TRUCK DESIGN OPTIMIZATION PROJECT PHASE II

FRICTION SNUBBER FORCE MEASUREMENT SYSTEM
FIELD TEST REPORT

WYLE LABORATORIES SCIENTIFIC SERVICES & SYSTEMS GROUP

Colorado Springs Division 4620 Edison Avenue Colorado Springs, Colorado 80915

OCTOBER 1979

Document is available to the U.S. public through the National Technical Information Service Springfield, Virginia 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION

Federal Railroad Administration
Office of Research and Development
Washington, D.C. 20590

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

1. Report No.	2. Government Acce	ssion No. 3	. Recipient's Catalog t	No.
FRA/ORD-79/24 4. Title and Subtitle	· · · · · · · · · · · · · · · · · · ·			
TRUCK DESIGN OPTIMIZATION	או ספת זבר ת	•	. Report Date October 1979	
Friction Snubber Force Measur		. Performing Organizati	ion Code	
Field Test Report	omone zystem	(1 52 112)		.011 -00-00
_		8.	Performing Organizati	on Report No.
7. Author's)			TDOP Technical	
David Gibson			TR-08	
9. Performing Organization Name and Address		10	0. Work Unit No. (TRAI	S)
Wyle Laboratories Scientific Services & Systems	Croup.	<u> </u>		
4620 Edison Avenue	di oup		1. Contract or Grant No DOT-FR-742-427	
Colorado Springs, Colorado 80	915			<u> </u>
12. Sponsoring Agency Name and Address			3. Type of Report and F	Period Covered
Department of Transportation			Tost Donont	
Federal Railroad Administration	n (FRA)		Test Report June 1978 - Octo	her 1979
Office of Research and Develo		17	5. Sponsoring Agency C	Code
Washington, DC 20590	p		FRA/RRD-12	
15. Supplementary Notes				
This test report is supplement	nted by th e F	'SFMS Test Data Ta	apes, FRA/ORD/	MT-79/24
and the Measurement of Frid		Forces in Freight	Car Trucks, Fi	nal Report,
FRA/ORD-78/69, dated Decem	ber 1978.		wt	
This report degree at the re	naulta of the	Drietien Crubber 1	F M	
This report documents the re (FSFMS) special road test prog				
was designed, built, and shop-to				THE FORMS
was designed, built, and shop to	coted during in	OI Thase I (see II)	th/Oith-10/03).	
Descriptions of the test equipm	ent, procedure	s, methods of data	analysis. results.	and recom-
mendations are contained in th		,	, ,	
			_	
The test program was success				
friction forces in over-the-road				
estimates of the friction coeff				
ton trucks. The report pro-	-	•	_	t data and
recommends areas where addit	ionai informati	on may be extracte	·u.	
	•			
		•		
	•			
17. Key Words		18. Distribution Statemen	ıt ,	
ASE Dido Control Thurst Dark	on C. 9 Thursts	Dogument is an	oilabla ta tha su	hlia thaorah
ASF Ride Control Truck, Barb		the National Tech	ailable to the pub	_
Freight Car Trucks, Friction Sr Tests, FSFMS, TDOP Phase II	INDUING LIGIN	Springfield, Virgi		ni pervice,
rests, rorms, roof flase if	•	Shringitera, Aligi	1114 44101	
19. Security Classif. (of this report)	20. Security Clas	sif. (of this page)	21. No. of Pages	22. Price
to the report	1	• • • • • • • • • • • • • • • • • • • •	-	ł
Unalessified	Unaloggifia	A	61	

METRIC CONVERSION FACTORS

							Symbol V	Then You Know	Multiply by	To Find	Symbo
-mbel	When You Know	Mattiply by	To Find	Symbol	- =						
				1	•	=	,		LENGTH	- _ * -	•
		LENGTH		- '		=8	. •				1.
				i		<u></u>	rem ;	millimoters continuators	0.04 ;	inches inches	in T
				1	=		m / /	meters	3.3	lest	1
	inches feet	*2.5 30	contimeters contimeters	CU.		≡	m ;	moters	1.1	Abuqa	,
	yards	0.9	moters	m,			Num	kilometers	0.6	miles.	,
	miles	1.6	kilomaters	km			; '	•	. ,	4	
_										*	
	• •	AREA			6 -		•	<u></u>	AREA		
					-	= -	cm²	square centimaters	0.16	square inches	in
, ²	square inches	6.5	square centimete	rs cm²	• <u>-</u>	:	m ²	square centimeters	1,2	squere yards	
2	squere feet	0.09	square meters	m ²	===		lum ² :	square kilometers	0.4	selim except	mi mi
e ²	aguare yards	0.0	square motors	m²		<u>=</u>	ha ha	hectares (10,000 m ²)	2.5	acres	
2	aguare miles	2.6	square kilomateri		<u> </u>	≣ : 、	7100	110Ctm 03 (10,000 111)	2.9	- Luci	
	80106	0.4	hectares	he	- -	=	•		-	* *	•
				1	-	≡ 2 .		M	ASS (weight)	•	
		MASS (weight)				===:			res justification	- ;	
				1 -		= 2	a ;	grams	0.036	CERCOS	0
r	Qunces.	28	grams	9		= :,	kg .	kilograms .	2.2	pounds	W
•	pounds	0.45	kilograms	kg	==	≡ =	79	tonnes (1000 kg)	1.1	short tons	
	. short tons	0.9	tonnes	tļ.	 .	= :	• :			•	
	(2000 lb)		•	<u>!</u> .	^ <u>=</u>	≣ ≘			1		
		VOLUME		· i	` -≣	≡	3		AOLUME	*	
							1			-	
	teaspoons	5	milliliters	ml	·	= .	ml	milliters	0.03	fluid ounces	fl o
bea	tablespoons	15	milliliters	ml	<u> </u>	=	1 , '	liters	2.1	pints	pri pri
oz	fluid ounces	30	milliliters	ml	<u> </u>	, ⊈ —	1 ' .	liters	1.06	quarts	€t
-	cups	0.24	liters		·— <u> </u>	=	1 : :	liters	0.26	gallons	gel
•	pints	0.47	liters	ıi.		` = -	m ³	cubic meters	_, 35	cubic feet	h ³
t	quarts	0.95	fiters	, P		≣	m³ .	cubic meters	1.3	cripic Asuga	yed 3
pal t ³ _	gallons	3.8	liters	4_	===	≣	;	•	1 -	•	
13	cubic feet	0.03	cubic meters	φ.		≡		¥5940			
d³	cubic yards	0,76	cubic meters	ψ,				, <u> Em</u> P	ERATURE (exec	<u>v</u>	
	TEM	PERATURE (exact)		4			,		0.00		
				1 1 1		— •	°c -	Celsius temperature	9/5 (then add 32)	Fahrenheit "tempereture	
	Fahrenheit	5/9 (after	Celsius	· dc	===	<u>=</u>	* .	texingerature	auju 32)		
	temperature	Subtracting	temperature			≡_ "			<u> </u>	• r	
	io aportare	32)		-	=	=	. of	32	98.6		
	`	VL ,		;	, ————————————————————————————————————	=	-40	0 140	80 120	160 200 [
	I maactly), For other exact cor				 <u>-</u>	=	-40 L-		<u> </u>	فتستسب	ĺ

EXECUTIVE SUMMARY

A Friction Snubber Force Measurement System (FSFMS) was developed and shop-tested during TDOP Phase I. The primary objective of this system was to measure friction coefficients and forces transmitted between the friction shoes and the wear plate of conventional freight car trucks. During Phase II of TDOP a series of over-the-road tests was run to obtain friction snubber data in actual railroad operation.

The FSFMS was installed on both an ASF Ride Control and Barber S-2 70-ton truck. During November and December of 1978, these trucks were run through a series of tests in various load conditions over sections of Union Pacific track near Las Vegas. In addition to measuring friction snubber forces, transducers were installed on the trucks and carbody to measure relative motion between carbody and truck, and carbody rigid modes.

Results from the data analysis showed the Barber truck to have a coefficient of dynamic friction between .31 and .36 while the dynamic friction coefficient of the ASF truck was between .37 and .49. The only strong correlation between relative motion in the truck and friction forces occurred in the vertical motion of the side frame relative to the truck. As the vertical motions increased, the variation in the friction forces increased.

The quality of test data acquired during the test program was excellent. Noise floor recordings were an order of magnitude less than the test data. Comparison of data between runs and between similar measurements showed excellent agreement in relationship to track input.

ACKNOWLEDGEMENTS

A number of individuals contributed to the success of this project. Their support is hereby gratefully acknowledged.

A particular debt is owed Mr. Klaus Cappel, Chief Design Engineer, Wyle Laboratories, who conceived, designed, developed, and tested the Friction Snubber Force Measurement System (FSFMS) during TDOP Phase I. Mr. Cappel also contributed invaluable advice and guidance during this field test.

Appreciation is also expressed to Mr. Frank Brunner and the Union Pacific Railroad personnel under his direction, all of whom contributed many long hours to ensure the success of the project. Especially, gratitude is expressed to Mr. Don Joy and his crew at the Repair-in-Place track in Las Vegas during test preparation; Dr. Paul Rhine, who directed the operation of the UP's mobile laboratory car; and Mr. Tom Stewart, who coordinated the test effort with the UP operational personnel.

All of the TDOP Phase II consultants provided Wyle Laboratories with the benefit of their expert knowledge during the development of the FSFMS test plan and procedure. However, special thanks is due to Mr. Robert Bullock of the Standard Car Truck Company and Mr. Garth Tennikait of the American Steel Foundries who observed the testing in Nevada and made many useful suggestions that aided Wyle greatly.

Finally, this acknowledgement would be incomplete without mention of the continual support that Wyle Laboratories has received for the FSFMS project from the Federal Railroad Administration's Office of Freight Systems, notably from Mr. Arne Bang, Chief, Freight Services Division, and Dr. N. Thomas Tsai, Contracting Officer's Technical Representative for TDOP Phase II.

TABLE OF CONTENTS

		•	Page
EXE	CUTIVES	SUMMARY	iii
SEC'	ΠΟΝ 1 -	INTRODUCTION	1
1.1	Backgro	und	1
1.2	Scope	·	1
SEC'	ΓΙΟΝ 2 -	TEST EQUIPMENT	1
2.1	Trucks		1
2.2	Carbodi	es	1
2.3	UP Mob	ile Laboratory Car 210	4
	2.3.1	Description	4
	2.3.2	Data Acquisition System	4
	2.3.3	Data Display	4
2.4	Instrum	entation	8
	2.4.1	Data Channel Description	8
	2.4.2	Location	. 8
•	2.4.3	Signal Conditioning	8
	2.4.4	System Calibration	8
SEC'	TION 3 -	TEST RUNS	15
3.1	Procedu	re	15
3.2	Consist	***************************************	15
3.3	Barber '	Truck Test	21
3.4	ASF Tru	ick Test	21
SEC'	IION 4 -	DATA ACQUISITION	21
4.1	Real-Ti	me and Quick-Look	21
4.2	Data Re	eduction	23
SEC'	TION 5 -	DATA ANALYSIS AND RESULTS	25
5.1	Friction	Coefficients	25
5.2	Friction	Forces vs Truck Motion	27
5.3	Center	Plate Resistance to Motion	28
5.4	Ride Qu	ality	30

5.5	Data Qu	ality Discussion	30
	5.5.1	Noise Floor	30
	5.5.2	Track Geometry Correlation	30
	5.5.3	Rail Joint Input	31
	5.5.4	Truck/Carbody Motion	32
	5.5.4.1	Side Frame Lateral Displacement	32
	5.5.4.2	Side Frame Pitch Rotation	33
	5.5.4.3	Side Frame Yaw Rotation	33
5.6	Carbody	Roll Excitation	33
5.7		eometry Measurements	35
5.8	Truck Ti	acking through Curves	36
SEC	TION 6 - 0	CONCLUSIONS AND RECOMMENDATIONS	37
6.1	Conclusi	ons	37
6.2	Recomm	nendations	37
REF	ERENCES	······································	38
APP		- Compression Measurements on Friction Shoe f Barber Truck	A-1
APP	ENDIX B	- Example of Milepost vs Time Listings	B-1
APP	ENDIX C	- Examples of Reduced Data	C-1
A DD	ת עומעם	- Friction Coefficient Calculations	D-1

LIST OF ILLUSTRATIONS

Figure		Page
2-1	Detail of Transducers in ASF Truck	2
2-2	Barber Truck Test Car	3
2-3	ASF Truck Test Car	4
2-4	Mobile Laboratory Car 210 Configuration	5
2-5	Analog Subsystem	5
2-6	Digital Subsystem	6
2-7	Typical Truck Instrumentation	10
2-8	Eddy Current Transducers	11
2-9	Truck Center Plate Rotation String Potentiometers	12
2-10	Carbody Rotation Potentiometers	13
2-11	Accelerometer Installation	14
3-1	Track Profile - Test Zone 1	16
3-2	Track Profile - Test Zone 2	16
3-3	Typical Speed Profiles	
3-4	ALD Locations	17
3-5	Loading Test Car	18
3-6	Typical Lading Conditions	19
3-7	Test Train Consist	20
4 -1	Typical Real-Time Data Display	22
4-2	Partial Quick-Look Data Display	23
5-1	Typical Friction Coefficients	25
5-2	ASF Truck Energy Dissipation	26
5-3	Barber Truck Energy Dissipation	26
5-4	Friction Snubber Forces (Empty Car)	27
5-5	Friction Snubber Forces (Loaded Car)	27
5-6	Comparison of Normal Forces in Barber and ASF Trucks	28
5-7	Friction Force vs Relative Motion	28
5-8	Definition Sketch of Forces Acting against Center Plate Friction Torque	29
5-9	Carbody Bounce Acceleration (Barber Truck)	30
5-10	Carbody Bounce Acceleration (ASF Truck)	30
5-11	Noise Floor for Force Measurements	31
5-12	Noise Floor for Displacement Measurements	31

Figure		Page
5-13	Noise Floor for Rotation Measurements	31
5-14	Noise Floor for Acceleration Measurements	31
5-15	Comparison of Track Geometry Curvature and Truck/Carbody Rotation	31
5-16	Vertical Track Input on Side Frames	32
5-17	Track Geometry Rail Profile	32
5-18	Relative Lateral Displacement (Barber Truck Side Frames)	. 32
5-19	Relative Lateral Displacement (ASF Truck Side Frames)	32
5-20	Right Side Frame Pitch Rotation	33
5-21	Left Side Frame Pitch Rotation	33
5-22	Side Frame Yaw Rotation, Barber Truck	33
5-23	Side Frame Yaw Rotation, ASF Truck	33
5m24	Empty Barber Truck Test, Carbody Roll	34
5-25	Loaded Barber Truck Test, Carbody Roll	34
5-26	Empty ASF Truck Test, Carbody Roll	34
5-27	Loaded ASF Truck Test, Carbody Roll	34
5-28	Carbody to Bolster Roll Angle	35
5-29	Track Geometry Crosslevels	35
5-30	ALD Signals and Curve Locations	35
5-31	Typical Track Geometry, Zone 1	36
5-32	Truck Swivel Angle vs Track Curvature, Barber Truck	37
5-33	Truck Swivel Angle vs Track Curvature. ASF Truck	37

LIST OF TABLES

Table	<u>.</u>	Page
2-1	Spring Group Measurements (Barber Truck)	. 2
2-2	Spring Group Measurements (ASF Truck)	3
2-3	Test Tape Data Description	6
2-4	Example of Tape Header File	6
2-5	Test Condition Summary File	6
2-6	Channel Description File	
2-7	Instrumentation List	
2-8	Typical Calibration File	
3-1	ALD Mileposts by Run Number	18
3-2	Tets ID Matrix	18
4-1	Quick-Look Tape Quality Display	22
4-2	Selection of Data Reduction	24
4-3	Data Reduction Parameter Calculations	24
5-1	Friction Coefficient vs Power (ASF Truck)	26
5-2	Mean Normal Force	28
5-3	Comparison of Measured Distance	36

SECTION 1 - INTRODUCTION

1.1 BACKGROUND

During the Truck Design Optimization Project (TDOP) Phase I, instrumentation did not exist to measure the forces transmitted through the spring-loaded friction shoes located between the side frame and bolster of a freight car truck. Consequently, Wyle Laboratories developed, designed, fabricated, and shop-tested a prototype Friction Snubber Force Measurement System (FSFMS). A complete description of the FSFMS, its operation, results of shop testing, and intended use are given in reference 1. Since the system was not completed prior to the conclusion of TDOP Phase I, a field test was scheduled during TDOP Phase II to acquire FSFMS data.

The test plan developed to conduct the field test (reference 2) furnishes a description of the required hardware, instrumentation layout, proposed test zones, performance regimes to be tested, vehicle configurations, schedules, and data analysis.

Based upon the approved test plan, a comprehensive test procedure (reference 3) was prepared. The test procedure defined instrumentation types, locations and mounting brackets, calibration procedures, run sequences, and the required documentation to support the test effort and preparation of the final report.

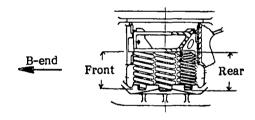
The primary objective of the test program was to obtain field test data from which measured values of friction coefficients and forces associated with the friction snubber could be calculated. A value of dynamic friction coefficient was characterized for each truck. Measured values of normal and tangential forces between the friction shoe and the wear plate were to be evaluated as a function of the following:

- Relative displacement due to bolster motion, both vertical and horizontal
- Relative angular displacement between side frame and bolster
- c. Direction of vertical motion
- d. Relative velocity of sliding motion

After the FRA approval of the test plan and procedure (references 2 and 3), the field test was conducted between November 13 and December 8 near Las Vegas, with the assistance of the Union Pacific Railroad. The testing was performed on two types of trucks: the 70-ton Barber S-2 truck and the 70-ton ASF Ride Control truck.

1.2 SCOPE

This report is divided into six sections and four appendices. Section 2 describes the equipment that was used to accomplish the test ojectives (the consist, test hardware, instrumentation, etc.). Section 3 details the actual test runs. Section 4 describes data acquisition and reduction, and Section 5 presents the data analysis, including the procedures used to extract friction coefficients for each of the two types of trucks and an evaluation of the data quality. Correlations are given between data acquired during several test runs and track


geometry measurements of the test zones made previously. Some data, in addition to those required to meet the objectives of the testing, were acquired during the course of the program and are also presented. Section 6 recommends some further analyses that could be conducted to extract additional information from these data.

SECTION 2 - TEST EQUIPMENT

2.1 TRUCKS

The trucks used in this test program were 70-ton ASF Ride Control and Barber S-2 trucks. They were modified by changing the side frame snubber column to accomodate the friction snubber transducer. A photograph of the transducers installed in the ASF truck is shown in Figure 2-1. Before the over-the-road testing of the modified trucks, a structural qualification laboratory test was conducted on one of the trucks to verify structural adequacy for unlimited service. The results of these tests are documented in reference 1.

Also, laboratory measurements were made of the spring rate for the snubber springs in the Barber truck. The results of these measurements are included in Appendix A. No measurements were made on the ASF snubber spring because of the difficulty in disassembling the truck. During the test program static measurements were made at each spring nest. The results of these measurements are contained in Table 2-1 for the Barber truck and Table 2-2 for the ASF truck. A typical spring group is shown below.

2.2 CARBODIES

The test plan called for 70-ton carbodies to be used in the test program. However, at the time of testing, no 70-ton carbodies were readily available. Therefore, to expedite instrumentation and testing, two 100-ton hopper cars were used as test cars, one with the Barber truck and the other with the ASF truck. Descriptions of carbodies used in the Barber and ASF truck tests are given in Figures 2-2 and 2-3, respectively.

The modified trucks with the friction snubber instrumentation were placed at the B-end of each test car and a similar 70-ton truck from TDOP Phase I was placed under the A-end. New wheels were placed on all trucks before the start of the test program. During assembly of the test cars, the center plate at the B-end was lubricated with molybdenum disulfide to achieve uniform center plate friction characteristics.

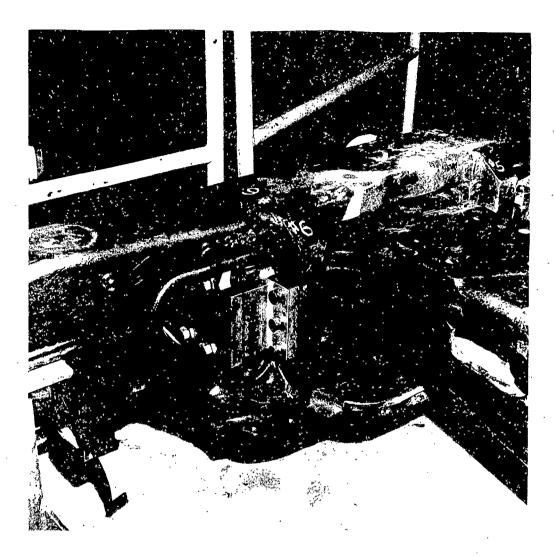


Figure 2-1. Detail of Transducers in ASF Truck

Table 2-1. Spring Group Measurements (In.) Barber Truck

		B-End	Ţruck		A-End	Truck		
•	Rig	ght	t Left		Right		Left	
	Front	Rear	Front	Rear	Front	Rear	Front	Rear
Static	11	11	11	11	N/M	N/M	N/M	N/M
Empty Car	10	10	10	10	9-10/16	9-10/16	9-13/16	9-13/16
Helf Loaded Car	9-1/4	9-1/4	8-3/4	8-3/4	8-7/8	8-7/8	8-3/4	8-7/8
Loaded Car	8-5/8	8-11/16	8-3/16	8-3/16	8-1/4	8-1/4	8-1/16	8-1/8

N/M: Not Measured

Table 2-2. Spring Group Measurements (In.) ASF Truck

		B-Rnd '	Truck		A-End	Truck		
	Ri	ght	Left		Right		Left	
	Front	Rear	Front	Rear	Front	Rear	Front	Rear
Static	N/M	N/M	N/M	N/M	N/M	N/M	N/M	N/M
Empty Car	10	10-1/8	10	10-1/16	9-15/16	9-15/16	9-7/8	9~13/10
Half Loaded Car	9-5/16	9-9/16	8-13/16	8-15/16	8~13/16	9-3/16	8-7/8	8-13/10
Loaded Car	8-5/8	8-13/16	8-3/8	8-3/8	8-1/2	8-1/2	8-3/16	8-13/1

N/M: Not Measured

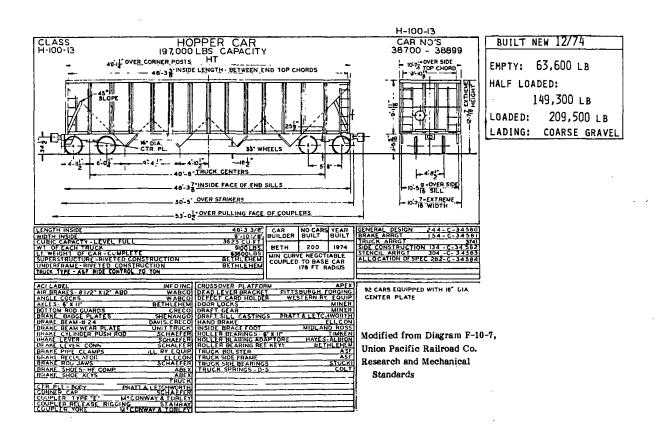


Figure 2-2. Barber Truck Test Car -UP38768

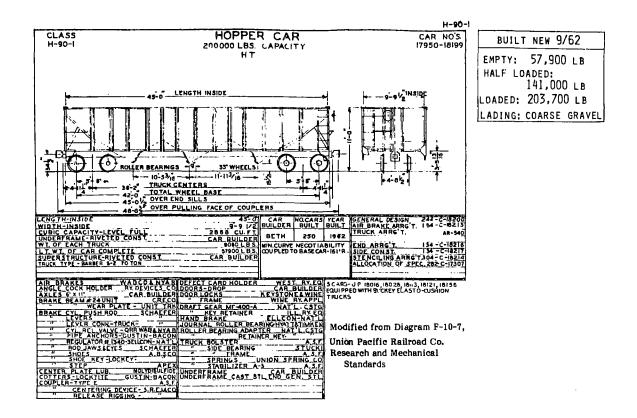


Figure 2-3. ASF Truck Test Car - UP17966

2.3 UP MOBILE LABORATORY CAR 210

2.3.1 Description

The Union Pacific mobile laboratory car 210 was used as the instrumentation car. It is an 85-foot, heavy steel car converted from a former Pullman sleeper car. It has a reinforced underframe, six-wheel trucks, and alignment control draft gear, giving it an exceptionally smooth ride, safety, and stability at all speeds and in any position within a freight train. The car is completely self-contained, although it is not self-propelled. Onboard power is generated by a diesel engine/generator set. The layout of the car is shown in Figure 2-4.

2.3.2 Data Acquisition System

An onboard data acquisition and processing system provides the capability for acquisition of raw data, processing and storage, and presentation for real-time and quick-look data display. Block diagrams of the system are shown in Figures 2-5 and 2-6.

Transducer signals for the test vehicle are routed to the signal conditioners in mobile laboratory car 210 (Figure 2-5). From the signal conditioners, a patch panel provides the flexibility of routing the signals to any A/D channel, and/or FM tape recorder and real-time oscillograph display. The onboard HP2100 MX minicomputer (Figure 2-6) is used to control the processing of test data. The intelligent CRT terminal is used to enter test information for storage on tapes and to process data from the tapes for quick-look data display. An analog-to-digital (A/D) converter connects 64 channels of analog signals from the signal conditioner, then the data are recorded

on magnetic tape, with such other information as test descriptions, channel designations, and calibration information. The tape reader is used to supply preprocessed information, such as a test condition summary list, to the computer at test time. The Versatek printer-plotter provides displays for the pretest information files, calibration value, real-time train location, ALD detection, etc.

2.3.3 Data Display

With the data acquisition system described in the preceding paragraph, real-time display, quick-look display, and magnetic tapes of the data were acquired for all test runs. Examples of typical real-time and quick-look displays are given in Section 4. The magnetic tapes consist of files containing written descriptions of the test, calibration files, and the raw test data. sequence of files written to tape is given in Table 2-3. An example of a tape header file is given in Table 2-4. The general description is intended to provide a written account of the test and to note any problems or changes in the test procedure which may have been required. For example, in the test shown in Table 2-4, it was necessary to change A/D channel 33 to channel 25; this change is recorded in the tape header file. The second file is a test condition summary file, a rigidly structured file which contains a listing of 61 variables associated with a particular test. An example of this file for test 012 is contained in Table 2-5. The third file is the channel description file (see Table 2-6). It contains a listing of all transducer channels for the test listed by increasing A/D number. This table provides the engineering units associated with a channel and the magnitude of these units for the zero and the positive-step calibration values.

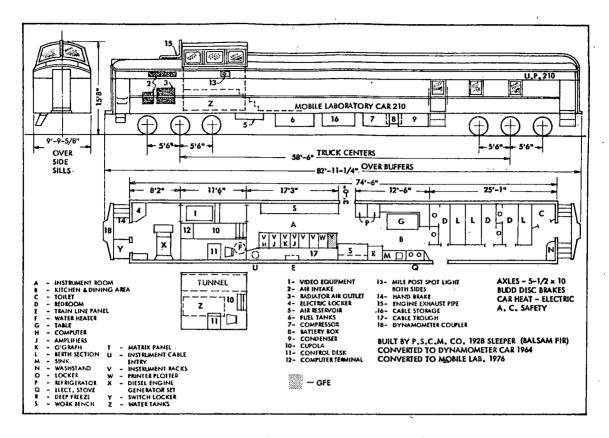


Figure 2-4. Mobile Laboratory Car 210 Configuration

FIELD TEST DATA ACQUISITION SYSTEM

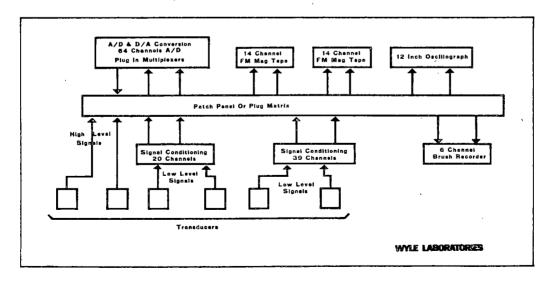


Figure 2-5. Analog Subsystem

FIELD TEST DATA ACQUISITION SYSTEM

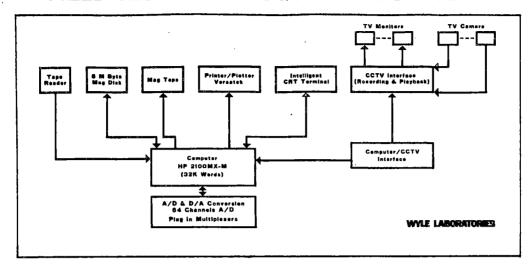


Figure 2-6. Digital Subsystem

Table 2-3. Test Tape Data Description

```
TAPE HEADER EILE
TEST CONDITION SUMMARY
CHANNEL DESCRIPTION FILE
PRETEST CALIBRATION
RAW TEST DATA
POSTEST CALIBRATION
POSTEST INFORMATION FILE
```

Table 2-4. Example of Tape Header File

```
GENERAL DESCRIPTION
TOOP-II-FSFMS- 012
PREVIOUS TRAFIC UVER ZONE:
ANAINLINE TRACK
BEVIATION FROM NOMINAL TEST HARDWARE:
B-END TRUCK HAS BEEN MODIFIED
TO TAKE FRICTION SNUBBER FORCE
MEASUREMENT SYSTEM
              MEASUREMENT SYSTEM
VERBAL DESCRIPTION OF TEST:
THIS TEST IS BEING RUN USING THE
FRICTION SNUBBER FORCE MEASUREMENT
SYSTEM. THIS RUN HAS THE HODIFIED
ASF TRUCK UNDER THE FULLY LUADED
HOPPER CAR AT THE B-END.
DETAILS OF THE TEST ARE CONTAINED
IN THE TEST PLAN (C-901-0001-A)
AND THE DETAILED TEST PROCEDURE
(C-901-0005-A).
                                                 AND THE DETAILED TEST PROCEDURE
(C-901-0005-A).
THIS TEST RUN STARTS AT 50 MPH
AT AT EPOST 323 AND CONTINUES
UNTIL MP 324.5 WHERE THE SPEED STA
DECREASING DOWN TO 5 MPH AT THE
END OF THE TEST AT MP 326.8.
23 END OF THE TEST AT MP 326
24 -1
25 MEAS F10 CHAN 35 SMITCHED TO
26 MEAS A10 CHAN 25. A10 DELETED.
27 -1
```

Table 2-5. Test Condition Summary File

Table 2-6. Channel Description File

A/D	CHANNEL			POSITIV
NUMBER	ID & DESCRIPTION	UNITS	ZERO CAL	CAL
1	S 1 - Car Velocity	МРН	0.000	50.000
2	S 2 - Automatic Location Detector	TTL	0.000	5.000
3	F 1 - FS4 Upper Normal Force	Pounds	0.000	2912.000
4	F 2 - FS4 Lower Normal Force	Pounds	0.000	3012.00
5	F 3 - FS4 Upper Lateral Force	Pounds	0.000	1644.00
6	F 4 - FS4 Lower Lateral Force	Pounds	0.000	1488.00
7	F 5 - FS4 Vertical Force	Pounds	0.000	1499.00
8	F 6 - FS3 Upper Normal Force	Pounds	0.000	2871.00
9	F 7 - FS3 Lower Normal Force	Pounds	0.000	2824.00
10	F 8 - FS3 Upper Lateral Force	Pounds	0.000	1654.00
11	F 9 - FS3 Lower Lateral Force	Pounds	0.000	1677.00
12	F10 - FS3 Vertical Force	Pounds	0.000	1268.00
13	D 1 - RT FT Spring Group Vert Disp	Inches	0.000	0.51
14	D 2 - RT RR Spring Group Vert Disp	Inches	0.000	0.47
15	D11 - RT Carbody/Bolster Vert Disp	Inches	0.000	2.05
16	A 1 - B-End Center Plate Vert Accel	G's	0.000	5.45
17	A 2 - A-End Center Plate Vert Accel	G's	0.000	5.38
18	A 3 - B-End Outboard Vert Accel	G's	0.000	3,16
19	A 4 - A-End Outboard Vert Accel	G's	0.000	3.25
20	A 5 - B-End Lateral Accel		0.000	3.43
		G's		
21	A 6 - A-End Lateral Accel	G's	0.000	5.45
22	A 7 - RT Side Frame Vert Accel	G's	0.000	1.61
23	A 8 - LF Side Frame Vert Accel	G's	0.000	-1.58
24	A 9 - RT Side Frame Over Range V Accel	G's	0.000	35.54
25	A10 - LF Side Frame Over Range V Accel	G's	0.000	34.83
26	F11 - FS1 Lower Normal Force	Pounds	0.000	2835.00
27	F12 - FS1 Lower Normal Force	Pounds	0.000	2808.00
28	F13 - FS1 Upper Lateral Force	Pounds	0.000	1671.00
29	F14 - FS1 Lower Lateral Force	Pounds	0.000	1574.00
30	F15 - FS1 Vertical Force	Pounds	0.000	1518.00
31	F16 - FS2 Upper Normal Force	Pounds	0.000	2914.00
32	F17 - FS2 Lower Normal Force	Pounds	0.000	2805.00
33	F18 - FS2 Upper Lateral Force	Pounds	0.000	1607.00
34	F19 - FS2 Lower Lateral Force	Pounds	0.000	1607.00
35	F20 - FS2 Vertical Force	Pounds	0.000	1480.00
36	D 3 - LF FR Spring Group Vert Disp	Inches	0.000	0.52
37	D 4 - LF RR Spring Group Vert Disp	Inches	0.000	0.51
38	D12 - LF Carbody/Bolster Vert Disp	Inches	0.000	2.05
39	D 5 - RT FR Bolster/Side Frame Lat Disp	Inches	0.000	1.00
40	D 6 - RT RR Bolster/Side Frame Lat Disp	Inches	0.000	1.00
41	D 7 - RT Bolster/Side Frame Rotation	Inches	0.000	1.00
42	D15 - RT Bolster/Side Frame Long. Disp	Inches	0.000	1.00
43	D 8 - LF RR Bolster/Side Frame Lat Disp	Inches	0.000	1.00
44	D 9 - LF FR Bolster/Side Frame Lat Disp	Inches	0.000	1.00
45	D10 - LF Bolster Side Frame Rotation	Inches	0.000	1.00
46	D16 - LF Bolster/Side Frame Long. Disp	Inches	0.000	1.00
47	D13 - Center Plate Rotation Forward	Inches	0.000	-0.76
48	D14 - Center Plate Rotation Back	Inches	0.000	-0.79

The fourth file on the data tapes is the pretest calibration file and is described in detail in paragraph 2.4.4. The raw data file contains the test data acquired during a test. It is written in multiplexed format with the data for one time point written sequentially through the run.

At the completion of each run, a post test calibration was conducted and the results were written on the test tape. Finally, any post test comments were entered on

an information file.

During the tests, each test run was written on a single tape. At the completion of the entire test program, the tapes were edited to correct errors and omissions, such as test car weights which were often not available when the test was run. The data files run from each were then written, two test runs on a tape, starting with tape number 201.

2.4 INSTRUMENTATION

2.4.1 Data Channel Description

Forty-eight channels of data were acquired during the FSFMS test program. They consisted of 20 channels of friction snubber forces, 16 displacements, 10 accelerations, vehicle speed, and ALD detection. The instrumentation list is given in Table 2-7. This list is included in each tape header as the third file in the format previously described in Table 2-6. Dual identifiers are used for each channel. The measurement identifier is a generic designation for each channel and is the description used in planning and running the test program. The A/D channel is the digital channel number on which each of the measurements was written and is the identifier which was used when addressing the channels for data reduction. Table 2-7 also includes the location description and the units associated with each channel.

2.4.2 Location

The instrumentation was located on the B-end truck and at both the A- and B-ends of the carbody. The truck instrumentation consisted of force transducers in each friction snubber group and displacement and acceleration measurements on the bolster and side frames. Typical instrumentation is shown in the photographs of the bolster/side frame in Figure 2-7, A and B. For this instrumentation, an aluminum bracket was bolted to the side frame and another to the bolster. The eddy current transducers (D5, D6, D7, and D15 shown in Figure 2-7) were attached to the bracket on the bolster to sense the distance from the transducer to a target, in this case, the bracket on the side frame. The bending beam transducers (D1 and D2), were mounted to the bolster bracket and attached by wire at the other end to the side frame bracket. As the bolster/side frame move relative to each other in the vertical direction, the amount of bending in the beam measured by strain gages increases or decreases. The amount of motion is directly proportional to this change and is calibrated using a known displacement. Eddy current transducers are shown in Figure 2-8, A and B.

Before testing the ASF truck, the center of the side frame bracket was removed (see Figure 2-7B) to permit access to the fricion snubber pins so they could be pinned back during calibration.

Two string potentiometers were used to measure the center plate rotation (shown in Figure 2-9). The string potentiometers were mounted on a bracket secured to the bolster. The strings were extended and tied to the truck body bolster at the longitudinal centerline of the carbody. As the center plate rotates, one string potentiometer is extended and the other is retracted.

The carbody/truck bolster rotation was measured by string potentiometers shown in Figure 2-10, A and B. The string potentiometer was mounted on the carbody bolster and the string attached to the truck bolster. The string potentiometer arrangement was used on both sides of the Barber truck (Figure 2-10A). Prior to the start of testing on the ASF truck, the right string potentiometer failed and was replaced by a linear potentiometer as shown in Figure 2-10B.

Typical carbody and side frame accelerometer installations are shown in Figure 2-11, A and B. The carbody

accelerometers were mounted on brackets welded to the carbody. An outboard vertical (A3) and lateral (A5) accelerometer are shown in Figure 2-11A. The accelerometers on the truck (Figure 2-11B) were mounted with dental cement directly to the side frame. Each side frame had a 5-G and an overrange 50-G accelerometer mounted on them. However, evaluation of the results showed the one 5-G accelerometer was completely adequate to measure side frame acceleration without saturating.

2.4.3 Signal Conditioning

The data from the transducers on the test vehicle were routed to the junction boxes (see Figure 2-7A) on each side of the ear. Large transfer cables were used to route the signals to car 210 and the signal conditioner from the junction boxes. Ectron signal conditioning was used for the following transducers: all friction snubbers, all accelerometers, all bending beams, and the two truck/carbody bolster string potentiometers. All signals routed through the Ectron signal conditioner were filtered at 20 Hz. The Ectron signal conditioners proved to be a constant source of trouble during the course of the entire test. Most of them were kept on-line by continuous repair work; however, some data channels were lost due to failure of these conditioners, as noted in Section 3.

The eddy current transducers (measurements D5-D10 and D15-D16) were routed through the Dynamics signal conditioner only for purposes of filtering. No signal amplification is required for these transducers. The filtering was done at 25 Hz.

The two string potentiometers for center plate rotation (D13 and D14) were routed through the B and F and Dana signal conditioners. They were filtered at 100 Hz.

2.4.4 System Calibration

All instrumentation was calibrated before the start of the test program. Some transducers, such as the friction snubber force measurement system, were calibrated by the manufacturer before delivery and were supplied with calibration curves. Other transducers, such as the accelerometer from Phase I, were sent to a calibration laboratory for recalibration before the start of testing. Finally, others, such as the eddy current transducers, were field-calibrated by using a known displacement and measuring the output.

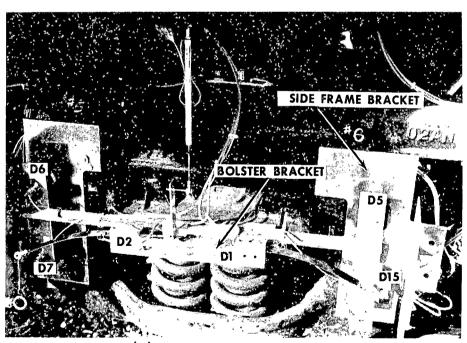
Before the start of testing on each truck type, each of the friction snubber groups was backed off (i.e., all the forces were removed) and a zero-calibration value was obtained so the subsequently measured forces on all the friction snubbers were the total force. The friction shoes were backed off on the Barber truck by jacking the bolster up, and on the ASF truck by pinning the friction shoes back.

As a part of the calibration procedure conducted just before and after each test run, a shunt resistance calibration on all resistive transducer elements was done. With the consist stationary, the static (zero) setting response of each channel was recorded. Insertion of shunt resistance into the positive resistive bridge leg was then made for each channel. Both the zero and positive calibrations were obtained from the computer and reviewed for acceptability before recording onto magnetic tape.

Table 2-7. Instrumentation List

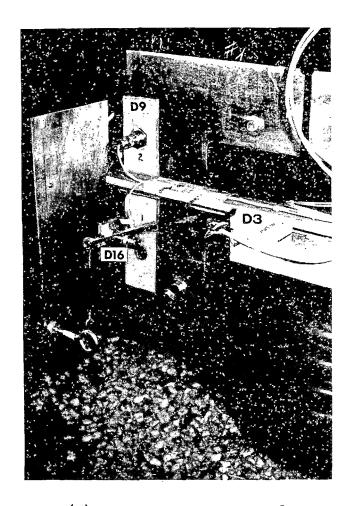

[<u> </u>	<u> </u>		7
Measurement Identification	A/D Channel	Description	Location	Unit
S1	1	Car Speed		MPH
S 2	2	Car Location (ALD)	Car 210	
F1	3	Friction Snubber 4-UN	Right Front Spring Group	Pound
F2	4	Friction Snubber 4-LN	Right Front Spring Group	Pound
F3	5	Friction Snubber 4-UL	Right Front Spring Group	Pound
F4	6	Friction Snubber 4-LL	Right Front Spring Group	Pound
F5	. 7	Friction Snubber 4-V	Right Front Spring Group	Pound
F6	8	Friction Snubber 3-UN	Right Rear Spring Group	Pound
F7	9	Friction Snubber 3-LN	Right Rear Spring Group	Pound
F8	10	Friction Snubber 3-UL	Right Rear Spring Group	Pound
F9	11	Priction Snubber 3-LL	Right Rear Spring Group	Pound
F10	12	Friction Snubber 3-V	Right Rear Spring Group	Pound
F11	26	Friction Snubber 1-UN	Left Front Spring Group	Pound
F12	27	Priction Snubber 1-LN	Left Front Spring Group	Pound
F13	28	Friction Snubber'1-UL	Left Front Spring Group	Pound
F14	29	Friction Snubber 1-LL	Left Front Spring Group	Pound
F15	30	Friction Snubber 1-V	Left Front Spring Group	Pound
F16	31	Friction Snubber 2-UN	Left Rear Spring Group	Pound
F17	32	Friction Snubber 2-LN	Left Rear Spring Group	Pound
F18	33	Friction Snubber 2-UL	Left Rear Spring Group	Pound
F19	34	Friction Snubber 2-LL	Left Rear Spring Group	Pound
F20	35	Friction Snubber 2-V	Left Rear Spring Group	Pound
Di	13	Vertical Displacement	Right Front Spring Group	Inch

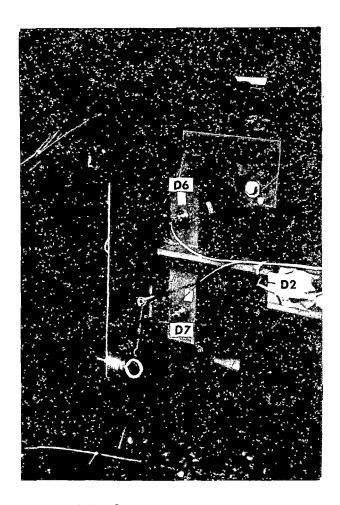
Unit
Unit
Group Inch
roup Inch
roup Inch
Group Inch
Group Inch
g Group Inch
iroup Inch
roup Inch
Group Inch
ter Inch
er Inch
Inch
inch
Frame Inch
rame Inch
: G
. G
G
G
G
G
G
G
verrange G
errange G


NOTE:

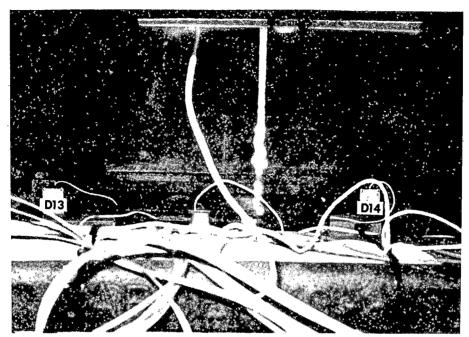
UN = Upper Normal LN = Lower Normal

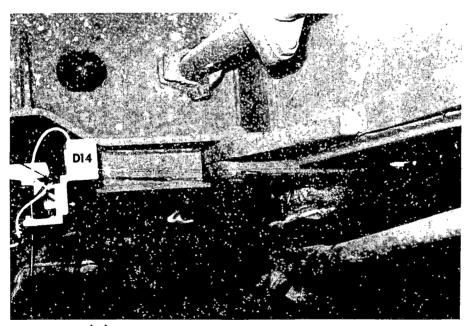
UL = Upper Lateral LL = Lower Lateral V = Vertical




(A) BARBER TRUCK, RIGHT SIDE

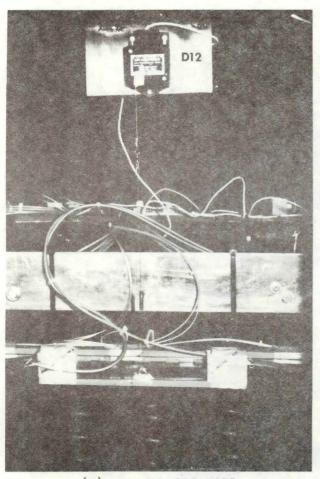
(B) ASF TRUCK, RIGHT SIDE


Figure 2-7. Typical Truck Instrumentation

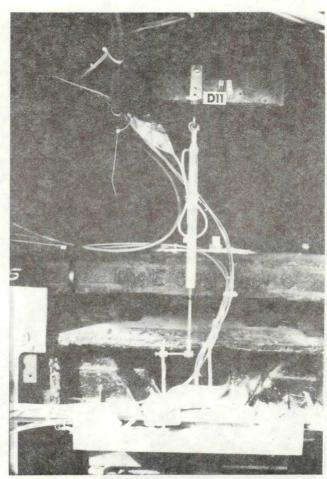


(A) BARBER TRUCK, LEFT FRONT (B) ASF TRUCK, RIGHT REAR

Figure 2-8. Eddy Current Transducers

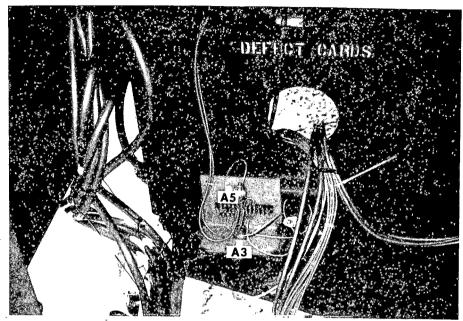


(A) SIDE VIEW LOOKING TOWARD CENTER PLATE



(B) END VIEW LOOKING TOWARD COUPLER

Figure 2-9. Truck Center Plate Rotation String Potentiometers



(A) BARBER LEFT SIDE

(B) ASF RIGHT SIDE

Figure 2-10. Carbody Rotation Potentiometers

(A) BARBER CARBODY ACCELEROMETERS

(B) BARBER TRUCK ACCELEROMETERS

Figure 2-11. Accelerometer Installation

An example of the calibration file written on tape is contained in Table 2-8. The first column shows the zero, or low calibration; the second gives the positive, or high calibration. The difference between these two columns is equated to the difference in engineering unit values contained in Table 2-6 to obtain a conversion factor for the test data (i.e., the engineering units/volt conversion constant).

Table 2-8. Typical Calibration File

TDOD 11 F0540	007					i
TDOP-11-FSFMS-	007					- 1
CHANNEL NO.		CAL =	0.00000		CAL =	5.1190
CHANNEL NO.	2 L0	CAL =	0.00000		CAL =	4.9990
CHANNEL NO.		CAL =	0.00000		CAL =	5.0088
CHANNEL NO.	4 LD	CAL =	0.00000		CAL =	5.0289
CHANNEL NO.	5 LU	CAL =	0,00000		CAL =	5.0488
CHANGLE NO.	6 LO	CAL =	0.0000	HI.	ÇAL ≃	5.0390
CHANNEL NO.	7 LO	CAL =	0.00000		CAL =	5.0188
CHANNEL NO.	B LO	CAL =	0.0000		CAL =	4.9990
CHANNEL 1:0.	9 LO	CAL =	0.0000		CAL =	5.0289
CHANNEL NO.	16 LO	CAL =	0.00000	ΗI	CAL =	5.0289
CHAUGEL NO.	11 LO	CAL =	0.00000	HI	CAL =	5.0188
CHANNEL NO.	12 LO	CAL =	0.00000	ΗI	CAL =	5.0086
CHANNEL NO.	13 LO	CAL =	-7.5452	ΗI	CAL =	-6.0852
CHANNEL NO.	14 LC	CAL = -	-8.0986	ΗI	CAL =	-6.6122
CHANNEL NO.	15 LO	CAL =	-0.56810	ΗI	CAL =	0.22584
CHANNEL NO.	16 LO	CAL =	0.91557E-02	HI	CAL =	8.4467
CHANNEL 110.	17 LU	CAL =	0.18617E-01	HI	CAL =	8.4272
CHANNEL NO.	18 LD	CAL =	0.86979E-01	ΗI	CAL =	8.6469
CHANNEL NO.	19 LO	CAL =	0.73246L-02	HI	CAL =	8.2606
CHANNEL NO.	Su LO	CAL =	0.88505E-02	HI	CAL =	6.4467
CHANNEL NO.	21 LO	CAL =	0.18617E-01	ΗI	CAL =	8.5884
CHANNEL NO.	25 FO	CAL =	1.0734	ΗI	CAL =	2.7336
CHANNEL NO.	23 LO	CAL =	1.2003	HI	CAL =	2.9289
CHANNEL NO.		CAL"=	0.96745E-01	ΗI	CAL =	8.2462
CHANNEL NO.	25 LO		-1.4307	HI	CAL =	-0.73490
CHANNEL NO.	56 F0	CAL =	0.00000	HI	CAL =	5.0289
CHANNEL NO.		CAL =	0.00000	HI	CAL =	5.0390
CHANNEL NO.	28 LO	CAL =	0.00000	HI	CAL =	5.0188
CHANNEL NO.	29 L0	CAL =	0.0000	HI	CAL =	5.0188
CHANNEL NO.		CAL =	0.0000	ΗI	CAL =	5.0588
CHAINNLL NO.		CAL =	0.0000	ΗI	CAL =	5.0390
CHANNEL NO.		CAL =	0.0000	HI	CAL =	4.9587
CHANNEL NO.	33 LO	CAL =	0.0000	ΗI	CAL =	5.0289
CHANNEL NO.	34 LO		0.0000	HI	CAL =	4.9990
CHANNEL NO.	35 LD		0.00000	HI	CAL =	4.9990
CHANNEL NO.		CAL =	-7.8394	HI	CAL =	-6.3782
CHANNEL NO.		CAL =	-7.0325		CAL =	-5.5676
CHANNEL NO.		CAL =	-0.57986E-02	HI	CAL =	0.79990
CHANNEL NO.		CAL =	0.00000		CAL =	0.99980
CHANNEL NO.	40 LO		0.00000		CAL =	0.99980
CHANNEL NU.		CAL =	0.0000		CAL =	0.99980
CHANNEL NO.	42 L0		0.0000		CAL =	0.99980
CHANNEL NO.		CAL =	0.00000		CAL =	0.99980
CHANNEL NO.		CAL =	0.00000		CAL =	0.99980
CHANNEL NO.		CAL =	0.0000		CAL =	0.99980
CHANNEL NO.	46 LO		0.00000		CAL =	0.99980
CHANNEL NO.		CAL =	0.00000	ΗĪ		0.99980
CHANNEL NO.		CAL =	0.00000		CAL =	0.99980
CHAMILE NO.	40 LU		-10000			

SECTION 3 - TEST RUNS

3.1 PROCEDURE

The FSFMS test program was conducted over the main and branch lines of the Union Pacific South Central District, California division, outside of Las Vegas, Nevada. Two test zones were used for the test. Test zone 1 (Figure 3-1) consists of a class 2 branch line track with both tangent and curved track. The curves range from 2 to 7 degrees. Test zone 2 (Figure 3-2) consists of a class 4 main line tangent track. Both zones are jointed track.

The test procedure specified one pass through each zone, starting at a constant speed of 20 mph for zone 1 and 50 mph for zone 2. Halfway through the zone, the speed was decreased to near zero at the end of the zone. Typical speed profiles for the two zones are shown in Figure 3-3.

In order to locate the test car position in each zone, an automatic location detector (ALD) system was developed by Wyle and installed before the start of testing. The system relied upon detection of a magnetic field propagated by a cylindrical magnet, 3/4 inches in diameter and 4 inches long. A hole was drilled in the center of a tie at each ALD location and the magnet was buried in the tie. A sensor was installed under the mobile laboratory car to detect the magnetic field when the car passed over it. This ALD system was installed before the start of any testing on TDOP Phase II, and will be used for all tests (track geometry, FSFMS, and Types I and II trucks). Thus, it is possible to correlate results between the various tests. See paragraph 5.5.3 for an example of data correlation between FSFMS test results and track geometry results.

The FSFMS test data were recorded as a function of time, for example, 200 samples/second. However, a distance channel was created as part of the post processing by integration of the speed channel starting at detection of the first ALD. It is thus possible to plot data versus either time or milepost. Typical plots of ALD detection versus milepost are shown in Figure 3-4. A complete listing of the mileposts at which the ALD was detected is shown in Table 3-1 for all test runs. It shows excellent repeatability between test runs and there is no problem in comparing data from one run to the next. For each test run, a listing was obtained as part of the data reduction which listed the milepost versus time for each run. An example of this type of listing is contained in Appendix B. From these listings, it is easy to transfer back and forth between the time and distance domains.

The test program was run in two test series, the first with the Barber S-2 truck and the second with the ASF Ride Control truck. Each series was conducted with three lading conditions: empty, half loaded, and fully loaded. Each of the lading conditions was run over both test zones 1 and 2. The complete test matrix is defined in Table 3-2. The test ID specified in Table 3-2 for each run is the identifier used on the plots presented in the data analysis section.

Each hopper car was loaded with $1\frac{1}{2}$ -inch coarse gravel from a rock quarry at Sloan, Nevada (Figure 3-5). Tenton dump truck loads were used to fill each car. At some point in the testing of each lading configuration, the test cars were weighed. The actual weights of the three lading configurations for the two carbodies are contained in Figures 2-2 and 2-3. Typical lading conditions are shown in Figure 3-6, A and B.

3.2 CONSIST

The test consist for all test runs, shown in Figure 3-7, A and B, was made up of the locomotive, mobile laboratory car 210, forward buffer car, test car, rear buffer car, and caboose. Loaded, open hopper cars were used for the buffers and were configured as follows:

	Car Number	Weight
Forward Buffer	UP 88006	132,500 lb
Rear Buffer	UP 90937	180,500 lb

The test car was always located in the consist so that the B-end was leading.

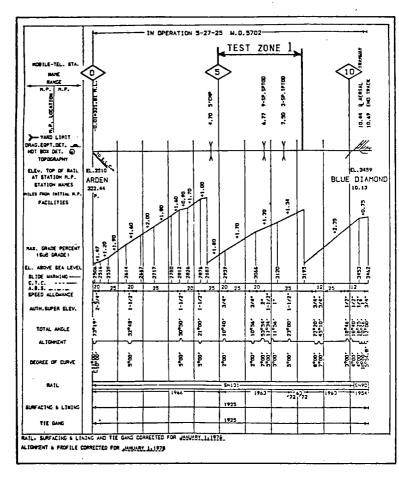


Figure 3-1. Track Profile - Test Zone 1

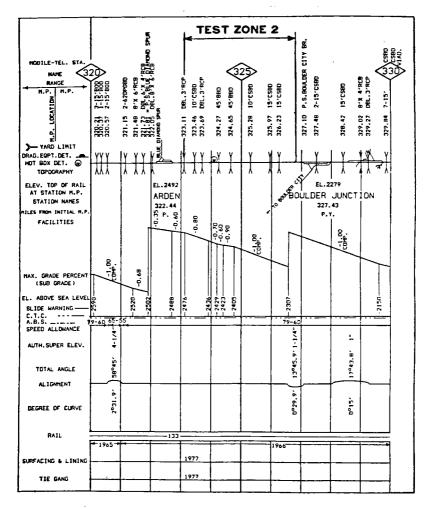
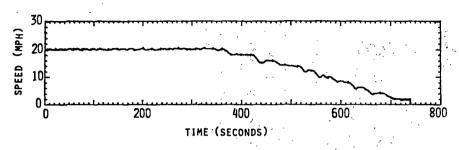



Figure 3-2. Track Profile - Test Zone 2

ZONE 2 SPEED PROFILE

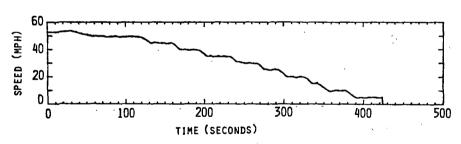
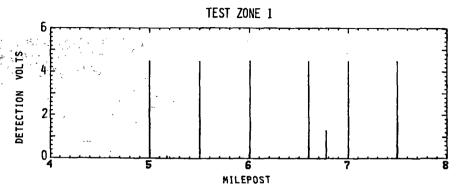
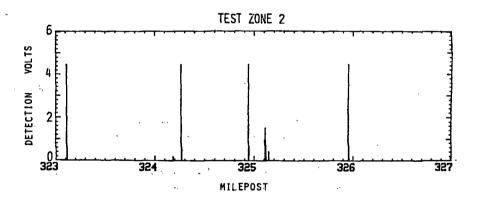




Figure 3-3. Typical Speed Profiles

0.00 TO 740.46 SECS

S 2 - AUTOMATIC LOCATION DETECTOR TDOP-II-FSFMS- 007

0.00 TO 423.78 SECS

S 2 - AUTOMATIC LOCATION DETECTOR

Figure 3-4. ALD Locations

TEST ID	TDOP TAPE NUMBER	TRUCK	ZONE	LADING
TDOP-II-FSFMS-001	201	Barber	i	Empty
TDOP-II-FSFMS-002	201	Barber	2	Empty
TDOP-E-FSFMS-003	202	Barber	1	Half Loaded
TDOP-E-FSFMS-004	202	Barber	2	Half Loaded
TDOP-II-FSFMS-005	203	Barber	1	Loaded
TDOP-II-FSFMS-006	203	Barber	2	Loaded
TDOP-II-FSFMS-007	204	ASF	1	Empty
TDOP-II-FSFMS-008	204	ASF	. 2	Empty
TDOP-II-FSFMS-009	205	ASF	1	Half Loaded
TDOP-II-FSFMS-010	205	ASF	2	Half Loaded
TDOP-II-FSFMS-011	206	ASF	1	Loaded
TDOP-II-FSFMS-012	206	ASF	2	Loaded

				ZONE 1			
	Run	No. 001	003	005	007	009	01
MP	5	5.000	5.000	5.000	5.000	5.000	5.00
MP	5.5	5.502	5.502	5.502	5.502	5.502	5.50
MP	6	6.000	6.001	6.000	6.000	6.000	6.00
MP	6.6	6.593	6.594	6.593	6.594	6.594	6.59
MP	7	7.000	7.000	7.000	7.000	7.000	7.00
MP	7.49	7.498	7.499	7.498	7.498	7.498	7,49
				ZONE 2			
	Run	No. 002	004	006	800	010	01:
MP	323.11	323.109	323.110	323.109	323.110	323.110	323.110
MP	324.27	323.268	324.268	324.259	324.268	324.268	324.26
MP	324.95	324.930	324.939	324.940	324.939	324.940	324.94
MP	325.97*				325.951	325.952	325.953

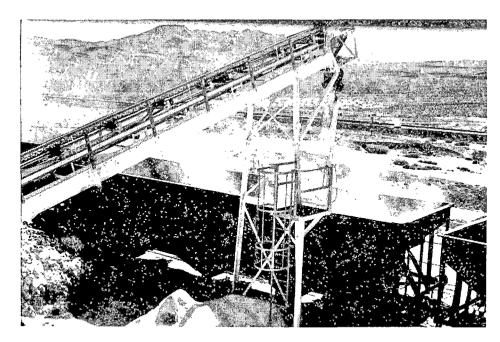
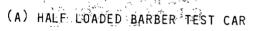
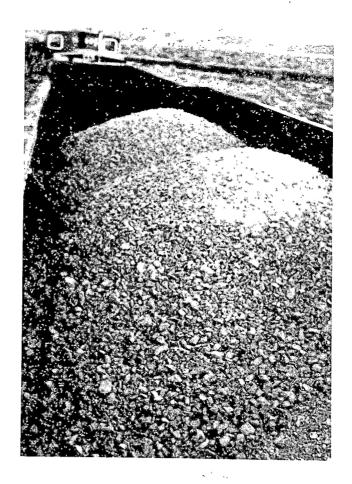
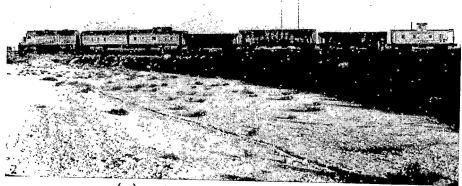
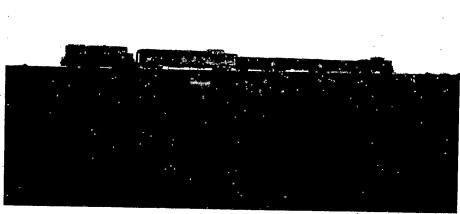




Figure 3-5. Loading Test Car





(B) FULLY LOADED ASF TEST CAR

Figure 3-6. Typical Lading Conditions

(A) BARBER TRUCK TEST CONSIST

(B) ASF TRUCK TEST CONSIST

Figure 3-7. Test Train Consist

3.3 BARBER TRUCK TEST

The Barber truck test configuration was prepared for the first series of test runs. The instrumentation is described in paragraph 2.3. Preparation of the test car and checkout of instrumentation were performed between November 13 and 28, 1978. The first test run with an empty carbody and the Barber truck was conducted on November 29. Runs through both zones 1 and 2 were successful. At the end of the pass through zone 2, noise floor data were recorded for 60 seconds. This procedure is described in Section 5 (paragraph 5.5.1), where some sample plots of the data also are given. At the completion of the test pass through zone 2, a special test run was made through the zone in which various levels of braking force were applied to provide data for a future evaluation of the effects of brakes on the friction snubber operation.

The test car with the Barber truck was half loaded at the Sloan quarry on November 30, 1978. In a pretest calibration for the run through zone 1, measurement D7 signal conditioning was defective and this channel was lost. It was repaired the next morning, and since no analyses have been done to date which require this measurement for a half loaded vehicle, the test results have not been affected. Should this information become necessary, the roll rotation measurement on the other side frame should be sufficient. The first start through zone 1 missed the ALD at milepost 5.0, so the consist was backed up and started a second time. The data acquisition computer was stopped and restarted, therefore, test 003 starts at record 480. The pass through zone 2 resulted in excessive parity errors on tape; the pass was rerun successfully on December 1, 1978.

A fully loaded test run of the Barber truck was conducted on the afternoon of December 1, 1978. Review of the quick-look data from the first pass through zone 1 showed clipping of the lower normal forces. Therefore, the gains for all these channels were reduced by a factor of 2 and the test was repeated. The gains were left the same for the pass through zone 2. Rain hampered operations and some channels started showing questionable data toward the end of the run through zone 2. However, quick-look data indicated sufficient data were available to accept the test results.

3.4 ASF TRUCK TEST

The completion of instrumentation of the ASF truck was accomplished between December 2-5, 1978. Runs with the ASF truck and the empty carbody were made on December 6, 1978. Before the start of testing, signal conditioning to F17 was lost, so the amplifier was changed from A10 to F17 and the test was conducted without A10. Measurement A10 is an over-range acceleration measurement duplicating measurement A8. Since A8 provided the required information, the loss of A10 had no effect on the analysis of the test data. Test runs through zones 1 and 2 were successfully completed. As with the Barber truck, a special test run was conducted through zone 2 where the brakes were applied.

During checkout, the D15 transducer was found to be defective, so the remainder of the test was conducted without it. D15 is a measurement of the longitudinal displacement of the side frame relative to the bolster. This measurement did not involve any of the primary objectives of the test program; it was added to provide

secondary information, if required. Quick-look data indicated little motion in this direction and the measurement being made on the other side (D16) will provide sufficient information. To date, the loss of this measurement has had no effect on data analysis. The half loaded test runs (009 and 010) through zones 1 and 2 were conducted successfully. At the completion of test run 010, noise floor data were recorded for 60 seconds.

The ASF test car then was fully loaded and prepared for the two final test runs on December 8, 1978. During pretest checkout, A/D channel 33 became defective. Measurement F18 on channel 33 was moved to channel 25 for the two final tests. Test run 011 was successfuly completed through zone 1. Quick-look data obtained through zone 2 (run 012) showed some data clipping. Gains on F2, F5, F7, F10, F12, F15, F17, and F20 were reduced by 2 and the test was rerun. Quick-look data were acceptable and the test program was completed.

SECTION 4 - DATA ACQUISITON

4.1 REAL-TIME AND QUICK-LOOK

Real-time and quick-look data were acquired for all test runs to provide an immediate review of data quality and to determine any requirements for retest.

Real-time data consisted of a brush recorder display of the analog time history of six selected channels. The signals from the signal conditioner were patched to the brush recorder to obtain this display. An example of a short section of this display is contained in Figure 4-1. It shows the start of test run 011. The ALD detection at the start of the zone at milepost 5.0 is shown. About half way through this plot, the brush recorder was speeded up which accounts for the change in time scale. This chart was monitored by the instrumentation engineer during the entire test to monitor data quality.

At the computer cathode ray tube (CRT), a real-time display of ALD detections was provided to verify the digital recording of the ALD. This display was summarized at the completion of the run as shown in Table 4-1, which also contains a summary of the data quality. The summary shows the total distance traveled, number of records recorded, test duration, and ALD detected. It also lists the number of samples or scans missed, and if any transfer records were missed (a transfer record consists of 42 scans).

The record count summary in Table 4-1 was used to locate the portions of the tape to be used for quick-look data reduction. The quick-look data display consisted of a strip chart of five seconds of data for each channel. An example of a partial display is shown in Figure 4-2. Usually, the quick-look display was done at the start of the run to verify ALD detection. Sometimes, a second quick-look display was made later in the run if there was any question about the data quality. If the review of this quick-look data was satisfactory, the run was considered acceptable.

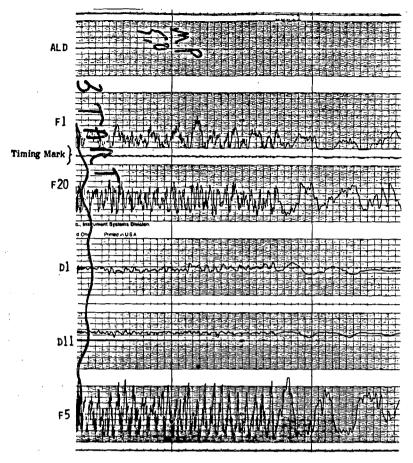
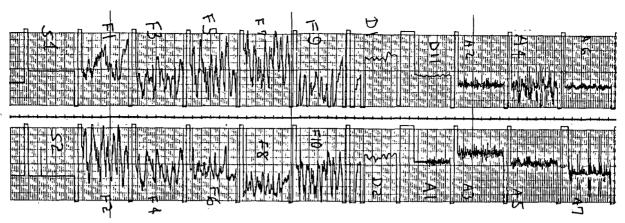
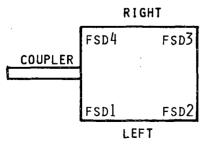


Figure 4-1. Typical Real-Time Data Display

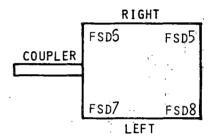
Table 4-1. Quick-Look Tape Quality Display

```
TDOP-II-FSFMS-012
                21:33
     12/ 8/78
                          3.78 MILES
 DISTANCE TRAVELED =
                             1928
 DATA RECORDS RECORDED -
                          6.7 MINUTES
 DURATION OF TEST WAS
 TOTAL XFER REJ
 TOTAL ALD'S -
 TOTAL SCANS MISSED -
 ALD MP-MILEAGE. VELOC. REC COUNT
                                             445
682
682
         2
3
4
5
                                 45.67
                                             1145
```



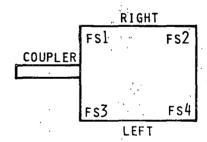

Figure 4-2. Partial Quick-Look Data Display

4.2 DATA REDUCTION


Based upon experience gained from running the test and a brief data review, data taken over five sections of track were chosen for reduction. These five sections are specified in Table 4-2 along with the rationale for choosing each section. Three sections of track were chosen from test zone 1 and two sections from test zone 2 for data reduction. For each test car configuration, data were taken in each of the five track sections for 20 to 50 seconds.

The first step in the data reduction was a quick-look display of the engineering data for each channel in the selected zone. For a trial case, test TDOP-II-FSFMS-011 was selected for data reduction. The time period selected was from 340 to 390 seconds. The reduced data for this run are shown in Appendix C.

The second step in the data reduction process was calculation of the data reduction parameters defined in reference 2. These are reproduced in Table 4-3 and consisted of friction shoe parameters, side frame/bolster relative motion, truck/carbody relative motion, and carbody accelerations. Table 2-7 lists the conversion from the measurement ID nomenclature to the A/D nomenclature used in the data reduction. There were eight friction snubber devices manufactured and calibrated for the friction snubber test program. They were mounted on the trucks in the following locations:



BARBER TRUCK

ASF TRUCK

For purposes of data reduction and analysis, each friction snubber position was assigned a designation as follows:

The diagram above shows a schematic of the B-end truck and the nomenclature for measurement references. The right- and left-hand side of the truck are noted on the diagram. The right forward friction snubber is denoted by FS1, right rear by FS2, etc. This nomenclature was used for both the Barber and ASF trucks so comparisons could be easily made between the trucks.

In order to compare plotted variables within and between runs, a consistent set of scales was used. For example, all forces were plotted on a scale of -4000 to 16,000 lb. To make the display of the data easier to read, the mean value was removed from all displacement measurements (both linear and rotational). The mean values for the car rigid body motions (linear and angular accelerations) were removed and filtered at 10 Hz.

Table 4-2. Selection of Data Reduction

TEST ZONE 1

Section 1: Milepost 5.50 to Milepost 5.78

This is a section of tangent, branch line track. A review of track geometry shows this section to have as high a crosslevel variation (+.3 inch) as any section in the test zone. The test data reviewed show the fully loaded hopper car to have experienced maximum roll excitation in this zone. The vehicle speed in this zone was approximately 20 mph.

Section 2: Milepost 6.6 to Milepost 6.88

This is a section of curved track with a high degree of curvature (7.5 degrees). A review of track geometry also shows it to have significant misalignment (±1.0 inch). Both trucks had difficulty in tracking through this curve and showed significant truck swivel rotation. The vehicle speed in this zone was approximately 20 mph.

Section 3: Milepost 6.86 to Milepost 7.14

This section of track consists of a very short curve, followed by a reverse curve. The initial curve is 7.5 degrees followed by a 3-degree curve. The 3-degree curve is relatively smooth with a significant variation in curvature going through. Both trucks were able to track fairly well through this curve. In this zone, the train began slowing down, going from 20 mph to 15 mph.

TEST ZONE 2

Section 4: Mileoost 323.11 to Milepost 323.53

This section occurs at the beginning of the test zone with the consist moving at maximum test speed (approximately 50 mph). Immediately after milepost 323.11, the track geometry shows a significant misalignment (0.4 inches) and a variation in curvature which excited the body modes of a loaded hopper car.

Section 5: Milepost to be Determined

This section of data occurs at different milepost locations for each truck. The excitation in the roll direction will be reviewed for each vehicle configuration tested and the vehicle speed at which the largest amplitudes occur will be used for data reduction.

Table 4-3. Data Reduction Parameter Calculations*

1able 4-5. Data reduction ratameter	
Friction Shoe Parameters	
Normal (Column) Load (F _n)	F _{un} + F _{£n}
Lateral Friction Force (Fg)	Fut + Fat
Vertical Friction Force (F _v)	F _v
Priction Coefficient	$\frac{\sqrt{(F_{ul} + F_{ll})^2 + F_{v}^2}}{(F_{un} + F_{ln})}$
Lateral Energy Dissipation	$\sum_{i=1}^{N} \frac{ \mathbf{F}_{2i} + \mathbf{F}_{2i+1} }{2} \cdot \Delta \mathbf{x}_1 $
(N time intervals)	$i=0$ $\frac{2}{ \Delta x_1 }$
Vertical Energy Dissipation (N time intervals)	$\sum_{i=0}^{N} \left \frac{F_{vi} + F_{vi} + 1}{2} \right \cdot \left \Delta y_{i} \right $
Side frame/Bolster Relative Motion (Right Side Frame)	
Lateral Displacement (Ax)	(D5 + D6)/2
Vertical Displacement (∆y)	(D1 + D2)/2
Pitch Rotation	(D1 - D2)/a
Yaw Rotation	(D6 - D5)/b
Roll Rotation	(D7 - D5)/d
Truck/ Carbody Relative Displacements	•
Truck Swivel Angle	(D14 - D13)/e
Lateral Displacement	(D14 + D13)/2
Roll Angle	(D11 + D12)/2f
Carbody Acceleration	
Bounce	(A1 + A2)/2
Pitch	(A1 - A2)/L
Yaw	(A6 - A5)/L
Roll	(A3 - A1 + A4 - A2)/2g
Sway	(A6 + A5)/2
•	

*See reference 2 for a complete definition of the variables given in this table.

SECTION 5 - DATA ANALYSIS AND RESULTS

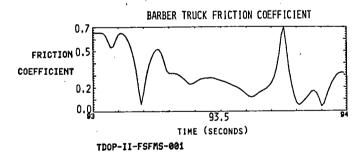
5.1 FRICTION COEFFICIENTS

One of the major objectives established in the friction snubber test plan (reference 2) was to characterize the damping or energy dissipating capabilities of the two trucks. The procedure originally planned for accomplishing this objective was to calculate friction coefficient values with the following formula to obtain an average friction value for each truck.

friction coefficient =
$$\frac{\sqrt{(F_{ul} + F_{ll})^2 + F_v^2}}{(F_{un} + F_{ln})}$$

where:

F_{up} = upper normal force measurement


F_{q,n} = lower normal force measurement

 $F_{u,Q} = upper lateral force measurement$

 $F_{\ell,\ell} = 1$ lower lateral force measurement

F_v = vertical force measurement

The initial calculations using this procedure showed a large variation in values from one time to another. After plotting some of the friction values (typical coefficients are shown in Figure 5-1), it became obvious that alternative techniques needed to be developed. The plots in Figure 5-1 show the instantaneous values of friction coefficients to be varying from nearly 0 to almost 0.9. This is because the friction groups are not always in motion, so the plots contain both static and

TDOP-II-FSFMS- 010

Figure 5-1. Typical Priction Coefficients

dynamic friction coefficients. The static coefficient may vary from zero (no friction force) to nearly twice the dynamic friction coefficients at the breakaway point. Thus, simply averaging instantaneous coefficient values is meaningless; for this reason, techniques were developed to select those coefficients associated with energy dissipation in the friction snubber.

Because energy dissipation can only occur when there is relative motion between the friction shoe and the wear plate, the determination of the coefficient of sliding friction required selection of intervals from the data wherein the greatest amount of relative motion between side frame and bolster occurred. However, since the transducer structure is not quite as rigid as the unmodified column on which the wear plate is normally mounted, breakaway of the friction shoe sometimes appeared to result in an overshoot. As the motion of the friction shoe is not directly measured, but is assumed to be equal to the measured side frame displacement with respect to the bolster, the overshoot sometimes resulted in friction forces in the direction of side frame motion, rather than in the direction opposing it.

Thus, those segments from the record in which the friction force was clearly opposed to the side frame motion, as determined by the relative velocity, were selected. The product of friction force and velocity is the rate of energy dissipation (negative because the friction force opposes the motion in the analysis) or power, and the criterion for accepting a reading for determination of the coefficient of sliding friction was that the power should be less than -250 in-lb/sec.

A chart of cut-off values for power versus friction coefficients is shown in Table 5-1. The -250 in-lb/sec cut-off was chosen to make the positive and negative energy dissipation as nearly equal as possible. As an example, note the plots in Figure 5-2 of power level versus time. The area under this curve is energy. For FS1 in Figure 5-2 the area above the zero line gives 3070 in-lb and the area below zero gives -12170 in-lb. Thus the total energy is -9100 in-lb. The percent energy below the zero in-lb/sec line is:

percent energy =
$$\frac{-12170 \text{ in-lb}}{-9100 \text{ in-lb}}$$
 = 133.7%

If the cut-off is moved down to -250 in-lb/sec, the energy below this line is now -9680 in-lb and the percent energy is calculated:

percent energy =
$$\frac{-9680 \text{ in-lb}}{-9100 \text{ in-lb}}$$
 = 106.3%

(See the friction coefficient calculations for FS1 on the ASF truck in Appendix D.)

Thus the 100 percent energy line represents the point at which the positive and negative energy are the same. From Table 5-1, 100 percent energy occurs at the -250 in-lb/sec line, and hence was chosen for this analysis.

As shown in Table 5-1, the values for the friction coefficients tend to increase as the negative cut-off power decreases.

Because the maximum motions of the friction snubbers occurred in fully loaded cars, test runs 005 and 001 were selected for analysis, using data from a section of tangent track in test zone 1, between mileposts 5.52 and 5.80.

Plots of the rate of energy dissipation are shown in Figures 5-2 and 5-3 for the ASF and Barber trucks, respectively. They clearly show that this rate is predominantly negative, i.e., the overshoot accounts for a small part of the measured behavior of the friction shoes.

The results of the analytical effort that selected snubbing regimes according to the criterion given above are contained in Appendix D. The calculations of friction coefficients, also included in Appendix D, give average sliding friction coefficients of 0.33 (0.31 - 0.36) for the Barber truck, and 0.43 (0.37 - 0.49) for the ASF truck.

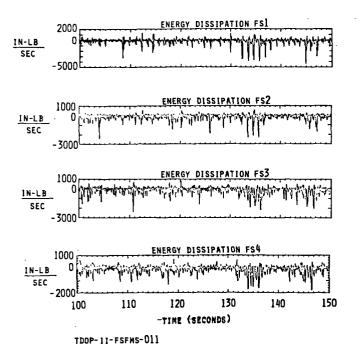
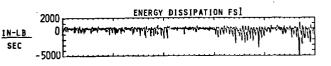
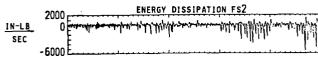
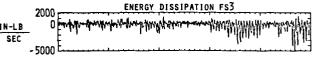
The shop tests of the instrumented trucks, documented in reference 1, were primarily intended to assure the proper functioning of the transducers assembled on the modifed trucks. No extensive data reduction was performed on the test results, and only spot checks were made to determine friction coefficients. For the Barber trucks, the value given in reference 1 is 0.24, although other values between 0.04 and 0.35 were noted. For the ASF truck, the coefficient given in reference 1 is 0.42, which agrees more closely with that determined from the results of the road tests.

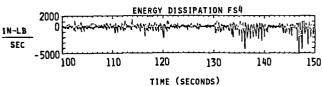
Table 5-1. Friction Coefficient vs Power (ASF Truck)

	F	S1	F	'S2	P	S3	FS4		
Power Less Than	Friction Coeff.	Percent Energy*	Friction Coeff.	Percent Energy*	Friction Coeff.	Percent Energy*	Friction Coeff.	Percent Energy*	
-250 in-lb/sec	.46	106.3	.37	81.1	.41	102.1	.49	105.5	
-500 in-lb/sec	.49	84.5	.40	49.1	.41	72.2	.43	62.8	
-1000 in-lb/sec	.51	56.5	.42	20.4	.39	30.6	.41	23.8	

 $\label{eq:percent_energy} \textbf{Percent Energy} = \frac{\textbf{energy from "power less than" value indicated}}{\textbf{total energy (positive energy - negative energy)}}$

ASF TRUCK, TEST ZONE 1

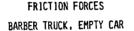






Figure 5-2. ASF Truck Energy Dissipation

BARBER TRUCK, TEST ZONE 1

TDOP-11-FSFMS-005

Figure 5-3. Barber Truck Energy Dissipation


5.2 FRICTION FORCES VS TRUCK MOTION

Five force measurements (two normal, two lateral, and vertical) were made in each friction snubber group. The two normal and the two lateral forces were combined and values of force in each of the three directions were plotted. This is shown in Figure 5-4 for the three forces in friction snubber FS2. The normal force has an offset value due to the preload, while the lateral and vertical force both oscillate about zero. Figure 5-4 shows FS2 for the empty car with the Barber truck. For contrast, plots for the loaded car with the Barber truck are shown in Figure 5-5. Again, the normal force shows an offset and the lateral and vertical forces oscillate about zero. A big change in the magnitudes of the peak values occurs from the empty car to the loaded car configuration.

A comparison of the normal forces between the Barber and ASF trucks is shown in Figure 5-6. Note that the heavier car results in a greater variation (oscillation) of the force values than the empty car configuration. In the loaded car, there is a greater oscillation of the normal force about the mean than in the empty car. As expected from the differences in the method of loading the friction shoes, the normal force in the ASF truck stays constant with car weight, while it increases with weight in the Barber truck. Table 5-2 illustrates this point where the approximate mean normal force for each friction snubber group is listed versus loading condition.

During the data analysis, it was discovered that measurement F16 was giving much higher than expected levels during the loaded runs on the Barber truck. This is readily apparent in Table 5-2 where the mean normal for FS4 is significantly higher than any of the others. It was probably caused by the strain gage getting wet in the rain during the loaded test. This high normal force resulted in unrealistically low friction forces and for this reason FS4 on the Barber truck was not included in the friction coefficient analysis in Appendix D. However, this loss is not deemed critical to the data analysis because the information provided from the other three transducers was sufficient to characterize the friction coefficient for the Barber truck. Other than the loss of the transducer, no effect of the rain on the test results has been observed in the analysis.

The correlation of the friction snubber forces with relative motions between side frame and bolster is illustrated in Figure 5-7. The one motion which most strongly correlates with the normal force is the vertical displacement in the spring group. The strong increase in normal forces at about 16 seconds correlates with a sudden increase in tram angle. However, changes in tram angle do not result in any appreciable correlation with the friction snubber forces in other parts of the record. The lateral displacement and pitch of the side frame show almost no correlation with the normal forces.

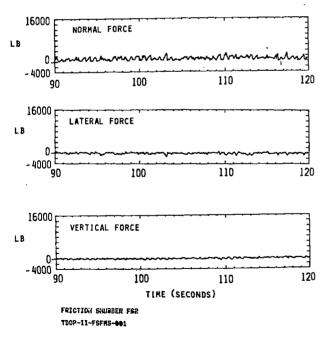


Figure 5-4. Friction Snubber Forces(Empty Car)

FRICTION FORCES BARBER TRUCK, FULLY LOADED CAR

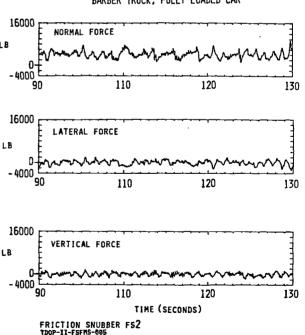


Figure 5-5. Friction Snubber Forces(Loaded Car)

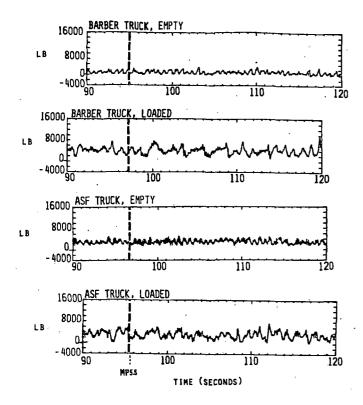


Figure 5-6. Comparison of Normal Forces in Barber and ASF Trucks

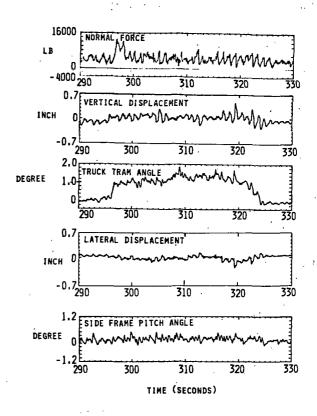


Figure 5-7. Friction Force vs Relative Motion

Table 5-2. Mean Normal Force
TEST ZONE 1

MP 5.48 - 5.64

	ŀ		For	ce (1b)	
		FS 1	FS 2	FS 3	FS 4
Barber	Empty	1500	1000	2000	1900
Truck	Half Loaded	2600	3000	3000	2900
	Loaded	3800	4000	3900	5800
ASF	Empty	3000	3000	2900	1800
Truck	Half Loaded	3100	3900	3000	1900
	Loaded	4000	3500	2800	1800

5.3 CENTER PLATE RESISTANCE TO MOTION

A preliminary review of data acquired during the FSFMS field test indicates that information on truck kinematics may be extracted, in addition to data on snubber friction discussed in paragraph 5.1. One analysis planned uses numerical methods to extract information from the data regarding center plate friction and torsional spring rate of the bolster/side frame connection. The measurements to be used in this analysis are:

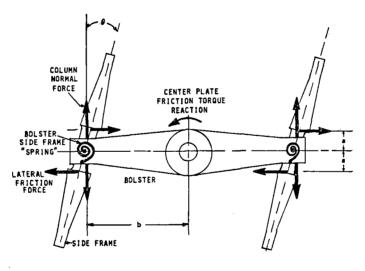
- Rotation of bolster with respect to carbody
- Rotation of side frames with respect to bolster
- Normal loads on side frame columns
- Friction couple resisting relative rotation of the side frame and bolster

In order to reduce the problem to its simplest form, dynamic effects are neglected, thus reducing the regime to statics and kinematics. Figure 5-8 shows the system under consideration.

Over a short interval, all physical constants (such as K_{+}) may be assumed to remain constant. Disregarding, for the time being, any difference between static and kinetic friction, the equation of static equilibrium is:

$$2K_{\uparrow}\theta + bF_{p} = aF_{Q} + \mu W\bar{r} = 0$$
 (Eq. 1)

The friction torque at the center plate is:


$$T_{f} = \frac{W}{A} \qquad \int_{0}^{r} 2\pi p \quad \bullet \quad pdp = \frac{W}{\pi r^{2}} \qquad \bullet \quad \frac{2\pi r^{3}}{3} = \frac{2}{3} \quad W_{r}$$

$$Thus \tilde{r} = \frac{2}{3} \quad r \qquad (Eq. 2)$$

Let W = weight on center plate

r = radius of center plate

r = friction radius of center plate

= coefficient of friction of center plate

 K_t = torsional spring rate of side frame-bolster connection (not necessarily linear)

8 = angular deflection of side frame with respect to bolster

ψ = angular deflection of bolster with respect to car body

b = offset of side frame with respect to truck center

F_ = sum of normal forces on columns

F₁ = sum of lateral friction forces at wear plates

a = offset of wear plate from center line of truck

p = unit bearing pressure on center plate

Figure 5-8. Definition Sketch of Forces Acting against Center Plate Friction Torque

Equation 1 contains two unknowns, K_{t} and μ . However, as the tests were run with both loaded and empty cars, the value of F_{n} depends upon W, as clearly evident in the test data. Thus, if two segments of the test data with equal side frame deflections are selected, one for the loaded and one for the empty car, two equations of the form (1) may be solved simultaneously for K_{t} and μ , assuming that the coefficient of friction is independent from the normal load on the center plate. Repeating these calculations for different values of side frame rotation, θ gives an indication of the extent of nonlinearity in the side frame/bolster torsional spring rate.

If calculations for the same conditions show appreciable scatter in the values of the unknowns, the least-squares method may be used to determine best-fit values.

The largest values of the normal column loads are likely to be found during curve entry and exit, where the highest side frame and bolster rotations also occur. The computation may be simplified by the fact that rotations of the bolster and side frames usually occur out of phase, as evident in test records for Phase I of TDOP.

5.4 RIDE QUALITY

A limited measure of the ride quality of the two trucks for different load conditions was made by comparing the vertical accelerations of the various configurations. This study was conducted only over one section of track in test zone 1 and at only one speed (20 mph). Comparisons between the Barber and ASF truck are shown in Figures 5-9 and 5-10, respectively. Three load conditions are shown for each truck (empty, half loaded, and loaded). In all cases, the acceleration levels were low (less than 0.05 G). Little difference was seen between the two trucks; all accelerations were slightly lower for the loaded than the unloaded condition.

As discussed in Section 6.2, additional information could be extracted which would also characterize ride quality as a function of speed and track condition.

5.5 DATA QUALITY DISCUSSION

5.5.1 Noise Floor

The test procedure called for the recording of 60 seconds of quiescent or noise floor data at the completion of one run of both the Barber and ASF trucks to insure that the signal level of the test data was greater than the noise floor. Examples of calculated parameters using data from these recordings are shown in Figures 5-11 to 5-14. Figure 5-11 shows calculations for the three force components on FS1. The normal force shows a static offset, as expected, and there is no noise visible in the data. Figure 5-12 shows no noise in the displacement calculations. The rotation and car rigid body accelerations in Figures 5-13 and 5-14 show a very small amount of noise; however, when these levels are compared with the measured responses (see Appendix C for examples), they are insignificant.

All the other noise data reduced for the FSFMS test showed similar levels. We concluded that any noise in the data is too small to be consequential in the analyzed data.

5.5.2 Track Geometry Correlation

A comparison of the truck/carbody rotation angle (Figure 5-15A) measured during the FSFMS test, and the track curvature (Figure 5-15B) measured during the FRA track survey shows excellent agreement. The plots in Figure 5-15 are from milepost 5 to milepost 8 and show the entire test run for the FSFMS test zone 1. A comparison of the track curvature measurements in Figure 5-15 and the track profile in Figure 3-1 shows the curves to agree exactly, with the exception of the second right hand curve, which the profile data list as a five-degree curve but the track survey shows it to be an eight-degree curve.

The truck follows the curvature of the track very well through the curve. Almost all of the truck center plate rotation is caused by the track geometry. However, in the tangent sections, the truck shows a significant amount of rotation not associated with the track input.

BARBER TRUCK TEST

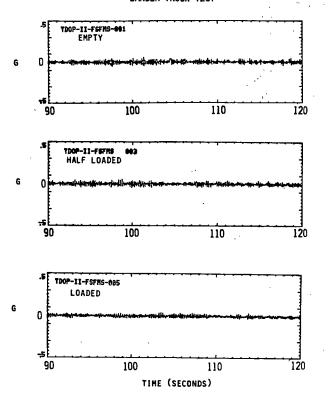


Figure 5-9. Carbody Bounce Acceleration (Barber Truck)

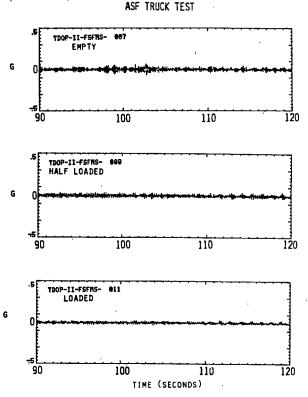


Figure 5-10. Carbody Bounce Acceleration (ASF Truck)

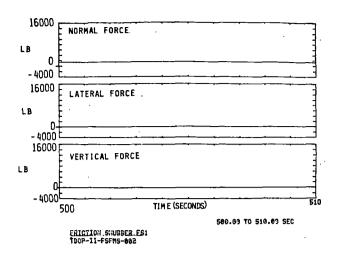


Figure 5-11. Noise Floor for Force Measurements

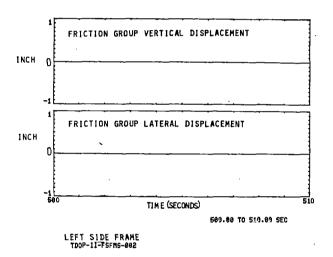
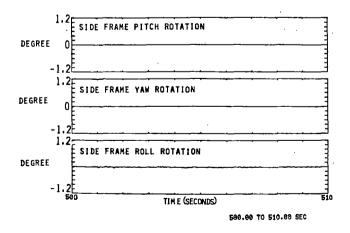
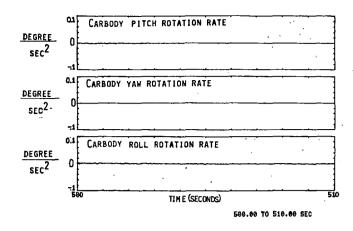




Figure 5-12. Noise Floor for Displacement Measurements

TDOP-II-FSFMS-002

Figure 5-13. Noise Floor for Rotation Measurements

TDOP-II-FSFMS-892

Figure 5-14. Noise Floor for Acceleration Measurements

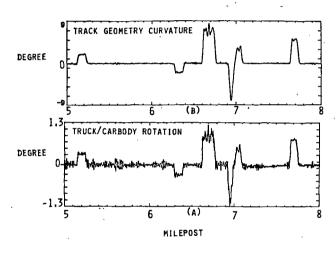


Figure 5-15. Comparison of Track Geometry Curvature and Truck/Carbody Rotation

5.5.3 Rail Joint Input

Accelerometers were placed at the center of the right and left side frames to measure vertical track input. These two acceleration measurements are plotted in Figure 5-16 for the empty Barber truck and for the half loaded ASF truck. A comparison of these two plots shows a great deal of repeatability in the vertical track input between runs. A comparison made between all test runs over this section shows the same degree of repeatability. The distance between the pair of impulses in Figure 5-16 is 68 inches, which corresponds to the wheel base on both the Barber and ASF trucks. The impulse pairs occur because the rail joint sends a transient up through each wheel as it crosses a joint.

The rail profile data taken from the FRA track survey for the same section of track are shown in Figure 5-17. The large negative impulses in the profile data show where a rail joint occurs. The more severe a rail joint was, the larger the impulse. These rail joint locations obtained from the FRA track survey are superimposed on Figure 5-16 (plots from FSFMS test) as dashed lines. In each case they occur at almost exactly the center of the impulse pairs in Figure 5-16, thus showing excellent

correlation between the track geometry and FSFMS test data. The spacing between the impulses in Figure 5-17 shows the joint spacing to be less than the standard 39-foot rail joint spacing, which means that this section of branch track was probably built with used rail with the ends cut off. This caused non-uniform excitation from the rail joints.

The ALD sensor is shown in Figures 5-16 and 5-17 at different locations in the track geometry and the FSFMS test data because the sensor was not at the data collecting location of the consist in either tests. For the track geometry, the ALD sensor was six feet behind the location where the track geometry was taken. For the FSFMS test, the ALD sensor was on laboratory car 210, 83 feet ahead of the B-end truck center line. Thus, the milepost figure for both runs was corrected to take this into account, and the resultant separation of the ALD signals between Figures 5-16 and 5-17 is 89 ft (83 ft + 6 ft). This means that the data locations correspond exactly.

5.5.4 Truck/Carbody Motion

5.5.4.1 Side Frame Lateral Displacement. Measurements were made on both side frames of the relative lateral motion between the side frame and bolster. A typical comparison of these two measurements is made in Figures 5-18 and 5-19 for the Barber and ASF trucks, respectively. These figures show that the lateral motion of one side frame relative to the bolster is identical to the motion of the other side frame to the bolster. Thus, only one measurement of side frame/bolster motion is required.

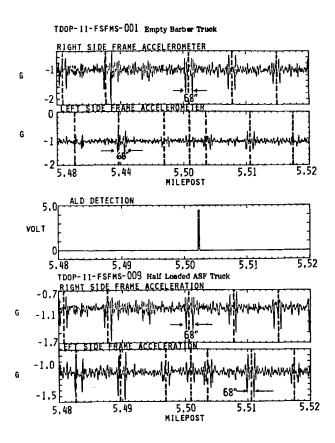


Figure 5-16. Vertical Track Input on Side Frames

TRACK GEOMETRY ZONE 1 EASTBOUND

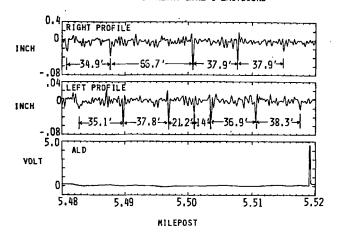


Figure 5-17. Track Geometry Rail Profile

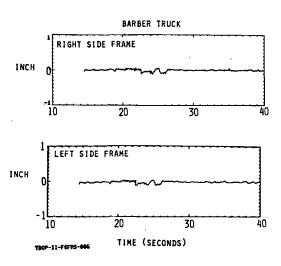


Figure 5-18. Relative Lateral Displacement (Barber Truck Side Frames)

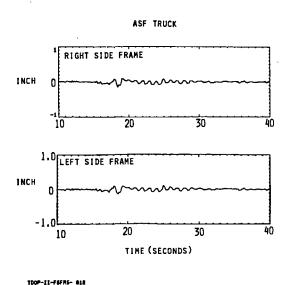


Figure 5-19. Relative Lateral Displacement (ASF Truck Side Frames)

5.5.4.2 Side Frame Pitch Rotation. The pitch degree of freedom of the right side frame is plotted in Figure 5-20 and the left side frame in Figure 5-21. Each figure shows several plots covering both trucks and two load conditions. From these plots, one may see that the pitch motion of the side frame varies little from run to run for a given side of the truck. The pitch motion of the two side frames are independent of each other, but closely follow the track profile.

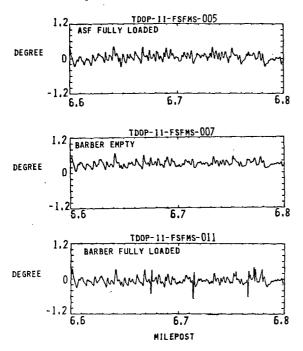


Figure 5-20. Right Side Frame Pitch Rotation

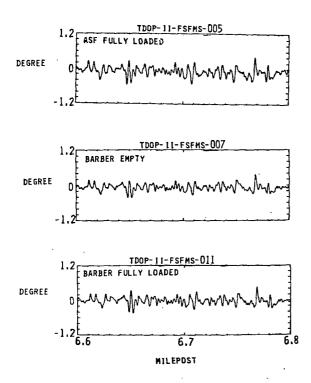


Figure 5-21. Left Side Frame Pitch Rotation

5.5.4.3 <u>Side Frame Yaw Rotation</u>. The side frame yaw rotations (or tram angle) of the two side frames are very closely related to each other. This may be seen in Figures 5-22 and 5-23 where these rotations are plotted for the Barber and ASF trucks, respectively. The yaw rotations of the two side frames are nearly the same from one side frame to the other. These plots are typical of the relationship between yaw rotation measurements on all runs. Thus, it is not necessary to make test measurements of the yaw rotations on both side frames.

5.6 CARBODY ROLL EXCITATION

Displacement measurements were made between the carbody and truck bolsters and across the truck spring group. By combining these two measurements, the total carbody roll response was obtained. This is shown in Figure 5-24 where the first two curves are added to obtain the third curve, which is total carbody roll angle.

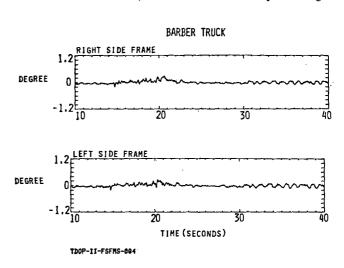


Figure 5-22. Side Frame Yaw Rotation, Barber Truck

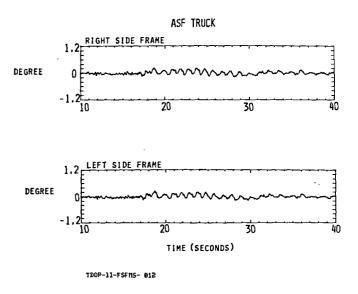


Figure 5-23. Side Frame Yaw Rotation, ASF Truck

The fourth curve is the carbody roll acceleration measured by the accelerometers on the carbody. The roll accelerations should be 180 degrees out-of-phase with the displacement, as shown by the curves. Figure 5-24 shows displacements for an empty Barber truck. When the truck is loaded, the roll excitation appears as shown in Figure 5-25. The frequency of the oscillation is lower and there is more motion in the spring group.

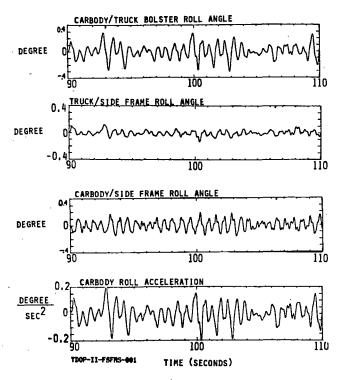


Figure 5-24. Empty Barber Truck Test, Carbody Roll

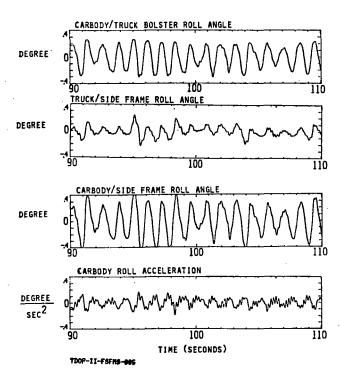


Figure 5-25. Loaded Barber Truck Test, Carbody Roll

Similiar curves for the ASF truck are shown in Figures 5-26 and 5-27. The amplitudes of spring group motion are somewhat smaller for the ASF truck.

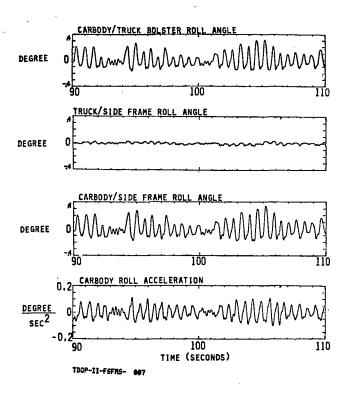


Figure 5-26. Empty ASF Truck Test, Carbody Roll

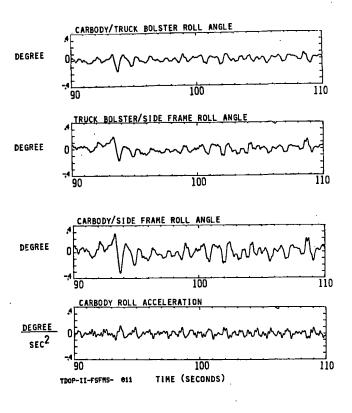
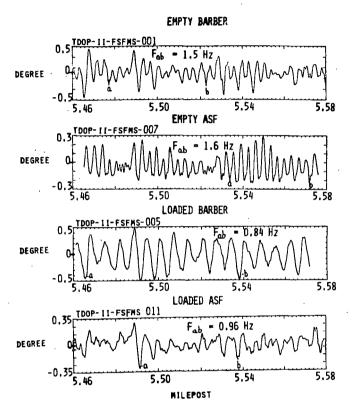
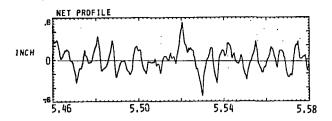


Figure 5-27. Loaded ASF Truck Test, Carbody Roll

A comparison of the total roll angle for all four of the configurations previously discussed is contained in Figure 5-28. The four plots correspond to exactly the same section of track (milepost 5.46 to milepost 5.58). There is some similarity in the trends of the curves, e.g., at milepost 5.485 all of them experience a sharp increase in oscillation. However, the curves are far from identical, thus showing that each configuration responds in a different manner. The frequency of the oscillation decreases from the empty (approximately 1.55 Hz) to the fully loaded (approximately .9 Hz), with the Barber truck always having a slightly lower frequency than the ASF truck.




Figure 5-28. Carbody to Bolster Roll Angle

The track geometry net profile and crosslevel are shown in Figure 5-29 for the same section of track as in the previous figure. The net profile is the left profile (space curve) minus the right profile (space curve). The profile space curves are calculated based on a 62-foot length of cord. Attempts to visually correlate track geometry and carbody roll response were not successful. Therefore, plans are being made to use an analytical model in which to enter the track geometry. Then the analytical and measured responses may be compared.

5.7 TRACK GEOMETRY MEASUREMENTS

ENSCO, Inc., under contract to the FRA, measured the track geometry (reference 4) before starting FSFMS testing so that the response measurements made on test vehicles could be correlated with a known track input. The first set of measurements was taken during the first week in November 1978, using the T-6 track geometry survey car. The Wyle-developed ALD system was used during the initial track survey. A plot of the ALD signals in zone 1 is shown in Figure 5-30 with the ALD

TRACK GEOMETRY ZONE 1 EASTBOUND

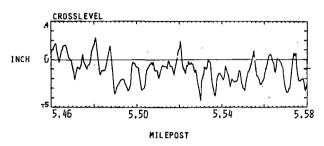
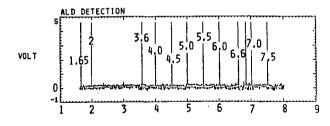



Figure 5-29. Track Geometry Crosslevels

locations. This is compared with the location of the curves in this zone; these curve locations agree well with published curve locations. Table 5-3 compares distances measured during the FSFMS test with those made during the track geometry measurement. The error in the two measurements is constant and means that the milepost locations on the branch line were not exactly one mile apart; exact agreement may be obtained by applying a small correction to the FSFMS measurements.

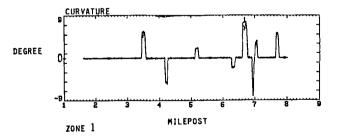


Figure 5-30. ALD Signals and Curve Locations

Table 5-3. Comparison of Measured Distance

MP1	MP2	FSFMS Test	Track Geometry	% Error
5.0	5.5	.502	.505	.6
5.0	6.0	1.0005	1.0057	.5
5.0	7.0	2.000	2.01155	.6
6.0	6.6	.594	.597	.5
7.0	7.49	.498	.5004	.5

ENSCO measured the track geometry at the track class maximum speed in both directions. The reported parameters were: right and left profile, right and left alignment, crosslevel, gage, and curvature (degrees per 100 ft). A digital tape of these parameters was supplied to Wyle in the form of both space curve and short midchord offset with a sample interval of six inches. The digital tape also contains the speed and ALD. Examples of the track geometry parameters are plotted in Figure 5-31 for test zone 1.

5.8 TRUCK TRACKING THROUGH CURVES

Two string potentiometers at the front and back of the truck center plate were used to measure truck swivel angle. A previous comparison (Figure 5-15) between this measurement and the track curvature obtained from the track geometry survey showed excellent agreement. A more detailed look at the tracking ability of the two

trucks is given in Figures 5-32 and 5-33 as they went through the 7.5-degree curve just after milepost 6.6 in test zone 1. The Barber truck (empty and loaded) is shown in Figure 5-32 and the ASF truck (empty and loaded) is shown in Figure 5-33. The track curvature is shown in both figures for comparison with the truck swivel angle. The track curvature is the actual curvature of the track while the swivel angle is the relative rotation of the truck bolster versus the carbody bolster. Although the magnitudes of the two measurements are different, the truck swivel angle clearly is directly proportional to the track curvature.

The Barber truck (Figure 5-32) shows little difference in the way the truck tracks through the curve in the empty versus the loaded condition. The ASF truck (Figure 5-33) shows improvement tracking through curves from the empty to the loaded condition. However, both trucks appear to be quite similar in this capability.

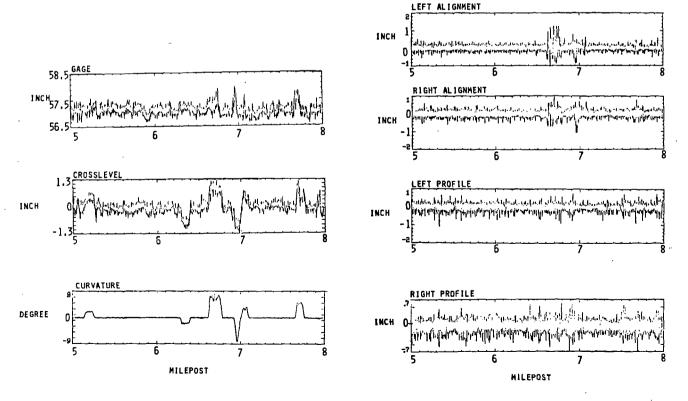
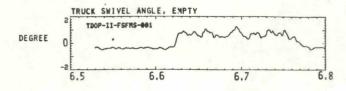
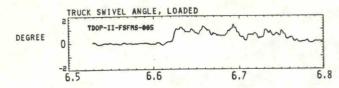




Figure 5-31. Typical Track Geometry, Zone 1

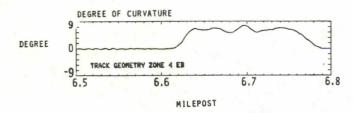
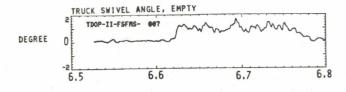
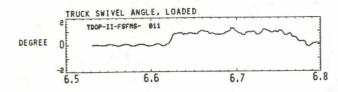




Figure 5-32. Truck Swivel Angle vs Track Curvature, Barber Truck

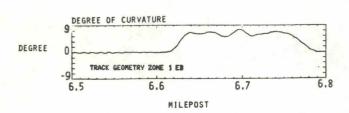


Figure 5-33. Truck Swivel Angle vs Track
Curvature, ASF Truck

SECTION 6 - CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

The test program was successfully completed using friction snubber transducers to obtain friction forces in over-the-road truck tests. The quality of the acquired data was excellent. Noise floor data were orders of magnitude less than the test data. Attempts to correlate previous track geometry data and data from friction snubber runs were highly successful. Comparison of data between runs showed close agreement in relationship to track input. Truck bolster/side frame motions in the lateral and yaw directions were identical from one side frame to the other; therefore, these measurements on one side frame may be eliminated in future testing.

The primary purpose of the tests was to obtain estimates of the friction coefficients associated with the two truck types. The mean values established from the data analysis were 0.43 for the ASF truck and 0.34 for the Barber truck.

6.2 RECOMMENDATIONS

The friction forces obtained as a result of this test program could be applied to other work, for example, as input to analytical models, to validate roll and bounce models, and as considerations in truck design.

Only those data required to meet the objectives of the program were analyzed for this test report. There is a significant amount of analysis information which may still be extracted from the data. Some of the areas in which additional work is recommended are as follows:

- Determining friction coefficients in curves to see if they differ from those for tangent track. (The analysis in this report was done for a section of tangent track.)
 - Completing the center plate kinetic friction coefficient analysis.
 - 3. Exploring the relationship of the half loaded to the empty and loaded car configurations.
- 4. Determining the relationship of braking to friction forces.
 - 5. Investigating the effect of asymmetric column loading on snubber friction.
 - Using track geometry as input to a model to compare analytical and measured carbody responses.
- Establishing an equivalent viscous damping representation of the friction snubbers.
 - Using the vertical and lateral displacement measurements to determine any change in friction coefficient as a function of direction of motion.
 - Using the test data from the speed-varying runs and from test zone 2 to perform a more detailed evaluation of ride quality.

REFERENCES

- FRA Report No. FRA/ORD-78-69, "Measurement of Friction Snubber Forces in Freight Car Trucks," Klaus L. Cappel, December 1978.
- Wyle Document C-901-0001-A, "Friction Snubber Force Measurement System Test Plan," September 1978 (Revision B, February 1979).
- 3. Wyle Document C-901-0005-A, "Friction Snubber Force Measurement System Test Procedure," November 1978 (Revision A, January 1979).
- 4. ENSCO Survey T6-400 Report, "Survey Results Report Track Geometry Measurements in Support of TDOP," December 1978.

WH-614A

APPENDIX A

COMPRESSION MEASUREMENTS ON FRICTION SHOE SPRING OF BARBER TRUCK

The following raw data sheets show the friction shoe springs of the Barber truck. The first column of numbers is the applied load (lb); the second column is the measured height of the spring plus the compression fixture; the third column is the calculated compressed height (in.) of the spring; the fourth column is the calculated amount of compression (in.). The free height noted on each data sheet is the measured free height (in.) of the spring.

WH-614A

stomer	ING #1	(Barber FSD	2)		LABORATORIES
1 No		Amb. Temp.	72F	Job No.	75002
·c		PhotoY	<u>=</u> \$	Report N	lo
a		Test Med		Start Dat	e 10-4-78
·		Specimen Temp			
·			• •		
st Title			COMP		
0	17.44	11.05	Free he	eaht	11.05"
Soo	16.86	10.47	= 0.58		
1000	16.34	9.95	1.10		
500	15. 84	9.45	1.60		
2000	15. 38	8,99	2.06		
2500	14.89	8.50	2.55		
3000	14.41	8,02	3.03		
3500	13.93	7.54	3.5		
4000	13.45	7.06	3.99	L	
4500	13.00	6.61	4.4	+	
4000	/3.38	6.99	4.06	,	ş"."
3500	/3.83	7.45	3.60)	
3000	14.30	7.91	3.14	-	
2500	14.78	8.39	2.60	2	
2000	15.27	8.88	2.17	<u> </u>	
1500	15.76	9.37	1.68	}	
1000	16.25	9.86	1.19		
500	16.78	10.39	0.66		
0	17.39	11.00	0.05	· 	
Specimen Failed _			Tested By	-	Date:
pecimen Passed			Witness	_	Date:
NOA Written			Sheet No		of

DATA SHEET

DATA SHEET

ustomer Barter FSD 1			. WYLE LABORATORIES
pecimien	Amb. Temp		. Job No
art No	Photo		Report No.
Spec	Test Med.		Start Date
3/N	Specimen Temp.	_	
SSI			
Test Title		2" Block "	2.50"
0 - 17.41	11.00 0	.O Free	beight 11.00"
500 - 16.77		.64	
1000 - 16.27	9.86 1	.14	
1500 - 15.75	9.34	.66	
2000 15.27	8.86	2.14	
2500 14.77	8.36	2.64	
3000 14.27	7.86	3.14	
3500 13.76	7.35	3.65	
4000 /3.28	4.87	4.13	
4500 /2.88	6.47	4.53	
4000 /3.2/	6.80	4.20	
3500 13.69	7.28	3.72	••
3000 14.16	7.75	3.25	
2500 14.65	8.24	2.76	
2000 15.14	8.73	2.27	
1500 15.64	9. 23	1.77	
1000 16.16	9.75	1.25	
500 16.69	10.28	.72	
0 17.35	10.94	.06	
Specimen Failed		Tested By	Date:
Specimen Passed			Date:
NOA Written		Sheet No	o1
		Approved	

DATA SHEET

		WYLE LABORATORIES
Specimen Barler	<u>FS03</u>	Job No
Part No		Report No.
S/N	<u></u>	Date

Total Title

A-2

Pescription of Test (Continued): # 3

0	17.52	11.13 0.0
500	16.91	10.52 .61Free height 11.13"
1000	16.41	10.02 1.11
1500	15.92	9.53 1.60
2000	15.46	9.07 2.06
2500	14.98	8.59 2.54
3000	14.52	8.13 3.00
3500	14.05	7,66 3,47
4000	/3.58	7.19 3.54
4500	13.14	6.75 4.38
4000	13.53	7.14 3.99
3500	13.97	7.58 3.55
3000	14.43	8,04 3,09
2500	14.90	8.51 2.62
2000	15.36	8.97 2.16
1500	15.85	9,46 1.67
1000	/6.33	5.54 1.19
500	16.85	10.46 0.67
0	17.45	11.06 0.07
		——————————————————————————————————————
<u> </u>		
		· · · · · · · · · · · · · · · · · · ·
[•

∹-614B

DATA SHEET

	Specimen	Job No
	Part No.	Report No
	S/N	Date
t Title B	arber FSO4	
escription of Te	st (Continued): #4	
0	17.41 11.00 0.0	·
500	16.81 10.40 0.6	
1000	16.29 9.88 1.12	2"= 2:50"
1500	15.80 9.39 1.61 BL	
2000	15.33 8.92 2.08	
2500	14.84 8.43 2.57	
3000		.00° Fee height
3500	13.90 7.49 3.51	3-
4000	/3.42 7.01 3.99	
4500	13.00 6.59 4.4	
4000	13.35 6.94 4.00	6
3500	/3.80 7.35 3.6	1
3000	14.27 7.86 3.1	4
2500	14.74 8.33 2.6	7
2000	15.22 8.81 2	.19
1500	/5.73 9.32 /	. 68
1000	16.23 9.82 1.	18
500	16.73 10.32 0	. 68
0		.07
-		
		

WH-614B

APPENDIX B EXAMPLE OF MILEPOST VS TIME LISTINGS

TDOP-II-FSFMS- 007

השי		TEAD MI	PDACT va	TIME LISTI	NGS				(Cont	inued)			
EXA	AM P	LE OF MII	LEPUSI VS	TIME PIPIT	MGB								DATA RECURD
	•			•				REL DIS	r AC1	TZIU	KEL TIME		NUMBER
•		TDOP-I	I-FSFMS-	U 0 7	DATA								
					RECORD		80 81	U.7 U.7		5.740 5.750	139.325	÷.	435 441
•		REL DIST	ACT DIST	REL TIME	NUMBER		82	U.7		5.760	142.885		77.7 447
		. 0.020	# B30	1 265	7		83	υ.7	70	5.770	144.660	. :	453
	1	-0.030 -0.020	4.970 4.980	1,265 3,060	3 9		84	υ.7		5.780	146.435		457
	3	-0.010	4.990	4.885	15		85 85	U.7		5.790 5.600	148.215	٠.	463 469
ALU POST	4	-0.000	5.000	6.680	21		87	u.8		5.810	151.780		475
	5	0.000	5.000	6.685	21		88	Ú.8		5.620	153.575		479
	7	0.010 0.020	5.010 5.020	8.475 10.260	27 33		69	0.8		5.830	155.370		485
	ь	u.u30	5.030	12.045	37		90 91	0.8 0.8		5.840 5.850	157.155 158.935		491 497
	9	U.04U	5.040	13.830	43	•	92	0.8		5.860.			503
	10	0.050	5.050	15.625	49		93	6.0		5.870	162,490		50 7
	11 12	0,060 0,070	5.060 5.070	17,415 19,215	55 61		94 95	v.8		5.880	164.270		513
	13	4.060	5.080	21.015	65		96	0.8 9.0		5.890 5.900	166.070 167.875		519 525
*	14	0.090	5.090	22,800	71		97	0.9		5.910	169.675		531
,	15	0.100		24,590 26.385	77 83		98	0.9		5.920	171.470		535
	16 17	0.110 0.120	5.110 5.120	28.185	89		99 100	0.9 0.9		5.930	173.260	٠,	541
	18	0.130		29.980	93		101	U.9		5.940 5.950	175.040 176.815		547 553
	19	0.140	5,140	31,765	99		102	0.9		5,960	176.585		.559
	20	0.150 0.160		33,550 35,330	105 111		103	0.9		5.970	180.370		563
	21 22	0.170		37.120	115		104 105	0.9 U.9		5,980 5,990	182 .1 65 183 . 980	٠.	569 575
	23	0.160		38,910	121		106	1.0		6.000	185.795		561
,	24	0.190		40,700	127	ALD POST		1.0		6,000	185.880		581
	25	0.200		42,485 44,265	133 139		108	1.0		6.010	187.605	:	587
	26 27	0.210		46,085	145		109 110	1.0 1.0		6.020 6.030	139.410 191.210		591 597
•	28	U.230		47.880	149		111	1.0		6.040	193,005		603
•	29	0.240		49.665	155		112	1,0		6.050	194.795		609
	პა 31	0.250 U.26U		51.445 53,225	161 167		113	1.0		6.060	196,575		615
	32	U.270		55.010	171		114	1.0 1.U		6.070 6.080	198,355 200,125		619 625
	33	0.280	5,280	56.810	177		116	1.0		6.090	201.890		631
	34	0.290		58.610	183		117	1.1		6.100	203,670		637
	35 36	U.30U U.31U		60.400 62.185	189 195		118	1.1 1.1		6.11J 6.12U	205,465 207,270	1	643 647
	37	0.320		63,975	199		120	1.1		6.130	209.080		653
	36	0.330	5.330	65.760	205		121	1,1	40	6.140	210.880		659
	. 39	0.340		67.540	211 217		122	1.1		6.150	212.675		665
	4 U 4 1	ა.350 0.360		69.315 71.105	223		123 124	1.1 1.1		6.160 6.170	214.465 216.250		671 675
	42	0.370		72,910	227		125	1.1		6.180	218.040		681
	43	U.380		74.720	233		126	1.1		6.190	219.820		687
	44 45	U.390		76.525 78.320	239 245		127 128	1.2 1.2		6.210	221.600 223.395		693 699
	46	0.400 0.410		80.105	251		129	1,2		6.220	225.205		703
	47	U.420	5,420	81.890	255		130	1,2	30	6.230	227.010		'70 9
	48	. 0.430		83,675	261		131	1.2		6.240	228.815		715
	49 50	0.440 0.450		85.465 87.245	267 273		132 133	1.2 1.2		6.250 6.260	230.620 232.415		721 727
	⁻⁵¹	U.460		89.040	279		1.54	1.2		6.270	234.210		731
	52	U.470		90.845	283		135	1.2		6.280	235.995		737
	53	U.480 U.490		92.645 94.440	289 295		136	1.2 1.5		6.290	237.785		743
	54 55	Ŭ.50U		96.230	301		137 136	1.3		6.300 6.310	239.570 241.355		749 - 755
ALD POST	56	0.502		96,605	301		139	1.3		6.320	243.135		759
	57	0.510		98.015	3ü7		140	1.3		6.330	244.910		765
	58	0.520		99.795	311 317		141	1.3 1.5		6.340	246.685		771 777
•	. 59 . 60	0.53U 0.54U		101.570 103.360	323		142 143	1.3		6.350 6.360	248.475 250.275		783
	61	0.550		105.160	329		144	1.3		6.370	252.065		767
	62	0.560		106.965	335		145	1.3		6.380	253.855		793
	63	0.570		108,760	339 345		146	1.3	∌0 00	6.390	255.630		799
	64 65	0.560 0.590		110.550 112.340	351		147 148	1.4		6.400 6.410	257.405 259.180		805 809
	66	0.600		114.120	357		149	1.4		6.420	260.965		815
	67	0.610	5.610	115.905	363		150	1.4		6.430	262.760		821
	69 69	0.620 0.630		117.700 119.500	367 373		151 152	1.4		6.440 6.450	264.540 266.315		827 833
	70	0.640		121.300	379		153	1.4	50	6.460	268.085		837
	71	0.650	5.650	123.105	385		154	1.4		6.470.	269.855		843
	72	0.660		124.915	391		155	1.4		6.480 6.490	271.625 273.390		849 855
	73 74	U.67U U.68U		126.730 128.545	397 401		156 157	1.5		6.500	275.155		859
	75	0.690		130.355	407		158	1.5	lυ	6.510	276.925		865
	76	U.70U	5.700	132,155	413		159	1.5		6.520	278.705		871
	77	0.710		133.955	419 425		160 161	1.5 1.5		6,540 6,540	280,485 282,260		877 883
	78 79	U.720 U.730		135.750 137.540	429	,	162	1.5		6.550	284.025		887
			- • • • •	_ •••			163	1.5	U	6,560	285.790		893

TDOP-II-FSFMS- 007 (Continued)

TDOP-II-FSFMS- 007 (Continued)

		(0	0	ucu,		UATA			(()	Onti	nacay		DATA
					-54 7785	RECURD							RECORD
,	-	REL DIST	ACT L	1121	REL TIME	NU 11.3 ER			REL DIST	ACT	DIST	REL TIME	NUMBER
	164	1.570		5.570	287.565	899		248	2.390		7.390	442.945	1385
	165	1.560		580	289.350	905		249	2,400		7.400	445.305	1391
	166	1.590		5,590	291,140	909		250	2,410		7.410	447.645	1399
ALD POST		1.594		.594	291,790	911		251	2.420		7.420	449.935	1407
*	168	1,600		600	292,930	915		252 253	2,430		7.430	452.175	1413
	169 170	1.610 1.620		6.610 6.620	294.720 296.505	921 927		254	2.440 2.450		7.440	454.415 456.675	1421 1427
	171	1.630		.63u	298.300	933		255	2.460		7.460	458.935	1435
	172	1.640		5.640	300.105	937		256	2.470		7,470	461.195	1441
	173	1.650		.650	301.915	943		257	2.480		7,480	463.450	1449
	174	1.660	ϵ	6,660	303.715	949		258	2.490		7,490	465.715	1455
	175	1.670		5.670	305.505	955	ALD POST		2,498		7.498	467.530	1461
	176	1,680		6.680	307.295	961		260	2.500		7.500	467.980	1463
	177	1.690		5,690	309.085	965		261	2.510		7.510	470.275	1469
	176 179	1.700 1.710		5.700 5.710	310.870 312.650	971 977		262 263	2.520 2.530		7.520 7.530	472.615 475.015	1477 1485
	180	1.72ú		5.720	314,430	983		264	2.540		7.540	477.470	1493
	181	1.730		730	316.220	989.		205	2.550		7.550	479.980	1499
	162	1.740		5.740	318.015	993		206	2.560		7,560	482.485	1507
	183	1,750		5.75U	319.805	9 99		267	2.570		7.570	484.970	1515
	164	1.760		5.760	321,585	1005		268	2,580		7.580	487.465	1523
	185	1,770		5.770	323,355	1011		269	2.590		7.590	489.975	1531
	106	1,780		.780	325.115	1015		270	2.600		7,600	492.495	1539
	187	1.790		5.790	326.875	1021		271 272	2.610 2.620		7.610	495.035 497.585	1547
	189 188	1.800 1.810		5.800 5.810	328.640 330.415	1027 1033		273	2,630		7,620 7,630	500.145	1555 - 1563
	190	1.820		5.620	332,185	1039		274	2.640		7,640	502.695	1571
	191	1.830		6.830	333,960	1043		275	2,650		7.650	505.245	1579
	192	1,640		6.840	335,735	1049		276	2,660		7,660	507.825	1587
	193	1.850	6	6.850	337.515	1055		277	2.670		7,670	510.420	1595
	194	1.860		5.860	339.290	1061		278	2,680		7.080	513.025	1603
	195	1,670		6.670	341.070	1065		279	2.690		7.690	515.605	1611
	196	1.880		5.880	342.845	1071		280	2.700		7.700	518.180	1619
	197 ⊾98	1.890 1.900		5.890 5.900	344.615 346.395	1077 1083		281 282	2.710 2.720		7.710 7.720	520.820 523.570	1627 1637
	199	1.910		5.910	348.175	1089		283	2.730		7.730	526.465	1645
	500	1.920		920	349,970	1093		204	2.740		7.740	529.490	1655
	201	1.930	ě	930	351.780	1099		285	2.750		7.750	532.515	1665
	202	1.940		5.940	353,600	1105		286	2,760		7.760	535.435	1673
	203	1.950		.950	355.425	1111		207	2.770		7.770	538.305	1683
	204	1.960		960	357.235	1117		288	2.780		7.780	541.215	1691
	502	1.970		970	359.035	1121		289	2.790		7.790	544.135	1701
	206 207	1.980 1.990		.980 5.990	360.820 362.610	1127 1133		290 291	2.800 2.810		7.800	547.095	1709
ALD POST		2.000		.000	364.385	1139		292	2.820		7.810 7.820	550.190 553.480	1719 1729
	209	2.000		7.000	364.400	1139		293	2.830		7.830	557.005	1741
	210	2.010		010	366,205	1145		294	2.640	-	7.840	560.650	1753
	511	2,020	7	7.020	368.030	1151		295	2.850		7.850	564.120	1763
	212	2,030		7.030	369.875	1155		296	2,360		7.060	567.540	1773
	213	2,040		7.040	371.740	1161		297	2.870		7.870	571.125	1785
	214	2.050		7.050	373.625	1167		298	2.880		7.880	574.800	1797
	215 216	2,060 2,070		7.06U 7.070	375.550 377.505	1173 1179		299	2.890 2.900		7.890	578.370	1807
	217	2.080		7.080	379.480	1185		300 301	2.910		7.900	581.950 505.725	1819 1831
	218	2.090		7.090	381.470	1193		302	2.920		7.920	559.665	1843
	219	2,100		100	383,455	1199		303	2.930		7.930	593.880	1855
	220	2.110		7.110	385.440	1205		304	2.940		7.940	598.165	1869
	221	2.120		7.120	387.425	1211		305	2.950		7.950	602,345	1863
	222	2.130		7.130	389.405	1217		306	2,960		7.960	606,595	1895
	223	2.140		7.140	391.375	1223		307 308	2.970 2.980		7.970 7.980	610,990 615.440	1909 1923
	224 225	2.150 2.160		7.150 7.160	393,350 395,330	1229 1235		308	2.990		7.990	619.995	1937
	225	2.170		7.170	397.315	1235		310	3.000		8.000	624.950	1953
	227	2.180		180	399.290	1247		311	3.010		8.010	630.790	1971
	228	2,190		7.190	401.275	1253		312	3.020		8.020	636.735	1989
	229	2.200	7	7.200	403.265	1261		313	5.030		8.030	642,400	2007
	230	2.210		7.210	405.250	1267		314	3.040		8.040	648.210	2025
	231	2,220		7.220	407.240	1275		315	3,050		8.050	654,695	2045
	232	2.230		7.230	409.230	1279		316 317	3.060 3.070		8.060	662.510 671.380	2071 2099
	233 234	2.240 2.250		7.240 7.250	411.215 413.200	1285 1291		316	3.080		6.070	679.850	2125
	235	2.260		7.260	415.185	1297		319	3.090		8.090	686.480	2151
	236	2,270		270	417.175	1305		320	3,100		8,100	699.355	2185
	237	2.280	7	.280	419.160	1309		321	5.110		8,110	714.750	2233
	238	2.290	7	.290	421.145	1317		322	3.120		8.120	751.935	2287
	239	2.300		7.300	423.125	1323							
	240	2,310		7.310	425.130	1329							
	241 242	2.320 2.330		7.320 7.330	427.165 429.250	1335 1341							
	243	2.340		7.340	431.385	1341 1349							
	244	2.350		350	433.595	1355							
	245	2.360	7	360	435.875	1363						•	
	246	2.370		370	438.215	1369							
	247	2.380	7	.380	440.580	1377							

ASF TRUCK FS4 (Continued)

MIN	MAX	NUMBER	PERCENT	NUMBER	PERCENT
0.79	0.80	12	0.24	3	0.36
0.80	0.81	16	0.32	3	0.36
0.81	0.82	6	0.12	2	0.24
0.62	0.83	7	0.14	1	0.12
0.83	0.84	12	0.24	ī	0.12
0.84	0.65	12	0.24	ō	0.00
0.85	0.86	11	0.22	3	0.36
0.86	0.87	12	0.24	2	0.24
0.67	0.88	10	0.20	ō	0.00
0.88	0.89	9	0.18	Ö	0.00
0.89	0.90		0.28	3	
					0.36
0.90	0.91	5	0.10	1	0.12
0.91	0.92	11	0.22	1	0,12
0.92	0,93	11	. 0.22	0	0.00
0.93	0.94	10	0.20	1	0.12
0.94	0.95	7	0.14	2	0,24
0.95	0.96	6	0.12	1	0,12
0.96	0.97	3	0.06	Ō	0.00
0.97	0.98	7	0.14	ž	0.24
0.98	0.99	4	0.08		0.12
0.99	1.00	15	0.30	3	0.36
1.00	1.01	250	5.00	. 37	4,38

TDOP-II-FSFMS-011

3/13/79 FS3. FILTER=8. NORMAL>100. POWER<-250 FRICTION COLFFICIENT=0.408+/-0.078 NUMBER=1244 TOTAL ENERGY=-0.763E+04 IN-LB. INCLUDED ENERGY=-0.779E+04 IN-LB. PERCENT INCLUDED=102.1

3

3/13/79 FS4. FILTER=6. NORMAL>100. POWER<-250 FRICTION COEFFICIENT=0.488+/-0.262 NUMBER= 844 TOTAL ENERGY=-0.444E+04 IN-LB. INCLUDED ENERGY=-0.468E+04 IN-LB. PERCENT INCLUDED=105.5

					HIN	MAX NUMBER	DEDCEME		DEDOCAT
MIN MAX	NUMBER	PERCENT	NUMBER	PERCENT	0.00		PERCENT 0.76	NUMBER	PERCENT 0.00
0.00 0.01	8	0.16	0	0.00	0.01 0	0.02 8	0.16	Õ	0.00
0.01 0.02	.7	0.14	0	0.00	0.02 0		0.24	0	0.00
0.02 0.03 0.03 0.04	11 23	0.22 0.46	0	0.00	0.03 0 0.04 0		0.44		0.00
0.04 0.05	20	0.40	ŏ	0.00	0.05 0		0.46 0.46	0	0.00
0.05 0.06	19	0.38	Ō	0.00	0.06 0		0.66	0	0.00
0.06 0.07	15	0.30	0	0.00	0.07 0	0.08 32	0.64	ŏ	0.00
0.87 0.08	32	0.64	0	0.00	0 80.0	-	0.60	0	, 0.0D
0.08 0.09	33 30	0.66 0.60	ĭ	0.08	0.09 0 0.10 0		0.76	0	0.00
0.10 0.11	29	0.58	ō	0.00	0.11 0		0.88	0 1	0.00 0.12
0.11 0.12	46	0.92	1	0.08	0.12 0		0.92	ō	0.00
0.12 0.13	47	0.94	0	0.00	0.13 0		1,12	. 0	0.00
0.13 0.14	36	0.72	1	0.08 0.08	0.14 0		1.24	. 0	0.00
0.14 0.15 0.15 0.16	56 63	1.12 1.26	ō	0.00	0.15 0 0.16 0		0.98	0	0.00
0.16 0.17	64	1.28	ō	0.00	0.17 0		1.14 1.78	. 3 1	0.36 0.12
0.17 0.18	59	1.18	1	0.08	0.18 0		1.46	Ĝ	0.71
0.18 0.19	57	1.14	4	0.32	0.19 0		1.42	2	0.24
0.19 0.20 0.20 0.21	61 76	1.22 1.52	1 2	0.08 0.16	0.20 0		1.66	0	0.00
0.21 0.22	85	1.70	4	0.32	0.21 0 0.22 0		1.74	3	0.36
0,22 0,23	82	2.64	4	0,32	0.23 0		1.56 1.96	5 9	0.59 1.07
0.23 0.24	71	1.42	3	0.24	0.24 0		1.60	4	0.47
0.24 0.25	77	1.54	6	0.48	0.25 0		2.00	7	0.83
0.25 0.26	91 95	1.82 1.90	5 9	0.40	0.26 0		1.82	5	0.59
0.26 0.27 0.27 0.28	109	2.18	11	0.88	0.27 0 0.28 0		2.36	10	1.18
0.28 0.29	109	2.18	. 7	0.56	0.29 0		2.28 2.36	5 7	0.59 0.83
0,29 0,30	113	2.26	16	1,29	0.50 0		2.24	ģ	1.07
0.30 0.31	146	2.92	26	2.09	0.31 0		2.50	10	1,18
0.31 0.32	166 159	3,32 3,18	43 39	3,46 3.14	0.32 0.	.33 132	2.64	12	1,42
0.33 0.34	188	3.76	66	5.31	0,33 D 0.34 D	.34 139 .35 133	2.78	25	2.96
0.34 0.35	179	3,58	79	6.35	0.35 0		2.66 3.22	20 45	2.37 5.33
0.35 0.36	219	4.38	85	6.83	0.36 0		3.68	71	8.41
0.36 0.37	192	3.84	65	5.23	0.37 0.		3,18	72	8.53
0.37 0.38	187 169	3,74 3,38	61 50	4.90 4.02	0.38 O		3.02	64	7.58
0.38 0.39 0.39 0,40	214	4.28	68	5.47	0.3 9 0. 0.4 0 0.		1.82	36	4.27
0.40 0.41	162	3,24	67	5.39	0.41 0.		2.30 1.90	44 23	5.21 2.73
0.41 0.42	158	3.16	69	5,55	0.42 0		1.58	20	2.37
0.42 0.43	157	3,14	66	5,31	0.43 0.		1.54	13	1.54
0.43 0.44	142 137	2.84 2.74	53 54	4,26 4.34	0.44 0.		1.56	14	1.66
0.44 0.45	116	2.32	51	4.10	0.45 0. 0.46 0.		1,40	17	2.01
0.46 0.47	107	2.14	45	3,62	0.47 0.		1.46 1.20	19 18	2,25 2,13
0.47 0.48	82	1,64	34	2.73	0.48 0.		0.98	9	1.07
0.48 0.49	76	1,52		1,93	0.49 0.		0.94	12	1.42
0.49 0.50 0.50 0.51	58 64	1.16 1,28		1.77	0.50 0. 0.51 0.		0.78	10	1.18
0.51 0.52	47	0.94	14	1.13	0.52 0.		0.80 0.88	16	1.90
0.52 0.53	32	0,64	5	0.40	0.53 0.		0.76	15 10	1.78 1.18
0.53 0.54	30	0.60	6	0.48	0.54 0.	55 46	0.92	. 20	2,37
0.54 0.55	21	0.42		0.32 0.80	0.55 0.		0.72	12	1.42
0.55 0.56 0.56 0.57	29 21	0.58 0.42		0.48	0.56 D. 0.57 O.		0.48	3	0.36
0.57 0.58	16	0,32	8	0,64	0.58 0.		0.46 0.34	4	0.47
0.58 0.59	13	0,26	3	0.24	Ű.59 O.	.60 16	0.32	5 5	0.59 0.59
0.59 0.60	10	0.20	4	0.32	0.60 0.	.61 21	0.42	6	0.71
0.60 0.61	15 9	0.30 0.18		0.32 0.24	0.61 0.		0.42	5	0.59
0.61 0.62 0.62 0.63	á			0.08	0.62 0. 0.63 0.		0.32	3	0.36
0.63 0.64	8	0.16	2	0.16	0.64 0.		0.36 0.36	3 . 5	0.36 0.59
0,64 0,65	5	0,10		0.00	0.65 0.	66 19	0.36	6	0.55
0.65 0.66	. 3			0.00	0.66 0.		9.48	7	0.83
0.66 0.67 0.67 0.68	4			0.16	0.67 0.		0.30	1	0,12
0.68 0.69	5			0.00	0.68 0. 0.69 0.		0.20 8. 0	2	0.24
0.69 0.70	6	0,12	2	0,16	0.70 0.		0.24	2 2	0.2 4
0.71 0.72	2			0.00	0.71 0.	.72 12	0.24	3	0.36
0.72 0.73 0.73 0.74	2 1			0.00	0.72 0.		0.14	3	0.36
0.79 0.80	î			0.00	0.73 0. 0.74 0.		0.16	2	0.24
0.86 0.87	1	0.02	1	0.08	0.75 0.		0.10 0.30	0 1	0.00 0.12
0.94 0.95	1			0,00	0.76 0.	77 19	0.38	î	0.12
1.00 1.01	2 mn (1)			0.08	0.77 0.		0.22	2	0.24
	TDO	P-II-FSFM	19-011		0.78 0.	79 12	0.24	2	0.24

ASF TRUCK FS2

3/13/79 FS2. FILTER=8. NORMAL>100. POWER<-250

MIN	MAX	NUMBER	PERCENT	NUMBER	PERCENT		FRICTI	ON COL	2. FILTE Efficient	K=8, NUKM. T=0.366+/	-0.106 N	JMBER= 874
0.06		27	0.54	0	0.00		TOTAL	ENERGY	0.588	+04 IN-LE	. INCLU	DED ENERGY=
0.07		48	0.96	Ō	0.00		-0.477	E+04 1	N-LB. PI	ERCENT IN	CLUDED= (B1 ,
0.08		31	0.62	0	0.00							
0.09	0.10	46	0.92	0	0.00							* •
0.10		45	0,90	0	0.00							
0,11		51	1.02	Q	0.00			MAX	WIME CO.	DESCENT	AUMOFO	PERCENT
0.12		66	1.32	0	0.00			0.01	NUMBER 26	PERCENT 0.52	NUMBER 0	0.00
0.13		58 61	1.16	i	0.08			0.02	22	0.44		0.00
	0.16	66	1.32	ī	0.08	`*		0.03	27	0.54	ő	0.00
0.16		76	1.52	ī	0.08			0.04	54	1.08	ŏ	0.00
0.17		76	1.52	Ō	0.00			0.05	59		· 0	0.00
0.18		61	1.62	2	0.17			0.06	52	1.04	0	0.00
0.19	0.20	94	1.88	5	0.41		0.06	0.07	69	1.38	0	0.00
0.20		97	1.94	6	0.50			0.08	81	1.62	1	0.11
	0.22	99	1.98	3	0.25			0.09	87	1.74	0	0.00
	0.23	94	1.88	7	0.58			0.10	122	2.44	. 4	0.46
0.23		120	2.40	7	0.58 0.33			0.11	82	1.64	3	.0.34
	0.25	128	2.56	4 11	0.91			0.12	95	1.90	1	0.11
	0.26	114	2.28 2.18	9	0.75			0.14	91 130	1.82 2.60	3	0.80
0.27		113	2.26	10	0,83			0.15	94	1.88	. 7	0.80
	0.29	107	2.14	10	0.63	•		0.16	109	2.18	8	0.92
0.29		87	1.74	7	0.58	,		0,17	94	1.68	ž	0.80
0.30		95	1.90	12	0.99			0.18	104	2.08	ė	0.92
0.31		105	2.10	22	1.82			0.19	115	2.30	12	1.37
	0.33	113	2.26	20	1.66		0.19	0.20	99	1.98	12	1.37
0.33		118	2,36	32	2.65		0.20	0.21	123	2.46	16	1.83
0.34	0.35	. 109	2.18	17	1.41			0.22	125	2.50	13	1.49
0.35		136	2,72	24	1.99			0.23	153	3.06	22	2.52
0.36		109	2,18	26	2.15			0.24	131	2.62	15	1.72
0.37		131	2.62	36	2,98			0.25	133	2,66	11	1,26
	0.39	11.0	2.20	29	2.40			0.26	140	2.60	25	2,86
0.39		111	2.22	27	2,24			0.27	135	2.70	15	1.72
0.40		127	2.54	48	3.97 4.64			0.28	112 155	2.24	15	1.72
	0.42	139	2.78	56 46	3,81			0.30	116	3.10 2.32	20 19	2,29 2,17
0.43	0.43	130. 127	2.60 2.54	47	3.89			0.31	134	2.68	21	2.40
	0.45	108	2.16	44	3.64			0,32	137	2.74	30	3.43
	0.46	104	2.08	59	4.88			0,33	126	2.52	29	3.32
	0.47	107	2.14	48	3.97			0.34	126	2.52	33	3.78
	0.46	122	2.44	52	4,30			0.35	144	2.68	39	4.46
	0.49	, 111	2.22	62	5,13			0.36	127	2.54	34	3.89
	0.50	88	1.76	47	3,89	,		0.37	117	2.34	47	5.38
	0.51	91		* * 36	2,98		0.57	0.38	112	2.24	39	4.46
0.51	0.52	71	1.42	38	3,15			0.39	112	2.24	. 34	3,89
	0.53	67	1.34	35	2,90			0.40	. 62	1.64	21	2.40
	0.54	÷ 63	1.26	32	2,65			0.41	97	1.94	34	3.89
	0.55	85	1.70	51	4,22			0.42	75	1,50	33	3.78
	0.56	58	1.16	30	2.48			0.43	66	1.32	27	3.09
	0.57	32	0.64	17	1.41			0.44	50	1.00	16	1.83
	0.58	33	0.66	22	1.82 0.75			0.45	72	1.44	29	3,32
	0.59	17 18	9.34 9.36	. 9	0.75		.0,45	0.47	53 51	1.06 1.02	18 13	2.06 1,49
	0.61	27	0.54	19	1.57			0.48	53	1.06	14	1,60
	0.62	17	0.34	10	0,83		0.48		51	1,02	26	2,97
	0.63	15	0.30	, 9	0.75			0.50	46	0.92	20	2.29
	0.64	11	0.22	3	0.25	•		0.51	44	0.68	17	1.95
	0.65	10	0.20	6	0.50	- "		0.52	Ė7	0.54	- <u>;</u>	1.05
	0.66	4	0.08	, , 4	0.33			0.53	29	0.58	8	0.92
	0.67	5	0.10	2	0.17	,		0.54	25	0.50	11	1,26
0.67	0.68	Ţ. 1 0	0.20	· / 8	0.66		0.54	0.55	9	0.18	2	0.23
	0.69	7	0.14	7	0.58			0.56	20	0.40	. 7	0.60
	0.70	1	0.02	. 1	0.08			0.57	. 17	0.34	5	8.57
	0.71	9	0.18	3	0,25			0.58	. 9	0.18	1	0.11
	0.72	7	0.14	2	0.17			0.59	. 13	0.26	. 5	0,57
	0.73	2	0.04	1	0.08			0.60	•	0.12	2	0.23
	0.74	4	0.06	4	0.33			0.61	5	0.10	1	0.11
	0.75	3	0.06	3	0.25			0.62 0.63	7	0.14	1	0.11
	0.76	2	0.04	1	0.08			0.64	,	0.12 0.18	1	0.11
	0.77	2	0.06	1	0.08	•		0.66	. 2	0.04	i	0.11
	0.79	1	0.04 0.02	2	0.17			0.68	. 1	0.02	1	0.11
	0.80	2	0.04	1 2	0.08 0.17			0.73	i	0.02	Ô	0.00
0.80		ī	0.02	1	0.08			0.74	ī	0.02	ŏ	8.00
	0.82	ī	0.02	ô	0,00			0.75	ī	0.02	Ď	0.00
	0.83	ī	0.02	ō	0.00		0.78	0.79	1	0.02	Ō	0.00
0.63	0.84	. 1	0.02	ō	0.00			0.82	1	0.02	0	0.00
0.85		1	0.02	1	0.08							
0.87		1	0.02	0	0.00				TDOP-	-II-FSFMS	-011	
U.55	0.89	2	0.04	0	0.00							
												i i

TDOP-II-PSFMS-011

BARBER TRUCK FS2

BARBER TRUCK FS3

3/12/79 FRICTION SNUBBER FS2. FILT=8 NORMAL>100. POWER<-250 FRICTION COEFFICIENT=0.357+/-0.127 NUMBER= 1132 TOTAL EHERGY=-0.678E+04 IN-LB. INCLUDED ENERGY=-0.105E+05 IN-LB. PERCENT INCLUDED=119.6

3/12/79 FRICTION SNUBBER FS3, FILT=8 NORMAL>100.

POWER<-250 FRICTION COEFFICIENT=0.306+/-0.070

NUMBER= 1613 TUTAL ENERGY=-0.122E+05 IN-LB.

INCLUDED ENERGY=-0.146E+05 IN-LB.

PERCENT INCLUDED = 19.00 PERCENT INCLUDED=119.8

						PERCEN	1 INCL	ָטט.
KAM NIM		PERCENT		PERCENT		MIN	MAX	N
0.00 0.01	26	0.52	0	0.00	•		0.01	
0.01 0.02		0.84 0.82	0	0.00			0.02	
			_				0.03	
0.04 0.05	86	0.96 1.72 1.98 2.84 2.82 2.14 3.02 2.82 2.82	ō	0.00			0.05	
0.05 0.06	97	1.94	1	0.09			0.06	
0.06 0.07	129	2.58	0	0.00	•		0.07	
0.07 0.08	142	2.84	5	0,27 0,18			0.08	
0.09 0.10	107	2.14	6	0.53			0.09	
0.10 0.11	151	3.02	8	0.53			0.11	
0.11 0.12	141	2.82	11	0.97	,		0.12	
0.12 0.13	147	2.94	10	0.88		0.12		
0.13 0.14	155	2.94 3.10 2.56 2.60 2.54 2.88 3.20 2.80	12 16 13 16	1.06	_		0.14	
0.15 0.16	120	2.50	13	1.15		0.14	0.15	
0.16 0.17	127	2.54 2.88 3.20 2.80 2.40 2.48	16	1.41			0.17	
0.17 0.18	144	2.88	12	1.06			0.18	
0.18 0.19	160	3.20	12 16 17	1,41			0.19	
0.19 0.20	140	2.80	17 17 18 20 31 36 23	1.50 1.50 1.59 1.77 2.74 3.18 2.03			0.20	
0.20 0.21	120	2.40	17	1.50			0.21	
0.22 0.23	116	2.32	20	1.77			0.22	
0.21 0.22 0.22 0.23 0.23 0.24	124 116 119	2.38	31	2.74			0.24	
0.24 0.25	121	2.42	. 36	3.18			0.25	
0.25 0.26	109	2.18	23	2.03 2.12 2.03			0.26	
0.26 0.27	113	2.26	24	2,12			0.27	
0.27 0.26	107	2.14	23 24 23 35	2.05 3.09			85.0	
0.24 0.25 0.25 0.26 0.26 0.21 0.28 0.29 0.29 0.30 0.30 0.31 0.31 0.32 0.32 0.33 0.34 0.35 0.35 0.36 0.37 0.38	110	1.80	33	2.83			0.29	
0.30 0.31	102	2.04	32 33 37 36	2.92		0.29 0.30		
0.51 0.32	95	1.90	37	3,27		0.31		
0.32 0.33	87	1.74	36	3.18		0.32		
0.33 0.34	86	1.72	35	3.09		0.33		
0.34 0.35	97	1.94	43	3.80		0.34		
0.35 0.36	7 103	2.06	27	3.45 3.89			0.36	•
0.37 0.36	92	1.84	35 43 39 44 31	2.74		0.36 0.37		
0.37 0.38 0.38 0.39 0.39 0:40 0.40 0.41	83	1.66		3.27		0.38		
0.39 0:40	84	1.68	36	3.18		0.39		
0.40 0.43	69	1.38	28	2,47		0.48		
0.41 0.42	59	1.18	25 29 32	2.21 2.56		0.41		
0.42 0.43	5 54	1.38 1.08	29	2.83		0.42 0.43		
0.41 0.42 0.42 0.43 0.43 0.44	42	0.84	21	1.86		0.44		
0.45 0.46	59	1.18	30	2.65		0.45		
0.46 0.47		1.14	31	2.74		0.46	0.47	
0.47 0.48	34	0.68	19	1,68		0.47		
0.48 0.49	29	0.58	19	1,68		0.48		
0.47 0.30	30	0.60	10	1,33 1,68		0.49 0.50		
0.51 0.52	21	0.42	11	0.97		0.51		
0.49 0.50 0.50 0.51 0.51 0.52 0.52 0.53 0.53 0.54	12	0.24	15 19 11 6 7	0.53		0,53		
0.53 0.54	15	0.30	9	0.60		0.54		
0.54 0.5	5 12	0.24	7	0,62				
0100 010		0,10	3	0.27				T
0.56 0.57		0.20 9.30	5 12	0.44 1.06				
0.58 0.59		0.12	4	0.35	•			
0.59 0.6		0.10	ì	0.35				
0.60 0.6	1 6	0.12	5	0.44				
0.61 0.6		0.04	1	0.09				
0.62 0.63		0.06	2	0.18				
0.63 0.64		0.02 0.04	9 2	0.00				_
0.66 0.6		0.03	4	0.18 0.35		3/13/79		
0.67 0.6			2	0.18		FRICTIO TOTAL E		
0.68 0.6	9 2	0.04	2	0,16		-0.968E		
0.70 0.7			1	0.09			- '	
0.73 0.79			1	0.35				
0.76 0.7		0.02 0.02	i	0.09 0.09		MIN	MAX	NU
0.80 0.8			ī	0.09		0.00		
0.86 0.8	7 1	0.02	1	0.09		0.01		
0.67 0.8			1	0.09		0.02	0.03	
0.98 0.9	9 2	0.04	2	9,18		0.03		
		T DODAG	005			0.04	0.05	

MIN	MAX	NUMBER	PERCENT	NUMBER	PERCENT
0.00	0.01	11	0.22	0	0.00
0.01	0.02	20	0.40	0	0.00
0.02	0.03	39	0.78	0	0.00
0.03	0.04	46	0.92	. 8	0.00
0.04	0.05	47	0.94	0	0.00
0.05	0.06	6 6	1.32	1	0.06
0.06	0.07	77	1.54	1	0.06
0.07	0.08	84	1.68	2	0.12
0.08	0.09	90	1.80	4	0.25
0.09	0.10	78	1.56	0	0.00
0.10	0.11	112	2.24	9	0.56
0.11	0.12	113	2.26	4	0.25
0.12	0.13	140	2.80	10	0.62
0.13	0.14	106	2.12	8	0.50
0.14	0.15	115	2.30	12	0.74
0.15	0.16	109	2.18	20	1.24
0.17	0.17	117	2.34	16	0.99
0.18	0.18	119	2.38	. 18	1,12
0.19	0.20	145 123	2.90	20	1.24
0.20	0.21		2.46	33	2.05
0.21	0.22	152 154	3,04	26	1.61
0.22	0.23	137	3.08	. 33	2.05
0.23	0.24	149	2.74	35	2.17
0.24	0.25	143	2.98	45 42	2.79
0.25	0.26	182	3.64	72	2.60
0.26	0.27	157	3.14	. 60	4.46 3.72
0.27	0.28	184	3.68	, 74	4.59
0.28	0.29	210	4.20	91	5.64
0.29	0.30	233	4.66	127	7,87
0.30	0.31	202	4.04	109	6.76
0.31	0.32	243	4.86	124	7,69
0.32	0.33	215	4.30	115	7.13
0.33	0.34	136	2.72	76	4.71
0.34	0.35	143	2.86	69	4,28
0.35	0.36	124	2,48	67	4,15
0.36	0.37	98	1.96	54	3,35
0.37	0.38	91	1.82	55	3.41
0.38	0,39	77	1.54	49	3.04
0.39	0.40	79	1,58	. 46	2.85
0.40	0.41	48	0.96	30	1,86
0.41	0.42	25	0.50	17	1.05
0.42	0.43	14	0.28	6	0.37
0.43	0.44	15	0.30	14	0.67
0.44	0.45	12	0.24	10	0.62
0.45	0.46	5	0.10	4	0.25
0.46	0.47	. 5	0.10	Ď	0.00
0.47	0.48	1	0.02	1	0.06
0.48	0.49	2	0.04	0	0.00
0.49	0.50	1	0.02	0	0.00
0.50	0.51	1	0.02	1	0.06
0.51	0.52	1	0.02	0	0.00
0.53	0.54	2	0.04	. 1	0.06
0.54	0.55	2	0.04	2	0.12

CDOP-II-FSFMS-005

ASF TRUCK FS1

FILTER=8. NORMAL>100. POWER<-250 ICIENT=0.464+/-0.105 NUMBER= 1208 0.910E+04 IN-LB, INCLUDED ENERGY= LB, PERCENT INCLUDED=106.3

MIN	MAX	NUMBER	PERCENT	NUMBER	PERCENT
0.00	0.01	13	0.26	0	0.00
0.01	0.02	16	0.32	0	0.00
0.02	0.03	17	0.34	0	0.00
0.03	0.04	16	0.32	0	0.00
0.04	0.05	33	0.66	. 0	0.00
0.05	0.06	26	0.52	0	0.00

D-2

TDOP-II-FSFMS-005

APPENDIX D

FRICTION COEFFICIENT CALCULATIONS

This appendix contains the detailed analysis of the friction coefficients for each truck. The section of track chosen was between mileposts 5.52 and 5.80 in test zone 1. The analysis for each friction snubber is listed on a separate page. No analysis is included for FS4 on the Barber truck because of transducer problems experienced with FS4 during this run (discussed in paragraph 3.3). The variables in the analyses are defined as follows:

FSX

Friction snubber number X

FILT

Cutoff frequency of analysis

NORMAL

Cutoff level for normal force

POWER

Cutoff level for power

FRICTION COEFFICIENT

Mean value + standard deviation

NUMBER

Number of friction coefficients used in average

TOTAL ENERGY

Total energy under curve

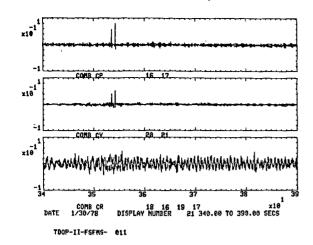
INCLUDED ENERGY

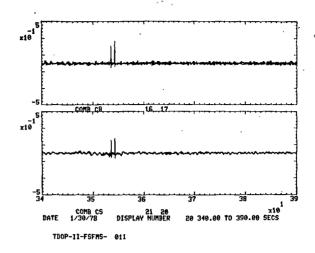
Total energy under curve less than power

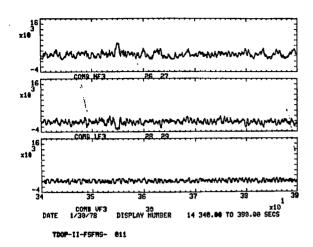
PERCENT INCLUDED ENERGY

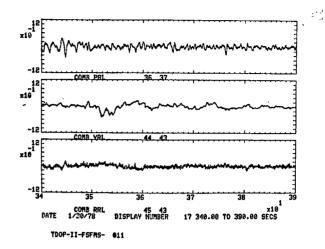
Total energy divided by included energy

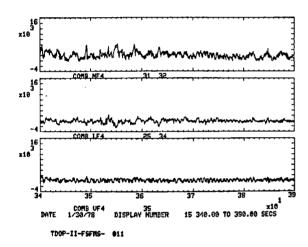
Since the total energy under the curve is an arithmetic sum, positive and negative energy cancel out, and it is possible to have included energy greater than the total energy. Total friction coefficients include all the values of the friction coefficient measured during an interval, both static and dynamic. Included friction coefficients are only those which meet the normal force and power dissipation level and thus are defined as dynamic friction coefficients.

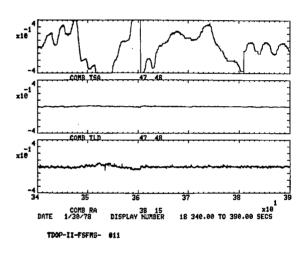

The first two column headings in the following analyses (MIN and MAX) define the range; the third and fourth columns (NUMBER and PERCENT) refer to the total friction coefficients, while NUMBER and PERCENT in the fifth and sixth columns refer to included friction coefficients.

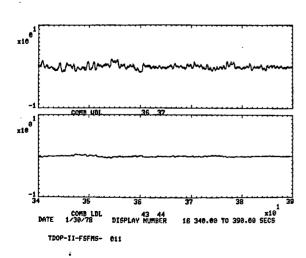

BARBER TRUCK FS1

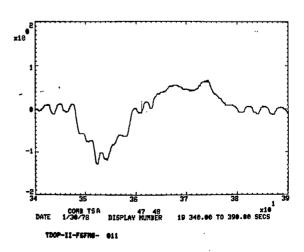

3/12/79 FRICTION SNUBBER FS1, FILT=8 (KTY=6)
NORMAL>100, POWER<-250 FRICTION COEFFICIENT=
0.324+/-0.088 NUMBER= 1491 TOTAL ENERGY=
-0.115E+05 IN-LB, INCLUDED ENERGY=-0.118E+05 IN-LB, PERCENT INCLUDED=102.9

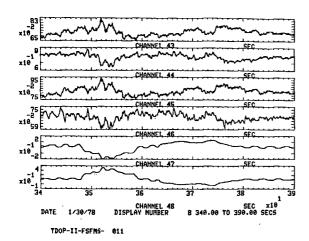

MIN MAX	NUMBER	PERCENT	NUMBER	PERCENT
0.00 0.01	19	0.38	0	0,00
0.01 0.02	28	0.56	0	0.00
0.02 0.03	42	. 0.84	0	0.00
0.03 0.04	62	1.24	0	0.00
0.04 0.05	60	1,20	0	. 0.00
0.05 0.06	68	1.36	1	0.07
0.06 0.07	74	1.48	. 1	0.07
0.07 0.08	96	1.92	1	0.07
0.08 0.09	96	1.92	ž	0,13
0.09 0.10	95	1.90	2	0.13
0.10 0.11	112	2,24	3	0.20
0.11 0.12	120	2.40	4	0.27
0.12 0.13	118	2.36	i	0.07
0.13 0.14	159	3.18	13	0.87
0.14 0.15	156		12	0.01
0.14 0.15		3.12		0.80
0.15 0.16	159	3.18	16	1.07
0.16 0.17	146	2.92	19	1.27
0.17 0.18	161	3.22	26	1.74
0.18 0.19	147	2.94	22	1.48
0.19 0.20	139	2.78	16	1.07
0.20 0.21	142	2.84	27	1.81
0.21 0.22	163	3,26	38	2,55
0.22 0.23	135	2.70	28	1.88
0.23 0.24	164	3,28	31	2.08
0.24 0.25	186	3.72	58	3.89
0.25 0.26	173	3,46	52	3.49
0.26 0.27	186	3,72	63	4.23
0.27 0.28	219	4.38	84	5,63
0.28 0.29	159	3.18	74	4.96
0.29 0.30	161	3,22	78	5.23
0.30 0.31	172	3.44	86	5.77
0.31 0.32	122	2.44	72	4.83
0.52 0.33	124	2.48	68	4.56
0.33 0.34	109	2.18	76	5.10
0.34 0.35	95	1.90	63	4.23
0.35 0.36	85	1.70	56	3.76
0.36 0.37	67	1.34	42	2.82
0.36 0.37				
0.37 0.38	64	1.28	43	2.88
0.38 0.39	65	1.30	43	2.88
0.39 0.40	54	1.08	37	2.48
0.40 0.41	47	0.94	35	2,35
0.41 0.42	23	0.46	20	1.34
0.42 0.43	42	0.84	33	2,21
0.43 0.44	32	0.69	28	1.68
0.44 0.45	26	0.52	21	1.41
0.45 0.46	29	0.58	22	1.48
0.46 0.47	17	0.34	15	1.01
0.47 0.48	9	0.18	4	0.27
0.48 0.49	9	0.18	6	0.40
0.49 0.50	11	0.22	5	0.34
0.50 0.51	10	0.20	5	0.34
0.51 0.52	5	0.10	4	0.27
0.52 0.53	7	0.14	6	0,40
0.53 0.54	6	0.12	4	0.27
0.54 0.55	8	0.16	8	0.54
0.55 0.56	4	0.08	4	0.27
0.56 0.57	4	0.08	4	0.27
0.57 0.58	2	0.08	2	0.13
0.58 0.59	5	0.10	5	0.34
	1	0.02	1	0.07
0.61 0.62	1		i	
0.62 0.63	1	0.02	1	0.07

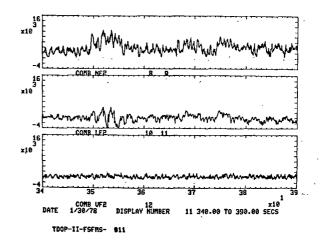

TDOP-II-PSFMS-005

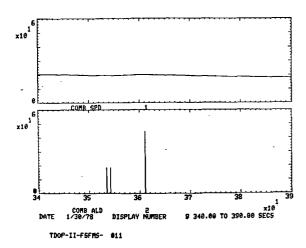


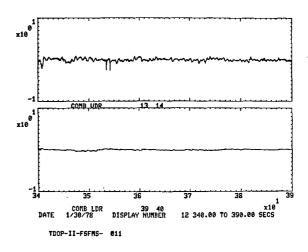


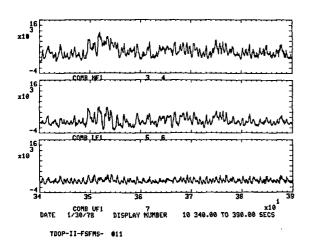


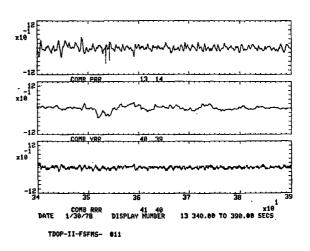


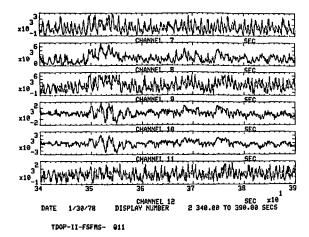


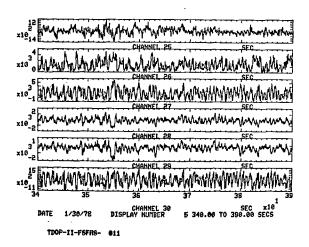


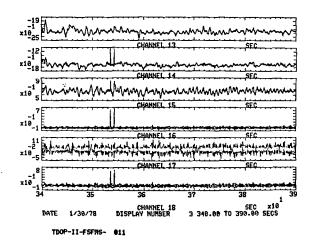


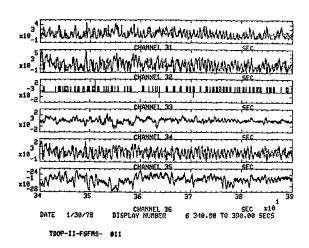


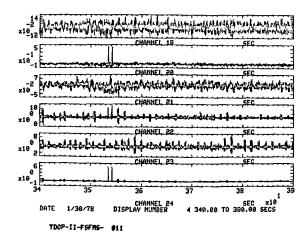


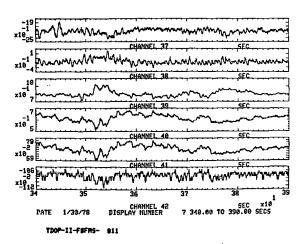


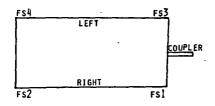


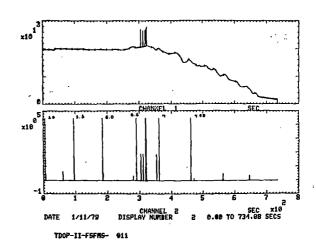


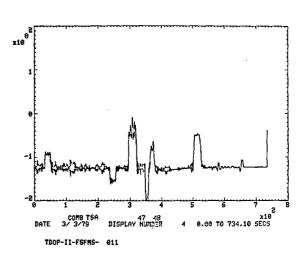


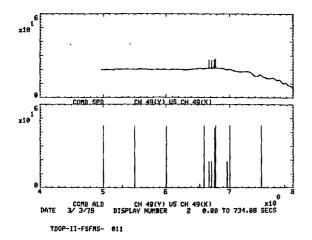


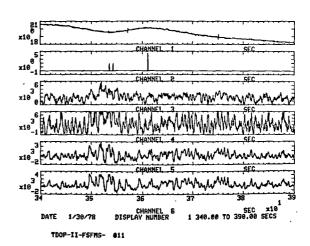





APPENDIX C EXAMPLES OF REDUCED DATA


Parameter Definitions (TDOP-II-FSMS-001)




Direction of Travel

SPD	Speed	mph
ALD	ALD	detection
NFX	Normal force at friction snubber (FS) X	lb
LFX	Lateral force at FS X	lb
VFX	Vertical force at FS X	lb
VDR	Vertical displacement right side FS	inch
LDR	Lateral displacement right side FS	inch
PRR	Side frame/bolster pitch rotation right	degree
YRR	Side frame/bolster yaw rotation right	degree
RRR	Side frame/bolster roll rotation right	degree
XXL	Refers to previous four measurements at left	
	side frame	degree
TSA	Truck/carbody bolster swivel angle	degree
TLD	Truck/carbody lateral displacement	inch
RA	Carbody roll angle	degree
CB	Carbody bounce	G
CS .	Carbody sway	G
CP	Carbody pitch	degree/sec ²
CY	Carbody yaw	degree/sec ²
CR	Carbody roll	degree/sec ²

PROPERTY OF FRA LIBERTY OF FRA LIBERTY OF FRA

Ontimization F

Truck Design Optimization Project: Phase II: Friction Snubber Force Measurement System Field Test Report, 1979 US DOT, FRA