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EXECUTIVE SUMMARY

The purpose o f  th is  report is  to  d erive  and demonstrate the a p p lic a t io n  
o f a gen era lized  methodology fo r  v a lid a t in g  r a i l  v e h ic le  dynamics models.
Mjch e f fo r t  has been devoted in  the past to  te s t in g  and a n a ly t ic a l (mathemati­
c a l)  modeling o f  the dynamics o f r a i l  v e h ic le s , but these e f fo r ts  have almost 
in v a r ia b ly  been exerted by d if fe r e n t  groups. The re s u lt  has been that v i r t u ­
a l ly  none of the models has been v a lid a te d  by experim ental data.

Previous attempts to  v a lid a te  r a i l  v e h ic le  models using  a v a r ie ty  of 
approaches were reviewed, and most were found to have su ffe red  from inadequate 
te s t  data because the tests  were not designed fo r  the purpose o f  v a lid a t in g  
m odels. Based on the problems encountered in  these attempts and on experience  
gained in  s u c c e s s fu lly  v a lid a t in g  models o f  a i r c r a f t  and marine v e h ic le s , some 
general p r in c ip le s  or g u id e lin e s  fo r model v a lid a t io n  were then form ulated and 
d iscussed .

Two separate, but c lo s e ly  r e la te d , s tep -by-step  procedures fOr v a lid a t in g  
r a i l  v e h ic le  models were d e riv e d . The f i r s t ,  was based on development o f a new 
te s t  program customized fo r  model v a l id a t io n ,  w h ile  the second was designed  
fo r  use w ith e x is t in g  te s t  data . P a r t ic u la r  emphasis in  both cases was 
assigned to the comparison between model p re d ic tio n s  and te s t  r e s u lts  and the 
adjustment o f  model parameters to  improve, agreement with the te s t  r e s u lt s .

An example a p p lic a t io n  o f  p a rt o f  the methodology was demonstrated using  
data c o lle c te d  in  the Perturbed Track Tests  (PTT) a t Pueblo, Co lorado. The 
te s ts  performed oii tangent track  co n ta in in g  piecew ise l in e a r  p r o f i le  pertu rba­
tion s  were used t o ,try  to  v a lid a te  a sim ple s ix -degree-d f-freedom  lin e a r  model 
o f  the v e r t ic a l  dynamics o f  a s ix -a x le  locom otive . The p re lim in a ry  steps of 
the v a lid a t io n  procedure were demonstrated and comparisons between the test  
re s u lts  and model p re d ic tio n s  were i l lu s t r a t e d  fo r  one case. The rem aining  
steps o f model adjustments and comparison fo r  a v a r ie ty  o f  co n d itio n s  were des­
cr ib e d  but were not demonstrated, ,

•C .
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Mathematical models have been found to be 
extremely useful tools for predicting the perfor­
mance of complicated systems in lieu of costly 
test programs. The advent of modern high-speed 
digital computers and the continuing sharp de­
cline in the cost of computing have made modeling 
an increasingly attractive alternative to testing 
of dynamic systems. However, even the most 
sophisticated models are of no use unless they 
can be proven to represent reality (the perfor­
mance of the physical system being modeled) ade­
quately. Validation is the process of proving 
the adequacy of a model by use of appropriate 
test data.

It is neither feasible nor desirable to de­
sign a mathematical model to represent all pos­
sible modes of response of a vehicle for every 
anticipated situation. Models are tools which 
are best designed for specific, well-defined pur­
poses. A model may be ideally suited for one 
purpose and totally inappropriate for another, so 
the model purpose must always be borne in mind. 
The design of a model always includes trade-offs 
among different attributes. The intended purpose 
should govern how these trade-offs are managed. 
Increasing the complexity' of a model (more de­
grees of freedom or nonlineerities) tends to per­
mit it to simulate more types of behavior more 
accurately, but imposes the penalties of adding 
greater cost to develop, debug, and execute the 
model, and making user interface more difficult 
(more input requirements, more difficult to 
understand). Similarly, the model which is de­
signed to be as general as possible will probably 
be more difficult and costly to use than one 
which is designed for a specific purpose and 
specific conditions.

Mathematical models, once they are properly 
validated, can offer distinct advantages over 
full-scale testing for studying some of the 
dynamics of rail, vehicles. Models are much less 
expensive to run than full-scale tests, Fh 11- 
scale tests require the use of very costly vehi­
cles, train crews, instrumentation, data proces­
sing equipment, and testing personnel (techni­
cians), as well as track which either has to be 
specially constructed for testing or must be 
taken out of revenue-producing uses for a 
period. Models can also be run more rapidly than 
full-scale tests (even when they are slower than 
real time on the computer), permitting more con­
ditions to be studied in the same period of 
time. Finally, models pose no safety hazards and 
do no damage when used to represent hazardous 
situations such as potential derailments.

Many mathematical models of rail vehicle 
dynamics have been developed in the past 15 
years. However, in most cases these models have 
not been validated.

The work that has been performed to validate 
rail vehicle models has not been completely suc­
cessful. Often, it is incomplete in that some 
data are looked at, occasionally parameters are 
modified, but the final steps of comparing the 
model outputs to independent data sets and defin­
ing the range of validity of the models are mis­
sing. These shortcomings are not necessarily 
oversights, but generally are limitations of the 
available data and funding. In some, cases, the 
nonlinearity of the dynamics is not well under­
stood and causes modeling to be invalid.

The inadequacy of the test data is a major 
contributor to problems in validation. Some test 
data sets do not include important, but difficult 
to measure, quantities such as wheel/rail forces 
and wheel/rail displacements. Oversights in test 
planning are a common problem. In general (with 
the exception of models that require detailed 
wheel/rail measurements for. validation), the 
problems have not been with the state of , the art 
of testing or instrumentation technology, but 
with the omission of needed measurements or test 
conditions.

Given the difficulty of validating rail 
vehicle dynamics models, the potential benefits 
to be enjoyed from improved validation methods 
and test planning procedures are substantial. If 
validated models could be applied to predict per­
formance with confidence, testing could be mini­
mized and many questions about dynamic perfor­
mance of rail vehicles could be answered more 
quickly, accurately, and inexpensively than under 
present circumstances.

System identification techniques offer a 
solution to these problems. System identifica­
tion is the integrated technology for determining 
mathematical models of dynamic systems from meas­
urements of the system responses to their in­
puts. It is used for model validation, test 
design, model structure determination, and param­
eter estimation. The technology encompasses 
techniques useful in all stages of the develop­
ment of validated models, from test planning to 
model verification. System identification proce­
dures are discussed in more detail in Kef. 1, 
with particular application to rail vehicle dyna­
mics.

The contents of Ref. 1 complement the work 
reported here. In Ref. 1, considerable attention 
was devoted to the data processing algorithms 
used for parameter estimation and model structure 
determination. The practical considerations 
involving experimental design, instrumentation, 
noise and statistical assumptions were reviewed 
in detail. Model structure determination and 
parameter estimation methods were applied in 
pilot runs to data generated by a nonlinear sirai- 
lation model of locomotive forced lateral re­
sponse, and then to real vehicle data gathered in
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the Perturbed Track Test (PTT) program. The 
challenges posed by the imperfections in the test 
data were illustrated by comparison with the use 
of the simulatea data.

1.1 OVERVIEW OF THE REPORT

The scope of the work documented in this 
report is limited to the description and. partial 
demonstration of a methodology of rail vehicle 
dynamics model validation. Section II is a cri­
tical review of previous attempts to validate 
rail vehicle dynamics models, highlighting the 
lessons learned from that work and the experience 
which can be applied to the current project. 
Section III describes the general principles and 
assumptions which governed the development of the 
suggested methodologies, which are themselves 
outlined in Section IV. Section V describes the 
application of one of the validation methodolo­
gies to a model' of the vertical dynamics of a 
six-axle locomotive. Conclusions and recommenda­
tions for further work appear in Section VI.

II. REVIEW OF PREVIOUS WORK

Previous work on validation of rail vehicle 
dynamics models has involved a number of investi­
gators. These separate validation efforts have 
been directed at a variety of purposes, and have 
employed diverse methods. The work has produced 
a large body of experience which can be used to 
enhance the success of future. validation endeav­
ors. In many cases this experience consists of 
cautionary information about what types of situa­
tions to avoid.'

Compared to the amount of effort which has 
been expended on modeling and testing, very 
little attention in rail vehicle dynamics has 
been paid to combining the two in a validation 
process. Generally, the modelers and testers 
have been different people with divergent inte­
rests. Only rarely have they been"brought toge­
ther. The majority of the rail vehicle testing 
which has been done has not been designed with 
model validation in mind and, therefore, the data 
are not well suited for use. in validation (insuf­
ficient accuracy, sample sizes, and varieties of 
test conditions, and incomplete sets of needed 
variables).

This section is a review of the existing 
rail dynamics literature which incorporates 
experience applicable to model validation. The 
review begins with examples of the traditional 
model developed from physical "first principles" 
being compared with test data collected under the 
same conditions. The comparisons tend toward 
"eyeballing," and often lead to heuristic model 
adjustment in order to produce better matches to 
the data. In general, the difference between 
model and test data is not(vcompared to a pre- 
established validation criterion. Applications 
of this approach to both vehicle subsystems and 
complete vehicles are discussed in sequence.^

The review continues with a discussion of 
applications of system identification techniques 
to rail vehicle dynamics problems. In the system 
identification_ approach the validation _of__.the_ 
mbdel and any modification that is necessary are 
achieved using a combination of suitable analyses 
of test data} statistical concepts and the an­
alyst's knowledge of system structure. The re­
view in this section concludes with a discussion 
oi some of the more general, philosophical stud­
ies of rail dynamics model validation. The stud­
ies offer guidance about procedures and the rela­
tive importance of different factors.

2.1 TRADITIONAL MODEL VALIDATION

2.1.1 Subsystem Models

Cooperrider, et al. [2] compared a mathema­
tical analysis used to determine the wheel/rail 
contact point as a function of lateral displace­
ment with results measured using plexiglass mod­
els of wheel and rail profiles. The plexiglass 
models were developed for the specific purpose of 
validating the analysis, which was designed to be 
used to compute parameters needed in complete 
vehicle dynamic models. The validation was suc­
cessful. All discrepancies between the analysis 
and experimental results were found to be attri­
butable to known measurement tolerances and unin­
tentional differences between the cases which 
were investigated in the analysis and the test.

Hsu and Peters 13] studied the dynamic char­
acteristics of a draft gear, extending the work 
of Ward and Leonard [4], which will be described 
with the other system identification work. Hsu 
and Peters determined the friction-velocity rela- 
.tionship for a class of draft gear by defining 
model parameters based on inspection of the 
empirical force-defledtion curves of individual 
draft gear units. Validation was then claimed, 
without prior specification of the validation 
criteria, by visual comparison of the time histo­
ries of the simulated and actual tests.

2.1.2 Vehicle Models

Boocock [5] used both roller rig and field 
tests to validate a quasi-static curving model. 
Practical difficulties involving test procedures 
(dynamic, roughness responses dominating steady- 
state curving responses, and profiles of test 
wheel different from those assumed in analysis) 
impaired the validation. The agreement between 
the model and test results (based on "eyeball" 
comparisons) was found to be good for low curva­
ture and within the linear creep regime, but was 
degraded by high curvature (where slip of leading 
wheelset was hypothesized) and creep force satur­
ation (which was not incorporated in the model).

The Office for Research and Experiments 
(ORE) of the International Union of Railways 
(UIC) sponsored a program of testing [6] aimed at 
improving the modeling of the interaction between 
vehicles and track. A two-axle freight car was

2



operated over a variety of track conditions in 
the field. The accelerations, velocities, and 
deflections of different parts of the car were 
measured along with the track cross-level, gauge, 
and elevation. A purely linear approach was 
followed in analyzing the data. The approach 
used the ratios of output to input PSDs to esti­
mate vehicle frequency response. The analysts 
sought to identify the dynamic modes which corre­
sponded to each response peak. They were not 
successful in identifying all the peaks. Also, 
the experimental results were consistently higher 
than the accelerations predicted by the models. 
Some arbitrary adjustments were made to the 
models in order to try to improve the agreement. 
The inherent linear assumptions in the method­
ology limited its fidelity, but there were also 
problems with important variables remaining un­
measured (especially lateral inputs). This study 
served as an exploratory investigation of the use 
of field test data to validate analytical models, 
but did not produce any definitive model valida­
tions.

Hutchens, Haight, and Milner from MITRE [7] 
reported on a similar test program using a pas­
senger car subjected to random track inputs in a 
field test. This study was also founded on 
linear assumptions. It dealt extensively with 
natural frequencies and mode shapes of- the vehi­
cle response, but in this case, the results of 
numerous test runs were averaged together to 
approximate a white-noise input assumption.. The 
modal frequencies evident in averaged test data 
were compared with the frequencies predicted by 
an analytical model which was derived from physi­
cal first principles. The comparison was used to 
adjust the parameter values in the model to ob­
tain closer agreement. In this case, the test 
results did not serve to validate the analytical 
model, but were only used to adjust the. parame­
ters of the model; the model was then applied to 
modal analysis of the vehicle dynamics under var­
ious conditions. These adjustments to the 
assumed values of model spring constants, which 
were substantial, were based not on any causal 
reasoning founded on the physics of the problem, 
but on closer reproduction' of the frequencies of 
the peak responses in the test data.

Abbott, Morosow, and MacPherson [8] reported 
on the truck-hunting-model validation testing 
performed by Martin-Marietta as part of the AAR/ 
FRA Track-Train Dynamics Program. This program 
was unusually interesting because of the emphasis 
it placed on a building-block approach to model 
validation, beginning with testing and validation 
of key subsystem elements before proceeding to 
the entire vehicle. Quasi-static testing of the 
trucks was used to help define the nonlinear pro­
perties of the truck-carbody interface (dry fric­
tion, hysteresis), and shaker tests of the car 
body helped identify its elastic modes. The 
discrepancies between the test results from the 
car body modal survey and the predictions from a 
finite element model based on the drawings of the 
car body were traced to differences between the' 
drawings and the actual construction of the car

body. The comparisons between test and 
analytical results were based on mode shapes and 
natural frequencies, only the latter being read­
ily susceptible to quantitative comparison; The 
quasi-static truck tests produced force-deflec­
tion plots showing hysteresis characteristics, 
which were plotted together with the force- 
deflection plots produced by an analog computer 
model, but no criterion for evaluating the diffe­
rences between these plots was apparent. Vehicle 
transfer function tests were performed using 
sinusoidal force inputs, over a range of frequen­
cies, to a single wheel or axle. Responses to 
these inputs were processed through an FFT analy­
sis which revealed the nonsinusoidal behavior in­
duced by system nonlinearities, to identify 
effective vehicle transfer functions. This pro­
cedure constituted a crude linear frequency- 
domain system identification process, but was not 
a model validation.
'I
i Healy (9] compared the response forces 

measured in test runs of an ASF hopper car on 
shimmed track with predictions from a simplified 
nonlinear 11-degree-of-freedom model, in an 
attempt to validate rock-and-roll predictions. A 
low-speed test was run to obtain quasi-static 
measurements, which were used to infer the track 
cross-level geometry to be used as the input for 
model runs. The snubber characteristics in the 
vehicle model were adjusted to produce the best 
"eyeball” match to the test response time histo­
ries at a single operating speed, and the model 
and test results were then compared Visually at 
other speeds. This was an exercise in model ad­
justment based on experimental data,, rather than 
validation of a model. . .

Elkins and Gostlihg [10] developed a sophis­
ticated npnlinear mo<iel for quasi-static curving 
behavior and then executed a test program, with 
instrumented wlieelsets and special sensors for 
measuring wheel/rail displacements, to validate 
the model's predictions. They displayed plots of 
predicted and experimental values of lateral 
forces and yaw torques for different vehicles, 
speeds, and curve radii. These plots clearly 
demonstrated that the authors' model predicted 
the experimental results much more closely than 
preceding theories, but there was no formal, 
quantitative application of a validation criter­
ion. This is a moot point, however, because the 
agreement between the model and data was so close 
and. the authors' argument so convincing that 
there was little doubt remaining about whether 
the model was validated for the range of condi­
tions tested.

Helms and Strothmann [11] concentrated on 
details of wheel/rail interactions -in comparing 
lateral acceleration PSDs measured using instru­
mented wbeelsets and simulated in a relatively 
simple vehicle dynamic model which included a 
complicated representation of track interac­
tions. Detailed track geometry measurements were 
used to provide inputs (such as rolling line off­
set PSD) to the spectral response simulation. 
The simulated and experimental PSDs of car body
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and wheelset lateral accelerations were plotted 
together, but no quantitative comparisons were 
made and no conclusions were drawn except that 
agreement was better for the body-center measure­
ments than.fo_r_ the individual wheelset measure­
ments. Despite the meticulous attention to de­
tail in the track and interaction modeling and 
measurement, agreement was in general not very 
good and no attempt was made to claim model vali­
dation.

Illingworth [12] used roller-rig testing to 
validate a model of wheelset lateral dynamics 
based on Kalker's creep-force/ creepage theo­
ries. Within the linear creepage regime, his 
predictions of lateral and yaw frequency response 
were nearly indistinguishable from the experimen­
tal results, presenting a convincing validation 
(regardless.of quantitative criteria) of the pre­
dictions. In the nonlinear creepage regime, the 
experimental results were plotted against three 
different theories and the closest agreement was 
found to be with 40% of' Kalker's assumed creep 
force. However, this result was not strong 
enough to encourage Illingworth to claim valida­
tion of the model by his own (unquantified) cri­
teria.

Kachadourian and Tsai [13] reported on the 
use of vertical shaker tests at the Rail Dynamics 
Laboratory to validate the FRATE lumped-parameter 
lading response model for a TOFC configuration. 
They defined the performance measures of interest 
to be the resonant frequencies and deflection 
shapes and amplitudes at resonances, but did not 
specify tolerances on those measures. A general­
ized frequency domain parameter identification 
approach was followed with the analyst playing a 
crucial role in manually adjusting model parame­
ters to improve the agreement with the test 
data. The remaining differences -between model 
and test results were interpreted to indicate the 
need for additional model degrees of freedom (for 
trailer flexibility) and nonlinear representa­
tions of springs (amplitude sensitivity of re­
sults). If these conclusions had been used to 
modify the model, and the model outputs again 
compared with the test results, the "outer loop" 
of the validation process (to be described in 
Section IV) would have been closed and a convinc­
ing validation exercise could have been reported.

Cooperrider, Law, Fries, and Tsai [14] des­
cribed a very thorough program of field testing 
aimed at validating lateral dynamics models for 
freight cars. The ambitious scope of this pro­
gram indicated the need for a building-block ap­
proach to validation, beginning with individual 
truck components and then assembled trucks before 
proceeding to complete vehicles. Despite the 
wealth of data collected and the care which was 
used in taking measurements and processing data, 
this test program still did not produce any defi­
nitive model validation, although it did provide 
valuable experience regarding the importance of 
having the right type of test conditions and data 
(constant speed, initial condition measurements, 
displacement of vehicle components relative to

track, rail-head and roadbed variations along 
track, etc.). A major contribution of this work 
was the recommendation of which output, measures 
to use for validating models of dynamic behavior' 
on tangent and curved_track, even_though_the tol­
erances which should be applied to those measures 
were not specified. The data which were collec­
ted were not suitable for identifying creep coef­
ficients, and recommendations were offered for 
remedying this shortcoming in future validation 
test efforts.

Garg's review of the Track-Train Dynamics 
Project [15] referred to the need for validation 
of rail vehicle dynamic models. It.included some 
plots of model and test results on the same axes, 
but did not address any quantitative validation 
criteria.

Rinehart [16] investigated the hunting stab­
ility of a three-axle locomotive truck using a 
linear 11-degree-of-freedom model which he sought 
to validate using test data from the Transporta­
tion Test Center at Pueblo, Colorado. . The natu­
ral frequencies and damping of the truck modes at 
a single speed were tabulated and compared with 
the model predictions. The agreement was consi­
dered to be close enough to constitute valida­
tion. The remainder of the study was conducted 
using the model alone, without benefit of test 
data.

Sweet, Sivak, and Putnam [17], described the 
testing of a one-fifth scale model instrumented 
wheelset on a similarly scaled track 244m long 
for the purpose of validating,a nonlinear analy­
tical model of wheej/rail interactions. The test 
program was designed to incorporate a variety of 
constraints on the wheelset, permitting a syste­
matic investigation of different wheel/rail 
interaction phenomena. A building-block approach 
was followed, first to validate the scaling laws 
applied to the design and interpretation of the: 
scale model tests (via testing on a scaled roller 
rig), and then to use the scale model track tests 
to validate the wheel/rail interaction theory. 
The model track test plan was also structured to 
build from validation of linear relationships to 
increasingly complicated nonlinear relationships 
(larger wheel/rail displacements). Results were 
presented as experimental data points plotted 
along with curves predicted by theory, but expli­
cit validation criteria were not defined and the 
differences between theory and experiment were 
not explicitly quantified. In some cases, the 
measured data points were indistinguishable from 
the theoretical predictions on the authors' 
plots, providing convincing evidence of model 
validation, but in other cases the agreement was 
not nearly so close, and there was considerable 
scatter in the experimental data. In these lat­
ter cases, the authors found the data sufficient 
to validate important performance trends predic­
ted by the models, but they considered the data 
inadequate to validate the models completely for 
flange contact with nonzero yaw angles. This 
work represented an unusually careful and conser­
vative approach to model validation, with testing
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designed specificaliy' to support the validation, 
and validation being claimed only where it was 
strongly supported by the experimental evidence.

2.2 SYSTEM IDENTIFICATION APPLICATIONS

Several studies of rail vehicle dynamics 
have applied system identification techniques to 
determine model parameters such as creep coeffi­
cients, suspension stiffnesses, and damping coef­
ficients. Estimation criteria have included out­
put error, equation error, combined state and 
parameter estimation, and frequency response 
matching techniques. Only one study has reported 
the use of a systematic model structure determin­
ation method. On the other hand, no papers have 
reported the successful completion of the crucial 
verification step, namely the use of an identi­
fied model to predict a data set not used in the 
parameter estimation process. No reported result 
demonstrates a complete model estimation and 
validation sequence.

The papers referenced below have applied a 
wide variety of system identification techniques 
to the development of rail vehicle dynamics 
models. Techniques used include:

• frequency response (gain and phase) curve
fits [18,19];

• equation error minimization [1,4,18];

• output error minimization [1,20]; and

• combined state and parameter estimation [21].

Models identified have sometimes included a limi­
ted number of nonlinearities as well as linear 
dynamic effects such as suspension stiffness and 
damping. None of the reported efforts tried to 
estimate, systematically, a mathematical model 
structure for a nonlinear function. The mathema­
tical forms were always specified a priori. 
Three of the papers [1,18,20] recognized the lack 
of identifiability of parameters in the set to be 
estimated and recommended modifications to the 
experiment to correct the problem.

All of the papers reported the processing of 
very limited amounts of data. Some of the re­
sults reported were based on work with only a 
single data, set, while others worked with two or 
three. This limits the possibility of model 
validation. Model validation requires the pro­
cessing of multiple, independent data sets.

Table 2.1 summarizes the contents of six 
papers which have appeared since 1973 on the 
topic of rail vehicle system identification.

Hasselman and Johnson [18] used frequency 
response data to estimate suspension stiffness 
parameters in a four-degree-of freedom linear 
model of the "rock-and-roll" dynamics of a 100- 
ton hopper car. The paper recognized the impor­
tance of assessing the statistical significance 
of estimation accuracies of parameters. The

authors correctly concluded, for example, that 
five of the eight parameters in their suspension 
model could not be estimated from the data avail­
able to them. They suggested modifications to 
the experiments to produce improved identifiabil­
ity for the five parameters which could not be 
estimated from the original data sets.

Fallon [19] used frequency response methods 
to estimate parameters in a linear model of the 
vertical dynamics of a railcar. He also used an 
equation error method to determine parameters in 
a nonlinear model of suspension dynamics. The 
estimation with a nonlinear model used nine dif­
ferent data sets, each at a different speed. The 
parameter values estimated (representing suspen­
sion stiffness and damping) showed a strong trend 
with variation of vehicle speed. This indicated 
that more complex nonlinear effects were present 
than implemented in the author's model. Perhaps 
a nonlinear suspension model could have been es­
timated from the data if a systematic model 
structure determination method were to have been 
applied. It is disappointing that this report 
did not present any indication of the goodness of 
fit of the resulting models to the data for the 
nonlinear model estimation.

Ward and Leonard [4] applied an equation 
error method to the estimation of a nonlinear 
model of a draft gear-coupler connecting two rail 
cars. The paper presented a plot of the fit of 
data to the identified model superimposed on a 
plot of the data, but did not present any esti­
mate of the accuracy of the identified parame­
ters. It also did not attempt to predict a set 
of data which was not used to estimate parame­
ters, omitting the validation step.

Broersen [20] used an output error criterion 
to estimate 19 parameters in a mathematical model 
of the lateral motion of a rail vehicle bogie. 
Parameters estimated included suspension stiff­
ness and creep coefficients. The author deter­
mined relative parameter accuracies by examining 
the sensitivity of mean square fit error to small 
(2%) changes in parameter values. "Accurate es­
timates may be expected," according to Broersen, 
if the mean square error is highly sensitive to 
changes in the assumed value of a parameter. 
"Accurate," however, was not quantitatively. de­
fined. Accuracy levels could have been deter­
mined if several data sets had been processed 
independently. The scatter of estimated values 
for the various parameters would have given quan­
titative information on the estimation accuracy.

The sensitivity study indicated that two 
parameters, modeling suspension stiffness, could 
not be estimated from the data. The author sug­
gested modifications to the experiment design 
which would have allowed estimation of these and 
other parameters.

Herzog [21] reported efforts to estimate 
wheel/rail creep coefficients from data taken 
from the testing of a scale model wheelset in the 
laboratory. The estimation method combined state
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Table 2.1 Summary of Previous Work

SYSTEM IDENTIFIED

SOURCE
SYSTEM

DYNAMICS
MODEL

PARAHEIER
DESCRIPTION

HUNGER OF 
PARAMETERS 
ESTIMATED

MEASUREMENTS

IDENTIFICATION
CRITERION

ESTIMATION
METHOD REMARKS

HASSELHAM.
JOHNSON
(1979)
( 18 )

ROCK AND 
ROLL OF 
CAR B0Dv

SUSPENSION
STIFFNESS 8

RELATIVE 
TRACK ALIGNMENT.
CAR BODY ROLL ANGLE

FREQUENCY
RESPONSE
MATCHING

GAUSS-
NEWTON

DETERMINES STATISTICAL 
SIGNIFICANCE OF ESTIMATION 
ACCURACY

FALLON
(1979)

( i d )

TRUCK
SUSPENSION

SUSPENSION 
STIFFNESS. 
DRY FRICTION 
OF BOLSTER- 
S1DEFRAHE 
SUSPENSION

2

VEHICLE
ACCELERATION,
RELATIVE
SUSPENSION
DISPLACEMENT

FREQUENCY 
RESPONSE 
HATCHING; 
EQUATION ERROR

LINEAR LEAST 
SQUARES

PARAMETER ESTIMATES VARY 
WIDELY WITH TEST VEHICLE 
FORWARD SPEED. SUGGESTING 
A MORE COMPLEX MODEL 
STRUCTURE IS NEEDED 
FOR A CONSISTENT MODEL

WARD, 
LEONARD 
0 9 74 ) 

(4 ) ,

DRAFT GEAR 
CONNECTION 
BETWEEN TWO 
CARS

LINEAR AND 
HOKUNEAR 
SPRING fMO 
DAMPING 
COEFFICIENTS

4
FORCE.OH AMD 
DISPLACEMENT Of 
DRAFT GEAR

EQUATION
ERROR

LINEAR LEAST 
SQUARES

ONLY ONE DATA RECORD 
PROCESSED

BROERSON
(19 73)

12 0 )

2 AXLE 
TRUCK

SUSPENSION
STIFFNESS.
CREEP
COEFFICIENTS.
UHEEL/RAIL
GEOMETRY

19

LATERAL
ACCELERATION AT 
BOGIE; ANGULAR 
ACCELERATION; 
WHEELSET. 
DISPLACEMENT

OUTPUT ERROR

GAUSS-NEWTON 
BY CYCLICAL 
ADJUSTMENT 
OF PARAMETERS

FIT TO DATA APPEARS POOR 
FROM REPORTEO CORRELATION 
OF DATA TO MODEL PREDICTION; 
OGES HOT PRESENT 
PLOTS OF MODEL FITS 
TO DATA

HERZOG

1 2 1 )

WHEELSET
LATERAL
DYNAMICS

CREEP
COEFFICIENT l

VUIEELSET
LATERAL VELOCITY. 
m  ANGLE.
LATERAL
DISPLACEMENT

OUTPUT ERROR 
WITH STATE 
ESTIMATION

GAUSS-UEUTQN

ONLY REPORTS RESULTS FOR 
PROGRAM CHECKOUT USING 
SIMULATED DATA. 00£S 
HOT USE MEASUREMENTS 
OF TRACK ALIGNMENT IN 
ESTIMATION

HULL,
TRANKLE.
KLINGER

1 1 1

HALF
LOCOMOTIVE
MODEL

CREEP COEFFI­
CIENTS. IIM IH 
INC WHEfL/RAII 
FRICTION. RAII 
STIFFNESS.PRIJ 
MARY LATERAL 
SUSPENSION. 
SLCOKOAftY YAW 

. SUSPENSION

8

LATERAL WHEEL FORCES 
AXLC-TO-TRUCK DISPLACEMENTS 
TRUCK-TO-CAR-900Y DISPLACE­
MENTS. CAR BODY LATERAL AND 
ROLL ACCELERATIONS, DISPLACE­
MENTS BETWEEN RAIL AND TRUCK

OUTPUT ERROR GAUSS-HEWTON
REPORTS SUCCESSFUL RESULTS 
FOR SIMULATED DATA. RESULTS 
WITH REAL OATA NOT COMPLETED.

and parameter estimation into a maximum likeli­
hood algorithm. This algorithm is the most 
sophisticated data processing method applied in 
any of the references reviewed here. It expli­
citly accounts for both errors in pleasuring track 
irregularities (inputs to the dynamic system) and 
errors in measuring wheelset displacement (out­
puts from the dynamic system). None of the other 
algorithms used in the papers reviewed here takes 
both of these errors into account in formulating 
a performance index for measuring the goodness of 
fit of the estimated model. The combined state 
and parameter estimation algorithm has the poten­
tial of being able to make more consistent param­
eter estimates if both random track variations 
and wheelset measurement errors are significant.

Reference 21 attempted to estimate a; single 
parameter, creep force coefficient, from a linear 
model of the wheelset dynamics. The estimation 
assumed that track perturbations were a ; purely 
stochastic signal, but the actual track profile 
was not measured. No deterministic perturba­
tions, such as a sinusoidal alignment variation 
as used in other tests, were included in the pro­
file. Attempting to estimate creep coefficients 
from dynamic responses (system outputs)j would 
probably be much more effective if the( track

alignment (system inpit) were to include a 
measured, deterministic component.

Reference 21 did not prove that it is pos­
sible to estimate creep coefficients using only 
stochastic information about track alignment per­
turbations. This work used only simulated data 
and did not derive any estimates from real test 
data. A complete demonstration of the feasibil­
ity would . have required the estimation of the 
coefficients from several independent data sets. 
A small scatter of estimated values, combined 
with the ability to use the identified model to 
predict data sets not used in the parameter esti­
mation, would have been required to validate the 
method.

Hull, Trankle, and Klinger [1] reviewed sys­
tem identification theory and investigated its 
application to rail vehicle dynamics. System 
identification techniques were demonstrated on 
simulated data from an 11-degree-of-freedom half 
locomotive model. Field test data obtained dur­
ing the PIT made at the DOT Transportation Test 
Center in 1978 were analyzed to determine their 
suitability for use with these techniques. The 
data were not originally taken for system identi­
fication purposes.
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Using simulated data, Hull, et al. success­
fully identified the structure of the model which 
represented lateral wheel-to-rail force in the 
simulation and also identified several parameter 
values. These parameters included lateral and 
longitudinal creep coefficients, lateral damping 
and stiffness between the wheelsets and truck, 
yaw stiffness and damping between the truck and 
locomotive body, and equivalent lateral stiffness 
and damping of the rail. They compared time his­
tory plots of simulated noisy measurement data 
with the identification algorithm's prediction of 
the data showing an extremely close fit.

Hull, et al. found system identification 
techniques had several applications in rail vehi­
cle modeling. Shortcomings in the PTT data which 
limited their use with these techniques were 
pointed out. Some preliminary tests were per­
formed with the data, but no parameters were 
identified or models validated in the study. 
Several criteria for model validation that proved 
useful in the past were described. These in­
cluded fit error, prediction error statistics, 
parameter estimate scatter, residual autocorrela­
tion, and computed parameter covariance. It was 
recommended that all of these criteria be applied 
if sufficient data were available.

2.3 GENERAL STUDIES

The paper by Hasselman and Johnson [18] in­
cluded some general common-sense guidance to 
govern a model validation procedure, with an 
emphasis on devoting the same attention to match­
ing the scope and depth of the effort to the 
model purpose as one would in the initial model 
development.

Cooperrider and Law [22] prepared a thorough 
survey of rail vehicle model validation testing, 
describing the advantages, disadvantages, and 
previous usage of the different types of tests 
(field, shakers, roller rigs, 'scale models, 
etc.). Their review paper serves as a useful
distillation of the problems and unexpected out­
comes which have been encountered in validation 
tests, with valuable guidance in particular about 
which measurements are most important for valida­
ting models of different dynamic processes. 
Cooperrider and Law concentrated on the testing 
portion of the validation process, rather than 
the comparison between results and model outputs, 
but they did specify three different levels of 
validation which could be applied to models to 
serve varying purposes:

(1) qualitative (validation of trends);

(2) single critical value (critical speed, reso­
nant frequency, etc.) validation; and

(3) complete quantitative correlation of results
within specified limits (such as frequency
or dynamic range).

The authors indicated that they thought too much 
attention has been devoted to the second level of 
validation, to the detriment of the others.

The TDOP Analytical Tool Assessment Report 
[23] reviewed rail vehicle dynamic model valida­
tion efforts by several previous investigators 
and then recommended performance indices for use 
within four different "performance regimes"
(lateral stability, trackability, curve negotia­
tion, and ride quality). These performance 
indices were directed toward the evaluation of 
truck performance, rather than the validation of 
dynamic models. The review of existing models 
restated the claims of the models' developers 
regarding validation, rather than probing the 
justifiability of those claims or the methods 
applied.

III. GENERAL PRINCIPLES GOVERNING MODEL 
VALIDATION

An analytical model of vehicle dynamics can­
not avoid incorporating simplifying assumptions 
and limitations. The model is not an exact 
replication of the physical system whose perfor­
mance it represents. Neither can any single
dynamic model be designed to even approximate the 
behavior of a vehicle under all conditions. Each 
model is (or certainly should be) designed to 
serve a specific purpose by representing a par­
ticular dynamic process (or carefully chosen com­
bination of processes). The purpose which the 
model is intended to serve determines the output 
quantities it should compute and the accuracy 
required for each.

The concept of the model as an analysis tool 
designed to serve a specific purpose underlies 
the validation methodologies in Section IV. The 
final purpose of the' model, as embodied in the 
questions which the modal user wants it to be 
able to help him answer, should remain in sight 
throughout the formulation of the model and its 
validation. The validation process deserves the 
same care and attention as the original model 
formulation. The remainder of this section high­
lights the principles which should be applied in 
the validation process to ensure that. Most of 
these principles are standard elements of good 
modeling (i.e., model derivation) practice, but 
have rarely been applied to rail vehicle valida­
tion efforts in the past.

3.1 TERMINOLOGY

Several of the important terms which will 
reappear throughout this report need to be de­
fined at this time so that their meanings will be 
unambiguous. This is particularly important be­
cause of the imprecision of the meanings which 
have been assigned to some of these terms in the 
past.
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the model requires to replicate, adequately, the 
test results for comparable input conditions.

The techniques used in system identification 
are founded on statistical concepts. They have 
been gathered into an integrated system identifi­
cation procedure for model validation.

.3.2 APPLICATION OF STATISTICS TO MODEL VALIDATION

As already mentioned, model validation is 
not an absolute or deterministic process. No 
model can ever be expected to replicate reality 
perfectly, even under the best conditions. On 
the other hand, a model is not very useful unless 
it can be applied in situations (parameter val­
ues, inputs, etc.) other than precisely those for 
which it was formulated. Furthermore, the envi­
ronment always introduces random inputs to physi­
cal systems (particularly rail vehicles), and 
noise is always present in the measurements of 
test inputs and outputs. The combination of
these factors requires that model validation be 
viewed statistically.

A very useful framework for thinking about 
model validation is statistical hypothesis test­
ing. Hypothesis testing can be conducted accord­
ing to a variety of statistical methods, but is 
basically concerned with quantifying the probab­
ility of drawing the "wrong" conclusion under 
given conditions. Because the model does not 
represent reality perfectly, the outputs it pro­
duces will differ from those experienced, in prac­
tice. The values of an output measure produced 
by a model under a large number of different con­
ditions can be considered to form a probability 
distribution, while the outputs experienced in 
practice form another, different distribution. 
The hypothesis to be tested is that the model 
represents the performance observed in practice.' 
Typical applications of hypothesis tests are 
based on assumed Gaussian distributions of the 
output measures being compared, and involve con­
sideration of two different types of potential 
errors:

Validation is of course the most significant 
term here. Validation of a model is the process 
by which one gains assurance that the model 
offers a valid representation of reality. What 
constitutes-a '-'valid" representation, however, is 
a key issue which depends strongly on the purpose 
for which the model is to be used. A model 
could, for example, be considered valid for rough 
preliminary design but invalid for detailed final 
design. Similarly, a model could be a valid 
descriptor of one vehicle design but not another; 
or the model could be valid under one set of 
operating conditions but not another. In sum­
mary, validation is not an absolute concept. It 
is indeed dangerous to treat it as such. Valida­
tion of a model can only be determined with res­
pect to stated system (vehicle) characteristics, 
operating conditions, and modeling purposes.

Causal and correlative models represent two 
different approaches to predicting the perfor­
mance of a system. The causal model seeks to
represent the physics of the system as directly 
as possible, using equations (differential equa­
tions for dynamic models) derived from the laws 
of physics which govern' the interactions among 
system elements. The parameter values in such a 
model have specific physical meaning (such as
masses or stiffnesses or dimensions of pieces of 
equipment). Wherever possible, these parameter 
values are obtained from direct measurements of 
the pieces of equipment being represented.

Correlative models, on the other hand, are 
designed to predict system performance by produ­
cing a "best fit," according to some specified 
criterion such as minimizing the square of 
errors, to an existing data set. The parameter 
values in a correlative model are derived from 
the available output performance data, and do not 
necessarily correspond to any physical character­
istics of the system being modeled. Correlative 
models are generally useful only when the system 
being studied is too complicated • to model caus­
ally or when the modeling purpose does not re­
quire higher fidelity or detail than a correla­
tive model can provide.

System identification is an approach to 
model formulation and validation which combines 
aspects of the causal and correlative models. 
Using the system identification approach, the 
analyst represents as much of the system as he 
confidently can using causal arguments. However, 
certain portions of the system may be too compli­
cated or poorly understood to be represented that 
way and values of some of the physical parameters 
of the system may not be readily measurable. 
Tbpse problems cen be ad4ressed by malting careful 
measurements of the system inputs and outputs in 
a specially designed test program and processing 
and interpreting those measurements appropri­
ately. Parameter identification methods can be 
used to identify unknown unmeasureable parameter 
values, while model structure determination 
methods are applicable for choosing the form and 
level of detail (number of degrees of freedom)

Type 1: Rejecting the hypothesis when it is
true (finding the model invalid when it 
is actually valid).

Type 2: Accepting the hypothesis when it is
false (considering the model to be 
validated when it should not be).

The confidence level, x (the probability 
of not making either type of error) can be speci­
fied and used to derive a confidence interval, 
which jg  the range of values pf the output 
measure for which one can assume tha stated hypo­
thesis to be correct 100x% of the time.

Unfortunately, the model validation problem 
cannot be made to fit neatly into the Gaussian 
hypothesis testing framework. Inspection of only 
the output measures eliminates the variability 
introduced by not being able to measure the 
inputs accurately enough to ensure that they are
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identical for the test and the model. In addi­
tion, it is quite unlikely that the range of con­
ditions for which one seeks to validate a model 
will produce a Gaussian distribution of any of 
the output measures. In the absence of the Gaus­
sian distribution, standard tables cannot be used 
to calculate confidence intervals. The only re­
course would be to execute a series of parallel 
model runs and tests extensive enough to produce 
statistically valid results, which is totally 
impractical. However, the conceptual framework 
of hypothesis testing remains applicable to the 
model validation issue, and provides a very use­
ful perspective on the problem.

3.3 GENERALITY OF METHOD

The model validation process requires a sub­
stantial element of engineering judgement, based 
on model purpose and complexity and the nature of 
the available data. It is, therefore, not pos­
sible to formulate a completely general, fully 
detailed and algorithmic procedure for valida­
tion. In place of such an algorithmic method, 
some principles and guidelines for rail vehicle 
dynamic model validation are offered here, while 
Section IV includes the outlines of two general 
validation procedures which are recommended for 
the alternative cases of reliance on existing 
test data and specification of new testing.

3.4 IMPORTANCE OF MODEL PURPOSE

The single most important concept behind the 
validation approaches to be recommended is the 
focus on model purpose. A model of rail vehicle 
dynamics is a tool, and that tool should be de­
signed to serve a specific purpose or purposes. 
The criteria which will be used to judge whether 
or not a model is valid must be defined as those 
which best indicate the model's suitability or 
unsuitability for the intended purpose. Simi­
larly, the allowable tolerance between model pre­
dictions and test results (the* tolerances in 
validation criteria) must be specified by the 
analyst on the basis of how the model's suitabil­
ity for the specified purpose is affected.

The validation process does not produce the 
result that the model is either "validated" or 
"not validated" across the board. Rather, the 
assessment of model validity must be made in 
terms of model purpose. For example, the same 
model could be found valid for one purpose but 
not for another, more demanding purpose.

3.5 KNOWLEDGE OF INPUTS

Accurate knowledge of the input conditions 
encountered in testing is much more important for 
model validation (and system identification) than 
for other testing purposes. This is one of the 
principal reasons that test programs designed for 
other purposes often do not produce data suitable 
for model validation. It is essential that the 
test input magnitudes and timing relative to the 
outputs be known very accurately. The inpits in­
clude vehicle speed, external force loadings and

detailed measures of track geometry and wheel/ 
rail contact geometry.

The emphasis on precise knowledge of the in­
puts arises because it is not the outputs alone 
which are of interest in the validation process, 
but the relationship between the outputs and in­
puts. If the differences between the input con­
ditions for the test and model can be made small 
enough, the outputs can be compared directly and 
all differences attributed to model and measure­
ment inaccuracies. The validation criteria can 
then be applied directly to those observed dif­
ferences. In the absence of good input informa­
tion, there is no way of knowing whether differ­
ences between test and model outputs are attribu­
table to differences in the inputs or to model 
deficiencies.

3.6 PARAMETER ADJUSTMENTS

When a rail vehicle and a dynamic model 
designed to represent it are subjected to the 
same inputs, the outputs will not be identical. 
The discrepancies could be caused by an inapprop­
riate model form (ill-chosen degrees of freedom 
or nonlinearities), by poorly chosen values for 
parameters within an appropriate model form, or a 
combination of both. It has been a common prac­
tice in previous "validation" efforts to adjust 
the values of model parameters in order to im­
prove the match between test and model results. 
This application of correlative model adjustments 
to a causal model is potentially dangerous, un­
less it is done extremely carefully, paying close 
attention to the physical significance of the re­
sults. The causal basis of the model may be jeo­
pardized, because the "best fit" model parameter 
values may well correspond to unreasonable values 
for physical constants such as masses and spring 
fates. In fact, unreasonability of the implied 
values for physical constants serves as a strong 
indication that the model form is inadequate. In 
addition, the parameter adjustment which improves 
agreement between the model and a sample test 
case could very well produce poorer agreement 
under other conditions because of the loss of 
physical causality. Parameter adjustment is 
applicable to model validation only when the phy­
sical reasonableness of the adjusted parameter 
values can be assured and the adjusted model can 
be checked against test data for a variety of in­
dependent operating conditions.

3.7 RANGE OF OPERATING CONDITIONS

Rail vehicle systems are highly nonlinear, 
and nonlinear systems behave differently when 
driven by inputs of different amplitudes. A 
model validation process which includes testing 
at only a single amplitude cannot generally re­
veal these amplitude-dependent effects. Whenever 
nonlinear elements are present, the validation 
will need to be conducted for a variety of ampli­
tudes and combinations of inputs (superposition 
no longer being applicable). Extreme caution 
must be used in attempting to apply a model out­
side the range of the validation conditions.
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Indeed^. a model of a nonlinear system cannot be 
considered validated for. conditions outside that 
range unless all the nonlinearities have been 
isolated and the trends produced by their influ­
ences on system performance heve been quantified 
unequivocally. This caution on use of models 
outside ■ their regimes of validation is particu­
larly important for the nested validation process 
to be described in Section 3.8, because failure 
to heed it could invalidate the validation proce­
dure for other models.

3.8 NESTING VALIDATION

A valuable approach to model validation, but 
one which should be used with caution, is the 
nesting of models, or the "building-block" ap­
proach. In this approach, one begins by modeling 
subsystem elements and validating those models 
with component or subsystem tests. The fully 
validated subsystems can then be combined into 
larger systems and the models of those larger 
systems validated for appropriate representation 
of the interactions among the subsystems. This 
nesting process simplifies each validation and 
helps to ensure that subsystem elements which can 
be represented easily and accurately are not mod­
ified for the sake of improving the agreement be­
tween test results and a model of a larger part 
of the system. A substantial amount of engineer­
ing judgement must be applied in a nested valida­
tion to ensure that a . supposedly validated sub­
system element is not.required to operate under 
input conditions for which it was not in fact 
validated. If the subsystem model were driven 
outside its range of validity, the attempt to 
validate the model of the larger system would 
produce erroneous results.

3.9 INDEPENDENT DATA SETS

A single data set is rarely sufficient to 
validate a dynamic model. Nonlinear system 
models require validation under a• variety of in­
put conditions because of their differing modes 
of response. Furthermore, models which have been 
derived or adjusted on the basis of dynamic test 
data must be ' validated using data independent 
from that used during model formulation. Other­
wise, the results of the validation process would 
be analogous to comparing a curve derived as the 
"best fit" to a set of data points with the very 
data points used in the derivation. Obviously, a 
model cannot be considered validated until it has 
demonstrated its ability to predict data not used 
in its derivation.

3.10 CLOSURE

The issues which have been discussed in this 
section were influential in the development of 
the model validation procedures to be described 
in Section IV. They have been offered here as 
background and explanation of those procedures, 
in the hope that the procedures can now be pre­
sented as clearly and concisely as possible. 
Section IV will explain how to go about valida­
ting a rail vehicle dynamic model, while Section

III has explained in advance some of the reasons 
why the approaches to be presented were chosen.

IV. MODEL VALIDATION PROCEDURES.;.

There is no single, all-purpose, "best" 
method for validating rail vehicle dynamic mod­
els. The diversity of these models and their 
uses and the available data make it impossible to 
specify one algorithmic procedure to be followed 
under all conditions. There is a considerable 
variety of possible validation methods, each hav­
ing advantages and disadvantages. The validation 
process cannot be standardized to the extent that 
it can be treated as a "black box," but always 
requires substantial engineering judgement. The 
validation methodologies described in Section 4.1 
form a reasonable, general set of procedures for 
model validation, but by no means the only pos­
sible such procedures.

There are certain elements of good valida­
tion practice which all validation approaches 
should incorporate (based on the underlying prin­
ciples which were described in Section III of 
this report). In terms of a step-by-step proce­
dure, these key elements can be summarized as:

(1) statement of modeling purpose;

(2) specification of validation criteria;

(3) comparison of model and test results on in­
dependent data sets for comparable operating
conditions;

(4) comparison of model and test results for
several additional conditions.

The precise implementation of these elements may 
vary from procedure to procedure, and their 
interactions may vary, but they should always 
occur in the sequence listed above.

In discussing validation procedures, it is 
necessary to specify exactly what is meant by a 
"model." A model, for purposes of this report, 
is a set of,dynamic equations having a specified 
form and number of degrees of freedom, and 
possibly some specific nonlinear elements. It is 
not necessarily a computer program or set of 
programs. Validation of a model according to the 
procedures to be specified here does not refer to 
the valiiation of any computer programs which 
incorporate the equations describing that model. 
Similarly, the validation of a particular model 
structure must be distinguished from valid- ation 
of the parameter values used to represent a 
particular vehicle with that model structure. 
The validity of a model structure for represen­
ting a class of vehicles under some range of 
operating conditions can be established by valid­
ating that model structure using separate sets of 
parameter values to represent several different 
vehicles of that class. The model structure can­
not be validated in general until both it and the 
parameter values are validated for several diffe­
rent conditions. Thus, it is easier to validate
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the model structure and parameter values for a 
single vehicle than it is to validate just the 
model structure in general.

The validation procedures which follow are 
general outlines, rather than being specific al­
gorithmic procedures. The dimensions needed to 
categorize rail vehicle dynamics models are such 
that it is not practical to specify the variables 
which should be compared and the tolerances which 
should be applied for all possible model valida­
tions. Two separate methodologies are described, 
one for use witl) existing test data and the other 
for use when new data collection can be speci­
fied. Factors apart from the availability of 
data which would be expected to influence the 
conduct of a model validation (with the number of 
dimensions assumed for each in parentheses) in­
clude:

• dynamic process being modeled (8);

• analytical solution method (5);

• model complexity (nonlinearities and degrees
of freedom) (n).

All possible combinations of these factors would 
produce the need for 40n different validation 
procedures, where n may be a sizeable number, 
considering the range of possible nonlinearities 
and degrees of freedom which can be incorporated 
into a model.

The specific breakdown of the above categor­
ization of the models to be validated and some 
more specific guidance about the application of 
the validation procedures to specific rail vehi­
cle dynamics models appears in Section 4.2, fol­
lowing the discussion of the procedures. The 
procedures cannot be specified in sufficient de­
tail here to apply directly to each of the 40n 
possible models.

4 d  OUTLINES OF THE GENERAL VALIDATION
METHODOLOGIES

Two separate model validation methodologies 
are described here because no single methodology 
can be designed both for use with existing data 
and for use with the new data collected specifi­
cally with validation in mind. The ideal proce­
dure, which one should follow when designing a 
program of testing for model validation from 
scratch, appears in Section 4.1.1. Because the 
data available from existing test programs are 
likely to be much more limited, and may very well 
be inadequate for validating a model, the proce­
dure to be followed with existing data is sub­
stantially different. That procedure is outlined 
in Section 4.1.2.

The methodologies described here can be used 
with current state-of-the-art techniques, and do 
not require exotic test procedures or instrumen­
tation. However, they do require that the test 
programs be carefully planned and executed, so

that all the important variables are measured and 
the important operating conditions are tested.

4.1.1 New Data Collection

The flow of information which occurs in this 
validation methodology is shown schematically in 
Figure 4.1. The entire procedure is predicated 
on prior specification of the candidate model 
structure (i.e. equation form, degrees of free­
dom, and nonlinearities).

Figure 4.1 Model Validation Schematic Using New 
Data Collection

Step 1: Specify the purpose for which the 
model is to be. used and, based on that, determine 
what the output quantities of interest will be. 
The choice of model purpose is fundamental to all 
that follows because of the strong influence it 
must have on the choice of validation criteria. 
The attempt to validate the model should not pro­
ceed until the purpose is clearly defined.

Step 2: Formulate the validation criterion 
which is appropriate for the stated model purpose 
and the dynamic process being modeled. This is 
where the analyst's judgement has the most impor­
tant influence and, as a result, this step is the 
most difficult to reduce to an algorithmic proce­
dure. The validation criterion includes the 
choice of which dynamic variables to compare from
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among both output and intermediate variables. It 
also includes the choice of the most appropriate 
measures (or statistics) of those variables to 
examine, the selection of tolerances for each, 
-and-the-choice of mathematical'form;

The choice of dynamic variables is strongly 
influenced by the structure of the model which is 
being validated and the model purpose. The vari­
ables to be selected should be those which are 
most important for the end use of the model and 
those which are expected to be most revealing of 
model deficiencies, based on the analyst's under­
standing of the model and the physics of the 
vehicle being modeled. The model purpose and the 
analytical method embodied in the model influence 
the choice of which statistic(s) of each dynamic 
variable to investigate. These statistics could 
be mean values, variances, rms, maxima or minima, 
or they could be time-history traces or spectra 
(or even portions of spectra) as well. Once 
again, the choice depends on the analyst's judge­
ment about what is most significant for the pur­
pose which the validated model is intended to 
serve and what is most likely to reveal signifi­
cant model deficiencies. The selection of the 
tolerances to apply to each performance measure 
should be based on model purpose, because a model 
fidelity adequate for one purpose could be to­
tally inadequate for a different purpose. The 
form of the validation criterion should depend on 
both model purpose and dynamic process, but re­
mains a highly judgemental choice. This form 
could be a weighted summation of errors or dis­
crepancies in different performance measures or a 
product of errors, or a series of separate toler­
ance tests which have to be satisfied in whole or 
part. Each form embodies different inherent as­
sumptions about the relative importance of each 
performance measure.

Obviously, the combination of factors which 
must be considered in formulating the validation 
criterion is such that no simple procedure can be 
offered for this, purpose. The influence of the 
validation criterion on the results of a valida­
tion attempt is so strong that every reported 
validation should be accompanied by a thorough 
description of the criterion which was applied.

Step 3: Select the range of operating con­
ditions which need to be tested in order to vali­
date the model for the intended purpose. These 
operating conditions are characterized both by 
the parameter values used to describe the vehicle 
and by the inputs to the vehicle (speed, track 
perturbations, and external forces). A selection 
of these conditions adequate to cover all dynamic 
effects which are expected to be important for 
the eventual use of the model should be chosen. 
Particular attention should be paid to obtaining 
enough data to characterize significant nonline­
arities confidently. On the other hand, it is 
inefficient to work with a multiplicity of cases 
which fall within the same easily defined linear 
performance regime.. In order to obtain suffi­
cient data on nonlinear response without over­
doing the linear cases, it may be necessary to

experiment with the model for a variety of input 
amplitudes. By observing the state variables 
associated with the nonlinear elements, it can be 
determined which input amplitudes _produce_ linear- 
and_norilinear responses. These pilot runs of the 
model can thus serve to help, choose which input 
amplitudes should be used in the test program.

Step 4 : Design the test program which will 
be used to collect the data needed for model 
validation, considering the validation criteria 
and operating conditions previously specified. 
The nature of the testing which is needed must 
first be decided. If the resources and facili­
ties are available, this could be full-scale 
field testing. On the other hand, depending upon 
the model to be validated and the conditions to 
be tested, it might be more suitable to use 
special facilities such as the Rail Dynamics Lab­
oratory, or there could be good reasons for using 
a scale model test or even a previously validated 
mathematical "truth model." If a "truth model" 
is to be used, it should be of higher order and 
contain more nonlinearities than the model being 
validated in order to serve as a reliable bench­
mark against which to judge the candidate model. 
Moreover, the analytical method it employs to 
obtain solutions should produce results which are 
compatible with the candidate model's.

An explicit experimental design procedure 
should be followed to choose the conditions (in­
puts, operating environments, vehicle character­
istics) and combinations of conditions to be 
tested. Each case in the test matrix should re­
veal some aspect of model validity, and the total 
set of test conditions should provide reasonable 
coverage of the input and parameter space expec­
ted to be encountered when the model is used for 
its intended purpose. This coverage must be de­
signed into the test program at the start, be­
cause the model cannot be validated for condi­
tions remote from those for which it was tested.

A key part of the test design is the speci­
fication of measurement requirements, including 
both the variables to measure and the tolerances 
required. All input conditions which can influ­
ence the behavior of the vehicle (track geometry, 
external forces, etc.) must be measured very ac­
curately, although the precise quantification of 
that accuracy depends on the purpose for which 
the model is intended and on the sensitivity of 
the vehicle to each input. Any directly measur­
able vehicle characteristics (masses, spring 
rates, geometric configuration) should also be 
measured very carefully in order to supply the 
model with an accurate vehicle characterization. 
References land 24 discuss analytical procedures 
for determining the variables to measure and 
measurement accuracy requirements. The choice of 
which dynamic response variables to measure dur­
ing the tests depends on the form of the model 
and its intended purpose. A large element of 
analyst judgement, based on an understanding of 
the dynamic characteristics of the vehicle, also 
enters into this choice of measurements. The 
required measurement accuracy is once again de­
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rived from model purpose, by way of the toler­
ances specified in the validation criterion.

The quantity of data required for each test 
condition (or length of data records) should be 
specified during the test design step to ensure 
that statistically valid results can be pro­
duced. It must be adequate to permit the valida­
tion to be evaluated to within the tolerances 
specified in the validation criterion by using 
the measurements available from the contemplated 
test program.

Step 5: Execute the test program (or truth
model) for the conditions specified in the test 
design, collecting both input and response data. 
Process the data to the extent needed to place 
them in a form suitable for direct comparison 
with the candidate model inputs and outputs. For 
example, if the model is to be validated on the 
basis of comparisons of time-history traces, plot 
the appropriate time histories.. If the model is 
to be validated on the basis of response spectra, 
compute those spectra and plot them.

Step 6: Using data collected in static tes­
ting of the vehicle (or provided from the manu­
facturer's drawings or documentation), specify 
the values of the parameters needed to character­
ize the vehicle in the candidate model. Identify 
those parameters which are uncertain and specify 
reasonable expected distributions for their val­
ues ■

Step 7: Execute the candidate model for the
vehicle subjected to the inputs which were actu­
ally experienced in the test program. It is im­
portant that the best available characterization 
of those input conditions be used in the model 
runs, while the vehicle parameters should be 
those specified in Step 6. The sensitivity of 
the model results to the values chosen for the 
uncertain parameters should be tested by running 
several sample cases for appropriate combinations 
of the values defined in Step 6.

Step 8: This, the most complicated step in
the methodology, is the comparison between the 
model predictions and test results, and the use 
of that comparison to determine whether the model 
should be considered validated. The comparison 
should treat one case at a time, not proceeding 
to a new vehicle or set of test conditions until 
the model has been found valid or invalid for the 
previous case.

The test results derived in Step 5 and the 
model outputs from Step 7 are to be compared us­
ing the criterion advanced in Step 2. If the 
comparison is within the allowable tolerances, 
the model can be considered validated for that 
test condition, and the next condition or vehicle 
can be assessed. If the discrepancies exceed the 
allowable tolerances, the analyst must seek an 
explanation.

Assuming that measurement and programming 
errors, and unintentional differences between the

cases tested and modeled are accounted for and 
eliminated, the analyst should apply his know­
ledge of vehicle dynamics and the existing liter­
ature to explain the discrepancies. Using that 
knowledge, the analyst may recognize the need to 
incorporate additional degrees of freedom or non- 
linearities into the model, or to change some of 
his modeling assumptions. He may also suspect 
that adjustments to the values of some parameters 
in the model will produce closer agreement with 
the test data.

Once the analyst has formulated a promising 
model adjustment which can be justified on a 
causal basis, he should implement it, rerun the 
adjusted model, and once again compare its out­
puts with the test data to see if he is converg­
ing on a better model. The modifications to 
model structure which are based on causal, physi­
cal, reasoning should be assigned priority, and 
the parameter value adjustments should only be 
attempted when model structure changes no longer 
appear to be worthwhile (i.e. when the discrepan­
cies between, the model and test cannot be ex­
plained by physical processes which can be incor­
porated into the dynamic model). The adjustments 
to parameter values must be effected cautiously., 
always tempered by engineering judgement about 
the physical reasonableness of the new implied 
values of masses, stiffnesses, and geometry.

If, following the model adjustments, the 
validation criterion is still not satisfied, that 
fact should be noted and the remaining cases 
should be dealt with. If the adjusted model does 
satisfy the criterion, that fact should also be 
noted and the adjustments which were necessary in 
order to achieve the validation should be recor­
ded. If those adjustments included changes in 
model structure, the new model form should be 
treated as the baseline model for the remaining 
data seta.

Once all of the cases called for in the test 
plan have been processed, the pattern of valida­
tion successes and failures should be summarized 
so that the analyst can readily identify under 
which conditions he has a validated model. When 
changes in model structure were required to 
achieve validation, it would be advisable to pass 
through the procedure once again, using the ad­
justed model for those cases under which it was 
not previously tried. In that way, the adjusted 
model may be found valid for a wider range of 
conditions than those for which it was originally 
tested.

Note that Step 8 includes two feedback 
loops, which make it considerably more compli­
cated than the earlier steps. The process of ad­
justing the model structure to achieve an im­
proved representation of the vehicle is referred 
to as the "outer loop" of the validation pro­
cess. This incorporates the two feedback loops 
just described, both the adjustment and rerunning 
of the model and the testing of the adjusted 
model against the data sets which did not require 
the use of the adjusted model initially.
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The comparisons between model and test re­
sults within Step 8 should occur in a well- 
defined sequence, with all cases for one vehicle 
being completed before proceeding to the next 
vehicle. The cases for each vehicle should begin 
with the simplest, smallest amplitude inputs 
(presumably producing the most nearly linear 
response) and then proceed to the more compli­
cated and larger amplitude conditions, which are 
more likely to require model adjustments. If 
parameter adjustments are needed to achieve vali­
dation for some conditions, the adjusted parame­
ters should be applied to all the model runs for 
the same vehicle. If that invalidates some cases 
which were previously validated, the parameter 
adjustment should not be adopted and the valida­
tions which were based on its use must be recon­
sidered. If a systematic pattern emerges among 
the parameter adjustments required to achieve 
validation for a variety of different conditions, 
then that could provide the discerning analyst 
with the evidence needed to decide what addi­
tional degree(s) of freedom or nonlinearities to 
apply to the model. This use of the information 
generated in the validation process would not be 
possible if validations for several different 
vehicles were considered simultaneously.

4.1.2 Existing Test Data

This methodology has certain steps in common 
with the methodology suggested for new data col­
lection, but also has substantial differences. 
Its information flow is shown schematically in 
Figure 4.2.

Step 1: Specify the purpose for which the
model is to be used (same as in other methodol­
ogy) .

Step 2: Formulate the validation criterion
(same as in other methodology).

Step 3: Review the existing^ test data in
detail and prepare a summary which can be used to 
assess the feasibility of using these data for 
validation:

• test conditions (vehicle, operating condi­
tions, original purposes of test);

• input and output variables measured;

• characteristics of measurements (bandwidth, 
dynamic range, instrumentation accuracy, any 
known errors or missing channels, etc.);

• known parameters of vehicle and track;

• correspondence or phasing between vehicle 
and track measurements.

Step 4: Evaluate the feasibility of using
the existing data to validate the candidate model 
or a portion thereof for some range of operating 
conditions. This is an initial screening test to 
check whether there are enough measurements of

Figure 4.2 Model Validation Schematic Using 
Existing Test Data

inputs and response variables, under enough oper­
ating conditions, to make it worthwhile to con­
tinue. This step can terminate the validation 
attempt, but it cannot assure any successful 
validations. Based on the data which are avail­
able, apply engineering judgement to estimate the 
range of conditions for which it is worth attemp­
ting to validate the candidate model. This 
judgement should be based in large part on esti­
mating the dimensions of the expected linear res­
ponse regimes and the regimes influenced by 
simple, well-understood, isolated, nonlinear 
effects. The remaining effort should be focused 
on those conditions for which the test data al­
ready exist and those which can be understood 
readily by extrapolation from the data.

Step 5: Test the sensitivity of the candi­
date model to the uncertainties in the available 
data. Assume reasonable distributions for the 
values of the unmeasured inputs or parameter 
values to use in a series of sensitivity runs of 
the model. The uncertainties introduced into the 
model outputs can be estimated by applying covar­
iance propagation analysis to the model equations 
(for linear or quasi-linear systems). In either 
case, the estimated distributions of the output 
measure^ can then be compared to the tolerances
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specified in Step 2, and the probability of com­
plying with those tolerances can be determined. 
There is not enough information available to per­
form any formal hypothesis testing, so' heavy re­
liance must be placed on the analyst's judge­
ment. If the distributions of the results pro­
duced by the model sensitivity runs are "broad" 
relative to the tolerance bands there is not 
enough information available from the test data 
to establish the validity of the candidate model 
for the intended purpose and the validation 
attempt should be terminated here. On the other 
hand, if the distributions produced by the sensi­
tivity runs fall well within the tolerance bands, 
this screening test is passed and the validation 
can proceed to Step 6.

Step 6: Execute the candidate model for the
conditions which were present in the test pro­
gram, using the best available characterization 
of the input conditions which were experienced 
and the expected values of the uncertain parame­
ters which were reviewed in Step 5.

Step 7: Compare the model predictions and
the test results, following essentially the same 
procedures as in Step 3 of the previous methodol-. 
ogy. However, it should be borne in mind that1 
the additional uncertainty introduced by defic­
iencies in the available data limits the strength 
of the conclusions which can be drawn in this 
case. The confidence limits need to be wider 
than before and it will be correspondingly more 
difficult to validate a model using the same tol­
erances in the validation criterion.

4.2 APPLICATION TO RAIL VEHICLE DYNAMICS MODEL

Mathematical models have been developed to 
represent many of the dynamic phenomena which are 
experienced by rail vehicles. These models have 
employed a variety of analytical methods to solve 
for the response characteristics of interest. 
Because of the wide range of purposes and re­
quirements these models have been designed to ad­
dress, they are also characterized by widely 
varying levels of detail and complexity.

Rail vehicle dynamics models can be charac­
terized by the dynamic processes they represent, 
the analytical methods they employ, and their 
levels of detail (portions of vehicles or number 
of vehicles described, degrees of freedom, non- 
linearities), Although the validation procedures 
for all the models can be accommodated within the 
two frameworks described in Section 4.1, the 
step-by-step details of these procedures must be 
tailored to the characteristics of the specific 
models. The dimensions of this problem are such 
that it is totally impractical to attempt to 
specify a step-by-step validation procedure for 
every possible model. The remainder of this sec­
tion explains those dimensions and provides guid­
ance for dealing with some issues which are pe­
culiar to attempts to validate models which 
employ specific analytical methods or represent 
specific dynamic processes.

-4.2.1 Analytical Methods

The analytical methods which are typically 
embodied in rail vehicle dynamics models are 
listed in Table 4.1. Each analytical method re­
quires the use of a different mathematical solu­
tion technique to calculate the response quanti­
ties of interest. Furthermore, the responses 
calculated using the different analytical methods 
are fundamentally different from each other, re­
quiring different kinds of comparisons with test 
data in order to evaluate model validity.

Table 4.1 Analytical Methods Applied to Rail 
Vehicle Dynamics Models

—

• QUASI-STATIC (ALGEBRAIC)

* FREQUENCY DOMAIN

- LINEAR
- QUASI-LINEAR
- SPECTRAL ANALYSIS
- MODAL ANALYSIS

» TIME DOMAIN

- LINEAR
- NONLINEAR

Qiasi-Static (Algebraic) Solutions

The quasi-static, algebraic, analytical 
method is applied to steady-state models which 
are designed to predict equilibrium values of 
vehicle performance measures. These models are 
the simplest to validate because each output 
quantity is a single number, which can be com­
pared with a single number describing the same 
performance experienced in testing.

Frequency Domain Solutions

Several types of frequency domain analysis 
methods can be applied to rail vehicle dynamics 
models. These methods are inherently founded on 
linear assumptions, but can be adapted for use on 
nonlinear systems by employing quasi-lineariza­
tion techniques such as describing functions. 
Eigenanalyses are used to determine natural fre­
quencies, damping ratios, and mode shapes of 
vehicle response. Although eigenanalyses can be 
calculated very efficiently, they are difficult 
to compare with test data because testing cannot 
directly produce evidence of the natural fre­
quency. However, eigenanalyses can be used to 
predict the critical speed and damping of each 
response mode for onset of hunting, and that cri­
tical speed can be compared with the speeds at 
which hunting becomes apparent in tests. More 
commonly applied frequency domain analyses in­
volve the use of transfer functions to calculate
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vehicle response spectra and rms values. Sub­
stantial effort has been expended in attempting 
to validate models which embody spectral analy­
ses, making this an important category for fur­
ther discussion.

Simple, direct comparison of measured and 
model-predicted spectra is not a very good test, 
for validation. The appearances of rail vehicle 
response spectra are dominated by the zeros pro­
duced by the cancellation of track inputs associ­
ated with the combination of fixed axle and truck 
spacings and constant train speed. These zeros 
can make the simulation and test output spectra 
look surprisingly similar at first glance even 
though the peaks in the spectra, which contain 
the majority of the information about vehicle 
dynamics, may differ by an order of magnitude or 
more. The problem is exacerbated by the loga­
rithmic ordinate scale used for plotting spectra, 
although that can be compensated for by careful 
scrutiny of the differences in the amplitudes of 
the peaks in the simulated and experimental spec-" 
tra. It is also advisable to run the validation 
tests at several speeds so that the zeros are 
shifted to different frequencies, permitting 
responses which would otherwise be obscured to 
become observable.

The validation criteria to apply to compari­
sons of response spectra are not easy to define, 
a priori, but must be tailored to the individual 
model and its intended purpose. These may in­
clude frequencies and/or amplitudes of peaks, 
compared uniformly throughout the spectrum, or 
with different relative weights for different 
frequency ranges. This information could also be 
collapsed into a single figure of merit such as 
an rms estimate or an rms weighted by frequency 
range.

Although output spectra are most commonly 
used for validating frequency domain models, 
there is considerable merit to the use of cross 
spectra, whether they be input/output or output 
1/output 2. The output 1/output 2 cross spectra 
can be particularly helpful in diminishing the 
need to rely on very accurate and simultaneous 
measurement of the inputs to the tested vehicle, 
although each output/output cross spectrum can 
only be used to validate portions of the model, 
rather than the entire model. The input/output 
spectral comparisons benefit greatly from simul­
taneous input and output measurements. If the 
track input information is only available from 
prior (or post-test) measurements, the loss of 
phase information can be significant, especially 
on flexible track.

Attempts to validate models using spectral 
comparisons must also contend with some serious 
statistical issues, since the spectrum plots de­
rived from finite-length test data are only 
(noisy) estimates of the true spectra. The con­
fidence which can be assigned to those estimates 
for the number and length of samples used should 
be quantified before comparing the test spectra 
with model predictions.

Time Domain Solutions

The majority of the rail vehicle dynamics 
models which have been developed employ -time- 
domain solution methods. For purely linear sys­
tems, the solutions to the system state equations 
can be propagated using linear algebra (via the 
state transition matrix). For general linear or 
nonlinear systems, the system differential equa­
tions can be solved by a variety of numerical in­
tegration techniques. In either case, the model 
produces a sampled time history of each state 
variable and any auxiliary variables the modeler 
may choose. These time history outputs can be 
compared directly with the analogous measurements 
from tests, or both simulated and measured data 
can be Fourier transformed and their spectra com­
pared.

Direct comparison of the test and simulated 
time histories can be useful for relatively sim­
ple models of low-frequency behavior in which the 
most important phenomena are large-amplitude 
transients or when the vehicle's dynamics are 
essentially dominated by one or two modes which 
include major nonlinearities. Examples of such 
conditions include freight car rock-and-roll 
responses to track cross-level inputs and 
locomotive responses to perturbed track test 
inputs.

Quantification of a validation criterion for 
time-history comparisons requires some subtle 
application of engineering judgement because of 
the multitude of possible ways of-comparing time 
histories. For some applications, the peak value 
of an output measure (lateral force, L/V force 
ratio, wheelset displacement, etc.) could be most 
significant, while in other cases, integral aver­
age output measures (to estimate energy dissipa­
tion in damping elements) could be more signifi­
cant.

■ Time history data can be used for model 
validation under more general conditions by 
applying techniques developed for system identi­
fication. Hull, Trankle and Klinger [1] de­
scribed some of the criteria which have been used 
to compare time domain measurements and simula­
tion outputs. These include fit error, residual 
autocorrelation, estimated parameter scatter, and 
covariance measures.

4.2.2 Dynamic Processes

Table 4.2 lists the dynamic processes which 
are typically represented by rail vehicle dynamic 
models. For each process, different variables 
are the significant indicators of vehicle perfor­
mance and of model validation. The validation 
procedures and criteria must reflect this diver­
sity. Previous studies have offered some sugges­
tions, based on the physics which govern the dy­
namics of the vehicles, regarding which measure­
ments (forces, displacements, etc.) to concen­
trate on for each dynamic process. For any par­
ticular model validation effort, the choice of 
which .variables to use to establish validation
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Table 4.2 Typical Bail Vehicle Dynamic Processes

SINGLE VEHICLE:

• ROCK AND ROLL
• LATERAL STABILITY (HUNTING)
• CURVE ENTRY TRANSIENT
• STEADY-STATE CURVING
• VERTICAL FORCED RESPONSE

. • LATERAL FORCED RESPONSE

MULTIPLE VEHICLES:

• LONGITUDINAL DYNAMICS
• WHOLE-TRAIN DYNAMICS

must be made on the basis of an intimate under­
standing of both the dynamic process being 
modeled and the individual candidate model.

It would not be productive to devote space 
here to listing the variables which should be 
scrutinized when validating models of each dy­
namic process. However, it should be noted that 
in general, both output and intermediate vari­
ables should receive attention. For example, in 
a lateral stability or hunting simulation, it is 
important to determine that the interbody forces 
and motions are represented correctly in the 
model, as well as having the model correctly pre­
dict the critical speed and damping of the least 
damped mode. If the internal workings of the
model (the interactions which do not directly 
produce the outputs) can be shown to be valid, it 
is much more likely that the model can be used 
successfully to predict stability under new, pre­
viously untried conditions. It is not necessary 
to validate correct prediction of al_l internal 
variables, but engineering judgement should be 
applied to select those variables which should be 
most revealing of the important dynamic effects.

4.2.3 Combination of Analytical Methods and 
Dynamic Processes

The complete cross-categorization of the 
five' analytical methods and eight dynamic proces­
ses which have been considered here is shown in 
Table 4.3. Not all of the possible combinations 
are reasonable. Some of those which are possible 
have been marked oh the table. The linear time 
domain category is included, even though such 
models convey no more information than linear 
frequency domain models, because of the addi­
tional flexibility it offers in the choice of 
validation criteria.

It is obviously impractical to enumerate 
separate validation procedures for the 22 types 
of models indicated in Table 4.3. The dimensions

Table 4.3 Cross-Categorization of Rail Vehicle 
Dynamics Models

AMimCftt METHODS

DYNAMIC
PROCESSES.

QUASI-
STATIC

FREQUENCY DOMAIN TIME OOMAIN

LINEAR QUASI-LINEAR LINEAR NONLINEAR

SINGLE VEHICLES: 

Rock 6 
R oll

L ateral
S t a b i l i t y

Curve
Entry

Stead y-Sta te
Curving

V ertic a l 
Forced Response

L ateral
Forced Response

X X

X X X

X

X X X X

X x; X

X X X

MULTIPLE VEHICLES: 

Longitudinal 
Oynaalcs

X X

Whole-Train
Dynaales X X

of this problem become still more daunting when 
one considers that each entry in the table can 
refer to many models, all having different de­
grees of freedom and nonlinear elements. This 
dimensionality problem is one ’ of the principal 
obstacles to the formulation of a "black box" 
validation method applicable to all kinds of rail 
vehicle dynamic models.

4,3 SYSTEM IDENTIFICATION

The system identification approach operates 
in the time domain using measured, deterministic 
inputs to the model. It has been developed into 
an integrated system identification procedure for 
developing valid models that includes techniques 
for test planning, instrumentation analysis, 
model structure determination, parameter identi­
fication, and validation.

The techniques are especially useful in test 
design. Additional information about them is 
available in Ref. 1. They can be used to deter­
mine what measurements are required, what meas­
urement accuracy is required, what the form of 
the input disturbances should be, and what test 
cases should be considered. Using system identi­
fication during test design to simulate the vali­
dation and testing can help guarantee the success 
of the validation.

V. APPLICATION TO A VERTICAL DYNAMICS MODEL

The validation methodology will be demon­
strated on a six-degree-of-freedom, lumped param­
eter, vertical dynamics model of a six-axle loco­
motive, The model simulates forced response to
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vertical track irregularities. The model is 
linear, but for validation, is numerically inte­
grated so that the response to a measured deter­
ministic track input can be competed. The model 
normally would be implemented in a linear simula­
tion (e.g., frequency response analysis). A time 
domain approach, as discussed in Ref. 1, has been 
chosen because it is compatible with the use of a 
deterministic, nonsinusoidal track input.

The outline of this chapter follows the 
flowchart given in Figure 4.2 for validating a 
model. The first section describes the model and 
the model purpose. The following sections des­
cribe validation criteria, review available data, 
and evaluate the performance for which it should 
be possible to validate the model. The actual 
testing of the model then takes place. Parameter 
values are assumed for the model. The model is 
integrated and its outputs compared to the meas­
urements. Validation criteria are computed and 
conclusions are drawn about the range of validity 
of the model.

The vertical dynamics model is not validated 
in this chapter. As discussed in the introduc­
tion to this report, the scope of this project is 
limited to describing and demonstrating a valida­
tion procedure within the constraints imposed by 
limited project resources. Thus, at several 
points in the chapter, procedures are recommended 
but are not implemented. The procedures are dis­
cussed to show what, could be accomplished in a 
complete validation task.

5.1 VERTICAL DYNAMICS MODEL

The locomotive vertical dynamics model is to 
be used to assess the effects of variations in 
vertical suspension damping on displacements and 
accelerations of the locomotive body. The loco­
motive is excited by irregularities in the track 
profile. The model is to be applicable over the 
full range of locomotive speeds.

The model predicts the time history of the 
vertical and pitch motions of the locomotive body 
and trucks. It is linear, except for the distur­
bances, so it could be solved by frequency re­
sponse techniques or time domain techniques.

5.1.1 Model Description

A schematic drawing of the locomotive' model 
is shown in Figure 5.1. This drawing describes 
the six degrees of freedom of the model. These 
include pitch and bounce of the two trucks and 
pitch and bounce of the locomotive body. The 
figure also defines the vehicle dimensions and 
notation used in developing the model equations 
of motion. All of the body motions are defined 
in a Newtonian reference frame moving at the con­
stant forward velocity, V, of the locomotive.

The wheelsets are assumed to remain in con­
stant contact with the rails. The vehicle sus­
pension, wheelsets, and mass distribution are 
assumed to be symmetrical so the vertical and

lateral dynamics of the vehicle are decoupled 
from each other. All flexibility is lumped at 
the suspension elements which are modeled by 
linear springs and viscous dampers. Angular dis­
placements are assumed small in linearizing the 
equations.

Track profile (the vertical displacement, 
from its nominal value, of the midpoint of the
line connecting the tops of the two rails) is 
taken to be the only track input exciting the
vertical dynamics. Track cross-level and align­
ment are assumed to have no effect because the
vehicle is symmetrical. Gage variation and rol­
ling line offset are assumed small so that the
effects on vertical dynamics are also small.

1 The resulting equations of motion are listed 
in Table 5.1. The notation used in the equations 
is defined in Table 5.2 and Figure 5.1. The de­
rivation of these equations is straightforward 
and is not shown. The equations can be developed 
directly from Newton's laws of motion. Similar 
models have been described in prior publications 
[15,36,37]. .

5.1.2 Model Purpose and Validation Criteria

The vertical dynamics model is intended for 
use as a tool to assess the effect of variations 
in the vehicle suspension design on the displace­
ment and acceleration of the vehicle body in re­
sponse to track disturbances. The criteria for 
validation should measure how well the model pre­
dicts the trends in the displacements and accele­
rations with changes in the vehicle suspension 
design over the range of track disturbances and 
operating speeds. The model must also be phenom­
enologically accurate. There must be a direct 
correlation between component characteristics of 
the vehicle and parameters of the model so that 
design changes and suspension property changes 
can be implemented easily in the model.

In this particular case, an important aspect 
of the validation process is ascertaining whether 
a simple, linear, rigid-body model is adequate to 
represent the trends in locomotive vertical dyna­
mics .

The vehicle.response variables which are im­
portant for evaluating the validity of the loco­
motive vertical dynamics model are: body vertical 
and pitch accelerations, primary (wheelset) and 
secondary suspension vertical deflections, and 
truck frame vertical and pitch accelerations. 
The body accelerations are the primary outputs of 
the model, that is, the outputs which it is de­
signed to predict. The other response variables 
are needed to ensure the phenomenological accur­
acy of the model, providing assurance that the 
primary outputs will be properly represented 
under conditions other than those tested. In 
particular, if the model does not agree with the 
test results for suspension response, the chances 
are notiVgood that it will be able to represent 
the effects on body accelerations of changes in 
suspension characteristics.
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Figure 5.1 Vertical Dynamics Model of Locomotive 

Table 5.1 Six-DOF Vertical Locomotive Model
CAR BODY

" B V  ' ZkyT yB ' ZcyT yB + ^l l ‘ 42^kyT * *  **B *^l l " l 2^cyT* B 

+kyT yTl * CyT yTl * kyT yTZ * cyT yTZ

* ( a3+ V kyT*T2 * (a 3 + a4} C-/T*TZ 

-(a3* a4)kyT*T1 -Ca3+ “4)=yT$T1

Z*B *B “ lzk*T+ ̂ *1+ 12̂ kyT̂ l,l3 '̂ Zc*T+ ̂ ll * *2̂ cyT̂ B
* l W kyT yB + (  W cyT yB

**2kyT yT2 * l 2cyT yT2 ‘ Zl kyT yT l ' * l c yT yTl 

♦tktT +(a3 + a4)l1kyT]*rl̂ [c4,T<-(a3+a4)t1cyT]*T1
+ [k4,T+(a3* a4)l2kyT̂ T2 + lc*T+̂ a3+a4̂ t2cyT̂ T2

FRONT TRUCK

raT yT l ‘  “  - (kyT * 3kyJ yT l  - CcyT + 3V  V 1 yTl

+kyTyB * cyT ^B " 1l kyT*B " l l cyT*B

+[(a3+ a4)kyT- (a2-a4)ky *a4ky+ (a1+ a4)ky]*T1

+ ( (a 3 + a4)c yT - ( a 2-a4)c y + a4 (c y + CyjJ + U j *  a4)c y ] * n  

V V  V  V  *  cy ( i l  +V  V  + cy l 52 

I ^ T l ’  * lk *T+ (V  a4)2V * (a 2 ' a4)Zky* a42V U l *  a4)Zky 1*T l

-len +(a3* a4)2cyT+(a2-a4)2cy* a42(cy+ cyl) + U 1 + a4)2cyJ*T1

♦ l k*T+ * l (a 3+ a4)kyT J*B + [ c *T+ l l ( a 3+ a4, c yTJ*B 

- t a 3+ a4)kyT yB -U 3+ a4)cyT y „

+l(a3* a4)kyT -Ca2- a4)ky* »4ky+(a1* a4)kyJyn  
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+ky[-(a1+ a4)v2 - a4v2 +(a2- a4)v>3]

+cy[-(a2 + a4)«2 -a4i2 «(a2- a4)*3l-a4cy l *2

19



Table 5.1 (Continued)

REAR TRUCK
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Table 5.2 Notation for Vertical Locomotive Model

MOTIONS

h Vertical displacement of carbody eg, positive up

*B Pitch angle of carbody, positive when front end down

yT l,yT2 Vertical displacement of front and rear trucks at 
the truck cg’s positive  up

*T1 '*T2 Pitch angle of front and rear trucks, positive when 
front end of trucks are down

PARAMETERS

al»a2*a3*

ll,l2’

a4, Truck and carbody dimensions, (see Figure 5.1)

Mass of carbody plus bolsters

\
Pitch Inertia of carbody plus bolsters

" r Truck mass (does not Include wheelsets, drive motors, 
or bolsters)

kyT,CyT Vertical stiffne ss  and equivalent viscous damping, truck 
to carbody suspension, per truck

Pitch stiffne ss  and equivalent viscous damping, truck 
to carbody suspension, per truck

ISy.Cy Vertical st iffne ss  and equivalent viscous damping, 
wheel set to truck, per axle.

cyi
Vertical viscous damping coefficient of two shock 
absorbers on middle axle of truck, per axle.

DISTURBANCES

V V V
1* 2» 3* w-,vefwfi Vertical Irregu la rity  of track at axle 

location, positive  up. Axles nunbered 
from front of locomotive to rear.

D V v
1* 2* 3’ Time rate of change,of vertical irregularity 

of track at axle location
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In addition to the choice of which response 
variables to consider, the selection of valida­
tion criteria includes the choice of which sta­
tistical measures to apply to each variable. 
This choice of statistics must be made carefully 
because of the implicit assumptions associated 
with the use of each statistical measure. 
Steady-state (or quiescent) values are useful for 
quantifying and then eliminating measurement sys­
tem biases before comparing model predictions and 
test results, but they are not incorporated ' in 
the validation criteria for this model. Maximum 
value (peak) responses are significant for evalu­
ating the validity of the model, and particularly 
for identifying worst-case conditions. It is es­
pecially important that the peak responses pre­
dicted by the model follow the same trend as 
those measured in the tests. However, the peak 
values are the hardest to model accurately be­
cause they are strongly dependent on random con­
ditions and damping effects, which can be 
strongly nonlinear. Comparisons of frequency 
domain characteristics of the model and test 
results (natural frequencies and damping ratios) 
can be very revealing of model validity. Time 
histories produced . in the tests and in simula­
tions using the model can be compared quantita­
tively using the fit error (mean square differ­
ence between measured and predicted time histo­
ries). The fit error is easy to observe visually 
if the predicted and measured response are plot­
ted on the same graph. Numerical values of the 
fit error should only be computed when there is 
already a fairly good visual fit because slight 
phase errors can cause the computed fit error to 
become very large and therefore meaningless. The 
fit error is not very useful as an absolute 
measure to compare with a specified validation 
criterion, but should be used to compare 
alternate model structures and parameter values.

The validation criteria chosen for the pri­
mary output variables of the locomotive vertical 
dynamics model, the body vertical and pitch 
accelerations, are;

Maximum values +25% each case
+10% on trends

Damped natural frequency +10%
Equivalent damping ratio +50%

As previously mentioned, the steady-state quies­
cent values are used to eliminate biases and the 
time history fit errors are used to compare al­
ternate models once proper phasing is ensured.

The maximum value criteria were chosen to 
reflect both the importance of peak responses and 
the difficulty of modeling them. The representa­
tion of trends is more important than the predic­
tion of absolute magnitude for the purposes this 
model is intended to address, and the trends 
should be less susceptible to random perturba­
tions as well, leading to the tighter tolerances 
on trends. The tolerance on natural frequency is 
tight because of its fundamental importance in 
describing system dynamics and because it should 
also be relatively easy to predict on the basis

of simple estimates of vehicle parameters (mass 
and stiffness properties). Although damping is 
also an important description of the vehicle's 
dynamics, the most common measure, damping ratio, 
is difficult to identify from test data, as well 
as not being applicable to nonlinear responses 
such as those produced by dry friction in suspen­
sions. The exponential decay envelope assumed 
for linear damping cannot be matched directly to 
the triangular envelope produced by' dry fric­
tion. Consequently, the tolerance on damping 
ratio was chosen to be . much looser than the 
tolerance on natural frequency.

Other frequency domain measure such as rms 
and spectra were not chosen for use here because 
the PTT conditions did not produce the stationary 
responses which those measures assume.

5.2 DATA FOR VALIDATION

The best validation data available on the 
performance of a locomotive were gathered in the 
Perturbed Track Test (PTT) at the Transportation 
Test Center in Pueblo, Colorado, during November 
and December 1978; These tests were sponsored by 
the Office of Research and Development, Federal 
Railroad Administration, U.S. Department of 
Transportation.

In the PTT tests [25], E-8 and SDP-40F loco­
motive consists were operated at speeds between 
35 and 80 ciph over two PTT zones: a tangent zone 
or the Railroad Test Track and a 1.5 degree, 3" 
superelevation curved zone on the Train Dynamics 
Track at the Pueblo Test Center. The PTT zones 
were designed to excite significant dynamic re­
sponses under controlled conditions satisfying 
Class 4 track standards. The test zones included 
sections of alignment, cross-level, and profile 
perturbations, as well as a. section of combined 
alignment and cross-level perturbations.

The principal test variables, besides the 
perturbed track sections, were speed, vehicle 
type and loading, locomotive position and orien­
tation, rail surface condition, primary suspen­
sion damping, and restricted vertical coupler 
freedom.

The response of the test vehicles to the 
perturbed track was measured extensively using 
both on-board and wayside instrumentation. On 
tne SDP-40F, the trailing truck was instrumented 
the most, with very little instrumentation on the 
front truck. The rear truck was instrumented for 
wheel/rail forces, accelerations, and relative 
displacements of its primary and secondary sus­
pension components. Additionally, the coupler 
between the SDP-40F and the following baggage car 
was instrumented to measure coupler forces and 
angles. The lateral displacements between the 
wheels and rails were not measured. The track 
geometry was measured several times during the 
tests and the data used to generate a complete- 
track geometry data base.
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Documentation on the PTT tests is readily 
Available [25-29].

Many test runs of the SDP-40F were made on 
ihe tangent track. A representative set of the 
Available data which applies to the vertical dy­
namics of the SDP-40F on tangent track is de­
scribed in Table 5.3. The table lists the test 
feoriditions, parameters, and inputs of the repre­
sentative runs. Table 5.4 lists the response 
ttieasurements taken during the runs that are ap­
plicable to validation of the vertical dynamics 
tnodel. Some data specifying the valid range and 
frequency of the measurement system for each 
measurement are also given.

The track geometry was measured three days 
before the locomotive test runs described in 
Table 5.3 were performed. Table 5.5 lists the 
measurements made on the track.

5.2.1 Parameters for Model Validation

The parameters used in model validation 
should come from measurements of the vehicleCs) 
used in the testing. Parameters measured for a 
vehicle class are acceptable, though, if they are 
representative of the vehicle tested. Errors in 
the parameter values will show up as errors be­
tween the predicted and measured responses.

Parameter values for the SDP-40F locomotive 
are available in the PTT literature [25,27,30,31] 
and in the work of Garg, et al. [32]. Little of 
these data were measured on the vehicle used in 
the test. As shown in Table 5.6, data are avail­
able for all of the parameters but one. This 
parameter, truck pitch inertia, had to be esti­
mated.

The data for some of the structural stiff­
nesses and damping are nonlinear. Since the 
model is linear, some procedure had to he used to 
linearize these data. The procedure followed 
needed to be well defined so that it could 'be 
repeated with consistent results.

In this analysis, equivalent linearized val­
ues for the parameters were■obtained by estima­
ting the amplitude and frequency of the deflec­
tions across the suspension elements, then compu­
ting the describing function quasi-linearizations 
[33,34]. This procedure could be applied in an 
iterative manner, as in Ref. 34, to correct the 
quasi-linearized values for each speed and input,, 
but such an approach was beyond the scope of this 
preliminary analysis. Here a single linearized 
value for each parameter was used.

The parameter values used in the model are 
not exact. The sensitivity of the predicted re­
sponses to errors in the parameters could be com­
puted using the system identification software, 
if necessary, to determine how accurate the 
parameters needed to be or, conversely, how much 
error to expect in the predicted responses due to 
errors in the parameters.

5.2.2 Measurement Suitability

Measurements of both the track inputs and 
the vehicle responses are required for valida­
tion. The track measurement required was track 
profile. Vehicle response measurements that 
would be useful are car body pitch and vertical 
acceleration; front and rear truck pitch and ver­
tical acceleration; vertical displacement between 
wbeelsets and truck sideframes; vertical dis­
placement between the ends of the bolsters and 
the truck frames; and the displacement between 
the car body and bolster.

The accelerations of the car body are the 
outputs of the model. Truck motions and relative 
motions between the trucks, bolsters, and car 
body are of interest because they can be used to 
validate the suspension element models used in 
the vehicle model, and thus validate the phenom­
enological accuracy of the model. Not all of 
these measurements are required for validation. 
The track input (profile) and model outputs (car 
body vertical and pitch accelerations) are re­
quired, though some measurements of truck, truck- 
versus-car, and truck-versus-wheelset motion must 
also be available to ensure phenomenological 
accuracy of the model.

The measurements which are available are 
listed in Tables 5.4 and 5.5. The track measure­
ments required for validation were taken. Only 
some of the vehicle response measurements were 
included. There appear to be sufficient measure­
ments to validate the vertical dynamics model.

The measurements were taken at a sampling 
rate of 256 Hz. This is well above the response 
frequencies of interest; thus, it is more than 
adequate.

The measurement accuracy, number of measure­
ments, instrumentation range, instrumentation
frequency range, and instrumentation- phase shift 
should be considered for the validation task 
prior to testing. This was not possible here 
because the PTT tests were not performed specifi­
cally with this task in mind. These measurement 
requirements can be defined prior to testing by 
using some of the system identification techni­
ques discussed in Refs. 1 and 35. The techniques 
involve testing the validation procedure using
simulated data.

5.2.3 Performance Regimes

The portions of the PTT tests used here were 
run on tangent track with perturbations built
into the track profile to excite the vertical 
dynamics modeled oy the locomotive model. The 
built-in perturbations were five cycles long, 
with smooth track following. The designed shape 
of the profile disturbance is shown in Figure
5.2. The number of cycles was chosen to allow 
the response of the vehicle to build to its maxi­
mum. The smooth section of track following the 
perturbation allows the rate at which the vehicle 
response disturbance damps out to be observed.

22



Table 5.3 PTT Test Runs for Validation of Vertical Dynamics Model

RUN NO.
TRACK PERTURBATIONS

SPEED
(MPH)

SUSPENSION
DAMPING

COUPLER
ALIGNMENT

PROFILE X-LEVEL ALIGNMENT X-LEVEL AND 
ALIGNMENT

121001 X X X X 40 NO SHOCKS* NOMINAL

121002 X X , X X 50 U u

121004 X X X X 60 n “

121006 X X X X 70 ■ n

121012 X X X X 40 n SHIMMED

120903 X X X X 40 NOhiNAL NOMINAL

120907 X X X X 60 M B

*  No shock absorbers In primary vertical suspension. Nominally, there is  one 1800/1800 vertical 
shock on either end of the middle axle of each truck.

Table 5.4 Vertical Dynamics Measurements from PTT

TRANSDUCER SIGNAL CONDITIONING 
AND RECORDING

MEASUREMENT RANGE FREQ RANGE FILTER CORNER FREQ

VERTICAL DISPLACEMENT, 
AXLE TO TRUCK AT 
JOURNALS OF REAR 
TRUCK

10 IN . 0-9 HZ 5 IN . 20 HZ 
(3DB)

VERTICAL ACCELERATIONS 
ON CAR BODY TO COMPUTE 
BOUNCE, PITCH 
AND BENDING

0-2  G'S 0-90 HZ 1 G 10 HZ 
(3DB)

Table 5.5 PTT Track Geometry Measurements

GAGE

PROFILE 
LEFT RAIL 
RIGHT RAIL

ALIGNMENT 
LEFT RAIL 
RIGHT RAIL

CROSSLEVEL

DISTANCE ALONG TRACK

♦Taken every 6" a long 
th e  tra c k
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Table 5.6 Vehicle Data for Vertical Dynamics Model

PARAMETER VALUE REFERENCE C0W1ENTS

al 79.65 In 25,p.122

a2 83.75 1n H

a3 1.25 In m

a4 8.5 In n

*1 276 1n ■

l 2 276 1n n

">B 766.1b sec2 
1n

25,p.128

40.xl0®lb sec^in •1

mj 40 lb sec2 
1n

27,p.B-6

V ,178xl0®lb sec^ln -- NO DATA AVAILABLE. ASSUMED EQUAL TO TRUCK 
YAM INERTIA, REFERENCE 27, P. B-6

kyr .501x10® 27.pp.8-ll v

CyT 615'bsec
in •

klT 633.xlO® In ’b 
Rad

n . THE DATA GIVEN IN THE REFERENCES FOR THESE 
f PARAMETERS HAS NONLINEAR. EQUIVALENT

LINEAR VALUES MERE ESTIMATED FROM THIS DATA.

CM .895x106 In lb sec 
Rad

n

ky 11,300 J k  
In

27,pp.3-14

. cy 92 lb sec 
1n

x /

Cyl 200 lb sec 
in

31,p.5-54

Figure 5.2 Planned Rail Profile Perturbation
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Figure 5.5 Carbody Bounce Acceleration
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Figure 5.6 Carbody Pitc h Acceleration
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Figure 5.7 Displacement Between Truck and Axle

E S T IM A T E D

Figure 5.8 Displacement Between Truck*and Axle, Bias Removed
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The track perturbation should excite all the ver­
tical resonances- of the suspensions because it 
has discontinuities and is not a perfect sine.

The vehicle speed was varied from 30 to 80 
mph in different runs over the disturbance. This 
allows the model to be validated over a range of 
speeds.

There is only one parameter variation that 
is applicable to the current validation task. 
This varittion is the deletion of shock absorbers 
from the primary suspension. Thus it will not be 
possible to demonstrate the validity of the model 
for variations in primary suspension stiffness or 
secondary suspension design, as would be desir­
able .

5.2.4 Limitations of Data

The main limitation of the PTT data for 
validating the vertical dynamics model is that 
only one of the vehicle parameters used in the 
model (primary suspension vertical damping) was 
varied during the test. This limits the range of 
suspension variations for which the validity of 
the model can be demonstrated.

Not all the response measurements that were 
desired were taken. There are sufficient meas­
urements for validation of the simple model 
described in Section 5.1, but not enough to study 
more detailed models of the suspension.

One of the parameters for the model (truck 
pitch inertia) was not known, but was approxi­
mated. In a comprehensive validation, the sensi­
tivity of the model outputs to changes in this 
parameter should be computed.

5.3 COMPARISON OF MODEL OUTPUTS AND TEST RESULTS

Before the model outputs could be compared 
with the response measurements, the effect of the 
measurement system on the data had to be consid­
ered, Correcting for these effects i3 called 
data reconstruction. This is discussed below. 
Following this section, the comparison of results 
is made, and recommendations and conclusions 
drawn.

5.3.1 Data Reconstruction

5.3.1.1 Correlation of Track and Response Data

The track data and vehicle response data had 
to be reconstructed to correlate the track pro­
file measurements with the vehicle response meas­
urements. Additional reconstruction was neces­
sary to create a time history of track profile 
rate-of-change data. Only the track profile as a 
function of position was given. The rate of 
change of track profile enters into the equations 
of motion for the vehicle through the primary 
suspension damping terms. The wheelsets are 
assumed to follow the track exactly.

Realignment of the track records with the 
vehicle response records was not straightforward 
because the two sets of data were taken at two 
different, non-constant speeds. Signals from 
automatic location detectors (ALDs) were avail­
able on each data tape to use in realignment.

The vehicle response is both time (fre­
quency) and position (track input) dependent. 
The model assumes the vehicle is moving at a con­
stant speed. Thus, it is important that time and 
position be represented accurately on the data 
tapes.

The procedure used to align the data on the 
track data tape with the data on the vehicle re­
sponse data tapes was to assume the distance re­
cord associated with the response measurements 
was correct and to "stretch" and "squeeze" the 
track measurement data so that the key locations, 
given by ALD signals on each tape lined up. The 
response data were then treated as coming from a 
constant-speed vehicle. Because the speed was 
not really constant, the track inputs appear to 
the model at times associated with a varying 
vehicle speed. Time correctness is kept by using 
the response data tape as is. Position relevance 
is kept by interpolating data off the track tape 
to line it up with the corresponding responses on 
the response tapes. The model gets data for a 
non-constant vehicle speed, but the small speed 
variation will not affect the creep forces, which 
are the only speed-dependent terms in the model. 
If the speed were too jittery, there might be an 
effect on the vehicle response, but such a speed 
variation was not observed.

5.3.1.2. Derivative of Track Inputs

Track profile (vertical irregularity) rates 
of change are required inputs to the vertical 
dynamics model. The inputs must be computed by 
differentiating the track profile data. Because 
of the "scatter" of the data, simple differencing 
methods produce extremely noisy, unusable data. 
Fourier transform techniques were used to smooth 
and differentiate the data.

5.3.1.3 Measurement Models

In system identification, the response 
measurements are compared with model predictions 
of the measurements, rather than trying to com­
pare the model outputs with some functions of the 
measured responses derived to be the same as the 
outputs that are modeled.

The measurement transducers commonly do not 
measure the exact states used in the model. 
Also, the measurement system may lose some of the 
available information when the measurements are 
filtered or digitized. It is not always possible 
to recreate the state without using the model. 
Therefore, the measurement system is modeled as 
part of the vehicle model. The model of the 
measurement system processes (i.e., filters and 
combines) the model outputs in the same manner as 
the measurement system processes the responses.
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Vertical displacement measurements and ver­
tical acceleration measurements, as described in 
Table 5.4, are to be used to validate the ver­
tical dynamics model. The measurement system 
ranges and cut-off frequencies are shown in Table 
5.4. These ranges and frequencies were chosen to 
encompass the expected range and frequency of the 
dynamic response. If it turns out that this is 
true (it should be checked during the validation) 
then it will not be necessary to filter and limit 
the outputs of the model to represent the meas­
urement system limitations.

5.3.2 Responses

Initial results of the comparison of the 
model outputs with measurements from one test run 
(Rjmber 120903, as described in Table 5.3) are 
shown in Figures 5.3 to 5.8. These plots show 
the measured value of the actual as-built track 
profile disturbance, the computed rates of change 
of the disturbance,, plus plots comparing the 
measured responses with the responses predicted 
with the model. Note in Figure 5.3 that the 
as-built track profile resembles the profile that 
was planned, Figure 5.2, but that there are sig­
nificant differences as well. Note the smoothing 
of the "corners" (transitions) of the piecewise 
linear profile, the amplitude variations from one 
perturbation to the next and the significant pro­
file variations on the "unperturbed" segment of 
track. This shows the importance of measuring 
the actual track profile for validation.

Figure 5.4 shows the rate of change cf the 
track profile computed from the data shown in 
Figure 5.3 using Fourier techniques. These tech­
niques were applied successfully to computing a 
usable derivative by digitally filtering out 
high-frequency noise.

Figure 5.5 shows the measured and estimated 
car body bounce acceleration. Figure 5.6 shows 
the measured and estimated car body pitch accele­
ration. Figures 5.7 and 5.8 show the vertical 
displacement between the front axle of the rear 
truck and the truck frame. The. measurement bias 
apparent in Figure, 5.7 was removed, using the 
analyst's judgement, to produce Figure 5.8.

5.3.3 Validation Criteria

The validation criteria to be considered are 
fit error, peak acceleration, frequency and 
damping of the responses. The peak values, fre­
quency and damping of the responses will be re­
viewed first.

Figure 5.5 shows measured and predicted car 
body bounce acceleration for the transient track 
perturbation shown in Figure 5.3. This figure 
shows that the predicted frequency is slightly 
lower than the measured frequency (1.50 Hz com­
pared to 1.57 Hz, or 96%), but well within the 
limit of the validation criterion. The predicted 
peak bounce acceleration is 0.10g. The measured 
peak acceleration is 0.08g. The ratio of predic­
ted peak acceleration to measured is 1.25, just

within the limit for validation. The predicted 
damping for this response appears to be low com­
pared to the measured damping because the meas­
ured response damps out more quickly than the 
predicted response and the peak measured acceler­
ations are lower than predicted. Numerical val­
ues for the damping could be estimated roughly 
from the decay rates but, because of the dry 
friction in the suspension, this damping will 
vary with speed and response amplitude. Also, 
the decay envelope for viscous damping is differ—  
ent from that due to dry friction (exponential 
for viscous, linear for friction), complicating 
the comparison.

Fit error [1] is the other criterion that 
was suggested to validate the model. Fit error 
is the mean square difference between the predic­
ted and measured responses. Because of the 
slight error in predicted frequency (shown in 
Figure 5.5), the numerical fit error for this 
response would be extremely large and thus would 
not be useful. This index would not be able to 
indicate that a small correction in frequency 
would produce an extremely good fit. However, 
the purely visual measure of fit error is very 
useful here as it gives the user of the model a 
quick, clear indication of how good the fit is.

The agreement between the predicted and 
measured values of pitch acceleration, as shown 
in Figure 5.6, is not as close as the agreement 
for bounce acceleration. Although there is no 
apparent discrepancy between predicted and meas­
ured frequencies in that figure, the predictions 
of peak pitch accelerations exceed the measured 
peaks by amounts ranging from about 10% to about 
200% (outside the limit for validation). In par­
ticular, the measured response was characterized 
by sharply alternating peaks of large and small 
amplitudes, while the estimated peaks did not 
vary by nearly as much from one to the next. 
This discrepancy was systematic enough to indi­
cate that the model was not' fully characterizing 
the body pitch acceleration response. More de­
tailed evaluation of the model and test results 
would be needed to establish the cause of the 
discrepancy (such as an inadequate suspension 
model or neglect, of car body flexibility, for 
example). This would occur within Step 8 of the 
validation procedure, in the box labelled "Seek' 
Explanation of Differences," in Figures 4.1 and 
4.2.

The substantial bias separating the predic­
ted and measured axle displacements in Figure 5.7 
demonstrates the need for careful visual inspec­
tion of all responses befoie quantitative compar­
isons are attempted. Once the bias is computed 
and then removed, the comparisons can proceed 
(Figure 5.8). The absence of frequency or phas­
ing discrepancies is expected, because the timing 
of the axle displacement response is fixed by the 
track perturbation input (under the assumption 
that each wheel always remains in contact with 
the rail). The degree of agreement in the magni­
tudes and shapes of the peaks is a reflection of 
the validity of the modeling of the locomotive's
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suspension. The higher amplitude and sharpness 
of the predicted relative to the measured peaks 
(especially the lower amplitude peaks) is a re­
flection of lower effective damping from the 
equivalent linear viscous dampers in the model, 
an inherent difficulty when using a linear model 
of nonlinear friction. Although the axle dis­
placement is not one of the principal outputs 
needed to satisfy the model purpose, the compari­
son between predicted and measured axle displace­
ments is needed to help ensure the phenomenologi­
cal validity of the model (comparison of respon­
ses other than principal model outputs).

In the one case illustrated, the damping 
ratios could not be readily quantified for the 
test results, but were probably within the _+50% 
tolerance of the model. The model produced a 
valid prediction of bounce acceleration, but not 
pitch acceleration, for this case. Nothing is 
yet known about its ability to predict trends or 
accommodate other performance regimes.

5.3.4 Range of Validity

Test data from the PTT are available on the 
vehicle modeled for a range of speeds and two 
suspension variations. Because this report is 
only a preliminary demonstration of the valida­
tion approach, only one test case was analyzed. 
This is not sufficient to establish model valid­
ity; however, much experience was gained from 
this application. In the initial work (not shown 
in the plots) the model outputs were found to be 
extremely sensitive to variations in the suspen­
sion parameters. This makes the procedure for 
approximating linear damping and stiffness coef­
ficients from lab test data very critical. The 
parameters used for the results shown in Figures
5.4 through 5.8 were linearized from lab test 
data using sinusoidal input describing functions 
and assumed values of the response amplitudes and 
frequencies. This application was incomplete 
because no iteration was performed' to correct the 
describing functions calculated using assumed 
amplitudes and frequencies by recomputing them 
using the frequencies and amplitudes observed in 
the simulations. The responses were also not 
purely sinusoidal. Also, quasi-linearization of 
the friction forces requires knowledge of the 
tractive effort forces. These forces were only 
estimated during this study.

Following the adjustments indicated above, 
the next step in the validation procedure should 
be comparing the model predictions and test re­
sults for several different speeds. The consis­
tency with which the validation criteria are 
satisfied for the different speeds provides an 
indication of the validity of the assumed model 
structure. If the agreement between model pre­
dictions and test results suffers as the speed 
changes, the model structure is likely to be 
deficient. Adjustments which are made to the 
model parameters to improve agreement at any 
individual speed must be tested at the other 
speeds to ensure that the model remains valid

over the entire speed range (or to identify the 
speed range for which it remains valid).

Once the validity of the model is estab­
lished for the baseline locomotive, the suspen­
sion parameters should be changed to represent 
the alternative configuration (without primary 
suspension shock absorbers) and the predictions 
of this version of the model compared with the 
test data gathered for the alternative suspen­
sion. The validation criteria should then be 
applied to these cases in order to determine 
whether the model can represent the effects of 
suspension changes.

These steps require multiple executions of 
the simulation and comparisons of the simulation 
results with the test data for the two vehicle 
configurations at the various test speeds. The 
processing of the test data tapes requires sub­
stantial computational effort (and expense) for 
each test case because of the quantity of data 
involved and complications introduced by tape 
labels and headers. The analyst must spend sub­
stantial time as well with each test case to de­
tect and correct anomalies, such as instrumenta­
tion biases, and to ensure that track and vehicle 
measurements are properly synchronized. He must 
also decide what adjustments to the model parame­
ters are needed to improve agreement with the 
test results, often on the basis of limited 
available evidence. The validation process can­
not be considered complete until these steps have 
been successfully accomplished.

There was insufficient time to validate many 
of the assumptions used in deriving the model, 
such as (1) decoupling of lateral and vertical 
dynamics due to vehicle symmetry, (2) insignifi­
cant locomotive body bending, (3) insignificant 
train interaction effects, and (4) reasonably 
linear dynamics. In a comprehensive study, these 
assumptions could be validated because the PTT 
data contain sufficient measurements. For ex­
ample, the measurements of vertical acceleration 
at the center and ends of the locomotive body 
could be used to determine the significance of 
the omitted first body bending mode. Test re­
sults for different coupler configurations could 
be used to assess the significance of train 
interactions.

VI, CONCLUSIONS

This report has documented a systematic 
methodology for validating rail vehicle dynamics 
models and has demonstrated the initial steps of 
that methodology for a relatively simple model. 
The key issues which must be considered wher. 
working on model validation have been highlighted 
in this report and explicitly incorporated into 
the methodology. The approach described here 
incorporates the use of system identification 
methods for careful advance planning of test 
cases and selection of instrumentation. The 
technology for conducting the testing is within 
the current state of the art, but the care with
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which this technology must be applied exceeds 
that for most other types of testing.

The validation procedures developed here 
cannot be applied in a purely algorithmic way 
because of the great diversity among the types of 
models and test data involved. The judgement of 
a highly skilled analyst remains central to the 
validation process. This report provides that 
analyst with some guidance and a framework for 
structuring his particular validation effort, but 
it cannot be used as a "cookbook" for unsophisti­
cated analysts.

The example application of the validation 
procedures in Chapter V illustrated some of the 
difficulties involved in validating a model using 
data which were not collected for purposes of 
model validation. This example only proceeded as 
far as the initial comparison between one set of 
test data and the model prediction for comparable 
conditions. The procedure would need to continue 
with model adjustments and use of data gathered 
at other vehicle speeds in order to complete the 
validation for the nominal vehicle configura­
tion. Comparable test cases tor other configura­
tions would then need to be compared with the 
model predictions to validate the model struc­
ture. These steps, needed to complete the model 
validation, were beyond the scope of the current 
study.

The data collected on locomotives in the PTT 
program at Pueblo in 1978 were found to be the 
most suitable available in the public domain for 
model validation, even though the test program 
was not designed with validation as a principal 
goal. The track perturbations, selection of 
operating speeds, variations in vehicle charac­
teristics, and number of test runs were suitable 
for use in model validation. The measurements 
which were taken were usable for validation of 
the vertical forced response model considered 
here, although they would not have been entirely 
adequate for some other models (particularly 
those involving lateral wheel/rail interac­
tions). Additional information about measurement 
system accuracies, noise, bandwidths, biases, and 
dynamic range (truncations) would have been very 
useful.

In general, a test program must be designed 
specifically with model validation in mind if its 
results are to be useful for validation work. 
The tests must be planned to provide inpits to 
excite all important modes of response, measure­
ments of inputs, vehicle parameters, and all 
relevant outputs (vehicle responses), an<̂  suffi­
cient test cases to cover all performance regimes 
of interest. The test cases under consideration 
must be simulated by the candidate model prior to 
testing in order to ensure that all the necessary 
conditions have been satisfied (performance re­
gimes, measurement ranges, etc.). The tests must 
be designed to ensure consistency of inputs from 
one run to the next, and the test procedures 
should facilitate the synchronization of vehicle

and track measurements when the data are proces­
sed.

The data processing phase of the model vali­
dation process should not be short-changed. 
Significant and potential costly data processing 
is required for reformatting of data tapes (par­
ticularly if supplied by outside organizations) 
and aligning track and vehicle data. If the com­
puters used to read and write the data tapes are 
not fully compatible, some extensive processing, 
with much analyst intervention, may be required. 
The process of matching time-dependent vehicle 
data with space-dependent track data and inter­
polating is very laborious unless provision is 
made for this at the time of data collection. 
This process should be mechanized to the extent 
possible to minimize wasted effort by separate 
users of test data collected for model validation.

In conclusion, no fully successful valida­
tions of rail vehicle dynamics models have come 
to light in the course of this study. Few test 
programs have been designed for purposes of vali­
dating models, thereby almost guaranteeing the 
absence of successful validations. The technol­
ogy required for model validation testing is in­
herently no more exotic than any other testing 
technology, but the tests must be very carefully 
planned and executed if they are to be success­
ful. Significant effort must be devoted to pro­
cessing the test data and comparing it with model 
predictions. This activity, occurring at the end 
of the validation process, is.the most likely to 
be short-changed when resources run low, as well 
as being the activity for which the costs are 
most difficult to estimate in advance.

Model validation testing is likely to be 
more costly than standard performance testing 
because of its greater data processing require­
ments and the need to perform a substantial num­
ber of separate tests. The economic advantage of 
investing in validation tests comes from the ab­
ility to use the validated model to predict per­
formance for vehicle configurations and operating 
conditions which need not be tested. The opera­
tion of the model for these new cases will be 
orders of magnitude less costly than additional 
tests, particularly if those tests would involve 
potentially hazardous conditions or the fabrica­
tion of new vehicle designs or equipment.
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