

Operations Simulation for Railroad Capital Project Development

Peter Schwartz & Richard Cogswell Federal Railroad Administration

What is Railroad Operations Simulation?

- Tool for analyzing railroad operating performance
 - Predefined set of trains
 - Predefined infrastructure configuration
 - Does <u>NOT</u> provide the solutions to problems
- Consists of three basic elements
 - 1. 1st Input Train Traffic
 - 2. 2nd Input Infrastructure
 - 3. Simulation Methodology the model software

Why do Operations Simulation?

- Planning on changes to train traffic?
 - What infrastructure is needed to meet performance goals?
- Planning on changes to infrastructure?
 - What will it do to train performance?
- Relationship between operational requirements and physical resources
- For railroad capital projects
 - Simulation links operational objectives to scope and design (and environmental impacts)

What Kind of Projects Should Involve Operations Simulation?

- Changes to line-haul railroad operations
- Rail lines with emphasis on unscheduled or highly-variable operations
- Simulation less useful for:
 - Highly scheduled operations
 - Complex operations within terminals or at major junctions
 - Other operations analysis tools are available

When during a project's development is operating simulation done?

- Beginning during the Planning Phase
 - Key input for Service Development Planning and Service NEPA
- Continues through finalized Preliminary Engineering
- Iterative process with other elements of Service Planning
 - Effects of operationally relevant design refinements
 - Requirements for refinements in service plan
 - Changes in forecasts and assumptions for background traffic
- For passenger projects, ultimately used to support Service Outcomes Agreement

Who participates in operations simulation, and in what roles?

Party	Preferred Roles	Secondary Roles
Project Sponsor	Guides overall work; Coordinates with other service planning elements; Coordinates between all parties; Helps establish inputs and assumptions	
FRA	Monitors development of model methodology, assumptions, inputs; Assesses conclusions; Reviews reports; Requests necessary changes	
Planning/Design Consultant	Works for Project Sponsor; Proposes methodology; Performs simulations work; Authors reports	
Host Railroads	Contributes input data; Helps verify and calibrate base case; Suggests possible infrastructure changes	Performs role of planning consultant
Amtrak	Contributes input data	

The Simulation Tool

- Two basic elements
 - 1. Train Performance Calculator (TPC) Pure (Ideal) Running Time for a train
 - No meets or overtakes
 - No restrictive signals
 - Try to operate at exactly the speed limit
 - 2. Dispatching Simulator
 - Optimization algorithm for mimicking decision-making of actual dispatcher
 - Coordinate meets and overtakes to minimize delay
 - All delay not created equal varies based on priority assigned by train type

Assembling Input Data

Train Traffic

- "Schedules"
- Consists
- Train Types (with priorities)

Infrastructure

- Track Configuration
- Signal Design
- Grades
- Speed Limits
- Begin by developing for the existing conditions, then use as basis for alternative scenarios

Scenario Development and Scenario Control

- Base Case
 - Existing conditions
 - Used for calibration (or setting performance targets)
- Do-Minimum (No Build)
 - Committed changes to infrastructure and train traffic
 - Forecasted changes to freight traffic and necessary improvments
- Do-Something (Build)
 - Project's intended operating changes
 - Use to identify infrastructure improvements to achieve desired performance
- Need to control for changes individually

Variability and Resiliency Testing

- Real-world operations not consistent or always predictable
 - Model thinks they are, unless you tell it otherwise
 - Need to demonstrate infrastructure can accommodate variability while maintaining performance
- "Normal" Variability
 - Unscheduled/loosely-scheduled freight trains, varied consists
 - Varied passenger timetables
- Irregular variability
 - En-route failures, maintenance-of-way events
- Tools for reflecting variability and testing resiliency
 - 1. Multi-day simulation
 - 2. Randomized train traffic input

Measuring Performance and Interpreting Results

- Major performance metrics
 - Minutes of Delay (per 10k train-miles)
 - Velocity
 - On-time performance
- Stringline diagrams
- TPC Plots (logarithmic speed scale)
- Pitfalls in interpreting results
 - Statistical significance of differences in results
 - Delay metrics accounting for changes in Pure Running Time

FRA Rail Program Delivery Conference, Washington D.C. October 13-15, 2015

U.S. Department of Transportation Federal Railroad Administration

Stringline Diagrams

