to the deconvolution filter.  Signal C represents the output of the 
deconvolution filter.  Signal C is an approximate reconstruction of Signal A.  In other words, the 
deconvolution filter is designed to transform Signal B back into Signal A.  In real-world 
implementation, due to model inaccuracies, the inevitable presence of noise, and the effects of 
discrete-time sampling, the output of the deconvolution filter (Signal C) is not an exact 
replication of the original Signal A, but rather an approximation of the original Signal A input 
into the harmonic oscillator. 

 

 

 

 

 

Equation 4 represents the Laplace transform of the linear harmonic oscillator differential 
equation (Equation 1). 

( ) ( ) ( ) ( )sFkcssYkcsms IN+=++2  

Equation 4 
FIN is the input to the harmonic oscillator (Signal A in Figure 8), and Y is the harmonic oscillator 
output (Signal B in Figure 8).  The resulting transfer function is: 

( ) ( )
( ) kcsms

kcs
sF

sYsH
IN

HarmOsc ++
+

== 2  

Equation 5 
The zeros of the denominator are known as “poles,” and the zeros of the numerator are known 
simply as “zeros.”  It is easy to visualize the poles and zeros by plotting them on an x-y plot 
where the x axis represents the real component of the poles and zeros, and the y axis represents 
the imaginary component of the poles and zeros.  The numerical values of the poles and zeros 
used in this analysis are shown in Table 2 and are plotted in Figure 9.  The real and imaginary 
                                                 
7 More information on the mathematical theory of deconvolution and its applications can be found in technical 
textbooks, such as Lathi (2004), that cover the convolution integral and transform theory. 

Harmonic Oscillator Deconvolution Filter 
Signal A  (fIN) Signal B  (y) Signal C  (fCALC) 

Figure 8.  Block diagram of problem setup 
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values for the poles and zeros put forth in Table 2 are based on the mass, damping, and stiffness 
values in Table 1. 

Table 2.  Real and imaginary components of damped harmonic oscillator poles and zeros 

 Real Component Imaginary Component 

Pole #1 -1.3195 8.6969 

Pole #2 -1.3195 8.6969 

Zero #1 -29.3215 0.0000 

 

 
 

 

A deconvolution filter can be created by replacing all the poles with zeros and all the zeros with 
poles.  However, this substitution results in more zeros than poles, and a stable filter requires 
more poles than zeros.  Therefore, a plurality of poles should be added whose real components 
are equal to the desired high-frequency cutoff in radians per second.  A numerical value of 6.5 
Hz (or 34.5 radians per second) will be used as the cutoff frequency for this analysis.  In order to 
achieve this cutoff frequency, six poles with a modulus8 of 34.5 are placed in a Butterworth 
configuration (Pole #1 through Pole #6 in Table 3).  The numerical values of all the 
deconvolution filter poles and zeros used in this analysis are shown in Table 3 and plotted in 
Figure 10. 

 

 

                                                 
8 Most complete textbooks on complex variable theory provide an explanation of the term “modulus,” as well as 
additional information on Laplace transform theory and filter design. A good textbook to consult is the complex 
variable textbook by LePage (1980). 

Figure 9.  Pole-zero plot of damped harmonic oscillator 
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Table 3.  Real and imaginary components of deconvolution filter poles and zeros 

 Real Component Imaginary Component 

Pole #1 -10.5704 39.4491 

Pole #2 -10.5704 -39.4491 

Pole #3 -28.8787 28.8787 

Pole #4 -28.8787 -28.8787 

Pole #5 -39.4491 10.5704 

Pole #6 -39.4491 -10.5704 

Pole #7 -29.3215 0.0000 

Zero #1 -1.3195 8.6969 

Zero #2 -1.3195 -8.6969 

 

 
 

 

Equation 6 represents the resulting transfer function of the deconvolution filter.  Y is the input to 
the deconvolution filter (Signal B in Figure 8), and FCALC is the output of the deconvolution filter 
(Signal C in Figure 8). 
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Figure 10.  Pole-zero plot of deconvolution filter 
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GDeconvFilter is the gain applied to the transfer function of the deconvolution filter in order to make 
the gain of the frequency response equal to 1 for frequencies approaching 0, as was the case for 
the frequency response of the harmonic oscillator (Figure 7).  The numerical value for the gain of 
the deconvolution filter given the assumed physical constants (Table 1) and the 6.5 Hz frequency 
cutoff value is 610451.758,1 × .  α1 through α6 represent Pole #1 through Pole #6, respectively, in 

Table 3.  
c
k  represents Pole #7, and β1 and β2 represent Zero #1 and Zero #2, respectively (Table 

3). 

Multiplying through by the denominators results in: 

( )( )( )( )( )( ) ( ) ( )( )( ) ( )sYssGsF
c
ksssssss rDeconFilteCALC 21654321 ββαααααα ++=














 +++++++  

Performing the necessary algebra and applying inverse Laplace transform techniques allows one 
to obtain the symbolic form of the governing differential equation of the deconvolution filter.  
Plugging in the numerical values in Table 1 and Table 3 results in the differential equation in 
Equation 7.  The output y(t) from the harmonic oscillator (Equation 1) is the input to the 
deconvolution filter.  The output of the deconvolution filter is labeled fCALC. 
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Equation 7 
Figure 11 shows the frequency response plot of the damped harmonic oscillator and the 
deconvolution filter.  Figure 12 also shows the frequency response but plotted in log-log 
coordinates.  With these coordinates, it is easier to visualize the deconvolution filter as the 
“inverse” of the damped harmonic oscillator.  The dotted purple line in Figure 11 and Figure 12 
represents the product of the gain of the damped harmonic oscillator and the gain of the 
deconvolution filter.  This value should be approximately unity across all the frequencies of 
interest, which for the purposes of this analysis are frequencies lower than 6.5 Hz.  Assuming a 
damping ratio of 0.15 (Table 1), at a frequency of 6.5 Hz, the input signal into the harmonic 
oscillator is attenuated almost 90 percent, meaning that only about 10 percent of the input 
signal’s amplitude remains in the output.  Therefore, attempting to amplify frequencies above 6.5 
Hz with the deconvolution filter may not be practical, as it is likely that above approximately 6.5 
Hz, noise, rather than the signal of interest, will be amplified. 

There is a second reason for having a cutoff frequency of 6.5 Hz.  As will be discussed in 
Section 5, 31-foot vertical track wavelengths will be the smallest wavelength of interest. 
Maximum speeds attained during data collection were 125 miles per hour, which indicates a 
maximum frequency of interest of 5.9 Hz.  Therefore, a cutoff frequency of 6.5 Hz, which is 
slightly greater than 5.9 Hz, was chosen. 
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In order to implement the deconvolution filter, the position, velocity, and acceleration of the 
harmonic oscillator sprung mass must be known.  The fact that the position, velocity, and 
acceleration of the sprung mass must all be measured or derived is evident from the appearance 
of y(t) and the first and second derivatives of y(t) in Equation 7.  In a real-world, data collection 
scenario, only the acceleration ( )2

2

dt
yd  of the sprung mass (the railcar body) is typically measured.  

Therefore, numerical integration of the sprung mass accelerations is necessary to obtain the 
approximate velocity ( )dt

dy  and position y(t) of the sprung mass.  However, integration and double 
integration of the acceleration data can result in low frequency offsets.  A band-pass Butterworth 
filter can be applied in order to eliminate, or at least partially eliminate, this low frequency 
offset.  Therefore, the accelerations and derived velocity and displacement were filtered using a 
band-pass filter.  Figure 13 shows the frequency response of the band-pass filter, and Table 4 

Figure 11.  Frequency response of damped harmonic 
oscillator and deconvolution filter 

Figure 12.  Frequency response of damped harmonic 
oscillator and deconvolution filter in log-log coordinates 
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provides the numerical values of all the poles and zeros.  The gain required for this pole and zero 
configuration (Table 4) of the band-pass filter is 610091.529,61 × . 

 

 

Figure 13.  Frequency response of band-pass filter 
 

Table 4.  Real and imaginary components of band-pass filter poles and zeros 

 Real Component Imaginary Component 

Pole #1 -0.6664 0.6664 

Pole #2 -0.6664 -0.6664 

Pole #3 -16.2621 60.6909 

Pole #4 -16.2621 -60.6909 

Pole #5 -44.4288 44.4288 

Pole #6 -44.4288 -44.4288 

Pole #7 -60.6909 16.2621 

Pole #8 -60.6909 -16.2621 

Zero #1 -4.4429E-06 4.4429E-06 

Zero #2 -4.4429E-06 -4.4429E-06 

 

The same band-pass filter (Figure 13 and Table 4) can be reapplied to the output of the 
deconvolution filter in order to smooth the data and eliminate long wavelengths.  Figure 14 
shows the suggested filter sequence. 
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Band-pass Filter Deconvolution Filter Band-pass Filter 

Figure 14.  Sequence of filters 
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4. Effect of Applying the Deconvolution Filter to Measured Railcar 
Body Acceleration Data 

This section provides several visual examples of the effects of applying the deconvolution filter 
to measured railcar body accelerations.  Figure 15 and Figure 16 show examples of areas where 
the deconvolution filter (green plots) is amplifying the measured car body accelerations (red 
plots), and Figure 17 and Figure 18 show examples of areas where the deconvolution filter is 
attenuating the measured car body accelerations. 

 

 

Figure 15.  First example of the deconvolution filter amplifying the input signal 
 

 

Figure 16.  Second example of the deconvolution filter amplifying the input signal 
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Figure 17.  First example of the deconvolution filter attenuating the input signal 
 

 

Figure 18.  Second example of the deconvolution filter attenuating the input signal 
 

These examples demonstrate that the deconvolution filter has the potential to amplify some 
measured railcar body accelerations and attenuate others.  This is a promising sign since it is 
clear that the deconvolution filter is significantly modifying its input signal.  With this in mind, 
the next step was to determine whether the deconvolution filter might be a valuable tool capable 
of finding vertical track geometry deviations.  The next section details a data collection effort 
that was undertaken to gain more insight into the potential usefulness of the deconvolution filter. 
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5. Quantification of the Deconvolution Filter Effectiveness for 
Finding Track Profile Geometry Conditions 

5.1 Data Collection 
Amtrak inspects its Northeast Corridor high-speed passenger line between Washington, DC, and 
Boston, MA, every 2 weeks using a manned track geometry inspection vehicle.  This vehicle is a 
full-size railcar typically placed at the end of an in-service passenger train consist.  The track 
geometry system outputs multiple parameters, including but not limited to, the following: 

 Left rail alinement9  (lateral deviation of the left rail in space) 

 Right rail alinement  (lateral deviation of the right rail in space) 

 Gage  (lateral distance between the left and right rail) 

 Left rail surface  (vertical deviation of the left rail in space) 

 Right rail surface  (vertical deviation of the right rail in space) 

 Cross level  (vertical displacement between the left and right rail) 

In addition to foot-by-foot data for the above parameters, the track geometry system also 
generates an exception report that includes exception magnitudes and locations for each of the 
parameters.  In light of this, it was decided that Amtrak’s geometry car would provide a good 
platform upon which to test the effectiveness of the deconvolution filter. 

In coordination with Amtrak’s engineering department, a member of FRA’s research and 
development team was permitted to collect railcar body acceleration data on one of Amtrak’s 
regularly scheduled geometry car runs.  The data collection took place on February 5, 2014.  
Geometry data and acceleration data were both collected between Baltimore-Washington 
International (BWI) Airport and Philadelphia, and this section of track will serve as the “test 
zone” for analysis purposes. 

Figure 19 and Figure 20 show the accelerometers used for data collection.  Two accelerometers 
were used, but it is important to note that one accelerometer would have sufficed.  Two 
accelerometers were used simply for purposes of redundancy.  The accelerometers were placed 
almost directly above the front truck and as close to the centerline of the car body as possible. 

                                                 
9 Historically in the railroad industry, the word has been spelled this way rather than the traditional way 
(“alignment”). 
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Figure 19.  Accelerometers taped down to the floor of Amtrak’s geometry car 
 

 

Figure 20.  Close-up view of accelerometers 
 

At the end of the data collection effort, the Amtrak engineering department provided a list of 
exceptions generated by the track geometry system.  This list was generated using Amtrak’s 
maintenance thresholds, which are typically 75 percent of the thresholds outlined in the Track 
Safety Standards. 

5.2 Data Analysis Assumptions 
The only geometry parameter of interest is the vertical displacement of the left and right rails.  
Alinement, gage, cross level, and warp will not be used in this data analysis.  These parameters 
are not being considered because, as was pointed out previously, the deconvolution filter 
formulated in this paper assumes that the railcar is modeled as a single degree of freedom system 
in which only vertical displacements are “allowed.” 

Amtrak’s maintenance standards are typically 75 percent of the values put forth in the Track 
Safety Standards.  For track Classes 6 through 8, a 124-foot mid-chord offset is prescribed as 
well, but for the purposes of simplicity and to limit the scope of the analysis, the 124-foot chord 
length will not be considered.  Table 5 provides Amtrak’s maintenance thresholds for 31-foot 
and 62-foot mid-chord offsets. 
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Table 5.  Amtrak maintenance thresholds for 31-foot and 62-foot profile deviations 

Class of Track 31-Foot Mid-Chord Offset 
(inches) 

62-Foot Mid-Chord Offset 
(inches) 

6 0.75 0.75 

7 0.75 0.75 

8 0.5625 0.75 

 

Most of the track in the test zone (BWI Airport to Philadelphia) was Class 6 or 7 track.  
However, there was a section of track between Baltimore and Philadelphia that was posted as 
Class 8.  Table 5 shows that the 31-foot and 62-foot mid-chord offset thresholds are the same for 
Classes 6 and 7; however, for Class 8 track, the 31-foot mid-chord offset maintenance threshold 
is 0.5625 inches, rather than 0.75 inches.  For the purposes of this analysis, it will be assumed 
that all track in the test zone was Class 6 or 7.  This simplifies software programming for the 
deconvolution filter since the thresholds for Classes 6 and 7 are the same. 

As was stated previously, the accelerometer used for data collection should be placed above one 
of the trucks and should also be placed as close to the centerline of the railcar as possible.  It is 
important to realize that the data collected cannot distinguish the difference between a geometry 
deviation in the left rail and a geometry deviation in the right rail.  For example, the following 
three scenarios would theoretically result in the same data being collected: 

 62-foot left rail deviation of 1 inch and no displacement of the right rail 
 62-foot right rail deviation of 1 inch and no displacement of the left rail 
 Simultaneous 62-foot left rail and right rail deviation of 0.5 inches 

The displacement parameter output by the deconvolution filter can be thought of as the average 
displacement of the left and right rails (Figure 21). 

 

 

Figure 21.  Geometry configuration of data collection with accelerometer 
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Therefore, when applying the deconvolution filter, it is important to realize that the thresholds in 
Table 5 must be halved.  These thresholds for the deconvolution filter are presented in Table 6. 

Table 6.  Deconvolution filter thresholds for 31-foot and 62-foot profile deviations 

Class of Track 31-Foot Mid-Chord Offset 
(inches) 

62-Foot Mid-Chord Offset 
(inches) 

6 0.375 0.375 

7 0.375 0.375 

8 0.28125 0.375 

 

Because of the geometry of this data collection setup and the thresholds used for the 
deconvolution filter, it is clear that some false alarms can be expected.  For example, using a 
single vertical accelerometer placed on the center line of the railcar, a dip of 1.5 inches in a 
single rail over 62 feet is indistinguishable from a simultaneous dip of 0.75 inches in both rails 
over 62 feet.  The first condition (single rail dip of 1.5 inches) is in fact an FRA defect for track 
Classes 6 through 8, while the second condition (double rail dip of 0.75 inches) is not.  However, 
both conditions will appear equivalent to a single vertical accelerometer placed on the center line 
of the railcar. 

The haversine formula was used to calculate the approximate distance from the track geometry 
exception locations to the deconvolution filter exception locations.  If the distance was less than 
240 feet, a “hit” was recorded, and if the distance was greater than 240 feet, either a “miss” or 
“false alarm” was recorded, depending on which label was appropriate.  A length of 240 feet was 
chosen since it represents approximately six rail lengths10 and generally seemed to be a 
reasonable number.  It is important to note that a distance of at least 183 feet had to be chosen 
since at top speeds of 125 miles per hour, the track geometry car was traveling at 183 feet per 
second.11  GPS only samples at 1 Hz.  Therefore, at top speeds there were up to 183 feet between 
GPS locations.  Furthermore, only sections of the test zone where speeds exceeded 60 miles per 
hour were considered. 

5.3 Results 

5.3.1 Signal Detection Theory 
Signal detection theory can be used to quantify the sensitivity of the deconvolution filter to 
vertical track geometry conditions.12  The track profile exceptions from the track geometry 
                                                 
10 Traditionally, track with jointed rail (as opposed to continuously welded rail) is composed of 39-foot long rail 
segments. 
11 The data collection was conducted on Amtrak’s regional geometry car, but if the data had been collected on 
Amtrak’s Acela geometry car, top speeds of 150 miles per hour (220 feet per second) would have been experienced. 
12 There are several references, such as Macmillan & Creelman (2005), that provide a good introduction to signal 
detection theory.  In addition, Appendix A includes a brief one page summary of some important equations in signal 
detection theory. 
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exception list will serve as the “ground truth”.  Table 7 shows the d’ sensitivity values, as well as 
the true positive rate and false positive rate, for the 31-foot track profile deviations when using 
the Amtrak maintenance threshold (shaded row) and five additional thresholds.  The d’ values 
for these five additional thresholds were determined in order to obtain more data points with 
which to form a receiver operating characteristic (ROC) curve for 31-foot vertical track 
deviations and 62-foot vertical track deviations.  Table 8 shows the equivalent information for 
62-foot track profile deviations.  Appendix B provides the number of hits, misses, false alarms, 
and correct rejections for each of the cases presented in Table 7 and Table 8. 

Table 7.  Signal detection theory results for 31-foot MCO sensitivity 

Threshold as Percentage of 
Amtrak Maintenance Threshold 

Sensitivity 
(d’) 

False Positive 
Rate 

True Positive 
Rate 

50% 2.53 0.169 0.942 

67% 2.39 0.082 0.842 

80% 2.14 0.037 0.640 

100% 1.95 0.010 0.360 

120% 2.32 2.92x10-4 0.132 

133% 1.89 2.92x10-4 0.061 

 

Table 8.  Signal detection theory results for 62-foot MCO sensitivity 

Threshold as Percentage of 
Amtrak Maintenance Threshold 

Sensitivity 
(d’) 

False Positive 
Rate 

True Positive 
Rate 

50% 2.10 0.311 0.946 

67% 2.70 0.155 0.954 

80% 2.62 0.090 0.900 

100% 2.66 0.037 0.808 

120% 2.44 0.010 0.554 

133% 2.42 0.003 0.392 

 

Figure 22 shows the sensitivity values from Table 7 and Table 8 on an ROC plot.  The blue and 
red curves represent curves of constant sensitivity (commonly known as isosensitivity curves) for 
31-foot profile and 62-foot profile detection, respectively.  The dotted line (Figure 22) represents 
an isosensitivity curve for a system that is completely insensitive to a given condition.  
Therefore, in layman’s terms, the farther away an isosensitivity curve is from the zero sensitivity 
curve (dotted line in Figure 22), the better the sensitivity of the system.  The six blue diamonds 
and the six red squares represent the false positive rates and true positive rates put forth in Table 
7 and Table 8.  Figure 22 and the numbers in Table 7 and Table 8 show that as the threshold is 
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lowered, the false alarm rate rises, as does the hit rate.  Therefore, as the threshold is lowered, the 
bias13 to say “Yes, the threshold has been exceeded,” is increased. 

Figure 23 provides equivalent information to Figure 22 but uses z-coordinates which can 
sometimes make it easier to see the difference in sensitivity since the isosensitivity curves 
(Figure 22) become straight lines. 

 
 

 

                                                 
13 “Bias” is a signal detection theory term that is explained in more detail in textbooks on signal detection theory, 
such as Macmillan & Creelman (2005). 

Figure 22.  Receiver operating characteristic (ROC) 
curves 
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The deconvolution filter appears to be slightly more effective at finding 62-foot profile 
exceptions than 31-foot profile exceptions.  A t-test was performed to compare the six 31-foot 
profile d’ values (Table 7) with the six 62-foot profile d’ values (Table 8).  A p-value below 0.05 
was calculated, which indicates that there is a statistically significant difference in the two sets of 
d’ values. 

There may be a logical explanation for the higher sensitivity of the deconvolution filter to 62-
foot wavelengths.  The deconvolution filter was formulated assuming the railcar is a harmonic 
oscillator (Figure 1).  One of the assumptions behind this harmonic oscillator configuration is a 
single (or point) contact between the mass and the base, or in the case of a railcar, between the 
car body and the track (Figure 24).  However, the configuration shown in Figure 24 is clearly not 
accurate since typical railcars have two trucks, and each truck has two axles (Figure 25).  The 
truck center to truck center spacing is typically 59.5 feet. 

 

 
 

 

 

 

 

Figure 23.  Receiver operating characteristic (ROC) 
curves in z-coordinates 
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Figure 26 and Figure 27 show a railcar over a 31-foot and a 62-foot wavelength, respectively.  
When the wavelength in the track becomes shorter than the distance between the two trucks 
(typically 59.5 feet), then the assumption of a single point contact is less valid.  For example, in 
the case of a 31-foot wavelength (Figure 26), it is clear that each truck will individually 
experience the 31-foot deviation.  However, in the case of a 62-foot deviation, the assumption of 
a single point contact is more appropriate since both trucks experience the 62-foot wavelength 
nearly simultaneously (Figure 27).  Therefore, it makes sense that the deconvolution filter would 
be more sensitive to 62-foot wavelengths than to 31-foot wavelengths because a railcar 
traversing a 62-foot wavelength is more in line with the single point of contact harmonic 
oscillator on which the deconvolution filter design is based. 

 

 

 

 

 

Figure 24.  Assumed railcar configuration 

Figure 25.  Typical railcar configuration 
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5.3.2 Comparison to Traditional Methods 
Traditionally, when measuring railcar body accelerations, a 10 Hz low-pass filter is applied to 
the measured car body accelerations.  Then a peak-to-peak threshold of 0.6 g (or sometimes a 
higher value, such as 0.9 g), along with a 1-second moving window, is used as a metric to 
determine the locations for ground verification on the track.  It is interesting to note that using 
this approach would have resulted in no exception locations in the test zone.  In other words, 
there would have been zero hits and zero false alarms, but there would have been 133 misses in 
the case of the Amtrak maintenance threshold for 62-foot chords and 119 misses in the case of 
the Amtrak maintenance threshold for 31-foot chords.  In other words, this traditional approach 
of simply using a low-pass filter along with a peak-to-peak threshold value is not fully effective 
at locating track geometry conditions. 

Figure 26.  Railcar over a 31-foot track 
wavelength 

Figure 27.  Railcar over a 62-foot track 
wavelength 
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5.3.3 Example Waveform from Exception Location Chosen at Random 
One exception location was chosen at random in order to visualize the acceleration and 
displacement waveforms.  The location chosen was flagged by the geometry system as a 62-foot 
right rail surface deviation of 0.98 inches, which exceeds Amtrak’s maintenance threshold of 
0.75 inches (Table 5).  The location was also flagged by the deconvolution filter as a 
maintenance location with 0.38 inches displacement; the threshold for the deconvolution filter 
was 0.375 inches (Table 6) which is half the Amtrak maintenance threshold of 0.75 inches.  The 
location of the exception was approximately 1,540 feet from milepost 85.  The latitude and 
longitude coordinates are 39.335007 and -76.431158, respectively.  Figure 28 shows an overview 
image of the exception location. 

 

Figure 28.  Overhead view of example exception location 
Figure 29 shows a zoomed-out view of the railcar body acceleration waveform and the 
acceleration and displacement waveforms output by the deconvolution filter from the exception 
location.  Three thousand feet (0.57 miles) of data is shown in Figure 29.  Figure 30 is a zoomed-
in view of the same exception location, with 100 feet of data shown.  If one were looking only at 
railcar body accelerations (red plot in Figure 29 and Figure 30) to try and determine poor track 
conditions, this location would likely not be flagged.  There is a “blip” in the railcar body 
accelerations, but it only has a peak-to-peak magnitude of slightly more than 1.5 meter per 
second squared, which is approximately equal to 0.15 g.  However, the accelerations output by 
the deconvolution filter (green plot in Figure 29 and Figure 30) clearly amplify this location. 
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There is also a sudden change in displacement output by the deconvolution filter (orange line in 
Figure 29 and Figure 30).  This sudden change in displacement results in a 62-foot mid-chord 
offset (MCO) of 0.38 inches (dotted blue line in Figure 31), which is slightly greater than the 
threshold value of 0.375 (which is half of Amtrak’s 0.75-inch maintenance threshold). 

 

Figure 29.  Zoomed-out view of exception location 

Figure 30.  Zoomed-in view of exception location 
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Figure 31.  Displacement waveform at exception location 
with mid-chord offset 
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6. Conclusions 

The data collection and analysis presented in this paper demonstrate that the deconvolution filter 
appears to be a better method of detecting track geometry profile exception locations when 
compared with the simpler, traditional method of using peak-to-peak measured railcar body 
acceleration data magnitudes as an indication of poor track conditions.  In the future, additional 
data collection on other types of rail vehicles, such as locomotives, will likely be pursued in 
order to further validate the positive results that have been discussed in this report.  In addition, 
data collection on more than one vehicle in a single train consist might be considered in order to 
determine the repeatability of the data output by the deconvolution filter, as well as determine the 
effect of individual railcar characteristics on the output of the filter.  Also, FRA will consider 
investigating the effectiveness of the deconvolution filter at detecting 124-foot wavelength track 
deviations.14 

If promising results from the deconvolution filter are obtained, real-time implementation of the 
filter will be considered.  A potential system for real-time implementation was developed 
previously by FRA Research and Development (FRA Research Results RR 12-19).  This system 
was used in the data collection effort on the Amtrak geometry car documented earlier in this 
report.  Several issues would have to be addressed if implementation of the filter in real-time 
were to be pursued.  One of the main issues will be whether to assume a natural frequency based 
on the type of vehicle on which data is being collected, or whether to numerically calculate the 
natural frequency (using an FFT algorithm, for example) in real-time in order to estimate the 
natural frequency of the specific railcar on which data is being collected.  The latter approach 
was used in the analysis presented in this report (Figure 2), but the calculation of the FFT was 
done manually rather than in an integrated fashion with the deconvolution filter. 

 

 

                                                 
14 A 124-foot mid-chord offset measurement is called for in the high speed Track Safety Standards (49 CFR 213, 
Subpart G). 
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Appendix A.  Brief Background on Signal Detection Theory 

In signal detection theory, the outcome of a “yes-no” experiment falls into one of four categories: 

 Hit  (or true positive) 

 False alarm  (or false positive) 

 Miss  (or false negative) 

 Correct rejection  (or true negative) 

Table A.1 summarizes these four categories. 

Table A.1.  Signal detection theory categories 

  Response of Observer 

  “Yes” “No” 

State of World 

Defect 
Hit 

(True Positive) 

Miss 

(False Negative) 

No Defect 
False Alarm 

(False Positive) 

Correct Rejection 

(True Negative) 

 

The following formulas relate the probability of a hit to the probability of a miss and the 
probability of a false alarm to the probability of a correct rejection: 

( ) ( )
( ) ( ) 1RejectionCorrect Alarm False

1MissHit
=+

=+
pp

pp
 

In signal detection theory, the sensitivity (commonly denoted by the symbol d’ and pronounced 
“dee-prime”) is defined using the following formula: 

( )[ ] ( )[ ]Alarm FalseHit' pzpzd −=  

where z[p(Hit)] is the inverse of the normal distribution function (z score) associated with p(Hit), 
and z[p(False Alarm)] is the z score associated with p(False Alarm).  Given a specified 
probability, the z score is the corresponding x-axis value of the standard normal distribution. 

Another parameter, commonly known as the percent correct or accuracy, can be used to 
determine the effectiveness of a system at detecting a certain condition.  The accuracy parameter 
is a less rigorous but more intuitive measure of sensitivity than d’.  The percent correct or 
accuracy is calculated using the following formula: 

( ) ( )
( ) ( ) ( ) ( )Alarms FalseMissesRejectionsCorrect Hits

RejectionsCorrect HitsAccuracy
+++

+
=  
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Appendix B.  Number of Hits, Misses, False Alarms, and Correct 
Rejections 

Table B.1 shows the number of hits, misses, false alarms, and correct rejections for the 
deconvolution filter when using Amtrak maintenance thresholds for 31-foot deviations, and 
Table B.2 shows the same information for 62-foot deviations.  These numbers (along with the 
signal detection theory formulas put forth in Appendix A) were used to determine the d’ values 
put forth in Table 7 and Table 8.  The number of correct rejections was calculated by breaking 
the test zone (where speeds exceeded 60 miles per hour) up into 240-foot segments, which 
resulted in 1,848 segments.  Then the number sum of the hits, misses, and false alarms was 
subtracted from 1,848 in order to determine the number of correct rejections.  This is not a 
rigorous approach but will suffice for the purposes of this report. 

 

Table B.1.  Number of hits, misses, false alarms, and correct rejections for 31-foot 
deviations 

Threshold as 
Percent of Amtrak 

Maintenance 
Threshold 

Number of 
Hits 

Number of 
Misses 

Number of 
False Alarms 

Number of 
Correct 

Rejections 

50% 131 8 289 1420 

67% 117 22 140 1569 

80% 89 50 64 1645 

100% 50 89 18 1691 

120% 18.5 121.5 0.515 1709.5 

133% 8.5 131.5 0.5 1709.5 

 

 

 

 

 

 

 

                                                 
15 The 120 percent and 133 percent thresholds for 31-foot deviations had zero false alarms which led to a false alarm 
rate equal to zero for both of these thresholds.  The equation for calculating the d’ sensitivity parameter requires a 
non-zero false alarm rate as well as a non-zero hit rate.  Therefore, a value of 0.5 was added to the hits, misses, false 
alarms, and correct rejections in the 120 percent threshold row and the 133 percent threshold row in Table B.1. 
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Table B.2.  Number of hits, misses, false alarms, and correct rejections for 62-foot 
deviations 

Threshold as 
Percent of Amtrak 

Maintenance 
Threshold 

Number of 
Hits 

Number of 
Misses 

Number of 
False Alarms 

Number of 
Correct 

Rejections 

50% 123 7 535 1183 

67% 124 6 266 1452 

80% 117 13 154 1564 

100% 105 25 63 1655 

120% 72 58 18 1700 

133% 51 79 6 1712 

 

 



 

 36 

References 

Al-Nazer, Leith & Borgovini, Robert J.  Development of an Ultra-Portable Ride Quality Meter.  
FRA Research Results RR 12-19, December 2012. 

Hartog, J.P. Den.  Mechanical Vibrations.  Dover Publications, 1985. 

Lathi, B.P.  Linear Systems and Signals (Second Edition).  Oxford University Press, 2004. 

LePage, Wilbur R.  Complex Variables and the Laplace Transform for Engineers.  Dover 
Publications, 1980. 

Macmillan, Neal A. & Creelman, Douglas C.  Detection Theory:  A User’s Guide (Second 
Edition).  Mahwah, New Jersey:  Lawrence Erlbaum Associates Publishers, 2005. 

Rao, Singiresu S.  Mechanical Vibrations.  Reading, Massachusetts: Addison-Wesley Publishing 
Company, 1986. 

 



 

 37 

Abbreviations and Acronyms 

CFR Code of Federal Regulations 

FFT Fast Fourier Transform 

FRA Federal Railroad Administration 

MCO Mid-Chord Offset 

ROC Receiver Operating Characteristic 

TSS Track Safety Standards 
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