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I. TINTRODUCTION

A portion of the work supported by contract DOT-0S-40018, Freight
Car Dynamics, concerned the conversion of two computer programs, ob-
téined*from Professor J. J. Kalker of Delft University, from the origi-
nal Algol language to Fortran. In addition, detailed users' manuals
were to be prepared for each program. The first program, the formula-
tion of which is described by Kalker in [1], has been ébnverted to
Fortran and the users' manual is presented in [2]. The present users'
manual covers tﬁe Fortran version of the computer program developed by
Kalker in [3] and [4]. This program is a modification, by Kalker, of
the original- code described in [5].

Some duplication exists between the present manual and [2]. This
is done both for completeness in the description of the problem, as
both codes concern the same problem, and‘fof ease of operation in that,
where possible, the same nomenclature and input and output format is

used in both programs.

[1] J.J. Kalker, "Simplified Theory of Rolling Contact," Delft Progr.
Rep., Series C: Mechanical and Aeronautical Engineering and Ship-
building, 1 (1973), pp. 1-10. Reprint attached as Appendix B.

[2] J.G. Goree and E.H. Law, "Users' Manual for Kalker's Simplified
Nonlinear Creep Theory," Interim Report, Contract DOT-0S-40018,
FRA/ORD/-78/06. December, 1977.

[3] J.J. Kalker, "A Programme for Three-Dimensional Steady State
Rolling. I Description of the Method." (1972), Unpublished.

[4] H. Goedings, "A Programme for Three-Dimensional Steady State
Rolling. II Programme Description." (1972), Unpublished.

[6] J.J. Kalker, "On the Rol1ling Contaét Between Two Elastic Bodies
in the Presence of Dry Friction," Ph.D, Thesis, Delft University
of Technology (1967).



Background

The forces and moments due to shear stresses in the contact area
between wheel and rail play a major role in rajl vehicle dynamics.
These shear stresses arise, in part, due to relative linear and angu-
lar motions (lateral, Tongitudinal, and spin creepage) between the
wheel and rail. Hobbs [6] presents a review of the analytical and
exﬁerimenta] work concerned with the creep force/creepage phenomenon.

For many problems in rail vehicle dynamics a linear creep force/
- creepage relationship has been used. Typical of these are eigenvalue/
eigenvector analyses of lateral stability, lateral forced response
studies, and estimation of slip and flange contact boundaries for steady
state curving. It is widely recognized that the best available Tinear
creep law is that due to Kalker [1] and called the "linearized theory"
(see equations (12) and (13) of [1]). Recently, however, more and more
questions are being asked of rail vehicle dynamicists that require more
sophisticated models of the wheel/rail interaction process. Factors
that should be considered in these models are: (1) the nonlinear wheel/
rail geometric constraint functions arising from curved or worn wheel
and rail profiles; and, (2) the effects of adhesion 1imits on the creep
force/creepage relationship (i.e. a nonlinear creep law).

Attempts have been made to formulate a nonlinear creep Taw.

[6]1 A.E.W. Hobbs, "A Survey of Creep", DYN/52, April 1967, British
Railways Research Dept., Derby, England.




Johnson's theory [7,8] has been confirmed by laboratory experiments

but does not account for spin creepage*. Unfortunately, the effects

of spin creepage are expected to predominate for contact areas in the

wheel flange region - precisely the situation where a nonlinear creep

law is needed. The Levi-Chartet creep law [9,10] used by some research-

ers is empirically based and does not account for spin creepage.
Professor Kalker of Delft University has formulated two nonlinear

creep laws that incorporate the effects of spin creepage and that have

been found to compare well with results of laboratory experiments.

These two creep laws afe generally referred to as the "simplified theory

of\ro11ing contact" [1] and the "exact solution for rolling contact"

[3], [5]. The differences in the solutions lie in two simplifying as-

sumptions made in [1] concerning the tangential displacement-stress re-

lations and the normal stress distribution on the contact surface.

These assumptions shorten the computation time required by a factor of

approximately 50 to 100 for the simplified theory. The exact solution

is valid. for unequal materials while equal material properties must be

assumed in the simplified theory.

[71 K.L. Johnson, "Adhesion", Proc. Inst. Mech. Engrs., Vol. 178, part
3E (1964), pp. 208, 209. |

[8] P.J. Vermeulen and K.L. Johnson, "Contact of Nonspherical Elastic
Bodies Transmitting Tangential Forces," J. Appl. Mechanics, Vol. 31
(1964), pp. 338-340.

* Spin creepage is the nondimensional relative angular velocity between
wheel and rail in the contact zone.

[9]1 R. Levi, "Le roulement avec glissement", Compt. rend. Acad. Science
199, (1934), pp. 119-120.

[10] A. Chartet, "Proprietes generales des contacts de roulement. Theorie
des similitudes.” Compt. rend. Acad. Science 225, (1947), pp. 986-988.



Some of the investigations being conducted under contract DOT-0S-
40018, Freight Car Dynamics, deal with developing models for the lateral
dynamic response of North American freight cars during curve entry and
negotiation. These models will be used to predict vehicle response and
'wheel/rail forces during hard curving where severe flange contact is
énticipated. Consequently, it is expected that creep forces may approach
the Timits of adhesion and a nonlinear creep law will be required for |
accurate modeling.

" The object of the work reported in this Users' Manual was to con-
vert the Algol program developed by Professor Kalker for the "three-
dimensional steady state theory of rolling contact" to Fortran and to .
check the resulting program by direct comparison with the results cal-
culated by the original Algol prbgram and with available experimental
results. It is-anticipated that a Fortran versfon of this computer
program and the simplified theory of [2], will prove'quité valuable to
rail vehicle dynamics researchers in the Un%ted States where most

scientific programs are written in Fortran.

Summary of Users' Manua]

The problem analysed .in [3] and considered in the computer code is
for steady rolling contact of two elastic bodies of equal or unequal
Tinearly elastic material properties and haViﬁg both longitudinal and
lateral creepage and spin about an axis normal to the contacf‘surface.
The appropriate geohetry is given in Figure 1.

The problem may be stated as follows. Given two bodies of known

elastic properties, dimensions, normal force, rolling velocity, creepage




and spin, determine the resultant creep forces tahgent to the contact
surface. The region of slip within the contact surface is also deter-
mined. In obtaining a solution, the static Hertzian contact problem

is first solved (see [5] page 55, or [11] page 414) to determine the
dimensions of the contact ellipse, a and b. The resultant creep forces
and moment, Fx’ Fy, and MZ are then determined knowing theAparameters
a, b, N, G, Vs Ks U Vgs Yy and ¢ where:

FX = F

X - longitudinal creep force (in the direction of rolling)
FY = Fy = 1atera1 creep force |
MZ = MZ = spin creep moment about normal to contact surface
Al = a = semi-axis of contact ellipse in longitudinal direction
Bl = b = semi-axis of contact ellipse in lateral.direction

N = resultant normal load on the contact region
G = combined shear modulus, 1/6 = 1/2(1/G" + 1/67)

NU combined Poisson's ratio, v/G = 1/2(v+/G+ + v /G )

[
<
1]

k = elastic difference parameter, = G/4[(]-2v+)/G+—(1-2v')/G_]

il
{

Kappa
MU =Au’= coefficient of friction

uy,uy

u
4

vy = Tongitudinal and tateral creepage

PH = ¢ = spin creepage
The significant differences in the solutions presented in [1] and [3]
lie in two simplifying assumptions concerning the tangential displace-
ment - stress re]ations and the normal stress distribution on the con-
tact surface. . These tWo.assumptions considerably reduce the complexi-

ties in obtaining a numerical solution and shorten the computation time

[11] S.P. Timoshenko and J.N. Goodier, Theory of E]gst1c1;z, 3rd Ed.
McGraw-Hi11 Book Company (1970)



by a factor of approximately 50 to 100.
The first assumption regarding the tangential displacement-stress
relation developed in [1] is,

SxX . Sxsz

1

0T (X,y) - uT(Xsy) = u(xsy)

equation (9), [1]
+
( SyY - SyTyz

X,¥) = v (x,y) = v(x,y)

where u(x,y) and v(x,y) are the tangential displacement differences in
the Tongitudinal and lateral directions and Tyz and'ryz are the shear
stresses. The "exact" relationships for the tangential displacements

as given in [3] and [5] are

u(x,y) = JJ{ xz(p q) 1 \’ + \’(ggx)z 1+ Tyz(p’q) v(E-E)(Q-,x)

+ xa (psa) p—z}dpdq
M M-m

=L 1 amn men and
m=0 n=0 ?

)2
v(x,y) = fj{ xz(p a) )( (p=x)te=y) Ty, {Psa) [—;-- -‘-’LE—;X——]
+ Ko(pq 9—¥}dp dq
M M-m
=z ¢ b Xy
m=0 n=o mn Y

where R = /(x-p)% + (y-q)¢ , and A is the contact area.

The two elastic constant; SX and Sy of [1] are determined explicity in

terms of the elastic broperties G and vs the contact ellipse q1mensions
a and b and the creepage and spin coefficients Cij (see equations (13)

and (41) - (47) of [1].)

The method of determination of the constants amn and bmn in the



"exact" solution is much more complicated than that used to determine
Sx and Sy in [1] and is .the significant difference in the solutions.
The coupling of the shear stresses and the normal stress 9, is appar-
ent in the above "exact" relations. However if the materials are equal, and
therefore « = 0, the normal stress contribution does vanish. For un-
equal materials this contribution may be significant and represents
the main difficulty in developing a simplified theory for unequal mate-
rials.

Both theories also may be used to investigate the effects of a
very thin elastic layer covering the bodies and having a tangential
displacement-stress relation as given by equation (45) of [1].

u =L X=-1 and

T
% X X XZ,

v, = LyY = - LyTyz,

where LX and Ly are the_inverSe stiffnesses of the layer. If no layer
is present one then takes Lx = Ly = 0. _ |

The effect of changes in LX and Ly on the resulting solution has
not been investigated; however, some observations should be noted.
First, the layer is assumed to be so thin that its presence does not
influence the determination of the contact ellipse dimension§ or the
pressure distribution. That is, a and b are st111<computed from the
static Hertz solution in terms of G, v, and N. The effect of a finjte
thickness work-hardened layer could not then be accounted for by in-
cluding Lx and Ly. Further, it seems to the writer that if the effect
of a contaminated rail is desired, it is more directly accounted for

by an appropriate change in the coefficient of friction. The utility

of modifying the elastic properties by adding Lx and Ly is not clear



to the writer at this time.

The additional simplification made in the combined creepage and
spin solution of [1] is that the normal stress distribution over the
contact region is assumed to be of the form given by equation (14.111)
of [1] rather than the Hertz stress distribution. It should be noted
that the Hertzian distribution is used in both cases, [2] and the pre- .
sent code, to determine the contact region dimensions a and b.

In running test problems with the two programs derived from, [1]
~and [3], some important observations have been made. In comparing the
éo]utions With experimenta1 results for equal materials, as showﬁ in
Figure 2, the agreement is equally as good using the "Simplified Theory"
[1] as the fExact Theory" [31. In fact, for small or large values of
A)B the "Simplified Theory" frequently gives better results, as the
“Exact Theory" often expefiences numerical divergence difficulties for
extreme values of A/B. In no instance was a.significant improvement
Hqted with the "Exact Theory". In view of the time savings on the order
of 50 to 1 the "Exact Theory" appears to have utility primar%]y in veri-
fyihg the "Simplified Theory". For unequal materia]é the "Exact Theory"

- must be used, however the solutfon time is cons%deréb]y increased, as
" the normal stress is now coupled into the tangentia]ldisp1acements and
| convergence is ﬁore difficult. An indication of run times for specific
examples is given in the next section.

Numerous changes were made in the computer code in order to make
the program more conven{ent to use. The A1901 version was, however,
fundamentally correct and numerous checks were made to insure that the
Fortran and A]go]lcodes gave the same results. The use of the Fortran

code is considered in the next sections.



II. DESCRIPTION OF COMPUTER CODE FOR THE "EXACT" SOLUTION

A. PURPOSE

This program and associated subroutines computes the lateral and
Tongitudinal creep fpfées and the spin creep moment acting between two
elastic bodieé in steady state rolling contact.  The bodies are of
equal or unequal linearly elastic material propérties and‘have Tongitu-
dinal and lateral créepage and spin creebage about an- axis ﬁorma] to
the contact region. Kalker's theory of three-dimensional steady state

rolling contact [3], [4]is the basis of the program.

B. PROGRAM DESCRIPTION

1) Usage: The program consists of a main program and two sub-
routines.

The main prbgrah, MAIN,'coordihates the input, deter-
mines the region of slip or adhesion within the contact zone,
~ and outpdts the results. Subroutine QﬁNST determines the_
normalized modulus GS by linear and quadratic 1nterpoiation
from Kalker's table [5].

2) Subroutines Required:

SUBROUTINE SIGN (X) If the function X is negative, zero or

positive the subroutine returns -1.0, 0.0, +1.0, respectively.

SUBROUTINE CUNST (A, B, NU, GS) determines the normalized
modulus, GS, by linear and quadratic interpotation from Kalker's
~ table, [56]. These values are used in MAIN.

3) Description of Input Parameters:

- NVT NV1 is an integer denoting the number of complete

‘problems to be solved.



A,B

NU
LXN, LYN

KAPPA
N1, Ml

NS

NV2

A = a/c, B = b/c, where a and b are the actual con-
tact dimensions determined from the static Hertz
solution and ¢ =/ab is the normalized unit of

length. a is the longitudinal and b is the lateral
semi-axis of the contact ellipse.

NU = v = Poisson's ratio.

LXN = LXpN/c”, LYN = LypN/c“. Inverse stiffnesses

of an elastic layer covering the bodies. N = resul-
tant normal force and 1/p = 1/4 (1/RT + 1/Ry + 1/R; +
1/R;) with Ri, R], Ry, R; being the principal radii
of curvature of the two elastic bodies. See equation
(45), [1]. For no layer, take LXN = LYN = 0.

KAPPA = Elastic difference parameter.

Lattice points in the normalized contact region, see
Figure 1. Accuracy increases wifh increasing values

of N1, MI. Maximum values N1, M1 = 8. Typical

values:
A/B = 10.0, N1 = 8, Ml =6,
A/B = 0.1, NI = 6, M1 = 8,
A/B = 1.0, N1 =Ml =6.

To print all output including stresses and displace-

ments on the contact region take NS = 1. To suppress
all output except the resultant forces or moment take
NS = 2.

NV2 is the integral number of sets of UXN, UYN, PHN

to be considered.

10



UXN, UYN  UXN = vxp/uc, UYN = vyp/gc where Vgr Yy are the Tlongi-
tudinal and Tateral creepages, u = coefficient of
friction.

PHN PHN = ¢p/u where ¢ is the spin creepage.

4) Input Format:

A sample deck set up is listed in Appendix A of this man-
ual. The program requires contact region dimensions, elastic
properties, wheel/rail creepages and program control informa-
tion. The following format is for NV1 = 1. If NV1 > 1, there

would be NV1 sets of the group of cards after the first card.

Card
Number A Input Data
1T N = Integer. Program solves NV1 complete problems,

Typica1 card: 1

2 A, B, NU, LXN, LYN, KAPPA
Typical card: 2.5980 0.3849 0.28 0.00 0.00 0.00

3 N1, M1, NS

Typical card: 6 6 1

4 'NV2 = Integer. Program solves NV2 problems for different
values of creepage and spin given on NV2 cards starting
with 5.

Typical card: 1

5 to NV2 UXN, UYN, PHN
Typical card: 0.0 - -1.4 0.8

“ Note: The input is free format with a space needed between each input
parameter. ,

11



5) Description of Other Parameters in Program:

GS GS = Gc3/pN where G = shear modulus. GS may also be com-
puted from GS = 3(1-v) E/(41/g ) where E = complete ellip-
tic integral of the second kind, see [5] page 58, and g =
axial ratio of the contact ellipse = min (a/b, b/a). &S
is determined within the computer program in terms of A,

B and NU.
MU MU = u = coefficient of friction. A1l variables are

normalized so that u does not appear explicitly.

Qutput: NV2 sub-cases of NV1 cases are calculated. For each

of the NV1 cases, the input parameters A, B, NU, LXN, LYN,
KAPPA are printed. The constants N1, MI, NS and the normalized
shear modulus, GS, are also printed. For each of the NV1 cases,
there will be NV2 sets of output corresponding to the NVZ sets
of normalized creepages and spin, UXN, UYN, and PHN. For each
of the NV2 cases, the inputs UXN, UYN, and PHN are printed out
together with the computed values of the normalized longitudinal
and lateral creep forces, FXN and FYN, and the computed value
of the spin creep moment, MZN. If NS = 2, the output is as des-
cribed above. If NS = 1, the normalized coordinate points X, Y
over the contact region and the values of the stresses (TX, TY,
TZH) and slip components (VX, VY) are given at each point.

The Fortran names used in the program output are the fol-
lowing, and are listed in the order of printing.

UXN, UYN, Repeated program input variables.
PHN

Two different error messages may be printed after the

above input variables. The first occurs when the

12




numerical procedure is unable to satisfy the error bounds built
into the program. For this case the statement PROCESS INTERUPTED,
RESULTS MAY NOT BE SIGNIFICANT is printed and the calculated re-
sults are printed. The second error message occurs when a matrix
within the program becomes singular and no results cah be calcu-
lated. For this case the statement SINGULAR MATRIX, NO RESULTS

is printed.

X, Y X=x/c, Y=y/c. -A<X<A, -B<Y <B.
Normalized cqordinates where x and y are Tongi-
tudinal and Tateral distances from the center
of the contact e11fpse.

X, TY Normalized shear stresses

TX, TY = -szc3/pN, - T&

STXZ + T1YZ =TZH for no slip,

3
ZC /QNa

' /TXZ + TYZ = TZH for sTip.
TIH TZH = 3/(2n) /T:(X/A)ZZ- (Y/B)Z = Normalized

Hertzian stress on the contact'region,

VX, VY Normalized relative slip componentsl VX, VY =
pr/(VuC), Vyp/(VuC) whefe V is the rolling
velocity and Vy and vy are the 10n§1tudina1
and lateral tomponents of the relative slip
velocity.

FXN, FIN  FXN = F /uN, FYN = F,/uN. Normalized resul-
tant Tongitudinal and lateral forces. Com-
puted.

MZN MZN = Mzc/uN. Normalized resultant moment.

Computed.

13



7) Summary of User Requirements and Recommendations:

A11 input data is on cards in free format as shown. As A and

B are normalized, the product of A and B must be unity. LXN
and LYN are taken as zero if no elastic layer is to be consid-
ered. Maximum values for N1 and M1 are 8. Accuracy increases

with increasing values of N1 and MI. Typical values are:

A/B = 10.0 NI =8, M =6
A/B= 1.0 Nl =Ml =6
A/B= 0.1 NI =6, M =8

C. PROGRAM LISTINGS WITH EXAMPLE INPUT AND OUTPUT

A listing of the program for a sample problem with input and out-

put is given in Appendix A.

D. SAMPLE PROBLEM

&The sample problem of Appendix A is for the input 1isted below.
The calculations were performed on an IBM-370/3165-11 computer.
A =2.598, B =0.3849, NU = 0.28, LXN = 0.0, LYN = 0;0, KAPPA = 0.0
NT =6, Ml =6, NS =1
UXN = 0, UYN = -1.4, PHN = 0.8

14



ITI. DISCUSSION OF RESULTS OF USE OF PROGRAM

This Fortran computer program has been run on the Clemson Univer-
sity IBM-370/3165-11 computer. The Clemson computer is equipped with
a CDC speed-up processer and is approximately three times as fast as a
standard IBM 370-165. Typical computation time for a complete solu-
tion with full output on the contact region was about 60 seconds for ‘
A =2.598, B = 0.3849, N1 = 6, M1 = 6, KAPPA = 0.0. Running sequential
problems and therefore reducing the compile time for each problem re-
duced the above times to approximately 40 seconds. The same ﬁroblem
with KAPPA = 0.2 required 255 seconds.

Many particular examples have been worked using this code and com-
parisons have been made with the results of [2] and [3]. .These compari-
sons have shown excellent agreement while the numerical solution tech-
nique of [5] has convergenbe difficulties in this range. The present
numerical solution technique seems to converge much better than that
used in [5], although still not as smoothly as the simplified theory of
[2].

0f perhaps more interest is the comparison of the theory with ex-
perimental studies. Surprisingly good agreement is demonstrated in
Figure 2 oflthis text where the results are compared with the simplified
theory [2], and with the experimental re;u1ts of Gilchrist and Brickle
[12]. Only the case of A/B = 6.75 is shown on the figure; however,

equally good agreement was found for A/B = 1.11 and A/B = 10.3.

[12] A.0. Gilchrist ahd B.V. Brickle, "A Re-examination of the Proneness
to Derailment of a Railway Wheel-Set." J. Mech. Engr. Sci., Vol. 18,
No. 3, (1976), pp. 131-141.




As in the simplified theory the resultant creep forces and moment
are not strongly dependent on the number of Tlattice points N1 and M1.
The accurate determination of the slip, no-slip zones within the contact
region is more dependent on these-parameters. The increase in computa-
tion time with increase in the number of tattice points N1 and M1 is
more significant in the presént code thaﬁ in [2]. For example, as
stated above for A - 2.598, B = 0.3849, N] = M1 = 6, Kappa = 0.0 the
computation time was approximately 60 seconds. Increasing NIl aﬁd M1

to N1 = M1 = 8 increased the computation time to 4 minutes and 45 se-

conds. MThe values of the resultant force in the lateral direction as

shown in Figuré 2 Was FYN = -0.411 for N1 = M1 = 6 and FYN = -0.455

for N1 = M1 = 8. The second value of FYN = -0.455 is seen fo be closer

to the experimental results of [12].
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FIGURE 1. Normalized Contact Region (A*B=1.0)
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8T

Simplified Theory [ZT‘\\\

Exact Theory
(N1=M1=6)

FIGURE 2.

Linear Theory, [5]
FYN = GS(szn + C23X) 1-1.0

-0.4 -0.2 0.2 0.4 0.6 0.8
4_—0.2 ,
Experimental A/B = 6.75, A = 2.598
results [12] 1-0.4 B =0.3849, NU = 0.28
UXN = 0.0
J_—O.6 UYN = vyp/(uc) =7
PEHN = y = 0.8
-0.8 FYN = F /(uN) =

Comparison of Kalker's "Exaét" Theory with the Simplified Theory and with the

Experimental Results of [12].

(See Figure 7, [121).




APPENDIX A

LISTING AND TEST PROBLEM

(FORTRAN IV G1 RELEASE 2.0)

This program is referred to as
PROGRAM WISK-SRT by Kalker
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08500000
012500000
09500000
05500000
04500000
0es00000
02500000
01500000
00500000
06%00000
08400000
0L%00000
09400000
0s%00000
C¥%00C00
0€%00000
6<2%00000
¢1400000
00400000
06€00000
08€00000
0.€00000
09£00000
0s£00000
04¥€00000
0€£00000
€2€00000
01€00000
00€00000
06200000
08200000
01200000
69200000
06200000
0%200¢C00
€e200000
02200000
€1200000
€Q0eQaQcoo
06100000
08100000
04100000
09100000
061040000
0%100000
0€100000
¢zt1ooc00
@1100000
00100000
06000000
08000000
02000000

09000000

05000000
0%000000
0€000000
02000000
01000000
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o000

OO0 OO00O00

MAIN
TYPICAL CARD: 1
SOLVES NV2 PROBLEMS FOR DISTINCT VALUES OF

CREEPAGE AND SPIN GIVEN ON NV2 CARDS 5), INTEGER

DATA CARD #5 UXN,UYN, PHN

TYPICAL CARD: 0.0 2.0 0D.4

UXN AND UYN ARE NORMALIZED CREEPAGES, PHN
IS THE NORMALIZED SPIN), REAL
UXN=UX*RHO/ {MU%C )y UYN=UY*RH3I/{MU*C),
PHN=PH*RHO /MU

*%%k%k NOTE: ALL VARIABLES HAVE BEEN NORMALIZED SUCH
*xxxx THAT THE COEFFICIENT OF FRIZTION, MU, DDES NOT
*kk&kk APPEAR EXPLICITLY.

DIMENSION XS{38)¢XT(400),YT{400),2T7{(400),XU(400),YU{400),ZU(400)
DIMENSION RZT(120,1)9RZU{120+1),F1(60,60),F2{60950)4F3{60,60)
DIMENSION S(&O)gFACC(I'IZO).FDACC(120.120).Ul(l.lZO).UZ(lZO 120)
REAL KAPPA :

INTEGER [(38),011{18),C2(18),TMA(200)

INTEGER PMA,QMA,FAC1,FAC2

DIMENSION XTU(60),YTU(60)

DIMENSION ARR(120,120),T(120,1), U(IZO.I):RT(IZO) TT{(120),P(12])
DIMENSIDN RU(120)

REAL MU;KPGyK1 sK29K39MZSeLXNsLYN

INTEGER FAC1P,FAC2P, WP

REAL MZ

EXTERNAL SIGN )

DATA Cl/lvO"l"ZtOva110"1/9c2/1n“2'11’2941'2111‘2.1/

REAL K

REAL NU

DATA PI/3.14159/

READ{1s*)NV1

DO 999 I11l=1,NV1

READ{12*)A,8)NUyLXNyLYN,KAPPA
READ{1y*)N1yM1,4NS

SX=LXN
SY=LYN
IF{A/B.LT.0.1) GO TO 998

SUBROUTINE CONST COMPUTES THE NJIRMALIZED MODULUS

FROM KALKER*S TABLES AND ASYMPTOTIC EXPANSIONS.
VALID FOR A/B EJUAL TO OR GREATER THAN 0.1 .

CALL CONST(A,B,NU,GS)

G=GS

SIGMA=NU
F00=3.0/(2.0%P1)
MU=1.0

H= A/FLOATINL)
21

00000590
00000600

00000610
00000620

- 00000630

00000640
00000650
00000660
00000670
00000680
00000690
00000700
00000710
00000720
00000730
00000740
00000750
00000760
00000770
00000780
00000790
00000800
00000810
00000820
00000830
00000840
00000850
00000860
00000870

. 00000880

00000890
00000900
00000910
00000920
00000930
00000940
00000950
00000960
00000970
00000980
00000990
00001000
00001010
00001020
00001030
00001040
00001050
00001060
00001070
00001089
00001090
00001100
00001110
00001120
00001130
00001140
00001150
00001160



50

200

60

MAIN

K=(2.0%B)/FLOAT (M1)
WRITE(3,968)

N=0

M=0

AA=AXA

Y=8

MM=M1/2

L3=0

L4=0

DO 100 I=1,MM

L1=0

L2=0

Y=B-1%K
YB=(Y*Y )/ (B*B]}
XS{M1-1)=—A%SQRT(1.0-Y8B)
XS{I)=XS{MI~-1) '
X==XS(I}/{2%H)

J=X

IF{{-2.%3%H=XS(I))/H.LE.0.02) J=J-1

L=2%J+1

X=—L*H »
IF(XLTXSUI))GO TO 50

M=M+1

L2=1

XU{M)=X

YU{L+M)=Y

YU(M)=Y
ZU(L+M)=FOO*SQRT(1.0-{X*X) /AA-YB)
ZUMI=ZU(L+M)

XU(L+M)=-X

N=N+1

X=X+H

IF{X.LE.~.1%H) GO TO 200
X=0.0

XT(N)=0.0

YT{(N)=Y
LTIN)=FOO*SQRT{1.0-YB)

GO TD 60

L=N+2%{J-L1)}
ZTIL)=FOO*SQRT{1.0-(X%X)/AA-YB)
ITIN)=ZT(L )}

XT({N)=X

XT{L)==X

YT{L)=Y

YT(N)=Y

X=X+H

M=M+1

L=Me2%(J~-L 1)~-1

XU{M)=X

XU(L)==X

YU{M)=Y

YUiL)=Yy
ZU(M)=FOO*SQRT(1.0-(X*X)/AA-YB)
ZU{LY=ZU (M) -
L1=L1+1

GO TO 50

N=N+J

M=M+J+L2

22

00001170
00001180
00001190
00001200
00001210
00001220
00001230
00001240
00001250
00001260
00001270
00001280
00001292
00001300
00001310
00001320
00001330
00001340
00001350
00001360
00001370
00001380
00001390
00001400
00001410
00001420
00001430
00001440
00001450 -
00001460
00001470
00001480
00001490
00001500
00001510
00001520
00001530
00001540
00001550
00001560
00001570
00001580
00001590
00001600
00001610
00001620
00001630
00001640
00001650
00001660
00001670
00001680
00001690
00001700
00001710
00001720
00001730
00001740



100

301

401

500
901

a0

(e XeNa Ny

8110
8130

MAIN

C(2%1-1)=N-L3
Cl(2*%])=M-L4&

L3=N

L4=M

CONTINUE

NN=N+1

MM=M+1

L=0

N=2*N-N1+1

M=2%M-N1

I=N

L=L+1

XT(1)==XT{L)}
YT{I)==YT(L)
ITLII=2T(L)

I1=1-1

IF(I.GE.NN) GO TO 301
L=0

I=M

L=L+1

XUl1)=-XutlL)
YULL)==YJ(L)
ZUtl)=2u{L)

I=1-1

IF(I1.GE.MM) 50 TD 401
L=3

H=2+%*H

ISTART=M1/2+1
IEND=M1-1

DO 500 I=ISTART,IEND

IF{ISTART.GY. IENDIGO TO 500

C(2#]I-1)=C(M1-L)
Cl2*%1)=Ci{M1-L+1)
L=L+2
WRITE{3,901)
FORMATI(1HL)
WRITE(3,969)

WRITE(3,970)AsBsNUsLXNyLYN,KAPPA

WRITE(3¢972)N1sMLsNS
WRITE(39973)GSeNeM

MAX=M
IF(N.GT.M) MAX=N

IN-LINE MRZ

F4=Fl, F5=F2, RZ=RZUs

MN=M

DD 8110 I=1,4
XTU(I)}=XUL(I)
RZU{2%1-1+91)=0.0
RZU(2%*1,1)=0.0
YTUCT ¥ =YUL(I)

DO 8140 I=1,MN
D0 8140 J=1,N
L=0

P4=0.0

CMRZ=0.5

00001750
00001760
00001770
00001780
00001730
00001800
00001810
00001820
00001830
00001840
00001850
00001860
00001870
00001880
000018930
000019900
00001910
00001920
00001930
00001940
00001950
00001960
00001970
00001980
000019930
00002000
00002010
0000202D
00002030
00002040
00002050
00002060
00002070
00002080
00002090
00002100
0000211D
00002120
00002130
00002140
00002150
00002160
00002170
00002180
00002190
00002209
00002210
00002220
00002230
00002240
00002250
00002260
00002270
00002280
00002290
00002300
00002310
00002320



8131
8132

8140

8150
c
C
8220

8225
8230

B231
8232

MAIN

P5=0.0

Q4=0.0

Q5=0.0

X1=XT(JI=-XTU(T)

Y1=YT(J)=YTULI)

X=X1-H

Y=Y1-K

L=L+1

T1=ALOG( X*X+Y*Y+H%1.E~10)
T2=X*®*ATAN(Y/{X+H¥1.E-10))
T3=Y*ATAN{X/(Y+K¥1.E-10))
P4=P4+CLIL)*(.5%YXT1+T2)

P5=P5+C1(L)%( .5*XXT1+T3)

Q4=04+C21L) ®{ (XXX+YXY ) *(T1-1)=(S*Y:T1+T2) &Y1%4.0)
Q5=Q5+4C2{L ) ¥ XEY+YST3=X*¥T2-{ . SXXKkT1+T3)*Y1%2.0)
Y=Y +K .

IF(Y.LE.Y1+K+.5%K) GO TO 8132

X=X+H

IF(X.LE.X1+H+.5%H) GO TO 8131
FL{I4J)=P4/H+Q4/H/K/%.0
F2(1,J)=P5/H+Q5/H/K/2.0

CONT INUE . :

LEND=2%MN~-1

DD 8150 I=1,LEND,2

DO 8150 J=1,N

RZULT 2 1)=RZUCT 1) +FLILI+1)/2,J)%2T1J)
RZUGT+191)SRZUTT+L,104F20 1 141)/2,3)*2ZT(J)
IN-LINE MRZ ‘

F4=Fly F5=F2y RI=RIT, CMRZ=1.E-5
MN=N

DO 8225 J=1,N

XTULJ)=XT(J)

RZT(2%J-1,1)=0

RIT{2%J,1)=0.0

YTULJ)=YT L)

DD 8240 I=1,4N

DO 8240 J=1,N

L=0
P4=0.0

P5=0.0
Q4=0.0
Q5=0.0
X1=XT{J)-XTUL )
Y1=YT(J)-YTULI)

- X=X1-H

Y=Y1-K

L=L+1

T1=ALOG({ X*X+Y*Y+H%1.E~10)
T2=X*®ATAN{Y/(X+H*14.E-10))
T3=Y*ATAN{ X/ {Y+K¥1.E-10})

P4=P4+CL{L)*{ . 58Y%XT1+T2)

P5=P54+CI{L ) *( . 5X*T1+T3)

Q4=Q4+C2{ L) *{ (XEX+YRY )X {T1-1)-{ . SYXT14T2)%kY1L%4.D)

'Q5=Q5+CZ(L)*(X*Y*Y*T3—X*TZ-(.5*X*T1+T3)*Yl*2.0)
Y=Y 4K

IF{Y.LE.Y14K+,5%K) GO TO 8232
X=X+H
IF{XeLE.X1+H+.5%H) GO TO 8231

24

00002330
00002340
00002350
00002360
00002370
00002380
00002390
00002400
0000241)
00002420
00002430
00002440
00002450
00002460
00002470
00002480
00002490
00002500
00002510
00002520
00002530
00002540
00002550
00002560
00002570
00002580
00002590
00002600
00002610
00002620
00002630
00002640
00002659
00002660
00002670
00002680
00002690
00002700
00002710
00002720
00002730
00002740
00002750
00002760
00002770
00002780
00002790
00002800
00002810
00002820
00002830
00002840
00002850
00002860
00002870
00002880

‘00002890

00002900



08%€0000

0L%€0000.

09%€0000
0s%€0000

0%%£0000

0e%€0000
02%£0000
ciy€eCCoo

" 00%t0000

06€€£0000

.08€£0000

0LEE0000
09€€0000

0s€c 0000

0%€€0000

0€E€0000

cZee €000

01€€0000

00€€0000
062£0000
082£0C00
012€£0000
092€£0000
0S2€0000
0%2€0000
C€2€0000

€22¢0C00

012€0000
cc2e0€00
06T£0000
081£0000
€11€0C00
091€0000
0s1€0000
0%1€0000
CE1€0000
62120000
C11€0000
001t0000
060€0000
0600000
C10£0C00
090€0000

0S0€0000

C%0€£0000
CE0E0C00
020€0000
010€0000
000€0000
06620000
08620000
01620000
09620000
05620000
C%62C000
0£620000
02620000
01620000

S¢C

T=€71 (8-3°T°1T°(VddVN}ISEV ANV B8-3°T°1T°(XN}S8V)dI
W=
N=%1
0=t

NHd *NAN*NXN(SL64€) 31T UM

NHd=IHd

NAN=AN

NXN=XN

NHd *NAN*NXN(6666=0NI *+*T)QV 3y

ZAN*T=X21 L66 0C

; ZAN (%16°€)311YM
. ZAN(=*T)QV3Y

INNILINGI 00T1€e8

*Z/N/H/EV+H/Ed=( 1) ED
*ZNM/H/2B+H/2d=(r 1124
CC/M/H/TO+H/ Td=(r*1) 14
01€8 01 09 (CGN3TX*3T1°X)dI
H+X =X

02€8 G1L 09 (GN3TA®3IT°A)dI

A+A=A

(*2xTAxT1-202X-TLxA)x(T}2I+€D=T
(°2xTAxZ1+21%A-EL#X)%(T1)2I+20=20
(“Z2xTA(CL+T1)-216X+T2%A)%(T7)23+10=10
' Tix(T1}T1I+Ed=td

¢ix(1)1J-2d=2d

(EL+T1)2(THTI+1d=1d
 (0Z-3° TadNaH+ A A+X2X ) LU0S=21 -
((SS%SS+°T) 140S+SS)O0TVaX*(AINIIS=€1

((YxU+°T ) LUDSH+Y I I0TIVHAR (X INIDIS=T11
((OT~-3°IxH4X)}/A)SBY=SS
((OT-3°TaX+A)/X)SEY =Y

1+1=1

A=TA=A

‘ H=TX=X

HxG*+H+IX=AN3TX

NG #)+TA=ANITA

(I)OA=(FC)LA=TA

(IHIAX-( ) IX=1X

0ces
o1es8

0=£0

0=208

0=10

0=€d

0=2d

0=1d

0=1

NéI=r 001€8 OC

W*1=1 00l€8 OQ
(FILZ#(0*2/(T+1)123+( 1 T+1)AZY=(T*T+1)1Z¥
(F)LZA(F42/ (141 D) T+ (T4 1IAZU=(T*1)LTZY
N®I=f 0528 OC

2*aN3T*1=1 0428 0C

T-NW*Z=0N31

3NNIINGI

0°2/N/H/GD+H/Gd=I*1) 24
0°%/N/H/HD+H/9d=(F*I )14

NIVH

0sZ8

0428



8420
8410

8510

8515

8520

8530

8540

8550

8552

85301

85400
85200

MAIN

IF(L3.EQ.0)GD TD 8410

IN-LINE XAPAF
N=0

M=0

J=M1/2

DO 8420 I=1.J
M=M+C(2%])
N=N+C(2%*1-1)
CONTINUE
CONTINUE

IN=-LINE MA

PMA=2%M-]1

QMA=2%N-1

PIG=PI%*G

IF(L3)8520,8510,8520

DO 8515 J=1,QMA,2

DO 8515 I=1,PMA,2

I1=(I+1)/2

Jl={J+1)/2
ARR{IsJ)={(1.~SIGMA)*FLI(I1,J1)+SIGMAXF3(I11,41))/PIG
ARR(1,J¢1)=(SIGMAXF2(I1,J1))/PIG
ARR{I+1,J)=ARR(I,J+1)
ARR{I#+1,J+1)=(2.-SIGMA)*F1(11,J1)/PIG-ARR(I,4)
G0 TO 85100

TMA(L)=1

LEND=M1~2

DO 8530 [=1,LEND
TMA{I+1)=TMA(I)}+C{2%]-1)%*2
IF(L3.NE.1)GD TD B8540

FAC1=-1

FAC2=1

IF{L3.NE.2) GD TD 8550

FAC1=1

FAC2=-1

DO 8560 J=1,3qMA,2

Ji=(J+1})/2

IF{J.GE.TMA(41/2)) GO TO 85200
I=2

IF(J.LT.TMA(Y))GO TO 85301

I=1+1

IF(1.LE.M1/2)G0 TO 8552
J2=(TMA(ML1-T+1)+J-TMA(]I-1)+1}/2
DD 85400 I=1,PMA,2

I1=(1+1})/2
ARR{I9J)={(1.-SIGMA)*{F1(I1,J1)+FAC1%2F1(11,42))

$+SIGMA*(F3(I1,J1)+FACL*F3(I1,32)))}/PIG

ARR(I+1,J)=(SIGMAX(F2(11,J1)+FACL1%F2(11,J2)))/PI5
ARR{T»J+1)=(SIGMA®(F2{I1,J1)¢FAC2*F2{I1,42)))/P1IG

ARR{TI+14J¢1)=(FL{I1loJ1)4F1{T1,U2)%FAC2-SIGMA*{F3(1I1,J1)
$+F3(I1,J2)%FAC2))/PIG

CONTINUE

G0 TO 8560

DO 8559 I=1,PMA,2
11={1+1)/2

26

00003490
00003500
00003510
00003520
00003530
00003540
00003550

- 00003560

00003570
00003580
00003590
00003600
00003610
00003620
00003630
00003640
00003650
00003660
00003670
00003680
00003690
00003700
00003710
00003720
00003730
00003740
00003750
00003760
00003770
0000378)
00003790
00003800
00003810
00003820
00003830
00003840
00003850
00003860
00003870
00003880
00003890
00003900
00003910
00003320
00003930
00003940
00003950
00003960
00003970
00003980
00003930
00004000
00004010
00004020
00004030
00004040
00004050
00004060



8559
8560
85100

86111

8710

8729
8730
87100

86100

86110

MAIN

ARR(I¢J)={(1.-SIGMA)*F1(11,J1)+SIGMA*F3(I1,J1))/PIG

ARR{IJ+1)={SIGMA*F2{I1,J1))/PIG
ARR{I+15J)=ARR(I4J+1)

ARR{TI+19J#1)=(2.~-SIGMA)*F1(I1,J1)/PIG-ARR{(I,J)

CONTINUE
CONTINUE

IF(ABS(SX)aGTo1.E~4.0R.ABS{(SY).GT.1.E-4) GO TO 86111

GO TO 85100
IN-LINE ADS
M2=M1~-1

J=1

=1
NN=0
SXH=LXN/H

SYH=LYN/H
IF(L3.NE.O)M2=M1/2
DO 87100 Il=1,M2
L1=2%I1-1
L=0

L2=L1+1
IF(CIL1)«GE.C(L2))GO TO 8710
L=1

ARR(T,J)=ARR(I4J)+SXH
ARR{I+1,J+1)=ARR(A+1,J+1) +SYH
II=T+C(L1)*2
JJ=J+(CIL1)-1) %2
ARR{II,JJ)=ARR{IT,JJ)-SXH
ARR{TII+1,JJ+1)=ARR(II+1,JJ+1)-SYH
MM=L+NN+1
NN=NN+C(L2)-L
IF(MM.GE.NN)30 TO 8730
DO 8729 I2=MM,NN
IF{MM.GT.NN)GO TO 8729
13=2%12-1

14=13+1
ARR{I3¢J)=ARR(13,J)=SXH
ARR(I3,J+2)=ARR(I3,J42)+SXH
ARR (144 J+#1)=ARR(14,J+1)=SYH
ARR(I4,J+3)=ARR(14,J43)+SYH
J=J+2
CONTINUE
CONTINUG

KPG=KAPPA/PI/G

WRITE(3,901)

IEND=2%M-1

DO 86110 I=1,IEND,2

L={I+1)/2
RU{I)=UX-PHI®YU{L)+KPG*RZU(I,1)
RUCI+1)=UY+PHI*XU(L)+KPG*RZU(1+1,1)
CONTINUE

JEND=2%*N-1

DO 86120 J=1,JEND,2

L=(J+1)/2
RT(J)I=UX-PHI®YT(L)+KPG*RZT{J,s1)

27

00004070
00004080
00004090
00004100
00004110
00004120
00004130
00004140
00004150
00004160
00004170
00004180
00004190
00004200
00004210
00004220
00004230
00004240
00004250
00004260
00004270
00004280
00004290
00004300
00004310
00004320
00004330
00004340
00004350
00004360
00004370
00004380
00004390
00004400
00004410
00004420
00004430
00004440
00004450
00004460
00004470
00004480
00004490
00004500
00004510
00004520
00004530
00004540
0002455)
00004560
00004570
00004589
00004590
00004600
00004610
00004620
00004630
00004649




MAIN

RT(I+L)I=UYH+PHI*XT{L)+KPG*RIT{ J+1,1)
86120 CONTINUE
IF{L3.EQ.0) GO TO 86130
L=0
J=0
IEND=IFIX{FLDAT(M1)/2.0-.9)
DO 86129 I=1,1END
J=J+C(2%][-1)%2
L=L+C{2%])
86129 CONTINUE
DO 86128 1I=1,J
86128 RT(I)=RT(I)*2
DD 86127 I=1,L
86127 ZU(1)=2ZU(I)*2
B6130 JEND=2%N
DO 86140 J=1, JEND
86140 T(J,1)=0
RE=.2
RB=42
MM=0
B=1.0
: E=45
C PHWO:
86150 JEND=2%N
DO 86155 J=1,JEND.
86155 TT(J)=T{J, 1)
MM=MM+1
.+ L1=0
C PWl =
86160 NN=0
C PW2 :

© C IN=LINE PENALT

C DX=1.0y EX=E, PX=P, T=T, MU=MU
c
86170 DXP=1.0

DO 8799 I=1,N

GX=MUSMUSZT{T)#ZT(1)-T (2%1-1,1)%T(2%1-1,1)- T(Z*I:l)*TlZ*Iol)

IF{GX)8703,8702,8702
8702 P{(2%1-1)==2%E/{GX+DXP*E)
P{2%1)=4,*¥E/{ {GX+DXPXE )% (GX+DXP*E) )
G3 TO 8799
B703 P(2%1-1)==2./DXP+2.%5X/{DXP®DXP*E)
P{2%1)=4./{DXPXDXP%*E)
8799 CONTINUE
c
c
JEND=2%N~1
DD 86175 J=1,JEND,2
IF (P(J).LT.~-1.E1D)1GO TO 86180
86175 CONTINUE
‘ GO TO 86190
C PH3: ’
86180 IF{L1.NE.1)}G0O TO 86200
‘ WRITE{3,904) '

c .
IPCODE=0
C IN-LINE PRINT

28

904 FORMAT(*' PROCESS INTERRUPTED, RESULTS MAT NOT BE SIGNIFICANT®)

00004650
00004660
00004670
00004680
00004690
00004700
00004710
00004720
00004730
00004740
00004750
00004760
00004770
00004780
00004790
00004800
00004810
00004820
00004830
00004840
00004850
00004860
00004870
00004880
00004890
00004900
00004910
00004920
00004930
00004940
00004950
00004960
00004970
00004980
00004990
00005000
00005010
00005020
00005030
00005040
00005050
00005060
00005070
00005080
00005090
00005100
00005110
00005120
00005130
00005140
00005150
00005160
00005170
00005180
00005190
00005200
00005210
00005220



4145
9901

9004 FORMAT{//920Xs '*%kkkk CONTACT REGION FOLLOWS %&kk&t,/,

$10X,*X AND Y ARE NORMALIXED COORDINATESy X IN THE ROLLING®»/»
$10X,*DIRECTION, X,Y=X1/Cl,Yl/Cl WHERE X1,YlL ARE DIM. COORD.*y/s
$10Xs *TZH=HERTZ STRESS =3/(2%PI)*SQRT{1.0-X*X/(A*A)-Y*Y/{B*B))"*

499

MAIN

LL=L3
IF{NS.GT.1) GO TO 499
WRITE(3,9004)

00005230
00005240
00005250
00005250
00005270
00005280
00005290

$9/7910Xe*TX AND TY ARE NORMALIZED SHEAR STRESSES's/+10Xs*TX=-TAUXZ*00005300

$C**3/{RHO*N)» TY=—TAUYZ*C*%*3/(RHOEN)* 4/,

00005310

$10Xo *ABS{TX,TY) LESS THAN TZH FOR NO SLIP, EQUAL TO TZH FOR SLIP',0000532)
$/+10X,°VXeVY ARE NORMALIZED SLIP COMPONENTS, VX=VX1/V¥RHO/(MU%()',00005330

$/910X, *VY=VYL1/V#RHO/{MU*L) y WHERE VX1,VX2=REL.

$9 *ADJACENT PDINTS AND V=ROLLING VEL.'y//7/)
CONTINUE

Lu=1 '

LT=1

Ji=1

FAC1P=1

FAC2P=1

WP=0

‘J=M172

C-
8802

8803
909
8804

c

IF(LL.EQ.0)J=M1~-1

va:

DO 8801 I=Jl,J
IF(J1.6T.J)G0 TD 8801
MAX=C(2%*]~-1)

L3p=2
IF(C(2*]-1).GE.C{2*I))GO TO 8803
MAX=C(2*1)

L3P=1

CONTINUE

,FORMAT (/) :
IF{WP.NE.1)GO TO 8804
LU=LU-C(2%1-2)-C(2%])
LT=LT-C(2%*]-3)~-C(2%][~-1)
FIXL=YT(LTI*FACLP*FAC2P
IBLANK=0

DO 8801 Il=1,MAX
IF(L3P.EQ.2)G0 TO 8812
$S1s

8800 TX=U{2%LU-1,1)*FACIP

9008
501

8812

TY=U(2#%LU, 1) *FAC2P
FIX3=SQRT{ TX*TX+TY*TY) | ‘

IF(ABS (U(2%LU-1,1)).LT.1.E-20) TX=1.E-20
FIX2=180./PI*ATAN(TY/TX)+(1.0-SIGN{TX))*90.
IFINS.GT.1) GO TO 501

IF{IBLANK .EQ.O)WRITE(3,9006)FIX1
IF(IBLANK.EQ.0) WRITE(3,9009)
WRITE(3,9008) XU{LU),FIX3,FIX2
FORMAT(1X,1F11e4,33X,2F11.4)

CONTINUE

IBLANK=1

LU=LU+1

IF (MAX.EQ.C(2%1) .AND.I1.EQ.MAX)GO TO 8813
$522 -
FIX1A=XT(LT)
. TX=T(2%LT-1,1)%FACLP

TY=TI2%LT, 1) #FAC2P

29

BETWEEN®,/,10X00005340

00005352
00005360
00005370
00005380
00005390
00005400
00005410
00005420
00005430
00005440
00005450
00005460
00005470
00005480
00005490
00005500
00005510
00005520
00005530
00005540
00005550
00005560
00005570
00005580
00005590

00005600

00005610
00005620 .
00205530
00005640

00005650

00005650
00005670
00005680
00005690
00005700

00005710

00005720
00005730
00005740
00005750
00005760
00005770
00005780
00005790
00005800



9011
502

8813
8801

8859

8850

5188

8851

8853

8852

8856

MAIN

FIX2=TX

FIX3=TY

FIX4=SQRT(TX#TX+TYXTY)
IF(ABS(T{2%LT-191))elTele E-20)TX=1.E-20
FIX5=180./PI%ATANITY/TX)+(1.~-SIGN(TX))*90.
FIX6=MU*ZT{(LT)

IFINS.GT.1) GO TO 502
IF{IBLANC.EQ.O)WRITE(3,9006)FIX1
IF{IBLANK.EQ.D0) WRITE(3,9009} :
WRITE(3,9011) FIXLA,FIX6,FIX&,FIXS
FORMAT{1Xs4F11.4)

CONTINUE

IBLANK=1

LT=LT+1

L3P=1

$S83:

CONTINUE

CONTINUE

IFILL.EQ.1.AND.WP.EQ.0)GO TD 8859
GO TO 8850

FAClP=-1

WP=1

J1=M1/2+1

J=M1-1

50 TO 8802
IF(LL.EQ.2.AND.WP.EQ.0)GD TO 5188
GO TOo 8851

FAC2P=-1

WP=1

J1=M1/2+1

J=M1-1

GO TO 8802

MZ=0

TX=0

TY=0

IF(LL.NE.O)G] TO 8852
JLAST=2%N-1

DO 8853 J=1,JLAST,2
TX=TX+T(Jy 1}
TY=TY+T{J+1,1)

MZ=MZ+XTU{J+1)/2)%T{J+1,1)-YT{(J+1)/2)%*T(Jsl)

CONTINUE

GO TO 8855

LT=1
ILAST=FLJAT(M1)/2.0-0.9
DO 8856 I=1,ILAST
JLAST=2%({2%1-1)

DD 8856 J=14JLAST,2
TX=TX+(1+FACLP)I*T(LT,1)
TY=TY+(1+FAC2P)*T(LT+1,41)

MZ=MZ+XT{(LT+1)/2)*T(LT+1,1)%(FAC2P+1)-YT({LT#+1)/2)%
$ST{LT,1)*{-FAC1P+1)

LT=LT+2

CONTINUE
JLAST=2%C{M1-1)

DD 8858 J=1,JLAST,2
TX=TX+T{LT»1) :
TY=TY+T(LT+1,1)

30

00005810
00005820
00005830
00005840
00005850

' 00005860

00005870
00005880
00005890
00005900
00005910
00005920
00005930
00005940
00005950 °
00005960
00005970
00005980
00005990
00006000
00006010
00006020
00006030
00006040
00006050
000060690
00006070
00006080
00006090
00006100
00006110
00006120
00006130
00006140
00006150
00006160
00006170
00006180
00006190
00006200
00006210
00006220
00006230
00006240
00006259
00006260
00006270
00006280
00006290
00006300
00006310
00006320
00006330
00006340
00006350
00006360
00006370
00006380



MAIN

MZ=MZ4+XT(LT+1)/2)8T{LT+1, 1)=YT((LT+1)/2) €T(LT,1)
LT=LT+2

8858 CONTINUE

c 2020z

8855 TX=TX*H*K
TY=TY*H*K
MZ=MZ*H*C
RES=SQRT (TX#%2+Ty*%%2)
WRITE(3,905)

905  FORMAT(///)
WRITE(34977)TX,TY,RES
WRITE{3,978)MZ
IF(IPCODE.EQ.1)50 TO 6470
GO TO 9999

86200 L1=1
JLAST=2%y
DO 7110 J=1,JLAST

7110 T{Jy1)=TT(J)
RB=SQRT(RB)

RE=SQRT (RE)
B=B/RB
E=E/RE
GO TO 86160

C PW4: IN~LINE NEWTON

86190 MM=2%M-1
NNN=2 *N~1
N2=NNN+1
EPS=1.E-15

CALL ARRAY{(2,2%M,2%N,120,120, ARRy ARR)
CALL ARRAY{2:,2%Ny1912091,T,T)
CALL GMPRD{ARR, TyUe2%M,2%N,1)
CALL ARRAY{1l,2*¥M,2%N,120,120,ARRy ARR)
CALL ARRAY{1,2%N,1,120,1,5T,T)
CALL ARRAY{(1,2%M,1,120,1,U,U}
C ABOVE IS EQUIVALENT TO CALL TO MATVER{A,T,U)
DO 6910 I=1,M,2
1I=(I+1)/2
U(To1)=U{1,1)+RU(I)
UtI+1,1)=UlI+1,1)4RU{I+1)
S{II)=SQRT(UTI+1,1)*U(I+1,1)+U(I,1)*U{I,1)4B)
UL (Ll I)={MURZULTTI)*UlTI,1))/S{I1)
UL{Ll, I+1)={MURZULTIT}*U(]I+1,1))/S(11])
6910 CONTINUE
C
CALL ARRAY({2,1,2%M,1,120,U1,Ul)
CALL ARRAY(2,2#%M,2%N,120,120,ARR,y ARR)
CALL GMPRD{ULl sARRyFACCy1lye2%M,23%N)
CALL ARRAY{1l,1,2%M,1,120,U1,U1)
CALL ARRAY{1,2%M,2%N,120,120,ARRy ARR)
CALL ARRAY{1,142%Ns1,120,FACCyFACC)
Cc ABOVE IS EQUIVALENTY TO MATVER(Ul,A,FACC)
DO 6920 J=1,NNN,2
FACC(14J)=~FACC{LoJ)+RT(J)+P{J)*T(Jy1)
FACCUleJ+1)==FAZCI1,J+1)+RT{I+1)+P(J)*T(J+1,1)
6920 CONTINUE
DO 6940 [=1.,M
[2=2%]
31

00006330
00006400
00006410
00006420
00006430
00006440
00006450
00006460
00006470
00006480
00006490
00006500
00006510
00006520
00006530
00006540
00006550
00006560
00006570
00006580
00006590
00006600
00006610
00006620
00006630
00006640
00006650
00006660
00006679
00006680
00006690
00006700
00006710
00006720
00006730
00006740
00006750 .
00006760
00006770
00006780
00006790
00006800
00006810
00006820
00006830
00006840
00006850
00006860
00006870
00006880
00006890
00006900
00006910
00006920
00006930
00006940
00006950
00006960



6930
6940

6950 .

6980

MAIN

I11=12-1

SS=S{I)*S(1)

MZS=({MUXZU(TI))}/S(1)

K1=MZS*{1-U{11,1)*UlI1,1)/SS)

K2=—-MZS*J(11,1)%U{(12,1)/S5S

K3=MZIS*{1-U(12.,1)%0U(12,1)78S)

DD 6930 J=1,N2 :

U2{3,11)=K1%ARR{I1,J)+K2%ARR{]2,J)

U2(Js12)=K2*ARR(I19J)+K3*ARR(12¢J)

CONTINUE

CONTINUE

CALL ARRAY{2,2%*N,2%M,120,120,U2,U2)

CALL ARRAY({2,2%M,2%N,120,120,ARR,ARR)

CALL GMPRD{U24ARRyFDACCy2%N,2%M,2%*N)

CALL ARRAY(1,2%N,2%*M,120,120,U2,U2)

CALL ARRAY{1,2%M,2%N,120,120,ARR, ARR)

CALL ARRAY{1l,2%N,2%N,1204120,FDACC,FDALCC)
ABOVE IS EQUIVALENT TO MATVER{U2, A, FDACC)

DD 6950 I=1,NNN,2 »

FDACCUIoI)=FDACC{IoI)-P{I)+PUI+1)*T(I,1)*T(I,1)

TEMP=FDACC(IoI+1)4P(T141)%xT(I,1)*T(I¢1,1)

FDACC(I,1+1)=TEMP

FDACC(I+1,I)=TEMP

‘FDACC(I+1, I*l)=FDACC‘I*1.I+l) PIID+P{TI+1)*T(I+]1,1)%T{I+41,1)

-CONTINUE

IF (L3.EQ.0) GO TO 6960
J=1

ILAST=FLOAT(ML)/2. O-O.
DD 6980 I=1,ILAST
J=J+C(2#*1-1)%2

12=1

- IF(L3.EQ.1)12=0
IFIRST=J+12

ILAST=J+l(M1-1)%2-1 -

DO 6970 I=IFIRST,ILAST,2

IF{IFIRST.GT.ILAST)GO TO 6970

"FACC(1,1)=0

6970
C PAS:
6960

6989
6901

6990

‘DO 6970 I1=1,N2

FDACC(I,11)=0
FDACC(I1,1)=0
FDACC(I,1)=1
CONTINUE

'CUNTINUE

CALL ARRAY(Z!IQZ*NQI’IZO)FACC’FACC)

CALL ARRAY(2,2%N,2%N,120,120,FDACC,FDACC)

CALL GELG{(FAZC,FDACC,N2,1,EPS,IER)

CALL ARRAY(1,1,2%N,1,120,FACC,FACC)

CALL ARRAY([1,2%*N,2%N, 120.120.FDACC.FDACC)

ABOVE IS EQUIVALENT TO ADGELG(FACC, FDACC NZ:I'EPSolER)

IF(IER} 6989,6990,6989
ARITE(3,5901)
FORMAT(//7* SINGULAR MATRIX, NO RESULTS'//)
G0 TO 9999 :
DO 6999 J=1,\N2
T(Je1)=T(Js1)+FACC{1,J)
L=1
32

00006970
00006980
00006990
00007000
00007010
00007020
00007030
00007040
00007050
00007060
00007070
00007080
00007090
00007100
00007110
00007120
00007130
00007140
00007150
00007160
00007170
00007180
000071930
00007200
00007210
00007220
00007230
000072490
00007250
00007260

- 00007270

00007280
00007290
00007300
00307310
00007320
00007330
00007340
00007350
00007360
00007370
00007380
00007390
00007400
00007410
00007420
00007430
00007440
00007450
00007460
00007470
0000748)
00007490
00007500

- 00007510
- 00007520

00007530
00007540



DD 6999 I=1,N2
IF(ABS(FACC(1,I)).GE.1.E~4) L=0 00007560
6999 CONTINUE 00007570
C END OF NEWTON 00007580
c : 00007530
NN=NN+1 , 00007600
IF{(NN.LT.20) GO TO 86191 00007610
GO TD 86180 00007620
86191 IF(L.EQ.D) GD TO 86170 00007630
IF{B.LT.1.E-B.AND.E. LT 1.E~8)G0 TO 29168 00007640
G0 1O 86192 00007650
29168 IPCODE=1 00007660
GO0 TO 4145 00007670
6470 CONTINUE 00007680
GO TD 9999 00007690
B6192 IF{B.GT.1.E-B)B=B*RS 00007700
IF{E.GT<1.E~-B)E=E%RE 00007710
GO TO 86150 - 00007720
C vOLG: 00007730
9999 L6=L3 © 00007740
© IF(L3.EQ.0)63 TO 9991 00007750
L=0 00007760
J=0 . 00007770
TLAST=FLOAT(M1})/2.- 00007780
DO 9990 I=1,ILAST 00007790
J=J+L(2*I-1) %2 00007800
L=L+C12%]) 00007810
9990 CONTINUE. 00007820
DD 9992 I=1,J 00007830
9992 RT{I)=RT(I1)*.5 00007840
DO 9993 I=1,L 00007850
9993 ZUII)=ZU{1)*.5 00007860
9991 - CONTINUE 00007870
N=L4 00007880
M=L5 00007890
997 CONTINUE 000079309
GO TO 999 00007910 - .
998 WRITE(3,979) 00007920
999 CONTINUE D0007930
9006 FORMAT{/¢3Xy*%%% Y=',1F1l1.4) 00007940
9009 FORMAT( 7Xs*X*',10Xy*TZH*, 5Xe *ABS{TX,TY) "y 1Xy "ARG{ TX,TY)*, 00007950
$ 1Xy *ABS{VXsVY)*y1Xs *ARGIVXeVY) ) : , 00007960
.968 FORMAT(®1',///+T63, *PROGRAM WISK~-SRT?,/,T54,GENERAL THEORY OF 00007970
SROLLING CONTACT® 3/ +76435°BY JeJe KALKER'¢/2T756, "MODIFIED AT CLEMSONOO007980
$ UNIVERSITY*,/,T61,'DEPT. OF MECH. ENGR.'® perbb:'CLEMSON, SC*s/7) 00007990
969 FORMAT(///758X, " %%&kk INPUT PARAMETERS #&¥%%x¢,//) 00008000
970 FORMAT(16X,*NORMALIZED CONTACT DIMENSIONS A='11PEII.4110X"(00008010
‘ $ A=A1/C1l, B=B1/C1, WHERE C1=SQRT(AL1*¥B1),"9/+32X,*(CARD #2)°*. 00008020
$511Xy*B="'y1PE11l.4,10X,s*{ Al,B1 ARE ACTUAL CONTAZT DIMENSIONS',//, 00008030
$19Xs*  COMBINED POISSON S RATIO U='y 1PE11.4+/+33X,s*(CARD #2)00008040
$95//+28Xs 'LAYER STIFFNESSES LXN=',1PE11l.%44+/233X,*{CARD #2)°*s 0000805)
$ BXe'LYN=*91PE11le4y/921X,"* (ELASTIC DIFFERENCE KAPPA=',1PE1100008060
$.49/933Xs*(CARD #2)57/) 00008070
972 FORMAT{ 26X,'VUHERICAL CONSTANTS N1="413,/+31Xs* (CARD #3)*, 00008080
$L1Xy"ML=*413,/,51X,'NS=",13,//) ) ' 00008090
973 FORMAT{4TX,"%kx%x PARAMETERS COMPUTED AND USED IN PROGRAM #*#%%%%' 00008100
$9/ 7/ 21X5*NDRMALIZED SHEAR MODULUS GS='91lPELll.4%49/+22X, ' (C0O00008110

MAIN

00007550

SMBINED) *+/7/¢52Xe 'N="4 I355Xs *N=NUMBER OF TRACTION POINTS®,/, 00008120
33 '



MAIN

$52X¢*M=1,13,5X,*M=NUMBER OF SLIP PDINTYS',//) 00008130
974 FORMAT (42X **%kk%x NV2=t,12,* DISTINCT PROBLEMS FILLOW FOR DIFFERENOQO08140
$T kkiukv,y /45X, P xdoktek VALUES OF NORMALIZED CREEPAGE AND SPIN **x¥%00008150

$':77) 00008160

975 FORMATI(//+1TX+*NORMALIZED CREEPAGE AND SPIN UXN='y 1PE1ll.4s/+ 00008170
$23X, *{ INPUT ON CARD #5)°¢, 00008180

$ IXy'UYN=?y1PELLla49/+50Xy *PHN=",1PEL11.4,//) 00008190

977 FORMAT{ 24X,"NORMALIZED FORCES ARE FXN=%9lPELLl .4y /929X, 00008200
$*{COMPUTED) ¢y 11X *FYN="31PE1Llo%4s//+24Xs'RESULTANT FORCE 00008210
SRES=', 1PE11la%9/ 924Xy * {RES=SQRT(FXN*%2+FYN®¥2))"*,//) 00008220

978 FORMAT{ 25X,*NORMALIZED MOMENT IS MIN='41PE1l.4y/, 00008230
$30X, *{COMPUTED)*y//) 00008240
stop 00008250

979 FORMATI(//+53X s %%xx%% A/B LESS THAN 0.1 *¥kx%x%t,/, 00008260
$58X, *¥k¥kk WORK NEXT PROBLEM *k¥k%kt,//) 00008270

END 00008280
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10
20
30

SIGN

FUNCTION SIGN({X)
IF(X)10+20,30
SIGN=-1.0
RETURN

SIGN=0

RETURN

SIGN=1.0

RETURN

END
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00008300
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14

15

20
25

30

80

CONST

SUBROUTINE CONST(AsBsNU,GS)
DIMENSION D(3),E(3,20),AR(20)
*kx&k DATA E(IoJ) GIVES THE VALUES OF GS FROM

kkkk& KALKER®'S TABLE,

REAL Nu
DATA E/
0.7670,
0.2390,
0.2950'
0.3758,
D.1879,
02950,
0.4779,
0.3835,

e

0.5752,
0.4343,
0.1967,
0.2818,
0.3785,
0.1967,
D.3584,
0.7918,

0.3835,
D.3257,
0038401
0.1879,
0.2839,
0.4089,
0.2390,
0.5938,

0.5608,
0.2172,
0.2880,
0.3750,
0.1892,
0.3066,
0.5608,
0.3959/

0.4206¢
0.4089,

0.1920,

002812'
0.3840,
0.2044,
0.4206,

0. 2804'
0.3066,
D.3785,
0.1875,
0.2880,
0.4343,
0.2804,

0.4779,
0.2044,
0. 2839.
0.3758,
0.1920,
0.3257,
0. 7670'

VALID FOR A/B EQUAL TO DR GREATER THAN 0.l

0.3584,
0.3934'
0.1892,
0.2818,
0.3934,
0.2172,
0.5752,

DATA AR / 001904290437 0e490e590.630.790.830.991.051.111111,
$1.2591.428571+41.66666792.092e593 33333315 0+10.0011.0/
PI=3.14159

RG=A/B

IF{RG.GT.AR{20)) GO TO 14

GO ToO
$G=B/A

15

GS=3.0%(1.0-NU)/ (4.0*%PI*SQRT{SG)) .

50 TD 80

DD 20 [I=2,20

IF{RG.LE.AR(I))} GO YO 25

CONTINUE
J=1

DO 30 I=1.3
DUL)=E(I4J-1)4(E(I,J)~E(I2J-1))%{RG-AR{J-1})/(AR(J)I-AR(JI~-1))
AL=8.0%{D(3)-2.0%D(2}+D(1))

BE=2.0%{(-D{3)¢+4.0%D(2)-3.0%D(1))
GS=ALXNU=%2+43E*NU+D(1)

CONTINUE
RETURN
END
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NORMALIZED CONTACT DIMENSIONS
{CARD #2)

COMBINED POISSON S RATIDO
(CARD #2)

LAYER STIFFNESSES
{CARD #2)

ELASTIC DIFFERENCE
(CARD #2)

NUMERICAL CONSTANTS
{CARD #3)

NORMALIZED SHEAR 43DULUS
{COMBINED)

PROGRAM W ISK-SRT
GENERAL THEORY OF - ROLLING CONTACT
BY J.J. KALKER
MODIFIED AT CLEMSON UNIVERSITY
DEPT. OF MECHe. E£NGR.
CLEMSON, SC

*ex%k INPUT PARAMETERS #Xx&%x%

A= 2.5980E+00 ( A=A1/C1, B=B1/Cl, WHERE C1=SQRT(A1l#
B= 3.8490E-01 ( Al,B1 ARE ACTUAL CONTACT DIMENSIONS

NU= 2.8000E-01

LXN= 0.0
LYN= 0.0
KAPPA= 0.0
N1l= 6
M1= 6
NS= 1

#xkk% PARAMETERS COMPUTED AND USED IN PROGRAM ¥k

6S= 4.5572E-01

N= 25 N=NUMBER OF TRACTION POINTS
M= 26 M=NUMBER OF SLIP POINTS

*%kkk NV2= 1 DISTINCT PROBLEMS FOLLOW FOR DIFFERENT #%k%&x

NORMALIZED CREEPAGE AND SPIN

{ INPUT ON CARD #5)

*#kkk VALUES OF NORMALIZED CREEPAGE AND SPIN *%¥kkx

UXN= 0.0
UYN=-1.4000E+00.
PHN= 8.0000E-0D1



PROCESS INTERRUPTED, RESULTS MAT NOT BE SIGNIFICANT

*%ke%x CONTACY REGION FOLLOWS *%kxx
X AND Y ARE NORMALIXED COORDINATES, X IN THE ROLLING
DIRECTIONs XsY=X1/Cl,Y1/C1 WHERE X1,Y1 ARE DIM. COORD.
TZH=HERTZ STRESS =3/(2%*PI)*SQRT{1.0-X*X/{A*A)-Y*Y/(B*B}))
TX AND TY ARE NDRMALIZED SHEAR STRESSES
TX==TAUXZ*C#*%3/({RHO%*N), TY=-TAUYZ*C*%*3/(RHO*N)
ABS{TXsTY) LESS THAN TZH FOR NO SLIP, EQUAL TO TZH FOR SLIP
VX, VY ARE NORMALIZED SLIP COMPONENTS, VX=VX1/V¥RHO/ (MU*C)
VY=VY1l/V*RHO/(MU®C), WHERE VX1,VX2=REL. VEL. BETWEEN
ADJACENT POINTS AND V=ROLLING VELe.

xk%x Y= 0.2566
X TZH ABS(TX,TY) ARG(TX,TY) ABS(VX,VY) ARGI{VX,VY)
-1.7320 0.1592 0.1592 265.6077
-1.2930 2.6082 264.6062
-04330 1.7799 261.4832
0.0 0.3559 0.3559 253.3449
0.4330 0.5797 234.1627
0.8660 0.3183 0.3183 215.1041
1.29930 0.0606 172.6306
1. 7320 0.1592 0.1592 '117.2705
*¥kk Y= 0.1283
X TZH ABS{TX,TY) ARGI(TX,TY) ABS(VX,VY) ARG(VX.VY)
-2.1650 3.5929 268.2097
-1.7320 0.3183 0.3184 266.5671
-1.2990 : 2.5799 264.9429
0.0 0.4502 0.4645 251.9182
0.4330 0.3455 226.5659
- 0.8650 0.4211 0.3143 147.3318
1. 2930 0.0001 98.3786
1.7320 0.3183 0.3183 117.6059
2.1650 0.0281 123.1223
k% Y= 0.0000
X TZH ABS{TX,TY) ARGITX,TY) ABS{VX,VY) ARGI{VX,VY)
—-241650 3.6267 269.9998
-1.7320 0.3559 0.3559 -90.0000 :
~-1.2930 2.5857 270.0000
-0.8660 0.4502 0.4502 -90.0000
—-044330 1.7915 269.9998
0.0 0.4775 0.4775 -90.0000
0.4330 : 0.1718 -89.9990
0.8660 0.4502 0.2224 90.0000
1.2990 0.0000 260.3901
1.7320 0.3559 0.3559 30,0000
2.1650 0.0156 269.9873
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*hk Y=
X

-2.1650
-1.7320
-1.2990
-0.8660
-~0.4330

0.0
0.4330
0.8650
1.2990
1.7320
2.1650

k% Y=
X

-1.7320
~-1.2990
~0.8660
-0. 4330

0.0
0.4330
0.8660
1.2990
1.7320

-0.1283
TZH -

0.3183
0.4211
0.4502
0.4211
0.3183
~0.2566
TZH
0.1592
0.3183
0.3559
0.3183
0.1592

ABS{TX,TY) ARG(TX,TY) ABS{VXsVY) ARGI{VX,VY)

0.3184 -B6.5672
0.4211 -39.3307
0.4645 -71.9182
0.3143 32.6682
0.3183 62.3941

3.5929 -88.2097
2.5799 ~84.9430
1.8049 -89.0363
0.3455 -46.5659
0.0001 81.6214
0.0281 56.8777

ABS{TX,TY) ARG(TX,TY) ABSI{VX,VY) ARG(VX,VY)

0.1592 -85.6078
0.4746 —53.2914
0.3559 -73.3449
0.3183 -35.1061
0.1592  52.7295

NORMALIZED FORCES ARE
(COMPUTED)

RESULTANT FORCE
(RES=SQRT{FXN*®2+FYN#*%2))

NORMALIZED MOMENT IS
{COMPUTED)

39

2.6082 -84.6064
0.5797 -54,1627

0.0606 7.3694

FXN= 0.0
FYN=-4.1081E-01

RES= 4.1081E-01

MIN= 7.3743E-01



APPENDIX B
Reprint of Reference [1]

J. J. Kalker, "Simplified Theory of Rolling Contact",
Delft Progress Report, Series C: Mechanical and Aero-
nautical Engineering and Shipbuilding, 1 (1973). pp. 1-10.
Thanks are due the Delft University Press and Professor
Kalker for granting permission to include this paper in
the report. . u N
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ERRATA

Simplified Theory of Rolling Contact [1]
The following errors have been noted in Kalker's paper [1].

The right hand side of equations (a) and (b) on page 4 should read
v as shown.
The right hand side of equation (17) on page 5 should read
2

-Zfzox/a as shown.
The left hand side of equation (20) on page 6 should read
vX{L(y)—x}/SX as shown.
The coefficient of friction is denoted by f and u interchanaeably.
Equation (30) on page 7 should read Sx(vy + ¢x)sin(e) + as shown.
Equation (44) on page 9 should read S

_32, /By, Cos

T 3n (a) 022 :
Equation (47) on page 10 should read
h, = h(as) = 2. /%) . faa

0 C22

y = 8a/(3C226),
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MECHANICAL AND AERONAUTICAL ENGINEERING AND SHIPBUILDING 1

Simplified theory of rolling contact

J.J. KALKER

Subdepartment of Mathematics,
Delft University of Technology
Julianalaan 132

Delft-2208, The Netherlands

Delft Progr. Rep., Series C: Mechanical and aeronautical engineering and shipbuilding, 1 (1973) pp. 1-10.

In the present paper an approximate theory of rolling contact of elastic bodies is developed which is very
simple to use. All salient features of rolling contact phenomena, with the exception of the phenomena due to
elastic asymmetry, are well reproduced. As a consequence it is not difficult to give the parameters of the
simplified theory such values that a reasonable quantitative agreement with the exact theory of steady-state
rolling is obtained. Finally the simplified theory is well suited to roughly investigate the mechanical influence

of the surface layers which may cover the bodies.

Introduction

In the present paper two dry bodies are
considered which roll over each other. In
first instance the bodies may be regarded as
rigid. Then, according to Coulomb’s law of
dry friction, two states are possible, viz.

1. The bodies roll without slip, and the
tangential force falls below a fixed multiple
of the normal force by which the bodies are
pressed together.

2. The bodies slide and roll while the tangen-
tial force attains the fixed multiple of the
normal force and acts in the direction of the
slip.

However, it has been observed experimentally,
that the bodies slip a little even when the
force transmitted is below the maximum. In
some applications, such as the investigation
into the stability of railway trains, these
effects are significant and the crude model
described above cannot be used.

For an explanation, the elasticity of the
contacting bodies must be taken into account.
This has been done by several authors,
—refer to the bibliography at the end of this
paper -, and the theory becomes quite
formidable, owing to the complexity of the
relationships even of classical elasticity.

In this paper the model is simplified in the
sense that these complicated relations are
replaced by a much simpler relationship,
which appears to conserve many of the typical
features of the conventional contact theory.
Thus it has illustrative value. Also it appears
to be possible to utilise the simplified theory
as an approximation of the more realistic,
complicated model by adapting certain
constants. A program implementing the
simplified theory does a job in approximately
1/100 of the time needed for the same job
by a program implementing the realistic,
complicated model. Thus the simplified
theory has a great practical value also.

Formulation of the problem

Consider two elastic bodies which are pressed
together so that a contact area forms between
them, see Fig. 1. A cartesian coordinate system
{0; x, y, z} is introduced of which the plane
of x and y is the plane of contact and in which
the z-axis points vertically downward into

Notations

The exact model: the realistic complicated
model.
! . a . ) . a
dx "ot
if a distinction must be made between
quantities of body 1 or 2, the quanti-
ties in question carry a superscript
1or2.
(x, y, z): Cartesian coordinate system with
origin in centre of the contact area,
x- direction coincides with rolling-
direction, z points vertically down
ward into 2. (see Fig. 1)

1, 2:

A(), B(y) (14. TID) u,u', u* above (3)
a, (1) U, Uy, U (78.)
C (¢))] v (5)
G (13 V,V,',V2(3)
o Fy (13a, b) V.5, V.2 above (3)
(5), (6)
f @ v (@), (10
G (13) X, Y )
H (30) Z )
h (44), (47) Zo (14.1,
11, I11)
Ly (12) é (38)
) (35) 6 (25a)
M. (13¢) 0o (32)
N (40) A (25b)
Sz, Sy (9) and below v(?).v(}) =v,
S(sx, 5y) (7b) Ve, Uy, 6 (6)
! time ::y” :: ;, (;z;} stresses
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body 2, see Fig. 1. The origin is the centre of
the contact area.

We assume that the contact area C and the
normal pressure Z acting on it can be cal-
culated by means of the Hertz theory. For
this it is sufficient that:

1. the small displacement, small displacement
gradient theory of elasticity is applicable;

2. the largest diameter of the contact area is
small with respect to a characteristic linear
dimension of the bodies at and near the contact
area;

3. no close conformity may exist between the
bodies at the contact area;

4. the bodies must be homogeneous in the
parts that are sensibly affected by the elastic
deformation;

5. either: a. the bodies are made of identical
materials, or they are incompressible

or: b. the level of the surface shear tractions
(X, Y) is at each point of the contact area
much lower than that of the normal pressure:
|X, Y| <Z. For this it is sufficient that the
coefficient of friction f< 1.

According to the Hertz theory (see ref. 1
p. 193 sqq) the contact area C is elliptical in
shape, and the pressure acting over it is
cllipsoidal:

C = {x,y,2:z = 0,x%/a® + y*[b* < 1}
contact area

shear traction (X, Y), but the surface shear
traction, which will be called tangential
traction, is an important object of study in this
paper. The tangential traction (= force/unit
area) (X, Y) exerted by body 1 or body 2
vanishes on the surface of the bodies outside
C, and inside C it is governed by the Coulomb
law of dry friction which connects the slip
v of body 1 over body 2 with the tangential
traction (X, Y). First it is observed that there
is no vertical (z) component of the slip, since
no gap forms at a point remaining in the
contact area. So the z-component of the velo-
cities which occur are left out of consideration.
Coulomb’s law of friction reads:

v = velocity of body 1 over body 2=
=0-||(X, Y)|| <fZ, adhesion area.

[+ coeff. of friction, taken constant

v#0- (X, Y) =fZv/|lv||, slip area

(X, Y) = tangential traction exerted by body 1
on body 2 = (— e, —7y,). 2)

It is seen that the slip is of prime importance
in the boundary conditions, and we proceed
to find an expression for it. A particle that lies
in (x, ¥, 2) in the unstressed state lies in
(x+us, ytu,, z+u;) in the deformed state,
where we denote by u(uy, u,, u;) the elastic
displacement of the particle. We find the
velocity V of the particle in the deformed

Z(x,y) = —a.=0on Z= 0,20u21s1de zc;z state by differentiating the position with
= Zo~ (1 —x*[a* — y*[b%) respect to the time z. If we write V, for the
inside C. 1 velocity of the particle in the undeformed
(1) state, we obtain the following Eulerian
The Hertz theory does not consider the surface  equation
rolling
direction
contact
(O ¥ S area E <
X \ 7 ))y x S" ‘é.__)(
@ —f— ™
@) T\ flow of ,'él

Fig. 1. Two bodies in contact.

z N/
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Ju

V=V, + pn + (V,-grad)u 3

The slip of body 1 with respect to body 2 is

gives by

(' —u?)
ot

+ +{(V} —V2)-grad} (u' + u?) +

VI-V2= (V- V2) + +

+ 3 {(V! + V?)-grad} (u* — v?).

In this equation we may neglect the third ‘

term of the right-hand side compared with the
first term, since the displacement gradients
were assumed to be small with respect to
unity. This gives
Al 2
d(u’ —u
ViV (viovy+ )

+3{(V} + V})-grad} (' —u?)

+

)

In the steady rolling of two bodies of revolu-
tion, rolling takes place approximately in the
direction of the parallel circles, that is, almost
in the direction of one of the axes of the
contact ellipse. In practise, the vast majority
of cases to be investigated is of this type, so
that we do not lose much if we confine
ourselves to the case that the rolling direction
nearly coincides with one of the axes of the
contact ellipse C, say the positive x-axis.
We take our coordinate system in such a way
that the origin remains at the centre of the
contact ellipse. The material of the bodies
near the contact area then flows through the
coordinate system almost in the direction
of the negative x-axis, with a velocity equal
to the rolling speed, see Fig. 1.

So we can identify 1(V,'+V.?) with the
opposite of the rolling velocity. Since in Eq. (4)
for the slip the vector (VA + V2) is multiplied
with .the small quantity grag (u'—u?), we
only need the principal term of $(V,1+V,?),

1(V!4V) = (= V.0 )

where V is the rolling velocity which is greater
than zero.

~ The difference of the velocities of the unde-
formed surfaces can be regarded as a trans-
lation and a rotation, thus

Vrll_ Vf = V(ox - ¢y! D), + ¢x) (6)

We call v, the longitudinal creepage, v,
the lateral creepage, and ¢ the spin. The

44

terms creep and creep ratio are also used in the
literature for the creepage. Introduction of
(5) and (6) into (4) gives for the slip

u=u?—u' = (u,,u,,u,); displacement
difference

LR

v=V-V2=(Vu, —Vp, —
( b ot

du ou
+ V% yy 4 vp, — T 7
ox ot Vim0 ()

+ v 2
ox

In the slip, the z-component has been left
out, since a non-zero vertical (z) component
would mean either that contact is broken, or
that the bodies penetrate.

A quantity frequently used instead of the slip
is the relative slip s

: ' ; 1 0u, -
S(8,,8,) =V V = o, — ._.__x+
(8x,8,) = v/ ( ¢y -3,

du . 1 0u,  ou
+ =, 0, + -2 Y Tb

ox’ ’ ‘gbx V ot 6x> (7)

In steady rolling, the displacement.u is inde-
pendent of the time, so that the relative slip
becomes .

®)

(steady rolling)

which is independent of the rolling velocity.
A complicated relationship (see ref. 2 p. 17sqq,
Ref. 1 p. 243) connects the displacement u
with the traction (X, Y) exerted by body (1)
on body (2). This relationship will be simpli-
fied by putting

S,X,u,=38§,Y;
Y=~—1,atz=0

U, =

X=—-z

Xz 9 (9)
where S, and S, are the weaknesses in the
x and y directions. The simplification of the
simplified theory with respect to the exact
theory consists of the adoption of (9) as the
traction-displacement relation instead of the
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exact relation described in Ref. 1 p.243 and
Ref. 2 p. 17 sqq. (9) is the response to shear
traction of a very thin elastic layer, mounted
on a rigid substrate.
It should be noted that Eq. (9) is only an
approximation of the true state of affairs if
the bodies are made of identical materials.
So we will.exclude condition 5. b (see the
beginning of this section) from our considera-
tions. :
If a prime (‘) denotes differentiation with
respect to x and a dot (-) differentiation with
respect to time ¢, we arrive from (7), (9) and
(2) to the following statement of the problem:
v = (v,0,); lower case nu.
v, = Vo, —Vopy+ VS (X' —X'/V)(a)
lower care ML

v, = VOIT Vit VS,(Y'— Y| V) (b)

S(5,8,) = v/ V;’relative slip; (© (1‘0)
v, =0, =0 (X, V)] <fZ (d

adhesion area

v#0->(X,Y) = fZv/|v] (o)
slip area
Tox’ ot ®

Linearized theory

One of the great difficulties in the analysis of
rolling contact is the determination of the area
of adhesion, where the slip vanishes, and the
area of slip. Hence it was proposed by de

Pater® to treat the case in which the area of

slip is so small that its influence can be neglect-
ed. This approach was elaborated by Kalker
in Refs. 2 and 4. These theories are steady-state
theories in which the time derivatives (X, Y)
vanish. Also, it is assumed that v,=v,=0
everywhere in the contact area, but the restric-
tion ||(X, Y)|| < fZ is dropped. The equations
are:

0= Dx_¢y+SxXI_’

= — (0, — ¢ x/S, + f(y)
O=0,+¢x+S Y-
Y= —(v, + $$%)x/S, + ()
It is seen that two arbitrary functions f(y) and
g(») occur in (11).
Exactly the same happens in the theory of de
Pater-Kalker, and f and g are determined on

the ground of the same consideration in both
theories, as follows. ' '

in

45

It is observed that at the leading edge particles
come into contact as they enter the contact
area. At that moment, they carry no traction.
The particles penetrate the contact area along
a line parallel to the rolling direction (x-axis),
and as a consequence of the no-slip condition
and the fact that creepage and spin do not
vanish, traction builds up. Finally the particles
leave the contact area, whereupon suddenly
the traction falls to zero. From this argument
it is clear that we must demand that the’
traction is continuous at the leading edge;
more specifically, the traction must vanish at
the leading edge. So, X and Y become

X= (vx—¢y) {L(y)_x}/sx

Y = [0,{L()—x} + 36 {L()*—x*}1/S,
. (12)

L(y)=coordinate of leading edge, see Fig. 1
and Eq. (1) = a\/(1 —»?/b?).

X and Y may be integrated over the contact
area C, to'yield the total force components F,
and F,, and the torsional moment M, about
the axis of Z which passes through the centre
of the contact area. They are compared with
the expressions for F., F,, M. of the exact

theory: See [2] p qo
F, = J]‘ X dxdy = 8a*bv,/(38S,)
C
.= GabCu vx

F, = [L Y dxdy

= 8a%bu,/(3S,) +na®bpj4S,) O
=.Gab[C;,v,++/abC,3 $]
M, = Jf (XY—yX)dxdy
_na®bu,/(45,)+8a2 b $(155,) ©
G(ab)**[C3,0,+C35 \/H’ ¢]

(2)

(13)

C,,: creepage and spin coefficients, tabulated
in references 2 and 5
G : modulus of rigidity

where the C;, are the creepage and spin
coefficients, which for the exact theory are
tabulated in references 2 and 5. Both the
exact model and the simplified model predict
that F, depends only on v,, and F, and M,
only on v, and ¢. Also it is seen from (13b)
and (13c) that the simplified theory predicts
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that C,3 = —Cs,, a relationship which also
appears in the exact theory.

Traction bound

We now turn to the discussion of the non-
linearised model in which Coulomb’s law is
fully taken into account. An important role is
played by the traction bound fZ, to which
this section is devoted. There are in principle
three types of traction bound fZ which we will
consider.

L fZ = fZoJ(1-x*|a’—y’[b%),

f constant (14.1)

This is the traction bound in accordance with
the Hertz theory. However, the x, y derivatives
at the edges of the contact area are infinitely
large. The rate of increase of the tangential
traction is also infinitely large at the edges of
the contact area in the exact theory, but it is
always finite in the simplified model, see
Eq.(10a,b), (11). Now, the only way in which
a state of complete sliding may occur is when
the initial slope of the traction bound is
smaller in absolute value than de absolute
value of the adhesion slope, see Fig. 2. Since
this is not possible with traction bound (14.1)
we seek an alternative,

. fZ = fZ,{1l—=x*la®*—y*[b*} (14.1])

This traction bound is simple, but leads to
numerically inaccurate results, It is used in the
discussion of the theory of steady state rolling
with pure creepage of the following section. In
the discussion of steady state rolling with
combined creepage and spin the third possibi-
lity is used:

UL fZ = fZy A(y){1 —x*[a*—y*[b?}
if |x| = 0.9a,/(1—y*/b*) = 0.9L(y)
= fZo{J(—x*[a®~y*|b®)+

+B(y)}
if [x| < 0.9a/(1—y?/b*) =0.9L(y)
(14.111)
rollin
direction \

adhesion

te

1)

Fig. 2. Traction due to pure creepage: a) partia
slip, b) complete slip.
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where A(y), B(y) are determined by the
demand that at x =0.9L(y)fZ is continuous
and continuously once differentiable.

The traction bound (14.1I1) has the advantage
of having a finite slope at the edge of the
contact area, and is sufficiently like the exact

traction bound (14.I) to yield numerically _1,

good results. A = 0.5 (i- "‘/In")- ¥ g (1- .9%)
() =-0.5 - ¥ 2 - .92) Y*
Steady-state rgll?r)lg with pgre Z{ggpagg -9 )
In the present section the case of rolling with
pure longitudinal creepage (v, = ¢ =0) is
considered. Pure lateral creepage (v, = ¢ =0)
is completely analogous as is the case of pure
creepage (¢=0) when, at any rate, the
weaknesses S, and S, are equal.
When v,=¢=0, the lateral traction Y
vanishes, and the problem reads

Sy =0,+S, X",
1X| < fZo{1—x’[a*—y?[b%}
5, 70— X =
= fZo{1—x*|a®— y*|b?} sign (s)

where the traction bound (14.II) has been
adopted. Similar expressions can be given if
traction bound (14.1) or (14.IIT) is derived.
Let v, > 0. At the leading edge, X =0, and the
particles tend to adhere, hence

X = _Ux/Sx_)X = Dx{L(y)'—x}/Sx

(15)

(tentatively set)A (16)

The traction bound has the slope at the leading
edge

fZ' = 2fZoxja* =
—2fZyL(y)|a* =
=2f(Zola)/(1—y*[b?)

On the leading edge there are two possibilities,
either adhesion or slip:

2f(Zoa)/(1—y*[b*) = Iu.l/S,

adhesion at leading edge

f(Zola)J(1~y?[b*) < [v,l/S,
slip at leading edge

I

(17)

(18)

see Fig. 2. Assume that v, and y are so that
adhesion occurs. According to (16), X in-
creases with decreasing x, until at a certain
point the traction bound is reached, see Fig. 2.
For still smaller x, there will be slip, for, as
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seen from (15) and Fig. 2,

5, =0, +S8, X' >0,+S,(—0v,/S,) =0,
Xz0.(0,>0)

Sy =0+ S, X' < v, +5.(—v,/S,) =0, (19)

X <0.(0,<0)

We determine the boundary between slip and
adhesion.

{Dxé(y)_x}/sx =
= fZo{1—-y*[b*~x*|a*} =

fZo{L(y*—x?}[a* = x =
~L(y)+a*v,/(fZ,S,) (20)
from which it appears that the slip-stick
boundary is the trailing edge, shifted over a
distance a?v./(fZ,S;). The form is shown in
Fig. 3; it is in complete accordance (except
for the numerical value of the trailing edge
shift) with the findings of Haines and Ollerton®.
It should be noted that this form of the area of
adhesion can only be obtained with traction

bound (14.II).
The total force can be computed. It is:

traction bound: (14.11),
|X| < pZo (1 —x?[a* — y*[b?);

F.= Jf Xdxdy =
c

UZy(ab[3) {3 arc sin 6 —
—126% arc cos 0+
+(135+26% . /(1-6%)},
v.a/(2fZ,S,) f=pe

Combined creepage and spin: a numerical
method

In sec. 1, the phenomena in the adhesion area
are described. In sec. 2, the slip area is

) (21

area of

.adhesion

Fig. 3. Contact
creepage.

area distribution for pure
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considered. In sec. 3, the leading edge is
considered. In sec. 4, final observations are
made. The motion is assumed to be in a
steady state, so that X- = Y-=0.

1. The phenomena in the adhesion area
In an area of adhesion, the following equations
hold:

O=s.,=0,—¢py+S,. X’
O=s,=0v,+¢x+S,Y (22)

if the position where a particle enters this
particular area of adhesion is denoted by
(x.,y) and the traction in that point by
(X., Ya), Eq. (22) yields (see also (11))

X= ]/Sx'(ux_d)y)(xa_x)_l'xa
Y =1/S,.{v,(x,—x)+
+3p(xl—x}+ Y, (23)

The adhesion area extends backwards, along
a line parallel to the x-axis from x, to the point
where again X2+ Y2 =f2Z2:

Adhesion » X?+ Y% < f27? (24)

2. The phenomena in the slip area
The following equations hold in the area of
slip:

X=fZcosO, Y = fZsin0,
S, =0, —¢y+S, X =4X
s, =0, +¢x+S,Y =Y, i>0

(252)

(25b)

Differentiate (25a) with respect to x:

X' = fZ' cos0— Z0' sin 0;

Y'= fZ'sin 0+ fZ0 cos 6.

so that (25b) becomes

0, — Py +S.(fZ' cos 86— fZ§ sin 0) =
= AfZ cos @

v,+¢x+S,(fZ' sin 0+ fZ8 cos 0) =
=AfZsin 0

(26)

27
From the Eq. (27), 4 may be eliminated,
fZ0'(S, sin? 0+S, cos? 0) =

= (v, —¢y) sin 0—(v,+ ¢x) cos 6+

+fZ'(S,—S,) cos 0 sin 0 (28)
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This is an ordinary differential equation for 6
when u#Z#0. When uZ =0, that is, at the
edges of the contact area, the equation is
singular and special measures must be taken
which are described in ‘conditions at the
leading edge’ (see below). When Z#0, the
equation can be solved numerically, e.g. by
Heun’s method. When (S§fZ/a) is small in
comparison with v,, v, and ¢, the numerical
integration method tends to be unstable. The
instability may be reduced by taking smaller
integration steps. However, ¢Z/a is small only
in a limited region near the edges of the
contact area, so that the instability, when it
occrurs, has only a very limited effect on the
total force.

The condition that 1> 0 has not been verified.
When A becomes negative, the slip tends to be
opposite the traction, and adhesion sets in.
We compute A. To that-end multiply the upper
Eq. (25b) by S, X and the lower by S, Y, and
add. Then, remembering (25a), we find

Af?Z3(S, cos? 0+ S, sin? ) =

= fZ{S,(v.,—y) cos 6+
+8,(v,+ $x) sin 0} +
+5,8,(XX' +YY') =

= fZ{S,(v,—py) cos 6+
+ 8, (v,+ ¢x) sin 6} +SxSyfzzZ’;

hence
A={S,(v;—¢dy)cosf+
+8,(v,+¢dx)sin +

+5,5,fZ}-{fZ(S, sin? 0+

+S, cos? )} _* (29)
The auxiliary condition of slip reads, since
(S, $,)>(0, 0):

H = S, (v,—¢y) cos 6+ S,(v,+ xX sin 6+
+8.8,fZ' >0 (30)

Adhesion starts when H becomes negative.
It can be shown that when H becomes
negative, adhesion may start with (X2+Y?)
falling below f2Z2, while when X2+ Y2 starts
to exceed 2 Z?, H becomes positive.

3. Conditions at the leading edge

First must be determined whether there will
be slip on the leading edge, or adhesion.
Since Z = 0 on the leading edge, the condition

of adhesion reads
X +(Y) < f2(Z),
X', Y’ determined by (22); Z’ by (14)

Insertion of (22) into this>equation yields

A== )8} +H{ = (v, +6x)/S,}* <

< f2(Z")?* - adhesion (3D
When (31) is satisfied, there will be adhesion
on the leading edge, and no complication
arises. When (31) is not satisfied, there will be
slip on the leading edge, and Eq. (28) is
singular.

The first problem is to determine a starting
value 6, of the angle 6.

If 8’ is to be finite, we must have

(v, —¢y) sin O, —(v,+ ¢x) cos O+
+uZ'(S,—S,) cos Oy sin 6, =0 (32)
This may be written as a fourth degree
equation .in sin 8o, which, as such, is im-
practicable to solve exactly. Instead, (31) is
solved by Newton’s method. We also need a
starting value 6, of ¢, in order to be able to
move away from the leading edge. To that end,
(28) is differentiated, while it is kept in mind
that Z =0 and 6, is finite.

4. Final observations on the method

A program was written implementing the
method of this section. It was found that it
performed well for small and medium values
of the creepage and the spin. For large values
some difficulties were encountered which took
the form of a rapid unrealistic alternation of
areas of slip and adhesion. The reason for this
is, in our opinion, the singular character of the
differential Eq. (28), and in all cases encoun-
tered by us it could be remedied by taking
smaller x-steps in the integration of Eq. (24),
so that the transit from leading to trailing edge
takes about 100 steps.

Transient phenomena :

Up to now we only considered time-indepen-
dent, steady state problems, in which X" and
Y could be neglected. We will now consider
the simplest case in which this is not so, viz.
v,= ¢=0, Y=0 while the bodies have the
form of two long cylinders with parallel axes,
about which they are rotated. The lateral (y)
coordinaté may be disregarded and the contact
area is given by

contact area: [x] < a. (33)

48
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Also we will assume complete adhesion as in
sec. 3. Under those circumstances the exact
model has been treated by Kalker in Ref. 7.
The governing equation is

0=s,=0()+S.{X' - X[V},

x| <a; X=0, |x|>a (34)
This is a partial differential equation of the
first order for X. The rolling velocity V(¢) is
independent of the x-coordinate and we can

write

1 X ox '
22| v(gdg=
vaor al ﬁ (@dg

= distance traversed  (35)

Hence forward, we will replace the time ¢ by
the distance traversed, and we again denote
by () differentiation with respect to /. (34)
becomes

0 =v()+S,{X -X7},

x| <a =i; 2
. Ox ol
X=0,|x|>a (36)

This equation is readily solved:

X(x, 1) = X(x+1-1lo, ) +
, ,

N j v(q)

lo Sx

z .
=f qu ifx+l—a>1,
xt+l—a Sx

lfx+l—lo <a

(37)

(37b)

It is seen that when v(g) = v is constant from
the distance /, onward, and /—2a>l,, then
X(x, 1) = v(a—x)/S: by (37b), the steady state
of sec. 3, independent of /, and independent
of the initial traction distribution X(x, /o).
The condition /—2a> [, signifies that tran-
sience is completed after a contact width 2a
has been traversed, a conclusion which is
approximately valid in the exact theory of
Ref. 7.

An important traction distribution is that due
to a shift without rolling, parallel to the
x-axis, of one body with respect to the other.
1t is called the Mindlin shift and it is described
in Ref. 8. The displacement and traction due
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Mindlin shitt , /a0

1
>~ £2a

T
e

i

»

1

»

»
wf

=22 and l>23
2

Fig. 4. Transient r;olling phenomena.

to it are given by
u=56=8S.X-X=4/S, )
if |xj<a, X=0 if (38)

We start rolling at the distance /, =0 with a
constant creepage v; according to-(37) and (38)

|x|>a.

X(x, ) =(3/S,) + ﬂ v/Sxdq =
= (0/S,)+vl/S, .
if x+I1< a,.x <a-l;|x|<a
—o(@-9S, (39
if x=a-Llx|<a
=0 |x|>a

A few stages of the development of the
traction are shown in Fig. 4. :

Rolling of bodies with unequal elastic constants
Up to now we have not succeeded in .in-
corporating in the simplified model devices by
which can be reproduced the salient features of
the phenomena occurring when two bodies
with different elastic constants roll over each
other.

Use of the simplified model as a quantitative
theory . .

The qualitative agreement between the simpli-
fied and the exact theories is so striking, that
the question arises whether by a proper choice
of the parameters of the problem we can get
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an approximate quantitative agreement. It
appears that this is indeed so for steady-state
rolling of elastically symmetric bodies, see
section ‘combined creepage and spin’.

1. The traction bound
It is advisable to use the traction bound
(14.111):

IZ = fZoA(y){1—x*[a* - y*[b*}
if |x] > 0.9a,/(1—y?*/b?) (14.111)
= fZo{J(1=x*/a®>—y*[b®)+B(y)}
if x| <0.9a,/(1—y?/b?%)

where A(y) and B(y) are determined by the
demand that the traction bound is continuous
and continuously differentiable at |x|=
0.9a,/(1—y*/b*). Z, is determined by the
demand that

Jf fZdxdy = fN, N: total normal force.
C
(40)

II. The coincidence of the creepage and spin

coefficients .
It seems reasonable to demand that the initial
slopes of the (Fx, F,, M.)/(vs, v,, ¢) diagrams
should be coincident in the simplified theory
and in the exact theory, that is, the creepage
and spin coefficients C;; in both theories
should coincide. The exact creepage and spin
coefficients have been tabulated in Ref. 2 and
according to (13) we must have

Cy1 =84a/(35,6);
C22 = 80/(3SyG);
C33 = 8b/(155,G);

C23 = _'C32 = ﬂa3/2/(4b1/2Sy G). (41)
We have only 2 parameters, viz. S; and S,,
and 5 equations to be met.

As solution out of this difficulty we propose
that a separation is made between the cal-
culation of the moment M; and the calculation
of the forces F., F,. As to the moment, we
have the equations

C33 =8b/155,G— S, = 8b/15Cs5 G;

Cy2 = —na®2[(4b12S,G) 5, = H?

= —na*?[(4b'? C4, G)(C5,<0)

moment calculation

and S, and S, are un ambiguously determined.
As to the forces, we have the equations

C11 = 8a/(3SxG)—’Sx = 8a/(3 Cll G)
C,, = 8a/(35,G)> S, = 8a/(3C,,G)
C,3 = na*?)(4b'?S,G) > S, =

= ﬂ:a3/2/(4b1/2 C23 G) . (43)
Here, we have two different definitions of S,.
So we propose to enter our programme with
spin ¢, and to calculate internally with k¢;
then

C,3 = (na®?[[4b'2S,G])h|
-—

S, =80/(3C440)

h=32 (l’-) Cas, (44)
3n a/C,,

The exact and simplified theories are compared
in Fig. 5 and Fig. 6. It is seen that the coin-
cidence may be termed reasonable and pro-
bably is sufficient for most needs.

Finally the simplified theory may be used
directly for the case that the bodies are
covered with a thin elastic layer which
responds to shear in the following manner:

w=LX, v,=L)Y. (45)

a2 3 4 T:-SP- 6 7 .Bv 9

Fig. 5. A comparison between Kalker’s empiri-
cal formula of Ref. 5 and the simplified theory.
1. a creepage parameter. Drawn: empirical
Jormula; x: simplified theory.
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Fig. 6. Pure spin, v,=v,=0. % a spin
parameter. Simplified theory and theory of
Ref. 2. (Pafe 124)

Then in the moment calculations one must use

S, ={8b/15C53 G} +L,,

(46)
Sy = {_na3/2/4b1/2 C32 G} +Ly
moment calculation.
and in the force calculation:
S, ={8a/3C;; G}+L,,
Sy = {8(1/3 C22 G} +Ly,
h = {Ly+s&0}/{Ly+Sy0/h0} ’
47

S,0 = 5,(43) =84/3C,,G,

32 C
hy =h(44) ==/ =23
0 (44) In :}fczz

force calculation.

It is to be expected that the agreement between
simplified theory and exact theory tends to
improve as L. and L, become larger.

At this point we would like to remark that the
drastic decrease of the creepage coefficient
below the value predicted by the exact theory
which is described by Hobbs®, may be due to
an elastic layer covering the wheel and the
rail which is weaker in x-direction than in
y-direction (L,> L,>0).

It is also possible to investigate layers with
non-elastic response to shear by means of the
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simplified theory, but we will not investigate
that further.

Conclusion

It has been shown to be possible drastically to
simplify the equation of elasticity and still
reproduce all salient features of rolling contact
phenomena with the exception of those which
are a consequence of the elastic asymmetry of
the bodies. Also, the simplified theory may be
used as a quantitative approximation of the
exact theory. Calculations with the simplified
theory are about 100 times faster than with
the three-dimensional exact theory.

Finally, the presence of an elastic layer on the
bodies may be taken into account, and it is
proposed that the discrepancies between
railway experiments and theory may be due to
just such a layer.

1. A.E.H. Love, A treatise on the mathematical
theory of elasticity, (4th Ed. Cambridge 1926).

2. J.J. Kalker, On the rolling contact between two
elastic bodies in the presence of dry friction
(Thesis Delft, 1967).

3. A.D. de Pater, ‘On the reciprocal pressure
between two bodies’, in: Proc. Symp. Rolling Con-
tact Phenomena, Ed. J. B. Bidwell. (Elsevier, 1962)
pp. 29-75.

4. J.J. Kalker, ‘The transmission of force and
couple between two elastically similar rolling
spheres’, Proc. KNAWet. Amsterdam B67 (1964)
p. 135-177.

5. J.J. Kalker, ‘The tangential force transmitted
by two elastic bodies rolling over each other with
pure creepage’, Wear 11 (1968) p. 421-430.

6. D.J. Haines and E. Ollerton, ‘Contact stress
distributions on elliptical contact surfaces sub-

. jected to radial and tangential forces, Proc. Inst.

Mech. Engrs. 179 (1964-1965) part. 3.

7. J.J. Kalker, ‘Transient phenomena in two
elastic cylinders rolling over each other with dry
friction’, J. Appl. Mech. 37 (1970) p. 677-688.

8. R.D. Mindlin, ‘Compliance of elastic bodies
in contact’, J. Appl. Mech. 16 (1949) 259sqq.

9. A.E.W. Hobbs, A survey of creep (British
Railways Res. Dept. Rept. Dyn 52, 1967).



Users' Manual for Kalker's "Exact" Nonlinear
Creep Theory (Interim Report), 1978
uS DOT, FRA, James Goree



____PROPERTY OF FRA

RISEALCH & BEVELOPMENT
LiBRARY




