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OPTIMIZATION OF A SIIMPLE DYNAMIC MODEL OF A RAILROAD

CAR UNDER RANDOM AND SINUSOIDAL INPUTS
By John S. Mixson and Roy Steiner
ABSTRACT

This investigation was concerned with techniques for determining values
of damping and sprirg constants that would minimize they vibrations transmitted
from irregular railroad track to passenger pocitions. /Results developed for
a three-degree-of'-freecdom model using a simplified representation of measured
track roughness illustrate the influence on the minimizing values of the type
of input used, the minimization criteria adopted, and the position at which
vibrations were minimized. The results were sensitive to variations of the
spectrum of the input, suggesting the importance of measuring actual track
irregularities and of using the measured data in optinization studies.
Different results were obtained when the rms acceleration was minimized than
when peak value of spectral density was minimized, suggesting that the
effects on passenger comfort of overall acceleration level be compared with
the effect of vibrations that are concentrated near a single frequency.
Resultc obtained by varying the suspension stiffness of a heavy electrical
transformer suspended beneath the center of the particular type of railroad

car sugrest that such heavy components can be tuned to improve the vibration

transmission characteristics of the system.
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OPTIMIZATION OF A SIMPLE DYNAMIC MODEL OF A RATLROAD

CAR UNDER RANDOM AND SINUSOIDAL INPUTS
By John S. Mixson and Roy Steiner
INTRODUCTION

The recent introduction of high-speed railroad passenger service
between Washington, D. C. and New York has stimulated considerable interect
in the effects of vibration on passenger comfort. For example, a recent
newspaper account (reference 1) describes the high—spead Metroliner train,
shown in figure 1, as "smooth riding," but also says ". . . at times the
train vibrated badly during a 114 mph run between Washington and Baltimore,
making it hard for passengers to read." Clearly, if the desired speeds of
160 mph (reference 2) are to be practical, methods must be developed for
preventing such passenger discomfort due to train vibrations. Efforts are
now undervay in a number of organizations, including Langley Rescarch Center,
to improve the understanding of the mechanisms of transmission of vibrations
to passengers, and to deteimine the limits of vibration for comfort. The
primary source of train vibrations is the roughness of the track and roadbed
so efforts are also underway to determine methods of meacuring and improving
track/roadbed properties.

Some of the research that has been done related to vehicle and roadbed
dynamics is reported in references 3 through 9. In reference 5 a frequency
damain technique for calculating response is compared with time domain

techniques and found to be somewhat more efficient for linear systems having
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random inputs that are statistically stationary. In reference 4 the

influence of roadbed elasticity is studied; and in reference 5 the dynamic

stresces in railroad wheels src studied. In reference 6 a dynamic model

having nany degrees of '

reedon is described, along with a system for

measuring track roughness.
on techniques for identifying roadbe” »roperties. In reference 9 some

techniques for minimizing the dynamic response of a vehicle are developed.

A topic not sufficiently discussed in the literature is that of minimizing
the dynamic response of rail vehicles by appropriate adjustment of the
vehicle damping and spring constants.

The investigation described in this paper represents an attempt to
obtain understanding of the significeant parameters involved in minimizing
the vibrations transmitted from the track to the passenger positions. It is
known that the response of a dynamic system such as & railroad car can be
mininized by choosing certain (optimum) values of the damping elements in
the system. The objeczive of the present investigation was to determine the
influence on the optimum values of damping of such things as'the nature of
the input (sine or random), the optimization criteria, and the location at
which the wvibration is optimized. The particular railroad car studied hgd a
heavy electrical transformer suspended beneath the center of the car, so the
spring stiffness of the transformer suspension was also varied in an attempt
to minimize the car response. In order to keep the camputations from
beconing unwieldy only three degrees of freedom were included in the mathe—
matical model, and a cimplified representation of the track roughness
epectrum was used. The plun of this paper is to discuss first the.analysis
and optimization procedure (leaving the equations for an appendix), then

e

References 7 and 8 provide additional information
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to discuss the track roughness measurements, and finally to discuss the

results obtained w.ith the three degree of {reedoi model.
ANALYSTS

A sketch of the three-degree-of-Ireedom model used in this analysis ics
shown in figure 2. The equations of motion of this system are presexnted in
Appendix B. The model concists of a flexible beam representing the railroad
car, and a mass attached at the midpoint of the beam representing an elec—
trical transformer used in the power system of these particular electrically
driven high speed trains. The degrees of freedom considered are rigid body
vertical motion of the car and of the transiormer and the first elastic
bending mode of the car. The input to this system is provided by the speci-
fied motion of the base. The base vibrates symmetrically, thereby applying
the same displacement to the lower ends of both springs kS and both
dampers c e Pitching and lateral motion are not included in this analysis.

The parameters held constant throughout this analysis include the
weights of the car and transformer and the car rigid body and bending
frequencies. The values used, shown in figure 2, were felt to be reaconably
representative of current designs. The three parameters varied in the search

for an optimum design are the transformer frequency f the car damping

g J
n (due to CS), and the transformer damping n, (due to Cg). Optimization
was carried out with respect to accelerations calculated for three locations;

the end of the car A(0), the center of the car A(L/2), and the transformer

Ac).



N
b

N\ /

OPTIMIZATION PHEOCEDURE

The general objective of the optimization was to minimize “‘he accelera—
tions at the two «ar locations caused by a specified displacement of the
vibrating base. Two minimization methods were used. The first method,
called the peak minimization method, minimizes the maximum value of the
acceleration transfer function (for sine input) or spectral density (for
random input) occurring anywhere in the frequency range of interest. The
second method, called the RMS method, minimizes the root-mean—square
acceleration obtained by integrating over the frequency range of interest.
The peak min. method was used with both sine and random input displacements,
but the RMS method was used only for random inputs.

The procedure used in the peak min. method with a sinusoidal input is as
follows. TFirst, acceleration transfer functions for the three locations
were generated for the frequency range from O to 15 cps. Typical transfer
functions (alsc the ovtimum) are shown in figure 3. The transfer function
for each locaticn has reletive maximums, or peaks, at about 1 cps, and 4.5
cps. For the twe cer lecations a third peak occurs at about 5.5 cps. The
value of each transfer funcliion at each peak is clearly dependent upon the
particuler ~slues of damping, ng and ng , and transformer frequency fg
used to pgenerate the transfer function. The next step in the optimizatioa
procedure was to generate curves such as shown in figure 3 for several
values of one of the parameters Ng, ng or fg while holding other para—
meters constant. The value of the transfer function at each peak is then
plotted as a function of the varying parameter. Typical curves of this type

are shown in figure 4, where the varyirsg parameter is the transformer
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frequency. The peaks of the transfer functions occurred near 1, 4.5 and 5.5
cps for all the parameter varistions, therefore these frequency values wvere
used as a convenient means of identifying the curve shown in figure 4
associated with each peak. Each curve showing the variation of a peak value
of the acceleration transfer function with a varying parameter (in figure L,
the transformer frequency) is called a peak acceleration curve. Figure b
shows that there are three peak acceleration curves for each location. An
acceleration maximum function is now defined as tﬁat function consisting of
the largest of the peak acceleration curves for each value of the varying
parameter. The acceleration maxirmm function for eéch location shown in
figure 4 consists of the segments of the peak acceleration curves joining
the circular symbols. The next optimization step conzists of choosing a
value of the varying parameter that minimizes the acceleration maximum
functions. Figure 4 shows that the transformer frequency value of 4.7 cps
minimizes the maximum function for both car locations, but not for the
transformer. In general, the transformer maximum function could not be
minimized along with those at the car locations. Further discussion of the
choice of optimum values is presented in "Results." The next step in the
optimization was to use the minimizing value of transformer frequency
(obtained from plots such as shown in figure 4) as a constant while varying
a second parameter. Peak acceleration curves obtained bjlvarying transformer
damping are shown in figgre 5, and those obtained by varying car damping are
shovn in figure 6. The steps described above were repeated until the para—
meter value obtained as optimum was sufficiently close to the value used in

the previous minimization cycle. The curves shown in figures !, 5, and 6



are from the final ileration cycle from which the optimum values were
determined for the sinusoidal input. Figures 4, 5, and 6 will be discussed
further under "Results."

The optimization procedure used in the peak min. method with a random
input is the same as with a sinusoidal input, except thab peak values were
obtained from curves of spectral density of the output acceleration instead

of from curves of transfer function. Spectral density maximum function is

defined as consisting of the largest of the peak spectral density curves at

eacli value of the varying parameter. For the model characteristics of this
study three optimization cycles, or iterations, were sufficient, that is, each
of the paraﬁeters ng, ng and fg was varied three times with improved values
of the otkher two parameters; Even with only three cycles required for each of
three parameters considerable time was spent generating and plotting data
to obtain the results presented herein. If many more than three parameters
were to be optimized, this procedure would probably require improved
computer mechanization in corder to be used efficiently. An example of
the use of computer techniques in an optimization procedure is given in
reference 9.

The optimization procedure used in the RMS method'with the random displace—
ment input is as follows. Values of the root—mean-square (rms) acceleration at
each of the three locations are calculated by means of equation(BJ) for a range

of values of one of the parameters ng, ng or fg while all other parameters

are held constant. A value of that one parameter is then chosen so that the

rms acceleration at the car locations is reduced as much as possible. The

value chos=n is then held constant while a second parameter is varied.
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Optimum velues of the parameters fg, Ng, and n, were obtained from only

a Tew cycles of iteration using this method.

TRACK ROUGHNESS MEASURIMENTS
General

The input for the mathematical model to describe the response oi’ the
railroad car is some measurement of the rail surface. This input is
generally considered to be random in nature and takes the form of a power
spectral density of the rail displacements or vertical variations from some
dalum plane. Spectral densities of several different types of surfaces,
artificially prepared, are shown in figure T plotted ageinst wave length in

.

feet and a spatial frequency in cycles per foot. Disregarding the curve for

the railroad in the eastern United Stales for the present, the remaining curves

from reference 4 for a highway, three airport runways and a British railroad
give a rather orderly group of spectra. Figure 7 indicates that the spectra
from the several surfaces can be representcd generally by the fcormula

g(r) =xr™

where T is the frequency, n is the parameter determining the variation of
@(£) with £he frequency, and K is a constant for 2 given spectrum and is a
measure of the surface roughness. It is apparent from fTigure T that the
exponent n which determines the slope of the spectra is fairly unifor.i.
For these examples n varies from 2.0 to k.l.

Two spectra were selected for use in this analysis having slopes or n

values of 2.07 and 2.64% and are shown in Tigure 8 plotted against cycles per

second. It is not considered necessary that the root—mean—square valucs agree

precisely with experimental results in this analysis since an examination of
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equations B6 and B] in appendix B indicates that the rms value is a constant
and would not affect the relative magnitudes of the peaks of the spectra of
the response. The rms value is a measure of the intensity of a spectrum and

is equal to the square root of the area under the spectrum.

Experimental Spectrum

Available measurements of a two mile section of track in the eastern
United States were analyzed at LRC and the resulting spectrum is chown in
figures 7 and 8 for comparison with the spectra used in the analyses. It is
apparent from figure 7 that this measured spectrum falls within the grouping
of spectira and gives added confidence in the spectra used in the analysis.
The spectrum Tor the railroad in the eastern U. S. does not, however,
necessarily indicate a uniform slope. In addition, three peaks are rather
promirent at 40, 20 and 14 foot wave lengths. These wave lengthe correspond
to the rail lengths, the spacing of alternate joints of the two rails, and
the length of the :od in the -rail-roughness measuring system. These
relations may be coincidental, but the results cén point out the care which
must be exerc;sed in the measurement, analysis, and interpretation of
experimental spectra. There is always the possibility that tke recording
system or the data analysis technique may contaminate the results. Let us

consider briefly the measurement of track roughness and data evaluation.

Measurement of Track Roughness
Tt is necessary to devise methods of measuring the track displacements
under dynamic conditions since the clastic track moves under normal usage
due to such parameters as the train weight, spacing of-the ties, irrégulari—

ties in the roadbed, and the impact loads due to the train movement. Most

8
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current rail measuring devices are variations of a three poinc measuring
device such as the one in use by Melpar (roference 6). The system consists
of two horizontal rods sucpended from the axle of the railroad car, one rod
parallel to each track. Each rod has three capacitance transducers mounted
.. it. The output of each transducer is related to its distance from the
rail and suitable combination of the transducer outputs yields & reading
related to the shape or roughness of the railroad track. These readings vere
recorded continuously for several stretches of track and the continuous readings
vere digitized for spectral analysis. The spectrum for a large range of

wave lengths cannot be defined because a filter in the form of the rod length
used in the measurement has been inserted in the system. In the system
described, the rod length was 1% feet and the spectral analysis will yield
fairly good estimates of the spectrum for wave lengths between approximately
9 and 28 feet. The effect of this filter on the spectrum was investigated
analyticaliy and corrections were applied to the spectrum. The adjusted
spectrum is shown in Tigures 7 and 8 over a wave length range of 9 to
apprcximately iS50 feet.

In further mathematical studies of train dynamics, better measured
spectra of track roughness should be obtained accurately at frequencies down
to about 0.1 cps as an input to the studies. Significant problems may b-
encountered in-trying to get data at these low frequencies as indicated by
the preceding discussion. One procedure wﬁich may be used to establish the
spectral shape and then the relative roughnesses (K value) is outlined: ‘

1. Survey a two-mile section of the track in the static unloadea

condition to establish the shape of the railway roughness spectrum.
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2. Repeat survey w.ih the track loaded (truin advances as the survey
advances) to determine constancy of' spectral shape and railway roughness.

5. Determine roughness under dynamic conditicns with car-mounted
equipment for several speeds. (Constant monitoring required with adjustment
in procedures as indicated by results)

k. With spectral shape and intensity of railway roughness established,
calibrate other types of measuring equipment if compatibility of all data is
desired.

5. Repeat procedure on at least two additional tracks to determine the

variations of spectral shapes.

Factors in Evaluation of Power Spectra

Data analysis may be based on digital or unulog teclmiques. In
the analysis of terrain roughness and low frequency data, such as atmospheric
turbulence, it has been customary to use a digital procedure. The extent of
the alterations and the statistical reliability of the spectral estimates
resulting from a digital technique are indicated In reference 10 and considered
in greater detail in refereunce 1. Three important factors in defining the
accuracy of the spectral estimates are the record length, the reading
interval and the number of estimates, or lags, used in defining the spectrum.
The proper selection of these quantities will reduce the phenomenon known as
"aliasing" which allows power from one frequency to be transferred to another
frequency; incfease the frequency resolution (or conversely reduce the
"smearing” or average effects); or can increase the statistical reliability of
the spectral estimates. Proper evaluation of these effects shculd be made

prior to data collection in order that a proper experiment is planned (see
referenczs 10 and 11).

10
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Optimum Value Selection
The choice of optimum values of transformer frequency and damping using

the peak min. method is reasonably straightforward using curves such as shown
in figures 4 and 5. Figure 4 shows that the transformer frequency value of
.7 cps minimizes the acceleration meximam function for both car locations.
(& value of 4.65 cps was used as optimum because it was the valuc used in the
optimizing cycle represented by figures 4, 5 and 6). Figure 5 shows that the
transformer dampiﬁg value of 0.18 minimizes the acceleration maxim m function
for both car locations. The choice of an optimum value of car damping, however,
was not so straightforward. Figure 6 shows that the acceleration maximum
function for the end of the car is minimum at a car damping value of 0.057,
whereas for the middle of the car the car damping vaiue of 0.11% minimizes
the acceleration maximum function. Clearly,‘no single value of car damping
can be chosen that minimizes the acceleration maximum function for both car
locations. Therefore,a compromise value must be chosen. Such a compromise
velue might be chosen several ways. For example, if passengers were to be
located only necar the middle of the car, and the end of the car usced for
baggage, then a car damping value of 0.114 would be best. On the other hand,
the choice of a car damping value of 0.06 would result in approximately the
same value of acceleration maximum function at both car locations.

Passengers at both locations would thus receive the same maximum acceleration.
A decision on which way to choose the compromise value of car damping was
felt to be outside the scope of this study. For the final optimization cycle

of this study the car damping value used was n_ = 0.085 which is

S
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approximately midwny between the values minimizing the acceleration at the

two car locations.

Transformer Behavior

Curves showing the acceleration maximum function for the transformer
are presented in Tigures &, 5, and 6 to illustrate the behavior at a system
location that was not includsd in the selection of minimizing values of the
parameters. All three figures show that the parameter values miriinizing car
accelerations do not minimize transformer accelerations. For example,
Tigure 4 shows that at the transformer frequency value of 4.65 cps the
transformer acceleration is 50 0/o above its minimum value. This shows, as
could have been expected, that optimization of one part of a system can
result in non—optimum performance of another part of the system. In the
design of a practical system this fact should be taken into account to
ensure that all system components including those having non—optimum perfor—

mance can adeguately perform their assigned functioa.

Sine vs Random Input

The peak minimization method was used to optimize the railroad car model
having random displacement inputs as well as sinusoidal input. Curves showing
the variation of peak spectral density with transformer frequency, transformer
damping and car damping for the final iteration cycle with random inpﬁts
were similar in appeerance to the curves shown in figures h, 5‘and 6 for tﬁe
sine input. As an example, figure 9 shows the variation of peak spectral’
density with car damping for the high éstimate random input. Comparison of
fipure 6 with figure 9 shows the general similarity of the curves for both
sine and random input. In pérticular, the previous discussion concerning the

12
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choice of optimum values of the parameters, and the behavior of the trans—
forner applies equelly to resvlts for random inputs as well as for sinusoidal
inpu:.

Tae value of transformer frequency obtained as optimun was ihe same,
h.65 cp., for both rondan inputs as for the sinusoidal inrut. The optimum
value of Sransformer damping was 0.18 for both the sinusoidal and the high
estimate r'ndom input, but was 0.20 Tor the middle estimate random input.
The spectral density maximum furctinm varies by only sbout 1 ©/o between
these two val .es of damping. Thererore, the difference is not considered
significant. (‘omparison of figure 6 with Tigure 9 shows that the values of
car damping that minimize the individual acceleration maximum functions
(figure 6) are di ferent from the values that minimize the spectral density
maximum functions (figure 9). The values of car damping that miniﬁize the
individual maximum functions are presented in Yable I for both random inputs
and the sine input. <able I shows that the optimum values of damping
obtained for each locatilon with the random inputs are al least threc times as
large s the values obtained with the sinusoidal input. The values of
damping obtained with the two random inputs are different by a maximum of
atout 40 O/o. These large differences in optimum damping values suggest
that when railway roughness is expected to be of a random nature, then
optimizetion studies should uce random inputs. In addition, the observed
variation of optimum damping between the two random inputs, which differ
primarily in gpectral shape, suggests that the range of spectral shapes to be

expected of actual rails should bz determined and used in optimizaticn studies.

15



Peak Min. vs RMS Methods

The variation of rms acceleration at the three locations with trans—
Tormer danping and frequency is shown in figure 10 and the variation with
car damping is shown in figure 11. Figure 10(a) shows that the acceleration
at the end of the car is minimum at Tg = k.3 cps while that at the middle
the car is minimum at fd = .8, The rms acceleration is not very sensi-—
tive to variations of f,. Therefore, the optimun value of 4,65 cps determiied
by the peak min. method can be taken as a good compromise value. Figure
10(b) chows that the rms acceleration on the car is insensitive to the value
of transformer damping used. Therefore, the value of 0.18 determined by the
peak min. method can be used. The rms acceleration was also found to be
insensitive to variations of transformer frequency and damping when the
middle estimate random input was used, so the wvalues of fg = 4,65 cps énd
ng = 0.18 were suitable values for both input spectra and both optimization
methods.

Fisure 11 shows that the rms acceleration at each location is minimum
for a different value of car damping, and is sensitive to variations of car
damping. As previously discussed, considerations outside the scope of this
study must be uced to determine which value of car damping to use. Values
of car damping (from figure 11 and similar results for the middle estimate
input) that minimize the acceleration at each car location are presented in
table II along with the optimum car damping results previously presented and
obtained with the peak min. method. Table II shows that the optimum value of
car damping for each location determined by the rms method is about half as
large as when determined by the pesk rmin. method. Figure 9 shows that for

values of car damping below the optimum for each location the spectral

14
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density has a value at the 1 cps peak that is much larger than the valuec at
the 4.5 and 5.5 cps peaks. The acceleration response is thus concentrated
near a single frequency. Therefore, if the smaller value oi damping obtzined
by the rms method is chosen to minimize rms acceleration, then the response
is concentrated near a single frequency. This may be uncomfortable to

passengers. On the other hand, if the higher value of dsmping is chosen, to

b =

‘minimize the peak value of spectral density, then a higher overall rms

acceleration results with the response more evenly spread over the frequency
range. In order to choose an optimum value of damping in this situation,
the effect on passenger comfort of various acceleration spectral shapes
having various rms levels needs to be known. Experience with acoustic noise
indicates that both overall rms level and the concentration of energy near a

single frequency are important.

CONCLUDING REMARKS

The results of this investigation illustrate some of the consicderations
required for the use of measured random data in a mathematical study of
vibration response minimization. The techniques are illustrated herein by
developing specific results for a three-degree-of-freedom mathematical model
using a simplified representation of the measured input displacement,
however the techniques could be extended to apply to more complex situations.

The specific results obtained from this study of the vertical dynamics
of a three-degree-of-freedom model of a railroad car can be summarized as
follows.

For some cases, no single value of a parameter to be optimized can be

chosen that will minimize the acceleration at all locations on the model. In

15



a practical situaticn, therefore, the relative importance of the various
locations must be determined and preference given in the optimizati i process
to the more important locations. An optimization study such as presented
herein appc#rs to be valuable to show which system parameters most influence
the acceleration at a particular location, to show which locations have
minimum accelerations for the same value of the damping or frequency para—
meters, and to chow how sensitive the accelerations are to variations of the
system parameters from their optimum values.

The optimum value of one damping parameter obtained when the system
input was a random function was different from the value cobtained with a
sinusoidal input. The ortimum value was also different for each of two
different spectral shapes of the random input. For the three degree of
freedor system studied the differenccs were large and the accelerations were
sensitive to variations of the damping parameter from its optimum value.
This result suggests the importance of accurate measurement of the charac—
teristics of the input, in this case the rail irregularities, and the
importaﬁcc of using measured inform-tion on the input for optimization studies.

The optimum values of the damping and frequency parameters obtained by
two different minimization methods (with the same input characteristice)
were different. This result was true for both input spectra used. 1In
particular, when the rms acceleration at a given location was minimized
the acceleration response tended to be concentrated near a single frequency,
but when the peak value of acceleration spectral density was minimized
(spreading the response more evenly over the frequency range) the value of

the rms acceleration was increased. In order to choose betwezn the two

16
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situations additional information is required about the relative importance
to passenger confort of overall rms acceleration level vs the presence of

accelerations concentrated near a single frequency.
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B(t)

Cs
EI
EI = n6EI/8 g

g(t)

APPENDIX A
SYMBOLS
gereralized coordinate of beam rigid body mode,
= Aysirwd + Apcoswt
acceleration at end of beam
acc2leration at center of beam

generalized coordinate of beam bending mode,
= Bysinwt + Bocosws

daamping of transformer
damping of beam

beam bending stiffness

displacement of transformer mass
acceleration of gravity

spring constant of transformer

spring constant of beam support

beam length, 85 ft.

bean mass, 153,600/C, lbs—sec® /Tt
transformer mass, 13,000/G, lbs—secz/ft
transformer damping coefficient, = Cg/2 M, 0y
beam damping coefficient, = Cg/Mw
amplitudes of applicd displacement
spectral density of applied displacenent

'

time

beam displacement, = A(t) + B(L) [Jr«(sin nx/L)/2 ]

distance along beam
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circular frequency of applied displacement

beam bending frequency, fp = V1r+EI/8MLJ =5 cp

transformer frequency, = "kg/Mg%ﬂ
beam rigid body frequency, fg = J 2kS/M/2ﬁ =
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APPENDIX B

EQUATIONS

The three degrees of freedom assumed Tor the mathematical model chown
in figure 2 were rigid body translation of the beam, the first bending .aode
of the beam and the translation of the traﬁsformer. The displacement input
was S, sinwt at both ends of the beam, so only symmetrical motions were
excited. The equations of motion for this three degree of freedom mathematical

model are:

B - f,,\ ~ , l - .\‘
I 2¢c. ¢+ e
M 0 o | A 2Cg + C, l Cgt Cg(l 2) | <, A
0 M(’—é—l) 0 < B ?+ 2C_t+C (:L--E)l oc t54c (1 - 1)° ! = (J‘-—“) B
8 s’ 78 2’| s £ 2/, v T 2 :
& | . Sy A
0 0 M, : —-C - (1 -= c 2
» {’_J ugJ = g ' G( 2 ' g Lﬁ
| | -
[ r- - 7T ’ _n .1 3 j
kg + kg | keti, (1 - 5) | kg A 2k
+2k;+k(1-£)|2k§2+k(1—£)2+E'i:—k’l-ﬁ) ' B\ = ! 2k§;‘\S<~' t
g ey S g T g ' es 2§ { S Bypina
: s
4 | X (1 -2 ’
o ! k(1 - 3) ’ kg G L 0 J
L | | S S =
2c w
s

+ 2c Swf> S coswt

o

21

1l



—~
TR TS

These equations were divided by MS, , and written in terms of the

matrices M, K andi C , the geheralized coordinates

,( A/So)
(q} 5 B/So J

end the force vectors
2 -~

Mq + Cq + Kq = S, sinat + S, coswt
i1 2

The steady state part of the solution is then taken as:

q = 2, sinwt + q, coset ‘
where:
" :

q = { By/S, § Up # Bg/SO
22
i
L b e a3

(B1)




b,

which when substituted into equation (BL)gives:

. o=z - T e
—u?i\—l sinwt ayg. = WM cosut Qo + «:C cosut a1 - a0 - Birpt an

+ K sinut q; + K cosut gdo = Sl sinet + 82 cos-t

kquating coefficient of sinwt and coswt leads to the 6 equations of

motion: o
eyt o S 0y
K —wM —~C ay { 59
( : (2)
wC AN ds l w8y
L ‘ L J

The elements of the mass (M), damping (C) and stiffness (K) matrices in

equation (B2) are:

Mll =1
n
jrl.

M33 = Mg/M = mg

A1l other Mij are equalil to zero.

2 v
Kll =W g + mgu‘g

e 2

Kip =Kp3 = $ud gt (1 - ﬂ/E)mgbg
- _ 2
K13 - K51 --°mgmg

e

.
Lol e s80



2 ) ')

Kos' = s*qu‘gs * (1 -/ 2)3"%:“‘5;  wg

5
K, = Kj:; =—(1 - n/E)mgr.\S"

7

K33 = mgtly
PV 4 ] o %
£ n& 4+ 2 m <~
Cll e L ”g”g i

Cip = Cpy = 2“5""3{ + Qngu‘gmg(l - x/2)

Cl§ = CZl = —Qngmgué
2 2
022 = 2nsrusf + Qné-\gmg(l - 11:/2)

— /Zs)

Coz = Cp = —f_’ngc-gmg(l - x/2

C33 = 20y

Values of the column vectors q and a4 obtained from equations (32)

were then used to obtain the acceleration transfer functions from the

equations:
A(L/2) - > 0 2) b P
cs_ = i+ B (1 = x/2)] 7 ¢ [ay + By(1 = n/2)] B 2/s.G (B3)
. I ¥
gé—Z—) ={lag + 3, 2 + [A2 + 132]“} w?/8 .G (B4)
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The spectral density and rms values of the accelerations were found
from:
%
TR : 0 2
; -, 5, ,() = [a(n/2)/es,) © @) (56)
: : o
- | e 1 1/2
_ | Ams(1/2) =[S o8 () @] (1)
; é
&, @ |
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TABLE I. - OPTIM

UM VALUES OF CAR DAMPING.

Location

Input Sine

High Random Middle
Random

Middle of

Car damping, n, =

car .11k 80, DL
End of car +O5T 20 .28
Transformer 047

e .23

TABLE II. — OPTIMUM CAR DAMPING FROM TWO METHODS.

High Ruandom Input

Middle Random Input

Opt.imization f
method Peak—nin. RMS Peak-uin. RMS
Location :
Car damping, ng = %

Middle of 9
car .35 175 o1 .25 i
End of car .20 .09 .28 35 ?
Transformer o i .10 .23 L1k ;
! 1
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Figure 1.- "Metroliner" high-speed train.




! , UNIFORM BEAM
(RAILROAD CAR)
ks c.  CAR SUSPENSION
Cs Mg [[AG) S
Ks
, A | VIBRATING BASE

(WHEEL MOTIONS)

“— TRANSFORMER
CAR TRANSFORMER
WEIGHT, Ibs 153, 600 13, 000
FREQUENCY, cps 1,5 fg’ VARIED
DAMPING Ngs VARIED ng, VARIED

Figure 2.- Railroad car vibration model.
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INPUT FREQUENCY, cps

Figure 3.- Acceleration transfer functions. Sine input, fg = 4.65 cps,

ng = 0.18, ng = 0.085.

27



o/

. ~’)\.- 7

wmgel L RO

—— S ERS
e LS
. o ACCELERATION
i /> MAX IMUM FUNCTION
14
T / TRANSFORMER
10} -
8 [ e e e e i
6 -
I6r o
14 %
3 N\
END OF CAR
ACCELERATION, 12} NG
AIGS, (PEAK) 1o |
8 -
X R T S
10 -
]
. MIDDLE OF CAR
6 -
4 - L 1 1 J
40 45 50 55

30

TRANSFORMER FREQUENCY, fg’ cps

Figure 4.- Variation of peak of acceleration transfer function with

transiormer frequency.

Sine input, o, . 0.18, ng = 0.085.
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Figure 5.- Variation of peak of acceleration transfer function with
transformer damping. Sine input, fg = 4,65 cps, n, = 0.085.
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Figure 6.- Variation of peak of acceleration transfer function with car
damping. Sine input, fg = 4,65 cps, ng = 0.18.

'Y




RUNWAY 2
50
HIGHWAY
20 F
J0F RUNWAY 3
RUNWAY 1
i SPECTRAL
G 8  DENERRY, .
. 2 L2
in’1 cpf EASTERN U.S.
RAILROAD
02 BRITISH
| RAILROAD
01k
| )
005
1 1 | 1 1 1
00355 01 02 05 10 2 4
FREQUENCY, cpf
L | | 1 | | 1 : | [
200 100 60 40 20 14, 10 5 25

WAVE LENGTH, ft

Figure T.- Measured spectral density of typical transportation surfaces.
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Figure 8.- Spectral density estimates for irput to mathematical model.
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Figure 9.~ Variation with car damping of the peak value of spectral density. High estimate in-
put, fg = 4,65 cps, . * 0.18.
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Figure 10.- Variation of rms acceleration with transformer frequency and damping. High estimate
input, n, » 0.12.
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Figure 11.- Variation of rms acceleraticn with car damping. High estimate input, fg = 4,65 cps,
n_= 0.18.
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