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PREFACE

The Federal Ra;lroad Administration (FRA) is sponsoring re-
search, development, and demonstration programs to: provide
improved safety, performance, speed, reliability, and main-
tainability of rail transportation systems at reduced life-
cycle costs. A major portion of these efforts is related

to improvement of the dynamic characteristics of rail vehicles,

track structures, and train consists.

Transportation Systems Center (TSC) is maintaining a center.
for resources to be applied to programs for improved passen-
ger service, improved safety, and more cost-effective freight
service. As part of this effort, TSC is identifying computer
programs, analytic models, and analysis tools required to
support the FRA objectives. In-particular, TSC is acquiring,
developing, and extending computer programs to provide real-
istic predicfions of rail system dynamic performance under

field conditions.

The DYNALIST II computer program was developed for the Depart-
ment of Transportation by the J: H. Wiggins Company in 1974.

Documentation was contained in two volumes, a technical report
documenting the theoretical basis of the program and a user's

manual. The present report also consists of two volumes.

'VolumeIII, entitled "Technical Report Addendum," is written

as an addendum to the previous technical report. Volume
IV, entitled "Revised User's Manual," is self-contained

and supersedes the previous user's manual.

Numerous detailed comments provided by Dr. Russel Brantman,
the TSC Technical Monitor, have been incorporated in both of

these reports. The time which he and others at TSC have

iii



spent in reviewing the material from the standpoint of new
users has, in the opinion of the authors, contributed signif-
icantly to its clarity. The authors wish to express their
appreciation for this dedicated effort.

The Revised User's Manual reflects current modifications in
output format which have been written into the program at
TSC. These modifications were perférmed by Duncan Sheldon
under the direction of Dr. Brantman.

iv



TABLE OF CONTENTS

Section Page

i [ SUMMARY « & o & & o » & » 2 o = s o o o =2 1

2 EXTENDED DEVELOPMENT. . ¢« ¢ ¢ « « « o o 4
2.1 Component Matrix Generator . . . . . 4

2.2 Component Update Capability. . . . . 6

2.3 Eigenvector Solution . . . . . . . . 6

2.3.1 Problem Formulation . . . . . 7

2.3.2 Diagonal Forms. . . « « « « . 7

2.3.3 Block Diagonal Forms. . . . .. 8

2:.3.4° ConcluSions « s « s+ s « o « « 13
Orthogonality Check. . . . . . . . . 15
Low Frequency Convergence. . . . . . 17

2.6 Periodic and Transient Response. . . 27

2.6.1 Fourier Excitation. . . . . . 27

2.6.2 Fourier Response. . . . . . . 29

2.6.3 Transient Response. . . . . . 32

3. OTHER PROGRAM MODIFICATIONS . . « « « « & 39
3.1 Modeling Options . « « « &« « « « « . 39

3.2 Definition of Constrained
Coordinates: « « s« s s = s =« « s« o « 40

3.3 Modified Sine Input. . . « « . . . . 40

3.4 Phasing of Forces. « « « « « . . . . 41
4. CONCLUSIONS AND RECOMMENDATIONS . . . . . 44
4.1 CONBLUSIONS: « s o » s s o« s « » « « 44

4.2 Recommendations. . . « ¢« « « .« « . . 46
APPENDIX A: CHARACTERIZATION OF FORCING

FPUNGTIONS« « 5 o o o s s o o » o o « A=l
APPENDIX B: REPORT OF INVENTIONS . . . . . . . . B-1
REFPERENCES: & & & & & & o ® % o = a o o o o o s « R-1



LIST OF ILLUSTRATIONS

Page
Illustration of System Exhibiting Block Diagonal
FOrM. v v & & & & 4 o & o o o o s o o o 2 « o o« o o 4 9

Vertical Car Model - Stationary . . . « «v « ¢ o « « 10
Four Degree of Freedom Test Problem . . . . . . « « . 19
Frequency Response For Four Degree of Freedom Test
Problem (Modal Truncation with Low Fredquency

CONVErgence). « « « « « o &+ o o o o o o o o o s o o o 20

Frequency Response For Four Degree of Freedom Test
Problem (No Modal Truncation) « « o « o « o o o o o @ 21

Displacement Frequency Response, Flexible Car Lateral
Model, Sway at Center of Car, ExXact . « « ¢ « o o « & 23

_  Displacement Frequency Response, Flexible Car Lateral

Model, Sway at Rear Truck, Exacts—i v+ v oo o—n. 24
Displacement Frequency Response, Flexible Car Lateral
Model, Sway at Center of Car, Four Conjugate Pairs

of Modes Retained per Truck « « « «¢ & o« « o « o s o & 25
Displacement Frequency Response, Flexible Car Lateral
Model, Sway at Rear Truck, Four Conjugate Pairs of

Modes Retained per TrucKk. . « « .« &+ o o o o o o o & =« 26
Fourier Approximation of Sawtooth Wave. . . . . . . . 33

Response of End Mass of 4~DOF Oscillator to Sawtooth

Wave (No Modal Truncation). . . . . . . . ¢ ¢ « « « & 34
Two Degree of Freedom Transient Test Problem. . . . . 35
Fourier Approximation of Transient Impulse. . . . . . 36

Transient Response of End Mass of 2-DOF Test Problem. 37
Example of Phased Inputs for Vertical Train Model . . 43
Examples of Force Vectors Used in DYNALIST IT.. . . . A-3
Force Distribution for Wave Excitation. . . . . . . . A-8

Waveform Specifications in DYNALIST II. . . . . . . . A-10

vi



LIST OF TABLES

Table Page
A-1 Characterization of Wave Forces in Figure A-2 A-9
A-2 Characterization of Wheel/Rail Forces in

Reference [1], Figqure 2-2 . . . « ¢ « « « « » o« A-15

vii



[
[
[ R

Symbsl

yd
mi

oz
Ib

°F

Approximate Conversions to Mstric Measures

Whan You Nnsw Multiply by
LENGTH
inches 2.5
feet Y
yards 0.9
miles 1.6
AREA
square inches 6.5
square faet 0.0%
square yards 0.8
square miles 26
acres 04

MASS (weight)

ounces

pounds

short tons
{2000 1b)

teaspoons
tablespoons
fluid cunces
cups

pints

quarts
gatlons
cubic feet
cubic yards

‘28
0.45
0.9

VOLUME

5

15

30
a.24
0.47
0.95
3.8
0.03
0.76

TEMPERATURE (exact)

Fahrenheit

5/9 (after

32)

Te Find

centimeters
centimeters
meters
kilometers

square centimeters
square meters
square meters
square kilometers
hectares

grams
kilograms
tonnes

milliliters
liters

liters

liters

titers

cubic meters
cubic meters .

Celsius
temperature

Symbel

cm
cm

gi




METRIC CONVERSION FACTORS

|

6

—_—
o -
- —_—
L) p—
] -—
———
> —
w _
» i
- —
g -
° —
12 -

Approximate Conversions from Metric Measures

Symbel When Yeu Kasw Multiply by Ta Find Symbsi
LENGTH
e mitlimeters 0.04 inches in
an centimeters 0.4 inches in
m meters 3.3 feet ft
m meters 1.1 yards yd
km kilometers 0.6 miles mi
AREA

A square centimeters < 0,16 square inches in?
m square meters 1.2 ° square yards
o square kilometers - 0.4 square miles mi?
ha hectares (10,000 m?) 2.5 acres

MASS {weight)

L] grams 0.035 ounces - oz
kg kilograms 2.2 pounds [
t tonnes (1000 kg) 1.1, short tons
VOLUME

mi milliliters 0.03 fluid ounces fi oz
| liters 2.1 pints pt
1 liters 1.06 quarts qt
t liters 0.26 gallons gal
m’ cubic meters 35 . cubic feet #?
m? cubic meters 1.3 cubic yards va?

TEMPERATURE (sxact)
°c Celsius 9/5 (then Fahrenheit °F

temperature add 32) temperature

°F 3
~40 [} 40
[ T T S WY S| B
Lo | T T
—40 ~20 o
°c




SUMMARY

This report presents the results of continued development and

application of the DYNALIST II computer program during the
period February 1975 through March 1976. The following new

capabilities have been added to the program:

Element Synthesis - A third linear modeling capabil-
ity has been added to the program which allows the
user to synthesize three-dimensional components of a
system from basic elements consisting of rigid bodies,
flexural bodies, wheelsets, springé; dampers, and
nodal masses. The building block methodology how pro-

ceeds from element to component to system.

Periodic Response - The program now allows the user

to specify periodic inputs in terms of a piecewise
linear waveform with up to 100 points. A Fourier
sefies representation is automatically generated, and
response is computed in terms of RMS and periodic time

histories.

Transient Response - The periodic response éapability
is sufficiently general to allow the computation of
response to transient type inputs such as rail dis-
continuity and bumps. A Fourier series approximation
including up to 100 terms is used.

Beyond the addition of these major capabilities, several other

significant capabilities and improvements to the program have
been added:

Component Update Capability - The user may now replace
selected component data on the component data file,



thereby facilitating parametric studies. Updated

parameters are identified in the printed output.

Orthogonality Check - An orthogonality check is now
made automatically on all system eigenvectors to
confirm the diagonalization of the state equations.
When the test for orthogonality fails, the trans-
formed dynamic matrix is printed so that the user

may identify which eigenvectors are not independent.

Low Frequency Convergence - An option for computing
the residual truncation error in static response,
and adding it to the truncated mode approximation

of frequency response has been added to the program.
This ensures convergence of frequency response func-
tions at the low end of the spectrum when modes have

been truncated.

Sine Input - The amplitude of sinusoidal excitation
as a function of frequency or wavelength can now be
specified arbitrarily by the user using a tabular
input, as opposed to the particular functional form
previously built into the program.

Phase Lag Input - Phase lags between wheelsets are
now generated within the program based on user in-
put wheel spacing and velocity. 1In addition, the
phase input has been generalized so that sinusoidal
response may be computed as a function of train vel-

ocity as well as the wavelength of track irregularity.

Plot Scaling - User controlled scaling options have
been provided for all response plotting. The purpose
here is to provide for direct comparison between plots

within the same run, or from one run to another.



Application of the program during the current period ﬁaS‘
focused on the ability to solve certain types of mathe-
matically difficult problems. Situations involving multiply
repeated roots and uncoupled equations have been ;nvestigated.
Guidelines are provided to assist the user in the:proper form- .
ulation of problems. To date, the program has demonstratéd
itself to be a very powerful and highly reliable analyticai
tool. The major part of the theoretical development is given
in ﬁeference [1]*. . ‘

*Numbers in square brackets designate references at: end of
report.

‘.



2 EXTENDED DEVELOPMENT

2: 1 Component Matrix Generator

A major addition to DYNALIST II is the Component Matrix Gener-
ator, COMGEN. This modeling routine enables the user to
acquaint himself more with the physics of the problems being
solved and to avoid much troublesome detail. The topology

of the system being modeled and the physical properties of

its elements are defined by the user. The program then uses

a small-deflection finite element type method to form the mass,
damping, and stiffness matrices which describe the component's
homogeneous equations of motion.

The element library includes rigid body, flexible body mode,
lateral wheelset, spring-damper, and nodal mass elements. The
elements are attached to a mesh of nodes defined in three-
dimensional space. Displacement and rotational constraints
may be applied to the motion of the nodes in any of the six
coordinate directions. Thus, in addition to full three-dimen-
sional dynamics problems, one and two-dimensional problems

can be modeled.

The equations of motion at both the component and system
levels are developed in terms of the dynamic p-coordinate
system specified by the user. The dynamic p-coordinates are
any set of generalized coordinates which completely specify
the degrees of freedom of the system or component. They

may correspond directly to a set of discrete physical u-
coordinates or they may correspond to a set of distributed or
modal coordinates. In addition to the dynamic p-coordinate

system, the user also specifies a physical u-coordinate



system. This coordinate system is the one in which the com-
ponents are coupled together, the excitation forces are
applied, and system response at selected locations is printed
and plotted. Since the u-coordinates are not used to . ‘
specify the degrees of freedom of the system, onlyias_many
u-coordinates need be defined as are required for input,
output, and coupling. (As such, the physical u-coordinate
system can be either larger or smaller than the dynamic p-

coordinate system).

The user may assign u- and p-coordinates to any of the
degrees of freedom of the nodes in a manner consistent with
the system being modeled. The u- and p-coordinates are
related by the transformation {u} = [¢]{p} which is auto-
matically generated from the system topology and coordin-
ate specification. A nodal degree of freedom may be given
a u- and p-coordinate, in which case the two will be related
identically. The rigid body elements serve to further de-
fine the ¢ matrix. The motion of gseveral nodes may be tied
to that of a master node, generating a linear transformation
~between the degrees of freedom of the master node and those
of the slave nodes. Each flexible body mode constitutes a
p-coordinate, and a column of the ¢ matrix is in effect de-
fined by the user when he describes the mode shame. The
equations of motion are built by adding the four basic
elements to the nodal skeleton. The element properties

are converted into the p-system in the manner [k]p =
[¢]T[k]u[¢]. Other elements may be easily added to this
library -since the transformation to the p-system occurs in
a separate subroutine which is used by all of the elements.
A detailed description of the functions of the Component

Matrix Generator is given in Reference [2].



252 Component Update Capability

The component update capability is intended to serve as a con-
venience in performing parametric studies of the behavior of
systems. This capability allows prior models of a component
to be deleted from the component data file. A revised model
of the component may then be replaced on the component data
file and the file is thus kept down to a manageable size.
Revisions to the mass, damping, stiffness and phi matrices
are entered in a special Namelist block UPDATE, while the old
model is entered in Namelist COMPO. The revisions to the
model are displayed on the computer printout of the problem.
Revisions to the model made in the Component Matrix Generator
or the special truck and car matrix generator can be indicated
on the printout by placing an Update Code of 1 in the last
column of the input data card being revised. Details of this

capability are presented in Reference [2].

2.3 Eigenvector Solution

Previous experience with DYNALIST II disclosed that under
certain conditions, numerical difficulties were encountered
during execution of the program, particularly in eigenvector
computation. An investigation was therefore made to identify
the source of the problem and take corrective action. Two
things have resulted from this investigation. A coding error
was discovered and eliminated. This solved the biggest part
of the problem. In addition, some guidelines have been devel-
oped to help the user formulate his problem so as to avoid
computational difficulty resulting from an ill-posed problem.



2.3.1 Problem Formulation

Because of the repetitive structure of train-type systems,
and the physical isolation of parts of the system from each
other (e.g., two trucks of a conventional rail car), there
‘is a natural tendency for the eigenvalues to be repeti-

tive. Sometimes very small differences among a subset of
eigenvalues result from weak coupling. Sometimes the eigen-
values in a subset appear to be identical (within six digit
accuracy). In certain cases, eigenvalues not only appear to
be identical, but identity can be established on physical
grounds. In the former two cases, correct eigenvector
solutions have been obtained in all cases run to date. 1In
the latter case, correct solutions have been obtained for all
small problems (up to six degrees of freedom) but not for some
larger problems (16 degrees of freedom). 1In all cases run to
date, correct solutions have been obtained by formulating the
problem properly, i.e., by avoiding situations where physical

uncoupling between different parts of a system exists.

2.3.2 Diagonal Forms

The QR eigenvalue subroutine in DYNALIST II will not compute
eigenvalues for a diagonal system of equations. However,
there is no practical need to do so. If the mass, damping
and stiffness matrices are in diagonal form to begin with,
then:ithe p-coordinates are totally upcoupled. Accordingly,
the eigenvalues can be computed by hand. Thus, the problem
is considered to be ill-posed for DYNALIST II. For Example,
if a diagonal set of equations is given by



m.p. + c.p. + k.p. =0 : 3 =1,2,...,N .. .(2-1)
5P5 5P 5P j : y

the eigenvalues are given by

N AR ]
Aj = —2m. 4 (Zm.> - mj veo(2-2)

Nothing could be gained by solving this problem using

DYNALIST II. The only exception to this rule is for a one-
degree-of-freedom oscillator. Because of its common applica-
tion, a separate logic has been set up to handle this special
type of diagonal system.¥*

2153.. 3 Block Diagonal Forms

The block diagonal form is defined to be such that the mass,

damping and stiffness matrices are of the form

w0 G0
0 1 m? i I o
m] = | 1 1o} ce. (2-3)
S S N
0 1 0 | | ot

where the submatrices, mg , 2 =1,2, ..., N, constitute the

only non-zero partitions of [m]. The off-diagonal partitions

*Note that if a component is in diagonal form, but the system
also includes nondiagonal components, then no synthesis pro-
blems will be encountered provided that the . user does not
attempt to calculate component modes for the diagonal com-
ponent. Either the Direct System or Direct Sub-Systems
approach may be used; or if Modal Synthesis is used, then the
coordinates of the diagonal component should all be listed

as constrained coordinates, rather than as free coordinates,
so that modal conputation will be bypassed for that component.

-8~



are all null. Each submatrix mz is square and may have one

or more columns. When equations of motion

[m] {p} + [c1{p} + [kl{p} = {0} L. (2-4)

are such that [m], [c¢] and [k] are all of the same. block

diagonal form, the equations are said to be block diagonal.
An investigation was made to determine whether DYNALIST II
could handle this kind of problem. The system shown below
(Figure 2-1) consists of two two-degree-of-freedom systems
isolated from each other by a rigid base.

] Pl

ps

N

H
—{

Figure 2-1. Illustration of System Exhibiting Block Diagonal
Form . '

All four mass, damper and spring elements were identical.
DYNALIST II was run using (1) the Direct System (DS) Method
with all four degrees of freedom in one component, (2) the
Direct.Sub-SYStems {(DSS) Method combining two identical com-
ponents without computing component modes, (3) the Modal
Synthesis (MS) Method using the same two components without
modal truncation, and (4) the Modal Synthesis Method with
modal truncation. The first three cases produced identical
results all of which were correct. Caée (4) also worked



properly, giving approximate results because of the modal
truncation. This established the fact that block diagonal
sets of equations can be handled by the program under all

of its basic modeling options. (By contrast, a two-degree- .

of-freedom diagonal system will not execute.)

This of course left unanswered the question of whether other
block diagonal systems could be handled, and in particular
whether larger more representative problems will execute -
properly. The investigation was pursued in an attempt to

answer this question.

The six-degree-of-freedom and l6-degree-of-freedom examples
mentioned in Section 2.3.1 were a vertical car model and a
three-car vertical model respectively. In the former, the six
degrees of freedom constituted heave and pitch motion of a
rigid car body and two rigid'truck frames in a.perfectly sym-
metric configuration. Only heave springs and dampers connected
the trucks to the car body, no pitch springs or dampers.
Therefore, pitch motion of the two trucks was completely un-
coupled from the rest of the system (and of course from each
other).

Considering first the single car model in Figure 2-2 (ignoring

damping for the moment), one may develop homogeneous equations

N

T
| & ) |

—+ 1) —— 1)

Figure 2-2. Vertical Car Model - Stationary

-10-



of motion wherein the mass matrix is diagonal and the stiff-

ness matrix is block diagonal as follows:

e ——

Placement of dampers in parallel with the springs results in
a damping matrix of the same form. The resulting equations

of motion are in block diagonal form.

It should be recognized that a different ordering of the
coordinate numbers might not produce a block diagonal form
directly. But the equations are considered to be block
diagonal if they can be reordered so as to produce this form.
As previously stéted, thié problem did execute propefly.

The next step was to couple three such cars together in a train.
The intent here was to deliberately "push luck" in an attempt to
test the program. Coupling between adjacent cars was effected
by using the constraint equations to hinge the cars in a vert-~
ical plane. Three cars each having six degrees of freedom '
produced 18 degrees of freedom to begin with. Introducing

two constraint equations reduced that number to 16. Using

the DSS option, a correct set of eigenvalues was obtained

(this was verified later). However, the eigenvectors were

not independent.

=-11-



Suspecting that part of the problem might be due to hinging
the cars, we used very stiff vertical spring components (three
orders of magnitude stiffer than secondary suspension) to
couple the cars instead. This way the system retained 18
degrees of freedom. Using the DSS option again this time,
independent eigenvectors were computed and the eigenvalues

agreed with the previous case except that two additional con-
jugate pairs resulted. This case represents the most severe
test passed to date. DYNALIST II successfully solved seven
independent sets of second order differential equations sim-
ultaneously, six independent truck pitch equations and the

. remaining set of twelve coupled equations.

At this point it was desirable to check out the hinging
without the added complication of uncoupled truck pitch
motion. Pitch springs were therefore added to the secondary
suspension and the l6-degree-of-freedom train case was rerun.
This time the problem executed properly.

Finally, two runs were made on the l8-degree-of-freedom train
using the Modal Synthesis (MS) option, first with and then
without modal truncation. All of the oscillatory modes (two
conjugate pairs for each car) were retained in the first case
while the remaining real modes were deleted. Six conjugate
pairs of eigenvalues were computed. The first four were
almost identical to the car body modes obtained previously.
The other two pair resembled the extra eigénvalues computed
by the DSS option for the lS-degree-of-freedbm model. The
imaginary parts (frequency) were very close but the real
parts (damping) were not only off in magnitude but sign also.
In other words, the real positive parts of the complex roots
implied negative damping or an instability. Even so, the

=12~



frequency response plots obtained from the run appeared to
be reasonable. One reason for this is that the fictitious
modes (due to fictitious couplind springs) were in the high
frequency range, beyond the region of interest. Another is
that the real parts of the eigenvalues were still small com-
pared to the imaginary parts, even though -incorrect in sign.
One would expect the sign error to cause a phase shift which
the modulus of the frequency response function might hot be

sensitive to.

The last run on the 18-degree-of-freedom model using the MS
option without truncation terminated during the éystém eigen~
value solution. The trace of the dynamic matrix did agree with
that obtained by the DSS method. Another point worth mention-
ing is that the dynamic matrix obtained by the MS method under
modal truncation was a partition of the dynamic matrix obtained
in the last fun, as expected. The trace obtained in the trun-
cated MS case was however positive, consistent with the "un-

stable" roots.

2.3.4 Conclusions

The eigenvector investigation was not pursued further. Some
interesting questions remain unanswered, at least from an
academic point of view. From a practical standpoint, however,
adequate guidelines can be suggested on the basis of this

investigation.

® Never attempt to extract eigenvalues for a
component whose equations of motion in the
p-coordinate system are diagonal. It is

unnecessary and will terminate execution.

-13-



e Try to avoid block diagonal systems of equa-
tions. If such equations represent a meaningful
problem which must be solved, introduce negli-
gibly small mass, damping or stiffness elements
so that the equations are at least slightly coupled.
This should result in solutions which are suffi-
ciently accurate for practical purposes, and avoid
potential numerical difficulties.

® Use spring-damper coupling elements between cars
if possible rather than perfect hinges. Introduce
coupling (small if desired) between rotational
degrees of freedom as well as translational), e.g.,
pitch springs as well as vertical springs between

cars.

® Use the Modal Synthesis option with caution. Be
especially cautious of deleting low frequency modes
or real modes associated with real roots. Until
the consequences of this operation are better under-
stood, it is advisable to avoid truncating real modes
and low frequency modes altogether.

It is to be emphasized that the tests applied to the program
and discussed in this section were very severe. All of the
troublesome areas could have been avoided in the solution of
practical problems. The eigenvalue/eigenvector subroutines
incorporated in DYNALIST II appear to be very powerful when
executed on the CDC machine which uses a large word size.

As in the solution of any mathematical problem, the importance
of proper formulation cannot be overstated.

-14-



2.4 Orthogonality Check

A major goal of solving a system eigenproblem is to diagonalize
the system equations of motion so that the response of the
System may be found. A set of linearly independent eigenvectors
which correspond to the proper eigenvalues are required to
diagonalize the equations. However, experience has shown

that it is possible to find a set of eigenvectors which exhibit
the correct eigenvalues but which are hot lineariy independenf.
This may happen in a system having several segménts which are
identical to each other but uncoupled from each other, giving
rise to repeated eigenvalues. A certéin way to determine if

a correct set of mutually orthogonal modes has been found is

to see if the equations of motion have actually been diagonalized.

The equations of motion may be written in p-coordinates as
A_l{y} + (B = {f , oo (2-5
[ y]{y [ y]{y} { y} (2-5)
This leads to an eigenproblem posed in the form

-1
AL{Y j} = -[Ay] [ByJ{Wyj} = -[DyJ{Wyj} : .,.(2-6?
where Aj is an eigenvalue and Wj is its corresponding eigen-
vector, and where the matrix D is the dynamic matrix. The
eigenvectors define a similarity transformation between the
y-coordinates and the modal coordinates z. Applied to the
dynamic matrix this similarity transformation should yield

the diagonal eigenvalue matrix

-1 = -
[Wy] [Dy][Wy] = [AJ ..'(2,7)
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In both of the eigenproblem routines of the program, at the
component level and the system level, this similarity trans-
formation is performed on the dynamic matrix to see if the
diagonal eigenvalue matrix is obtained. The matrix I* is first
computed

-1/2 1/2

= -1 - i
FIJd*=-[Ad [‘Py] [Dy] [‘gy] tAd .. (2-8)
which should equal the identity matrix within a fine tolerance
if the eigenvectors are mutually orthogonal. A tolerande

equal to the number of eigenvalues squared times 10-9 is
established. If each of the elements of the matrix I* is

equal to the corresponding element of the identity matrix
within this tolerance the orthogonality check is assumed to
have been satisfied. If not the orthogonality check has

failed.

The eigenvector orthogonality check lends a much higher level
of confidence to the results of the program. It ensures that
the eigenvectors correctly represent system behavior. It also
ensures that the equations have been properly diagonalized and
thus the response analyses are valid. Should the orthogonality
check fail, the transformed dynamic matrix is printed. Large
off-diagonal terms appearing in this matrix identify the
eigenvectors which are dependent. This usually suggests an
ill-posed problem which the user can then take steps to '

reformulate.

When computing system response, it is important that the
user note whether the eigenvector orthogonality check is
satisfied, since, if the orthogonality check is not satis-
fied, the generated system response may yield incorrect

results.
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2.5 - Low Frequency Convergence

The use of the Modal Synthesis modeling option with compon-
ent mode truncation is an approximate method of analysis.

It leads to approximations in both the system ﬁddeé obtained
and in the response computed at the physical coordinates.
The approximation is due to the fact that it is impossible
to represent the exact motion of an n-degree of freedom
system using less than n modes if all of. the modes are con-
tributing to the response. A means of improving the ap-
proximation in a certain frequency range is to compute the
exact response at some particular frequency of interest

and to make the approximate frequency response curve conform
to the exact response at this one frequency. This remedy
was incorporated into the program, and since it was chosen to
make the frequency response curve conform to the exact
response at zero frequency, it is known as low frequency, or

static convergence.

The derivation of equations for low frequency convergence is
given in Section 3.7 of Reference .[1l]. The exact response

at a physical coordinate at zero frequency, Hu’ can be ob-
o .
tained from the system stiffness matrix and the zero order.

force vector as

H, = (61181 iK1 T (B 101 i, ) ce(2-9)
o] O

The, residual contribution of the unused modes to the response
at low frequencies is then

u u

H B - H (i0) ] | ... (2-10)
R o u 0 _
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Adding the residual term to Hu(iQ) should result in an approxi-
mation, ﬁu(iQ), to the exact frequency response function )

which improves the acéuracy at low frequencies; Thus,

B (0) = B (o) + . - ve.(2-11)

A simple and striking demonstration of the use of modal trun-
cation with static convergence is provided by the four degree,
of freedom oscillator shown in Figure 2-3. The first

three masses of the oscillator were taken as component 1 and
the end mass was component 2. Component modes computed

for component 1 give three pairs of modes with conjugate
roots. The highest pair of modes was truncated and the

two components were coupled together. Frequency response
curves were computed for the end mass using modal truncation
with static convergence (Figure 2-4). and using the exact
Direct Sub-Systems method for comparison (Figure 2-5).

A static unit force applied at the end mass produces a dis-
placement of four since there are four unit springs in series.
The exact frequency response curve shows this at low fre-
guency and so does the approximate response curve. The
difference between the two curves occurs at the higher fre-
quencies. The approximate curve is accurate for the first
two modes as is indicated by the similarity in the first two
peaks in the response curves. The fourth mode is missing,
however, and the third mode is between the third and fourth
modes of the exact solution. At frequencies past the highest.
mode the response of the approximate solution levels off at an

amount equal to the static correction B, - This is markedly
R
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Figure 2-3. Four Degree of Freedom Test Problem
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different from the response of the exact system, which drops
rapidly at high frequencies. Thus we see that the use of
modal truncation with static convergence provides good results
at frequencies up to the frequency of the highest mode included
for lightly damped systems such as this.

An application of static convergence to a lateral rail vehicle
is provided in Sample Problems 1 and 3 given in the REVISED
USER MANUAL. Both of these problems model a vehicle having
two six degree of freedom trucks linked to a four degree

of freedom flexible carbody. The response points plotted
are the lateral displacement of the center of the carbody,
coordinate 10, and the lateral displacement of the rear truck,
coordinate 20. Figures 2-6 and 2-7 show the displace-

ment frequency response for lateral motion of the car and
truck, respectively, for the exact solution. Figures 2-8
and 2-9 show these responses where only the lowest four
conjugate pairs of roots out of six have been retained per
truck. A listing of the printed output for the exact solu-
tion is given in Appendix C of Volume IV. The response
found is due to a lateral track irregularity of decreasing
wavelength and unit amplitude. The static laterai response
of the vehicle is thus seen to be unity. The response given
by the approximate solution is seen to comparé quite favor-
ably with the exact response up to a frequency of about 10
Hertz, which is the frequency of the highest truck mode.
Above this frequency the static correction plays an increas-
ingly large role in the response of the approximate solution.
The peaks in the response of the car are: car yaw and sway
modes at .7 and .8 Hz, truck hunting mode at 4 Hz, first car

bending mode at 5 Hz and second car bending mode at 14 Hz.
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The notches at the high frequencies are due to canceling of
forces at the wheelsets due to phase shiftsf The peaks in
the response of the truck at 4 and 10 Hz are both truck

hunting modes.

2.6 Periodic and Transient Response

The ability to analyze the response of a dynamic system fo a
force which varies with frequency gives us a power which goes
beyond mere frequency response. Given a random force whose -
power varies with frequency we can find the power spectral
density of response. We can integrate this power over its
frequency spéctrum and compute the average responée End we may
also determine the probabilities that certain levels of re-
sponse may be reached. We can also use the frequency response
tool to analyze response to a deterministic force, if that
force repeats itself as a function of time. If the period of
repetition of the force is of sufficient duration then the
response of the system to a transient input may be found. '

There are three steps involved in computing the responsé of

a system to a periodic excitation. First the waveform of the.
periodic input must be translated into a Fourier series

which gives the amplitudes of the harmonics of the waveform.
Using the frequency response function the response of the sys-
tem at each harmonic frequency is then determined. The Fourier
coefficients of the response are then converted into: a response
waveform from which peak response is determined. The Fourier
coefficients of response are also used to determine root mean -

square response.

2.6.1 Fourier Excitation

A periodic excitation waveform §(t) defined over a period of
time T may be approximated in the form of a Fourier series as
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n

a F ’
0 . .
§(t) = 5 + 221 (an cos wnt + bn 51n.wnt) e (2-12)

2Tn

w = —

n T

where w, are the harmonic frequencies and nn is the number of
terms to be used in the approximation. The coefficients of
the cosine and sine terms, a, and bn, respectively, may be

found using the following formulas.

. T .
2
a = 'ff G(t) cos wnt dt n = 0’1,2“..’nF ---(2-l3a)
0

1,2,...,n; ..+ (2-13Db)

2 T
b = T_/- §(t) sin wnt dt n P
0

The excitation waveform is input to the program as a series
of amplitudes at specified times. d(t) is assumed to be a

piecewise linear function of time between the points inpﬁt.
Given ne excitation data points we may express §(t) as

§(t) = {cj +d,t ¢+ t. =t <

J J tj+l; J=l,-uo’n6_l}

d. _ é(tj"'l)—a(ti; c

J tj+l-tj J

§(t.)-d.t.
( J) J3J

The Fourier coefficients may thus be found by integrating the
piecewise linear function giving
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1

ag 1 & | ' . (2-14a)
- = 3w jZ=Zl [8(ks g) + 8(EDT (L, =) see (20
n_ -1 . o
§ d. t.
a = 2 2: jL[c. sinw t + d.t sinw t + — cosw t] i+l oo (2=14L)
n T = J n J n w n
j=1 n . n tj
n = l,...,nF
n_ ~1
§ d. t,
b = % : iL-[-c. coswnt - d.t coswnt +_—l sinwnt] J+l ..o {2-14c)
n j=1 n J ] “n tj
n = 1,...,nF

Fourier series of up to one hundred terms may be computed.
This allows fairly complex waveforms to be analyzed. A
complex wave form as might be recorded by a track geometry -
car will not be modeled accurately and is better represented

by random excitation.

2.6.2 Fourier Responée

Periodic response is computed at the physical u~coordinates
of the system. To find it, the complex freqﬁency reéponse
function, Hu(iwn), must be known for each of the harmonic
frequencies used in the Fourier series approximation. The
Fourier coefficients of response are found by multiplying the
coeffiéients of the excitation by H (iw ). Since H (iw ) is
complex, phase shifts occur in this transformation, which are
accounted for in the following manner. A sine wave is a co-
sine wave shifted back by 90°., Since multiplying a number

by i1 results in a shift forward of 90° we may model the
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excitation at the frequency w, as an—ibn. This quantity is

multiplied by Hu(iwn) and - the Fourier coefficients of response-

a, and bu are obtained from the real ‘and imaginary parts of
n n

the product.

)
il

Real [Hu(iwn)-(an-ibn)].; n=0,1,...,n; ...(2-15a)

o
I

-Imag [Hu(iwn)-(an—ibn)]; . n=1l,...,n e« {2-15Db)

F

The response at a physical coordinate, u(t), over one period
is then obtained as

a n

u
0 .
u(t) = ——+ ), (a, cosw t + b sinw_t) ... (2-16)
.2 n=1 un n un n

An efficient way to compute u(t) over one period is to first
evaluate the Fourier series over a quarter period for both
the even and the odd terms of the series and to then combine
them as follows

a n
U, F ‘
u(t) = -——+ 3 la, cosw t+ b  sinw t]
n=1 n -’ . n’
a n
u, F . . :
T _ _© _iyh ; 40+l l
_‘u(2 t) = — + z; [( 1) a, cosu t + (-1) sinw t|
n=1 n
T au0 F n
u(§+t) = — + 2;&(-1) [au coswnt + bu 51nwnt] .

n n
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a n
Yo F .
u(T-t) = —5_'+ Z; [au coswnt_— bu 51nwnt]
n=1 n n

for 0st=

ESL]

Doing this cuts computation . for‘conversion tc the time domain
by a factor of four. Further savings are achieved by calcul-
ating the sine and cosine terms at each time increment recur-
sively. It is also rather simple to calculate the root mean
square value of response, Oy from the coefficients of the
series. We define the dynamic R.M.S. response over one period
as
) lfT[nF _ 2 .
g, = T / n=l(aun‘coswnt + bun 51nwnt) dt eee (2=17)

Note that the static term a, has been left out since it con-
O X
tributes nothing to motion. By orthogonality relations this

is reduced to

n
F 1/2
_ |1 2 2
o, =15 2 (a," + b, A)] ... (2-18)
n=1 n n

As an example of the steps in the process of computing periodic
response, consider the four degree of freedom test problem
shown in Figure 2-3. This oscillator has a force applied

at its end mass which gives the frequency response curve of
Figure 2-5. A periodic excitation is applied at the end

mass in the form of a terminal peak sawtooth wave which starts
at 0. and increases to 3.0 at 12 seconds. The Fourier appro- -
ximation of this wave using just twenty  terms in the series
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is shown in Figure 2-10. Note the divergence of the series

at the discontinuities (endpoints) of the wave. This is known
as the Gibbs phenomenon. The response of the end mass to this
excitation is shown in Figure 2-11. As can be seen from the
frequency response curve of Figure 2-3 the fundamental fre-
quency of the oscillator is at 0.075 Hz. - The fundamental
frequency of the input is close to this at 1/12 sec = 0.0833 Hz.
Thus the sawtooth wave excites mainly the first mode of the
oscillator and, as may be seen from.the periodic response
curve, very few terms of the Fourier series are needed to ade-
quately represent response. Most of the high frequency con--
tent of the excitation is filtered out.

2.6.3 Transient Response

To demonstrate the use of the periodic response capability

in solving a transient problem the two degree of freedom pro-
blem shown in Figure 2-12 was run. The oscillator is excited
at its base by a triangular impulse of duration 10 seconds
followed by a pause of 90 seconds. The triangular impulse, shown
"in Figure 2-13 is modeled with 50 terms. The complex eigen-
value of the first mode of the oscillator is A .= -.0764 + 1.613.
Thus the first mode has a period of;approximately 10 seconds. The
damping reduces the oscillator's amplitude by approximately

one half in one cycle. The pause of 90 seconds following'the
impulse should be enough to reduce the oscillator's motion-to

a negligible amount before the next impulse excites the oscill-~
ator. This is indeed the case as may be seen in Figure 2-14,

It is possible to compute transient response for any system

so long as the system has sufficient damping and there exists

a dead zone in the excitation, following the initial transient:

excitation, which will allow the motion of the system to die down.
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For simple waveforms such as this, the Fourier series can
give an accurate representation of transient response. By
using up to 100 terms in the series and recognizing that
most systems will attenuate the higher frequency content of
the excitation, one can represent transient‘waveforms of
considerably greater complexity and compute transient re-
sponse with sufficient accuracy.
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3. OTHER PROGRAM MODIFICATIONS

The present version of DYNALIST II contains many refinements
over the previous version, which makes the program more gen-
eral, easier to use and which gives more usable results. A
brief list of some improvements is given here: printed out-
put for frequency response now gives the frequerncies in.Hertz;
plotted output for frequency response gives an arithmetic
scale; user controlled scaling optioné‘are provided for all re-
sponse plots; an upper frequency bound may be given for inte-
gration of the power spectral density function; component
eigenvectors are printed in both the u- and p-coordinate sys-
tems; more of the namelist variables have been given default
values. Some of the more important modifications are discussed

in the next four sections.

3.1 Modeling Ogﬁions

A dynamic system can be modeled in three different ways. The
system may be modeled as one component, which is called the
Direct System (DS) method. Two or more components may be
directly linked with constraint equations without having com-
puted any component modes, which is called the Direct Sub-
Systems (DSS) method. Two or more components may have their
component modes computed prior to being linked together, which
is called the Modal Synthesis (MS) method. (Note that, from a
response point of view, the MS method is not advantageous un-
less component modes are to be truncated. From-a stability
point of view, however, the MS method permits each component
to be investigated individually.) These three modelinngptions
may be used to fit the model to the problem being solved, '
attacking the problem in parts or all at once. After modeling,
the system modes are computed and from these responsé is found.

The option of truncating system modes for response computation
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has been removed from the program. This option was removed
because it tends to introduce additional truncation error and
does not allow for the solution of a larger problem than was
already possible. The removal of this option also simplified

the response segment of the program somewhat.

3 2 Definition of Constrained Coordinates

The prior version of the program allowed the p-coordinates
which are constrained in the component eigenvalue problem to
be classified as either "constraint" or "rigid body" coord-
inates. As there is no real mathematical significance to
this distinction, they have now been lumped together under

the category of "constrained" coordinates.*

3.3 Modified Sine Input

The program now allows system response to be calculated due
to a sinusoidal excitation whose amplitude is a function of
the excitation frequency. The sinusoidal excitation ampli-
tude, §(f), is input in the same fashion as the power spec-

tral density function is. The amplitude, ¢§(f), is given at

*The category of constrained coordinates should be thought of

as a complementary category to the free coordinates; that is,
constrained = not free. Recalling that the sole purpose of the
free coordinate category is to partition component matrices

for the component eigenproblem solution, one should recognize
that constrained coordinates are used for all other purposes;
e.g., to constrain components whose equations of motion are
already in diagonal form, or to constrain components which
would otherwise be free-free and would thus have rigid body
modes which DYNALIST will not compute. It is emphasized that
the constraints discussed here apply only to the isolated com-
ponent phase of analysis, and that all such constraints are
relaxed when evaluating the motion of the composite system.

The constraints that actually apply to the system are specified
in the constraint matrix, G, with the resulting dependent sys-
tem coordinates defined in KDEP.
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discrete frequencies (Hertz) acrosé the frequency spectrum
being investigated. & (£f) is then assumed to be pieceWiSe
linear between these points. The amplitude of response)_
U(if), is computed quite easily from the frequenéy response
function Hu(if), where f = Q/27, as '

[UGE) | = |H (15) [ (£) .. (3-1)

Examples of excitations whichvvarylwith frequency include: -
the forces on a vehicle traveling on an irregular roadbed
where the amplitude of the irregularity changes with wave-
length; and vibrational forces due to an unbalanced rotating
shaft where the unbalance grows with frequency due to
centrifugal effects.

3.4 Phasing of Forces

The prior version of the program allowed the forces applied

at the different coordinates to be phased with respect to the
excitation, 8. The phase angles of these forces were assumed
to be proportional to the frequency, and represented the lag
time of the forces. To make this option more general, the pre-
sent version incorporates a constant phase angle in addition

to the frequency dependent phase angle. The form of the force

applied at the physical coordinate u is given as
F(if) = 'Fu(if)le'2”1(¢o tEey) c..(3-2)

Where ¢O represents a constant phase lag, and where f¢l repre-
sents a. frequency dependent phasé lag (¢l then represents the
constant time lag of the force in seconds, and f is the frequency

in Hertz).
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The vertical train model traveling over a track having an
irregularity of wavelength )\ serves to give an example of

both kinds of phased inputs. From Figure 3-1, we see that

the phase lag, ¢, of the force at the trailing axle with
respect to the lead axle is %/A. The frequency of the excita-
tion is given by f=V/X. 1In the case where the frequency of

the excitation is varied by holding X constant while varying
train speed, V, this phase lag remains spatially constant
(¢=£/A=¢0). Even though the bumps will be encountered at a
higher frequency as speed increases, the phase lag will still
be a constant portion of the irregularity wavelength. In the
case where the frequency of the excitation is varied by holding
train speed constant and varying the the wavelength of the
irregularity instead, the phase lag becomes frequency dependent.
Since f=V/)A and ¢=2/X, substituting for ), one obtains ¢=£f2/V=

f¢l. Thus, ¢l=2/v represents a constant time lag of the force.
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,(t) = 61(t)e'2ﬁi¢ [Where ¢=2/A]

Constant A, Variable V : ¢ = &/X

%
£V = Fo,

Variable A, Constant V : ¢ = /X

Figure 3-1. Example of Phased Inputs
for Vertical Train Model
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4. CONCLUSIONS AND RECOMMENDATIONS

DYNALIST II has been further modified and extended during the
present effort to enhance its effectiveness from a user stand-
point. New modeling capabilities and response options have
been added and many significant improvements have been made
to the program. Conclusions and recommendations resulting

from this effort are summarized below.

4.1 Conclusions

b

Three major new capabilities have been added. The building
block approach from which the program was originally designed
has been extended from a two tier to a three tier logical
structure. Basic elements including rigid bodies, flexural
bodies, wheelsets, springs, dampers, and nodal masses can
now be used to synthesize linear, three-dimensional compon-
ent models. Components, in turn, are used to synthesize

complete track/train systems.

A periodic response capability has been added to enable the
computation of response anywhere in the system to a periodic
waveform input in tabular form. RMS response as well as

time histories for a typical period are computed.

The periodic reéponse capability is sufficiently general to
provide a transient response capability also. Using a
Fourier series approximation of the Fourier integral approach,
transient waveforms can be specified with up to 100 points,
and response is computed on the basis of up to 100 terms of

a Fourier series. Points selected to specify the input wave-

form can be arbitrarily spaced.
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The current version of DYNALIST is more user oriented. The
matrix coefficients of the equations of motion can be auto-
matically generatedAby specifying the system topology and the
basic elements comprising the system (springs, dampers, wheel-
sets, masses, etc.), as opposed to the previous version which
required the matrix coefficients to be input directly. Wheel/
rail force inputs and phase lag terms are now generated auto-
matically instead of having to be user input. Plots can be
scaled by the user and are labeled in arithmetic rather than
logarithmic units. Parametric studies are facilitated by a
new component update capability. In addition, recent testing
of the program has led to the development of user guidelines

which are helpful in the formulation of practical problems.

Computational improvements have also been made. The Direct
System and Direct Subsystem options have been debugged and
are now fully operational. These options provide useful
alternatives to the Modal Synthesis option.

An eigenvector orthogonality check is now made automatically
to confirm diagonalization of the state equations. If the
computed eigenvalues are all stable and the associated
eigenvectors diagonalize the equations, subsequent response

calculations can be relied upon.

In the previous version of the program, modal truncation
sometimes resulted in a residual error at the low frequency
end of the displacement response spectrum. This residual

term is now computed internally and added to the truncated
mode solution to guarantee convergence at low frequencies.
Since computation of RMS response for stationary random in-
puts requires integration over a range of frequencies, it

is sometimes desirable to specify an upper limit on this range
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separately from the range of computed frequency response and
response PSD, particularly when the use of modal synthesis
introduces truncation error in the high frequency range. This
capability has been added. .

4.2 Recommendations

Based on experience gained with DYNALIST II to date, the
following recommendations are made with regard to its future
use:
® Observe the guidelines listed in Section 2.3.4
of this report with regard to problem formulation.

e Consider the advantages of the Direct modeling
options as opposed to Modal Synthesis when running
small systems, systems with many real roots, or
systems which do not lend themselves to natural
subdivision into components with at least six

degrees of freedom.

® Consider the advantages of Modal Synthesis for
modeling large systems, particularly trains con-
sisting of several cars where high frequency truck
and wheel modes can be truncated for each car, or
for a car model having non-rigid truck assemblies
and many degrees of freedom. The truncation of
high frequency component modes can result in signi=-
ficant computational savings without sacrificing -

needed accuracy.

® Ensure the stability of system'eigenvalues and the
orthogonality of system eigenvectors in verifying

response computations.
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Finally, it should be recognized that DYNALIST II provides
the modeling capability to include track structure as part
of a track/train system. Either lumped parameter or distri-
buted parameter track models can be specified. The static
deformation of track structure under nominal wheel loading
can be used to define distributed (or modal) coordinates

for use in dynamic analysis based on Rayleigh-Ritz principles.

As experience with this program grows, it is anticipated that
many new applications will emerge. User feedback will con-
tinue to enhance its practical worth.



APPENDIX A
CHARACTERIZATION OF FORCING FUNCTIONS

Some of the user feedback on DYNALIST II has reVealed‘that
the form of the forcing function built into the program is
not immediately apparent, and at least to eome extent, con-
fusion has been generated as a consequence. This appendix
has been added in an attempt to clarify this area. Whereas
‘an introduction to the forcing function in Reference [1] was
by way of specific examples, the approach taken here is to
begln with the general and then proceed to the spec1f1c
Hopefully this treatment will help to resolve some of the
difficulty.

In pursuing this objective, some different notation- will be
introduced. While it is usually desirable to maintain the
same notation within a given subject area, the changes here
are to some degree necessary for the generalization, and

are furthermore intended to interrupt any thought patterns
which may have lead to the initial confusion. In this re-
gard, an attempt is made to recast thée subject in a

different light. Thus, the forces discussed here can be
visualized as wheel/rail forces acting on a train, seismic
forces on a building, hydrodYnamic forces on a ship,or'simple
point forces acting on a beam. In fact, different examples
will be presented to.illustrate the generality of the forcing
function capability within DYNALIST II.

A.l - General Form

Before taking up the charaeterization of a particular force
environment such as seismic or wave; it will be useful to

consider the general form of the forcing functlon bullt into f
DYNALIST II. In simplest terms, a distributed force, f(u,t),
where u denotes position or spatial dependency, and t denotes



time dependency, is assumed tc be variable-separable so that

f(u,t) = P(u)g(t) (A-1)

whereP(u) is a function depending only on.position (not to be
confused with the lower case "p" used to denote generalized

coordinates) and g(t) is a scalar function depending only on time.

Actually, the functional form used in DYNALIST II is somewhat
more general. 1In particular,

2 .
k
ft) = Y p® i gw | (a-2)
k=0 dt :

Since DYNALIST II is formulated on the basis of discrete

variables rather than continuous variables, a vector form
is used instead of (A-2):

2
k
(k) 4
tg e =y (p, ) % l9(®)]
k=0

- {pu(o)}'g(t) + {Pu(l)} Jt) + {Pu(Z)} g(t)

(A=3)

Typical force distributions are shown in Figure A-1, for example.
In part (a) of that figure, a cantilever beam is subjected to

a distributed load which varies sinusoidally with time, similar
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Figure A-1. Examples of Typical Force Vectors Used in DYNALIST II



to wave action on a pier. 1In part (b) the cantilever beam is
subjected to base motion whose waveform is defined in tefms of
displacement. In part (c) the same beam is subjected to base
motion whose waveform is defined in terms of acceleration. In

all cases, equations of motion are of the form
[m]{u} + [c]{a} + [kl{u} = {£ ()} . (B-4)

where the u-coordinates numbered 1 through 5 denote 1aterai

displacements of the beam relative to its base, and where in

parts (b) and (c¢) the inertial forces due to base acceleratiocn

have been transposed to the right hand side of the equations.

A.2 Frequency Domain Analysis’

DYNALIST II solves equations of motion in the frequency domain,
rather than in the time domain. This makes it convenient to ‘
use Equation (A-3) in a form where the vectors {P (0)} {P (l)}
and {P (2)} are complex, i.e. have both real and 1maglnary.

parts. In other words, the force distribution functions allow
phase distribution in addition to amplitude distribution. 1In
order to pursue this discussion further, it is helpful to con-
sider the equations of niotion given by (A-4) and transform them
to the frequency domain. This is done by first taking the
Laplace transform of the equations, which maps them from the
time variable t into the complex variable s = ¢ + i@, and

then let ¢ + 0. The resulting equations in the frequency do-

main are
(k1 + i00c) - @%[ml) (UG} = {F (W} (A=5)

where {U(iQ)} and {Fu(iﬂ)} denote the transformed vectors
{u(t)} and {£(t)} respectively. The vectors {U(iQ)} and
{F(if)} are the Fourier transforms of their time dependent



counterparts whenever the Fourier integrals exist.* Transforma-
tion of {fu(t)}, as expressed in (A-3), to the frequency
domain leads to

{Fu(iﬂ)}==GPu“n}+(iQ){PuUJ}+(iQF{Pé2)»G(iQ) (A=6)

where the Pu—vectors are still complex. Finally the Pu—vectors

are’resolved into amplitude and phase vectors of the form
(0) . (1) Loy 2 (2)
(P73 + GGay{p, "3 + (do)” {p '7"}
- - _ _i (0) 4~ (1)
({Pu(o)} + (19){}?;1)} + (iQ)Z{Plg?-)}>e l[{-eu } o+ Q{eu }]
(a-7)

where the "P-bars" are now real and the phase shifts im-

plied by {6(0)} and/or {Gél)} operate on the three force

)y

vectors - {P {P(l)} and{P(z)} - simultaneously.** fThe

superscript notatlon (k), where k=0,1,2, may be associated
with multiplication by £ to kth power. See examples which
follow in Tables A-1 and A-2.

A.3 Position Dependency (Force Distribution)

The frequency domain formulation given in the preceding section
is particularly well suited to the dynamic response analysis of
systems subjected to wave environments, either traveling waves

or standing waves, where the forces acting on different parts

*Although the Fourier integral transform of a periodic function
is not defined, a Fourier series representation does exist so
that the formal treatment given here is physically meaningful
and practically useful.

**Tf at a particular u-location, multiple forces exist which
have different phases, then the simplest approach would be
to multiply define identical u-coordinates at that location,
and to apply one force to each such coordinate. '
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of the system may all be assumed to have the same time depen-
dency, but have different amplitudes and phase -angles. Recall-
.ing the rail-vehicle application fdr which the program was
originally designed, one may visualize forces acting on the
vehicle through each wheel. 1In the two-dimensional case where
differences between rails are ignored, one can show that the
driving forces acting on all of the wheels have the same time
dependency as determined by the velocity of the vehicle and
the profile of the rail surface. Aside from differences in
wheel geometry, mass, and suspension parameters which are
system dependent and show up in the force distribution, eaéh
trailing wheel sees the same input as the lead wheel with a
time lag equal to its distance behind the lead wheel divided
by the forward velocity of the vehicle, i.e., %£/V. In the
frequency domain, this lag term is represented by the phase
angle vector Q{eél)} where Q is the.circular frequency as-
sociated with the wavelength of the rail surface profile ir-

regularity and the vehicle's forward velocity.

A similar situation prevails in the case of an offshore plat-

form excited by traveling sea waves. If the wave displacement

profile is represented by the scalar time function g(t), the

wave forces acting on the platform can be separated into

.® Hydrostatic forces {PJO)}
e Drag forces {PuUJ}
® Inertia forces {PJz)}

and. their phasing relative to wherever g(t) is measured will
be specified by the phase angle vector Q{e&l)},where in this
case Q is associated with wave length and propagation velocity
(celerity), and {e&l)} will again be of the form &/V. This



application is illustrated by Figure A-2 and Table A-1, except
in this particular case, the hydrostatic forces are zero.

If the platform were situated in a standing wave environment,
the phase angle distribution would be specified in terms of
{6&0)}instead of {d})}. Another example of the use of {680)}
is in the vibration of machinery due to rotor unba"ance, where
the relative phase angles among different eccentric masses are
independent of the frequency of rota;ion, Q.

Force distribution is input to DYNALIST II via the NAMELIST

variable arrays

FORCE = {Pu(O)}
FORC1 = {~Pu( 1)y
FORC2 = { Pu( 2)y
PHAS = {éé")}/zw (units in cycles)
PHAS1 = '{efll)} (units in seconds)

as explained in Reference {21.

A.4 Time Dependency (Waveform)

It has already been statéd that DYNALIST II offers the capa-

bility to compute dynamic response to

Sinusoidal,
Periodic,

Transient, and

Random

forcing functions. These categories relate to different ways
of characterizing the time dependency of {fu(t)} as embodied
in the scalar waveform function g(t). Figure A=-3 illustrates’
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Figure A-2. Force Distribution for Wave Excitation
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TABLE A-1. CHARACTERIZATION OF WAVE FORCES IN FIGURE A-2

FREQUENCY DOMAIN FORCES

Ftie) = [pd!) + (12)2(?)] e(in)

Fyie) = () s (197757 ain)

Ftie) = [a)p{!) + (10)25{2)] atin)

Fytin) = [opfD) + (0252 T/ 6ag)
Ftia) = [(ip{!) + (i0)%p{2)] & Y G(in)
Folif) = [(m)ﬁé” ¥ (m)zﬁéz)j AN o)

FORCE DISTRIBUTION INPUT TO DYNALIST II

u-COORD  FORCP  FORCI FORC2  PHASP  PHAST
1 0 p(1) p{2) 0 0
' 1 1
5(1) 5(2)
2 0 P b 0 0
5(1) 5(2)
3 0 P P 0 0
5(1) 5(2)
4 0 Py P 0 L/
(1) 5(2)
5 0 P P 0 )V
5(1) 5(2)
6 0 Pl pt 0 /v

Note: If the two legs shown in Figure A-2 are identical,

then P, = Fl, P. = Fz, and P, = P

4 5 6 3°
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Figure A-3. Waveform Specifications in DYNALIST II

NAMELIST
VARIABLES

A(f) = AMP

f = CYCLS
[If A(f) = Constant, then
Frequency Response Option

may be used with constant
scale factor in mind.]

g{t) = WAVE
t = TIME

g(t) = WAVE
t = TIME

S(f) = AMP
f = CYCLS



the four basic waveform input options, and the means by which
they are entered in DYNALIST II.

In the case of the amplitude varying sinusoidal waveform,
steady state response is assumed. Thus, even though the
waveform in Part (a) of the figure is actually changing with
respect to both frequency and time, the implication is that
the variations with time are slow so that the system is able
to "track" the variations with virtually steady state response.
Input to the program can therefore be specified in terms of

excitation amplitude vs. frequency as shown in the figure.

Periodic excitation is specified in terms of the typical wave-
form over one fundamental period of the excitation. Thus,
where the actual waveform repeats itself over every succes-
sive period, all of the information is contained in one period
of the motion. The same argument applies to response. Only
one peroid of the response time-history is computed, and only

one period is plotted.

Transient excitation and response is treated by Fourier
series approximation and is therefore considered to be a
periodic function with a very long fundamental period as
illustrated in Part (c) of the figure. The length of this
period is artificial and is chosen on the basis of the

time constants of the system, i.e., natural frequencies and
damping rates. The artificial period must be long enough

to allow all motion from one transient to damp out before
another transient (in a successive period) is encountered.
Since transient excitation and response are treated as
periodic functions, program input and output are identical in
form to the periodic case. The program in fact recognizes no

distinction between the two.
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7

Random excitation is assumed to be stationary. It is'specified
in terms of the power spectral density (PSD) function as
illustrated in Part (d) of Figure A-3. Since the waveform is
random, stationary and assumed to be ergodic (establishing
statistical equivalence between one sample function and an
ensemble), no phase information and'no particuiar wave shape
characteristics are implied. Only the bower (energy type
information) distribution with respect to frequency is .

specified.
A.5 Notation

Now that the general form of the forcing function has been
developed in terms of some different notation, we can:go
back to relate the original notation of Reference [1] to the
notation of this appendix.

The system force vector {fu(t)} shown in Equation (A-4) of
this appendix is related to the 2th component force wvector
{fi(t)} of Reference [l], Equation (2-5) as follows .

1.
(fu(t)
2
fu(t)
(£ (£)} = : . where £4(t) = {£%(t)}
u( =1 - i where f = u
£7(t) ’ :
u for 1 < 2 < N
N
qu(t)J
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The Fourier transform of {fu(t)} as denoted by {Fu(iQ)} in
(A-5) is similarly related to the {Fu(iQ)} in Reference
[1], Equation (2-37) by

" E
Fi(iQ)
Fi(iﬂ)
. H | _ L, .
{F_ (i)} =4 L ; where F_ (i) = {F_(iQ)}
u u u
F¥ (iQ)
u for 1 < % <N
N3
i Fu(lQ)‘

In the case where the excitation waveform corresponds to the
rail irregularity (track geometry profile) &(t) = 6§(t)* as
implied by Reference [l1], Equation (2-34), it follows that
the function g(t) in (A-3) becomes

g(t) = &(t) = Gi(t)

Similarly, in the frequency domain,

G(iQ) = A(iR) = Ai(iQ)

* This equality implies that the general waveform §(t) is
measured with respect to a particular axle "1" of a
particular component "Q", i.e., a fixed point on the
vehicle.
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This "G" of course bears no relationship to the constraint
matrix "G" used in Reference [1l], Equation (2-1).

In the case of the train application, the complex vectors
{Péoi , and {Pél)} and'{Péz)} of (A-3) are

) = (F i)
{Pél)} = {F, i}

2P} = F, )}

where the terms on the right hand side appear in Reference
(1], Equation (2-38). Again, these capital "P's" bear no
relation to the lower case "p's" of Reference [l], Equation
(2-14). '

Referring back to the truck example of Reference [l1], Figure
2-2, and the force vector given by Equation (2-37) which
follows that figure, we find that we can generate another
table analogous to Table A-1l, for the truck model. See
Table A-2. Either the sine, periodic, transient or random

type waveform input can be specified for this force distri-
bution.



TABLE A-2. CHARACTERIZATION OF WHEEL/RAIL FORCES IN REFERFNCE
[1], FIGURE 2-2

FREQUENCY DOMAIN FORCES

F,(ia) = 0 o

F,(ie) = P{%) g(in) ( : °) a(ia)
F3(iQ) =0

F4(1Q) =0

Fo(i2) = 0

5

Fe(iq) = Péo) o~ I8N at10) . (————————) e UV 5(ig)

FORCE DISTRIBUTION INPUT TO DYNALIST IT

u-COORD FORCQ FORC1 FORC2 PHASQ PHAS1

1 0 0 0 0 0
2f A L
2 (-——JL—E) 0 0 0 0
r‘0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0
2f AL
(——M) 0 0 0 L/V
r‘0
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APPENDIX B
REPORT OF INVENTIONS

In accordance with the patent rights clause of the terms

and conditions of this contract, and after comprehensive
review of the work performed, it was found that no new
patentable items were produced under this contract. How-
ever, significant innovations and improvements were made
relative to the DYNALIST computer program and its documenta-
tion, as summarized in Section 1 of this volume. In particu-
lar these include: (1) a component matrix generator which
operates as a 3-D finite element modeling program where
elements consist of rigid bodies, flexural bodies, wheelsets,
suspénsion elements, and point masses assembled on a nodal
skeleton; (2) a periodic and transient time-history response
capability; (3) a component update capability for parametric
studies; (4) an orthogonality check on component and system
complex eigenvectors; (5) an option for improving low-
frequencey convergence under modal truncation; (6) a more
general sine-amplitude forcing function capability; (7) auto-
matic phase lag generation; (8) user controlled scaling
options on all response plots; and a number of additional
minor improvements. The overall utility of the program has

been enhanced accordingly.
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