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PREFACE

The Federal Railroad Administration (FRA) is sponsoring 
research, development, and demonstration programs to provide 
improved safety, performance, speed, reliability, and main­
tainability of rail transportation systems at reduced life- 
cycle costs. A major portion of these efforts is related 
to improvement of the dynamic characteristics of rail vehicles, 
track structures, and train consists.

Transportation Systems Center (TSC) is maintaining a center 
for resources to be applied to programs for improved passen­
ger service, improved safety, and more cost-effective freight 
service. As part of this effort, TSC is identifying computer 
programs, analytic models, and analysis tools required to 
support the FRA objectives. In particular, TSC is acquiring, 
developing, and extending computer programs to provide real­
istic predictions of rail system dynamic performance under 
field conditions.

The DYNALIST Program was initially developed for the Department 
of Transportation by TRW, Inc. to evaluate the stability of 
complex dynamic systems having up to 50 degrees of freedom.
Under contract to TSC, in support of the FRA under PPA No.
RR415, Dr. T.K. Hasselman of J.H. Wiggins Company extended the 
DYNALIST Program to provide a capability for predicting the 
response of rail vehicle/track systems to sinusoidal or station­
ary random rail irregularities. This report describes the 
results of that effort and is contained in two volumes. Volume 
I, the Technical Report, documents the theoretical basis of the 
program. Volume II, the User's Manual, describes use of the 
program and includes sample problems.
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1 . SUMMARY AND INTRODUCTION

1.1 Summary

This report presents results of research and computer pro­

gram development on rail vehicle dynamics performed at the

J. H. Wiggins Company during the period February, 1974 to 

October, 1974. The work covers the following major areas:

• Development of detailed equations for calculating 
acceleration, velocity, and displacement response
at selected locations on a rail vehicle due to sinu­
soidal and/or stationary random track irregularities

• Development of Fortran response code and plotting 
subroutines which implement the above methodology.

• Execution of sample problems to demonstrate use of 1 
the computer program for rail vehicle systems.

1.2 Introduction

The subject.of rail vehicle response to guideway irregulari­
ties has been of interest to engineers for many years.
These irregularities cause vibratory motion to be induced in 

the cars and their suspension systems. As a result, the 

passenger environment may become 'uncomfortable, wheels and 

rails wear more rapidly and in extreme cases, derailment may 

occur. Ail of these problems become more severe as vehicle 

speeds increase. For conventional wheel type suspension , 

systems, the problems are compounded because the increase in 

speed is accompanied by the development of a self excited 

instability called hunting.
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The dynamic behavior of conventional rail vehicles is unique 

among many dynamic systems due to the mechanics of wheel-rail 

interaction. Wheels are connected rigidly to the axles and 

given a slightly conical geometry so that they tend to "track" 

without wearing the flanges against the rails. The design 

gives rise to the potentially unstable hunting motion. This 

consideration, along.with the large amounts of damping found 

in suspension systems, demands special modeling capabilities 

not commonly available0 The important dynamic characteristics 

are still obtained by solving an eigenvalue problem, but the 

eigenvalues and eigenvectors are complex, as opposed to being 

real in the classical case. Complex eigenproblem solvers are 

generally available but input matrices must be generated by 

hand, a rather time-consuming task whenever the system con­

tains more than 10 or 15 degrees of freedom. Furthermore, 

computer costs become excessive for larger systems, particu­

larly when parametric studies are made.

Recognizing these limitations, the U. S. Department of Trans­

portation sponsored the development of a general computer code 

for the modeling and analysis of rail vehicles systems. The 

methodology was formulated in 1970 and an operational program 

was delivered to DOT. Documentation is provided in Reference

[1]*- This program was updated in 1973 and given the name DYNALIST 

(Dynamics of Articulated Linear Systems). The DYNALIST program 

utilizes a subsystems approach to generate complex eigenvalue 

and eigenvector characteristics of rail vehicle systems with 

up to 50 degrees of freedom.

This report concerns an extension of DYNALIST to enable com­

putation of vehicle response to sinusoidal and stationary 

random rail irregularities. The new version of the program, 

called DYNALIST II, includes capabilities for stability as

* Numbers in square brackets designate references listed at 
the end of this report.



well as dynamic response analysis based on modal methods.

CalComp plots of vehicle excitation and response characteris­

tics versus frequency can be generated. Several improvements 

in the original part of the program have also been made to 

facilitate user convenience and extend the range of applica­

bility to practical problems. Of particular importance are:

• A new capability for direct modal representation of 

flexible components such as car bodies. Component 

equations of motion may be written in terms of modal 

coordinates and subsequently transformed back to the 

physical coordinate system for response computation.

• Automatic generation of the IARANG vector used to 

distinguish between dependent and independent coor­

dinates and establish the order of system coordinates.

The DYNALIST II computer program begins by generating a list 

of dynamic characteristics for each subsystem or component 

treated independently. The list may then be edited to delete 

characteristics associated with large eigenvalues. Then com­

ponent data are assembled from the list to form the equations 

of motion for the composite system and solved in a reduced 

coordinate space. The program represents a generalization of 

the usual component mode synthesis method used in structural 

dynamics. DYNALIST II. will accommodate systems subdivided into 

components having up to twenty-five degrees of freedom each. 

Flexible truck assemblies and car bodies may be treated as 

individual components. Only oiie component of a kind need be 

placed on the master component list. The list can be saved on a 

permanent file or tape and added to at any time. In this way. 

a variety of building blocks can be stored and combined in 

different ways t o .synthesize a variety of rail vehicle systems.
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Changing truck assemblies, for example, to evaluate the effect 

on critical speed or ride quality is a simple matter since the 

user need only change the component names on the assembly list, 

a subset of the master list.

After assembling the system from the list of components on file, 

the program generates the complex modal characteristics of the 

system which may be written onto a permanent file or tape.

A user option provides for termination of the program at this 

point, or continuation to the response segment. A restart 

capability is provided.

In the response segment of the program the complex frequency 

response at selected vehicle locations is generated using the 

complex modal characteristics previously obtained. The user 

then has the option to specify either sinusoidal or random 

input characteristics which define vehicle excitation. The 

phasing of inputs at each axle is computed on the basis of 

user input lag terms which depend on axle spacing and velocity. 

Depending on the form of excitation specified, sinusoidal 

response or random response is computed and plotted versus 

frequency. Random response is computed in the form of a 

power spectral density function dependent on frequency. Mean- 

square values of response are also computed by integrating the 

response PSD functions.

The DYNALIST II program offers the user considerable flexi­

bility in computational methods as well as modeling ability.

The following options are available:

• Direct System Method - System is modeled as a single 

component. Complex modes are evaluated directly and 

may be truncated for response computation.

• Direct Subsystems Method - System is modeled as an 

assembly of subsystems. However, no subsystem modes 

are computed. System modes are computed directly 

and may be truncated for response computation.
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• Modal Synthesis Method - System is modeled as an

assembly of subsystems. Subsystem or component modes 

are generated and these may be truncated prior to 

assembling the system. . System modes are then generated 

and these also may be truncated for response computation.

The remaining chapters of this report describe in detail the 

methods of analysis and the example problems which have been 

evaluated.

-5-



2. THEORETICAL DEVELOPMENT

A formal presentation of the modal synthesis procedure is 

described in this chapter. Coordinate transformations are 

defined using complex modal matrices. The response of the 

system to rail irregularities is developed using the fre­

quency response method.

2.1 Discussion of Coordinate Systems

Prior to the derivation of detailed equations which form the 

computational basis of DYNALIST II, it will be useful to dis­

cuss the relationship among the various coordinate systems in­

volved. This will serve to introduce some of the notation as 

well as provide a general overview of analytical procedures.

Six different coordinate systems are used in all. Three of 

these define displacements of the system at either the compo­

nent or the system level. The remaining three are state space 

coordinate systems which include both velocity and displacement. 

The use of state space coordinates is a direct consequence of 

reducing the second order differential equations of motion to 

first order form. This step is taken to extract the complex 

eigenvalues and eigenvectors which are characteristic of rail 

vehicle components and systems.

There are two kinds of components which form the building blocks 

used to generate DYNALIST models: structural components such

as car bodies and truck frames, whose dynamic characteristics 

(eigenvalues and eigenvectors) are real and classical in form; 

and the complementary group of all other components such as 

truck assemblies and cars which include suspension elements and 

rotating machinery. The dynamic characteristics of these com­

ponents are considered to be complex. The latter group of com­

ponents may include some of the former as elements, e.g., a car

-6-



component in a train may include a flexible car body. The 

distinction is important with regard to understanding the 

input coordinate system, i.e., the coordinate system in 

which component equations of motion are initially specified.

The six coordinate systems will be denoted by the vectors 

u, p, q, x, y, and z. Input is specified in the p coordinate 

system. In the case of nonrigid structural components, the 

equations of motion will be written in modal coordinates.

In this way, a car body, for example, may be represented by 

its flexural modes. However, when response is computed, 

transformation back to the physical coordinate system, u, is 

required to facilitate interpretation. Therefore, the modal 

transformation matrix <j> must also be supplied.

When modeling the more general class of components, equations 

of motion may be written in terms of discrete coordinates, 

distributed coordinates, or a combination of the two. When, 

certain p coordinates correspond to physical displacements, 

the modal matrix i must embody the appropriate identity re­

lationships.. Corresponding elements in the u coordinate sys­

tem will, therefore, ha.ve the same meaning.

The component equations of motion are coupled by introducing 

equations.of constraint which lead to a compatibility matrix 3 

relating the component coordinates p to a set of generalized 

coordinates q for the complete system. The q coordinates are 

defined so as to preserve all of the Original component coor­

dinates which are not on interface boundaries. Then by fixing 

the interface boundaries, constrained component modes are com­

puted for the individual components, e.g., single cars of a 

train. This leads to the second modal transformation desig­

nated by t|* which transforms the coordinates from q, through

-7-



an intermediate vector x which contains both q and q, to y.

The matrix ij> is complex in general. The purpose of this 

transformation is to further reduce the number of coordinates 

required to describe the system by permitting truncation of 

the complex component modes. Finally, the reduced set of 

system equations is considered in homogenous form to generate 

a set of system modes which is used to transform the system 

state equations in coordinates y to diagonal form in coordi­

nates z. This then is the third modal transformation.

Frequency response functions are computed in the z coordinate 

system and transformed back through the sequence of previously 

defined transformations to the set of u coordinates which are 

identified with discrete points on the system.

2.2 Formulation of Component Equations

The method described herein and implemented in the DYNALIST II 

computer program is not intended for use in solving real eigen- 

problems, although real eigenproblems can be solved using the 

complex eigenproblem subroutines contained therein. However, 

this is not the intent and would be quite inefficient. There 

are many cases in which the user will want to include flex­

ible structural components in his model. As previously stated, 

the component equations of motion are entered in terms of the 

real component mode coordinates, p, and in addition, the real 

component mode transformations <)> are entered as input to the 

program.

In specifying the constraint equations which establish component 

displacement compatibility, it is convenient to do so in the 

discrete physical coordinate system, u, rather than the modal 

coordinates, p. Therefore, constraint equations of the form

[G] {u} { 0 } (2-1)



are defined and the matrix 0 is used to determine the corre­

sponding set of equations

[G] [0] {p} = {0} . . . . . . .  . (2-2)

It may be pointed out here that the column vectors, 0^, which 

comprise 0 need not be complete. Of course, the number of 

columns in 0 will correspond to the number of component mode 

coordinates reflected in the vector p which will,in general 

be equal to or less than the total number of degrees of free­

dom in the physical coordinate system. The point stressed 

here, however, is that the vector u need not contain all of 

the physical coordinates so that 0 will have a partial set of 

rows as well as a partial set of columns.

What determines the columns and rows to be included in 0? 

Clearly, the columns in 0 will correspond to the rigid body, 

constraint, and low-order dynamic (normal) modes for the var­

ious components. Three factors determine the particular rows 

to be included. First, the rows corresponding to elements 

of u involved in the constraint equation (2-1) must be included. 

Second, the rows corresponding to the elements of u for which 

response is desired must be included. Third, rows corres­

ponding to elements of u at which external forces (including 

wheel-rail' forces) are applied must be included.

For example, consider the train car having a flexible car body

as shown in Figure 2-1. The car body has four modal coordinates’
• • 2 2describing its motion: two rigid body modes, p and p„ and two

.  ■ 2 '  2 1 ^  . 

flexible body modes p^ and p ^ .

. 2 2Seven discrete coordinates, u. through u_ are also defined.
2 2 1

Coordinates u^ through u^ will be used in the constraint
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Train Car with Flexible Car Body



. . 2 2
equations while u,. through u^ are defined for response com­

putation. In other words, lateral response will be computed 

at both ends and at the center of the car.

The real mode transformations for each of the components are 

as follows:

Component 1

u i  

i
u

<

u

u

u

u

u

>  =

Component 2

2 1 
U1

r
“ I L 1/2

----- Y ' c .
*11

.c ^
• ,*12

r  2^
p i

2
U 2 0 1

*21/ : ^22
2

P 2

2
V

, i - L l / 2 ♦ 31 -32

< “ 2 ~

P 3

2
U4

> = o ' . - 1 ♦Si ,C
. *42

2
P 4V  J

2
U5 i , (L1 + V / 2 | *51

,C
*52

2
U 6 l 0 1 *61 '

, C ■ 
* 6 2

2
"7 J i -(1^ + L 2 ) / 2- *?i

.C
, *72
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All of these equations are of the form

i .i a n \u = 9 p ..................... (2-3)

It is emphasized that the vector p must be arranged so 

that

r h r

- -
& V z c

P H p

Ip J (2-4)

JIR
where p is a vector containing a component's rigid body de-

H Cgrees of freedom, p contains the constraint degrees of free-
SLF

dom and p contains the free coordinates. The distinction

between rigid body and constraint, and free coordinates is quite

essential to the proper execution of DYNALIST I I . The solution

of the component eigenproblem involves only the free coordi-
2nates. It may be noted that the <)> matrix for component 2 con- 

2F
tains no 4> columns and the real normal mode vectors are in- 

20eluded in <p instead. This is because the computer program

-12-



makes a test to determine whether the number of free coordinates, 

NFREE, is greater than zero. If NFREE is greater than zero, 

a complex eigenproblem is formulated and solved for that com­

ponent. Since complex modes are not required for the car-body 

component in the above example, NFREE must equal zero.

R CIt is not necessary to distinguish between cf> and.tj) . Both 

could be lumped in a matrix called <j) as is done in [2] .

There is one subtle factor which will emerge later. In de­

fining the compatibility transformation, the independent coordi­

nates must provide a basis for the dependent coordinates. It is 

thus helpful to keep clear which coordinates•are rigid-body, 

constraint and free.

The equations of motion for the £th component in the physical 

u coordinate system are considered to be of the form

. £  . . £ ^  £ • £  ^  £ £ J.SL . . .■
p , u + y u + ic u ■ = f (t ) (2-5)

Introducing a real modal transformation to simplify the modeling 

of flexible structural elements or components results in

u
£ £

P

Under this transformation, (2-5) becomes

(2- 6)

, £ • £
<j) p

£K , £ £ 
<t> P f

£
P

or alternatively

m p + c p  + k p = f ................ (2-7)
tr

Component equations of motion are input to DYNALIST II by
£ - £ £

specifying the matrices m , -c and k in the p-coordinate system.
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Forces are specified in the u-coordinate system, however, 

because it is more convenient to enter forces in the physical 

coordinate system and let the computer make the transformation,

Now the complex eigenproblem for each component may be con­

sidered. Equation (2-7) may be partitioned so as to separate
R C Fthe rigid body, p , constraint, p , and free, p , coordinates

in the manner

r
RR1 RC I RFm , m mi
CR1 CC 1 CFm , m .m
FR1 FC 1 FFm i

•
m i m

Z ..R
P

Z

< ..c
p > +

RR i RC i RF
c c

i
c

CR i CC i CF
c i c

i
c

FR i FC i FF
c i c i c

(2- 8)

The constrained component eigenproblem is obtained by assuming 

the p and p coordinates to be fixed, in which case the 

homogeneous form of (2-8) becomes

£FF „£F £FF .£F ^ . £FF Z F  m p + c  p + k  p (2-9)

The corresponding first order equations are

FF FF z
• F

Z

s - -m ~ P__
+

FF_m 0 ..F
P 0 i - m FF

• • ( 2- 10)



and the corresponding eigenproblem is

FF 
2 -

FF
_m_

£
' kF F ' 0 l\  I

• £ 0

FFm 0
A . + 
1 0 1 3 

I d̂i II .0 . (2-11)
£ £

where A^ and are the complex eigenvalues and eigenvectors

of the £th component. It is recognized that one may perform 

the partitioning

’"ji
u.

3

L.J

'PU .

♦ J .
j

(2-12)

since solutions of the eigenvalue problem are of the form

£F , £
P =  ^U.

A*t
e  J (2-13)

The .formulation and solution of the complex component eigen­

problem was introduced here because it follows logically from

the partitioning of Equation (2-8). However, we are not quite
£ £

ready to use the results., \p_, and A ̂ . Furthermore, the con­

straint equations were introduced in (2-1) in order to help 

describe the component coordinates. The constraint equations 

must be used to derive a compatibility transformation to 

effect the mathematical coupling of component equations. It 

is desirable that this be done prior to making the complex 

component mode transformations in order to perform the operations 

in real arithmetic. The following two sections will therefore 

consider first the compatibility transformation, and then complex 

modal synthesis where the component "free" coordinates are 

transformed to complex modal coordinates.
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2.3 Compatibility Relationships Between Components

Going back to (2-7) one may form a set of equations for the 

system in block diagonal form where the coupling between 

components is implicit in the forces on the right-hand side. 

Thus

1 r - i i r i  i f • ! ] 1 1 r l im 2 p C 2 P k 2 p
m -2 c .2 k 2

P . P . P
• • ■ + • • + •

• N •N • N IN * . N *Nm I p  J c P J k• _ I p

=

P
r2

I.N

where N = number of components in the system. Alternatively,

mp + cp + kp = f ............
lr

Constraint equations in the general form

(2-14)

[G] {u} = { 0 } ................................... (2-1)

have been written where it is now recognized that

{u} =

u

'N

(2-15)

Transformation to the p coordinate system has been written as

-16-



[G] [(f)] {p} = {0} (2- 2 )

where

[ <t>] = (2-16)

Finally, the redundant coordinates in the vector p must

be eliminated by the compatibility constraint equations. Let

the reordering matrix E partition p so that the dependent

coordinates, p ,, appear first, followed by those which are 
a _ +

independent (free) p ^ . Thus,

{p} = [E] {p} = [E] j=--f....................... (2-17)
(P f  J

and then (2-16) becomes

[G] [<J>] [E] {p} = [G] {p } = {0}...................(2-18)

[5a| <2- 19>

{Pd } = - [Gd ]- 1 [Gf ]{pf } = [g]{pf } ............ (2-20)

{p } = [E] {p } [E] [8] (q>......... (2-21)

where q denotes the generalized coordinates of the system.

Going back to the system of Figure 2-1 to give these transform­

ations physical meaning, one may write the system u and p 

coordinates as

The subscript, f, used here is not to be confused With the 
superscript, F, used in (2-8). The latter denotes component 
coordinates for which complex component modes are to be com­
puted. The former denotes all independent coordinates for the 
entire system. These include all of the "F" as well as some 
of the "R" and "C" coordinates.
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T
{u}

u

u

u (2-22)

<■ \ _  y  p v_ / 1 1 1 2 2 2 2 3 3 3,'
P■* | 3 | ^ '^ 2  ' * " * '^8 '^1'^2'^3'P4 '^1'P2 ' * " * ' Pg ̂

. (2-23)

The constraint matrix, G, of Equation (2-15) connects the three 

sets of coordinates in the physical, u, coordinate system. Thus

coordinates u?" and u^ of component 1 are constrained to move
. 1 2 ^ 2 . 3 3 2

with coordinates u 1 and u . Similarly, u and u„ move with u 2 1 2 1 , 2 3
and u^. Equation (2-15) may then be written

"1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 o“

0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0

.0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0_
{ u }  = { 0 }

. . . (2-24)

Equation (2-24) contains four rows since there are four physical 

constraints. The constraints are converted to the p-system 

through (2-16) and then four p-coordinates p^, are eliminated 

through (2-20). It is first necessary, however, to choose 

which dependent coordinates to eliminate. One must input this 

information to DYNALIST II in the vector KDEP, which contains 

the numbers of the dependent p-coordinates. This information 

is then used to automatically generate the matrix E of (2-17).

The only restriction on defining KDEP is that the submatrix 

[G^] in (2-19) be nonsingular since it must be inverted to 

generate the compatibility transformation, [g]. For n 

equations of constraint, the first n columns of G must be 

linearly independent.
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In order to generate the system equations of motion, the trans­

formation (2-21) applied to (2-14) yields

3Tm3q + 3Tc3q + 3Tk3q = 3Tf = f
P *1

or alternatively

Mq + Cq + Kq = f ............................ (2-25)

Equation (2-25) represents the system dynamical equations of 

motion. 'A direct numerical solution to this equation is possi­

ble. However, experience with the solution to equations of 

this type indicates that when using modal synthesis methods 

one gains economic efficiency as well as engineering insight. 

The pages which follow discuss the modal synthesis technique 

used in DYNALIST II.

2.4 Complex Modal Synthesis

It is recalled from (2-11), from which the complex component 

modes are calculated, that it is possible to make the following 

coordinate transformation,

. (2-26)

These transformations may be combined to give

r  ]
p

r  1F~\

iqF } = (PF > = i P
2F

>  =

* NF
vP

u

’ , N

( n >  =

and {qF } = {pF > = I U  UJfl} so that
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X q

f  RC" t ■q
Fq

► =• RCq

V._
__

o

0

1

o

u

V - l

qRC

qRC W  { y > (2-27)

Equation

'C 

.M

or alternatively,

Axx + Sxx = fx ................................. (2-28)

(2-25) written in first order form is

Introducing the coordinate transformation defined in (2-27) 

to (2-28) yields

= 4iTf x = f

or alternatively,

A y
y

B y fy

The final system eigenproblem may now be written

(2-29)

V i  + VVj - 0 ..................... .. •
whereupon the additional coordinate transformation

(2-30)

y = ..............................................(2-31)

applied to (2-29) results in

+The superscript "RC" is used here to denote those rigid body 
and constraint coordinates which were not eliminated by constraint 
equations, i.e., they are a subset of the vector "Pj" defined in 
(2-17).
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z - Az (2-32)
-1 T

= A ¥ f 
z y y

-1
z

fz

Equation (2-32) represents the system dynamical equations 

of motion in terms of first order system normal modes of 

vibration. The matrix transformations from the complex 

system mode coordinates back to the physical coordinate 

system follow directly from the application of (2-31),

(2-27), (2-21) and (2-6). Thus it is found that

{u} = [$] [g] HTd ] [¥ ] { z } ....................... (2-33)

The differential equations of motion given in (2-32) can be 

solved for any specified form of forcing function. In the 

sections which follow the excitation is considered to be in­

duced by rail irregularities. The analytical form of these 

irregularities is assumed to be either sinusoidal or station­

ary, random. In either case the solution is dependent upon 

the system's frequency response function.

2.5 Frequency Response to Rail Irregularities . -

The frequency response function for a linear system is defined 

to be the complex ratio of output over input as a function of 

the. input frequency. For example, an equation of motion for 

a single degree of freedom system may be written

mx(t) + cx(t) + kx(t) = f(t)

Transformation to the frequency domain> Q, , results in

[ (k-n^m) + inc] X(ifi) = F(in)

The complex frequency response function is defined to be 

_ X (if!) _ 1H (.in) 
x F (in) (k-n m)+inc

It is a characteristic of the system and is independent of 

applied forces.

-21-

i



For a base excited system, where a mass is attached to some 

movable base by a spring, k, and a dashpot, c, the equation 

of motion is

or

mx + c (k-x. ) + k(x-x, ) b b 0

mx + cx + kx = cx, + kx,
b b

In this case, transformation to the frequency domain yields 

[ (k-ft2m) + iftc] X(ifi) = (k+iftc)(ift)

Defining the frequency response function as before such that 

Hx (ifl) = X (ifi)/X^ (ifi), one obtains

[ (k-f22m) + ific] Hx (ifi) = k + i52c

The right hand side of the above equation may be written in 

the general form

k + (ift)c = F + (ift)F' + (ifi)2F_O 1 2.

where in this case, F ^  = 0.

For a multi degree-of-freedom base excited system, the general 

form of the equations of motion transformed to the frequency 

domain may be written

([k] - a2 [m]+ifJ[c]) {H (ift) } = {F } + iC2{F } + (iQ)2{F }
X  o x  ^

where Hx (in) denotes the complex frequency, response vector, 

[k], [m] and [c] are square matrices and {F^}, j = 0,1,2 is 
a vector. It has been assumed that vector of applied forces 

is of the form {F}X, (ift) so that

{F} = { F  } + ifi {F.} + (ifi)2{F„}
O  1  2.

-22-



and

{ Hx ( i t ! ) , =  i o i s r ( x ' ia ))
b

where X ^ d ^ )  is a scalar function. The vector {F} is referred 

to as a spacial distribution vector while x^Ct) is 4 scalar 
time dependent forcing function.

In the rail vehicle problem, the input is through the wheels. 

Since the irregularity traversed by one wheel is traversed 

by all other wheels at times which depend on wheel spacing, 

there is a phase relationship among the input forces. Thus, 

even if the vectors {F^} and (E^}, above were both null, the 

distribution vector would be complex if the time dependent 

portion of the forcing function is considered to be a scalar 

function of time describing rail irregularity.

The equations of motion of a rigid wheelset are discussed 

in detail in Appendix A. Equation (A-16) and (A-19) show 

that in the case of lateral motion, the rail irregularities 

induce forces only at wheelset rotational coordinates. With 

regard to the previous discussion it becomes apparent that 

when the. response of the rail vehicle system is calculated 

due to rail irregularities, only, those coordinates correspond­

ing to wheelset rotations will have non-zero force components. 

Referring to Figure 2-1, One sees that the only coordinates 

with non-zero forces are u^, u^, u^ and Ug.

Consider the truck shown in Figure 2-2. Forces will be 

transmitted to the system corresponding to the ^  and u^ 

coordinates. It is apparent that if the vehicle is trans­

lating at a constant speed V and if the wheelsets are sep­

arated by a distance L, then
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and

<5^(t) = lateral displacement of rail at time 

t for the leading wheelset

o6 (t) = lateral displacement of rail at time 
5

t for the trailing wheelset

are related by

5 * ( t )  = s j ( t  -  £) (2-34)

A meaningful relationship between these displacements follows 

after one takes the Laplace transform of (2-34), i.e.

00

A5 (S) = f  5*(t)eStdt = eS(L/V)A*(s)......... (2-35)

0

Replacing (s) by (in) yields the following frequency dependent 

relationship:

in (L/V)A(. (in) = e ' ' A n (in) (2-36)

An important part of the response relationship for random 

irregularities is the complex frequency response between, 

track irregularity and a response coordinate. The track 

irregularities provide input forces of the form given in
a

(A-16) and (A-19), and appear in the fu (t) vector given in 

(2-5) . The frequency representation of this force vector 

for the truck shown in Figure 2-2 takes the form
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Figure.2-2 Typical Truck System
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{ F ^ ( i f i )  } = Aj(i«)

0

eifi(L/V)

(in) (2-37)

The complex force distribution vector including the phase 

shifts due to transportation lag may be written in the general 

form

{F (in) } = {Fo (ift)> + ifJ{F1 (ifi)} + (ift)2{F2 (ifl) }

(2-38)

where the subscripts denote zeroth, first and second order
_ o

terms as before. The vector {F (i£2) } in Equation (2-37)
_  n ^

corresponds to the {FQ (ifi)} term in (2-38).
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The equations of motion given in Equation (2-32) may be trans­

formed to the frequency domain resulting in

(ini - A)Z(in) = A -1F (in) A*" ( i n ) .............. (2-39)
2 2 J.

or

(ifil - A)Hz (ifi) = A~1E'z ( i n ) ..................... (2-40)

Rearranging (2-40) and using the transformations defined in 

previous sections one finds that

H (ifl) = [ini - A] 1A_1?T< 
z ' z y

0 _ _
0 _ _

T - F  
u ■ j

hlvi<l>F f " (in>

(2-41)

and the frequency response relationship in the u coordinate 

system is according to (2-33),

Hu (i8) = 3 ^u'i’̂Hz (in) (2-42)

where

=

I 0 0
0 0 \f>.UJ

From (2-42) it follows that for any coordinate one may write 

a corresponding

Hu ( i n )  = frequency response
j irregularities and u^ coordinate response

The response of the vehicle system to sinusoidal or random rail 

irregularities involves the use of the system frequency response
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function. Consideration will next be given to calculating 

vehicle response to such excitation.

2.6 Sinusoidal Rail Excitation

The evaluation of response to sinusoidal rail irregularities 

provides useful insight into the dynamic response characteris­

tics of a rail vehicle system. While a more appropriate des­

cription of actual rail irregularities can be accomplished 

using a power spectral density function, it is important for 

two basic reasons to consider vehicle response to sinusoidal 

irregularities. Historically, rail irregularities have been 

described in terms of sinusoidal functions and, therefore, 

in order to relate to past work it is beneficial to consider 

sinusoidal excitations. Also, human comfort levels are most 

often prescribed in terms of sinusoidal environments and may, 

therefore, be compared directly to sinusoidal vehicle response.

The description of rail irregularities in sinusoidal terms 

involves relating the amplitude of the sine wave to its wave 

length. Early work [ 3] suggested a linear relationship but 

for high speed vehicles it has been shown [ 4 , 5 ]  that a 

relationship of the form shown in Figure 2-3 is more appropriate 

since longer wavelengths are important. The modulus of the 

frequency response of the vehicle is related to the sine wave 

amplitude using a frequency response function, i.e.,

U(if) = A H (if)

=  ay?nH (if) (2-43)

where f = Q / 2 tt (Hz .), ft being the circular frequency used 
earlier. Recognizing that the wave length is related to the
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vehicle mean forward velocity, V, and sinusoidal irregularity 

frequency, f, one may alternatively write

U (if) = a/v~~|H (if)

(2-44)

DYNALIST II calculates and plots the modulus of the frequency 

response function relating rail irregularity and coordinate 

location. This function is scaled by a  \/v/f to obtain sinusoidal 
response amplitude. Values for a  are often given for particular 

rail system environments. It is a direct measure of rail rough­

ness.

2.7 Random Rail Excitation

The theory of probabilistic structural dynamics has advanced in 

recent years to the state where it is now common to model rail 

irregularities as a stationary random process. A power spectral 

density function of rail irregularity is used to describe the 

magnitude of irregularity at various frequencies. A stationary 

random process assumes that the rail irregularity is invarient 

under a shift in spacial location and that the power spectral 

density is only a function of the correlation between irregu­

larities at various spacial separations.

Rail irregularities are characterized using a spacial power 

spectral density function and this function tends to be of the 

analytical form

E (F) = K F n ..................... (2-45)

In most cases it has been found that n is approximately equal 

to two. The parameter F is the frequency of irregularity in
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cycles/foot, and K is a measure of roughness.

For a vehicle moving at a constant mean forward velocity, V,

The response excited by this random rail irregularity may be 

either acceleration, velocity or displacement depending upon 

the form of the selected frequency response function. By defi­

nition, this function relates the input excitation, track 

irregularity, to the selected response output. If the frequency 

response function is denoted by the general form Hu (if) then 

the variance of the response is

the corresponding temporal frequency due to irregularities is 

given by

f = V F cycles /sec (2-46)

and, therefore

E (f) = KVn-1f-n . (2-47)

+ 0 0

Variance of Response /
2

Hu (if) E(f) df

0

+ CO

0 (2-48)

where

su (f ) = power spectral density of response
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The variance and power spectral density response at selected 

vehicle locations provide information to study many related 

problems. For example, the intensity of response maxima and 

zero crossing can be estimated from Su (f) . Also, one can make 

estimates of the expected fatigue life of structural compo­

nents as well as the probability associated with different 

respons^ levels.

Section 2.5 showed that the rail irregularity at all wheel 

locations was related to a single rail irregularity function, 

see (2-38). Therefore, it is sufficient to define a single 

power spectral density function for the rail . The phase 

relationship discussed in Section 2.5 incorporates all of the 

other necessary input information.
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3. VERIFICATION AND EXAMPLES

3.1 General

The DYNALIST II computer program based on the theoretical devel­

opment of Chapter 2 was verified by independent computational 

means and used to execute a number of example problems. Both 

lateral and vertical rail vehicle models were considered. Sta­

bility analyses were made for the lateral models which include 

a six degree-of-freedom truck, a 14 d.o.f. car and a 42,d.o.f. 

three-car train. Three vehicle velocities were considered. In 

addition, response computations were made for the one-car and 

three-car lateral models. One-car and three-car vertical models 

were also generated and response computations were made for 

these configurations. Both sinusoidal and random response com­

putations were made. The models a n d ,corresponding stability 

and response results are discussed in this chapter.

Frequency response computations using DYNALIST II, for the four- 

degree of freedom lumped mass model shown in Figure 3-1 were 

verified using an alternate computer program. An independent 

solution was developed based on the Cramer's Rule approach.

This approach recognized that the system frequency response 

function can be expressed in terms of the complex variable, s, as

3.2 Test Problem: Lumped Mass Model

[c]s + (3-1)

where [m], [c], [k] = (4x4) system mass, damping and
stiffness matrices.
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The solution to (3-1) for any element H (s) of the vector
Uj

Hu (s) follows from the use of Cramer's rule wherein one obtains 

a ratio of determinates, i.e.,

(s) 
3

det[N] 
det[DJ

In this expression

[D] = [m]s2 + [c]s + [k]

(3-2)

and

[N] = the matrix [D] but with the jth column re­
placed by {A}.

Equation (-3-2) may be written in the alternate form

(s) 
J

Kn(s-vj
0 **
n(s-A ) n

where

(3-2)

= ith root of [N], (a zero of the transfer function) 

An = nth root of [ D ] , (a pole of the transfer function) 

K = root locus gain

A solution for the frequency response function (H (ifi) was
4

obtained by first evaluating the zeros, the poles and the root 

locus gain, and then letting s = ifi over a range of frequencies.

The same problem was solved using DYNALIST II wherein the four- 

mass system was separated into two components. The first two 

masses and first three sets of.spring/dashpot pairs comprised 

the first component and the remaining two masses comprised the
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second. Complex modes were computed for the first component 

and both conjugate pairs were used to generate a complex com­

ponent mode transformation. No modes were computed for the 

second component. A constraint equation was supplied to couple 

the system together and the resulting homogeneous equations 

were solved for the complex system eigenvalues and eigenvectors. 

These, in turn, were used to compute frequency response by modal 

summation. All of the modes were used. The results from 

DYANLIST II compared exactly with those generated by the Cra­

mer's Rule method to within machine accuracy. The modulus of

H (ifi) is plotted in Figure 3.2. Preparation of input data 
4

for this example problem is discussed in Appendix C.

3.3 Lateral Models

Figure 2-2 shows the lateral model used for a single truck.

Six degrees of freedom are noted and Table 3-1 gives the per­

tinent parameters of the truck.

A rigid car body model was used to study single car response. 

Figure 3-3(a) shows a schematic of the 14 degree-of-freedom 

car denoting 14 physical coordinates. Each truck has 6 coor­

dinates. The car body coordinates are located at the geomet­

ric center of the body and include both displacement and 

rotation. The properties of the two trucks are indentical and 

are the same as those discussed in the previous paragraph, see

Table 3-1. The car body was assigned a mass of 1,700 slugs and
6 2a rotational inertia of 1.85 x 10 slug-ft .

Figure 3-3 (b) shows a schematic of the three car system used 

in this chapter. Each car is identical to the car discussed 

in the preceding paragraph. Note that the cars are attached 

using an elastic spring. The three-car model used in the 

stability analyses (Section 3.5) also included yaw springs 

with a spring rate of 2.5 x 10 ft-lb/rad between the car 

bodies.
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TABLE 3-1 PARAMETER VALUES FOR A SINGLE CAR 
(LATERAL RESPONSE MODEL)

Description Symbol Value

Mass Properties

Wheelset Mass 60 slugs

Wheelset Moment of Inertia
IW

290 slug-ft2

Truck Mass m T . 250 slugs

Truck Moment of Inertia S 2800 slug-ft2

Car Body Mass m B 1700 slugs

Car Body Moment of Inertia ■̂B . 1.85 x 106 slug-ft2

Primary Suspension

Lateral Damping C1 0 lb sec/ft

Lateral Stiffness
K 1 5 x 105 lb/ft

Yaw Damping =2 0 ft lb sec/rad

Yaw Stiffness K2 3 x 107 lb/rad

Secondary Suspension

Lateral Damping
C 3 1.55 x 10J lb sec/ft

Lateral Stiffness K 3 1.75 x 104 lb/ft

Yaw Damping = 4 0 ft lb sec/rad

Yaw Stiffness K 4 5 x 10^ ft lb/rad

Other Parameters

Track Gage
2Lo 5 ft

Truck Wheelbase L 8 ft

Mean Wheel Cone Angle Xo .025 rad

Wheel Radius
ro 1.33 ft

Creep Coefficient F 3 x 106 lbs

-38-



CAR BODY

i
COUDI

■ = >
DIRECTION

OF
MOTION

TRUCK 2 TRUCK 1

Figure 3-3{a).Plan View of Single Car Vehicle System (Lateral Response Model)



THIRD CAR 35 SECOND CAR 17, FIRST CAR

36 18

COORDINATE D E F IN IT IO N  (BOTTOM VIEW)

COUPLING DETA IL
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3.4 Vertical Models

Vertical response studies were made for one and three-car 

vehicles. The single car model is shown in Figure 3-4. Spring 

stiffness elements are shown and it is noted that damping dash- 

pots are located in the same positions and in parallel with 

the spring except for K^. See Table 3-2 for parameter values .

It is noted that for the single car problem the system's mass, 

stiffness and damping matrices are entered in the p coordinate 

system; see Figure 3-4. These matrices are:

[m] = mass matrix =

“ T

m.

m„

[k] = stiffness matrix =

2K1 +  k 2 )
0 <N

K
 

. 
1

K2 2
0 0.

0

r
" K 3

0 0

" K2 ,
0 2 K 2 0

~ K2
0

" K2 I " K3
0

* » , )
K2 1 - K 3

0 0
- K2 K2 2 (2K1 +  K2 )

0

0 0 0
- K 3

0

( ¥ ^ * »
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Figure 3-4 Elevation View of Vertical Single-Car Vehicle



TABLE 3-2 PARAMETER VALUES FOR A SINGLE CAR 
(VERTICAL RESPONSE MODEL)

Description Symbol Value

Mass Properties
Truck Mass mT

250 slugs

Truck Moment of Inertia 2800 slug-ft2

Car Body Mass Mc 1700 slugs

Car Body Moment of 
Inertia IC

1.85 x 10^ slug-ft2

Primary Suspension 

Stiffness K 1
3 x 105 lb/ft

Damping 2.1 x 10^ lb-sec/ft

Secondary Suspension

Stiffness K 2
1.86 x 10 lb/ft

Damping 3.0 x 102 lb-sec/ft

Stiffness K3
4.'5 x 102 ft-lb/rad

Other Parameters 

Truck Wheelbase
l t

8 ft

Truck Centerline 
Separation L 83 ft

Car Length L 2
100 ft
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[c] = damping matrix =

2C1+C2 0
2

- C2 - c  k  L2 2 0 0

0 C i£t ^1 2 0 0 0 0

" C 2 0 2 C 2 0 " C2
0

i n to

L
2 0 0 c ^  ^2 2 c k  C2 2 0

0 0 - C2 c  k  
2  2 2C1+C2 0

0 0 0 0 0 C1

tern the equations of motion are

P + [k] P = [c] 6 + [k] 6

T 2 
L t

where <5 = vertical track irregularity.

Note that the u coordinates are related to the p coordinates, 

see Figure 3-4, through the transformation matrix

1 (Lt / 2 ) 0 0 0 0

u 2 1 ( - L t / 2 ) 0 0 0 0
P2

u 3
\ =

0 0 1 (L 2 / 2 ) 0 0
A

p 3

u 4 0 . 0 1 ( - L 2 / 2 ) 0 0
“ S ,

P4

u 5 0 0 0 0 1 Lt / 2
P5

U6 0 0 0 0 1 Lt / 2 P6
V  - - v  J

- 4 4 -



Also, the rail irregularities are input to the computer pro­

gram in the u coordinate system by the fu (ift) vector as

r  in c.

iH C ^ e
inLT/v

in C]eifiL/V

 ̂ inc^e
in(L+LT )/V

K„

I ^ e

0

0

inLT/v

) A ( i n )

K le i n i , / V

K-je
in(L+LT )/V

The three car train model is composed of three identical cars. 

Each car has the properties of the car shown in Figure 3-4 and 

are as given in Table 3-2. The interface between each two 

adjacent cars has a vertical spring and a rotational spring.

3.5 Stability Analysis

DYNALIIST II may be used to perform stability analyses whereby 

the eigenvalues and eigenvectors of the system are computed 

but no response computations are made. Eigenvalues are of the 

complex form

o . + i a). , 
3 3 (3-4)

The homogenous equations of motion therefore have solutions
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A.t (a .+iu).)t
y^Ct) = yQ e J = y e J ->
J j j

(3-5)

where (ô  may be interpreted as a damped natural frequency and 

Oj as a growth rate. The system is considered to be stable if 

and only if ck < 0 for all j. In the case of oscillatory modes 

where uk / 0, the undamped natural frequency, a)Q , and critical

damping ratio, £j/ are related to and ok by

o  .
3

+  to (3-6)

' j  *  ....................................................................................... » - 7 )

Stability analyses were made for three lateral model config­

urations at three velocities. The models include the Lateral 

Truck Model, Figure 2-2; the Lateral Car Model, Figure 3-3; 

and the Three-Car Train Model-, Figure 3-4. The three velo- . 

cities were 300, 450, and 600 ft/sec. Eigenvalues computed 

for these, cases are presented in Tables 3-?3 to 3-5. It may 

be noted that the critical damping ratios of the truck hunting 

modes go from approximately t, = .43 at V = 30.6 ft/sec to 

C = .08 at V = 600 ft/sec. Eigenvectors corresponding to the 

first hunting mode of the single car vehicle are presented in , 

Table 3-6 for the three velocities.

3.6 Response Analysis

Response computations were made for both lateral and vertical 

vehicle models. Two models were considered in each case, a 

single car and a three-car model. Random type rail irregular- 

ities were input to the lateral models and sinusoidal type

Except for the three-car model for which only frequency response 
functions were computed.
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TABLE 3-3 EIGENVALUES FOR LATERAL TRUCK MODEL

V = 300 ft/sec V = 450 f t / s e c V = 600 ft/sec
a CO a 0) a 0)

-2.163 E+2 2.362 E+2 -1.129 E+2 3.131 E+2 -8.580 E+l 3.320 E+2
-3.011 E+2 1.591 E+0 -1.441 E+2 2.858 E+2 -1.080 E+2 3.012 E+2
-1.589 E+2 2.476 E+2 -1.723 E+2 7.372 E+0 -1.056 E+2 2.526 E+l
—6.662 E+l 7.363 E+l -5.238 E+2 6.868 E+l -6.003 E+l 8.167 E+l
-1.828 E+l 6.701 E+l -2.541 E+l 7.872 E+l -2.357 E+l 8.699 E+l
-6.092 E+0 1.421 E+l -5.513 E+0 2.238 E+l -2.212 E+0 2.771 E+l*

icTruck hunting mode



TABLE 3-4 EIGENVALUES FOR SINGLE CAR VEHICLE

V = 300 ft/sec V = 450 ft/sec V-= 600 ft/sec
a 03 a (d CT 03

-2.163 E+2 2.362 E+2 . -1.128 E+2 3.131 E+2 -8.580 E+l 3.320 E+-2
-2.163 E+2 2.362 E+2 -1.128 E+2 3.131 E+2 -8.580 E+l 3.320 E+2
-3.011 E+2 1.591 E+0 -1.441 E+2 2.858 E+2 -1.080 E+2 3.012 E+2
-3.011 E+2 1.591 E+0 -1.441 E+2 2.858 E+2 -1.080 E+2 3.012 E+2
-1.589 E+2 2.476 E+2 -1.723 E+2 7.373 E+0 -1.056 E+2 2.525 E+l
-1.589 E+2 2.476 E+2 -1.723 E+2 7.373 E+0 -1.056 E+2 2.525 E+l
-6.662 E+l 7.363 E+l -5.240 E+l 6.867 E+l -6.005 E+l 8.168 E+l
-6.661 E+l 7.362 E+l -5.241 E+l 6.864 E+l -6.005 E+l 8.167 E+l
-1.834 E+l 6.696 E+l -2.548 E+l 7.872 E+l- -2.361 E+l 8.698 E+l
-1.838 E+l 6.692 E+l -2.544 E+l 7.871 E+l -2.359 E+l 8.697 E+l
-6.074 E+0 1.419 E+l -5.480 E+0 2.232 E+l -2.198 E+0 ' 2.764 E+l 1
-6.210 E+0 1.412 E+l -5.592 E+0 2.223 E+l -2.300 E+0 2.755 E+l }
-1.256 E+0 5.912 E+0 -1.298 E+0 5.918 E+0 -1.316 E+0 5.918 E+0
-8.468 E-l 4.408 E+0 -8.535 E-l 4.405 E+0 -8.562 E-l 4.404 E+0

Truck hunting modes



TABLE 3-5 EIGENVALUES

V = 300 ft/sec
a (JL)

8.730 E-2 2.854 E+2
-2.649 E-l 2.338 E+2
-6.040 E+0 1.423 E+l
-6.074 E+0 1.419 E+l
-6.212 E+0 1.412 E+l
-6.033 E+0 1.418 E+l
-6.187 E+0 1.411 E+l
-6.060 E+0 1.415 E+l
-1.255 E+0 6.061 E+0
-1.075 E+0 5.334 E+0
-9.038 E-l 4.648 E+0
-8.468 E-l 4.408 E+0

*Truck hunting modes



FOR LATERAL THREE-CAR MODEL

V = 600 ft/sec
a 0)

-4.738 E-l 2.852 E+2
-6.488 E-l 2.336 E+2
-2.195 E+0 2.770 E+l'
-2.195 E+0 2.769 E+l
-2.198 E+0 2.764 E+l
-2.192 E+0 2.764 E+l - *
-2.297 E+0 2.756 E+l
-2.301 E+0 . 2.755 E+l
-1.315 E+0 6.034 E+0
-1.108 E+0 5.328 E+0
-9.209 E-l 4.638 E+l
-8.562 E-l 4.404 E+0



TABLE 3-6 TRUCK HUNTING MODE FOR SINGLE CAR VEHICLE

V = 300 ft/sec V = 450 ft/sec V = 600 ft/sec
COORD. REAL IMAG. REAL IMAG. REAL IMAG.

1 8.019 E-l 2.373 E-l 6.564 E-l 3.602 E-l 5.610 E-l 3.897 E-l
2 -2.433 E-2 3.103 E-2 -2.899 E-2 2.266 E-2 -3.043 E-2 1.879 E-2
3 8.217 E-l 1.135 E-l 7.614 E-l 2.887 E-l 7.441 E-l 3.296 E-l
4 -1.790 E-2 3.102 E-2 -2.358 E-2 2.387 E-2 -2.585 E-2 2.052 E-2
5 7.901 E-l -4.792.E-2 7.140 E-l 1.151 E-l 6.542 E-l 1.712 E-l
6 -2.405 E-2 3.377 E-2 -2.939 E-2 2.504 E-2 -3.120 E-2 2.091 E-2
7 -1.051 E-l -4.804 E-2 -3.719 E-2 -6.507 E-2 -1.453 E-2 -6.155 E-2
8 2.690 E-4 -1.428 E-3 6.992 E-4 -3.816 E-4 7.104 E-4 -6.140 E-5
9 1.000 E+0 0.000 9.127 E-l 1.284 E-l 8.258 E-l 1.599 E-l

10 -1.722 E-2 4.369 E-2 -2.333 E-2 3.874 E-2 -2.479 E-2 3.638 E-2
11 9.783 E-l -1.464 E-l 1.000 E+0 0.000 1.000 E+0 0.000
12 -9.849 E-3 4.151 E-2 0.000 3.779 E-2 -1.877 E-2 3.605 E-2
13 8.892 E-l -3.215 E-l 8.710 E-l -1.784 E-l 8.210 E-l -1.325 E-l
14 -1.597 E-2 4.673 E-2 -2.276 E-2 4.165 E-2 -2.458 E-2 3.915 E-2



rail irregularities were input to the vertical models. Re­
sults of these computations are discussed in this section.

The input power spectral density function describing lateral 
rail irregularities is shown in Figure 3-5. The sloping 
portion of the function is given by

E(f) = KVf-2 ...........................  (3-8)

where K = 1.85 x 10  ̂ft^ and V = 450 ft/sec. The low fre­
quency (long wavelength) portion of the spectrum has been 
limited somewhat arbitrarily to reflect the tendency of wavi­
ness to be limited at longer wavelengths.

In computing the lateral response of the single car vehicle, 
all of the modes were retained, i.e., the solution is "exact". 
Acceleration response functions for three points on the ve­
hicle are plotted in Figures 3-6(a,b) through 3-8(a,b). Sub­
figure (a) of each pair corresponds to frequency response 
while subfigure (b) corresponds to power spectral density of 
response. Units of acceleration are in ft/sec . Response 
points are identified in Table 3-7 which lists RMS accelera­
tion response in g's.

TABLE 3-7 ACCELERATION RESPONSE FOR LATERAL SINGLE CAR MODEL

Figure
No.

Coordinate
No.

Response Point 
Identification

RMS Acceleration 
(g's)

3-6 11 Car body sway at 
attachment point of 
trailing truck

. 0248

3-7 15 Truck sway at center 
of mass of trailing 
truck frame

.1590

3-8 17 Wheelset sway at 
center of mass of 
trailing wheelset, 
trailing truck.

.12 9 0
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Figure 3-5. Power Spectral Density of Lateral Track Irregularity for
V=450 ft/sec.
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Figure 3-6(a). Acceleration Frequency Response, Single Car Lateral Model
Car-Body Sway



Figure 3-6(b). Acceleration PSD, Single Car Lateral Model, Car-Body Sway
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Acceleration Frequency Response, Single Car Lateral Model,
Truck Sway

Figure 3 - 7 (a).



Figure 3-7(b). Acceleration PSD, Single Car Lateral Model, Truck Sway



Figure 3-8(a). Acceleration Frequency Response, Single Car Lateral Model

Wheelset Sway
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Figure 3-8(b). Acceleration PSD, Single Car Lateral Model, Wheelset Sway



Lateral acceleration frequency response at three points on the 

three-car train was computed by modal synthesis where six con­

jugate pairs of modes were retained for each car. Frequency 

response plots are shown in Figures 3-9 through 3-11. Response 

points are identified in Table 3-8.

TABLE 3-8 ACCELERATION RESPONSE FOR LATERAL THREE-CAR MODEL

Figure Coordinate Response Point
No. No. Identification

u
> 1 V
O 15 Car body sway of lead­

ing car at coupling 
point with middle
car

3-10 33 Car body sway of middle 
car at coupling point 
with trailing car

3-11 43 Car body sway at center 
of mass of trailing

. car
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Figure 3-9. Acceleration Frequency Response, Three Car Lateral Model

Leading Car Sway

9Hz
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Figure 3-10. Acceleration Frequency Response, Three Car Lateral Model,
Middle Car Sway
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Vertical response studies were made using sinusoidal rail
— 3

irregularities of amplitude A = ct/X where a = 4.52 x 10 

This roughness parameter corresponds to an amplitude of 0.5 

inches at a wavelength of 85 ft. Amplitude A is plotted as a 

function of frequency f in Figure 3-12.

A special option in the program was developed for computing 

response directly for a system without recource to the subsys­

tems approach. This option was used in an attempt to compute 

vertical response for the single car vertical model. However, 

the results appeared to be incorrect and are therefore not 

presented. It must be concluded at the present time that a 

computational bug still exists in the code implementing this 

option and users are cautioned to avoid its use.

Vertical acceleration response was evaluated for the three- 

car vertical model, however, and these results appear to be 

correct. In generating this model, very stiff vertical springs, 

K = 7.5 x 10 lb/ft, were used to couple adjacent ends of car 

bodies in the train. The intent here was to try to represent 

a hinged connection. Consequently, two lightly damped high 

frequency car body modes were computed, (37.1 and 45.4 Hz.).

The existance of these modes appears to cause a severe vibra­

tional environment in this frequency range. Although such an 

environment is unrealistic for real trains, it appears to be 

reasonable for the specified model and results are therefore 

included. Frequency response and corresponding sinusoidal 

response plots are shown in Figures 3-13(a,b) through 3-15 

(a,b). Table 3-9 lists the peak acceleration in g's exper­

ienced over the frequency range below 25 Hz. (log 25 = 1.40), 

for several locations on the vehicle. Response points are 

identified therein. Computations were made using all of the 

component modes; only four modes for each component occurred 

in complex conjugate pairs. The rest were real.
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Figure 3-12. Amplitude of Sinusoidal Track Irregularity versus Frequency
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Figure 3-13 (a) . Acceleration Frequency Response, Three Car Vertical Model 
Middle Car Heave.
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Figure 3-13 (b). Sinusoidal Acceleration Response, Three Car Vertical Model,
Middle Car Heave.
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Figure 3-14 (b). Sinusoidal Acceleration Response, Three Car Vertical Model,
Trailing Car Heave.



Figure 3-15(a). Acceleration Frequency Response, Three Car Vertical Model,
Trailing Truck Heave, Trailing Car.
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TABLE 3-9 ACCELERATION RESPONSE FOR THE VERTICAL THREE-CAR 
MODEL

Figure
No.

Coordinate
No.

Response Point 
Identification

Peak Accl. 
(g's)

3-13 14 Car body heave, middle 
car at attachment point 
to trailing car.

.222

3-14 24 Car body heave, trailing 
car, trailing end.

.280

3-15 26 Truck heave, trailing car, 
trailing end of truck.

12.60

A very high acceleration level for the truck is noted. In 

fact, the frequency response curve is observed to follow the
i i 2line |H(ift)| = ft over almost all of this range. This merely 

indicates that the primary suspension is so stiff that the 

truck frame essentialy follows the rail irregularity.
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3.7 Convergence

In Figures 3-9 through 3-11, the high frequency response 

characteristics appear to be in error. The vertical dotted 

lines show the lowest frequency of the excluded component 

modes. Certainly, one would not expect the approximate re­

sponse solutions to be valid beyond this point. In fact, one 

may even question whether the solution is good near the fre­

quency of the highest included mode. Experience with various 

modal synthesis procedures applied to classical structural 

systems indicates that the accuracy of eigenvalues and eigen­

vectors deteriorates somewhere in the frequency range between 

50% and 80% of the range spanned by the included modes [ 6 ]. 

This depends greatly on the system, of course,,as well as the 

procedure being used. As more and more modes are included in 

the synthesis, eigenvalues and eigenvectors as well as fre­

quency response tend to become more accurate. The approximate 

solutions tend to converge to the "exact" ones, so called be­

cause they include all of the modes, and therefore no truncation 

error,.

Three distinct problems in convergence have been identified 

with regard to the present application. The first one is the 

usual one associated with eigenvalue and eigenvector accuracy. 

While no particular study of this problem has yet been made, 

some feel for the problem can be gained from the results pre­

sented in [1, 2, 7]. Further insight in the classical mode 

case is provided by [ 8].

The other two problems concern the convergence of frequency re­

sponse. One may anticipate at least one of these problems from 

the strange high frequency behavior exhibited in Figures 3-9 to 

3-11 where acceleration frequency response has been plotted. 

Figures 3-16 (a, b, c) show plots of displacement frequency
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Figure 3-16 (a). Displacement Frequency Response, Single Car Lateral Model
Leading Truck Center of Mass Sway - All Modes Retained.
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Figure 3-16(b). Displacement Frequency Response, Single Car Lateral Model,
Leading Truck Center of Mass Sway - Four Conjugate Pairs
of Modes Retained.
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Figure 3-16(c). Displacement Frequency Response, Single Car Lateral Model,
Leading Truck Center of Mass Sway - Three Conjugate Pairs
of Modes Retained.



response for the leading truck frame center of mass on the
'Mlateral car model. Figure 3-16(a) shows the "exact" solution 

obtained by including all of the modes. Figures 3-16 (b) and 
3-16(c) show frequency response computed for the same coordi­
nate but with truncated mode solutions. Each truck was mod­
eled as a component of the system. Figure 3-16 (b) represents 
a solution where four out of six conjugate nairs of truck modes 
were included for each truck and Figure 3-16(c) represents a 
solution where only three out of the six were included. Both 
of these truncated mode solutions show significant error in 
the high frequency range. In both cases, the highest frequency 
mode included was 12.53 Hz (corresponding to u) = 78.72 and 
log (12.53) = 1.10). In Figure 3-16(b) the lowest frequency 
mode excluded was 45.49 Hz (co = 285.8 and log (45.49) = 1.66).
In Figure 3-16(c) the lowest frequency mode excluded was 1.17 Hz 
(to = 7.373 and log (1.17) = .0695) . From Table 3-4 (V = 450 
ft/sec) one observes that (b) corresponds to inclusion of the 
lowest four pairs of eigenvalues (ranked by modulus) while (c) 
corresponds to inclusion of the lowest three pairs. Although 
the fourth pair has a very low frequency, it is almost critically 
damped. Thus, the modulus of its eigenvalue is larger than that , 
of the mode with a frequency of 12.53 Hz.

The high frequency portion of the response spectrum is not the 
only place of interest. One of the most striking differences 
among the three plots is in the low frequency region where the 
frequency response function levels off. In moving from Figure 
3.16(a) to Figure 3.16(c), one may observe that the "static" 
response (also called the Bode Gain) drops progressively lower 
than the correct value of unity. This result was somewhat sur­
prising at first, since the appearance of Equation (2-41) seems 
to suggest that the contribution of higher order modes to the 
total frequency response diminishes with the reciprocal of the 
*In this case, the wheelset yaw equations corresponded to (A-18) 
of Appendix A instead of (A-19). This accounts for the notch 
which occurs at a frequency of 6.2 Hz. and is probably re­
sponsible for the way the high frequency response takes off 
in the truncated mode solutions. The 5 term in (A-18) has 
negligible effect in the low frequency range.

-76-



eigenvalues A. Further consideration reveals, however, that 
the "static" response is quite independent of the eigenvalues 
and should be obtained by other means.

For example, one may consider a simple two-degree-of-freedom 
spring mass system which is base excited by a sinusoidal dis­
placement function 6(t). Two classical modes may be derived 
for this system. If one attempts to predict the low frequency 
response of the system by considering only one of the two modes, 
his solution will clearly be in error unless the eigenvector 
associated with the first mode exhibits the same displacement 
for both masses. Otherwise, the two masses will displace by 
different amounts and one knows on physical grounds that both 
masses will tend to move with the base as the excitation fre­
quency approaches zero.

The solution of this problem is straightforward. One may eval­
uate the low frequency response of the system based upon a 
direct solution of the equations where the acceleration and 
velocity terms are neglected. The low frequency modal solu­
tion may be subtracted from this leaving a residual. This 
residual response represents the low frequency contribution by 
all of the unused modes. It may be added to the frequency 
response functions as a constant over the entire frequency range 
of interest. Such a procedure was proposed in [ 9,10], for 
example.

Formally, one may recall Equation (2-25). Transformation to 
the frequency domain results in

(K - Q 2 M + i C) H (i ft) = F (in). . .(3-9)
q q

where
_ ' _T T _
f (i n) = e cf> fu a  a ) ................... (3-io)
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and (i ft) is of the form given by (2-37). Neglecting terms 
in (3-9) which contain ft, one obtains

K H = F = 0T <j>T F ............ (3-11)
4o 4o . o

Solution of (3-11) leads to

Hu = <f> t  K-1 6T <j)T Fu ............ (3-12)
uo uo

The residual contribution of the unused modes to the response 
at low frequencies is then

H = H - H (i ft) L u0 u u 1 ft -* oR o
(3-13)

where (i ft) is given by (2-42) 
to Hu (i ft) should result in an approximatation, Hu

Adding this residual term 
(i ft) , to

the "exact" frequency response function which is accurate at 
all frequencies below some cut-off point which then would de­
pend on eigenvalue separation, i.e.,

H (i ft) = H (i ft) + H .......... (3-14)u u UR
The modification suggested by (3-14) is not included in the 
present version of DYNALIST II. In cases where elements of the 
vector HUq are known to be unity, it is relatively easy to com­
pensate for the residual error in one's interpretation of re­
sults. However, for some models this will not be the case. An 
example is the lateral truck model shown in Figure 2-2 which 
is "tied to ground" through lateral and yaw springs. In this 
case, low frequency displacements will not be unity. In situ­
ations such as this, it is recommended that modal truncation 
be used only with appropriate caution.

In general, further study is required in order to take proper 
advantage of the modal truncation option. In any application 
it must first be determined whether the desired system eigen­
values and eigenvectors have been obtained to within an accept­
able degree of accuracy. Then, assuming that the low frequency
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problem is corrected, an upper limit on the range of accurate 
frequency response must be established. As one additional 
step, it must be determined whether the RMS response integra­
ted over this range has converged to an upper limit if this 
measure of response is to be used in the case of random rail 
irregularities.
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4. CONCLUSIONS AND RECOMMENDATIONS

The original DYNALIST computer program for dynamic analysis of 
rail vehicle systems has been modified and extended in the 
new version, DYNALIST II. In addition to computing the com­
plex system eigenvalues and eigenvectors for stability analyses, 
DYNALIST II offers the capability for computation of vehicle 
response to either sinusoidal or random track irregularities.

4.1 Conclusions .

As a result of this development effort, a number of conclusions 
may be drawn. These conclusions are briefly summarized in the 
paragraphs which follow.

Two major modifications have been made in the original part 
of the program. The first modification was to■change the in­
put coordinate space from u to p to facilitate the modeling of 
flexible structural elements and/or components. Whereas the 
user previously had to enter component equations of motion in 
the physical discrete coordinate space u, he may now enter 
component equations of motion in modal form and use the <j> 
transformation to revert back to the physical coordinates

i ■for interpretation of output. This represents a significant 
improvement in that very complicated structural elements can 
now be included in the model without having to input complete 
finite element mass and stiffness matrices. Only portions 
of the real eigenvectors associated with response points, 
attachment points and forcing function inputs need be in­
cluded in <J).

The other modification has resulted in automating the genera­
tion of the coordinate reordering vector IARANG. The user need
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only specify which of the redundant coordinates are to be 
eliminated by the constraint equations. In the past, the 
need to input this vector did pose some problems for the 
inexperienced user.

In formulating the response capability, a special kind of fre­
quency response function was defined. Normally, frequency re­
sponse is interpreted as a characteristic of the system between 
two specified points on the system. In the case of rail vehi­
cles, track inputs occur everywhere the system contacts the 
guideway so that frequency response associated with any parti­
cular contact point is not particularly meaningful. Since the 
inputs at each contact point are phased due to different parts 
of the vehicle traversing the same irregularities at different 
times, the force "distribution" is not of the classical form. 
However, the distribution is independent of guideway parameters 
so that a meaningful frequency response function between a sca­
lar function defining guideway irregularity and any point on 
the system can be defined. This function is computed in the 
response portion of the program and can be plotted as well as 
printed.

Frequency response functions representing normalized response 
at selected vehicle locations are used in evaluating both sine 
and random response. Sine response is computed from a track 
roughness parameter. The variation of sine amplitude with 
wavelength is predetermined. Random response is computed from 
an input power spectral density describing the distribution of 
amplitude with frequency. The power spectral density of vehi­
cle response may be plotted as weil as printed, and the func­
tion is integrated over a specified frequency range to determine 
RMS response.
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A number of example problems were developed to demonstrate 
the program. Both vertical and lateral models are included. 
Vehicles consisting of a single train car and several cars 
coupled together have been modeled. Stability and response 
analyses were made. Results of these analyses have been 
summarized.

As with any new computer program intended for general usage, 
some problems were encountered in running the examples., The 
two main problems are of a general nature and users should be 
aware of them so that they may be avoided. Both of the prob­
lems are numerical and are problem dependent. The first prob­
lem involves the occurrence of repeated roots, i.e. identical 
or nearly identical eigenvalues. When components of the sys­
tem are identical and virtually isolated from each other by 
very weak coupling, numerical problems may occur in the 
eigenvalue/eigenvector subroutines. The problems encountered 
to date have been circumvented by perturbing system parameters 
by a small amount, say less than one percent, so that repeated 
roots do not occur.

The other.problem has to do with the convergence, of approximate 
solutions resulting from modal truncation. Three separate 
problems related to convergence were described in Section 3.7. 
The problems may be overcome by appropriate selection of com­
ponent modes. At the present time, no foolproof guidelines can 
be provided. The user must either avoid modal truncation, or

i
through his experience with a particular problem, make his own 
judgment as to which modes to select. This subject is beyond 
the scope of the present effort but is certainly deserving of 
further research.
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4.2 Recommendations

Based on experience gained with DYNALIST II to date, the 
following recommendations are made with regard to the future 
use and continued development of the program.

• Users should be aware of the two basic numerical 
problems identified so far, i.e. the repeated 
roots problem and the convergence problem when 
modal truncation is used. When modal truncation 
is not used, convergence is not a problem.

• A detailed examination of the eigenvalue/eigen- 
vector subroutines should be made to determine 
to what extent certain numerical problems can . 
be eliminated by adding more sophisticated logic 
to the computational procedures. Appropriate 
modification to the code should be made.

• A means for testing the validity of computed 
eigenvalues and eigenvectors should be developed.
An orthogonality check using the derived eigen­
vectors and input coefficient matrices is one 
possible means.

• The procedure developed in Section 3.7 for 
eliminating the low frequency convergence prob­
lem should be implemented in the DYNALIST II code.

• The other two convergence problems should be studied 
in depth with the objectives of providing reliable 
guidelines for selection of component modes, evalua­
tion of resulting solution accuracy, and, if
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possible, development of automatic convergence 
subroutines which complement the existing pro­
gram.

The improvements and extended capabilities incorporated in 
DYNALIST II are believed to represent a major advance in the 
state-of-the-art of rail vehicle dynamic analysis. It is 
expected that specific user feedback will be very helpful 
in charting the continuing development of this program.
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APPENDIX A

EQUATIONS OF MOTION FOR A RIGID WHEELSET

A.1 Description of System

Figure A-l shows a single wheel-axle system. Imagine two
sets of unit vectors;, e, and e„, are fixed to the rail and ~ i  . z
i^ and i^ are fixed to the axle. Two coordinates, and p ^ ,  

define the position of the axle with respect to the rail at 
any instant of time. These coordinates are,:

p^ = lateral displacement of axle from the center 
line of the rail system.

P2 = rotation (radians) of the axle with respect 
to the rails.

The following parameters are also used in this appendix:

rQ = nominal radius of each wheel 
V = Mean forward velocity of axle 
Aq = cone angle (radians) of each wheel

A .2 Velocities of Wheels

When the axle is rolling straight down the rails and p^ = p ^  = 0 
then each wheel rotates with the same angular velocity, co0 , and 
the radius of the wheel which is in contact with the rail is the 
nominal radius of the wheel, r . As the axle displaces from this 
central position the contact radius either increases or decreases. 
The change in radius is a function of the lateral displacement and 
the wheel's cone angle, i.e. Aqp .̂ Since the angular velocity of 
the rigid wheelset is a constant, it then follows that the
rolling velocities of the wheels are:
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A-2

DIRECTION
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Figure A-l. Schematic of Wheel-Rail Contact Geometry



VR£ = rolling velocity of the left wheel 
= ooo (left contact radius)

/s

= “o (ro + V l *  i 2
A

V = rolling velocity of the right wheel KIT
= 03q (right contact radius)

A

= wo (ro - V l 1 i 2

The unit vector systems are such that for small displace­
ments and P2 it follows that:

y\ A  /N

12 = P2S1 + e2
and therefore

/s S\

VR* = “o (ro + AoPl} (p2el + e2>
A A | X\

= (u,oroP2)el + Uo (ro + XoPl) e2 + 0 el

and
A A A

VRr = wo (ro - AoPl} (p2el + e2>
A | X\

= (o) r p„)e, + a) (r - A p.) e_ + 0 en o o^2 1 0 0  orl' 2 1

In the above equations, 0+ denotes the neglected higher 
order terms in p^ and p2•

The previous discussion pertains to the rolling velocity 
of each wheel. When creep occurs, the actual velocities are 
slightly different than the rolling velocities. The actual 
wheel velocities are,

= actual velocity of the left wheel

= ( p ^  + (V - LQP2)e2

and

( A - l )

(A-2)

(A-3)

(A-4)

( A - 5 )

(A—6)
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(A-7)

= actual velocity of the right wheel 

= + (V + L0p2^e2

If the actual and rolling velocities of each wheel were 
identical, then there would be no creep forces applied to 
the wheels. When the two velocities are not the same, creep 
forces are developed.
A.3 Creep Forces on a Wheelset

The creep forces acting on a wheel are proportional to the 
difference between the actual and rolling velocities of the 
wheel. It is customary to write this relationship in the 
following way:

F = creep force = _f /Actual Velocity - Rolling Velocity 
\ Mean Forward Velocity /

where f denotes the creep coefficient.

The creep forces acting on the wheelset follow from the 
substitution of (A-4) to (A-7) in (A-8), i.e.

= creep force on left wheel
A A A

= - (f/V) [piei + (V - L op 2)e2 - O)orop2e1 

" wo(ro + XoP l )e2 ]

= - f/V [px - Vp2]e1 + f/V[LQP 2 + V(Ao/rQ )px]e2 (A-9)

A

Fr = creep force on right wheel
= - f/V [p-L - Vp2]e1 - f/V[Lq p 2 + V(Ao/rQ ) p ^  e2 (A-10)

where by definition

V = to r (A-11)o o
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A.4 Equations of Motion - No Rail Irregularities

The forces due to creep which act on the axle are given in 
(A-9) and (A-10). With the mass and mass moment of inertia 
(about its center) of the axle denoted by M and I, it follows 
directly that the scalar dynamical equations of motion are:

Mpx = - f / V ^  - Vp2] - f/Vtp-L - Vp2] 

or

Mpx (t) + (2f/V)p1 (t) - (2f)p2 (t) = 0 (A-12)

and

i p 2 —  V " V 2 + v < V r o ) p i i

- £V V[LoP2 + V(V rc)pl I 

or
/ 2 f L  2 \ / 2 f L  X \

1 P 2 { t )  )  P2 (t) + 1 r ° ° ) Pl (t) = 0 (A-13)

Examination of (A-12) and (A-13) shows that coupling exists 
between the two coordinates through the displacement terms.
No coupling exists between the acceleration and velocity terms.

A.5 Equations of Motion - Rail Irregularities

Equations (A-12) and (A-13) reflect the homogeneous differen­
tial equations of motion for motion down a straight rail. Fig­
ure A-2 shows schematically the rail irregularity with the 
coordinates -

6 = lateral displacement of rail irregularity
5' =• d 8 /dx = slope of rail irregularity

A-5 .



Figure A-2 Shape of Irregular Rail Centerline

A-6



In general, irregularities of the two rails are not the same.
There may be some degree of correlation, particularly at larger 

wavelengths, but the irregularities are not identical. In any 

case, the irregularities may be represented as the sum of two 

functions, one symmetric with respect to the nominal centerline 

of the track, and the other antisymmetric. Since the symmetric 

rail irregularities induce no lateral motion, only the antisymmetric 

function need be considered for the lateral model. This argu­

ment justifies the representation of rail irregularities in 

terms of an irregular centerline, as shown in-Figure A-2 .

In order to derive equations of motion for a wheelset in the 

case of irregular rails, creep forces are considered to depend 

on the relative motion between wheels and rails. Equation (A-12) 

is therefore written

Mpl + ¥  (P1 " 'S)  "  2 f  (P2 “  6 ') = 0

From the relationship

_ d<5 _ d5_ dx 6_
dx dt dt V I

Equation(A-14) is seen to reduce to

(A-14)

(A-15)

MPi + Y  Pp '  2 fp 2 = 0

which is identical to (A-12)

(A-16)

To write Equation (A-13) in terms of relative wheel-to-wheel 

motion, one must be careful in the direct application' of formal 

substitution which leads to

IP 2 + 2 fLQAo (A-17)

Recognizing that
• I
6 d /d6\ d_ /dS_ dt\ _ 1 »

dt Idx/ dt ldt dx/ V

one would find
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I a n d  c o n c l u d e  th a t  in the ca s e  o f  c y l i n d r i c a l  w h e e l s  w h e r e  X q  = 0, 
an i r r e g u l a r  t r a c k  e x c i t e s  w h e e l s e t  m o t i o n .  This is k n o w n  to b e  
u n t r u e .

Some insight may be gained by contemplating the design of a test 

facility to simulate wheel-rail interaction. Suppose, first, 

that two circumferential rails are welded to a cylindrical drum 

which rotates about its axis fixed in a horizontal plane. If 

the drum spins at a constant rate, and a wheelset is placed on 

top of the rails, and constrained so that it cannot move forward 

or backward, but only in the lateral and yaw directions, the con­

dition of a wheelset moving along straight track is simulated.

The equations of motion for the wheelset would be given by (A-12) 

and (A-13).

If the drum were made to move with an oscillatory lateral motion 

6 (t) without yawing, then the equations of motion would be given 

by (A-14) and ( A - 1 7 )  with the 6' and 6' terms both set equal to 

zero. Clearly, this motion of the drum does not simulate a wavy 

track because 6 appears in the equation containing p^, whereas, 

in the case of a wavy track, (A-16) applies.

If the drum were a given a yaw degree of freedom in addition to 

lateral and spin, and the yaw angle 6' (t) were synchronized 

with 6 (t) in an attempt to simulate wavy track, then the wheel- 

set equations of motion would be given by (A-16) and (A-18).

Since it has already been concluded that these equations do not 

represent a wheelset rolling on wavy track because the wheelset 

is forced when A = 0, this type of drum motion must not simu­

late wavy track either.
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In order to properly simulate the wavy track condition, one 

should be able to pass a planar surface over the rails on the 

moving drum in such a way that no slip (or creep) occurs at 

the contact points. This, of course, requires that one more 

degree of freedom be added to the drum, differential spin be­

tween the two rails. Then the motion is analogous to that 

of the rear wheels of an automobile zig-zaging down a straight 

road. The differential allows the rear wheels to turn at 

different rates as the car turns. Without the differential, 

the tires would tend to creep on the pavement, giving rise to 

creep forces and causing the tires to wear.

Returning to the problem of writing equations of motion for a 

wheelset on irregular track, one can now see that another term 

must be included in (A-17) to account for track curvature,
II

6 = 1/p where p is defined to be the "instantaneous" radius of

curvature at some point on the track. The creep force on the 

right wheel in the e ^ direction is therefore

However, since

it follows that

and similarly for the left wheel
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Finally then, for the case of a wheelset rolling on irregular 

rails with a centerline displacement given by 6 (t), the equations 

of motion are

Thus, when Xq = 0, the wheelset is not excited. These equations 

agree with those presented in [11].

In retrospect, this circuitous derivation of creep forces in 

the case of irregular rails might be shortcut by developing a 

more suitable definition of creep.
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APPENDIX B

C D C  - 6600 T O  D EC S Y S T E M  - 10 C O N V E R S IO N  AND 

C A L C O M P  P L O T T E R  C O M P A T I B I L I T Y

The DYNALIST.II computer program is currently operational on 

a Control Data Corp. 6600 computer system. Briefly, DYNALIST 

II requires a large amount of core (200K Octal) to compile 

and run. It uses available core space efficiently by using 

an Overlay structure. By saving the Overlay structure on a 

permanent file it is possible to run the program using less 

than 160 K Octal of core. The program requires three working 

tapes or disks in addition to those required by the standard 

input, output and plotting devices.

The Digital Equipment DEC System - 10 computer system currently 

installed at DOT-TSC has over 250 K Octal core memory available 

to the user. This is more than enough to compile and run 

DYNALIST II using any Overlay loading technique. DYNALIST II 

uses main, primary and secondary overlays. The configuration 

of these is shown in Figure B-l. Figure B-l should demonstrate 

the feasibility of running this program on the DEC System - 10 

The DEC System - 10 currently has three disk drives which is 

the minimum number needed to run the program efficiently. A 

list of possible considerations in the conversion from a CDC 

6600 to a DEC System - 10 is given below.

B-l. I t  will not be possible to run D Y N A L I S T  I I  in double 

precision since D Y N A L I S T  I I  uses complex arithmetic.

The DEC System -10 does not have double precision - 

complex variables nor does it allow mixed mode arith­

metic between complex and double precision variables.

B-2. Operating in single precision, mixed mode arithmetic 

should cause no problems-
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O V E R L A Y  D E S I G N A T I O N

(0,0)

(1.0) (2,0) (3.0) (4,0) (5,0) (6.0)

(2,1) (2.2) (2,3) (2 ,4) (2,5) (4,1) (4.2)

Figure B-l DYNALIST II Overlay Structure
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B-3. All library subroutines required are available on the 

DEC System - 10.

B-4. DYNALIST II uses six-character subroutine and variable

names which is standard in FORTRAN I V . . These would have 

to be shortened only if an incompatibility exists with 

regard to the DEC System - 10 Fortran compiler.

B-5. The DEC System - 10 accepts only 5-character Hollerith 

variables whereas the CDC - 6600 accepts 10-character 

Hollerith variables. This should affect only the title 

card.

B-6. Return statements in primary and secondary overlays and 

in subroutines may have to be replaced by transfers to 

the End statement.

B-7. DYNALIST II uses Tape 5 as input Tape 6 as output and 

Tape 10, Tape 11 and Tape 12 as working files. These 

may have to be renumbered.

B-8. Program cards may have to be changed or deleted.

B-9. DYNALIST II uses multiply-subscripted arrays in the 

same subroutines. This may cause problems.

B-10. If the DEC System - 10 on line CalComp Plotter routines

are used, the following changes must be made in Overlay (4,2)

B-10.1. Eliminate CALL FACTOR (SIZE) and delete plot 
reduction option.

B-10.2. Account for lack of 999. continuation feature 
in the NUMBER routine.

/
B-10.3. SCALE routine must be changed and made compat­

ible with AXIS routine.

B-10.4 A CALL PLOTS statement must be added to dimen­
sion a plotting buffer.
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B-ll. If the off-line Standard CalComp Plotter is used, 

only the CALL PLOTS statement need be added.

B-12. To use the CalComp log-log plotting routine the FREQ 

array will have to be converted back to an arithmetic 

scale, but not before being used in any CALL to 

SUBROUTINE MSR.

The arrays UPSD, TRACK and AMP need not be converted to a 

logarithmic scale but may be left in their arithmetic form. 

Note that the response program operates by using a constant 

frequency increment on a logarithmic scale and that this 

should not be altered.
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- APPENDIX C - 

SAMPLE PROBLEM

DYNALIST input data for the four degree-of-freedom lumped mass 

model described in Section 3.2 is derived in this appendix.

All data begin in column 2. See User's Manual.

T i t l e  C a r d

Card 1 ; LUMPED MASS MODEL 

Generate Component Data

Namelist block START contains four parameters as indicated in 

Section IV of the User's Manual. All parameters must be assigned 

values unless default options are desired or earlier entries 

have been made. The first step in solving a DYNALIST problem 

is to create a component data file. This is done in Segment 1 

of the program which is called by specifying NTYPE = 1. Assum­

ing that a new data file is to be created, the user will set 

NEWTAP = 0. No intermediate printout is desired so IFOUT = 0.

If IRESP is not specified, it will default to 0. Thus, Card 2 

becomes

Card 2 : $ START NTYPE = 1,NEWTAP = 0, IFOUT = 0,‘$

Having entered Segment 1, the parameters in Namelist Block 

COMPO must be specified. The first call to Segment 1 will 

generate the first component on the data file which is defined 

in accordance with Figure 3-1. This component may be designated 

by the "name" COMNAM = 1.00. The automatic matrix generator 

will not be used. Therefore.IGEN = 0. Three coordinates,

NU = 3, are required to define the motion of Component 1. One 

is the "constraint" coordinate which will attach to mass #3 

and the other two define motion of masses #1 and #2 and are 

considered to be "free" coordinates. No rigid body coordinates 

are required. Namelist Block COMPO is initiated with the card
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Card 3: $COMPO

Namelist parameters in this block may now be specified in any 
order. Thus we choose

Card 4; C0MNAM=1.00,IGEN=0,NU=3,NCON=l,NRIGS=0,NFREE=2,

Coefficient matrices are entered in the p-coordinate -system 
which in this case is chosen to represent physical coordinates 
so that the matrix PHI can be an identity matrix.

Card 5: PHI(1,1)=1,PHI(2,2)=1,PHI(3,3)=1,

All coefficient matrices are symmetric so the user may specify 

Card 6: ISYMC=1,ISYMK=1, .

The mass, damping and stiffness matrices for Component 1 are 
found from Figure 3-1 to be

' 0 0 0 *
m = 0 1 0

. 0 0 1.

" .01 0 -.or
c = 0 .04 -.02

.-•01 -.02 .03.

■ 1 0 -1 Ik = 0 2 -1
.-1 -1 2 J

The constraint coordinate must come first followed by the free 
coordinates which are ordered as mass #1 followed by mass #2. 
Thus the next three cards are

Card 7: AMASS(2,2)=1, AMASS(3,3)=1,

Card 8: DAMP(1,1)=.01, DAMP(2,2) = .04, DAMP(1,3)=-.01,-.02,.03,
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Card 9: STIFF (1,1)=1, STIFF(2,2)=2, STIFF(1,3)=-l,-1,2,

This completes Namelist Block COMPO for Component 1. The 
namelist block is terminated by the card

Card 10: $END

Component 2 data are placed on the data file in a similar fash 
ion by entering Segment 1 again. This time NEWTAP = 1 since 
the data are to be placed oh the same data file.

Card 11; $START NTYPE=1,NEWTAP=1,IFOUT=0,$

Data for Component 2 are entered again in Namelist Block 
COMPO. As before, the equations are entered in the physical 
coordinate system. Two coordinates are required, NU = 2. No 
component modes will be computed in this case so NFREE = 0.
The user may choose to define the two coordinates as either 
rigid body or constraint coordinates; say he chooses the for­
mer . Then NCON = 0, NRIGS = 2. Thus

Card 12: C0MNAM=2.00,IGEN=0,NU=2,NCON=0,NRIGS=2,NFREE=0,

Card 13; PHI(1,1)=1,PHI(2,2)=1,

If the coordinates are ordered so as to place mass #3.followed 
by mass #4, the coefficient matrices for Component 2 are

c
01
01

]
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The next four cards are therefore

i

i

Card 14: ISYMC=lfISYMK=1,

Card 15: AMASS(1,1)=.5,AMASS(2,2)=.3,

Card 16; DAMP(1,1)=.01, DAMP(1,2)=-.01,.01,
! . I

Card 17: STIFF(1,1)=1, STIFF (1,2)=-l,1,

The COMPO data block is terminated by 

Card 18: $END

Component Mode Truncation

Component modes may be truncated by entering Segment 2. This 
is accomplished by specifying NTYPE=2 in Namelist Block START

Card 19: $START NTYPE=2,IFOUT=0,$

Editing information is supplied in Namelist Block EDITT. The 
number of first order modes to be retained for each component 
is entered in the vector NMODE2 while the mode numbers for each 
component are entered in columns of the matrix MODES. Component 
1 has 2 second order degrees of freedom and therefore has 4 
first order modes. The user may wish to retain all of them.
No modes were computed for Component 2 so none can be retained. 
The user will thus specify

Card 20: $EDITT

Card 21: NMODE2(1)=4,0 ,

Card 22: MODES(1,1)=1,2,3,4,

Card 23: $END
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Synthesis

Upon completion of modal editing, the synthesis operation is 
performed to couple the components together and compute system 
modes. This is done in Segment 3 which is called by specifying 
NTYPE=3 in Namelist Block START. IFOUT has already been set 
equal to zero and does not have to be respecified. Since fre­
quency response is to be computed, the user will set IRESP=1.

Card 24: $START NTYPE=3,IRESP=1,$

The number of components in the system is two so NC0MP=2. The 
identification of components and their order is specified by 
setting PRENAM(1)=1,2. There will be one constraint equation 
so NROWG =1. If coordinate #1 of Component 1 is defined to 
be the dependent coordinate to be eleminated, then KDEP = 1. 
The u-coordinate vector for the system is

The two components are connected by specifying the compatibility 
constraint

u11
2

U1 or V "  U4 0

Therefore the user will specify G (1,1)=1,0,0,-1.
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This information is entered in Namelist Block SYN.

Card 25: $SYN

Card 26; NC0MP=2,PRENAM=1,2,NR0WG=1,KDEP(1)=1,

Card,27; G (1,1)=1,0,0,-1,

Card 28: $END

Respon.se Computation

Response computations are made in Segment 4 by entering NTYPE=4 
in Namelist Block START.

Card 29: $START NTYPE=4,$

Data are entered in Namelist Block SHAKE. The lower limit of 
the frequency range is .01 Hz and is specified by OMIN=.01.
The upper limit of 1000 Hz is specified by OMAX=1000. Two 
hundred frequency response points are computed by specifying 
NSTEP=200. In order to compute acceleration frequency response, 
specify KIND=2. Force is input at only one coordinate so NAXLE 
=1, Since the end mass is associated with coordinate u^ (note 
that coordinate numbering is different than in Figure 3-1 due 
to the extra constraint coordinate), LAXLE(1)=5. The magnitude 
of the force is unity and is entered as FORC0(l)=l. The vector
FORCO is used rather than F0RC1 or F0RC2 because it is not

■ 2 desired to multiply by (ift) or (ifi) . Since force is applied
at only one point, phasing is of no concern; therefore PHASE 
may be ignored. It is desired to evaluate the frequency re­
sponse of only the end mass, u^, so that NL00K=1 and L00K=5.
If neither sine response nor random response computations are 
desired and the user wishes to plot frequency response, then 
IPL0T=1 and NPLOT(l)=5. For notebook size plots (8 inch) 
set SIZE=8. The cards comprising Namelist Block SHAKE are

to
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Card 30: $SHAKE

Card 31: OMIN=.01,OMAX=1000,NSTEP=200,

Card 32: KIND=2 , NAXLE=1, LAXLE (1) =5 ,

Card 33: FORCO (1)=1,NLOOK=l,LOOK(1)=5,

Card 34: IPLOT=l,NPLOT(1)=5,SIZE=8,

Card 35: $END

Terminate Execution

Execution is terminated by specifying NTYPE=5 in Namelist Block 

START

Card 36: $START NTYPE=5,$
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APPENDIX D

REPORT OF INVENTIONS

In accordance with the patent rights clause of the terms and 
conditions of this contract, and after a comprehensive review 
of the work performed, it was found that no new inventions, 
discoveries, or improvements of inventions were made.
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