

U.S. Department of
Transportation

Federal Railroad
Administration

Robust Anomaly Detection for Vision-Based
Inspection of Railway Components

Office of Research,
Development,
and Technology
Washington, DC 20590

DOT/FRA/ORD-15/23 Final Report
June 2015

NOTICE

This document is disseminated under the sponsorship of the

Department of Transportation in the interest of information

exchange. The United States Government assumes no liability for

its contents or use thereof. Any opinions, findings and

conclusions, or recommendations expressed in this material do not

necessarily reflect the views or policies of the United States

Government, nor does mention of trade names, commercial

products, or organizations imply endorsement by the United States

Government. The United States Government assumes no liability

for the content or use of the material contained in this document.

NOTICE

The United States Government does not endorse products or

manufacturers. Trade or manufacturers’ names appear herein

solely because they are considered essential to the objective of this

report.

 i

REPORT DOCUMENTATION PAGE Form Approved
 OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

June 2015

3. REPORT TYPE AND DATES COVERED

Technical Report – March 2015

4. TITLE AND SUBTITLE

Robust Anomaly Detection for Vision-Based Inspection of Railway Components

5. FUNDING NUMBERS

DOTFR53-13-C-00032

6. AUTHOR(S)

Rama Chellappa, Xavier Gibert, Vishal Patel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Maryland

A. V. Williams Building

College Park, MD 20742-3275

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Department of Transportation

Federal Railroad Administration

Office of Railroad Policy and Development

Office of Research and Development

Washington, DC 20590

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

DOT/FRA/ORD-15/23

11. SUPPLEMENTARY NOTES

COR: Leith Al-Nazer, Cameron Stuart

12a. DISTRIBUTION/AVAILABILITY STATEMENT

This document is available to the public through the FRA Web site at http://www.fra.dot.gov.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Computer Vision Laboratory at the University of Maryland has completed a two-year research project in which it developed a

library of tools and algorithms that are used to inspect railway tracks with machine vision technology. This technology has been

integrated into a distributed computing framework and a user-friendly review package with a client-server interface. This

framework is built on top of high-quality open-source C++ software libraries and can run on many different platforms, including

Windows, Linux, OS X, and iOS. The software has been thoroughly tested and ENSCO, Inc. has successfully used these tools

during the FRA-sponsored project that evaluated the degradation rates of concrete ties on Amtrak’s Northeast Corridor. Our final

deliverable contains algorithms for crack detection, fastener detection and classification, as well as semantic segmentation for

material classification and anomaly detection.

14. SUBJECT TERMS

visual track inspection, computer vision, concrete tie conditions, fastener inspection, tie

inspection, crack detection, deep learning, distributed computing

15. NUMBER OF PAGES

58

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

 Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE

 Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT

 Unclassified

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 298-102

http://www.fra.dot.gov/

ii

METRIC/ENGLISH CONVERSION FACTORS

ENGLISH TO METRIC METRIC TO ENGLISH

LENGTH (APPROXIMATE) LENGTH (APPROXIMATE)

1 inch (in) = 2.5 centimeters (cm) 1 millimeter (mm) = 0.04 inch (in)

1 foot (ft) = 30 centimeters (cm) 1 centimeter (cm) = 0.4 inch (in)

1 yard (yd) = 0.9 meter (m) 1 meter (m) = 3.3 feet (ft)

1 mile (mi) = 1.6 kilometers (km) 1 meter (m) = 1.1 yards (yd)

 1 kilometer (km) = 0.6 mile (mi)

AREA (APPROXIMATE) AREA (APPROXIMATE)

1 square inch (sq in, in
2
) = 6.5 square centimeters (cm

2
) 1 square centimeter (cm

2
) = 0.16 square inch (sq in, in

2
)

1 square foot (sq ft, ft
2
) = 0.09 square meter (m

2
) 1 square meter (m

2
) = 1.2 square yards (sq yd, yd

2
)

1 square yard (sq yd, yd
2
) = 0.8 square meter (m

2
) 1 square kilometer (km

2
) = 0.4 square mile (sq mi, mi

2
)

1 square mile (sq mi, mi
2
) = 2.6 square kilometers (km

2
) 10,000 square meters (m

2
) = 1 hectare (ha) = 2.5 acres

1 acre = 0.4 hectare (he) = 4,000 square meters (m
2
)

MASS - WEIGHT (APPROXIMATE) MASS - WEIGHT (APPROXIMATE)

1 ounce (oz) = 28 grams (gm) 1 gram (gm) = 0.036 ounce (oz)

1 pound (lb) = 0.45 kilogram (kg) 1 kilogram (kg) = 2.2 pounds (lb)

1 short ton = 2,000 pounds
(lb)

= 0.9 tonne (t) 1 tonne (t)

=

=

1,000 kilograms (kg)

1.1 short tons

VOLUME (APPROXIMATE) VOLUME (APPROXIMATE)

1 teaspoon (tsp) = 5 milliliters (ml) 1 milliliter (ml) = 0.03 fluid ounce (fl oz)

1 tablespoon (tbsp) = 15 milliliters (ml) 1 liter (l) = 2.1 pints (pt)

1 fluid ounce (fl oz) = 30 milliliters (ml) 1 liter (l) = 1.06 quarts (qt)

1 cup (c) = 0.24 liter (l) 1 liter (l) = 0.26 gallon (gal)

1 pint (pt) = 0.47 liter (l)

 1 quart (qt) = 0.96 liter (l)

1 gallon (gal) = 3.8 liters (l)

1 cubic foot (cu ft, ft
3
) = 0.03 cubic meter (m

3
) 1 cubic meter (m

3
) = 36 cubic feet (cu ft, ft

3
)

1 cubic yard (cu yd, yd
3
) = 0.76 cubic meter (m

3
) 1 cubic meter (m

3
) = 1.3 cubic yards (cu yd, yd

3
)

TEMPERATURE (EXACT) TEMPERATURE (EXACT)

[(x-32)(5/9)] F = y C [(9/5) y + 32] C = x F

QUICK INCH - CENTIMETER LENGTH CONVERSION
10 2 3 4 5

Inches

Centimeters
0 1 3 4 52 6 1110987 1312

QUICK FAHRENHEIT - CELSIUS TEMPERATURE CONVERSION

 -40° -22° -4° 14° 32° 50° 68° 86° 104° 122° 140° 158° 176° 194° 212°

°F

 °C -40° -30° -20° -10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100°

 For more exact and or other conversion factors, see NIST Miscellaneous Publication 286, Units of Weights and

Measures. Price $2.50 SD Catalog No. C13 10286 Updated 6/17/98

 iii

Acknowledgements

This work has been made possible through cooperation from the Federal Railroad

Administration’s Office of Research and Development, the National Railroad Passenger

Corporation (Amtrak) and ENSCO, Inc. The authors are grateful to Leith Al-Nazer, FRA’s

Technical Representative, for his guidance and valuable comments during this project. The

authors sincerely thank Felipe Arrate and Daniel Bogachek at the University of Maryland for

their invaluable contributions to this project. The authors also thank Boris Nejikovsky at ENSCO

for his encouragement to pursue research on this topic, as well as Eric Sherrock for helping with

the preparation of the proposal that resulted in this project as well as coordinating this effort. The

authors are also grateful to Jeff Henderson and Cindy Scott at ENSCO, as well as their team of

track inspectors and image reviewers, for their support with data collection and annotation.

Thanks are also extended to Michael Trosino, Michael Craft, Joe Smak and Joe Mascara from

Amtrak for granting permission to use the images that made this work possible as well as

providing guidance during the project.

 iv

Contents

Acknowledgements .. iii

Illustrations .. v

Tables .. vi

Executive Summary .. 1

1. Introduction ... 3
1.1 Background .. 3
1.2 Objectives .. 5
1.3 Overall Approach .. 5
1.4 Scope ... 5
1.5 Organization of the Report .. 7

2. System Architecture.. 8
2.1 General Design Considerations ... 8
2.2 Software design ... 9
2.3 Modular architecture.. 10

3. Vision Client .. 14
3.1 Overview ... 14

4. Crack Detection Module ... 17
4.1 Background .. 17
4.2 Algorithm Description ... 17
4.3 Experimental Results ... 18

5. Fasteners Inspection ... 24
5.1 Approach ... 24
5.2 Experimental Results ... 29

6. Crumbling and Chipped Ties Detection ... 34
6.1 Background .. 34
6.2 Approach ... 35
6.3 Experimental Results ... 37

7. Conclusions and Future Work ... 42
7.1 Industry Feedback ... 42
7.2 General Software Development Roadmap .. 42
7.3 Crack Detection ... 42
7.4 Fastener Detection ... 43
7.5 Crumbling and Chipped Tie Detection .. 43
7.6 Automation and Deployment ... 44
7.7 Future Research Topics ... 44
7.8 Conclusion ... 45

8. References .. 46

Abbreviations and Acronyms .. 49

 v

Illustrations

Figure 1. System configuration as envisioned to be deployed on a track inspection vehicle 11

Figure 2. Default screen layout of the Railway Vision Client. ... 15

Figure 3. Fastener assessment results viewer. .. 15

Figure 4. Fasteners training set review tool. ... 16

Figure 5. Railway Vision Client in twin view mode with fastener detection and semantic

segmentation results overlaid. ... 16

Figure 6. Image separation. ... 21

Figure 7. Crack detection results. ... 22

Figure 8. ROC curves for crack detection. ... 23

Figure 9. Example of defects that our algorithm can detect. .. 24

Figure 10. Object categories used for detection and classification (from coarsest to finest levels).

... 26

Figure 11. Justification for using two classifiers for each object category. 26

Figure 12. Examples of fastener images used to train our detector. ... 29

Figure 13. Feature extraction for fastener detection. .. 30

Figure 14. Confusion matrix on 5-fold cross-validation of the training set using (a) the proposed

method (b) the method described in (Babenko, 2009) with HOG features. 31

Figure 15. ROC curves for the task of detecting defective (missing or broken) fasteners using 5-

fold cross-validation on the training set. ... 32

Figure 16. ROC curves for the task of detecting defective (missing or broken) fasteners on the

85-mile testing set. .. 33

Figure 17. Network architecture. .. 35

Figure 18. Material categories. ... 36

Figure 19. Confusion matrix of material classification on 2.5 million 80 × 80 image patches. ... 38

Figure 20. Semantic segmentation results. ... 39

Figure 21. ROC curve for detecting crumbling tie conditions.. 40

Figure 22. ROC curve for detecting chip tie conditions ... 40

 vi

Tables

Table 1. Dataset summary... 6

Table 2. Data subset used in our experiments... 6

Table 3. Libraries used in this project ... 10

Table 4. Vision Client module overview .. 12

Table 5. Data proxy overview ... 12

Table 6. Process scheduler overview .. 13

Table 7. Anomaly Detection module overview .. 13

Table 8. Comparison of detection performance for different crack detection algorithms. 20

Table 9. Results for detection of ties with at least one defective fastener. 33

Table 10. Material classification results. .. 38

1

Executive Summary

This report discusses the design, development and evaluation of a prototype software package for

detecting railway track anomalies using computer vision. Although the software’s algorithms can

be used on different kinds of tracks, the development team has focused on concrete ties in use on

high-speed rail (HSR) corridors. Detecting HSR track anomalies is more challenging than

finding those on conventional tracks. For example, HSR track requires more frequent inspections

and it usually has shorter maintenance windows than conventional track. Recently, the railroad

industry has been adopting machine vision technology as a complement to inspecting track

manually or other forms of inspection. However, limitations in machine vision system

capabilities, including high false positive rates, inhibit the widespread use of these technologies.

The project’s objective was to advance the state of the art in automatic anomaly detection for

railway track inspection (and other outdoor environments). To accomplish this objective, we

have performed basic and applied computer vision research, designed several anomaly detection

algorithms, and then implemented a prototype software system that can be programmed to detect

cracks, missing/broken fasteners, chips, and crumbling on concrete ties. Because railroads have a

need for deployable systems, project development was focused on methods that can be scaled up

to the image acquisition data rates that are currently used.

To test the anomaly detection algorithms, the team used 329 miles of concrete tie images that

had been collected from three surveys conducted b y ENSCO, Inc. between 2012 and 2013 on

Amtrak’s Northeast Corridor (NEC). These images were scanned into the Euclid computer

cluster at the University of Maryland, then highly customized image annotation tools were

created for ENSCO reviewers to generate the ground truth data that was used to evaluate the

algorithms. The user interface is a client application that was carefully designed to facilitate

evaluation tasks and allow railroad users to quickly review the results of automated detections.

This interface connects to a database through an HTTPS interface to generate annotation reviews

and detection results. Multiple users can access the database to review the same or different

sections of the track.

Three computer vision algorithms are described by this report: 1) A crack detector based on

decomposing images into edge and texture components, 2) a missing/broken fastener algorithm

based on computer vision features and a statistical classifier, and 3) a crumbling/chipped tie

detector based on a material classifier that uses a deep convolutional neural network architecture.

 The crack detector accurately detected the outline of cracks with different sizes and

orientations under a variety of background textures, but the ability to accurately

differentiate between cracks and other edges in the image is not yet mature enough for

practical use.

 The fastener detection algorithm finds the location and type of each fastener, and can

determine whether a fastener is broken or missing with a probability of detection of 98%

and a false alarm rate of 123 FP/mile (false positives per mile assuming 2.5K ties per

mile). However, most false alarms are due to special track work, ballast covering the

fastener and other occluding elements. Among clear ties on regular track, the detection

rate is 98.36% and the false alarm rate is 38 FP/mile. Among fasteners in good condition,

 2

the algorithm can classify the type of fastener among five categories (PR clip, e clip,

fastclip 1, fastclip 2, c-clip, and j-clip) with an accuracy of 98.2%.

 The algorithm for detecting crumbling and chipped ties has two steps. First, the algorithm

employs a multiclass detector that has been trained on ten different types of material

(ballast, wood, rough concrete, medium concrete, smooth concrete, crumbling concrete,

chipped concrete, lubricator, rail, and fastener) to scan each region of the image. This

detector uses a deep convolutional neural network to achieve 93.55 percent accuracy.

Second, the algorithm estimates the likelihood that the area of the tie affected by

crumbling or chipping exceeds a predefined threshold. For defects that are bigger than the

10% threshold (at a false positive rate of 10 FP/mile), the detection rates are 86.06% for

crumbling and 92.11% for chips.

To be a fully automated solution that the railroad industry can adopt, more research will be

needed to address the following:

 The false alarm rate could be further reduced by developing adaptive algorithms that can

operating conditions and the probability distribution of the background clutter.

 The segmentation algorithm used to detect crumbling and chipped ties should be adapted

to filter ballast and other obstructing tie elements that currently cause false crack

detections

 The dataset used in this report contains only concrete ties from the NEC. In order to

validate the performance on more general conditions, more data collection and analysis is

required.

 Other potential research areas that include detection and assessment of other track

components; learning from poorly labeled data; matching, alignment and change

detection of track components; and automated tie grading. Also, the addition to other

channels such as depth or color are worth exploring as well.

In conclusion, this report describes a new approach for inspecting railway tracks using recent

advances in the area of computer-assissted vision and pattern recognition. The algorithms

described in this report have been packaged into an integrated software suite that will allow

different railroad users to configure it for their specific needs. We hope that this work will jump-

start the research and development of new technological solutions in visual track inspection.

 3

1. Introduction

In this section, the team describes the problems that occur when computer vision technology is

used to detect anomalies in railway track components, discusses the modular architecture that

was used to design and integrate the software package system, and explains how potential

algorithms were evaluated.

1.1 Background

To ensure railroad safety, the condition of railway components must be continuously monitored,

Amtrak has discovered that concrete ties encounter different degradation-related problems than

wood ties (Smak, 2012). Although concrete ties have a life expectancy of up to 50 years, they

may fail prematurely for many reasons:

 Alkali-silicone reaction (ASR), which is a chemical reaction between cement alkalis and

non-crystalline (amorphous) silica that forms alkali-silica gel at the aggregate surface

(Shehata & Thomas, 2000). These reaction rims have a very strong affinity with water

and have a tendency to swell. These compounds can produce internal pressures that are

strong enough to create cracks, allowing moisture to penetrate, and thus accelerating the

rate of deterioration.

 Delayed Ettringite Formation (DEF) is a type of internal sulfate attack that occurs in

concrete that has been cured at excessively high temperatures (Sahu & Thaulow, 2004).

 In addition to ASR and DEF, ties can also develop fatigue cracks due to normal traffic or

by being impacted by flying debris or track maintenance machinery. Once small cracks

develop, repeated cycles of freezing and thawing will eventually lead to bigger defects.

Fasteners maintain gage by keeping both rails firmly attached to the crossties. According to the

Federal Railroad Administration (FRA) safety database
1
, in 2013, out of 651 track-related

derailments, 27 of them were attributed to gage widening caused by defective spikes or rail

fasteners, and another 2 to defective or missing spikes or rail fasteners.

Also, in the United States, regulations enforced by the FRA
2
 prescribe visual inspection of high-

speed rail tracks with a frequency of once or twice per week, depending on the class of track

(which specifies maximum authorized speeds for both freight and passenger trains). These

manual inspections are currently performed by railroad personnel, either by walking on the

tracks or by riding a hi-rail vehicle at very low speeds. However, such conventional visual

inspections of mainlines are subjective and do not produce an auditable visual record. In

addition, railroads usually perform automated track inspections with specialized track geometry

measurement vehicles within an interval of 30 days or less between inspections. These

automated inspections can directly detect gage widening conditions. However, it is preferable to

find fastening problems before they develop into gage widening conditions.

Since the pioneering work by Cunningham, Shaw, & Trosino (2000) and Trosino, Cunningham,

& Shaw (2002), machine vision technology has been gradually adopted by the railway industry

1
 http://safetydata.fra.dot.gov

2
 49 CFR 213 -- Track Safety Standards

 4

for track inspection. Their first generation systems could collect images of the railway right of

way and store them for later review, but the images were not used in for automated detection of

anomalies or defects. As faster processing hardware became available, several vendors began to

introduce vision-detection systems with automation capabilities.

The VISyR system, which detects hexagonal-headed bolts using two 3-layer neural networks

(NN) running in parallel, is described in Marino, Distante, Mazzeo, & Stella (2007) and De

Ruvo, Distante, Stella, & Marino (2009). Both NNs use the 2-level discrete wavelet transform

(DWT) of a 24×100 pixel sliding window (their images use non-square pixels) as a input for

generating a binary output that indicates the presence of a fastener. However, the first NN uses

Daubechies wavelets, while the second uses Haar wavelets; the wavelet decomposition is

equivalent to performing edge detection at different scales with two different filters. Both neural

networks are trained with the same examples. The final decision is made using the maximum

output of each neural network.

The VisiRail system for joint bar inspection is discussed in Gibert, Berry, Diaz, Jordan,

Nejikovsky, & Tajaddini (2007) and Berry, Nejikovsky, Gibert, & Tajaddini (2008). The system

is capable of collecting images on each rail side, and finding cracks on joint bars using edge

detection and a Support Vector Machine (SVM) classifier that analyzes visual features extracted

from these edges.

Babenko (2009) describes a fastener detection method based on a convolutional filter bank that is

applied directly to intensity images. Each type of fastener has a single filter associated with it,

whose coefficients are calculated using an illumination-normalized version of the Optimal

Tradeoff Maximum Average Correlation Height (OT-MACH) filter as seen in Mahalanobis,

Kumar, Song, Sims, & Epperson (1994). This approach allowed accurate fastener detection and

localization and it achieved over 90% fastener detection rate on a dataset of 2,436 images.

However, the detector was not tested on longer sections of track.

Resendiz, Hart, & Ahuja (2013) discusses how the authors classified textures with a bank of

Gabor filters then used an SVM to determine the location of rail components such as crossties

and turnouts. They also use the MUSIC algorithm to find spectral signatures to determine

expected component locations. In Li, Trinh, Haas, Otto, & Pankanti (2014), the authors describe

a system for detecting tie plates and spikes. Their method, which is described in more detail in

Trinh, Haas, Li, Otto, & Pankanti (2012), uses an AdaBoost-based object detector as seen in

Viola & Jones (2001) and employs a model selection mechanism which assigns the object class

that produces the highest number of detections within a window of 50 frames.

Recent advances in CMOS imaging technology have led to commercial-grade line-scan cameras

that can capture images with high resolution and line rates of up to 140 KHz. High-intensity

LED-based illuminators are available with life expectancies in the range of 50,000 hours

providing nearly maintenance-free operation over several months. Therefore, technology that

enables autonomous visual track inspection from an unattended vehicle (such as a passenger

train) may become a reality in the not-too-distant future. Now that the systems integration

challenges are solved, we expect that there will be a surge in applications in the near future.

 5

1.2 Objectives

The goals of this project were two-fold:

1. Research novel computer vision techniques for detection of flaws in railway images,

and

2. Develop these algorithms in software and demonstrate them with real data.

1.3 Overall Approach

This project aimed to facilitate the adoption of the newly-developed technology by the railroad

industry. Technology transfer occurred during this project, including proof-of-concept code and

usable test software. The system was evaluated by our industry partners, so more specific

requirements could be gathered and future deployments could be facilitated. This process will

facilitate future integration with systems used by the industry, thereby avoiding delays in

technology deployment. To ensure a smooth technology transfer, we followed industry software

development practices to guarantee code modularity, maintainability, verifiability and

reproducibility.

1.4 Scope

High Speed Rail (HSR) track anomalies are harder to find than conventional track anomalies

because more frequent inspections are required and shorter maintenance windows are available.

Machine vision technology is being adopted by the industry to complement other forms of

inspection.

This research effort is designed to provide the rail industry with the latest advances in vision-

based anomaly detection and machine learning algorithms, and existing as well as new

algorithms have been used during this project. It produced a prototype software module that

takes images of rail components as its input and returns the position, size and type of each

detected anomaly with a corresponding score. This research has been tested for three safety

applications of special concern to high speed and intercity passenger rail inspectors:

1) Detection of cracks on concrete ties.

2) Detection of missing and broken rail fasteners.

3) Detection of crumbled and chipped concrete ties.

1.4.1 Dataset

The algorithms’ performance has been demonstrated using data collected from concrete tie track

and the tools have been designed to be relatively user-friendly.

This anomaly detection module has been demonstrated with CTIV, a visual track inspection

system that is used by FRA, ENSCO, and the rail industry. It was used to collect the data used in

this report and the FRA project “Concrete Tie Degradation Assessment.” The images were

collected at a resolution of 0.43 mm/pixel and a single color channel at 8 bits per pixel. ENSCO

provided raw images and the output of their tie detection algorithm, while Amtrak provided

metadata such as tie installation year, tie manufacturer, track speed, curvature, and annual

tonnage. All the ties in this dataset are made of reinforced concrete, and they were manufactured

by San-Vel or Rocla then installed between 1978 and 2010. The collected images were

 6

automatically stitched together and saved into several files, each containing a 1-mile image. The

dataset is summarized in Table 1.

Table 1. Dataset summary.

Survey Date # Miles Data Size # Ties
Ties w/

conditions

Ties w/

full

annotations

BAA_Test1 August 2012 97 3.5 TB 236,578 25,314 5,005

BAA_Test2 April 2013 112 4.0 TB 281,040 2,150 1,101

BAA_Test3 Sept. 2013 120 3.7 TB 338,730 2,008 1,881

Since only a subset of the data was fully reviewed by ENSCO personnel during the tie

degradation assessment, in this report we publish results based on that subset. We selected all the

miles from the first 2 surveys that were manually aligned by ENSCO reviewers. This subset

contains 85 miles of continuous trackbed images. Then we verified that all the tie boundaries in

this subset were accurate after correcting invalid tie detections visually. Table 2 summarizes the

data subset that was used for our experiments in Sections 5 and 6.

Table 2. Data subset used in our experiments.

MP range Track # Surveys MP range Track # Surveys

189 1 1, 2 173 2 1, 2

191-194 1 1, 2 176-177 2 1, 2

198-199 1 2 181-184 2 1, 2

201 1 2 186 2 1, 2

203 1 2 190-191 2 1, 2

207-209 1 2 192 2 1, 2

210-211 1 1, 2 193-197 2 2

212-213 1 2 198 2 1, 2

143-144 2 1, 2 199-203 2 2

159 2 2 205 2 2

160-161 2 1, 2 206 2 1, 2

162 2 2 207-208 2 2

163 2 1, 2 209 2 1, 2

164-167 2 2 210-211 2 2

170-171 2 1, 2

 7

1.5 Organization of the Report

The rest of this report is organized as follows:

 Section 2 describes the general design considerations and the system architecture

 Section 3 describes the front-end module (the Vision Client)

 Section 4 describes the crack detection algorithm

 Section 5 describes the fastener inspection algorithm

 Section 6 describes the material identification and chip/crumbling detection algorithm

 Section 7 discusses the conclusions of this work and potential future research directions

 Section 8 provides references to related material

 8

2. System Architecture

This section describes the overall architecture of our system.

2.1 General Design Considerations

In this project, we designed a data processing and manipulation system that extracts information

from large amounts of visual data. To ensure that the software meets current and future

requirements, while minimizing design and implementation risks, the design has the following

characteristics:

 Simplicity: If there are multiple approaches to implementing a feature, the least complex

approach to meeting the requirements shall be selected. Simple interfaces based on standard

protocols shall be exposed to developers and we shall prefer external libraries that provide a

simple and consistent interface.

 Data locality: Data processing shall be scheduled to minimize the need of large data

transfers. For instance, all the operations on a single piece of data (such as an image) should

be performed on the same node, and intermediate results should be reused locally. We can

still take advantage of parallel processing on the same image, but this parallelism should be

limited to using multiple threads on the same node, and not by using separate nodes. When

GPU hardware is used to perform computations, all processing steps shall be performed by

the same GPU device to avoid time-consuming transfers of intermediate results. However,

local memory transfers between host and GPU are still faster than remote transfers so any

CPU processing that needs to be done on GPU-generated results should be done in the same

node, even if there are other nodes with faster CPUs.

 Throughput vs. Latency: For the applications that are envisioned in this project, achieving

maximum average throughput is more important than minimizing worst-case latency.

Therefore, the scheduling will be designed for maximum resource utilization except for user

interface threads, which will be granted higher scheduling priority than processing threads.

 Accuracy vs. Speed: For research purposes, the results must be exactly repeatable.

Therefore, we will only select an optimization strategy that generates the same output for the

same input. Thus, if there are algorithms that could be executed on either CPU or GPU and

these algorithms involve floating point operations, their scheduling should be deterministic

and for a given image, such operation must be performed by the same type of device, since

different platforms use different numbers of significant digits and rounding methods. Also,

since processors have internal floating-point registers that have higher precision than the

operands, different processors may generate different results. The results are not guaranteed

to be the same even on the same processor if different compiler settings are used, because

certain math functions that can be compiled to a 64-bit binary can produce different results in

the corresponding 32-bit binary. This is also the case across CUDA computer capabilities.

For example, code running on a GPU with compute capability 2.0 takes advantage of

optimizations that are not available on a device with compute capability 1.1, so results are

not guaranteed to be the same. Therefore, the only way to ensure that the results are always

the same is to run the same binary on the same processor type. Although this consideration is

important during research, these differences are not statistically significant, so in practical

deployments it will be possible to enable such optimizations.

 9

 Resource utilization: To avoid processing bottlenecks, the scheduler shall use load

balancing strategies to ensure that resource utilization across the cluster is almost constant.

 Handover: The software should support dynamic scheduling of processes across the cluster.

Since the computing cluster is shared with other projects, jobs can only be scheduled for a

limited length of time (wall time). Therefore, the process scheduler will be required to

“reroute” tasks whenever a process terminates or a new process is launched to keep the

processing flow in place.

 Reproducibility: The software should produce exactly repeatable results. This means that

any algorithm that relies on random numbers should use a pseudorandom number generator

that has been initialized with a deterministic seed which only depends on the input data, and

the state of the generator should not be shared across threads. Also, all parallel paths should

have synchronized merging, and all data transfers should be atomic.

 Testability: To facilitate debugging, the software shall provide several intermediate test

points, so that for any error condition that may arise, we can easily build a unit test to help

debug and fix it.

 Error handling: For research purposes, an error that leads to an undetermined state, such as

data corruption, shall be considered a bug and shall immediately abort the data processing

and notify the user. Timeouts shall also be considered bugs and shall also be treated as

unrecoverable errors.

 Logging: The framework shall support centralized logging of events.

The following considerations will arise whenever we want to deploy this software into a real

visual track inspection vehicle:

 Causality: If all the data is available, it is possible to infer a better decision if the system

analyzes all the data at once (batch processing). However, in practice, the user does not want

to wait until all the data is collected but he or she usually prefers to get results as soon as

possible. Therefore, the system will have to provide results based on data collected up to a

certain time. This sequential processing will be implemented with a fix delay, so it is possible

to use some data “ahead” of the current location.

 Direction independence: Track inspection systems are usually expected to provide the same

results independently from the direction the vehicle travelled then the data was acquired. This

symmetry requirement, combined with the causality requirement implies that the inference

and the decision must be performed using only data within a fixed window length. Although

this symmetric mode of operation may make sense in an unattended setting, if we allow the

system to learn from user feedback, the results will no longer be direction independent.

Therefore, we will not take this constraint into consideration.

2.2 Software design

2.2.1 Programming languages

We have used C++ for all the code in this project. We have taken advantage of Qt's C++

extensions, and used Qt's signal/slot mechanism for event driven code. This code needs to be

preprocessed with moc, the meta-object compiler provided with the Qt framework, but moc is

 10

available for all major OSs so this is not a limitation. We have used MATLAB to quickly

prototype some algorithms, but we have ported them to C++ due to the throughput limitations of

MATLAB code. GPU code has been written in CUDA C++, which is an extension of the C++

programming language. CUDA C++ needs to be compiled with NVIDIA's nvcc compiler. The

nvcc compiler is also available for all major OSs.

2.2.2 Software libraries

We have used third party libraries to speed up software development. To guarantee that the

software is portable, we have given preference to libraries that are open-source and are available

under a public license. For functionality that is not available from open-source libraries, we have

used libraries that are well supported by the vendor, have a large user base, and are available

under both Linux and Windows. We avoided using any software component that requires any

payment of per user or per CPU royalties because that would have limited our ability to transfer

the technology. Fortunately, there are plenty of high-quality libraries that meet these

requirements. Table 3 enumerates all the third party libraries and frameworks that we have used

in this project.

Table 3. Libraries used in this project.

Library Description and Purpose Version License

Qt Portable application framework, user

interface, messaging and threading

5.3.1 LGPL

OpenCV Image processing and computer vision 2.4.9 BSD

BVLC Caffe Deep learning with convolutional neural

networks

Rc BSD

CUDA SDK Parallel computing on GPU 6.5.14 Freeware

Intel IPP Optimized image processing primitives 2013 sp1.1.106 Commercial

2.3 Modular architecture

The software for this project has four main modules. These modules have been designed to

interface with each other, but the interface is open. In the future, this will facilitate the addition

of new modules or the reconfiguration of existing ones, enabling new applications. The modules

have generic components, so that the basic functionality can be reused to create specialized

modules for specific applications such as tie crack detection, missing fastener detection or

crumbling tie detection. In this section we only describe the generic functionality of each

module. Figure 1 shows a potential system configuration using the components described in this

report.

 11

Figure 1. System configuration as envisioned to be deployed on a track inspection vehicle

 12

2.3.1 Vision Client

This module is the front-end of the framework and it contains the user interface. The Vision

Client can be used to view data, edit annotations, inspect intermediate results, and launch

processing tasks. Section 3 provides more details about the client.

Table 4. Vision Client module overview.

Inputs Interactive user input, data from backend

Outputs Control messages to backend, user-generated data

Responsibilities Data annotation, data review, launching of processing, monitoring

Interactions Data proxy, process scheduler

Preconditions It depends on the data operation performed by the user

Postconditions Annotations will be updated (if the user has modified them)

2.3.2 Data Proxy

The data proxy allows all other components to communicate with each other. It listens to two

different ports: one implements the HTTP protocol to serve data objects and data files and the

other provides event notifications. The HTTP server supports both GET and POST commands.

The main function of the data proxy is to serve as a repository of data objects. This server also

accepts requests for raw data in case the applications cannot directly access the data. The data is

fetched from the shared repository and is transferred via HTTP. We have configured a local

Apache web server as a reverse proxy to reroute HTTP traffic over HTTPS, so the data is always

transferred securely through the Internet.

Table 5. Data proxy overview.

Inputs Data requests from other modules

Outputs Data replies, event notifications

Responsibilities
Serve as a repository of data objects. Serve as an interface to the data, so other

modules can safely access it. Send notifications to modules

Interactions All other modules

Preconditions None

Postconditions Always reachable

2.3.3 Process Scheduler

The process scheduler abstracts the structure of the computing cluster for the rest of the system.

The scheduler is responsible for launching, monitoring and terminating processes that run on

several computers across the network. In our current implementation, the process scheduler is

integrated within the data proxy.

 13

Table 6. Process scheduler overview.

Inputs
Commands from front end, status from processing modules, event

notifications from data proxy

Outputs Commands to processing modules, commands to Torque

Responsibilities
Launch processing modules, schedule processing operations on the data, send

commands to processing modules

Interactions All other modules

Preconditions Data proxy is running

Postconditions Processing modules are running/stopped

2.3.4 Anomaly detection

This module runs image processing and image understanding algorithms. The anomaly detection

module offers one or more of the following capabilities depending on how the command line

arguments and compilation options are set:

 Preprocessing

 Crack detection

 Fasteners training

 Fasteners testing

 Texture testing

Table 7. Anomaly Detection module overview

Inputs Data object containing raw images or preprocessed data

Outputs Data object containing detection results or processed data

Responsibilities Run algorithms on data

Interactions Data proxy, process scheduler

Preconditions Raw data or object containing preprocessed data has been posted

Postconditions Preprocessed data object is created

 14

3. Vision Client

In this section, we describe the front-end to the anomaly detection framework.

3.1 Overview

The UMD Railway Vision Client (the client) provides the user interface to the railway data

repository. The purpose of the client is to:

1) Visualize the results of anomaly detection algorithms and validate or reject automated

detections,

2) Generate ground truth data to be used to train such algorithms,

3) Provide a user interface for active learning (user-assisted) algorithms

The client can currently:

• Access the data repository

• Provide user authentication and encryption for secure data access

• Index images

• Display images

• Scroll through continuous 1 mile images

• Insert/remove/edit defect bounding boxes

• Provide pixel-level annotation of conditions

• Generate a side-by-side display of data from multiple surveys

• Transfer defect annotations between surveys

• Estimate of crack width/height/area and analysis of crack growth rates

• Query tie conditions with ability to save and retrieve user queries

• Query automatically detected fastener conditions

• Query automatically detected crumbling and chipped ties

• Filter queries to a subset of surveys and/or type of track

• Navigate quickly through search results

• Export filtered or unfiltered component lists including multiple surveys

• Export defect lists including multiple surveys

• Export filtered or unfiltered fastener lists with location, fastener type and fastener

condition

• Insert/remove/edit tie bounding boxes

• Automatically align tie images between different surveys

• Provide multiplatform support (Windows/Linux/Mac/iOS)

 15

In Figure 2, the client displays a broken tie. The client’s left panel provides a hierarchical view

of all the images in the repository, the right panel provides an aerial view of the track that is

being inspected, and the bottom panel provides a view of the whole tie with metadata, while the

central panel provides a close up of the currently selected defect and allows the user to zoom and

scroll. This view can scroll through one mile of data.

The software contains menu options that allow the user to access specialized functions. For

example, Figure 4 shows the interface for annotating fastener types to train the fastener detection

algorithm, Figure 3 shows the interface for reviewing the results of fastener detection, and Figure

5 shows the effects of material classification and semantic segmentation on a crumbling tie. The

Vision Client also supports twin mode (Figure 5), where images of the same tie from different

surveys can be compared side-by-side. These are just a few examples of the capabilities offered

by the Vision Client.

Figure 2. Default screen layout of the Railway Vision Client.

Figure 3. Fastener assessment results viewer.

 16

Figure 4. Fasteners training set review tool.

Figure 5. Railway Vision Client in twin view mode with fastener detection and semantic

segmentation results overlaid.

 17

4. Crack Detection Module

In this section, we describe the algorithm for detecting cracks and extracting crack measurements

such as length of crack centerline and average crack width. Our crack detector is based on the

Discrete Shearlet Transform (DST). Shearlets have emerged in recent years as one of the most

successful methods for the multiscale analysis of multidimensional signals. Unlike wavelets,

shearlets form a pyramid of well-localized functions that are defined not only over a range of

scales and locations, but also over a range of orientations and with highly anisotropic supports.

As a result, shearlets handle the geometry of multidimensional data much more effectively than

traditional wavelets, and this has been exploited in a wide range of applications from image and

signal processing.

4.1 Background

Detecting cracks on concrete structures is a difficult problem, due to the changes in width and

direction of the cracks as well as the variability in the surface texture. This problem has recently

received considerable attention. Redundant representations, such as undecimated wavelets, have

been extensively used for crack detection (Subirats, Dumoulin, Legeay, & Barba, 2006)

(Chambon & Moliard, 2011). However, wavelets have poor directional sensitivity and detecting

weak diagonal cracks can be difficult. To overcome this limitation, Ma, Zhao, & Hou (2008)

proposed the use of the nonsubsampled contourlet transform (Cunha, Zhou, & Do, 2006) for

crack detection. However, all these methods rely on the assumption that the background surface

can be modeled as additive white Gaussian noise and this assumption leads to matched filter

solutions. Real images textures are highly correlated and applying linear filters causes poor

performance.

To address this limitation, we adopted a completely new approach to crack detection based on

separating the image into morphological distinct components using sparse representations,

adaptive thresholding and variational regularization. This technique was pioneered by Stark et al.

(Starck, Elad, & Donoho, 2005) and later extended and generalized by many authors such as

Bobin, Starck, Fadili, Moudden, & Donoho (2007), Easley, Labate, & Negi (2013), and

Kutyniok & Lim (2011). In particular, we will use the Iterative Shrinkage Algorithm with a

combined dictionary of shearlets and wavelets to separate cracks from background texture.

4.2 Algorithm Description

We model an image x containing cracks on textural background as a superposition of a crack

component 𝑥𝑐 with a textural component 𝑥𝑡:

𝑥 = 𝑥𝑐 + 𝑥𝑡

Let 𝛷1 and 𝛷2 be the dictionaries corresponding to wavelets and shearlets, respectively. We

assume that 𝑥𝑐 is sparse in a shearlet dictionary 𝛷1 and similarly 𝑥𝑡 is sparse in a wavelet

dictionary 𝛷2. That is, we assume that there are sparse coefficients 𝑎𝑐 and 𝑎𝑡 so that 𝑥𝑐 = 𝛷1𝑥𝑐

and 𝑥𝑡 = 𝛷2𝑎𝑡. Then, one can separate these components from an 𝑥 via the coefficients 𝑎𝑐 and

𝑎𝑡 by solving the following optimization problem:

(𝑎̂𝑐, 𝑎̂𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎𝑐,𝑎𝑡
𝜆‖𝑎𝑐‖1 + 𝜆‖𝑎𝑡‖1 +

1

2
‖𝑥 − 𝛷1𝑎𝑐 − 𝛷2𝑎𝑡‖2

2,

 18

where for an n-dimensional vector b, the ℓ1 norm is defined as ‖𝑏‖1 = ∑ |𝑏𝑖|𝑖 . This image

separation problem can be solved efficiently using an iterative shrinkage algorithm proposed in

(Kutyniok & Lim, 2011).

4.3 Experimental Results

In our experiments, we used symlet wavelets with four decomposition levels to generate 𝛷2 and

a 4-level shearlet decomposition with Meyer filters of sizes 80 × 80 on all four scales, eight

directional filters on the first three scales, and 16 directional filters on the forth scale, to generate

𝛷1. To assess the performance of the separation algorithm, we calculated the ROC curves for

each image using the following detection methods:

a) Shearlet-C: This method takes advantage of the Parseval property of the shearlet transform

and performs crack detection directly in the transform domain. We first decompose the image

into cracks and texture components using Iterative Shrinkage with a shearlet dictionary and a

wavelet one. Instead of using the reconstructed image, we analyze the values of the shearlet

transform coefficients. For each scale in the shearlet transform domain, we analyze the

directional components corresponding to each displacement and collect the maximum

magnitude across all directions. If the sign of the shearlet coefficient corresponding to the

maximum magnitude is positive, we classify the corresponding pixel as background,

otherwise we assign the norm of the vector containing the maximum responses at each scale

to each pixel and we apply a threshold.

b) Shearlet-I: We first decompose the image into cracks and texture components as described

for the previous method. Then, we apply an intensity threshold on the reconstructed cracks

image.

We compare our results to the following two basic methods not based on shearlets:

c) Intensity: This is the most basic approach, which only uses image intensity. After

compensating for slow variations of intensity in the image, we apply a global threshold.

d) Canny: We use the Canny edge detector (Canny, 1986) as implemented in MATLAB using

the default 𝜎 = √2 and the default high to low threshold ratio of 40%.

After using a low-level detector, it may be necessary to remove small isolated regions

corresponding to false detections due to random noise. This postprocessing step may reduce the

false detection rate on intensity-based methods. However, to provide an objective comparison,

we have generated the experimental results without running any postprocessing. We leave the

perfomance analysis of a complete crack detector for future work.

To evaluate the performance of each crack detector, we manually annotated the crack pixels in

each image. To mitigate the effect of ambiguous segmentation boundaries, we annotated the

boundaries around the cracks as tightly as possible (making sure that only pixels completely

contained inside the crack boundaries are annotated as such) and defined an envelope region

around each crack whose labels are treated as “do not care”. Formally, let Ω denote the set of

pixels in the image, and F (foreground) denote the set of pixels labeled as cracks. We define the

set B (backgrond) as

𝐵 = {𝑥 ∈ 𝛺: min
𝑓∈𝐹

‖𝑥 − 𝑓‖ > 𝛿},

 19

where ‖𝑥 − 𝑓‖ denotes the Euclidean distance between sites 𝑥 and 𝑓. In our experiments we

used 𝛿 = 3. To account for possible small inaccuracies in the ground truth, we performed a

bipartite graph matching between the detected crack pixels and the crack pixels in the ground

truth. For our experiments, we allow matching within a maximum distance of two pixels. This

choice of matching metric does not penalize crack overestimation errors as long as these errors

are contained in such envelope. This allows us to decouple errors in estimating the position of

the crack centerline from errors in estimating the crack width, which is more sensitive to lighting

variations. Let D be the set of pixels detected as cracks by a given detector and

𝑡𝑝 = |𝐷 ∩ 𝐹| 𝑓𝑛 = |𝐷̅ ∩ 𝐹| 𝑝 = 𝑡𝑝 + 𝑓𝑛 = |𝐹|

𝑡𝑛 = |𝐷̅ ∩ 𝐵| 𝑓𝑝 = |𝐷 ∩ 𝐵| 𝑛 = 𝑡𝑛 + 𝑓𝑝 = |𝐵|

The probability of detection (PD) and false alarm (PF) are defined as

𝑃𝐷 =
𝑡𝑝

𝑝
 𝑃𝐹 =

𝑓𝑝

𝑛

A sequence of admissible detectors 𝐷|𝑃𝐹≤𝜖 for a given false alarm rate 𝜖, would produce

monotonically increasing detection rates, 𝑃𝐷|𝑃𝐹≤𝜖. The Receiver Operating Characteristic

function (ROC curve) is defined as PD as a function of PF.

𝑅𝑂𝐶(𝑥) = max
𝜖≤𝑥

𝑃𝐷|𝑃𝐹≤𝜖

One commonly used metric is the Area Under the ROC Curve (AUC), defined by

𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶(𝑥)𝑑𝑥
1

0

,

which corresponds to the probability that a sample randomly drawn from F will receive a score

higher than a sample randomly drawn from B. AUC provides a measure of the average

performance of the detection across all possible sensitivity settings. Although it is an important

measure, practically we are interested in knowing how well the detector will work when we

choose a particular sensitivity setting. For this reason, we have selected Constant False Alarm

Rate (CFAR) detectors with PF = 10
-3

 and PF = 10
-4

 and we report the corresponding PD. For

completeness, we also report the F1 score (also known as the Dice similarity index), which is

defined as

𝐹1 =
2 𝑡𝑝

2 𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝

In this report, we report the peak 𝐹1 score for all methods. The Canny edge detection method

(Canny, 1986) estimates the location of the crack boundary, while the other three methods

estimate the location of the crack itself. To have a meaningful comparison, we have generated a

separate ground truth masks for the crack outline, so we can use the same matching metric on the

Canny method. For each method, we have used the same algorithm parameters on all the images.

Figure 6 shows three example images of typical cracks on each type of background texture

(coarse, medium and smooth). The images have been intensity-normalized, and cropped into

patches of 512 × 512 pixels. This image size is dyadic, so that we can achieve fastest

computation of the FFT-based Shearlet transform and is enough to cover the whole width of an

 20

8” tie. Figure 7 shows qualitative crack detection results and Figure 8 shows the ROC curves for

all tested methods.

Table 8 summarizes our results. We observe that our shearlet-based detectors perform

consistently well on all evaluation metrics. Note that, on Image 3, the Shearlet-I method, which

is based on intensity in the reconstructed image, produces better results than all other methods.

Due to its simplicity, intensity-based methods are still being used. For example, the system

recently proposed in Oliveira & Correia, 2013) uses pixel intensities to detect cracks on road

pavement. Based on the results from Table 8, we can conclude that, with the proper image

preprocessing, intensity can still be a powerful feature for crack detection. However, the

detection performance provided by shearlet-based features is more consistent across images. In

future work, we will further explore the potential of combining both intensity and shearlet-based

features. With any of the methods described in this section, it may be possible to further remove

small artifacts in the detected crack boundary by adding a postprocessing step as was done in

(Chambon & Moliard, 2011).

Table 8. Comparison of detection performance for different crack detection algorithms.

Image Method AUC F1 score 𝑷𝑫𝑷𝑭=𝟏𝟎−𝟑 𝑷𝑫𝑷𝑭=𝟏𝟎−𝟒

1

Shearlet-C 0.99915 0.79916 0.8398 0.6746

Shearlet-I 0.99908 0.65810 0.7140 0.4247

Intensity 0.99874 0.73188 0.7411 0.5722

Canny 0.94457 0.27752 0.2114 0.1099

2

Shearlet-C 0.99999 0.98841 0.9989 0.9895

Shearlet-I 0.99557 0.62705 0.4837 0.3964

Intensity 0.99037 0.55404 0.4371 0.3342

Canny 0.99043 0.81787 0.6425 0.4462

3

Shearlet-C 0.99934 0.76418 0.8368 0.5874

Shearlet-I 0.99977 0.82353 0.9101 0.7098

Intensity 0.99650 0.45992 0.0543 0.0000

Canny 0.96248 0.19436 0.0000 0.0000

 21

Figure 6. Image separation.

(a) Original images separated into (b) cracks and (c) textural background components, and

(d) crack ground truth

 22

Figure 7. Crack detection results.

(a) Using shearlet coefficients (Shearlet-C) (b) using thresholding in the image reconstructed

using shearlets (Shearlet-I) (c) using intensity thresholding in the original image, and (d) using

Canny edge detection.

 23

Figure 8. ROC curves for crack detection.

(a) Image 1, (b) image 2, (c) image 3.

 24

5. Fasteners Inspection

Fasteners maintain the rails in a fixed position and they are critical railway components. If they

fail, train derailments will occur due to gage widening or wheel climb, so their condition needs to

be periodically monitored. Several computer vision methods have been proposed in the literature

for track inspection applications, but these methods either require laser ranging or are not robust

enough to deal with the clutter and background noise that is present in the railroad environment.

In this section, we demonstrate that it is possible to inspect tracks for missing and broken

fasteners with computer vision techniques that only use grayscale images and need no additional

sensors. We have achieved this by 1) carefully aligning the training data, 2) reducing intra-class

variation, and 3) bootstrapping difficult samples to improve the classification margin. Using the

histogram of oriented gradients features and a combination of linear SVM classifiers, the

algorithm described in this section can inspect ties for missing or defective rail fastener problems

with a probability of detection of 98% and a false alarm rate of 1.23%.

5.1 Approach

In this section, we describe the details of our proposed approach to automatic fastener detection.

Figure 9 shows the types of defects that our algorithm can detect. The detectors have been tested

on concrete ties, but the framework can easily accommodate other types of fasteners and ties.

Figure 9. Example of defects that our algorithm can detect.

Blue boxes indicate good fasteners, orange boxes indicate broken fasteners, and purple boxes

indicate missing fasteners. White numbers indicate tie index from last mile post. Other numbers

indicate type of fastener (for example, 0 is for e-clip fastener).

5.1.1 Overview

Due to surface variations that result from grease, rust and other elements in the outdoor

environment, segmenting railway components is very difficult. Therefore, we avoid that task by

using a detector based on a sliding window that we run over the “inspectable” area of the tie. The

 25

detector uses the well-known descriptor based on the Histograms of Oriented Gradients (HOG)

(Dalal & Triggs, 2005), which was originally designed for pedestrian detection, but it has been

proven effective for a variety of object detection tasks in unconstrained environments. Though

fasteners are usually located very close to the rail, we need to search over a much broader area

because on turnouts (switches and frogs) fasteners are positioned farther away from the rail, with

more varied configurations.

5.1.2 Classification

Our goal is to simultaneously detect the most likely fastener location within each predefined

Region of Interest (ROI), and then classify such detections into one of three basic conditions:

background (or missing fastener), broken fastener, and good fastener. Then, for good and broken

fastener conditions, we want to assign class labels for each fastener type (PR clip, e-clip, fastclip,

c-clip, and j-clip).

Figure 10 shows the complete categorization that we use, from coarsest to finest. At the coarsest

level, we want to classify fastener vs. unstructured background clutter. The background class

also includes images of ties where fasteners are completely missing because: 1) it is very

difficult to train a detector to find the small hole left on the tie after the whole fastener has been

ripped off, 2) we do not have enough training examples of missing fasteners, and 3) most

missing fasteners are on crumbled ties for which the hole is no longer visible.

Once we detect the most likely fastener location, we want to classify the detected fastener within

the broken vs. good spectrum and then classify it into the most likely fastener type. Although this

top-down reasoning works for a human inspector, it does not work accurately in a computer

vision system because both the background class and the fastener class have too much intra-class

variations. As a result, we employ a bottom-up approach.

 26

Figure 10. Object categories used for detection and classification (from coarsest to finest

levels).

Since we use inner products, our detector may resemble the correlation-based approach used in

(Babenko, 2009), but there are three key differences that set us apart: 1) our input is a HOG

feature vector rather than raw pixel intensities, 2) we use a linear SVM to learn the coefficients

of the detection filter, 3) we use a second classifier to reject misclassified fastener types.

 (a) (b)

Figure 11. Justification for using two classifiers for each object category.

Shaded decision region corresponds fastener in good condition, while white region

corresponds to defective fastener. Blue circles are good fasteners, orange circles are

missing	
(background)	

broken	

PR	clip	 e	clip	 fastclip	 c	clip	 j	clip	

Level	1	

Level	2	

Level	3	

Defec ve	 Non-defec ve	

Level	4	

good	

fastener	

ROI	

 27

broken fasteners, and purple circles are background/missing fasteners. (a) Classification

region of good fastener vs. rest (b) Classification region of intersection of good fastener

vs. background and good fastener vs. rest-minus-background. The margin is much wider

than using a single classifier.

To achieve the best possible generalization at test time, we have based our detector on the

maximum margin principle of the SVM. Although SVM is a binary classifier, it is

straightforward to build a multi-class SVM, for example, by combining several one-vs-rest or

one-vs-one SVM classifiers, either by a voting scheme or by using the DAG-SVM framework

(Platt, Cristianini, & Shawe-taylor, 1999). Our approach uses the one-vs-rest strategy, but instead

of treating the background class as just another object class, we treat it as a special case and use a

pair of SVMs per object class.

For instance, if we had used a single learning machine, we would be forcing the classifier to

perform two different unrelated tasks: a) reject that the image patch that does not contain random

texture and b) reject that the object does not belong to the given category. Therefore, given a set

of object classes 𝒞, we train two detectors for each object category. The first one, with weights

𝑏𝑐, classifies each object class 𝑐 ∈ 𝒞 vs. the background/missing class 𝑐 ∉ 𝒞, and the second one,

with weights 𝑓𝑐 classifies object class 𝑐 vs. other object classes 𝒞\𝑐. As illustrated in Figure 11,

asking our linear classifier to perform both tasks at the same time would result in a narrower

margin than training separate classifiers for each individual task. Moreover, to avoid rejecting

cases where all 𝑓𝑐 classifiers produce negative responses but one or more 𝑏𝑐 classifiers produce

strong positive responses that would otherwise indicate the presence of a fastener, we use the

negative output of 𝑓𝑐 as a soft penalty. Then the likelihood that sample 𝑥 belongs to class 𝑐

becomes

𝐿𝑐(𝑥) = 𝑏𝑐 ⋅ 𝑥 + min(0, 𝑓𝑐 ⋅ 𝑥),

where 𝑥 = 𝐻𝑂𝐺(𝐼) is the feature vector extracted from a given image patch 𝐼. The likelihood

that our search region contains at least one object of class 𝑐 is the score of the union, so

𝐿𝑐 = max
𝑥∈𝒳

𝐿𝑐(𝑥),

where 𝒳 is the set of all feature vectors extracted within the search region, and our classification

rule becomes

 𝑐̂ = {
arg max

𝑐∈𝒞
𝐿𝑐 max

𝑐∈𝒞
𝐿𝑐 > 0

𝑚 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

5.1.3 Score Calculation

For the practical applicability of our detector, it needs to output a scalar value that can be

compared to a user-selectable threshold τ. Since there are several ways for a fastener to be

defective (either missing or broken), we need to generate a single score that informs the user how

confident the system is that the image contains a fastener in good condition. This score is

generated by combining the output of the binary classifiers introduced in the previous section.

We denote the subset of classes corresponding to good fasteners as 𝒢 and that of broken fasteners

as ℬ. These two subsets are mutually exclusive, so 𝒞 = 𝒢 ∪ ℬ and 𝒢 ∩ ℬ = ∅. To build the

 28

score function, we first compute the score for rejecting the missing fastener hypothesis (i.e, the

likelihood that there is at least one sample 𝑥 ∈ 𝒳 such that 𝑥 ∉ 𝑚) as

𝑆𝑚 = max
𝑐∈𝒢

𝐿𝑐

where 𝐿𝑐 is the likelihood of class 𝑐 as previously defined. Similarly, we compute the score for

rejecting the broken fastener hypothesis (i.e, the likelihood that for each sample 𝑥 ∈ 𝒳, 𝑥 ∉ ℬ)

as

𝑆𝑏 = − max
𝑐∈ℬ

max
𝑥∈𝒳

𝑓𝑐 ⋅ 𝑥,

The reason why the 𝑆𝑏 does not depend on a c-vs-background classifier 𝑏𝑐 is because mistakes

between missing and broken fastener classes do not need to be penalized. Therefore, 𝑆𝑏 need

only produce low scores when 𝑥 matches at least one of the models in ℬ. The negative sign in 𝑆𝑏

results from the convention that a fastener in good condition should have a large positive score.

The final score becomes the intersection of these two scores.

𝑆 = min(𝑆𝑚, 𝑆𝑏).

The final decision is done by reporting the fastener as good if 𝑆 > 𝜏, and defective otherwise.

5.1.4 Training Procedure

The advantage of using a maximum-margin classifier is that once we have enough support

vectors for a particular class, it is not necessary to add more inliers to improve classification

performance. Therefore, we can potentially achieve relatively good performance with only

having to annotate a very small fraction of the data. To generate our training set, we initially

selected ~30 good quality (with no occlusion and clean edges) samples from each object

category at random from the whole repository and annotated the bounding box location and

object class for each of them. Our training software also automatically picks, using a randomly

generated offset, a background patch adjacent to each of the selected samples.

Once we had enough samples from each class, we trained binary classifiers for each of the

classes against the background and tested on the whole dataset. Then, we randomly selected

misclassified samples and added those that had good or acceptable quality (no occlusion) to the

training set. To maintain the balance of the training set, we also added, for each difficult sample,

2 or 3 neighboring samples. Since there are special types of fasteners that do not occur very

frequently (such as the c-clips or j-clips used around joint bars), in order to keep the number of

samples of each type in the training set as balanced as possible, we added as many of these

infrequent types as we could find. Figure 12 shows a subset of our training set for fastener

detection and classification.

 29

Figure 12. Examples of fastener images used to train our detector.

5.1.5 Alignment Procedure

For learning the most effective object detection models, the importance of properly aligning the

training samples cannot be emphasized enough. Misalignment between different training

samples would cause unnecessary intra-class variation that would degrade detection

performance. Therefore, all the training bounding boxes were manually annotated, as tightly as

possible to the object contour by the same person to avoid inducing any annotation bias. For

training the fastener vs. background detectors, our software cropped the training samples using a

detection window centered around these boxes and for training the fastener vs. rest detectors, our

software centered the positive samples using the user annotation and the negative samples were

re-centered to the position where the fastener vs. background detector generated the highest

response. This was done to force the learning machine to learn to differentiate object categories

by taking into account parts that are not common across object categories.

5.2 Experimental Results

To evaluate the accuracy of our fastener detector, we have tested it on the data subset introduced

in Table 2. We downsampled the images by a factor of 2, for a pixel size of 0.86 mm. To assess

the detection performance under different operating conditions, we flagged special track sections

where the fastener visible area was less than 50% due to a variety of occluding conditions, such

as protecting covers for track-mounted equipment or ballast accumulated on the top of the tie.

We also flagged turnouts so we could report separate ROC curves for both including and

excluding them.

1	

Background/missing	 Good	fasteners	 Broken	

 30

5.2.1 Fastener Categorization

On our dataset, we have a total of eight object categories (two for broken clips, one for PR clips,

one for e-clips,two for fast clips, one for c-clips, and one for j-clips) plus a special category for

background (which includes missing fasteners). We also have four synthetically generated

categories by mirroring non-symmetric object classes (PR, e, c, and j clips), so we use a total of

12 object categories at test time. The HOG features are extracted using a 160 × 160 pixel sliding

window with a strap of 8 × 8. We use the HOG implementation in the object detection module of

OpenCV using default parameters. For classification, we use the linear SVM implementation in

the machine learning module of OpenCV (which is derived from LIBSVM) with a soft margin

(C=0.01). Figure 13 shows an example of the HOG features extracted from a fastclip fastener.

Figure 13. Feature extraction for fastener detection.

For training our detectors, we used a total of 3,805 image patches, including 1,069 good

fasteners, 714 broken fasteners, 33 missing fasteners, and 1,989 patches of background texture.

During training, we also included the mirrored versions of the missing/background patches and

all symmetric object classes. To evaluate the feasibility of the algorithm, we performed 5-fold

cross-validation on the training set, where we classified each patch into one of the nine basic

object categories (we excluded the four artificially generated mirrored categories). Figure 14 (a)

shows the resulting confusion matrix. We only had 14 misclassified samples (0.37% error rate).

If we consider the binary decision problem of finding defective fasteners (either missing or

broken), we have a detection rate of 99.74% with a false alarm rate of 0.65%. This is an

encouraging result, since as explained in section 5.1.4, our training set has been bootstrapped to

contain many difficult samples.

Input	image:	160	x	160	pixels	 Feature	Length:	12996	

 31

Figure 14. Confusion matrix on 5-fold cross-validation of the training set

using (a) the proposed method (b) the method described in (Babenko, 2009) with HOG

features.

In addition to the proposed method described in section 5.1, we have also implemented and

evaluated the following alternative methods:

 Intensity normalized OT-MACH: As in (Babenko, 2009), for each image patch, we

subtract the mean and normalize the image vector to unit norm. For each class c, we

design an OT-MACH filter in the Fourier domain using ℎ𝑐 = [𝛼𝐼 + (1 − 𝛼)𝐷𝑐]−1 𝑥𝑐̅

with 𝛼 = 0.95, where I is the identity matrix, 𝐷𝑐 = (1/𝑁𝑐) ∑ 𝑥𝑐𝑖𝑥𝑐𝑖
∗𝑁𝑐

𝑖=1 , and 𝑁𝑐 is the

number of training samples of class 𝑐.

 HOG features with OT-MACH: The method in (Babenko, 2009), but replacing

intensity with HOG features. Since HOG features are already intensity-invariant, the

design of the filters reduces to ℎ𝑐 = 𝑥𝑐̅.

 HOG features with DAG-SVM: We run one-vs-one SVM classifiers in sequence. We

first run each class against the background on each candidate region. If at least one

classifier indicates that the patch is not background, then we run the DAG-SVM

algorithm (Platt, Cristianini, & Shawe-taylor, 1999) over the remaining classes.

 HOG features with majority voting SVM: We run all possible one-vs-one SVM

classifiers and select the class with the maximum number of votes.

For the first and second methods, we calculate the score using the formulation introduced in

sections 5.1.2 and 5.1.3, but with 𝑏𝑐 = ℎ𝑐 and 𝑓𝑐 = ℎ𝑐 − ∑ ℎ𝑖/(𝐶 − 1)𝑖≠𝑐 . For the third and last

methods, we first estimate the most likely class in 𝒢 and ℬ. Then, we set 𝑆𝑏 as the output of the

classifier between these two classes, and 𝑆𝑚 as the output of the classifier between the

background and the most likely class.

 32

Figure 15. ROC curves for the task of detecting defective (missing or broken) fasteners

using 5-fold cross-validation on the training set.

In Figure 15, we can observe that the proposed method is the most accurate, followed by the

HOG with OT-MACH method. The other methods are clearly inferior. Figure 14 shows the

confusion matrix of our method and the second best method. This method had an error rate of

2.23% (6 times greater than our proposed method). The detection rate was 98.86% with a false

alarm rate of 4.02%. We can see that j-clips and c-clips are the most difficult types of fasteners

because they contain more intra-class variation than other types; these fasteners are placed next

to joint bars, so some of them are slightly rotated to accommodate the presence of joint bar bolts.

5.2.2 Defect Detection

To evaluate the performance of our defect detector, we divided each tie into four regions of

interest (left field, left gage, right gage, right field) and calculated the score defined in section

5.1.3 for each of them. Figure 15 shows the ROC curve for cross-validation on the training set,

and Figure 16 for the testing set of 813,148 ROIs (203,287 ties). The testing set contains 1,051

ties images with at least one defective fastener per tie. The total number of defective fasteners in

the testing set was 1,086 (0.13% of all the fasteners), including 22 completely missing fasteners

and 1,064 broken fasteners. The number of ties that we flagged as “uninspectable” is 2,524

(1,093 on switches, 350 on lubricators, 795 covered in ballast, and 286 with other issues).

 33

Figure 16. ROC curves for the task of detecting defective (missing or broken) fasteners on

the 85-mile testing set.

We used the ROC on clear ties (blue curve) in Figure 16 to determine the optimal threshold to

achieve a design false alarm rate of 0.1% (𝜏 = 0.1614). Using this sensitivity level, we ran our

defective fastener detector at the tie level (by taking the minimum score across all four regions).

Results are shown in Table 9.

Table 9. Results for detection of ties with at least one defective fastener.

Subset Total ties Defective PD PFA

Clear ties 200,763 1,037 98.36% 0.38%

Clear + switch 201,856 1,045 97.99% 0.71%

All ties 203,287 1,051 98.00% 1.23%

Our evaluation protocol has been to mark the whole tie as “uninspectable” if at least one of the

fasteners is not visible in the image. This is not ideal as there are situations where parts of the tie

are still “inspectable”, for example when the field side of the rail is covered with ballast, but the

gage side is inspectable (this explains the six additional defective ties when including

uninspectable ties).

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

P
D

PFA

proposed (clear ties)

proposed (clear ties + sw)

proposed (all ties)

 34

6. Crumbling and Chipped Ties Detection

The condition of railway tracks needs to be periodically monitored to ensure safety. Cameras

mounted on a moving vehicle such as a hi-rail vehicle or a geometry inspection car can generate

large volumes of high resolution images. Extracting accurate information from those images is

challenging due to the clutter in the railroad environment. In this section, we describe a novel

approach to visual track inspection that uses Deep Convolutional Neural Networks (DCNN) to

perform material classification and semantic segmentation on ties. We show that DCNNs that are

trained end-to-end for material classification are more accurate than shallow learning machines

with hand-engineered features and are more robust to noise. Our approach results in a material

classification accuracy of 93.35% using 10 classes of materials. This allows for the detection of

crumbling and chipped tie conditions at detection rates of 86.06% and 92.11%, respectively, at a

false positive rate of 10 FP/mile on the 85-mile subset introduced in section 1.4.1.

6.1 Background

Texture segmentation and material classification are essential components in any vision-based

track inspection system. The crack detection and defective fastener detection results reported in

sections 4 and 5 assume that the tie boundary location is available. For example, for a crack

detection algorithm to work in practice, it must be paired with a reliable boundary detection

algorithm. Indeed, if information is available about the type of material that the tie is made of

and the tie region that is covered in ballast, the false alarm rates of both crack and fastener

inspection would be drastically reduced. In this section, we describe our method for material

classification and semantic segmentation, which can inspect ballast and ties of different materials

and detect chipping and crumbling on concrete ties.

As we will see later, the use of predefined texture features followed by a classifier, is not enough

for solving the fine-graned material classification problem posed in this section. For example, the

system from (Resendiz, Hart, & Ahuja, 2013) is capable of segmenting wood ties from ballast

using a combination of Gabor filters and an SVM classifier. However, classifying wood-vs-

ballast is a much easier problem than the 10-class problem at hand and requires a more carefully

designed approach. Given the vast amount of training data available in our dataset, it is

reasonable to resort to deep learning techniques.

The idea of enforcing translation invariance in neural networks via weight sharing goes back to

the Neocognitron (Fukushima, 1980). Based on this idea, LeCun et al. developed the concept

into Deep Convolutional Neural Networks (DCNN) and used it for digit recognition (LeCun, et

al., 1989), and later for more general optical character recognition (OCR) (LeCun, Bottou,

Bengio, & Haffner, 1998). During the last two years, DCNNs have become ubiquitous in

achieving state-of-the-art results in image classification (Krizhevsky, Sutskever, & Hinton, 2013

and C.Szegedy, et al., 2014) and object detection (R.Girshick, J.Donahue, T.Darrell, & J.Malik,

2014). This resurgence of DCNNs has been facilitated by the availability of efficient GPU

implementations. More recently, DCNNs have been used for semantic image segmentation. For

example, the work of Long, Shelhamer, & Darrell (2014) shows how a DCNN can be converted

in to a Fully Convolutional Network (FCN) by replacing fully-connected layers with

convolutional ones.

 35

6.2 Approach

In this section we describe the proposed approach to track inspection using material

classification and semantic segmentation.

6.2.1 Architecture

Our implementation uses a Fully Convolutional Network (Long, Shelhamer, & Darrell, 2014)

based on BVLC Caffe (Jia, et al., 2014). We have a total of 4 convolutional layers between the

input and the output layer. The network uses rectified linear units (ReLU) as non-linearity

activation functions, overlapping max pooling units of size 3 × 3 and stride of 2. In our

experiments we found that dropout is not necessary. Since no preprocessing is done in the

sensor, we first apply global gain normalization on the raw image to reduce the intensity

variation across the image. This gain is calculated by smoothing the signal envelope estimated

using a median filter. We estimate the signal envelope by low-pass filtering the image with a

Gaussian kernel. Although DCNNs are robust to illumination changes, normalizing the image to

make the signal dynamic range more uniform improves accuracy and convergence speed. We

also subtract the mean intensity value that is calculated on the whole training set.

Figure 17. Network architecture.

This preprocessed image is the input for our network. The architecture is illustrated in Figure 17.

The first layer takes a globally normalized image and filters it with 48 filters of size 9 × 9. The

second convolutional layer takes the (pooled) output of the first layer and filters it with 64

kernels of size 5 × 5 × 48. The third layer takes the (rectified, pooled) output of the second layer

and filters it with 256 kernels of size 5 × 5 × 48. The forth convolutional layer takes the

(rectified, pooled) output of the third layer and filters it with 10 kernels of size 1 × 1 × 256.

9	

9	

1	

48	

64	

256	

10	

stride	2	 pooling	

5	

5	
5	

5	

1	
1	

relu	
pooling	

relu	
pooling	

input	
conv1	 conv2	

conv3	

conv4	

 36

Figure 18. Material categories.

(a) ballast (b) wood (c) rough concrete (d) medium concrete (e) smooth concrete

(f) crumbling concrete (g) chipped concrete (h) lubricator (i) rail (j) fastener

The output of the network contains ten score maps at 1/16th of the original resolution. Each

value 𝛷𝑖(𝑥, 𝑦) in the score map corresponds to the likelihood that pixel location (𝑥, 𝑦) contains

material of class i. The 10 classes of materials are defined in Figure 18. The network has a total

of 493,226 learnable parameters (including weights and biases), of which 0.8% correspond to the

first layer, 15.6% to the second layer, 83.1% to the third layer, and the remaining 0.5% to the

output layer.

6.2.2 Data Annotation

The ground truth data has been annotated using the annotation tool integrated in the Vision

Client described in section 3. The tool allows assigning a material category to each tie as well as

its bounding box. The tool also allows defining polygons enclosing regions containing

crumbling, chips or ballast. We used the output of our fastener detection algorithm described in

section 5 to extract fastener examples.

6.2.3 Training

We trained the network using a stochastic gradient descent on mini-batches of 64 image patches

of size 75 × 75. We did data augmentation by randomly mirroring vertically and/or horizontally

the training samples. The patches are cropped randomly among all regions that contain the

texture of interest. To promote robustness against adverse environment conditions, such as rain,

grease or mud, we identified images containing such difficult cases and automatically resampled

the data so that at least 50% of the data is sampled from such difficult images.

 37

6.2.4 Score Calculation

To detect whether an image contains a broken tie, we first calculate the scores at each site as

𝑆𝑏(𝑥, 𝑦) = max
𝑖∉ℬ

𝛷𝑖(𝑥, 𝑦) − 𝛷𝑏(𝑥, 𝑦)

where 𝑏 ∈ ℬ is a defect class (crumbling or chip). Then we calculate the score for the whole

image as

𝑆𝑏 =
1

𝛽 − 𝛼
∫ 𝐹̂−1(𝑡)𝑑𝑡

𝛽

𝛼

where 𝐹̂−1(𝑡) refers to the t sample quantile calculated from all scores 𝑆𝑏(𝑥, 𝑦) in the image. The

detector reports an alarm if 𝑆 > 𝜏, where 𝜏 is the detection threshold. We used 𝛼 = 0.9 and

𝛽 = 1.

6.3 Experimental Results

We evaluated this approach on the 85-mile subset described in section 1.4.1. As we did in the

previous section, we downsampled the images by a factor of 2, for a pixel size of 0.86 mm. For

the experiments reported in this section, we included all the ties in this section of track, including

140 wood ties that were excluded from the experiments in section 5.2.

6.3.1 Material Identification

We divided the dataset into five splits and used 80% of the images for training and 20% for

testing and we generated a model for each of the five possible training sets. For each split of the

data, we randomly sampled 50,000 patches of each class. Therefore, for each model was trained

with two million patches. We trained the network using a batch size of 64 for a total of 300,000

iterations with a momentum of 0.9 and a weight decay of 0.00005. The learning rate is initially

set to 0.01 and it decays by a factor of 0.5 every 30,000 iterations.

In addition to the method described in section 6.2, we have evaluated the classification

performance using the following methods:

 LBP-HF with approximate Nearest Neighbor: The Local Binary Pattern Histogram

Fourier descriptor introduced in (Ahonen, Matas, He, & Pietikäinen, 2009) is invariant to

global image rotations while preserving local information. We used the implementation

provided by the authors. To perform approximate nearest neighbor we used FLANN

(Muja & Lowe, 2009) with the 'autotune' parameter set to a target precision of 70%.

 Uniform LBP with approximate Nearest Neighbor: The 𝐿𝐵𝑃8,1
𝑢2 descriptor (Ojala,

Pietikäinen, & Mäenpää, 2002) with FLANN.

 Gabor features with approximate Nearest Neighbor: We filtered each image with a

filter bank of 40 filters (five scales and eight orientations) designed using the code from

Haghighat, Zonouz, & Abdel-Mottaleb (2013). As proposed in Manjunath & Ma (1996)

we compute the mean and standard deviation of the output of each filter and build a

feature descriptor as 𝑓 = [𝜇00 𝜎00 𝜇01 … 𝜇47 𝜎47]. Then, we perform approximate nearest

neighbor using FLANN with the same parameters.

 38

Figure 19. Confusion matrix of material classification on 2.5 million 80 × 80 image patches

with (a) Deep Convolutional Neural Networks, (b) LBP-HF with FLANN (c) 𝑳𝑩𝑷𝟖,𝟏
𝒖𝟐 with

FLANN (d) Gabor with FLANN.

Table 10. Material classification results.

Method Accuracy

Deep CNN 93.55%

LBP-HF with FLANN 82.05%

𝐿𝐵𝑃8,1
𝑢2 with FLANN 82.70%

Gabor with FLANN 75.63%

The material classification results are summarized in Table 10 and the confusion matrices in

Figure 19.

 39

6.3.2 Semantic Segmentation

Since we are using a fully convolutional DCNN, we directly transfer the parameters learned

using small patches to a network that takes one 4096 × 320 image as an input, and generates 10

score maps of dimension 252 × 16 each. The segmentation map is generated by taking the label

corresponding to the maximum score. Figure 7 shows several examples of concrete and wood

ties, with and without defects and their corresponding segmentation maps.

Figure 20. Semantic segmentation results.

Note 1: Images displayed a 1/16 of original resolution.

Note 2: See Figure 18 for color legend.

 40

Figure 21. ROC curve for detecting crumbling tie conditions

Figure 22. ROC curve for detecting chip tie conditions

Note 1: Each curve is generated considering conditions at or above a certain severity level.

Note 2: False positive rates are estimated assuming an average of 10
-4

 images per mile.

Confusions between chipped and crumbling defects are not counted as false positives.

 41

6.3.3 Crumbling and Chipped Tie Detection

The first three rows in Figure 20 show examples of crumbling ties and their corresponding

segmentation map. Similarly, rows 4 through 6 show examples of chipped ties. To evaluate the

accuracy of the crumbling and chipped tie detector described in Section 6.2.4 we divide each tie

into four images and we evaluate the score on each image independently. Due to the large

variation in the area affected by crumbling/chip we assigned a severity level to each ground truth

defect, and for each severity level we plot the ROC curve of finding a defect when ignoring

lower level defects. The severity levels are defined as the ratio of the inspectable area to the area

that is labeled as a defect. Figure 21 shows the ROC curves for crumbling tie detection at each

severity level. Similarly, Figure 22 shows ROC curves for chipped tie detection. Because the

fixed 𝛼 = 0.9 in section 6.2.4 is chosen, the performance is not reliable for defects under 10%

severity. For defects that are bigger than the 10% threshold, at a false positive rate of 10 FP/mile

the detection rates are 86.06% for crumbling and 92.11% for chips.

 42

7. Conclusions and Future Work

7.1 Industry Feedback

During the execution of this project, we held four meetings and demonstrations with our industry

partners: Amtrak and ENSCO, Inc. Our partners evaluated our Vision Client application, and

provided feedback. For example, several bugs and usability shortcomings were identified and

corrected early on. This feedback prevented such mistakes from degrading the quality of the

overall research. Early into the project, we decided to integrate manual tie grading and tie

alignment functionality into the Vision Client and our backend, so ENSCO reviewers could

complete the annotation tasks needed for both the tie degradation study and the anomaly

detection project with the same interface. This allowed the reviewers to learn a single tool and

resulted in higher productivity, facilitating the creation of the largest annotated computer vision

dataset for railway track inspection that we are aware of.

The client-server architecture has permitted rapid deployment of software updates. For example,

during the last two years, we have released a total of 71 versions, allowing changes to be tested

quickly. This project used agile development practices, which has led to a very stable codebase

with zero outstanding critical bugs. The feedback from the industry has been positive and has

helped us prioritize our research and development efforts.

7.2 General Software Development Roadmap

The software has grown into a codebase of more than 46K source lines of code (SLOC) in an

orderly fashion. The modular design has allowed us to encapsulate different functions with a

limited number of dependencies and maximum code reuse. However, as we transfer this

technology to the industry and add developers from different institutions to the project, some

reorganization and code refactoring may be necessary. For example, it may be beneficial to

migrate our existing messaging and logging functions from our hand-coded approach into

Google’s protobuf and glog, as these libraries are both open-source under a BSD license and

have a large user base. It may also be beneficial to improve code documentation, so new

developers can learn quickly and contribute new functionality to the project.

At the beginning of the project, a great deal of care was taken to make sure that we have a design

that can scale up for future needs. As the project keeps growing in size, number of contributors,

and user base, it may be beneficial to reevaluate the design to make sure that the framework does

not have any bottlenecks that could hamper future innovation.

7.3 Crack Detection

Crack detection was the first component that we worked on and it has been the most challenging

part of this project. Due to time and budget limitations, we had to address fastener inspection and

crumbling/chip detection problems before we could deploy a robust crack detection solution.

Although we have basic components for extracting cracks regions and generating crack

skeletons, they are not tuned and optimized for large-scale deployment. However, the experience

gained from developing the crack detection module has helped us design and implement the

other two anomaly detection modules. Moreover, crack detection is not possible in isolation, as

contextual information (provided by the other two modules) is necessary in order to avoid false

alarms due to tie edges, fastener edges, ballast edges and so on. Therefore, as new funding for

 43

crack detection becomes available, we believe that a complete crack detection module can be

developed in a short period time.

7.4 Fastener Detection

In order to advance the state-of-the-art in automated railway fastener inspection, our design

projects the samples into a representation that minimizes intra-class variation while maximizing

inter-class separation. To achieve minimum intra-class variation, we use the HOG features

(which have built-in intensity normalization) while preserving the distinctive distribution of

edges. Our sophisticated graphical user interface facilitates accurate alignment of the fastener

locations to avoid intraclass variations due to misalignment. To achieve maximum inter-class

separation while maintaining the principle of parsimony, we resort to the maximum margin

formulation and simplicity offered by linear SVMs. We enforce intra-class separation during the

sampling of the training data. For the fastener-vs-background classifiers, we bootstrapped

difficult samples when we built the training set and for the fastener-vs-rest classifiers, we aligned

the negative samples to the most confusing position, so the learning machine could focus on the

best way to separate classes on the most distinctive parts of the object.

The detector discussed in section 5 is based on inner products between feature vectors that were

extracted from image patches and a set of templates. Therefore, the computation cost is the cost

of calculating the feature vector plus performing the inner products with each the two template

vectors of each class. We have chosen the HOG as our feature vector, but other (probably

simpler) alternative representations are possible and they may dramatically speed-up the

computation time without significantly degrading the detection performance. Alternatively, we

could speed-up the computation of the inner products by reducing the dimensionality of the

feature vector by using Principal Component Analysis (PCA).

Although the approach described here works most of the time and can handle a wide variety of

track conditions, including mud splashes, heavy grease, and partial occlusions due to small

branches, leaves, pieces of ballast or cables, there is still room for improvement. Indeed, due to

the requirement of using fully annotated training samples our approach is statistically inefficient.

In the future we plan to extend the training algorithm to allow it to learn from weakly labeled

data. For weakly label data, we refer to the situation where we know that all fasteners in a range

of ties are in good condition, but we do not know the exact location and type of each individual

fastener.

Also, the decision is currently based on an image-by-image basis and disregards the statistical

dependencies of fastener location as well as fastener type between adjacent ties. Adding such

dependencies through a Markov model would probably reduce spurious detection and

classification errors. Moreover, specific models for the arrangement of fasteners around switches

and other special track structures could be used to reduce the uncertainty in fastener detection

that our solution has under such scenarios. In the future, we plan to address some of these issues

and extend this framework by adding more types of fasteners and using more robust matching

methods. Nevertheless, we believe that the system described here is a big step towards automated

visual track inspection and can be used by the railroad industry in production mode.

7.5 Crumbling and Chipped Tie Detection

Using the proposed fully-convolutional deep CNN architecture we have shown that it is possible

to accurately localize and inspect the condition of railway components using grayscale images.

 44

We believe that our method performs better than traditional texture features because DCNNs can

capture more complex patterns and reuse patterns learned with increasing levels of abstraction

that are shared among all classes. This explains why there is much less overfitting on the

anomalous classes (crumbled and chip) despite having a relatively limited amount of training

data.

We currently run the network in a feed-forward fashion. In the future, we plan to continue

exploring recursive architectures to discover long-range dependencies among image regions with

the purpose of better separate normal regions from anomalous ones. Also, as previously

discussed, accuracy can be improved by adding the ability to learn from ambiguously labeled

data.

7.6 Automation and Deployment

The current version of the software runs in batch mode and takes one mile of data at a time. For a

successful deployment, it will be necessary to modify the software so it can run in streaming

mode. Also, once the target computing platform is selected, it will be necessary to tune the

algorithms so they utilize the computing resources efficiently.

Amtrak has indicated that their first deployment will be on a hi-rail vehicle. Although hi-rail

platforms have the advantage of lower processing speed requirements, the limitations of rack

space, ventilation and electric power also pose challenges. We plan to work closely with Amtrak

to ensure that their system design is compatible with the architecture described in this report.

7.7 Future Research Topics

Not only will we improve and refine existing algorithms, we plan to investigate the following

topics:

 Learning with weakly labeled anomalies: Existing detectors require that humans label

each training sample with the exact fastener type and draw a bounding box around each

component. We plan to develop learning algorithms that only need to know whether or

not a tie contains an anomaly of a specific type.

 Domain adaptation for anomaly detection under changes in operating conditions:

The performance of existing methods significantly degrades when operating conditions

change. For example, when the training set contains clear dry ties and the testing set

contains ties covered with grease, the detection performance will degrade. Research in

unsupervised domain adaptation algorithms that can handle the presence of anomalies in

the target domain will allow existing and new algorithms to produce more accurate

results.

 Extreme value theory for adaptive anomaly detection: Existing detectors generate

bursts of false alarms when the signal to noise ratio degrades. In order to keep a constant

false alarm rate, it is necessary to use an adaptive threshold. Extreme value theory

provides a theoretical framework for estimating the density at the upper tail of a

probability distribution, which can be used for adaptive thresholding. We plan to develop

adaptive threshold estimation algorithms that can handle the presence of anomalies.

 Automated tie grading: Railroads rely on numerical tie grades to plan for their track

maintenance. Using the results of existing algorithms, research methods for prediction of

 45

numerical tie grades based on rules provided by the user as well as learned from

examples.

 Track component detection: Find the bounding rectangle for each track component

(rails, fasteners, ties, bolts, switch points). Estimate parameters derived from component

detections, such as intertie distances, base gage, and distinctive bolts and fastener patterns

to help with tie matching.

 Tie matching: For each detected tie, automatically find the corresponding tie on previous

surveys. It is assumed that approximate GPS location and/or milepost is available, but the

direction of travel and track number may be unknown.

 Tie alignment: For each pair of matched ties find a number of corresponding points and

warp the target image so it aligns with the source image. Tie alignment shall be robust to

local changes and noise.

 Change detection and characterization: Detect local differences (after intensity-

normalization and denoising) between aligned images. Classify each detected change into

relevant or not relevant, using previously trained relevancy criteria and patterns of false

changes such as debris, grease, mud, leaves, water, snow. Differences will be

summarized as to whether a specific component (tie or clip) has been replaced, the

component has developed new damage, or that previously detected damage has

worsened.

 Depth from stereo: Conduct research into algorithms for reconstructing depth from two

or more cameras in the railway environment and examine methods for extracting

information from such point clouds, such as estimating potential rail seat abrasion

conditions or changes in ballast height that can disambiguate whether ballast is covering

a defective tie or a good one.

 Color imaging: Research algorithms to find new types of anomalies based on color, such

as corrosion, vegetation, or mud pumping conditions.

7.8 Conclusion

This report has described a new approach for inspecting railway tracks using recent advances in

the area of computer vision and pattern recognition. The algorithms described in this report have

been packaged into an integrated software suite that will allow different railroad users to

reconfigure it for their specific needs. We believe that the University-Industry partnership that

has been forged during this project will continue in future years. The number of problems in the

railway industry that could be solved with computer vision and pattern recognition techniques is

large, and the work described in this report is just a tiny fraction of what can be done. We hope

that in the future, the railway industry will consider releasing other datasets to the research

community, so progress towards other safety-related problems can be made.

 46

8. References

Ahonen, T., Matas, J., He, C., & Pietikäinen, M. (2009). Rotation invariant image description

with local binary pattern histogram Fourier features. Image Analysis, 61-70.

Babenko, P. (2009). Visual inspection of railroad tracks. University of Central Florida. PhD

thesis.

Berry, A., Nejikovsky, B., Gibert, X., & Tajaddini, A. (2008). High speed video inspection of

joint bars using advanced image collection and processing. Proc. of World Congress on

Railway Research.

Bobin, J., Starck, J.-L., Fadili, M., Moudden, Y., & Donoho, D. (2007). Morphological

component analysis: an adaptive thresholding strategy. IEEE Transactions on Image

Processing, 16(11), 2675-2681.

C.Szegedy, W.Liu, Y.Jia, P.Sermanet, S.Reed, D.Anguelov, et al. (2014). Going deeper with

convolutions. arXiv:1409.4842 .

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern Analysis and

Machine Intelligence, 8(6), 679-698.

Chambon, S., & Moliard, J. (2011). Automatic road pavement assessment with image

processing: Review and comparison. Int. Journal of Geophysics,

doi:10.1155/2011/989354.

Cunha, A., Zhou, J., & Do, M. (2006). The nonsubsampled contourlet transform: Theory, design,

and applications. IEEE Transactions on Image Processing, 15(10), 3089-3101.

Cunningham, J., Shaw, A., & Trosino, M. (2000, May). Patent No. 6,064,428. US.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 1,

pp. 886-893.

De Ruvo, P., Distante, A., Stella, E., & Marino, F. (2009). A GPU-based vision system for real

time detection of fastening elements in railway inspection. IEEE International

Conference on Image Processing (ICIP), (pp. 2333-2336).

Easley, G., Labate, D., & Negi, P. (2013). 3D data denoising using combined sparse dictionaries.

Math. Model. Nat. Phenom., 8(1), 60-74.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 93-

202.

Gibert, X., Berry, A., Diaz, C., Jordan, W., Nejikovsky, B., & Tajaddini, A. (2007). A machine

vision system for automated joint bar inspection from a moving rail vehicle. ASME/IEEE

Joint Rail Conference & Internal Combustion Engine Spring Technical Conference.

Haghighat, M., Zonouz, S., & Abdel-Mottaleb, M. (2013). Identification using encrypted

biometrics. Computer Analysis of Images and Patterns, 440-448.

 47

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014). Caffe:

Convolutional architecture for fast feature embedding. arXiv:1408.5093.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2013). Imagenet classification with deep

convolutional neural networks. NIPS.

Kutyniok, G., & Lim, W. (2011). Image separation using wavelets and shearlets. In: Curves and

Surfaces (Avignon, France, 2010), Lecture Notes in Computer Science 6920.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., et al. (1989).

Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4),

541-551.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998, November). Gradient-based learning

applied to document recognition. Proceedings of the IEEE.

Li, Y., Trinh, H., Haas, N., Otto, C., & Pankanti, S. (2014, April). Rail component detection,

optimization, and assessment for automatic rail track inspection . IEEE Trans. on

Intelligent Transportation Systems, 15(2), 760-770.

Long, J., Shelhamer, E., & Darrell, T. (2014). Fully convolutional networks for semantic

segmentation. arXiv:1411.4038.

Ma, C., Zhao, C., & Hou, Y. (2008). Pavement distress detection based on nonsubsampled

contourlet transform. Int. Conf. on Computer Science and Software Engineering, 1, pp.

28-31.

Mahalanobis, A., Kumar, B. V., Song, S., Sims, S. R., & Epperson, J. F. (1994, June).

Unconstrained correlation filters. Appl. Opt., 33(17), 3751-3759.

Manjunath, B., & Ma, W. (1996). Texture features for browsing and retrieval of image data.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 837-842.

Marino, F., Distante, A., Mazzeo, P. L., & Stella, E. (2007). A real-time visual inspection system

for railway maintenance: automatic hexagonal-headed bolts detection. IEEE Trans. on

Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(3), 418-428.

Muja, M., & Lowe, D. (2009). Fast approximate nearest neighbors with automatic algorithm

configuration. International Conference on Computer Vision Theory and Application

(VISSAPP’09) (pp. 331-340). INSTICC Press.

Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation

invariant texture classification with local binary patterns. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 24(7), 971-987.

Oliveira, H., & Correia, P. (2013). Automatic road crack detection and characterization. IEEE

Transactions on Intelligent Transportation Systems, 14(1), 155-168.

Platt, J. C., Cristianini, N., & Shawe-taylor, J. (1999). Large margin DAGs for multiclass

classification. NIPS, 12, pp. 547-553.

R.Girshick, J.Donahue, T.Darrell, & J.Malik. (2014). Rich feature hierarchies for accurate object

detection and semantic segmentation. IEEE Computer Society Conference in Computer

Vision and Pattern Recognition (CVPR).

 48

Resendiz, E., Hart, J., & Ahuja, N. (2013, June). Automated visual inspection of railroad tracks.

IEEE Trans. on Intelligent Transportation Systems, 14(2), 751-760.

Sahu, S., & Thaulow, N. (2004). Delayed ettringite formation in swedish concrete railroad ties.

Cement and Concrete Research, 34, 1675-1681.

Shehata, M. H., & Thomas, M. D. (2000). The effect of fly ash composition on the expansion of

concrete due to alkalisilica reaction. Cement and Concrete Research, 30, 1063-1072.

Smak, J. A. (2012). Evolution of Amtrak's concrete crosstie and fastening system program.

International Concrete Crosstie and Fastening Symposium.

Starck, J.-L., Elad, M., & Donoho, D. (2005). Image decomposition via the combination of

sparse representation and a variational approach. IEEE Transactions on Image

Processing, 14(10), 1570-1582.

Subirats, P., Dumoulin, J., Legeay, V., & Barba, D. (2006). Automation of pavement surface

crack detection using the continuous wavelet transform. IEEE International Conference

on Image Processing, (pp. 3037-3040).

Trinh, H., Haas, N., Li, Y., Otto, C., & Pankanti, S. (2012). Enhanced rail component detection

and consolidation for rail track inspection. IEEE Workshop on Applications of Computer

Vision (WACV), 289-295.

Trosino, M., Cunningham, J., & Shaw, A. (2002, March). Patent No. 6,356,299. US.

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR), 1, 511-518.

 49

Abbreviations and Acronyms

ASR Alkali-Silicone Reaction

AUC Area Under the Curve

BAA Broad Agency Announcement

BSD Berkeley Software Distribution

BVLC Berkeley Vision and Learning Center

CFR Code of Federal Regulation

CMOS Complementary Metal-Oxide Semiconductor

CNN Convolutional Neural Network

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CTIV Comprehensive Track Inspection Vehicle

CUDA Common Unified Device Architecture

DCNN Deep Convolutional Neural Network

DAG Directed Acyclic Graph

DEF Delayed Ettringite Formation

DST Discrete Shearlet Transform

DWT Discrete Wavelet Transform

FCN Fully-Convolutional Network

FFT Fast Fourier Transform

FLANN Fast Library for Approximate Nearest Neighbors

FP False Positives

GPGPU General-Purpose Graphics Processing Unit

GPL General Public License

GPU Graphics Processing Unit

GPS Global Positioning System

HOG Histogram of Oriented Gradients

HSR High Speed Rail

HTTP Hypertext Transfer Protocol

HTTPS HTTP over SSL

IPP Integrated Performance Primitives

 50

LBP Local Binary Patterns

LBP-HF Local Binary Patterns Histogram Fourier

LED Light Emitting Diode

LGPL Lesser General Public License

NEC Northeast Corridor

MUSIC MUltiple SIgnal Classification

OS Operating System

OT-MACH Optimal Trade-off Maximum Average Correlation Height

PD Probability of Detection

PDA Personal Digital Assistant

PFA Probability of False Alarm

RC Release Candidate

ReLU Rectified Linear Unit

ROC Receiver Operating Characteristic

ROI Region of Interest

SDK Software Development Kit

SP Service Pack

SLOC Source Lines of Code

SSL Secure Sockets Layer

SVM Support Vector Machine

UMD University of Maryland

UMIACS University of Maryland Institute for Advanced Computer Studies

VPN Virtual Private Network

