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EXECUTIVE SUMMARY

Introduction

This report describes investigations towards development of
general finite element procedures for nonlinear analysis of multi-
component track support systems idealized as one-, two- or three-
dimensional problems. It also considers perhaps the most significant
aspects of any solution procedure; namely, the stress-strain or
constitutive behavior of materials in the structure. Here attention
is given to both testing and modelling of improved and appropriate
models; the testing is carried out by using new and advanced testing
devices for 'solids' (wood, ballast, subballast and subgrade soil)
and interfaces between these materials.

Problem Studied

A numerical finite element procedure has been developed that can
account for complex factors such as three-dimensional geometry, non-
linear behavior of materials, and interaction behavior at junctions
or interfaces between various materials. In order to identify the
interaction effects and relevant siress-strain behavior, a new cyclic
multi-degree-of-freedom (CYMDOF) shear device has been developed and
used. Truly triaxial (TT) or multiaxial testing devices with cubical
specimens are used to characterize the behavior of ties, ballast,
subballast and subgrade soil. The objective has been to develop a
general procedure that permits evaluation of transfer of loads from
moving vehicles through the track structure to the foundation.

Results Achieved

In addition to this report, two previous reports have been pre-
parad. The topics covered in the two previous reports are: historical
review of the problem; details of various components, their functions
and role in the support structures; methods of determination of their
properties; and available analytical and numerical procedures. These
descriptions include advantages and limitations of the available
methods, and identifies the need for a generat model to account for
various important and special factors that influence the track be-
havior and which are not included in previous works. Initial details
of the numerical procedures developed, design and development of the
CYMDCF device, and of Taboratory testing and stress-strain modelling
are also included in the previous reports.



Part 1 of this final report contains complete details of the
one-, two- and three-dimensional finite element procedures and codes
together with their verifications and applications. The latter in-
volve comparison of predictions with a number of closed-form solutions,
and observed results including field data from the UMTA Test Section,
TTC, Pueblo, Colorado. The procedure includes development and use of
four different constitutive models: linear.elastic, nonlinear elastic
(variable moduli),critical state and cap models; the latter allow for
inelastic or plastic,hardening, stress path dependent and volume change
behavior of the materials.

Part 2 of the report contains research accomplishment on the
testing and modelling of the stress-strain behavior of materials by
using the TT and CYMDOF devices. Comprehensive series of TT tests
involving different initial confining pressures and a wide range of
stress paths have been performed on wood (ties), ballast, subballast
and subgrade (silty sand) collected from the UMTA Test Section. The
CYMDOF device has been used to test interfaces between concrete and
ballast, wood and ballast, and ballast-subballast under different
normal loads and amplitudes of (repetitive) shear stress. These tests
were conducted at the field density for the UMTA Test Section. Linear
elastic, variable moduli, critical state and cap models have been
developed for different materials depending upon the observed labora-
tory test behavior. These models were then used in the finite element
codes for predicting the field behavior. '

Utilization of Results

The research results will have significant potential in terms of
both applications and further research. They can be used for stress-
deformation analysis and design of track support structures for mass
transport systems such as railroad tracks and for maintenance and
safety analysis of existing tracks. Since the research has developed procedures
for all the three-, one- two- and three-dimensional idealizations,
they can provide options to the user depending upon his specific need.
For instance, users interested in studying load-deflection behavior
of the rail can use the one-dimensional option, while those interested
in analyzing three-dimensional situations such as arbitrary geometry

"and loss or displacement of ties can use the three-dimensional option.
- Similarly, one can use simple linear elastic material model or advanced
plasticity models.

The new CYMDOF device can permit study of behavior of interfaces

as well as track materials under repetitive vertical and horizontal
loads; the device will also be capable of testing under torsional and

i1



rocking modes of deformation. The test results can permit evaluation
of behavior under long repetitive loading useful for both design and:
maintenance and safety analysis. With some modifications, the device
can allow repetitive and fatigue testing of interfaces and connections
such as between tie-plate and tie and spikes in the track support
structure. The device can also be used to study behavior of track
materials with modifications such as cementing and impermeable
membranes.

In the past, uniaxial or cylindrical triaxial tests have been
used to characterize behavior of track materials. Perhaps for the
first time, this study has considered detailed testing of track
materials under fully three-dimensional state of stress. Hardly any
previous works have considered the important gquestion of the behavior
of interfaces. Development and use of the new CYMDOF device is
considered to open a new direction towards testing for behavior of
interfaces.

The general numerical procedures and the test device constructed
under this project are unique and new, and advances the state-of-the-
art and knowledge related to mechanism of Tload transfer in track
support structures.

- Overall, the procedures and test device can provide imprcvements
in design, maintenance and safety procadures. As a result, they can
lead to savings in cost-and enhancement of safety of track support
structures.

- It is expected that various governmental and private agencies and
railroads invoived in design and maintenance of track support struc-
tures can utilize the research results. e

Conclusions

General and improved numerical procedures based on the finite

- element method developed under this project will allow evaluation of
stresses, deformations and load transfer mechanism in track support
structures. The new cyclic interface testing device will permit
experimental determination of behavior of interfaces between various
track components. The results will enhance the state-of-the-art and
knowledge on analysis of track support structures, and can be applied
for design, and maintenance and safety analysis of these structures.



PREFACE

The research investigations presenfed in this final report were
supported by Contract No. DOT-0S-80013 through the Office of University
Research, U. S. Department of Transportation, Washington, D. C. The
report is presented in two parts. Part 1 contaiﬁs details of develop-
ment and application of nonlinear finite element procedures and provides
options for using one-, two- and three-dimensional idealizations and a
number of nonlinear elastic and elastic-plastic stress-strain or con-
stitutive models. Testing and constitutive mdde]]ing of materials such
as (wood) tie, ballast, subballast and subsoil, and interfaces between
these materials are the subject of Part 2 of the report. Here development
and use of new cyclic multi-degree-of-freedom shear device for interfaces
and use of truly triaxial or multiaxial devices for the track materials
are discussed. The investigations were'conducted by C. S. Desai, H. J.
Siriwardane and R. Janardhanam. The latter two were doctoral students
and contributed investigations‘in Part 1 and Part 2, respectively; A.
Mugtadir assisted in conducting the laboratory testing for ballast-subballast
interface. C. S. Desaj acted as the principal investigator for the project.

The research was initiated in 1978 at Virginia Polytechnic Institute
and State University, Blacksburg, VA (Va. Tech.). Portions of the research
investigations have been included in two previous reports: (1) Inter-
action and Load Transfer Through Track Guideway Systems, No. DGT/RSPA/
DPB-50/80/13, Office of University Research, U. S. Department of Transpor-

tatjon, Washington, D. C., prepared in 1978 and published in 1980 and (2)
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“Interaction and Load Transfer in Track Guideway Systems" prepared in
June 1980 and is under publication. The previous two reports were pre-
pared at Va. Tech. while this report was prepared at the University of
Arizona, Tucson, AZ, as a continuation of the project, subcontracted
through Va. Tech.

The project was monitored by J. Putukian, Transportation System
Center (TSC), Cambridge, Mass.; previous monitors of tHe project were G.
Butler, Urban Mass Transportation Administration (UMTA), Washington, D. C.,
and A. Sluz of TSC. G. Spons., UMTA Test Section at Transportation Test
Center, Pueblo, Coloradd, assisted in procuring various materials from
the Test Section for testing in the 1aboratory, and Kaman Avidyne and Kaman

Sciences, Inc. {E. Gadden, L. J. Mente, T. Stigliano) provided the report

containing field observations at the UMTA Test Section at Pueblo, Colorado.
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Chapter 1
INTRODUCTION

1.1 General Remarks

Most of the solids behave in a nonlinear manner although within
certain ranges of loading the behavior can be idealized as linear.
Behavior of geologic media is usually highly nonlinear, and pose a
dif%icu]t problem for the analyst.

The behavior of structures supported on nonlinear geologic media
becomes incréésing]y compiex in view of the interaction effects. The
~.aim of this research is to understand the fundamental behavior of
nonlinear interaction by using theories and fundamentals of solid
mechanics.

Complete understanding of nonlinear phenomena is of great practical
and theoretical importance. These nonlinear phenomena can be found in
all areas of mechanics and mathematical physics: solid, structural and
geomechénics, fluid dynamics, biomechanics, electromagnetic field
theory, quantum mechanics etc. Some of the obstacles that cause
"nonlinear barriers" in engineering mechanics may be removed by using
idealized mathematical models and effective numerical and computational
procedures; such models and improved computational algorithms are
investigated in this study.

Nonlinear behavior in solid mechanics can occur due to three
reasons:

(1) Geometric nonlinearity,

(2) Material nonlinearity,



and

(3) Boundary nonlinearities or nonlinearity due to interfaces.

The boundary nonlinearities can occur in many structural systems
when there exist situations in which one deformable body comes in
. contact with the other. The contact of a given body with another is in
essence how loads are transmitted from one to another body. Therefore,
the character of this contact (interface) plays an important role in the
problems involving various engineering media. Maferia] nonlinearity
in geologic media can be due to several factors. These include initial
l state of stress, stress path dependent response, changes in physical
states defined by density, void ratio or water content, hardening
behavior, and state of body with arbitrary gecmetry and loading.
Material nonlinearity is usually quantified by using constitutive

relationships.

Nonlinear Interaction in Geomechanics

Soil-structure interaction analysis has received the attention of
many researchers during the last decade; a review is given in Chapter
6 of this dissertation. Problems in geomechanics can involve non-
linearities due to all the three types described in the foregoing
section. However, in the present study nonlinearities due only to
interaction and material behavior.are considered. Although for some
problems various one-, and two-dimensional idealizations may give
adequate and economical solutions, almost all real problems are threef
dimensional in nature. In view of the fact that many problems encoun-

tered in soil-structure interaction can often be idealized as one-,



two-, and three-dimensional, a generalized procedure should have
provision for nonlinear analysis of all the three idealizations. This
can cover a wide range of problems in geomechanics such as footings,
laterally loaded piles, long retaining walls, dams, beams and plates on
-deformable foundations, track support structures and buried pipes.
Realistic solution procedures for the foregoing problems require appro-
priate provision for physical state, initial conditions, nonhomogenei-
ties and interaction effects. Most conventional methods of solution
based on classicai theories of elasticity and plasticity are not ade-
quate for this purpose. Hence, it becomes necessary to use numerical
techniques such as the finite element method. Constitutive laws which
define the nonlinear behavior play a very important role in developing
reliable and consistent numerical procedures. This dissértation gives
comprehensive treatment to these aspects. Brief reviews of numerical

methods and constitutive laws are given below.

1.2 Literature Review

Finite Element Method

Considerable research work has been done on the theoretical
development and applications of finite element method to solve nonlinear
problems in solid mechanics. Historical development of the finite

element method can be found in several books [15,62,89].

Techniques for Nonlinear Analysis

Most of the nonlinear problems are solved by assuming a series of

"piecewise linear" analyses. Basically there have been two techniques



used in the past for nonlinear ané]ysfs, namely, incremental and
jterative [15,35,53,88,89].

In the incremental technique, the constitutive matrix is updated at
each load increment. Among many iterative procedures for nonlinear
analysis, Newton-Raphson techniques have been widely used with the
finite element method. Initial stress method which can be considered to
be a modified Newton-Raphson technique is often used for solving non-
linear problems in solid mechanics [56,93,94]. This method has been
found to give satisfactory resuits when plastic deformations are not
large compared to e]astfc components. However, for geologic media, the
material behavior is highly nonlinear and plastic, and hence, the above
technique may not yield satisfactory results; this factor is considered

in the current research.

Constitutive Laws

Several refinements and advances have been made in the theory of
finite elements, and the reliability of the method has been proved by
. several applications. However, the accuracy of a nonlinear analysis is
dependent significantly on the constitutive characterization (modelling),
and the computational algorithms used in implementing advanced
constitutive laws for geologic media.

Several advanced constitutive models have been deve]dped in the
last few years, and details of these models are available in various
references [12,17,21,24,66,68,87]. Use of these advanced plasticity
models for certain problems in geomechanics have been reported in

several references [1,6,8,20,64,77,91]. Here both incremental and



iterative techniques have been used. Application of beam-column
idealization to certain geomechanics problems have been reported in

reference [18].

1.3 Aims of the Research

 The aim of this research is to study the fundamental behavior of

nonlinear soil-structure interaction problems idealized as one-, two-,
and three-dimensional. Here basic principles of solid mechanics and
numerical techniques are utilized with proper attention to constitutive
laws. Within the context of numerical techniques, consistent and
detailed computational algorithms are deve]obed to implement several
constitutive relationships.

The interface behavior is studied by'using a special interface
element in conjunction with the finite element method.

The objectives and scope of this dissertation can be stated as

follows.

1.4 Scope of the Research

(1) To formulate and develop an incremental-iterative finite
element procedure to handle interaction in beam-columns
supported on nonlinear foundations.

(2) To formulate and develop an incremental finite element
procedure to handle interaction in two- and three-dimensional
problems.

(3) To develop improved and consistent computational algorithms
for handling material nonlinearities in one-, two-, and three-

dimensional analysis. Here, a rather novel scheme is



developed which is found to yield improved solutions in terms
of convergence with the advanced plasticity models.

To develop efficient and versatile finite element computer
codes for one-, two-, and three-dimensional idealizations.

To define and incorporate various conventional and recent
constitutive laws in the three formulations. Considerable
attention is given to determination of constitutive parameters
from appropriate laboratory tests that permit simulation of
important factors that influence the behavior of geologic
media.

leéompare and verify numerical predictions with available

closed form solutions, laboratory observations, and field

observations. Here, the procedures developed are appiied to

problems such as beams-on-deformable foundations, footing

Toads on half spaces, and multicomponent systems such as track
support structures.

Since three-dimensional procedures are often expensive,
preliminary investigations are included towards development of
a rather novel formulation called Resistance-Response (R-R)
approach. It is expected that such an approach, with addi-
tional research, can provide economical solutions by essen-
tially using one- and two-dimensional idealizations with

minimum use of the three-dimensional procedure.



1.5 Summaries of Various Chapters

Chapter 2 of this dissertation is devoted to describe some
fundamentals of solid mechanics. In this chapter, a brief descrip?ion
is given of invariants of stress and strain tensors, theory of elas-
ticity, and generalized stress-strain relationships based on plasticity.
Chapter 3 describes the formulation of one-, two-, and three?dimensional
finite element idealizations. Procedures for computation of stiffnesses
and load vectors for each of the idealizations are given.

Chapter 4 covers the theoretical aspects of advanced constitutive
laws used in this study. Here, variable moduli, Drucker-Prager, criti-
cal state and cap models are described. Details of computational
algorithms used in this study are developed and described in Chapter 5.
Details of numerical solution procedures and solution techniques are
also given. In Chapter 6, a review of available interface elements is
presented. Details of the interface element used for soil-structure
interaction in this study is given here.

Chapter 7 presents the laboratory experimental data on the granular
material (sand) tested in this study. Chapter 8 presents verifications
of the three computer codes developed; here, rather simple or previously
solved problems are analysed. Chapter 9 is then devoted to presenting
some applications of the procedures developed. Here, three soil-struc-
ture interaction problems are analysed, namely, a stfip footing, a beam
on a deformable foundation, and 12ad transfer in track support struc-
tures. Deformation behavior of the strip footing is first presented.

Then the study of the interaction in beam-fcundation system is



presented. The last part of the chapter covers the analysis of track
support structure; these results are compared with field measurements.

Finally, in Chapter 10, a summary of the work in the present study
is given, and ideas on further research are recommended. Appendix D

contains a description of the resistance-response approach.



CHAPTER 2

SOME FUNDAMENTALS OF SOLID MECHANICS

2.1. General Remarks

Often the trend in geomechanics has been to adopt and modify
existing formulations developed for structural and continuum
mechanics, notably those based on theories of classical elasti-
city and classical plasticity. It has been realized that the
mechanical behavior of many materials eﬁcountered in geomechanics
problems is much more éomp]icated than that described by classical
elasticity or plasticity theories. Hence, certain modifications
to the classical theories are required. The purpdse of this
chapter is to describe the fundamentals of elasticity and plasti-
city, which will be used in deriving advanced plasticity models

described in Chapter 4.

Z2.2. Basic Definitions

Basic definitions of the stress tensor, cij’ strain tensor,

€54 deviatoric stress tensor, Sij’ and deviatoric strain tensor,

Eij,lcan be found in referentes [33,34], and will not be repeated

here.
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2.2.1. Sign Convention

Thgre are different sign conventions used in conjunction
with solid, structural and geomechanics. In certain aph]i-
cations compressive normal stresses have been taken as
positive while tensile normal stresses have been assumed as
positive quantities in some other applications [34, 73].
Although the sign convention used does not influence the
mechanics of deformation, it is important in interpreting
information with a physical insight. In the current reéearch

compressive normal stresses are assumed to be positive.

2.3. Invariants of Stress and Strain Tensors

As will be seen in a forthcoming chapter, the mechanical
behavior of geologic materials will not depend on the frame
of reference, if an assumption is made regarding isotropy.
Under these conditions, it is advantageous to describe the
stress and strain tensors in certain forms of frame inde-
~pendent quantities. Fortunately, there exist three such
quantitites related to stress and strain, known as invariants.
These quantities will be described in the following

section.
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There are two ways to define the invariants of stress or strain
tensor. It is possible to define them with respect to the character-
istic equations related to the determinant of the stress or strain
tensor. On the other hand, it is also possible to define invariants
which can be expressed directly by using the stress or strain tensor
itself. In the applications to problems in mechanics, it is desirable
to use the later definition as it has a fundamental meaning. This can

be expressed as follows:

J] = 044 (2.12)
Jo = 0. o (2.1b)
2 = 7 %3 %4 :
J, = l-c O . O (2 1c)-
3= 7 %k %; %5 :

where J], J2 and J3 are the first, second and third invariants
of the stress tensor, respectively. Similarly, the invariants of

the strain tensor can be defined as

11 = €44 (2.2a)

%'Sij ¥ (2.2b)
] (2.2c)

37 3 %k %k§ Eji e

Similar to the stress and strain tensors, there exist invariants of

the deviatoric quantities as well. They are defined as,
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Jyp = 0.0 (2.3a)
Jon = £S.. S (2.3b)
20 = 7 Sij Sij :
. i J— .
and Jap = 7 Sik Skj Sji (2.3¢)

where JZD and J3D are the second and third invariants of the deviatoric
stress tensor, respectively. The guantity JZD is widely used in con-
stitutive characterization, and it is directly related to the octahedral

shear stress. This can be expressed as
_ 1 _ 2 _ 2 - 2
Jop = & Llogymopp)™ # (oppm033)" + (o79-033)"] (2.4)
2 2 2
+ (o]p + 093 + of3)
Octahedral shear stress,'roct, then can be expressed as

I

The invariants of the deviatoric strain tensor are defined as

I,y = 0.0 (2.6a)
I = +E..E (2.6b)
op = 7 Eij Ejj :

and [..=+*E. E.E (2.6¢)
3p = 3 Eik Ekj Ej :

where'I2D and I3D are the second and the third invariants of the
deviatoric strain tensor. The quantity, IZD’ can be expressed

as



13

_1 2 2 2
Top = & Lleqqmegp)™ + (egpmeqq)™ + (eq9-€33)"]
2 2,2 (2.7)
Ttz g

Octahedral shear strain, Yoct® Can be ekpressed as

/2 - ‘
Yoct ~V 3 l2p (2.8)

2.4. Stress-Strain or Constitutive Relations

The mechanical behavior can be explained by using certain
principles and laws of nature: conservation of mass, energy, linear
and angular mbmenta, the law of electromagnetic flux, and the idea of
thermodynamic irreversibility. The subject of continuum mechanics is
general enough that it can be applied to any 'continuous' media with
any material propertiés. However, the response of a continuum can
not be uniquely determined only with the field equations. Hence,
-the internal constitution of matter plays an important role in the
subject of continuum mechanics. "Constitutive laws" represent a
mathematical model which describes our ideas of the constitution
of matter. Constitutive law has to satisfy certain axioms of con-
tinuum physics, and a description of this is given in reference [31].
The main advantage of establishing a mathematical model is to
apply our ideas in solving complex events quantitatively. A
solution to a boundary value problem in continuum mechqnics requires
constitutive equations in addition to the governing field equations
and boundary conditions. Establishment of constitutive equations

can be based on the experimental observations or from physical
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theories of molecular behavior. However, the first approach can
impart physical significance in engineering science, and hence has
been adopted wide]y. In the following section, the stress-strain

relationships in the classical theory of elasticity will be described.

2.5. Elasticity

An external load causes stresses and strains in a body. Upon
removal of the external load, the body may or may not recover the
initial state of stress and strain. If the body returns to its

original configuration, then it is called to have deformed elastically.

Generalized Hooke'leaw

The generalized Hooke's law is expressed as

c:: = C (2.9)

i ijk1 ®k1
where Cijk1 is a fourth order tensor. This is known as the stress-
strain tensor or the constitutive tensor for elastic body under

consideration. For an isotropic, homogeneous elastic body, the

stress-strain relationship can be written as [33, 34].

G:. = A’skkd.. + 2u’€;s . ' (2.10)

where and are known as Lame's constants. These constants can be
expressed in terms of Young's modulus, E, and Poisson's ratio v

as
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. Ev
A =- T5) (=29 (21]&)
and
. _ E
H = 2 1+\) (2.].”3)

Although the above relationships are written in tensor notation, it
is easier to use them in engineering practice if they are written in
matrix notation. The stress and strain tensors can be arranged into
the form of vectors as follows:

T_

= Loy 0pp 033 015 953 93] (2.12a)

{c}

and

T

{e} (2.12b)

=leyp epp 533 =1 o3 €13l
There, in matrix notation, Equation (2.9) can be written as

{o} = [C){e} (2.13)

where, for an isotropic material [84] —_

1-v y v 0 0 0
T-v v -0 0 0
T-v 0 0 0
- E 1-2v
[c] = T (-5 - 0 0 (2.14)
1-2v

5 0

1-2y
2

L o
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The elastic constitutive matrix can also be expressed in terms
of the shear modulus, G, and the bulk modulus, K. This relationship

is given and used in Chapter 4 under variable moduli models.

2.6. Plasticity

As described in the previous section, efastic materials undergo
only recoverable deformations, that is, they return to their initial
state when the Toad is removed. HoWever, some materials retain a part
of the deformation upon unloading. These types of materials are called
inelastic or plastic. Because the'reloading paths do not follow the
original !oading path, the strains will be dependent on the history of
stress applications when p]astic_defcrmation occurs. That is, the plastic
behavior is characterized by the history-dependent deformations. As a
first approximation, time effects have been neglected in the théory of
plasticity [25]. There are two major aspects that constitute the theory
of plasticity: ‘

(1) Yield Criterion, and

(2) Post Yield Behavior.

2.6.1. Yield Criteria

Yield criterion can be defined as the 1limit of elastic deformations
def{ned by a combination of states of stress. For a one-dimensional
state of stress, yield criterion can be easily visualized. However,
under multiaxial stétes of stress, this becomes more complicated, and
an idealized mathematical definition is often required. The yield

criterion has to be established based on experimental observations of
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the material. For an isotropic material, the yield criterion can
be expressed in terms of the invariants of the stress tensor as

follows:

F = F(J]s st J (2']5)

3)

where J1, J2 and J3 are the invariants of the stress tensor. How-
ever, the influence of hydrostatic stress on the plastic defdr—
mations has been found to be neglegible for many metals. This
assumption leads to the fact that the yield criterion depends

only on the state of the deviatoric stress. Therefore, the yield
criterion in Equation {2.15) can be expressed in terms of invariants

of the deviatoric stress tensor as

F(Jyps Jgp) =0 (2.16)

Here JZD and J3D are the invariants of the deviatoric stress tensor.

A detailed description of some of the yield criteria used in
metal plasticity is given in Reference [54]. These include maximum
stress theory, maximum strain theory, Tresca yield criterion, Von
Mises yield criterion, and the maximum strain energy theory. Under
certain situations, Von Mises and Tresca yield criteria have been
used in some geomechanics applications. Both their yield criteria
are, however, independent of mean pressure, and can be applied only
for frictionless materials. Therefore, certair modifications and

extensions are required to model the frictional behavior of
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materials encountered in geomechanics problems. Details of such

advanced plasticity models are given in Chapter 4.

2.6.2. Post Yield Behavior: Plastic Stress-Strain Relations

In order to formulate the plastic behavior mathematically,
certain idealizations of the stress strain behavior are required.
Some of the commonly used idealizations are [42, 54]

(1

(2

Perfectly Elastic,
Rigid Perfectly Plastic,

)
)
(3) Rigid, Linear Strain Hardening,
)
)
)

(4) Elastic Perfectly Plastic,
(5) Elastic, Linear Strain Hardening
(6) Strain Softening

Based on these idealizations, different stress-strain relationships
can be defined. A generalized approach for determinafion of plastic

stress-strain re]ationships is given in the following section.

2.7. Generalized Plastic Stress-Strain Relations

A generalized approach has been suggested by Dfucker [25, 26, 28]
for determining plastic stress-strain relations for any yield
criterion, and a description is given in this section.

A precise definition of work hardening has been given by Drucker
[25] which lead to some postulates in this theory. For more general
states of stresses and stress paths, the concept of work hardening
can be expressed in terms of the work done by an additional set of

stresses due to an external agency. The work referred is only the
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work done by the added set of forces (stresses) on the displacements
(strains) which result, and not the total work done by all the
forces acting [25]. Work hardening means that for all such added
stresses, the material will remain in stable equilibrium. Further-
more, it is governed by the following postulates [25]:
(1) During the application of stresses, the work done
by the external agency will be positfve.
(2) Over a cycle of application and removal of stresses,
the work done by the external agency will be zero
or positive.
In other words, work hardening implies that useful net energy cannot
be extracted from the material and a set of external forces in such
a cycle. A detailed explanation of this concept can be found in
reference [25].

Furthermore, certain conditions should be satisfied in order to
insure appropriate description of physical process involved in
plastic deformations. There are four conditions formulated by
Prager [65], and are given below.

{a) condition of continuity

(b) condition of uniqueness

(c) condition of irreversibility

(d) condition of consistency,

The implications of these four conditions together with other
assumptions made [25, 26, 27, 28, 65], will lead to important

restraints on the plastic stress-strain behavior. These bring
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the fact that the incremental plastic strain vector js normal to the
yield surface. This is called the normality rule in the theory of
piasticity. The convexity of the yield surface can be shown to be
a consequence of some of the above requirements.

The normality rule can be written as [25, 26, 28]

(2.17)

Where A is a positive scalar factor of proportionality. A basic

assumption made in the development of stress-strain relations

for e1astic-p1astic materials is that for each load increment the
corresponding strain increment can be decomposed into elastic and

plastic components. That is
des. = de®, + deP (2.18)

ij €15 €ij

Substituting elastic strain-stress relations in Equation (2.10), one

can write,
dS.:  dd
=y 1 cli
R :RTO F C (2.19)

The concepts described in the foregoing sections can provide
a basis for some of the research advanced plasticity models, and
in determination of their constitutive or stress-strain relationships.
These and other concepts are used in Chapter 4 for deriving consti-

tutive relationships based on Drucker-Prager, critical state and



21

cap models for complex geologic media for which the conventional
plasticity models described in this chapter are usually not

appropriate.



Chapter 3
FINITE ELEMENT METHOD: ONE-, TWO-, AND
THREE-DIMENSIONAL IDEALIZATIONS

In view of the fact that many problems encountered in soil-
structure interaction can often be idealized as one-, two- and three-
dimensional, the procedures developed herein includes provision for
generalized nonlinear finite element analysis for all three idealiza-
tions. Such problems include laterally 16aded piles, Tong retaining
structures, footing, beams on deformable foundations, burried pipes,
interaction in track-support structures, etc., which covers a wide
range of applications in geomechanics. Details of the formulations of
one-, two-, and three-dimensiona] idealizations are given in\this

chapter.

3.1 One-Dimensional Idealization: Beam-Column Elements

Problems of beam-bending and beam-column analysis can be idealized
using one-dimensional finite elements. For the element considered
here, Figure (3.1a), the displacements, u, v, w in x-, y-, and z-direc-

tions respectively, and rotation o 6 about y-axis are assumed as follows

Y
[11]
U = oyt agy * asy? + ony? (3.1a)
V= as * ey (3.15)
W= 07 + agy * asy? + ooy (3.1¢c)

ey = o1 t a2y (3.1d)

This can be written in the matrix notation as follows:

22
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(a) Coordinate Axes for Beam-Column Element
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(b) Local Coordinate System for Beam-Column Element

Figure 3.1 One-Dimensional Idealization for Beam-Column Element
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{u} = [o1{a} - ' : (3.1e)
where
) y y2 y* 0 0 0 0 0 o0 0 0
0 0. 0 0 1 y 0 0 O 0 0 O
[e] =
‘ 0 ‘00 0 0 0 1 y y> y*¥ 0 0
0o 0 0 0 0 0 0 0 0 0 1 vy

{u} = vector of unknowns u, v, w and ey, and

{a}T = [als C2y coey cx-lZ]

A]thodgh, the use of generalized coordinates, Equations (3.1) forms
the basis for finding displacements at any poiht, its direct use can be
difficult. Hence, interpolation functions which are related to gener-
alized coordinates can be used for expressing unknown variables at any
point in the e]emenf.

The displacements at any point in the element, Figure (3.1), can

be expressed using the interpolation functions. That is,
{u} = [NJ{q} (3.2a)

where

T

{q} [uls Vi, Wi, o 0 0 s U2y V2, W, 8 0

8
X1 y1? Tz X2? Y2’ ZzJ’

T

{U} [U, V, W, ey]9

and



N’ =

Here, the quantities ex and

8
X

and

%

N; O 0
0 Ns O
0 0 N,
0 0 -N:
0 0 0
N, O 0
N; O 0
0 Ne O
0 Q N3
0 0 -Nu
0 0 Q
Lﬁf 0 0

_ dw
dy

_du
dy

o = O O o o

o O O

Ne
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8
Y

can be expressed as

(3.3a)

(3.3b)

The interpolation functions are commonly expressed in terms of local

coordinates.
Ny =1 - 3s% + 25
Ny = -%s(s’- 1)2"
Ny = 3s? - 25‘3
Ny = -252(s - 1)

Ns

(1 - s)

‘The quantities in Equation (3.2b) are expressed as,

(3.4a)
{3.4b)
(3.4c)
(3.4d)

(3.4e)
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NG = g (3.4f)

and

s = (y -y | (3.49)

where s = local coordinate, Figure (3.1b), y = global coordinate of any
point, y1 = global coordinate of node 1, and ¢ = length of the element.
A detailed description of derivation of interpolation functions in terms
of the cubic po]ynomié] in Equation (3.1) is given by Desai [11]. The
variation of the Hermitfan interpolation functions N, to N ére given

in Figure (3.2).

3.1.1 Element Stiffness Matrix

The element equilbrium eqdations can be derived by invoking the
principle of stationary (minimum) potential energy which for the beam-
column element is given beiow. The total potential energy can be
expressed as the summation of internal strain energy and the potential
of externally applied loads. The following potential energy functional

is used to derive element equations [11,35,89]

1 o1 '
- l ny2 _]_ ny2
Hp SZ,J; 5 EIXX(w )2 ds + QJ; 5 EIZZ(u )% ds

. M . M T
+—f GJe'st+—j‘ AEv'st-Azf (Xu + Yv + Zw)ds
2wy Y 2 v 0

ol -
- % Tu+T
‘ ujo ( xu Yy

1 311“1‘ (3.5)

N~

v + T_w)ds -
z L

where £ = length of the element, E = Young's modulus, G = shear modulus,

Ixx’ IZZ = the moment of inertia of the beam in x and z directions,
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@ Interpolation Function, N; » @
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0.0
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Figure 3.2 Interpolation Functions for Beam-Column Analysis
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respectively, J = polar moment of inertia, X, Y, Z = body forces, and

'T%, Ty and Té = the surface traction forces in x, y, and z directions,

respectively, P., = the concentrated force at mode i, u, = displacements

iL i

at corresponding nodes (= u, v, W), and M = total number of degrees of

freedom whev‘e'ﬁiL is applied. The overbar denotes a prescribed quantity,

and the primeldenotes the deriVative with respect to y coordinate.
Substitution of u, v, w and their derivatives in Equation (3.5) for

Hp, and then finding the stationary value of Hp leads to element

equations as [11,35]
[k1{q} = {Q} ‘ (3.6)

where [k] is the element of stiffness matrix, and {Q} is the element
load vector. The stiffness matrix, [k] is given in Table (3.1) with
respect to the local coordinate or elemental coordinate system. This
has to be transformed to global coordinate system before assembling it
to the global stiffness. The transformation relationship from x.(i =

i
1, 2, 3) to x%(i =1, 2, 3), as shown in Figure (3.3), can be written as

X§ = ay5%; L (3.7)

where aij is the coordinate transformation tensor. This can be

exprassed as,

] I ]
qosexx cosexy cgsexz
a.. = | cos@! cos8! cos8! _ 3.8
1] yx o TVyy yz (3.8)
] ] - 1
coseZX cosezy bosezz

Equation (3.7) can be written in the matrix notation as



Table 3.1

Stiffness Matrix for the Beam-Column Element

-6EI -12EIL
z Zz

0 0 0 S 2 — 1 0 0 0 0
22 3
0 0 0 0 0 1%5 0 0 0
12E1 6EL ~12E1 6E1
—5 -2 0 0 0 o -—* —5* (i
¢ t P t
6EL 4F1 ~6EI_ 2€1
————— -5 0 0 0 ) —x 0
12 [ X "2 ']
GJ -GJ
0 0 . 0 0 0 0 0 =
4E1 6EL
0 0 0 " —:3— 0 0 0 0
6EI 12E1
0 0 0 ——55 3 0 0 0 0
L 4
0 0 0 0 0 5% 0 ) 0
SL2BL -6EL 12Er ~6EI1
el 0 0 0 0 -3 T 0
6Elx 2El‘ -6EIl ~4ET
—5= — 0 0 0 0 —=X X 0
12 [ ] 12 "2
-¢J GJ
0 0 A 0 0 0 0 0 :
21 6ET
0 o 0 : —5 0 0 0 0

0

“y

xl

yl

021

x2

y2

022

6¢
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X! X
Y = [a] Y - (3.9)
Z' JA '

Once the transformation matrix is known, the forces and moments can be

transformed to the new coordinate system as [51]

o =} =2
N < x

(3.10)

where Py> py and p, are the nodal forces, and m, s my, aﬁd mz.are the
nodal moments in x, y, z directions, respectively, in Tocal coordinates.
Primed quantities on the left-hand side of Equatidn (3.10) denote
forces and moments with respect to global coordinates. The stiffness
matrix [k] can be tfansformed in‘the following manner. The total

.stiffness matrix can be written as,
-

—

] [r]
(6 x 6) (6 x 6)
LkJ = (3.11)

0] [

(6 x 6) (6 x6)

A— mmt—

where Ky;, K12, K21 and k,» are submatrices of the total local stiffness
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matrix. These submatrices can be expressed as

5] &
(3 x 3) (3 x 3)
= ~ for i=1, 2 (3.12)

&] [&

L (3 x3) (3 x3)]

iJ
(6 x 6)

The transformed quantities of the submatrix E}j can be obtained as

r-[a] [01‘_ —[Fa] [EB]_ P[af [01—

[}14] = | | | -~ (4.13)

(6 x 6)
o 6| |[7][&])] [0 ol
%(6 x6) (6% 6) 6 x6)

where [k;:]" is the transformed matrix referred in global coordinates.
Similarly, [k;21, [kz21] and [k:.] can also be transformed to find the

element stiffness in global coordinates as,

w1 [n]

[k]' = (3.14)
R

3.1.2 Element Load Vector

External loads can either be point loads or distributed loads.

Global Toad vector due to point Toads can be formed by adding them to
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the correct location which corresponds to the degree of freedom of that
node. Load vector due to surface traction can be evaluated as follows.
Consider a general case where the surface traction varies linearly as
shown in Figure (3.4). Surface traction at any point on the element can

be expressed as [11],

py = (1 -s)p, +sp, (3.15a)
= - ’ l -

Py (1 s)py1 + Sy, i {3.15b)

p, = (1 - s)pZl tsp, (3.15¢)

where p1.1 and pi2 are the nodal values of traction in "i" direction, at
node 1 and node 2, respectively. The element load vector can be

evaluated in global coordinates as

: . (1-- s)p,  +sp,,
- zj; [[m [Nz'].[m]'[ﬁd] (1-s)p,, +sp,,>ds  (3.16)
. (1 -s)p, +sp,,
(12 x 3) (3 x1)
where
N 0
W1]= N'l (1 = ], 4)
0 N

Substituting the expressions of Ny, Nz, N3 and N, into Equation (3.16)

and evaluating the integral, leads to the load vector as
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Figure 3.4 Distributed Loads on Beam-Column Element
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3.1.3 Computer Code for One-Dimensional Analysis

A computer code is developed to compute the'globa] stiffness and
to modify it for given boundary conditions. This code has the capability
of solving nonlinear problems using incremental and/or iterative tech-
niques. It also has the capability of stress transfer procedures.
Numerical procedures for nonlinear analysis are given in Chapter.s. This
code uses a regular "Band Solution" technicue. In order to maké the
program more efficient, most vectors and matrices are stored in a one-
dimensional array using the technique of dynamic dimensioning. This

‘makes it possible to change the program capacity with a change in oniy
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one DIMENSION statement. Further details of this code and user's

manual are given in reference [76].

3.2. Two-Dimensional Idealization

Many problems in engineering'can be analyzed -as two-dimensional
under certain assumptions; there are plane stress, plane strain and
axisymmetric idealizations. In plane idealizations, only the stresses
and strains in one plane have to be considered. There is another class
of problems where bodies of revolution are considered under axisymmetric
loadings. These are called axisymmetric problems, and the mathematical
probTem is very similar to that of plane stress or plane strain. Tri-‘
angular and quadrilateral elements are commonly used in the finite
element analysis of two-dimensional bodies. Often in the past, a 4-node
quadrilateral element composed of fogr constant strain triangles has
been used. Howevér, in general, the stiffness matrix of a four-node
quadrilateral element can be develcped by using the isoparametric con-
cept [90]. In the current research, four-node and eight-node

isoparametric quadrilateral elements are used.

3.2.1. Finite Element Formulation

The computer code developed herein has capability of having either
four-node or eight-node elements, Figure (3.5). The displacements
‘u, v at a point in the x and y direction, respectively, can be expressed

by using interpolation functions, and nodal displacements as follows:

=
I

= Nju; + Nous + Naus + ... Ngug

(3.18a)

<
|

= Nyv; + Novy + Navsi + ... NgVg
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(1,1)

(']a,"l) (]9‘])

Local Coordinates

Global Coordinates

(a) 8-Node Isoparametric Element

('131) (131)

- X (-1,-1) (1,-1)

Global Coordinates
Local Coordinates’

(b) 4-Node Isoparametric Element

Figure 3.5 Two-Dimensional Isoparametric Elements
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where N;, N, ... Ng are interpolation functions in local coordinates,
and Uss vy are the displacements of node "i" in the x and y directions,

respectively. This can be written in the matrix form as follows:

u
=[N} ;qg ' (3.18b)
\
where
— , 'W
N, 0 N2 O Ng 0
[N] =
0 Ny 0 | YRR 0 Ng
and _—
‘ITHL -
{q}" = [uy vi Uz’ v2 ... Ug Vgl

For %hé eight-node element, the interpolation functions can be

written as’
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Ny =g (1= 8)(1 - t)(=s = t - 1)
Ne =g (1 +8)(1 - t)(s - £ - 1)
Ns =7 1+ )1 +E)(s +t-1)
N =g (=) + ) (s +t-1)
(3.19a)
Ne = 5 (1= s2)(1 - ¢)
Ny =5 (1= £2)(1 +5)
Ne = 3 (1 - s2)(1 +t)
Ne = 5 (1= £2)(1 - 5)
For the four-node element,
Ny = 4 (1 +55,)(1 + tt,) | (3.19b)

where s and t correspond to the local coordinates which vary from -1 to
+1, and the subscript "i" denotes the values at node i. Here, Ni is the
interpolation function cdrresponding to node "i" as shown in Figure
(3.5). In the isoparametric formulation, the coordinates at a point
(x,y) can also be expressed using the same interpolation fhnctions. That

is, for the eight-node'element,

(3.20a)

b

{]
Hi~3 @

=

X

(3.20b)

<
"
. =
<

-t
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Strain-Displacement Relationship

The strains €5 Eys and Yyy CaN be written as

Yy Y
_ 2u
& T ax
_ oV
e, = 3 (3.21a)
ou oV
Txy T3y T ax

For the axisymmetric idealization, the circumferential strain, €g> Can

be expressed as

'}
e, = 3 (3.21b)

8.

The strain vector {e} then contains

{e} = (3.21c)

Substitutihg the expressions in Equation (3.18) into Equation (3.21c)

the following relationship is obtained.

N1 ANz Ng U1
Ex -,gx—- 0 | 3X 0 cee _3)( 0 Vi
N N, aNg| U2
3 o Lo FE o 0 g
= - ] (3.22a)

¥ oN1  9Ni | oN2  8Nj =
Xy 3y oxX 3y ax .
Us

) | o | X K )
X X X Ve




4

cr
{e} = [Bl{q} (3.22b)

Here, the matrix [B] is called the strain-displacement transformation

matrix. In order to evaluate the global derivatives of the interpolation

(shape) functions, it is required to find a transformation from local to

global coordinates. Using the chain rule of differentiation

28 oX 09S Jdy 0°S
(3.23a)
9 -9 3x 9 2y
ot ~ 9x ot '~ Jy ot
or in vector form,
a) [ | G
9S 9s 9S X
= ‘ (3.23b)
p | fax 3y fa
Qt; 5t at 3y
This can also be written as
9 9_
as )
= [J] (3.23¢)
3 3 |

3t aTQ

where [J] is known as the Jacobian matrix. This can be expressed in

terms of nodal coordinates as,
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E 5 oo
38 L N4y 35 L Ny .
[J] = (3.24a)
3 3
5Tl N el Ny
RN
SNy 3Ny Ng | [ %2 Y2
as s S X3 Vs
= { f (3.24b)
ANy BNy Ng
SEh SEE ee e e eee e i
_ NRNOED

In order to evaluate [B] matrix in Equation (3.22), the global deriva-
‘tives of the interpolation functions have to be known, and they can be

evaluated using the Jacobian matrix. That is, for example,

oy Ny
X ED
= [J] (3.25)
oy ally
3y ot

where [J] ! is the inverse of the Jacobian matrix.

Constitutive Relationship

As will be shown in the subsequent section, the constitutive
relationship is required to derive potential energy, and the stiffness

of the element under consideration. For the class of problems in solid
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mechanics that is considered in this study, constitutive relationship
means only a relationship between stress and strain quantities. This

is written as

Ci1 Ci12 Cis | C;1 €y
C21 C22  Cz3 I Cauy €y
= (3.26a)
I ] I
Cy1 Cu2 Cys | Cuyy 86
or
{o} = [CH{e} S (3.26b)

Here {o} is the vector of stress components, and [C] is the constitutive
matrix. The fourth column and the fourth row of [C] matrix, are meaning-
ful only for the axisymmetric idealization. The constitutive matrix [C] -
will take different forms depending on the stress-strain model used.
Details of constitutive matrix, [C], for different models are given in

Chapter 4.

3.2.2. Element Stiffness Matrix

Element stiffness can be determined using the well known principle
of minimum potential energy. According to this principle, the displace-
ment ffe]ds that satisfy internal compatibility and kinematic boundary
conditions as well as equations of equilibrium, make the potential energy
a stationary value. For stable equilibrium, the potential energy has to
be a minimum. Potential energy of a body can be expressed as the sum of
internal energy (strain energy), and the potential of body forces and

surface tractions. The following potential energy functional is used
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for the derivation of element stiffenss matrix:

I, = fffu(u,v,w)dv - ff‘f(fu + Yv + Zw)dv
v v ,
- ff(Txu +"T—yv + Tzw)ds (3.27)

S
where S; is that portion of the surface of the body on which surface
tractions are prescribed. U(u,v,w) denotes the strain energy density.
The last two integrals in Equation (3.27) represent the work done
(hence the potential Tost) by body forces, X, Y, Z, and surface and

tractions, Tx, Ty"Tz'

quantities u, v, w are the displacements in x, y, and z directions,

The overbar denotes specified quantities. The

respectively. The functional in Equation (3.27) can be written in terms

of nodal displacements. and initial stress conditions as follows:

1= % fJﬂ{q}T[B]T[C][B]{q} + 2{q}'[8] {00} )dv

-2 f f {q} [N]T{X}dv - f f £qr T[N {Thds (3.28)
v

S1
Here, [B] is the strain-displacement relationship, {q} is the displace-
ment vector, [C] is the constitutive relationship, {o¢} is the vector of
initial stress, and [N] is the matrix of interpolation functions.
Now the element equilibrium equations can be found by minimizing

the potential energy functional I The element equilibrium equations

p°
take the follewing form:

[k]{q} = {Q} (3.29a)
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where [k] is the element stiffness matrix, and {Q} is the element load

vector. These can be expressed as

[k]‘=ffﬁB]T[(:][B]dv | (3.29b)
v |

fo} = ffﬁN]dev + fﬁNJT{T}ds -ffﬁaf{co}dv © (3.29¢)
V S1 Vv

Having established the matrices [B], and [C], the integral in Equation

and

(3.29b) can be evaluated using numerical integration techniques. Here,
the Gaussian quadrature is used to evaluate the integrals. Hence, the

integral in Equation (3.29b) becomes
‘ + 1t

T - Te ar .
‘gﬁB] [C1[BIdv : fff[B] [c][Bldet[J]drdsdt O (3.30)

-1 -1 -1
where r,‘s, t represent the local coordinates. Details of numerical
integration procedures can be found in referenées [15, 89]. In this

‘research program, two- and three-point integrationvschemés are used.

3.2.3. Element lLoad Vector

In this Section, the Toad vector due to uniformly distriﬁuted
surface loads are evaluated. The computer code developed herein has
the capability of having 4-node elements or 8-node elements, and hence
lcad vector for both elements are given below. _.Consider a uniformly
distributed load as shown in Figure (3.6). The load vector due to

surface loads is
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PY1’ X1 Pyz’ X9

(a) Surface Loading on a 4-Node Element

1

(b) Surface Loading on a 8-Node Element

Figure 3.6 Distributed Surface Loads on Two-Dimensional Elements
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o) =£[N]T{p}ds

 — ——

32-(1-5)%(1+s) 0 0

- js' Ny

,-'\p 2Y

(3.31b)
where {p} is the vector of surface tractions. For the 4-node element
the Joad vector, due to the loading shown in Figure (3.6), takes the

following form:

{Q1 = (3.32)

For the 8-node element, the load vector due to uniformly distributed

surface traction, Figure (3.6), reduces to the following form:
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Q) = { > (3.33)

L@, +9,)

N

3.2.4. Computer Code for Two-Dimensional Analysis

A computer code is developed to compute global stiffness, global
load vector and to modify it for given boundary conditions. This code
can handle both 4-node and 8-node isoparametric elements. Interface
element described in Chapter 6 is also implemented. This code can
solve nonlinear (material) problems using incremental and/or iterative
techniques by using the original Newton-Raphson scheiie. Variety of
constitutive models such as Variable Moduli, Drucker-Prager, critical
state and cap models are implemented. Numerfca] prdcedures for nonlinear.
analysis are given in Chapter 5. The equilibrium equations are solved by
using Frontal Solution Technique [44]. Here, a few subroutines such as
for data input/output, equation solver, Jacobian and shape functions,
and 1ineér stiffness which are fairly standard in finite element compu-
tations have been based on previous work [43,50] with some improvements
and modifications; major emphasis in-this study has been on formula-

tions, computational algorithms and computational techniques for
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nonlinear analysis. In order to make the program more efficient, most
vectors and matrices are stored as one-dimensional arrays by using the
technique of dynamic dimensioning. This makes it possible to change the
program capacity with a change in only one DIMENSION statement. Further

details of this code and the user's guide are given in reference [76].

3.3. Three-Dimensional Idealization

Almost all real problems are three-dimensional by nature, although
for some problems various two-dimensional idealizations give adequate
and economical solutions. Here, a finite element proceduré is deve]oped'
for nonlinear analysis of~three—dimensiona1 problems in a truly threé-
dimensional sense. Several types of three-dimensional elements have
been developed, and details can be found in references [15,89]. A
variable-node element which can have any number of nodes between 8 and
21, has been employed. Different types of elements can Be formed by

degenerating the basic element [4].

3.3.1. Finite Element Formulation

A hexahedral finite element, Figure (3.7), is used as the basic
element. With the displacement formuiation, the components, Uss i =51;
2, 3 (u,vv, and w, respectively) at any point in the element can be
expressed in térms of the components of displacement at the nodes using

interpolation functions. This relationship can be written as,

N (3.34)

“i 7L Yplpd

Top

ne~3

where N_ denotes the interpolation function at node p, u j denotes the

P p
displacement at node p in the direction "i", and m is the total number
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8-Node Brick Element

X, 7

Figure 3.7 Basic Hexahedral Finite ETement




of nodes in the element.

21-node element, Figure (3.8), are given below [4].

Ny, =g, -
N, = g, -
N3 = g3 -
Ny = gy -
Ns = gs -
Ne = g¢ -
N, = g7 -
Ng = gg -
and
Nj = gj -
N21 = g2
where
g; = G(r,
and

g1 = (1 - r2)(1 - s?)(1 - t?)

51

The shape functions for each node in the

(go *+ 912 + G17)/2 - 921/8

(go + d10 + 915)/2 - §21/8

(g1o * 911 + 914)/2

(911
(913
(913
(914

(915

+ 913
+ J16
* G1y
+ g1s

+ g1s

921/43 j

i

r:) + G(s,

+ g,0)/2
+ g17)/2
+g,5)/2

+ g14)/2

+ g20)/2

=9, 10, ...

Si) - G(t, t.)

- 921/8
- 921/8
- 921/8
- 921/8
- 921/8

- J21/8

» 21

1

(3.35a)

(3.35b)

(3.35¢)

(3.36a)

(3.36b)

Here, v, s, t represent the lccal coordinates, and subscripts represent

the corresponding node number. The value of G(B, Bi) is given as [4],

G(B, B;) =

or

G(8, B;)

The value of 9;

1 - g?

for R

(3.37a)

(3.37b)

is zero if node "i" is not included in the element.
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X2

X1

Figure 3.8 Node Numbers for 8 to 21 Variable

Node Hexahedral Finite Element
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N: =91 - (99 + 912 +917)/2 - 92./8

N2 = g2 - (99 *+ 910 + 916)/2 - 921/8

Ns = gs - (910 + 911 * 919)/2 - 921/8

Ny =gy = (911 + 912 + 920)/2 - 921/8

(3.35a)

Ns = gs = (913 + G1s + 917)/2 ~ 921/8

Ne = g6 = (913 * 91u *+ 914)/2 - g21/8

N7 = g7 = (91u + g1s + 919)/2 - 921/8

Ne = gs - (915 + g1 * 920)/2 - 921/8
and

Ny =95 - 9eu/dy =9, 10, ..y 2] (3.35b)

N21 = ga21 (3.35¢)
whefe

g; = G(r, ro) « G(s, s;) - G(t, t;) (3.36a)
and

gz1 = (1 = r?)(1.- s2)(1 - t2) (3.36b)

Here, r, s, t represent the local coordinates, and subscripts represent

the corresponding node number. The value of G(g, B8.) is given as [4],

G(B, B;)

or

G(8, B;)

The value of

1

1 -

82

ﬁ-(] + BBi) for

for Bi

1

3, = £l (3.37a)

0 (3.37b)

9 is zero if node "i" is not included in the element.
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Equation (3.34) can be written in the matrix form as
{u} = [N]{q}

where {U}T = [LI1, Uz, u3} or {us vV, W],

N, O 0 N. O 0 N 0 0
[N] =10 Ny O 0 N, O ... O N 0

0 0 N: O 0 N2 0 0 Nm

- —

(3 x 3m)

and

T
{q} = [U11, Ui2, U13, U21, U22s U235 «eey U , U . U ]

m Mja
(1 x 3m)

Strain-Displacement Relationship

Once the displacement quantities are defined, the next step is to
determine the strains in the element. The strains at a point in the

element can be written as

€11 Ury:
\522 Uoy2
| ;
/€33 Us,ss
= (3.39)
Y12 Ui,2 * U2,
{
!Yza Uz,3 F Us,2
{Yls Ury3 t Us,:
~ -
aui
where ug 5 denotes gi—-for i=1,2,3and j =1, 2, 3. The guantities
’ J

in Equation (3.39) can be written in terms of the nodal displacements as
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N

ouy _ aNl aNz _E_
BX. - [—;(—.— 0 0 5;'.‘ 0 0 e e e BX- 0 O }{q}

i 1 1 1
dup _ [ 0 Ny 0 0 oNa 0 0 Eﬂm. 0 }{ } (3.40)
X s 3X 4 . X s e X < q .

i i 1 1

oN

dus _ Ny oN2 _m
3?; = [ 0 0 X, 0 0 el 0 0 axij}{q}

Here, m is the number of nodes in the element. Substituting Equation
(3.40) into Equation (3.39), it is possible to express the strain vector

in terms of nodal disp]acements as,

{e} = [B]{q} (3.41a)

where [B] is the strain-displacement relationship. By partitioning

matrix [B], Equation (3.47a) can-be expressed as

{€}=[[B]1 (8] ... [B]m:l{q} . (3.41b)

where m is the number of nodes in the element. Here,



oN
19X 1

8, = 3N

9X o

X3
.

oN
0X3
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(3.42)

In order to evaluate the global derivatives of the shape functions, it

is required to establish a transformation relationship from global to

local coordinates.

[15,89].

This can be done by using the Jacobian matrix

By using the chain rule of differentiation

3_= ) (3X1- ) (3)(2 (3)(3)
or 9Xip ‘or 9Xy ‘ar 3)(3
9___ = 9 9X1 + 9. 3X2 09X 3
2S X1 (35 ) ) ( ) 3X3 (35 )
3__ = ) 3X1 X o 9 3)(3
ot 9X1 ( ) 8X2 (at 9X 3 ( )
or in the matrix form,

3__ '-BX], oX 2 3)(3-q 9 )

ar ar or or X1

3_ - X1 X2 X3 3
\ 9§ 39S 98 3S X2

_3_ 9X1 oX 2 axi )

ot | ot at ot _| X3

(3.43a)

(3.43b)
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This can be written as

3 9

or X1

3\ _ 3 ,
s/ [J] s (3.44)
9 _9_

at 9X 3

where [J] is the Jacobian matrix. The Jacobian matrix can be expressed

in terms of nodal coordinates as,-

P n

rgﬁl ANy Eﬁﬂ. X11 X21 X31

a .
or or . r X12 X22 X32

oN . . .. '

[J] 35 TR T: (3.45)

Ny Ny MNy
ot 3. Tt ot
L : 1 m Xm Xom |

where x. s the x,-coordinate of node m, and it gggg_ggg mean-a‘tensor‘
quantity. In order to evaluate the [B] matrix in équation (3.42) the |
global derivatives of interpolation functions have to be known, and can
be evaluated using the Jacobian matrix, Equation (3.45). The global

derivatives can be expressed using Equation (3.44) as

3 2
X1 ar |,

B\, [J]'l £l : © (3.46)
oX 2 9S *
3 o |

9X3 A ot

where [J]™! is the inverse of Jacobian matrix.
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Constitutive Relationship

The constitutive relationship can be written in a general form as

do.. = Cep

i5 = Cijke 9€

ke (3.47)

where doij’ dekz are the incremental stress and incremental strain
tensors, respectively, and C?gkl is the constitutive matrix which refers
to elastic or elasto-plastic behavior. The simplified form of the
constitutive matrix for an isotropic linear elastic material is given in
Equation (2.14). The major emphasis in this dissertation is the non-
Tinear behavior which is characterized by the constitutive relationships.
A detailed description of the constitutive relationships based on variety
of constitutive models is given in the next chapter. The task of
develcpment of a numerical procedure with nonlinear analysis is complete
only when a (sophisticated) constitutive relationship is properly incor-

porated in the solutions procedure. Aspects of the computational

aigorithms used in this dissertation are given in Chapter 5.

3.3.2. Element Stiffness Matrix

Element stiffness can be determined by using the principle cof
minimum potential energy as described previously in Section 3.2.2.
The stiffness matrix, [k], and the load vector, {Q}, can be evaluated
from Equations (3.29b) and (3.29¢c). Once the matrices such as [B] and
[C] are established, evaluation of stiffness and load vector reduces to
performing integrations involved in the above equations. Here, the
integrals are evaluated by using numerical integration schemes based on

Gaussian quadrature. A two-point integration scheme is used for the
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8-node elements while a three-point scheme is used for elements with

more than 8 nodes.

3.3.3 Element Load Vector

In this sectiony only point loads and uniformly distributed loads
are considered. Point loads can}be directly added to .the global load
vector of the assemblage. However, distributed loads need to be con-
verted to equivalent nodal loads before adding them to the global lcad
vector. The nodal load vector due to a distributed load can be evalu-
ated by integrating Equation (3.31). For uniformly distributed loads
on 4- and 8-node surfaces, the equivalent nodal Toads, are shown in
Figure (3.9).

Load vector due to body forces can be computed by‘integfating the
first term in Equation (3.29c). That is, load vector due to body

forces can be evaluated as,

{Q} =ffﬁN]T{Y}dV' o (3.48)
) ' .

This is done by using a numerical integratior technique similar to that

used in stiffness computation.

3.3.4. Computer Code for Three-Dimensional Analysis

A computer code is. developed for nonlinear three-dimensional
analysis of soil-structure interaction. This code can handle 8 to 21
variable node solid elements. Interface element described in Chapter
6 is also implemented to study interaction effects. This code can

solve nonlinear (material) problems using incremental and iterative
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(a) Uniform Surface Loading on a 4-Node Surface
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,’/ Equivalent Nodal Loads

(b) Uniform Surface Loadihg on a 8-Node Surface

Figure 3.9 Distributed Surface Loads on Three-Dimensional Elements
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techniques. The numerical procedure is based on the original Newton-
Raphson scheme. The nonlinear constitutive models implemented in the
program are:

Variable Moduli Model

Drucker-Prager Model

Critical State Model
Cap Model.

and

Numerical algorithms used in the nonlinear analysis are described in
Chapter 5. Here, the skyline technique [3,5] is used in the solution

of equiiibrium equations. In contrast to previously developed three-
dimensional formulations [3,5], the procedure and code developed here
includes a number of important and significant factors such as a variety
of constitutive models (variable moduli, Drucker-Prager, Critical State,
Cap) and a three-dimensional interface element with Tinear and nonlinear
capabilities. Furthermore, even the Drucker-Prager model in ADINA, and
NONSAP is Timited to two-dimensional analysis.

In order to make the program more efficient, most vectors and
matrices are stored as one-dimensional arrays by using the technique of
dynamic dimensioning. This makes it possible to change the program
capacity with a change in only one DIMENSION statement. Further details

of this computer code are available in a separate report [76].

3.4 Resistance-Response Approach

Since three-dimensional procedures are often expensive, preliminary

investigations are performed towards a rather new formulation called
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Resistance-Response approach [19,22,23] by combining one-, two-, and
three-dimensional procedures. Details of the preliminary work is given

in Appendix D.



CHAPTER 4

ADVANCED CONSTITUTIVE LAWS USED IN
SOIL-STRUCTURE INTERACTION ANALYSIS

4.7. General Remarks

In Chapter 2, the fundamentals of classical elasticity
and plasticity were described. The assumptions made in those
theories allow consideration of only highly idealized materials.
Despite this, the classical models have been widely used for
certain types of structural materials such as steel, aluminum
and concrete. However, for materia]suéuch as soils ahd.rocks, the
above models have been found to be inadequate. In classical linear
elasticity, the stress-strain relationship is assumed to be linear.
In nonlinear elasticity, the material is assumed to return to its
original state upon unloading, although the stress-strain relation-
ship is nonlinear. These assumptions are usually not valid for
geologic materials because their behavibr is véry often nonlinear
and inelastic or plastic.

In many classical plasticity models the yielding or plastic flow
behavior was assumed to be independent of the first invariant of the
stress tensor, that is, mean pressure. These type of materials are
called non-frictiona1.materia]s. Behavior of most geologic media
can be quite different and their strength is dependent on the hydro-

static stress. Under fully or partially drained condﬁtions, the

63
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strength of the geolbgic materials such as soils increase with

mean pressure and exhibit frictional characteristics. Of course,
there are exceptions such as undrained behavior of saturated clays

which can be similar to that of metals. In this chapter, some

of the advthed—constitutive laws that accounts for frictionaf

and plastic behayiof are discusséd. Then, the cqnstitutive

- relations are derived‘in the incremental form which can be readily

implemented in a nﬁmerica] procedure such as the finite element

technique used in this study. Computational algorithms for
implementation of these models afe described in Chapter 5.

Determination of constitutive parameters and details of labor-

atory experihénta] results for a granular materié] are included

in Chapter 4. | - |

Theoretical considerations and deve]opment of adVanceq plasticity

_models considered herein are reviewed in a few books (17, 21].

Details of theory and derivations of constitutive relationships

for some of the models for two- and three-dimensional analysis are

presented here.

4.2. Variable Moduli Models

In most of the elasto-plastic models, it is generally assumed
that the behavior below the yield surface is linear elastic. How-
ever; ih the recent years more reliable laboratory test data on
geologic materials became available concurrently with the advances

in experimental mechanics. Evidently, some modifications were
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required in the éxisting elasto-plastic models such as brucker-
Prager mode1; described later in this chapter, in order to match
observed experimental data. It hés been observed that the material
behavior even béfore reaching the yield criterion is nonlinear. A
Furthermore, it has also begn realized that the behavior in the
"elastic" region is different under 16ading and unioading. These
‘realizations led to the development of more advancgd constitutive
laws based onhthe prinﬁip]es of theory of piasticity described in
Chapter 2. | |

The use of different elastic properties suchvas bulk and shear
moduli under 1oad1ng and unloading conditions could reproduce the
hysteretic nature of response quite indépendent of the yield criterion
used. In fact, all tﬁe piecewise linear models used in the past are
based on this concept. As such, no explicit yield criterion is used
in variable parameter models. In the 'variab]e‘moduli' models
[58, 60] the bulk modulus and shear hodu]us aré aésumed to be
dependent on the states of stress and stfain tensors. It is eQident
from ékperimental observations that the stress-strain refationships
of many-9601dgic materials are not unique; they are not on]y.dependent
on the state of stress but also on the stress path. Therefore, ther
variable modu1j materials are mathematically exberssed in incremental

forms. That is,

S;5 = 26E;; . ‘ I CRY

‘and b = 3KE, ' (4.2)
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where Sij and Eij

respectively, and p and g, are the mean pressure and volumetric

are the deviatoric stress and strain tensors,

strain, respectively; the overdot denotes incremental quantities. In
general, different funétions for G and K are used under loading and
un]oading-re]oadiﬁj conditions. Depending on the functional forms
assumed for G and K, a famf]y of variable moduli models can be
developed [58], which have often been used in the investigations
of ground shock effects in hysteretic media [59]. Thére have been
three major modeis developed for these purposes. They are
(a) Constant Poisson Ratio Model
(b) A model in which K and G are functions of the
invariants of the strain tensor, and
(c) A model in which K is a function of invariants of the
strain tensor, and G is a function of ihvariants of

the stress tensor.

4.2.1. Constant Poisson Ratio Model

In this model the.ratio of the bulk modulus to shear modulus is

assumed to remain constant. That is,
K= - (4.3)
G~ 37-5,7 - constant .

However, the values of K.and G will be variables. They can be
functions of mean pressure or volumetric strain or both. Closed-
form solutions for relationships of stress and strain can be
obtained for special cases such as uniaxial strain and triaxial

stress states. These are given in reference [58]. It has been
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found that this model is satisfactory for only the uniaxial states
of strain, and its behavior in the triaxial conditions contradicts
the experimental observations. Therefore, this model may not be

suitable under general states of stresses.

4.2.2. Variable Moduli Model Based on the Invariants of the

Strain Tensor

In this model, bulk and shear moduli are assumed to be functions
of the first invariant of the strain tensor, I]’ and second invariant

of the deviatoric strain tensor,/IZD. They are expressed as [58]

= 2
K= Ko + K1I] + KZIl (4.4)
G = Go + G]‘/IZD + GZI1 (4.5)

Where Ko’ G0 are the initial bulk and shear moduli respectively, and
K1, KZ’ G], Gz~are the material parameters.

The quantity I2D has been used instead of I2D mainly because it
has the same crder as I1. As could be seen in Equations (4.4) and
(4.5), the bulk modulus and shear modulus reduce to K0 and Go under
zero strain conditions. Using the above relations, the general incre-

mental stress-strain relationship can be written as,

dS dps. . '
de. . 1J (4.6)

1J 2
- 2[G +G1/ +GZI] 3[K0+K1I1+K211]

This expression can be integrated to obtain stress-strain relation-

ship under any stress path configuration. One major limitation
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of this model is that the problem of unloading has not been‘given
attention. Furthermore, in many existing finite element procedures,
stresses are stored rather than strains, and hence the implementation-
of this model in an.existing program can require additional diffi-

culties.

4.2.3. Combined Stress-Strain Variable Moduli Model

In this model, the bulk modulus, K, is expressed in terms of
the first invariant of the strain tensor, and the shear modulus, G,
is expressed in terms of the first invariant of the stress tensor

and the second‘invariant of the deviatoric stress tensor. That is

_ 2
J
G =Gy +v(37) + vy [Igp (4.8)

Here, Ko’ G0 are initial values of bulk and shear moduli, respectively,
~and K], K2’ Y1s Y2 are other material parameters required in this
model.

It is evident from experimental observations that the behavior
of geo]ogié media under loading and unloading can be quite different.
Typical experimental results on uniaxial compression test and
triaxial compression tests are shown in Figure (4.1).

By integrating the incremental form of the general stress-strain
relationship, it is possible to obtain a solution for stress as an

exact function of strain for uniaxial and triaxial conditions. Details
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O3

€1

(a) Uniaxial (Compression) Test

(o1-03) |}

€1

(b) Conventional Triaxial Compression Test

Figure 4.1 Typical Test Results for Geologic Media
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of these derivations can be found in Reference [60], and only the final

relationship is given here.

e = —L— 1 [3Go+”3(2Y1'ﬁY2)+°1 (Y1+/5Y2)]
Y1"./§Y2 3(Gy*rqo3) (
4.9a)
(o}
1 do
1 1
SRRt b
3 o3 K
g
3 do
1 g ] 1
or e = In [ 1+ 5 1 (59) (4.9b)
Yo+ 31, Ginitia1- 391 K

It is an experimental observation that the shear modulus, G, decreases
with increasing deviatoric stress. For shear modulus to decrease
with /JZD’ certain conditions should be satisfied by the materiatl

parameters. That is,

Y +/§Y2 <0 A ' (4.10)
Furthermore, e has to be a positive quantity while Yo has to be a
negative quantity. It is reasonable to assume that the shear modulus
reaches a value of zero at failure. Hence, under triaxial conditions,

/

the maximum stress difference, (01-03) has the following value ‘[60],

max

3(G +y104)
, _ o '"173/1
(o1-03)ax = - [—_+/5 ] (4.11)
Y] 'Y2
It is known that the material behavior under loading is quite
different from unloading conditions, Figure (4.1). Under uniaxial

state of stress, loading and unloading can be easily visualized as
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the configuration is only one-dimensional. However, under three-
dimensional states of stresses unloading and reloading cannot be
easily seen as in the case of uniaxial conditions. In order to
account for inelastic behavior in load-unload cycles, different
relationships for G and K have to be assumed under unloading con-
ditions. It may be reasonable to assume that the response under
unloading and reloading up to the maximum past state of stress is
essentially elastic. However, 1f may be possible to separate
unloading and reloading by assuming different parameters for above
cases; this of course will increase the number of parameters required
to describe the behavior. Furthermore, shear behavior can be quite
different from bulk behavior under reloading. Therefore, it is
possible to express the unloading-reloading behavior as

Unloading-Reloading

6 =6, (4.12a)

K=K, (4.12b)
Loading

G =Gy (4.12¢)

K= Kiq (4.12d)

where Gun and Kun are unloading values of shear and bulk moduli,
respectively, and G]d and K1d are reloading values of shear and

bulk moduli, respective]yl
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Under a fully three-dimensional state of stress, it is possible
that the material is loading in shear, that is, JZD > 0, while
unloading in pressure, 5] < 0. Behavior under unloading and reloading
is quite complicated and further research work has to be done for a
better understanding. In this research, however, it is assumed that
unloading and re-loading can be described by same elastic properties.

Unloading under shear is detected by a decrease in /JZD’ and unloading

in bulk behavior is detected by a decrease in mean pressure, J1/3.

That is
G = Gun' when /JZD </ .JZD)max (4.13a)
K f Kun when J] < (Jl)max (4.13b)

wherejT—EEE)max and (JT)max are the maximum past values. One major
difference between variable moduli models and plasticity models, is
the way unloading is defined. In plasticity models, unloading is
defined by a yield criterion which represent both deviatoric and
hydrostatic states of stresses. However, in variable moduli models,
behavior under deviatoric and hydrostatic states of stresses are
decomposed and described independently..

Since the moduli, G and K, vary continuously with the states of
stress in variable moduli models, solution of boundary value problems
have to be done using incremental procedures. The incremental stress-
strain relationship is written below in terms of G and K so that it
could be implemented in a numerical procedure such as the finite

element technique.
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deyy
do” = Kede, 51.3. + ZG(deij - 61'3') (4.14)

Under plane strain and axisymmetric idealizations, the incremental

stress-strain relationship takes the following form:

~ O~ —~, . 4G 26 267 A N
dO-H K+—3— K—S—' 0 K-3—- dE:-”
2G 4G 26G
doy, K-%% K+z= 0 K-%5 de,, |
? - { ? (4.15)
doy, 0 0 26 0 deq,
2G 2G 4G
dog3) | K-35 K-F 0 K+ |deg]

Here the fourth row and column are meaningful only for axisymmetric
" idealizations; for the plane strain conditions, constitutive matrix

has the dimensions of (3x3).

4.3. Introduction to Advanced Plasticity Laws

As described in Chapter 2, in classical plasticity, the
yielding or plastic flow behavior was assumed to be independent of
the first invariant of the stress tensor. These types of materials
are called non-frictional materials. This assumption can be valid
for materials such as metals which aré“considered to be friction]ess.
However, most ged]ogic materials do not obey this type of behavior.>

The strength of most geologic media is dependent on the hydro-
static stress. Under fully or partially drained conditions, the

strength of the soil increases with mean pressure and exhibits
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frictional characteristics. There are certain exceptions. For
instance, the undrained behavior of a saturated clay is similar
to that of metals.

In this section, frictional materials, and their stress-strain
behavior based on the postulates described in Chapter 2 are dis-

cussed.

4,3.1. Mohr-Coulomb Failure Criterion

According to the Mohr-Coulomb criterion, the shear strength

increases with increasing normal stress on the failure plane:
t=C+ 0o tan ¢ (4.16)

where t is the shear stress on the failure plane, C is the cohesion
of the material, o is the normal effective stress on the failure
surface, and ¢ is the angle of internal friction. This fai]ure
criterion is shown graphically in Figure (4.2). The concept of
Mohr: circle can be used to express this criterion in terms of
principal stresses. This criterion represents an irregular
hexagonal pyramid in three-dimensional stress space. The pro-
jection of this surface on the m-plane is shown in Figure (4.3).
Mohr-Coulomb criterion ignores the effects of intermediate
principal stress. A generalization of this criterion, and
the corresponding constitutive law is derived in the next

section.
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Figure 4.2 Mohr-Coulomb Failure Criterion
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4.4, Drucker-Prager Model

A generalization to account for the effects of all principal
stresses was suggested by Drucker and Prager [30] by using the
invariants of the stress tensor. This generalized criterion can

be written as

f=‘/J—zE-aJ1 -k (4.17)

where o and k are positive material parameters, J1 is the first
invariant of the stress tensor, and JZD is the second invariant of
the deviatoric stress tensor. Equation (4.17) represents a straight
line on J] Vs JZD plot, Figure (4.4). In the three-dimensional stress
space, this criterion represents a right circular cone. The pro-
jection on the m-plane is a circle as shown in Figure (4.3).

The stress-strain relationships based on this criterion can
be derived using'the yield function given by Equation (4.17), and the
flow rule given by Equation (2.17). These relationships will be
derived using tensor notation. Then the incremental stress-strain
relationships will be written in the matrix form which can be imple-
mented in numerical solution procedures such as the finite element

technique.

4.4.1. Derivation of the Incremental Constitutive Law

Basic steps in deriving the incremental law for the Drucker-
Prager model are given below. The failure criterion for this

model is given in Equation (4.17). When the state of stress or
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Figure 4.4 Drucker-Prager Criterion
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stress point lies on the yield surface, Equation (4.17) is always

satisfied, and hence the variation of f will be zero. That is,

df

]
o

(4.18a)

or df

do.. = 0 (4.18b)
Substitution of Equation (4.17) into Equation (4.18b) leads to

df = ) dc =0 (4.19)
2/
where Sij is the deviatoric stress tensor. Assuming that the total
strain can be decomposed into elastic and plastic components, it is

possible to write,

e - _ P
deij deij deij (4.20)

Here, the superscripts ‘e', and 'p' denote elastic and plastic
components, respectively. However, the incremental plastic strains

can be expressed by using the flow rule given in Equation (2.17).

That is,
e _ of
deij = dsij - Aaoij (4.21)
Therefore,
S..
€ o ode.. - a(—— - 4s.. .
def = degy - AL e asiz) (4.22)

Now, the incremental stress can be expressed as
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deS
- e e _ _“mm
dogy = Kdep 45 + 26(dess - —3 6;5) | (4.23)

The va]ué of A can be obtained by substituting Equations (4.22)

and (4.23) into Eduation (4.19). The value of A is then substituted

in Equation (4.22) to obtain the incremental stress-strain relation-

ship. Further details of the derivation are given in Appendix A.
The incremental stress-strain relationship for Drucker-Prager

model has been previously obtained and used by Reyes and Deere

[67], and Christian [ 6] for plane-strain idealizations. They have

used an approach based on plastic work to derive the stress-strain

- relatiohshib. In the current research, this‘is derived directly

as described in Equations (4.18) through (4.23) by using

tensor manipulations. The idcremental form of the constitutive

relationship derived in Appendix A can be written as,

do,. = ZGdeij-ZG[A(c 8, .0, .8 )+Bs_ 5. .+Co

ij mn®i3" i3%mn’ " mn i j mncij)]demn (4.24)

The quantities A,:B and C are defined in Appendix A, and will not
be repeated here. |

In the matrix notation, the three-dimensional stress-strain
relationship for the Drucker-Prager material can be written as
shown in Figure (4.5). Here, the symmetry of tﬁis matrix may
not be clear at the fikSt“glanée. However, it can be easily

shown that

Taqbb + Ra = Tbcaa + Ry (4.25)
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| 2
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Aoyy ~T1023 - ~Ty093 “Tzop3 . ~Coppopg (1/2-Coy3)
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Where Ta = A+Ccaa; Here répeated subscript does not mean summation

and Ra = Aoaa+B; Here repeated subscript does not mean summation.

Figure 4.5. Stress-Strain Matrix for Drucker-Prager Material Model
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Here, the repeated subscript does not mean summation. When the
current state of stress is known, this matrix can be easily com-
puted. Under the plane strain/axisymmetric idealizations, the
increméntal stress-strain matrix can be obtained by deleting
appropriate rows and columns of the three-dimensional re]ationship

shown in Figure (4.5).

Limitations of Drucker-Prager Model

As shown in Figure (4.4) the incremental plastic strain vector
has a negative volumetric component, which indicates volume increase
or dialation at failure. However, experimental data on normally
consolidated clays and loose sands indicates only compressive defor-
m&tions or decrease in volume during shear, which is in conflict
with predictions from the Drucker-Prager model. This discrépancy ‘
may be due to several reasons. It is possible that the normality
rule may not be valid. On the other hand Drucker-Prager law may
not be applicable to these materials.

Some pfoblems can be solved without using the normality rule
for the Drucker-Prager criterion. Here the stresses satisfy the
yield criterion while the strain states are forced to satisfy
certain conditions such as no volume changes. The major diffi-
culty in discarding norma]ity'is that it implies that the material
is unstable according to Drucker's postulates [25]. The Timit-
ations of Drucker-Prager model has also been described by

Christian [6,17].
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Hardening Behavior

The abondoning of normality may not be desirable as it is a
very important rule in plasticity. It has also been observed that
geologic media, especially soils, undergo plastic volumetric defor-
mations even when the hydrostatic stress (J1) is changed. This
'phendmenon cénnot be explained with the Drucker-Prager model. In
order to account for this phenomenon, the yield surface should inter-
sect J] axis as shown in Figure (4.6a). This idea was first pre-
sented by Drucker, Gibson and Hankel [29] with respect to the behavior
of a soil speciman in conventional triaxial test. A soil specimen
which is subjected to a hydrostatic state of stress as shown by
point A, when unloaded, deforms elastically. Until the stress
state reaches point A upon reloading, Figure (4.6b), the material
continues to deform elastically. Furthérmore, the behavior under
hydrostatic state of stress involves work hardening and not perfect
plasticity. For work hardening materials when the stress point moves
outside the yield surface, a new yield surface is established.

According to the concept described above, the yield surface
should pass through A as shown in Figure (4.6c). Furthermore, the
yield surface should be convex as discussed in Chapter II. For
simplicity, Drucker, Gibson and Hankel [29] assumed that the
hardening yield surface can be approximated by a circu]ar arc at
the open end, Figure (4.6¢c). With this idea of a new yield surface,
it is possible to explain the observed behavior of (geolcgic) media

under hydrostatic conditions, and at failure without abandoning
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the normality rule. The new yield surface intersects the Drucker-
Prager failure surface at an angle, Figure (4.6a). It is possible

to exp]ain the observed volumetric behavior of geologic media, if

we assume that the incremental plastic strain vector is normal to

the hardening yield surface at the point of intersection, D. When the
hydrostatic stress is increased to bring the sample to point B as
“shown in Figure (4.6¢c); the yield curve must also expand to point

B. Hence, there will be'a family of yield curves corresponding to
points on the hydrostatic axes. In other words, as the materia] work
hardens, the yield surface expands to a new position. 'waever,

when the state of stress.keaches a point oﬁ the yield surface which
is locally parallel to the hydrostatic axis, the plastic volumetric
changes will be zero, and Hence no further hardening w{11 take place.
This Teads to the fact that increménta] plastic strain‘vector at
point D as shown in Figure (4.6c) is normal to curved yield surface
as well as the hydrostatic axis.

Drucker-Prager faiTure criterion plots as a right circular cone
in the three-dimensional stress space, and the idea of the circular
yield surface is similar to placing a dome at the open end of the
cone. <Aithough the idea of having a cap was first conceived with
circular yield surfaces, the actual yie]d surface may not be cir-_
cular. This received the attention of several researchers, and as
a result several cap models have been developed recently. Cap

models are described in the subsequent sections of this chapter.
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4.5. Critical State Model

Introduction

Historical development of critfca] state model can be found

in several publications of the soil mechanics group at Cambridge

University [68, 69, 73]. Some of the important parameters used

in the development of critical state concept are defined below.

The experimental work for this model has been carried out

with a conventional triaxial apparatus by Roscoe and his co-workers

[68, 69, 73], and hence, the quantities are defined with respect

to this configuration.

For the axisymmetric triaxial conditions,

0y = O35 and hence the quantities p, q, dv and de are defined as

follows.

i o]+203 ) il
P 3 73

0
it
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a—d
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[ww)

dv = de;+2de

1 3

H

de % (deq-des)

(4.26a)

(4.26b)

(4.26c)

(4.26d)

where p is the mean pressure, q is related to shear stress, dv is

the incremental volumetric strain, and de is the incremental shear

strains. Here, a1 and oq are the major and minor quantities of

effective stresses.
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Critical State Line

When a saturated soil sample is sheared, it passes through
progressive states of yielding before reaching a state of collapse.
That is, the stress path passes through several yield surfaces
(hardening caps) causing plastic deformations. The yielding con-
tinues to occur until the material reaches a cfitica] state, after
which the void ratio remains constant during subsequent deformations.
That is, the material will pass through é state in which the arrange-
ments of the particles is such that no volume change takes place
during shearing. This can be considered as the ultimate state of
the material. The ultimate states have been observed to fall on
a straight 1ine on gq-p space, irrelevant of how the material is
bkought to this state. This is cailed the critical state line [69].

The critical state line, and the isotropic pressure-volume line
on e-log p plot have been observed to be parallel, as shown in Figure
(4.7a). The slope of this line on the g-p plot is denoted by 'M',
and it is a material parameter. This shows that the failure takes
place when the material reaches-a critical state.

A three-dimensional view of the possible stress states in the
p-q-e space are shown in Figure (4.8). It is interesting to note
that e-Top p relationship from any proportional loading stress path

is parallel to the critical state line, Figure (4.7a).

4.5.1. Plastic Stress-Strain Behavior

Isotropic 1oading of a soil is shown in Figure (4.7b) on

the e-log p plot. If. the material is normally consolidated at
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A, the isotropic loading will follow the path AB. When thé sample
1s:un10aded to the mean pressure, PA’ the unloading path does not
follow the loading path AB because of the elastic-plastic nature.
Instead, the material follows path BD upon unloading. When the
material is reloaded from pressure, PA to Pg, the material follows
the same path as uh]oading, that is, DB. Since the unloading and
reloading follows the same path, this shows elastic behavior. As
shown in Figure (4.7b)'the slope of the loading path is denoted by
Aes and the slope of unloading-reloading path is denoted by «. The
vertical distance AD shows the plastic component, and DE shows the

elastic component of the change in volume, respectively. Therefore,

the plastic volumetric strains, dvp, can be evaluated as [73]

(AC-K) dpo

p._c Po
U el (4.27)

where Py is the hardening parameter, e_ is the void ratio, and the

0
superscript 'p' denotes plastic changes. In the stress-strain
theory based on the critical state concept, it is assumed that
there is no recqverab]e energy associated with shear distortions,
i.e., de® = 03 the superscript 'e' denotes elastic components.
Therefore, at all times,

de = deP (4.28)

According to the normality condition discussed in Chapter 2, the

incremental plastic strain vector is normal to the yield surface
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at any point. With reference to Figure (4.9), this can be expressed

as

p
de” _ _dp (4.29)

de

dvP dq

The ratio of shear and volumetric plastic strains can be found in
terms of p and q by assuming a dissipated energy function aé des-
cribed in Reference [68]. Hence, Equation (4.29) can be integ-
rated to obtain the yield function. For the modified cam clay

model [68], the yield function has been obtained as,

2 2 2.2

F=q" - Mpp-Mp =0 (4.30)

4.6. Cap Model

In the previous section, a model which is known as critical
state model was descriﬁed. The underlying foundation of the critical
state model is the idea of using a yield surface to control the hydfo-
static behavior as proposed by Drucker et al [29]. Since this second
yield surface acted as a cap to the dbmain included by first yield
surface, the models based on this idea are called "cap models". In
this study, hqwever, the word 'cap model' is Toosely used to refer
to the model proposed by Dimagio and Sandler [24]. In the critical
state model, the yield criterion is expressed in terms of 'q' and
'p' which are based on the conventional triaxial configuration.
Therefore, a generalization is requﬁred in order to implement the
critial state model in a frU]y three dimensional situatijon. One

of the ijimitations of the critical state model is that, it cannot
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predict the behavior of geologic materials under very high pressures.
Under very high pressures, the strength has been observed to be
similar to a frictionless material while the critical state model
include only the frictional behavior. Other limitation is that, it
can be applied only for cohesionless materials.

Attempts have been made to use Drucker-Prager model with a
non-associative flow rule in order to control the predicted plastic
dialatation behavior. However, this violates the stability postu-
lates, and hénce its use may have certain mathematical difficulties
with regard to uniqueness [24, 71].

A model based on classical plasticity and work hardening con-
cepts have been proposed by Dimagio and Sandler [24], which over-
comes many of the limitations discussed in the foregoing sections.
This model has a yield surface which combines ideal plasticity
and strain hardening as shown in Figure {4.10a). An associated
flow rule is used to describe the plastic deformations. This»
model satisfies the continuity, stability and uniqueness require-
ments. As shbwn in Figure (4.10a) the yield surface is composed of
a modified Drucker-Prager surface, and a cap surface. Here, the
Drucker-Prager surface is assumed to be fixed in position while the
cap could expand or contract depending upon plastic volumetric
deformations. Actually the modified Drucker-Prager surface demarcates
the ultimate conditions in which the material could exist. That is,
any state 6f stress outside this surface cannot exist. Since this

-describes the ultimate or fai]ufe Timit, it is referred to in this
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thesis as the "failure surface" which also acts as a part of the

yield surface. Mathematica]ly'this can be expressed as

Ff (J]’/FZ—D) =0 (43])

where Fe is the failure criterion. Here, the subscript 'f! denotes
failure states.

In this model, the strain hardening cap could expand or con-
tract as the plastic volumetric strain increases or decreases,

respectively. This is expressed as

= Py =
Fe (012 dgps &y) = 0 (4.32)

Unlike in the critical state model, strain hardening can be
reversed in this model since the movehent of the cap is governed by
the plastic volumetric strain. Contraction of the cap can happen,
only if the stress point (poing A) which is on a cap moves to the
fai]uré Tine (point B) through the elastic region as shown in
Figure (4.10b). At point B, the incremental plastic strain vector
has a negative volumetric component if the normality rule is
aséumed. This causes plastic dialatation which causes the con-
traction of the cap towards point B. When the cap reaches point B,
the stress point becomes a corner, and the incremental plastic strain
vector rotates in clockwise direction controlling the amount of dia-
latancy [24, 71].

The ideally plastic portion of the yield surface is approxi-

mated by the following function [24, 71]:
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Feldys fig) = [Tp-lomy exp(-p0)1 =0 (4.33)

where o, vy and B are material parameters. This can be generalized
by adding another term ih Equation (4.33a) so that the failure
envelope changes from one Drucker-Prager criterion to another
Drucker-Prager criterion at high‘pressuresf In the original version
of the cap model, failure envelope was similar to a von Mises
criterion under very high pressures. The generalization can be

expressed as »

Feldys J9pp) = [igp = Lotedy-y exp(-83)1 (4.33b)

It is interestiﬁg,to note that Equation (4.33b) reduces to Equation
(4.33a) wheﬁ 6 = 0.0. Here, 6 is an additional material parameter.
fhe cap portion of the yield surface is assumed to be elliptic,
as shown in Figure (4.11). Tﬁe equation of the ellipse can be -
written as C T e

J]-L(as)) 2 J

‘ ( 2D 2
Fo(dy,fTppeey) = [ 1+ [ ]
c 1/—2‘0 'V (X(ee)'L(ES))J » °‘+9J]'Yexp(—BL(g5.))

(4.34)

-1=20

where the quantities X(eS) and L(eS) refer to geometric properties of
the é]]iptic yield cap as shown in Figure (4.11). It is assumed that
the ratio of major to minor axes remains the same for all ellipses;

this ratio is denoted by 'R'. Hence,

x(es) =’L(es) + Rlo+6dq-y exp{-8L(eD)}] (4.35)
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Equation (4.35) can a]éo be expressed as,

Fo =0y - %—[{RFf(L)}Z - (J]-L)ZJV2  (4.36a)
or F =‘R2JZD - (x-1)% + (JT—L)Z (4.36b)

In order to relate X or L with the plastic volumetric strain, 85’
it is required to analyse the hydrostatic behavior of the material.

This has been expressed in the following manner.
es = W[T-exp(-DX)T (4.37)

where D and W are material parameters. The inverse relation can be
expressed as
- P
B T 2
X = -5 In[1-7] 3 (4.38)

For a given value of <P, X can be found from Equation (4.38). The

v
corresponding value of L can be found by solving Equation (4.35)

using a trial and error method.

4.7. Elasto-Plastic Constitutive Relationship for Hardening Models

Yield criterion for a hardening type material can be generally

expressed as,
Oss I?) (4.39)

.where °ij is the stress tensor, and I? is the first invariant of the

plastic strain tensor or simply the plastic volumetric strain. In

a cap type material model, there ére two distinct surfaces on which
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plastic deformations can take place; cap surface and the failure
surface. In this thesis they are denoted as FC and Ff,

respectively. In the following section a general procedure for
deriving elasto-plastic constitutive tensor is given. Subsequent1y,
this 1s specialized and simplified for critical state and cap models.

The flow rule for plastic flow can be written as, Equation (2.17),

p ., 20
dEij A acij (4.40)
= A Aij

where Q is the plastic potential, and A is a non-negative constant

3Q

acij

plastic flow, the state of stress will always satisfy Equation (4.39)

which varies throughout loading,and Aij is equal to During

and therefore,

dF = 0 (4.47a)

That is,

3F aF 4P .
o dcij + 5o dI1 0 (4.41b)
ij I1

This can be written as

F 4P =
Bij dgij + 37 dIj = 0 (4.41c)
1
where Bij = ng;a which is the gradient of the yield surface. The
1]

incremental stress tensor can be related to the elastic portjon of



100

incremental strain tensor, by using the elastic constitutive

tensor as,
- e

Here the superscript, 'e', denotes the elastic quantities. As
described in Chapter 2, it is assumed that the total increments of

strain can be decomposed to elastic and plastic components as

= g8 p *
deg; = def; + def (4.43)

Here, the superscripts 'e' and 'p' denote elastic and plastic com-

ponents, fespectively. Equation (4.43) can be substituted into

Equation (4.42) to obtain

do., = C

P
i5 = Cijk1 (degq-degq) (4.44)

substituting‘Equation (4.40) into Equation (4.44), the following

re]ationship could be obtained.

By contracting the indices in Equation (4.40),
S d4eP = 41P = ,

Substitution of Equation (4.45) and (4.46) in Equation (3.48c),

feads to

aF =
- A Ag) # el As; =0 (4.47a)
1

Bis Cisk1 (degq
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Collection of terms leads to

(B:.CvyiAs - 2 A..) A =B

iitigta T e M 1384 5k195K] (4.47b)
1
which gives
B..C.., .de
A = INBRALY ';} (4.48)
(B iCi k1M1 - g}B'Aii)
- 9L

"By using the value of A in Equation (4.45), stress-strain

relationship can be obtained. as

C.. 1A B _C
do,. = [C;, - —dklklmnimars o g (4.49)
13 ars g ¢ Ly rs
mnemarsTrs. o gp ii
1
For associated plasticity, Q = F, and hence Aij = Bij; Hence the
g]asto-p]aétic constitutive relationship can be written as
Ci.iAL A _C
- : _ ijk17k1 'mn "mnrs , ,
dcij [Cijrs‘ e . Qf;-A ] ders (4.50a)
mn mnrs’ rs 3 1P i
1
= €P
or dcij Cijrs dEPS _ (4.50b)
where CSP _ is the elasto-plastic constitutive tensor which is

ijrs
symmetric.
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4.7.1. Elasto-Plastic Constitutive Matrix for Critical State Model

A detailed derivation of the constitutive relationship can be
found in Appendix B, and only a brief description is given here. The

quantity Aij in Equation (4.40) can be evaluated as follows

. Fe e aq L e (0.51)
1] aoij aq aoij ap Bcij

i

In classical critical state soil mechanics literature, the
quantities q and p are expressed with respect to cylindrical tri-
axial device. However, for app]ications in plane strain, axisymmetric
and three-dimensionq] stress analysis, it is required to define the
quantities with re§Pect to a general state of stress. These are
given in Appendixlﬁ. Since Agj is symmetric, it is easier to express

its components in a vectoria1 form as follows:

T = i
A1 = TAyys Agps Aggs Apps Ajzs Al (4.52)
aFc
Other unknown quantity in Equation (4.50), ——B-can be evaluated
3l
as follows: 1
5F 3F . 3p
€ - a_c 9 (4.53)
olf - %P0 a1l

Substitution of Equation (4.27) into Equation (4.53) leads to

)
oF aF . po(1+e

o 0’
= 4.54
BI? 9P, (AC-K) ( )
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The elasto-plastic constitutive tensor, Equation (4.50) can be

expressed in the matrix form as,

e Tree
eq., C
1

The constitutive relationship for plane strain, and axisymmetric
idealizations can be obtained by deleting appropriate rows and

columns of the above matrix.

4.7.2. Elasto-Plastic Constitutive matrix for Hardening Cap, F

c
The quantity Aij in Equation (4.40) and aFc/aI$ in Equation

(4.50) for the hardening cap is derived in Appendix C. The elasto
plastic constitutive matrix for the cap can be evaluated by sub-

stituting quantities from Appendix C in Equation (4.50).

4.7.3. Elasto-Plastic Constitutive Matrix for Failure Envelope, Ff

Since Ff(J1, /JZD) does not depend on 65’

oF ¢

— =0 | (4.56)

p
aev

By using Equations (4.33b) and (4.40),

. . =—"LS1..
iy 2/J2D

Hence, [Cep] on the failure envelope can be computed by using

A - (6 + yge 1) 5 (4.57)

1§

Equations {4.57) and (4.55) in a similar manner as described in

the previous section.



Chapter 5
COMPUTATIONAL ALGORITHMS

- 5.1. General

The computational procedures used in the nonlinear analysis are
described in this chapter. w1thih the scope of this study three finite
element programs based on 6ne4, two-land three-dimensional idealizations
have been developed; they can be used for stress-deformation analysis of
many problems in solid mechanics, and are specifically designed for
soil-structure interactions.

In the one-dimensional analysis (Beam-Column), the nonlinearity is
1nc1uded only in the support sprihg;,fwhile in the two- and three-
dimensional analysis material nonlinearity is fully incorporated.

There are two important aspects of numerical analysis of non1ineér
probliems in solid mechanics. . One is the numerical procedure used to
satisfy the equi]ibr{um conditions. This has to be accompanied with
appropriate and consistent convefgence criteria. The other important
aspect is the computational procedure used for-evaluation of correct
stresses and strains. Although, these are listed as two aspects, they
are very closely related.

| Most nonlinear problems are ané]ysed as a series of "piecewise
linear" problems byAusing incremental techniques; here, the constitutive
matrix is updated at each load increment. Since the characteristics of
deformations change with the states of stress and strain, the increment
size can play an important role in a nonlinear analysis. There are two

widely accepted computational schemes which are used in conjunction with

104
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finite element solutions; namely incremental and iterative techniques
[15,89]. 1In the iterative technique, the number of iterations required
to reach convergence can be quite large for highly nonlinear field
prob]em;. It has often resulted in poor convergency [89].

In the incremental technique, the increment size can be made
suitably small to achieve convergence. Furthermore, the load-deformation
history can be traced by using incremental procedure since the displace-
ments at each load increment are computed. However, this may require a
larger number of increments in highly nonlinear problems.

For highly noniinear problems, where plastic deformations occur
from very small load levels incremental technique aione may ndt be
sufficient to satisfy the equilibrium conditions. Therefore, it is
required to use a combination of incremental and iterative methods for
such problems. Details of these methods are available in references

[15,89]. Numerical pkocedure used herein is given below.

Computational Procedure

It is evident from the Tliterature that there have been basically
two computational procedures to handle nonlinear problems. These are
namely the Newton-Raphson approach, and the modified Newton-Raphson
‘approach. Graphical representation of these two methods are shown in
Figure (5.1) with respect to a load-displacement relationship. The

probiem under consideration is written mathematically as
(k] {aq} = {aQ} ' (5.1,

where [k] is the tangent stiffness matrix, {q} and {Q} are displacement
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and load vectors, respectively. In the original Newton-Raphson method,
the tangent stiffness is used every time Equation (5.1) is solved.
However, this can be quite expensive cohputationa]]y since formulation
and solution of the system of equations have to be performed at each
iteration stage. To overcome this difficulty, the modified Newton-
Raphson method, Figure (5.1b), has been used. Here, the initial stiff-
ness is used throughout the analysis. However, for highly nonlinear
prob]ems, modified Newton-Raphson method can require a larger number

of iterations to reach convergence.

For nonlinear constitutive problems in solid mechanics, Zienkiewicz
et. al., [94] have proposed a technique known as "Initial Stress Method".
In this, they have given a physical interpretation to certain quantities,
and have identified the error as an unba]ancéd load vector. Initial
stress method can be interpreted as the modified Newton-Raphson
method with the elastic stiffness kept constant throughout the analysis.

In this scheme, the balanced load vector can be expressed as
. T |
{03p4 f.{f (81" {0} v (5.2)

where [B] is the strain-displacement matrix and ¢ is the current stress;
With the physical interpretation giveﬁ in initial stress method, con-
vergence implies a state of static equilibrium. Because of the nonlinear
constitutive models used in the current research, satisfaction of equil-
ibrium equations can be quite difficult with the modified Newton-Raphson
(initial stress) method unless a larger number of iterations is used.

On the other hand, use of larger load increments with larger number of

iterations for problems studied herein have been found to give erratic
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results with the hardening type constitutive models. Use of small load
increments, and the initial stress technique with constant elastic
stiffness could give satisfactory results. However, this could be fairly
expensive since the number of increments can be high for a nonlinear
prbb]em. Still, when the plastic deformations are much higher than

elastic deformation, this technique could be unsatisfactory.

Mixed'incrementa] and Iterative Procedure

In the current research, a mixed procedure which combines incre-
mental and iterative technfques is used, Figure (5.2); a similar proce-
dure has been used by Phan [64]. |
| The original Newton-Rapﬁson method is used in one-, twe-, and
three-dimensional finite element programs developed within the scope of
this study. In both the ana]ysis of a beam-column on a nonlinear soil
support, and the nonlinear anmalysis of two- and three—dimensiona]
bodies with Variable Moduli models, the iterations are performed by
using Newton-Raphson method; here midpoint Runge-Kutta scheme is used
at intermediate steps within a load increment. This point will be

discussed subsequently in this chapter.

5.2. Stress Transfer Technique in One-Dimensional Analysis

Some of the boundary value problems which can be analysed by using
the one-dimensional idealization include beams on a continuous founda-
tion such as a rail, axially and laterally loaded piles, and 1?ng
retaining structures. This idealization can also be used to analyse
the behavior of one-dimensional bodies which are supported by finite

number of supports. In these problems, the continuous support is
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replaced by a finite number of Tinear or nonlinear springs. The net
effects of continous supports are simulated by using springs.

There is a basic difference between a beam on a deformable
foundation, and a laterally loaded pile although both can be idealized
as one-dimensional. The difference is that the beam on the surface can
separate from the supporting soil into the open air while at least one
side of the pile is always in contact with the soil. When there is a
separation at the junction, the support conditions can be quite dif-
fefent. This requires the use of a stress transfer technique in
modelling the éeparation of structural elements from the supports. One
dimensional idealization of a beam on a continuous foundation is shown
in Figure (5.3a). As'can be seen in this figure, certain portions of
the beam can deform so as to separate from the surface.

| The classical Winkler-Zimmerman theory for beams on elastic
foundation, neglects the above mentioned'aspect. Furthermore, for
nonlinear supports, a general nonlinear theory does not exist at this
time. The numerical ﬁrocedure developed herein is capable of accounting
for above mentioned factors.

Since the sail usually can not carry tensile loads, an iterative
lprocedure is needed to remove tensile stress conditions. This scheme is
called "stress transfer iterations (cycles)". In the context of compu-
tational procedure, this has a complete different meaning than itera-
tions (for equilibrium conditions) used in nonlinear analysis. The
stress transfer technique can be used for both linear and nonlinear
support conditions. The computational procedure used in stress transfer

technique is outlined below.
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(1) Perform a trial analysis at 'i'th step assuming complete
supports and obtain the incremental displacement vector,
Aqi. _

(2) Compute the incremental support reactions simply by multiply-
ing the current spring stiffness with corresponding incremental
displacehent, that is, ARi = Ki'] Aqi. '

(3) Check to see if the total reaction is in tension. If S0,
separation occurs at that<node. Identify all the nodes
where separation occurs, and assign tensile stiffness for
corresponding nodes.

(4) Resolve the problem at 'i'th step. This completes one itera-

tion (cycle) for stress transfer.

After the first stress tranéfer iteration, it may happen that some
other regions can go intd tension, and some tensile portions can come
back to compression. For this situation a second stress transfer
iteratfon (ISFER=2), can be used. The computer program develaoped herein
has the capability of performing any numbeh of stress transfer iterations

within each increment used. Numerical results obtained by using this

program are given in Chapters 8 and 9.

5.3. Numerical Procedure for Beams on Nonlinear Foundations

General Remarks

In most real situations, the response of soil to external loads
can be nonlinear. This nonlinearity can be due to several reasons
described in Chapter 1. In the one-dimensional idealization, the

continuous supports can be replaced by a finite number of springs which
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may have nonlinear characteristics. It is known that the principle of
superposition is not valid for nonlinear behavior, and the response at
one point, in general, can be quite dependent on other Toads acting on
the medium. However, for certain cases, when the loads are far apart,
it may be possible to assume that the response at one location is
independent from other loadings. Furthermore, there can be real
situations where beams are resting on descrete nonlinear supports. The

procedure used in the nonlinear analysis is described below.

Nonlinear Analysis

In this study, the nonlinearity of the support springs is repre-
sented by using Ramberg-0sgood model which is described in refernce
[17]. A graphical representation of this model is shown in Figure (5.4).

Here, the tangent spring stiffness, Kt’ at any state is expressed as

- K

Ky
- ti tf
g = (Rer = Keplu (m/m * Ker (5.3)
[1+[—% 1]
u

wnere Ktilis the initial stiffness, th is the final stiffness, Pu is
the ultimate load on the sbring, u is the deflection, and m is an
exponent which characterizes the shape of the 1oad-def0rmatipn curve.

The nonlinear analysis fs performed using a prescribed number o%
sequences, increments, and iterations. .Here, the sequences mean different
sets of loadings. Each loading set can be divided.into a number of
jncrements, and any number of iterations per each step (incnement) can

be performed. Stress transfer cycles can be performed within lToading

jterations. Steps used in the nonlinear analysis are given below when -
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moving from 'i'th step to 'i+1'th step.

(1)

Compute Ki based on 9; at the 'i'th step. Then perform the

analysis for load, AQ = Qi+1 - Qi’ and determine the incre-

mental displacement vector.

Compute the spring constants corresponding to average value

(n-1) (n) (n)

of q; and q; Here q; denotes the displacements

computed in the 'n'th iteration. Skip this step if no itera-

tions are to be performed.

Compute reactions based on qgn) and spring constants computed

in step (2). Find the unbalanced load fraction by comparing

the external loads and reactions, that is

m
Unbalanced load = Q - } R
]
Compute the spring constants at qgn), and solve the problem

for unbalanced load vector. This will give new displacements

q§n+1) which can be used for (n+l1)th iteration.

)

When acceptable equilibrium is reached qgn becomes Qi41-

For the next increment, use the spring constants based on

qgn), after 'n'th iteration. A graphical representation of

the above procedure is shown in Figure (5.5).

When no iterations are to be performed, this becomes purely an

incremental procedure. In this case, the spring stiffness is updatéd

at each step and thevprocedure becomes straight forward.

5.3.1. Humerical Procedure for Unloading Conditions in Support Springs

As described in Chapter 4, many solids behave differently under

loading and unloading conditions; this is usually characterized through
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constitutive behavior. The spring supports used in fhis analysis
simulate approximately the effective resistance from the semi-infinite
solid. Therefore, the deformation characteristics of the springs can

be different for loading and unloading: The unloading criterion used

in this analysis is the maximum compressive disp]acemént of each spring.
Sincé the springs are placed on the negative sides of the coordinate
axes, compressive displacements have negative signs. Modelliﬁg of ,
unloading behavior can be quite important for sequential loading condi-
tions. Here, the}maximum compressive displacements of each spring is
updated and stored for comparison purposes. At any step of load incre-
ment, a trial solution is performed, and displacements of ea;h spring

is checked with the maximum past value. If the current disﬁ]acement of
any spring js less than its maximum past value, it is considered to be
undergoing unloading or reloading. Unloading-reloading properties are
assigned to those springs, and the analysis is repeated. In this
analysis, the unloading-reloading stiffness is taken as the initial
value at zero displacements, Figure (5.4). However, any other value can

be used to model the unloading behavior,

5.4, Variable Moduli Model: Implementation in Two- and Three-Dimensional

Analysis
 Details of the variable moduli model used in the present research
are given in Chapter 4. As could be seen in Equation (4.7), the variable
moduli model gives the variation of shear and bulk moduli with the
stress and strain states. Furthermore, these quantities can be depen-

dent on whether the material is in a loading or an unioading state;
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the criterion for unloading are given in Chapter 4. The computational
procedure used here is capable of accounting for Toading, unloading
and reloading in shear or bulk behavior. Some possible stress paths
are shown in Figure (5.6).

At the beginning of a load increment, the values of bulk modulus,
K, and the shear modulus, G, are computed based on the current state
and the history. The constitutive matrix, Equation (4.14), is then formed
and a complete finite element analysis is carried out to determine
the incremental displacement vector. Then, the incremental stresses
are computed based on the current constitutive relationship. After
adding the incremental quantities to the previous state of stress, the
ériterion for unloading and reloading in bulk and shear behavior are
cheéked at each integration point. Depending upon the above check,
unloading constitutive parameters are assigned to the corresponding
integration points for subsequent analysis. If ft is found that all
integration points of at lTeast one element has changed its state from
loading to unloading or vise versa, then the analysis is re-performed
with appropriate constitutive parameters. C(nce the incremental stresses
are computed, the equilibrium iterations are performed as described
below. |

In view of the nonlinearity, the constitutive relationship changes
within the increment itself. Therefore, a new constitutive relationship
(¢

ment. This new relationship [Cave] is used to compute a stress vector

ave] is established based on the average stresses during the incre-

assuming that the computed strains are correct. At this stage stresses

are updated, and the unbalanced load vector is computed. This pro-
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cedure is repeated in subsequent iterations until convergence is
reached. A graphical representation of this procedure is given in
Figure (5.7). The convergence criterion used in the current research
is described subsequently in this chapter.

Steps used in the nonlinear analysis are listed below with refer-
ence to Figure (5.7).

(1) Apply external Toad Q and perform the analysis with properties

based on op. Compute G,, Figure (5.7b).

(o) - (

(2) Compute o, Op + 0g)x 8, 6 = 0.5 at midpoint. Hence

(o)

compute elastic properties based on 0y The superscript
'0' denotes zeroth iteration, and the subscript 'a' denotes
average values.

(3) Calculate new stresses {o,} = [C§°)] [B] {q}. Hence compute
balanced load {Q;} = ,r[B]T {o,}dV. Therefore, unbalanced

Toad {AQ:} = {Q} - {Ql}ba].

(4) Compute elastic properties based on o;. Perform a new analysis
with AQl‘as the load vector. Repeat the above procedure

until equilibrium is satisfied.

5.5. Drucker-Prager Model: Implementation in Two- and Three-Dimensional

Analysis

In this model, the material behaves elastically until the state
of stress reaches yield criterion. Hence, for an incremental strain,
{Ae}, the incremental stress, {Ac}, can be computed using elastic
constitutive re1ation§hip if the final state of stress lies within the

4

yield surface. That is,
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F({oo} + {Ac}) < O (5.4)

where {o,} is the state of stress prior to the increment. However, for
certain strain increments, the state of stress can go outside of the
yield surface; that is, F(o) > 0. This situation is shown in Figure
(5.8a). For this case, the material behaves elastically until it reaches
point C in Figure (5.8a), and then deforms elasto-plastically. Here,

it is assumed that yielding initiates at point C which is the inter-
section of stress vector with the yield surface. For this situation,

the incremental stress can be computed as follows [70]:
{ac} = S[C®] {ae} + (1-5) [CP] fae} = {Acy} + {Ag,} (5.5)

where S is the fraction of strain increment that is required to initiate
yielding, [c®] and [C®P] are elastic and elasto-plastic constitutive
matrices, respectively. Once the fréction S is determined, computation

of {Ac:} in Equation (5.5) is straight. forward.

5.5.1 Subincrements of Strain

However, computation of {Ac.} requires an integration of Equation
(5.5) since [C®P] changes with the stress level. This can be done by
dividing (1-S) {Ac} into a number of smaller steps which are called as
'subincrements' in this study. However, computed stresses at each
subincrement may be inaccurate depending upon the direction of strain
increment. That is, the computed stresses may lie outside the yield
surface. In such situations, stresses can be brought back to the yieid

surface by some other means.
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Previous Work

There are several computational schemes to correct the drifting
tendency that is described‘above. Davidson and Chen [9] arbitrarily
corrected the stresses at constant hydrostatic stress (J;) for plane
strain problems using DruckerQPrager criterion. For two-dimensional
stress analysis, Nayak and Zienkiewicz [56] used a scheme which brought
the stresses back to the yield surface along the normal to the yield
surface. Christian et. al., [7] have investigated three schemes for
correcting stress states which violate the yield criterion; they have
employed Mohr-Coulomb criterion in plane strain idealizations. In the
first scheme they used, aQérage stress was kept constant, while the second
1nvd1ved bringing stresses along the normal to Mohr-Coulomb envelope,'
and the third involved correcting stresses at constant vertical stress,
gy They'have concluded that for bearing capacity problems, the results
were very sensitive to the manner in which the stresses were brought

back to the yield surface.

5.5.2 Procedure for Correcting Stresses

In the current research, the stresses are brought back along the
EEorma] to the yield surface. Here, the stresses calculated at each
;éubincrement, Fiqure (5.8b), by using the forward marching scheme with
,deated constitutive matrix is taken as the first‘approximation. When
the stresses are outside the yield surface, dF > 0; let this value be

Fi. ,A change in yield function can be expressed as

i = oF
dF = 55, doij (5.6)
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It is mentioned in Chapter 4, that 33F is the gradient of the yield
N
surface. In vector form, Equation (5.6) can be written as
T. ,
- rofF . '
dF {56} {do} (5.7)

since the stress calculated at the first approximation is outside the

yield surface, it can be substituted in Equation (5.7) to get

;
0-Fp =-F = {%} {do} (5.8)

when the change of stress {do} is such that it is normal to the yield

surface, Equation (5.8) can be written as

_ (oF oF
-F1 = 551 r {55 : ' (5.9)
Hence,
P o= ‘:1 (5.10)
L OF T oF
({5E} {35} )
and
-
{do} = (5.11)

-
aF oF
(2 &

The above procedure can be used to move a point which is on the
yield surface (F = 0) to an outside location (F = F,). Since the quan-
tity {9F/50} is calculated based on the stresses outside the yield
surface, it may not be exactly normal to the yield surface. Therefore,
when {do} in Equation (5.11) is computed based on the stresses at the
first approximation, it may not bring the stress point exactly on to

the yijeld surface. Hence, the second approximation gives
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{o}> = {o}; + {do} (5.12)

Now, Equation (5.11) can be evaluated based on {o}, to lead to the third
approximation for {o}. This procedure can be repeated until satisfac-
tory convergence is reached. This procedure has been found to bring the
stress point rapidly to the yield surface. A comparison of the results
based on this procedure and the previous work is given in Chapter 8
under verifications. By making the subincrement size of strains
smaller, this procedure can bring the stress point back to the yield
surface even in the first iteration; this however, depends on the

number of subincrements.

Evaluation of S

The quantity 'S' in Equation (5.5) can be computed by using simpie
geometry. Since, the fractional stress S{Ac} brings the stress point
on to the yield surface, the yield criterion has to be satisfied. That
is

F({oe} + S{Ac}) = 0 (5.13a)

This leads to a quadratic equation in S as given below.

]
(o)

AS? + 2BS + C (5.13b)

where
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8= (0, - PG, - B) + (o, =PI, = B) + (o, = PG, - )
+ 2(Txy%xy + Tyz%yz + sz%zx)
- 20%(o, + o, *+ csz)(c?X + c}y + 62) - Zak(éx + 5y + 52)
and
C= (o, - p)? + (Oy - p)E (o, - p)? Z(Tiy + T§z * 1)

)

2 2 _ op2 _
- 2a (ox + oy + oz) 2k 4ak(0x + o to,

Here, the overdot denotes the incremental quantities, p is the mean
pressure, and other quantities have the same meaning as defined in
previous chapters. Equation (5.13b) can be solved for the value of S.
In view of the nonlinearities involved in elasto-plastic behavior,
this analysis is carried out incrementally by using the original Newton-
Raphson method described previously in this chapter. At the beginning
of any 1oad increment, stiffnesses are formulated based on the current
constitutive relationships. Equilibrium equations are then solved to
get the incremental nodal displacements, and hence the incremental
strains at each integration point. Computed strains are assumed to be
correct, and the corresponding 'correct' stresses are computed by
dividing the incremental strains into subincrements as described in the
foregoing section. These stresses and displacements are then updated,
and the unbalanced load vector is computed. Subsequent jterations are
performed in a similar manner to reach an acceptable level of conver-
gence. After the specified number of iterations are performed, next
increment of loading is applied. For this increment, the load vector is

taken as the vector sum of external incremental load, and whatever the
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unbalanced load at the previous step. Numerical results obtained by
using the above scheme in two- and three-dimensional analysis are given

in Chapters 8 and 9.

5.6. Critical State Model: Implementation in Two- and Three-Dimensional

Analysis

In this model;‘there are two yield surfaces, namely the failure or
the critical state line, and the expanding yield cap. Theoretical
details of this model are given in Chapter 4. The material behaves
e]astic&]]y when fhe state of stress lies within the yield surface.

When the state of stress goes outside the current yield cap (surface),
the material undergoes elasto-plastic deformations. In this process the
material hardens until the state of stress falls on a new yield or
hardening cap.

There are not many applications of the critical state model in
conjunction with finite element analysis, and most of these applications

were restricted to two-dimensional plane strain idealizations.

Previous Work

-

A plane strain finite element analysis of a footing problem has
béen reported by Simpson [75] by using the critical state model. Here,
constant strain triangular elements were employed. The elasto-plastic
constitutive matrix, [Cepﬂ,:waS"used for computing incremental strains,
de, and incremental stresses, do, for each load increment. Then the
stresses and strains were updafed before going to the next increment.

However, success of this method depends on increment size of the load.
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An axisymmetric triaxjal specimen, and a plane strain footing
problem were analysed by Zienkiewicz and Naylor [57,91] by using the
critical state model in conjunction with finite e]emeht procedure. lThey
have used the 'initial stress' approach in the analysis. However, no
mention was made regarding a convergence criterion required to satisfy
the equilibrium condition. This type of analysis may require a larger
number of iterations in view of the nonlinearity described by the
critical state model. The initial stress method may not be appropriate
when the plastic deformations are much higher than elastic deformations.
This is evideﬁt from the fact, that the abp]ications have been limited
to study the load-deformation behavior at lower loads that are not close
to the failure. -

Phan [64] has reported the use of this model in a three-dimensional

analysis.

Present Study

In the current research, a constitutive relationship based on |
modified cam clay theory [68] has been implemented in two- and three-
dimensional finite element procédures. Here, attention has been given
to computational algorithms. A procedure based on original Newton-
Raphson methoa is used herein. All possible stress paths to model
loading-unloading are considered. Since there are two yield surfaces in
this model, F

.f

is used to denote the failure or critical state line
while FC is used to denote the hardening cap.
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For an incremental strain {de}, corresponding incremental stress
can be computed by using elastic constitutive re]ationéhip if the final
state of sﬁress lies within the yield surface. In the critical state
model, however, the elastic properties are functions of the current
state, and hence the behavior is nonlinear elastic within the yield
surface. Therefore, an incremental procedure has to be used even in
the elastic region to compute stress increments when strain increments
are known. If the final state of stress lies within the yield surfaces

and failure, following conditions will be satisfied:
FC({co} + {Ac}) < O : (5.14a)
and

Fe({oo} + {Ac}) <0 : | (5.14b)

where {0y} is the state of stress prior to the increment. However,
for certain strain increments, the state of stress can violate one or
both of the conditions given in Equation (5.14). In the following

section, these two possibilities are considered separately.

5.6.1. Correction of Stresses Back to the Critical State Line

In this section, the possibility of violation of Equation (5.14b) is
considered. The incremental stress computed by using elastic consti-
tutive matrix can violate the critical state condition in several ways
as shown in Figure (5.9). State of stress at the beginning of the
increment is shown by point A in Figure (5.9). After the current increment,
the point can move to B, C, D or E as shown in this Tigure. If the stress

point has followed path AE, then the material is still in the elastic
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region. Therefore, the computed stresses are correct, and the next
increment of load can be analysed. However, if the stress point goes
to B, C, or D, then the material has entered an unstabie area, and
hence the computed stresses have to be corrected. The stress paths
shown by AB, AC and AD intersect the critical state line at different
Tocations. Stress path AB intersects the critical state line directly
from the elastic region. Stress path AC intersects both the criticaf
state 1ine and the present yield cap simultaneously while the path AD
intersects the critical state Tine after going through some hardening.

For the stress paths AC and AD; there is a 'corner' at the inter-
section with the critical state line; that is, two yield surfaces
intersect. In a previous secfion on the Drucker-Prager model, it is
meniioned that the material undergoes plastic deformation while moving
on the yield surface. However, in this model, the deformation'behavior
at critical state is quite different than that of the Drucker-Prager
model although the yield surfaces Took alike. At the critical state,
it is assumedtthat the material undergoes large shear deformations at
constant hydrostatic stress, and hence the material cannot sustain any’
more loads. Therefore, it is necessary to find the fraction of incre-
mental strain which will bring the stress point right to the critical
state. After that the material aoes not carry any more stresses, and
hence there can be an unbalanced load fraction. This is redistributed
to tbe surrounding elements by using an iterative method.

The fraction of the strain increment can be easily found by

using the procedure followed in the-Drucker-Prager model. For this
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purpose, in fact, the critical state Tine can be considered as a special
case of the Drucker-Prager criterion. Critical state line can be

expressed as

ST =~ g, (5.15)
3 /3

Comparison of Drucker-Prager model, Equation (4.17), with Equation (5.15)
shows that the Drucker-Prager criterion reduces to critical stéte line

if o = M/3/3 and k = 0. Therefore, Equation (5.13) can be used to
combute the fraction S, Equation (5.5) for this model too. Once the
point of intersection is determined, it is required to check whether the
material has followed a path similar to AB or AD. Any stress path
between AB and AC has the same mathematical meaning for this purpose,

and hence the procedure followed in this research is described with

respect to pafh AB. If the value at P,, Figure (5.9), is less than or

B’
equal to P, which corresponds to the intersection of the current yield

cap with critical state line, then the stress path goes to critical

staté directly through the elastic region. However, if the value of PB

is gfeater than P; (such as PD), then material undergoes yielding through

a successive Series of hardening caps before reaching the critical

state. For such a situation, the computation of stress is different,

and will Be described in a subsequent section. The foregoing criferion

is checked at each integratioh point of the finite element descretization.
For subsequent analysis a low elastic modulus is assigned for integration

points Which are at the critical state. The foregoing procedure describes

how the stresses are corrected when the stress point goes outside the

critical state line. The corrected incremental stress corresponding to
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a given incremental strain is the fraction that brings the stress

point right on to the critical state.

5.6.2. Stress Computation During Hardening: Marching Scheme

In this section, the possibility of violation of Equation (5.14a)
is considered. The incremental stress computed by using elastic con-
stitutive matrix can move the stress point outside the current yield
surface as shown in Figure (5.10). Until the state of stress reaches
the current yield surface, the material deforms elastically. Sub-
sequently, it undergoes elasto-plastic defdrmation. The incremental
stress can be calculated by using Equation (5.5).

First step in this procedure is to check whether the incremental
stress just computed by using elastic properties moves outside the

current hardening surface. That is,
F.({oe} + {ac}) > 0 ' (5.16)

tIf FC < 0, then the material is still in the e]astic region, and hence
'no correction is needed for incremental stresses. When FC =0, a
correction is not needed. HoWever; for subsequent analysis, elasto-
plastic constitutive relations are assigned at thése integration points.
For the case given by Equation (5.16), there is a transition from elaétic
to elasto-plastic behavior.' It is assumed that the material starts
yielding at the stress corresponding to pointvC, Figure {5.10a), which

is the jntersection of stress vector AB and the current yield surface.
The fraction 'S' of the strain increment required to initiate yielding
can be computed from geometric considerations, and is given later in

this section. The correct increamental stress which corresponds to a
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given incremental strain has to be computed separately for elastic and
elasto-plastic behavior. That is

{ac} = {a0}® + {a0}P (5.17)
where the superscripts 'e' and 'ep' denote quantities that correspond to
elastic and elaste-plastic behavior, respectively. Here,

{80}® = S[C®] {ae} = [C®] {ae}® | (5.18a)
and

{ac}%P = (1-5) [C®P] {ae} = [C®P] {ac}®P (5.18b)

Computationvof {Ao}e-in Equation (5.18a) becomes straight forward once
the fract{on S is determined. However, 1in order to evaluate {Ao}eP, it
is required to divide {A}*P into subincrements. A marching scheme
forward integration) can then be used to compute {Ao}ép. It is impor-
tant to note that for each subincrement,‘the yield surface expands as
shown in Figure (5.10b). Hence, hardening parameters, PO, and void
ratio €y Equation (4.27) in Chapter 4 are updated together with the
stress increment at each subincrement of strain.
| During the forward marching scheme along subincrements, there is a
possibility that a state of stress can reach critical state. This
possibility is shown by path AB in Figure (5.9). Hence, the state of
stress after each subincrement is checked for the violation of Equation
(5.14b). If afterla subincrement of strain the state of stress goes
‘ outside the critical state line, a correction is made to scale the
stresses back to critical state 1ihe'as.described in the previous section.
The corrected stres§ increment {Ac}%P is the accumuleted quantity

over the subincrements. If the critical state is reached at an inter-
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mediate subincrement, the accumulated quantity at the critical state
is taken as the correct stress increment {Ac}®P in Equation (5.18b).
Hence, the stress increment corresponding to the given strain increment
can be computed using Equation (5.17).

The fraction 'S' in Equation (5.18) can be computed by using geo-
metric considerations. The equation of the yield surface is derived in

Chapter 4 as

Fo = q® - M*PP + M2p2 | » (5.19)
In terms of the invariants defined in Chapter 2, this can be written
as

Fc = 27JZD - M2J,J0; + M2J3 (5.20)
where Jo; is the first invariant of stress tensor corresponding to
P0 in Equation (5.19), which is the hardening parameter. The form of

the yield surface expressed in Equation (5.20) is quite useful in three-

dimensional analysis.

Evaluation of S

The fraction S of the stress increment required to initiate
yielding can be computed from geometric considerations. This fraction
of the stress increment when added to the current stresses, brings the

state of stress on to the yield surface, and hence,
FC({oo} + S {ac}) =0 (5.21a)

This leads to a quadratic equation in S as given below. Here the

overdot denotes incremental quantities.
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AS2 + BS + C =0 (5.21b)
where

A =27 Jzo + M2J%

B =54a - M2Jg,d;, + 2M2J,dy

C =27 &y - M1der + M203

a = %‘[(011 - 022)(&11 - &22) + (Gzz - 033)(&22 - C.Taa)

+ (017 - 033)(&11 - &33)] + 012512 + 623523 + 013513
and

[(011 - Ga2)? + (022 - G33)2 + (011 - G33)2] + G122

oV —

JZD -
+ Gp32 + 0132

5.6.3. Stress Computation During Hardening: Iterative Scheme

In this section, an_a1ternative procedure is described for stress
computation during hardening behavior. The algorithm developed herein
for the critical state model is based on the work of Sandler and Rubin
[72] for the cap model. The input quantities required in this procedure
o are the current stresses, current hardening parameter, PO, and the in-
cremental strains. The output quantities are the correct stresses and
the new hardening parameter.

A11 the possible stress paths described in the previous section
are considered in this iterative scheme too. The first step in this
procedure is to compute trial stresses based on elastic properties.

E E

Based on the trial stresses, quantities such as Ji and J2D can be
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computed;-here the superscript 'E' denotes elastic trial quantities.
Trial stresses can go outside the critical state line, or yield surface
or it can go into the tensile zone. Here, the tensile strength can be
any value although in the current research it is taken as zero. If
Jg goes beyond the tensile strength, the stresses are made equal to the
tensile strength, and the tensile constitutive properties are assignéd
‘at that integration point for subsequent analysis. If the state of
stress goes to the critical state directly from the elastic region,
then the procedure described in the previous section is used to correct
the stresses. In the case of expanding yield surface, the following
iterative procedure is used.

Undér]ying mathematical basis is given below prior to describing
the jterative scheme. The equation of the yie]d‘surface, Equation

(4.30), can be arranged as
' FC = VJZD - FC(Jl, \JIO) =0 (5.22)

: Where Jio is the first invarient of stress corresponding to P0 in
Equation (4.30). Using the flow rule described in Chapter 2, the incre-

mental plastic strains can be written as

L) (5.23)

g = 3,
Using Equation (5.23), the proportionality constant X can be

expressed as

A= - L (5.24)
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Hence, the deviatoric portion of the incremental plastic strain tensor

can be expressed as

p_ P 1 P
deij = deij - 3 degy 6ij (5.25a)

Substitution of Equations (5.23) and (5.24) into Equation (5.25a) lead to

P
dev sij

9815 7 - g/, (5.25b)

If the quantitieé de?j and deEk are known, then the correct states of

stresses can be expressed as

. oE P

3, = J& - 3Kde5 (5.26b)

Substituting Equation (5.25b) into Equation (5.26a), the following

relationship can be obtained.

: Gdes E
Si'(] - ) = Si. (5.27)
J 39/355 J

By squaring Equation (5.27), it is possible to write

Gde” E
APNQE —V = T (5.28)
3¢vdyp

Usingutquations (5.27) and (5.28), the deviatoric stress tensor can be

expressed as

VA -
s, =20 _ g E (5.29)
1] VUEB-E 13 .
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Now it is clear that if the value of des was known, the corregt values
of J; and'/JEE can be computed by u;ing Equations (5.26b) and (5.29).
There is an important requirement that the values of des, Ji and /UEE
have to satisfy. The value of dEC has to be consistant with the new
hardening parameter which will place J; and /UEB on a new yield surface.
In the current research, a value of Jg; is assumed, tested and refined
to satisfy the above requirement by using an 1teraf1ve procedure. New
value of Jg; is denoted by Jo; with an overbar.

Yield surface based on the critical state concept can also be

expressed as

/C]E; - -7;—7.(M2JJU_1 ~wazy /2 =00 (5.30)
By comparing Equation; (5.22) and (5.30),
_ -I ) - 212 1/2 . . .
FC = 757—(M Jidgy - M ql) : (5.31)
Hence, the gradient of Fé wifh respect to J; ;anﬁbe expressed as
2

0[1: - 2d;) : (5.32)
Cc

2%

g:

The plastic volumetric strain corresponding to the new hardening param-
eter Jo; can be expressed as |

dep = Qo (A

v Tor - K) | (5.33)

Cc

The iterative scheme used herein is given below.

Step 1: ‘Assume dJo: and compute Jo; as Joi = Jo1 + dJoa
Step 2: Compute des from Equation (5.33). Hence compute J; using

Equation (5.26b)
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Steé 3: Compute g from Equation (5.32). Also, compute /555 by
using Equation (5.30).

Step 4: This value of /355, if correct, will be equal to that is
given in Equation (5.28). This is done by defining a |

factor as ¢ as follows:

VJ - a
p = —20 (5.34)
JZD + a
where dep
_ . v
a = /JZD G 3g

If the value of Q is Tess than a specified smaller value,

the value of /355 and J; are assumed to be correct.

Otherwise, a new value of dJoy is assumed and procedure is .
repeated.

A criferion was used in selecting a value for ddo;. Initial value
was se]ected as Joi1/N where N is the maximum number of iterations. For
each iteration the value of dJo; is increased by Jq:i/N until convergence
~is reached. For certain assumed values of dJy;, it may be poésible that
the quantity (M?JiJoy - M?J%) is negative. This will lead to an imaginary
value for /355 in Equation (5.30). In this event, next iteration is
performed with a higher value for dJg,

Although, the iterative scheme is an alternative to the marching
scheme described in the previous section, its_relative merit will depend
on how fast the convergence and its performance in the solution of
boundary value problems. A comparison of these two schemes is given

in Chapter 8, Verifications. In the current research, however, the
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marching scheme is used since further research is needed to verify the
merits of iterative technique proposed in the forgoing section as an

alternative.

5.6.4. Stress Computation During Unloading

In the foregoing section, computational procedures for correcting
stresses during yielding were described. Subsequent to yielding or
“reaching a critical state, it is possible that the state of stress can
go into the elastic region. This type of behavior is called "unloading"
in this section. Some of the possible paths for unloading are shown in
Figure (5.11). Unloading can be detected when the stresses have been
computed. If unloading is detected, however, the computed.stress
increments, called as trial stress increments, are assumed to be correct,
and the unloading constitutive parameters are assigned at those integra-
tion points for subsequent analysis. In view of the above assumption,
there may be a slight error in the stresses since unloading properties
were not used within this increment. However, in subsequent equilibrium
iterations, this error gets corrected.

Instead of the above procedure, it is possible to correct the
stresses immediately after detecting qn]oading conditions. Unloading
stiffness is usually much greater than the elasto-plastic stiffness, and
hence incremental strains computed by this procedure can be smalier than
true values. The best scheme will be to re-solve the particular step
which can be quite expensive. Since the transition to unloading occurs

only at few integration points, the procedure used herein is adequate.
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. *
p(=d:1/3)
(a) Possible Stress Paths After Reaching Failure
P
p(=d,/3)

(b) Possible Stress Paths After Reaching a Yield Surface

Figure 5.11 Possible Stress Paths From an Existing Plastic State
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5.7. Cap Model: Implementation in Two- and Three-Dimensional Analysis

Details of the mathematical aspects of the cap model are given in
Chapter 4, and only the computational algorithms used in implementing
this model are given here. This model has been used often in ground
motion predictions due to ground.shock effects [2]. Computationally,
cap model is similar to the critical state model except for the differ-
ences in functional forms for the yield caps and failure envelopes.
Therefore, computional procedures described for critical state model
are applicable here too, and will not be repeated. However, there are
few differences in certain aspects of this model, and only those
differences are described here.

From the point of view of computational algorithms, there is one
conceptual difference between these two models regarding the motion of
cap at failure or critical state. In the critical state model, the
position of the cap is a function of the maximum past pressure, Po,
Figure (4.75) and Equation (4.30), while in the cap model the position of
the cap is determined from the plastic volumetric strain, Figure (4.11)
and Equation (4.34). After reaching the critical stafe line, there will
not be any voiumetric plastic deformations and_hence the hardening param-
eters will not change at the critical state. However, in the cap model
the incremental plastic strain vector is normal to the failure enve]oe,
and hence, there will be plastic volumetric deformations. As in the
Drucker-Prager model, Figure (4.4), these plastic.strains tend to

reduce the compresive plastic volumetric strains.
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Since the movement of the cap is controlled by the increase or
decrease of the plastic volumetric strains, the cap can expand or con-
tract in this model [24,71]. This situation is shown in Figure (5.12)
where the state of stress moves from A to B. Cap can expand when the
state of stress moves from A to C as shown in this figure. The incre-
mental plastic strain is normal to the failure envelop at point B,
and it has a negative component in the J;-direction. Hence, the plastic
volumetric strains get réduced, causing a contraction of the cap.

This situation will confinue until point B becomes a corner between
failure surface and yieid cap. This aspect is taken into account in
the implementation of the cap model. A detailed algorithm for cap model
is given in reference [72] for two-dimensional analysis, and used here
for plane-strain énd axi-symmetric idealizations. This procedure is
modified and imp1emented in three-dimensional computer code developed

in this research.

5.8. Convergence Criterion

Convergence criterion used for equilibrium can be based either on
a norm of the incremental displacements or a norm of the residual forces.
In the current research, norm of the displacement changes is used as

the convergence criterion, and is defined as,
- T 2
Il{Aqi}II y = ({8a5} {aq;d) (5.35a)

Here, the subscript 'N' denotes the iteration number. In the current
~ research, convergence is assumed at 'N'th iteration if ]|Aq1.||N is less
then 10.0 percent of IIAquI corresponding to zeroth iteration. That

is,
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Figure 5.12 Computational Procedure for Contraction of the Cap Shaped Yield Surface
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N ,
| [aa, ]| : ‘
< 0.10 (5.35b)

|laa: [} | ’ "
o

5.9 Initial Conditions For Nonlinear Analysis

Since the constitutive relations are stress dependent, initial
state of stress plays an important role in the nonlinear analysis. In
the two- and three-dimensional procedures developed herein, initial
stresses can be either specified by the user or can be computed by
using the program(s). Corresponding hardening parameters are computed
on the basis of initial stresses, and used fn the subsequent incremental

analysis.

5.10 Solution Techniques

Finite element ana]ysié of a problem at each load increment/
iteration finally reduces to solving a set of simultaneous equations.
In the current.research, the global stiffness matrix is symmetric,
and hence only the upper or lower half of the coefficients need to be
stored. There are several methods for solving a linear set of equations:
(2auss, Jordon, and Cholesky elimination procedures. A detailed descrip-
tion of these methods is available in reference [32]. In the current
research, the linear equations are solved by using the Gaussian elimin-
ation technique. In the current research, three different procedures,
namely, Band solution technique, Frontal solution technique, and

Skyline solution technique are employed.

5.10.1. Equation Solver in One-Dimensional Finite Element Code

A band-solution (BANSOL) technique is used in the one-dimensional
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finite element procedure developed herein. Band solution technique
is commonly used in many finite element computer programs.. Details of

this can be found in references [15,89].

5.10.2, - Equation Solver in Two-Dimensional Finite Element Code

In the two-dimensional idealization, Frontal solution technique
developed by Irons [44] is used as the equation solver. Frontal
solution technique is one of the techniques for solving equations
specially in the context of finite element method. This solution
procedure is similar to Gaussian elimination, but it takes advantage
of some mathematical properties of the global stiffness coefficients.
‘The underlying idea of this technique is given below.

In>genera], a set of simultaneous equations can be written as,
(ki3] fa5) = €07 . (5.36)

where [k] represents coefficient matrix, {q} is the vector of unknown
(displacements) {Q} is the load vector. After elimination of variable

number 'p', the modified coefficient can be written as

ke k.-
Keo = ke, - (—R—P1y - (5.37a)
1] iJ k .
Pp-
and

* k1' Q '
Q. =Q, - 2P (5.37b)
i i kpp

Here kpp does not represent any tensor summation; it represents the
coefficient of 'p'th degree of freedom. If certain changes are made
to coefficients‘kij without changing corresponding row and column of

variable 'p', it can be observed that exactly same changes are reflected



150

in modified coefficients k:j too. Therefore, when there are no changes
~in the column and row of 'p'th variable, the modified coefficients k:j
will not be affected even if the thanges are made after the reduction

(or elimination) of that variable. In fact, this is general enough that
any equation number 'S', can be eliminated without causing any dif-
ference aé long as coefficients.of the row 'S' and column 'S' do not
change subsequently. This property of a set of simultaneous equations
has been used in tﬁe development of Frontal solution technique.

In fhe context of finite element method, there is a specific
meining to any coefficient of the stiffness matrix with respect to the
corresponding degrge-of-freedom. For instance, kpp of the stiffness
matrix [K] means the stiffness coefficient of the 'p'th degree-of-
freedom. During the assembly process of element stiffness to form the
global stiffness, contributions to a certain degree-of-freedom from each
element get accumulated. However, if there are no more additions to a
certain degree-of-freedom, then there will not be any changes in the row
or column of that degree-of-freedom in the giobal stiffness matrix.
Therefore, this variable can be eliminated even though assembly may not
be complete. In the Frontal solution technique, any degree-of-freedom
is eliminated from simultaneous equations when it appears for the last
time in the assembly process. The equation éorresponding to this
degree-of-freedom, can then be stored in back-up storage (tape, disk,

etc.) thereby creating space in the incore storage. A subroutine

available in reference [43] is adopted in the current research.
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5.10.3. Equation Solver Used in Three-Dimensional Analysis

Unlike one- and two-dimensional analysis, the matricés involved
in three-dimensional analysis are much larger in size. Furthermore,
numbering of nodal points to obtain a minimum bandwidth in a compli-
cated three-dimensional problem is a difficult task. In the solution
of large system of equations, use of backup storage is computationally
inefficient, and hence incore solutions are preferable. In order to
make use of available incore storage of the computing machine efficiently,
a compacted storage scheme called "Skyline technique" has been developed
by Bathe et al., [3,5] for storing the global stiffness matrix. In
~this technique, only the coefficients below thé "skyline" are stored as
shown in Figufe (?.13). Zero coefficients within the skyline may become
nonzero elements during Gauss elimination process. Detailed description ~
of this technique is availabe in references [3,4,5]. In the three-
dimeﬁsional program developed in the current research, solution routine

based on the skyline technique is adopted.

'5.11. Efficient Implementation

\

In order to make the programs more efficient, most vectors and
matrices are sfored as one-dimensional arrays using the technique of
dynamic dimensioning. This is done for the one-, two- and three-
dimensional finite element codes developed herein. This not only
makes the computations more efficient, but also makes it possible to
change the program capacity with a change in only one DIMENSION state-
ment. Required pointers to identify locations in the one dimensional

array'are set-up in a Subroutine, and stored in a COMMON Block.
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Chapter 6

INTERFACE MODELLING IN SOIL-STRUCTURE INTERACTION

6.1. Introduction

In almost all solid mechanics problems there exist situations of
interaction between two or/mdre deformable bodies that come in contact
with each other. In geomechanics, there are many problems in which
interaction between dissimilar media exist, e.g., soil-structure
interaction. In fact, the interaction between the bodies govern the
mechanism of load transfer to the supporting foundation. Therefore,
the characteristics of the contacts play an important role on the
behavior of the system. However, contact problems in solid mechanics
are difficult to handle in view of conceptual and mathematical diffi-
culties. - Furthermore, these problems are non]inéar since the contact
surfaces between the bodies and the boundary conditions at the contact
are not known in advance.

Some of the classical contact problems such as Hertzian, and
Sigroni types [48] that have been solved are restricted for bodies with
elastic properties and simple geometry. ‘An important class of contact
probiems in solid mechanics,havé been analyzed by Kikuchi and Oden [48]
by using variatioﬁa] inequa]itieé; this reference presents a very good
review of the history of contact problems. In most of the real problems
encountered in geomechanics, material behavior is highly nonlinear, and
the geometry is complicated. Therefore, application of mathematical
theories developed in classical contact problems can become extremely

difficult. However, the problem of soil-structure interaction can be

153
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handled in a somewhat different way by using numerical procedures such
as the finite element method.

In the application of the finite element method to problems in
solid mechanics, it is assumed that the body under consideration is
continuous. This can happen only when there is perfect bonding between
dissimilar materials during the loading history.

There are many problems in structural and geomechanics where
perfect bonding between dissimilai media is not maintained throughout
the loading. In these cases, the interface behavior between the dis-
similar media plays an important role. Some examples of this type
include the interaction between the reinforcement (éteel) and the

surrounding concrete, retaining walls, and piles in geologic media.

Statement of Problem

A schematic model describing soil-structure interaction is shown
in Figure (6.1). Dufing the loading history, a point in the structure
can deform differently than the adjacent point in soil causing relative
slip. Furthermore, certain portions of the interface can open up
causing gaps, or existing gaps can close up during deformations. This
interaction behavior is the fundamental mechanism how loads are trans-
ferred from structure to soil and vice versa. Hence, these modes of
deformation play an important role in development of a model for
soil-structure interaction.

Two typical probliems, a laterally loaded pile and a beam on a
deformable foundation are shown in Figure (6.2) in order to show the

interaction behavior. Figure (6.2a) shows the possibility of opening
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Body 1 (Structure)

R

Body 2 (Soil)

(a) Soil-Stucture System Before Deformations

Py

Body 1 (Structure)

Gap ' Interface
Body 2 (Soil)

(b) Soil-Structure System After Deformations

Figure 6.1 Schematic Model For Soil-Structure Interaction
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(a) Interaction in a Laterally Loaded Pile

P

|

m” Gladaada Lo s s i an o Rce o s, .'_]! Tl e

Undeformed Shape

Deformed ‘Shape
(b) Beam-on-Deformable Foundation

Figure 6.2 Typical Soil-Structure Interaction Problems

in Geomechanics
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up a gap during deformations. This is a truly three-dimensional
problem. The deformation behavior of the structure-foundation system
depends on the characteristics of the interfaces. Figure (6.2b) shows a
one-dimensional problem, which is a beam on a deformable foundatioh.
Dﬁring deformations the beam can move above the surface level causing
gaps; this can significantly change how the beam interacté with the
foundation. There can be several interaction problems which can be
idealized as two-dimensional, such as strip footings, dams, retaining
walls, track support structures, underground tunnels, and so on. Hence,
a generalized procedure for interaction analysis must consider applica-
tions in all -three idealizations. This study addresses the procedures
for interaction analysis in one-, two- and three-dimensional problems,

Chapters 3, 4, and 5.

6.2. Review of Interface Models

In the finite eiement procedures, interaction behavior is often
~modelled by using a special element which can account for relative mdvé-
ments between dissimilar media. Interface elements used in the past can
‘be classified in two categories. fhese are, compatible interface
elements and equilibrium interface e]ements. |

The idea of a compatible interface e]ementkwaé first introduced by
Goodman et al. [38] in modelling the rock joint behavior; this can be
treated as a generalization of the model used by Ngo et al. [61] for
joints and cracks in concrete. In the th-dimensional analysis of rock
masses, they used a 1ine interface or joint element which permitted

relative displacements between adjacent elements, Figure (6.3). Since
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(a) Interface Element
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(b) Top and Bottom Surfaces of Interface

Figure 6.3 Interface Element with Zerc Thickness
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the element is assumed to have zero thickness, the node pairs (1, 4) and
(2, 3) have the same initial coordinates. The energy stored in this
element is assumed to be due to the relative displacements between top

and bottom surfaces. Relative disp]acements are defined as
U, = U: = U » (6.1)

Here, u? is the relative displacement, and QI and u? are the displace-

ments of two points (which had same coordinates originally) on the top
and the bottom surfaces of the interface element, respectively. The
constitutive behavior of the element is characterized by the material
property matrix which expresses the joint stiffness per unit length in

the normal and tangential directions. This can be written as

k, = . | (6.2)

where ks is the shearing stiffness, and kn is the normal stiffness of
the interface element. These parameters have to be determined experi-
mentally. The potential energy of this element was expressed as [38]

L/2 T ‘
oz, ke (6.3)

| —

where {qr} is the relative displacement vector, and L is the length of
the element. Element stiffness based on the above potential energy
functional has been derived in reference [38]. Some applications of

this interface element are reported in references [10,37,50]. 1In

three-dimensional analysis, the interface element based on the above
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concept has a two-dimensional configuration since the thickness is
assumed to be zero. Extension of this element to three-dimensional
analysis has been reported by Desai and Appel [16], Mahtab and
Goodman [52], and Phan [64].

There are some 1im1tafions of Goodman's interface element in
modelling soil-structure interaction. With this interface, a block of
solid elements can penetrate into the adjacent elements violating the
kinematic considerations. Furthermore, openihg and closing of géps can-
not be modelled. Zienkiewicz et al. [92] proposed an interface element
assuming uniform strain in the thickness direction. Here, the interface
stiffness was derived bqséd on the nodal displacement vector. This
element may give rise to i11-conditioning when gaps occur at the inter-
face. Furthermore, it can produce erratic results due to the ill-
conditioning which can generate‘very large off-diagona] coefficients or
very small diagonal terms in the stiffness matrix for certain cases.

Ghaboussi et al. [36] have proposed and used a somewhat different
interface element which uses relative displacements as the degree-of-
freedom; hoWever, conceptually it is similar to the Goodman approach.
Derivation of stiffness for plane strain and axisymmetric conditions are
given in reference [36]. Wilson [85] has illustrated the numerical
problems which may develop when absolute displacements are used as
~ independent degree-of-freedom. He has suggested a slightly different
interface element as given in reference [36]. Review of various appli-

cations of interface elements is presented in references [10,37].
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Modes of Deformation

There are three basic modes of deformations at an interface:
Non-slip, slip, separation and closing. All the interface elements
described above fall into one category, that is compatib]e.type, and
separation mode cannot be handled by using this type of element. An
interface element based on equiiibrium considerations has been proposed
and used by Katona et al. [46]. This model seems to be capable of
handling separation modes at the interfaces. However, its implementa-
tion in a finite element procedure can be more difficult. It also
requires several iterations for checking the proper mode of interac-
tion, and to obtain equilibrium conditions, and question of appropriate
interface constitutive parameters still remains.

Hermann [40] has proposed an algorithm for implementation of an
interface element for two-dimensional configurations. It can consider
no-slip, slip and separation modes. In this model the idea of "bond
spring” has been used to model the interacticn behavior. Here, relative
slippage or separation does not occur until attainable bond stress has
been fully mobilized. However, there can be relative displacements
prior to bond failure depending upon the bond spring stiffness. For
very large spring stiffness values, the relative movement can be very

small. When the maximum bond stress, T___, is-.reached, slippage is

max
resisted by the stress applied as loads at the interface surface. Imple-
mentation of this model seems to be difficult in view of the complexity -

in establishing the modes of deformation.
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Recently Pande et al. [63] used an 8-node quadratic interface
element for two-dimensional analysis based on the isoparametric element
concept. They have studied the problems of numerical ill-conditioning
due to use of very thin elements, that is, large aspect ratios. Further-
more, they have investigated relative merits of conventional isopara-
metric elements and isoparametric pérabo]ic elements based on commonly
used approach of relative displacements. They have concluded that the
differences in the results obtained from these two elements were insigni-

ficant up to a large aspect ratio of the element, i.e., 50,000.

6.3. Interface Element Used in Current Research

The concept of using a "thin" regular element to simulate an
interface has been a topic of discussion [13,49] in the geome&hanics
program at Virgihia’Tech. Since all existing interface elements allow
for "large" relative displacements while retaining continuity, it may
be appropriate to consider and investigate a thin regular element to
simulate the junction of interface. The interface element used herein
is based on the previous concept, and is in some respects similar to
the proposal of’Pande and Sharma [63]. Ih their wofk, interface element
was taken as a very thin isoparametfic element, and its cbnstitutive
matrix w&s similar to a solid element with different properties. For
higher—order elements, mid-side nodes along the thickness have been
retdihed in-order to obtain a linear strain variation. In the current
research, the interface constitutive relationship is modified to
account for slip behavior by introducing an independent.shear modulus.

This idea is also extended for a three-dimensional interface element.
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The thickness of the interface element is arbitrarily taken as a
very small value. As the interface element is based on the isopara-
metric element concept, its nodal connectivity can be similar to any
other solid element. However, the thickness and the constitutive
properties are different from solid elements. Interface elements avail-
able in two- and three-dimensional coimputer codes developed herein are
shown in Figure (6.4). The suggested constitutive relationship for the

two-dimensional interface element is given below.

o

EQQ - v) Ev
(T +vj(1 - 2v) (1 +v)(1 - 2v)

l—_c"“t] - (6.4)

E(1 - v)
sym T F V(T = 29) ¢
L Ging_
where Gint is the shear modulus for the interface element. This value

may not be consistant with the relationships with E and v given in
Chapter 2. Value of Gint has to be determined from laboratory
experiments.

Procedure for evaluating Gint
behavior between two dissimilar materials can be simulated in the

is shown in Figure (6.5). The shear

laboratory by a direct shear tests. A Tinear relationship between the
shear force, Ps’ and lateral displacement, u, is assumed as shown in
Figure (6.5a). The change in the right angle, Figure (6.5b), during

shear can be expressed as

6 < Au/t . - (6.5)

where t is the assumed thickness for the interface element. Hence
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4-Node Interface Element 8-Node Interface Element

(a) Interface Elements in Two-Dimensional Analysis

8-Node Interface Element 20-Node Interface Element
(b) Interface Elements in Three-Dimensional Analysis

Figure 6.4 Interface Elements for Two- and Three-Dimensional

Analysis
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(a) Shear Test at the Interface

Au

1

2]

(b) Deformations at the Interface

Figure 6.5 Load-Deformation Behavior at an Interface
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PS/A Ps «+ t

Gint = Au/t Y Y (6.6)

where A is the area of the interface. This idea is extended to the
three-dimensional analysis, and the constitutive matrix for the inter-

face element is taken as

_E; C C. 0 0 0 ]
C G Cz 0 0 0
Einﬂ i C2 Ca C: 0 0 0 (6.7)
0o 0 0 Gint 0 0
0 0 0 0 Gine 0
ll 0 0 0 0 GiﬂE_

where

C. = E(1 - V)
PR+ 00 - 2v)

C, = Ev
27+ - 2v)
and G, . is the shear modulus determined experimentally for the inter-

int
face element since values of E and v do not have much influence on the

s1ip behavior at the interface, these can be taken as average properties
of the adjacent solid elements. This idea is consistant with the assump-
tion that the normal stiffness of an interface should be dependent upon
the characteristics of the adjoining elements [14].

Success of the ébove elements in soil-structure interaction
analysis has to be determined from future research. Further modifica-

tions may be required to improve its capabilities, and in determining
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parameters for the normal mode of deformation. Like in many previously
used interface elements, modelling of separation mode may be difficult
at the current stage. However, possibilities exist for improvements
since tensile condition can be checked at each integration point in the
current element. One definite advantage is the ease with which it can
be implemented in any existing finite element procedure. Some

applications of these interface elements are given in Chapters 8 and 9.



Chapter 7
CONSTITUTIVE MODELLING FOR NONLINEAR ANALYSIS

7.1. General

Details of advan;ed constitutive models used in this study‘aré
describéd in Chapter 4, and computationa1.a1gqrithms used in 1mpiément—
ing these mode]s are described in Chapter 5. It hasﬁbeeh realized
that, constitutive modef]ing is an important 1ngredient'of a‘non1inear
éna]ysis. A sophisticated nonlinear analysis can be meaningless unless
the material nbn]inearity is properly modelled. The constitutive char-
acterization has to be done by conducting appropriate laboratory experi-
ments on the materials. Hence, the purpose of this chapter is to
describe procedure for constitutive modelling with respect to some
laboratory experimental work conducted in this study.

The material used in the study is a granular material (sand)
obtained from an UMTA test section at the Transportation Test Center,
Pueblo, Colorado. Physical properties and compacticn characteristics of
this material has been reported in references [45,23]. A part of the
details of a comprehensive series of laboratory tests for the sand, and
derivation of constitutive model are included in this chapter. A
general description and philosophy of determination of constitutive
parameters is available in reference [21].

Laboratory tests with the truly triaxial device for constitutive
models of other materials such as wood, baliast and suballast, and

| laboratory tests with the dynamic multi-degree-of-freadom shear device
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for interfaces between different components in UMTA test section have

been described in reference [45].

Test Details of Sand

A1l the tests reported herein were conducted by using a truly
~triaxial or multiaxial device [79,80]. This device is shown in Appendix
E. A water content of 9.0% was used based on the results reported 1in
reference [45]. Since at low degrees of saturation the development of
excess pore pressure is prevented, all tests conducted herein are
classified as fu]]y drained. The density of test samples varied from
1.86 gm/cm® to 2.08 gm/cm® with an average value of 1.99 gm/cm?®.

The samples were prepared in three layers by tamping. The procedure
for sample preparation was similar to that used by Mould [55]. Various
stress paths and their abbreviations used in the testing program are
shown fn Figure (7.1). These include Hydrostatic or Isotropic Compres-
sion (HC), Conventional Triaxial Compression (CTC), Conventional Triaxial
Extension (CTE), Reduced Triaxial Compression (RTC), Reduced Triaxial
Extension (RTE), Triaxial Compression (TC), Triaxial Extension (TE), and

Simple Shear (SS) stress paths.

7.2. Test Results

The experimental observations on the behavior of the sand are
described in this section. Figures (7.2a, b) present hydrostatic compres-
sion curves for the sand used in this study. The initial density of the
material was 1.86 gm/cm®. The normal strains in z-direction, €, is |
lower than the normal strains in other two directions. This may be due

to the fact that the sample was compacted in the z-direction.
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\ Octahedral Plane
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(a) Principal Stress Space
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RTC CTE

RTE TE

v202

(b) Projections of Stress Paths on Triaxial Plane

Figure 7.1 Commonly Used Stress Paths
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The mean pressure-volumetric relationship obtained from the
hydrostatic test is shown in Figure (7.2b). The loading curve tends to
bend upwards "‘as the mean pressure increases, and this shows evidence of
hardening behavior.

In the Conventional Triaxial Compression (CTC) test, o1 was
increased while keeping o, and o3 constant. The sample was initially
loaded to a hydrostatic (isotropic) pressure of 20.0 psi (138.0 kN/m?),
and then a CTC stress path was followed. Figure (7.3a) shows the
observed relationship between Octahedral shear stress and the normal

strains. Octahedral shear stress (t versus Octahedral shear strain

oct) ,
) relationship is shown in Figure (7.3b). The shear modulus can be

(Yoct

‘determined by considering the unloading-relcading behavior shown in this
figure. The initial density of the sample was 1.89 gm/cm®. The
ultimate strength for this test reached at about 9.0% stfain.

The Simple Shear (SS) test was conducted by increasing o, and
decreasing o; by the same amount from an initial hydrostatic state of
stress while o, was held constant. This stress path is in a Octahedral
plane. The sample was initially loaded to a hydrostatic stress of 20
psi (138 kN/m2). Figure (7.4) shows the observed relationships between
Octahedral shear stress and the normal strains. The normal strain in
the y-direction, €y is only about 1.0% even at ultimate states. The
normal strain, €, at the ultimate conditions is about 7.0% while €y is
about 6.0%. The difference between loading and unloading-reloading
behavior is clearly seen in this test too.

Triaxial Compression (TC) test was conducted by increasing oi, and

decreasing both o, and o; by equal amounts such that the total mean
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pressure, Ji1/3, remained constant. This stress path is in an Octahedral
b]ane.

The sample was initially loaded to a hydrostatic (isotropic)
pressure of 25.0 psi (172.5 kN/m?). The initial density of the sample
was 2.03 gm/cm®. Figure (7.5) shows the observed relationships between
Octahedral shear stress and normal strains. The normal strain, €, at
the ultimate conditions is about 8.0%.

The Triaxial Extension (TE) was conducted by decreasing oi, and
increasing both o, and o3 by equal amounts such that the total mean
pressure, Ji1/3, remained constant; as a result this stress path also
lies on an,Oc;ahedra] plane. The sample was initially loaded to a
hydrostatic stress of 20 psi (138.0 kN/m?). The initial density was
2.04 gm/cm®.

Figure (7.6) shows the observed relationships between Octahedral
shear stress and normal strains from a TE test. The nbrma] strains €y
and ey at ultimate conditions is about 6.0%.

-In Reduced Triaxial Compression (RTC) test o, was held constant
while o, and o3 were reduced in equal amounts. Hence, the value of J;
decreased along this stress path. Figure (7.7) shows the observed rela-
tionship between Octahedral shear stress and normal strains from a RTC
test. The initial density of the sample was 2.01 gm/cm®. Sample was
initially loaded to a hydrostatic (isotropic) pressure of 20.0 psi (138.0
kN/m?). This produced a well-defined ultimate state at a relatively
small strains for the sand.

In Conventional Triaxial Extension (CTE) test, o) and o, were

increased in equal amounts while keeping os; constant. Figure (7.8)
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shows the observed variation of Toct with the normal strains in a CTE
test. The initial density of the sample was 2.02 gm/cm®, and the
initial hydrostatic pressure was 20.0 psi (138.0 kN/m2). An ultimate

state was reached at a relatively small strain of about 2.0%.

7.3. Analysis of Data and Determination of Parameters

Thislsection;describes the constitutfve parameters for the sand
determined from the foregoing 1aboratory’tests. Here, the sand is
modelled by using the critical state concept described earlier in
Chapter 4. The void ratio, e - log p relationship obtained from hydro-
static test data, Figure (7.2), is shown in Figure (7.9). From this
figure, the values of Ae and « can be determined.

In the previous section, only typical experimental data on this
sand is included. Some experimental data on the same sand is available
in reference [45]. The critical'state parameter, M, can be determined
. by plotting ultimate states observed in individual tests as shown in
Figure (7.10). The elastic properties for the material can be obtained
by considering unloading-reloading behavior of the sand.

The Constitutive parameters for the sand are stated below.

E = 12,000 psi (82800.0 kN/m?)
v = 0.28 |

M=1.24

Ao T 0.014

k = 0.0024

g = 0.270
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These properties can be used with the critical state model in
characterizing the sand under consideration, as expressed in Equations

(4.27 and 4.30).



'Chapter 8
VERIFICATIONS OF ONE-, TWO-, AND THREE-DIMENSIONAL
FORMULATIONS AND CODES

Theoretical formulations df'oné-, two- and three-dimensional
finite é]ement idealizations, details of cdnstitutfve relationships,
computational algorithms for nonlinear analysis and solution techniques
are discussed in Chapters 3, 4, 5 and 6, respectively. Three finite
element computer codes are developed for the above three idealizations
which can handle general non1inear geomechanics problems including soil-
structure interaction. In order to verify the accuracy of the computer
codes, several problems are solved, and results are compared with
previous applications or closed-form solutions wherever applicable.
Certain plane strain problems are solved using both the two-dimensional
and three-dimensional codes. Plane strain conditions are simulated in
three-dimensional code by constraining nodal displacements normal to
the plane. These results are given in Chapter 9. These computer codes
have several capabilities, and these are described in a separate report
[761. | |

The structures of the three programs are designed in such a manner
that modifications or additions to any aspect can easily be implemented.
In fact, the subroutine names, variable names, etc., have been kept, as

much as possible the same in all the three codes.

8.1. Beam-on-Elastic Foundation with One-Dimensional Code

Problem of a beam-on-elastic foundation is solvad by using the

one-dimensional code, described in Chapter 3. This problem can also
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be solved in a closed-form manner by using the theory of beams-on-
elastic foundations [41].
The following properties are used for the example problem shown in

Figure (8.1).

Cross sectional area of the beam = 13.35 in? (86.12 cm?)

Second moment of area, I = 94.9 in* (3950. cm*)

E =30 x 10% psi (20.67 x 107 kN/m?)

v = 0.35

Subgrade reaction, ks = 2,000 1b/in? (13.78 x 103 kN/m?)

It is assumed that the continuous foundation can be replaced by a
series of elastic supports. The spacing of the elastic supports is
taken as 20 inches (50 cm), Figure (8.1). The infinite beam is descri-
tized by using 25 elements with a Tength of 500 in (1250 cm). The end
boundaries are assumed to be fixed at approximately half the wave-
length [41] of the deflection curve, away from the point load; the wave-
length is defined as equal to w/\ where A is the characteristic length
of the beam.

Finite element results, Figure (8.1), compare very welT with the
closed-form solution given in reference [41]. The approximation
achieved by replacing a continuous elastic support by separate ones
gives good results. However, there is a Timitation on the support

spacing, a, [41], which should satisfy the following requirement:

—
a <™ mEl

i 3 (7.1)
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where C is the stiffness of the support, and EI indicates the flexural

rigidity of the beam.

8.2. Pure Beam Bending Problem with Two-Dimensional Code

The probiem of pure bending, Figure (8.2), has been modelled
assuming plane stress conditions. Since the problem is symmetric, and
antisymmetric in y- and x-axes, respectively, only one fourth of the
beam is déséritized. This problem has been solved by Desai and Abel
[15] by using quadrilateral finite elements composed of four constant

strain triangles. Material properties used in the analysis are

E = 30 x 10°% psi (20.69 x 10° N/cm?)

v =0.3

Thickness = 1.0 inch (2.54 cm)

The coordinates and the surface loadings are shown in Figure (8.2).‘
Table 8.1 gives a comparison beﬁween the results of the present analysis
by using 8-node elements, and those obtained by Desai and Abel [15].

The correlation between the results of the present analysis and the
closed-form solution is considered to be highly satisfactory. It also
indicates that the 8-node quadrilateral yields improved accuracy

compared to that by the 4-node quadrilateral.

8.3. Variable Moduli Model: Two-,-and Three-Dimensional Analysis

Behavior of a conventional triaxial specimen is analyzed by using
variable moduli model, Equation (4.7), in two- and three-dimensional
idealizations. A case of cylindrical (axisymmetric) specimen, Figure

(8.3a), is analyzed by using the two-dimensional code, while a truly
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Table 8.1

Comparison of Displacements

Displacement at Point A

(inches)
u(x 107%) v(x 107%)
Exact 1.5000 -1.2750
Desai & Abel: 4-node
(25 nodes, 16 elements) 1.4552 -1.2399
Present code: 8-node
(65 nodes, 16 elements) 1.5001 -1.2749
Displacement at Point B
(inches)
u(x 107%) v(x 107%)
Exact 0.3750 -0.31875
Desai & Abel
(25 nodes, 16 elements) 0.3679 -0.3123
Present code
(65 nodes, 16 elements) 0.3750 -0.3186



192

(a) Cylindrical Triaxial Specimen

Surface Load /Surface Load

a—t—Surface Load

(b) Truly Triaxial Specimen

Figure 8.3 Simulation of Triaxial Test Specimens
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triaxial specimen, Figure (8.3b), is simulated by using the three-
dimensional code. Figure (8.3) shows the finite element meshes
containing only one element, and the boundary conditions.

The following properties are used.
K= Kg + K]_EV + Kzﬁs (7.2&)

Go + v1p + Yz//jga (7.2b)

[ep]
]

Eo = 1200 psi (8268.0 kN/m?)

ve = 0.30

Ko = 1000 psi (6890.0 kN/m?)

Go = 462 psi (3183.2 kN/m?)

Ky = -10° psi (-6.89 x 10° kN/m?)

K. = 4 x 10°% psi (27.56 x 10° kN/m?)
y1 = 60.0

Y2 = -133.0

Conventional triaxial compression (CTC) stress paths are simulated
for two confining pressures. One iteration per increment is used in the
analysis. Finite element prédictions are compared with cibsed?form
results in Figure (8.4). Predictions from both the two- and three-
dimensional codes compare very well with the closed-form solution given

by Nelson and Baron [60], Equations (4.9) and (4.11).

8.4. Drucker-Prager Model: Two- and Three-Dimensional Analysis

In order to verify the computer codes, a block under plane strain
conditions subjected to a uniaxial load is analyzed. This problem is

simulated in the three-dimensional code by constraining the nadal
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displacements in the y-direction as shown in Figure (8.5). The lateral
boundary is allowed to deform freely in the x-direction. This problem
has been solved by Davidson and Chen [9] by using a two-dimensional
procedure which uses constant strain triangles. Here, 8-node plane ele-
ments in two-dimensional case, and 8-node brick elements in three-
dimensional case are used. Following properties are used for the

Drucker-Prager type material model:

E = 500,000 psf (23,950 kN/m?)
v =0.0

C = 500.0 psf (23.95 kN/m?)

¢ = 30 degrees

where C is the cohesion, and ¢ is the angle of 1nterna]-friction. A
description of computational algorithms used in the present analysis,
and that used by Davidson and Chen [9] is gi&en in Chapter 5. Finite
element predictions are compared in Figure (8.5) with the results given
in reference [9].

The material behaves elastically up to about 1000 psf (47.9 kN/m?)
before the initial yield is detected. Since the Poisson's rqtio is
taken as zern, out of p]ane~stresses and lateral dispiacements ére zero
during elastic deformations. After the initial yield, the material
carries additional stresses while moving along the yield surface. This
causes changes in out-of-plane stresses and lateral movement. In the
present analysis, the material could not sustain an equilibrium state
when the load is increased from 1700 psf (81.43 kN/m2) to 1800 psf
(86.22 kN/m?), thereby indicating an ultimate state at 1700 psf
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(81.43 kN/m?). The maximum ultimate state predicted by Davidson and
Chen [9] is 1725.0 psf (82.62 kN/m*). The stress-strain curve during
the loading history predicted-in the current analysis seems to compare
very well with that given in reference [9]. : If smaller load.increments
were used in the current analysis, ultimate conditions may have been
predicted close to that given in Davidson et al. [9]. The ultimate
stress predicted by Mohr-Coulomb criterion with above material proper-
‘ties is 1732.0 psf (82.96 kN/m?). The comparison is considered

excellent.

~8.5. Critical State Model: Two- and Three-Dimensional Analysis

'Since there is a Tack pf observed or prévious]y soived data{from
two- and three-dimensional analysis with critical state model, the
accurécy has to be verified by solving rather simple problems. EIn this
sectibn; behavior of a conventional triaxial specimen is analyzed by
using both two- and thfee-dimensiona] codes similar to the verification
8.3. The finite element meshes are shown in Figure (8.3). This problem
" has.also been analyzed by Zienkiewicz and Naylor [91] by using a
two-dimensional procedure which uses .the initial stress method.

The following properties are used for this model, Equﬁtion (4.27)

and (4.30).

Oy = 0p = 100.0 kN/m?

a
M=1.0
Ac = 0.14
k = 0.026
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Eo = 9900.0 kN/m?
g = 1.08
po = 114 kN/m?

The Toad is applied in increments of 15 kN/m? each, and one
iteration is performed for each increment. The predictions from the
present analysis are compared in Figure (8.6) with those given by
Zienkiewicz et al. [91]. The comparison is considered to be excellent.
In the present analysis, both two- and three-dimensional proceduras gave
similar results. However, at higher loads, behavior predicted by
Zienkiewicz et al. [91] seems to be slightly stiffer. Furthermore, they
appear to have not canried out the analysis until the material reaches
a critical stata. The%fnitia] sfress_approach employed by them,'may
require a larger numben

7/

vy

1arger than elastic c'mponents. Perhaps, this may be the reason for the

‘of iterations where plastic strains are much

I
st1ffer response, an7 #or not having continued the analysis up to the

///// oy
A :

/ /
8.6. Marching and 'Iterative A?gbrithms for Critical State Model
il Il

Lo "lfi :
Two potential computatiénal/schemes for modelling hardening
/ |
. behavior in the crn{1ca1 state’ mode] are described in Chapter 5. They

are the iterative scheTe, and m%rch1ng scheme by using subincrements
5 | “ .
of strain, Sect1on/ (3L Although in the current research, the marching
| . "yl‘
|

|
scheme is used, a cbmpar1son 1s;made between these two schemes by

cr1t1ca1 stéte

using the two- d1mens1ona1 procadure The problem described in Section

L mitl
8.5, is solved by: ¥s1ng theﬁ [two schemes. Comparison of results is
o";

given in Table 8. 2 and p]ot a in Figure (8.7). Iterative scheme seems
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Table 8.2
Comparison of Marching and Iterative Schemes

for Critical State Model

Axial Stress Marching Scheme Iterative Scheme
(kN/m?) (Axial Strain %) (Axial Strain %)
100 0.0 0.0
115. 0.163 0.163
130 0.748 0.533
145 1.72 1.50
160 3.07 2.88
175 4.84 4.70
190 ' 7.14 7.02
205 10.13 9.97
220 ‘ 14.19 13.85
235 20.24 19.40
250 31.35 29.10

Load increment size = 15 kN/m?

Number of iterations per step = 1
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to give a slightly stiffer response, although the differences are not
significant, Figure (8.6). Iterative scheme seems to give results

which fall between those obtained by marching scheme and the results of
Zienkiewicz et al. [91]. However, the differences are not very signifi-
cant for thié problem. Computer time on IBM 3032 taken by the two

schemes for the above problem with one element mesh are given below.

Marching scheme: Compilation time 9.91 seconds

Total time 99.88 seconds

Iterative scheme: Compilation time 10.01 seconds

Total time 93.49 seconds

This also shows that the iterative scheme has a good potential for
future use. Its merit has to be further investigated with respect to

several boundary value problems before arriving at a final conclusion.

8.7. Footing Test with Critical State Model

The deformation behavior of a strip footing is analyzed by using
the critical state model, Chapter 4, in conjunction with the two-dimen-
sional procedure developed herein. This problem has also been solved
by Naylor and Zienkiewicz [57] and the material properties for this
analysis were obtained from this reference.

Insitu stresses are first calculated using the Joad vector due to
body forces; initial elastic properties are used for this analysis.
Since the void ratio and the maximum past pressure,. py, varied with
depth, the total depth is divided into five element layers, Figure
(8.8a), and different properties for void ratio, and po are assigned for

each layer.
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The following material properties are used [57].

Sqi]:
vy = 12.5 kN/m?
M=1.0
Ao = 0.174
k = 0.026
Ko = 1.0

10000.0 kN/m?

Eo

The following additibné] properties are used for each layer

A

Layer Void Ratio po (kN/m?)

1 1.15 70.0
2 1.15 70.0
\ 3 1.12 100.0
4 1.08 " 125.0
5 1.00 175.0
Strué%ufe:

E = 200,000.00 kN/m?

Vv = 0.3

v = 12.5 kN/m?

where vy is the unit weight, K, is thé coefficient of earth pressure,
and Eo is the initial value of Young's modulus used for insitu stress
calculation.  Since the material deforms elasto-plastically, the calcu-
lation of stresses normal to the plane may require the use of [Cep],

Equation (4.55), as shown below.
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do de

XX XX i
doyy \ _ Eeﬂ deyy (8.3)
dey dny
dozz 0.0

However, under elastic states, dczz can be claculated from:

dozz = \)(chxX + dcyy) ' | (8.4)
The above problem is solved by using both procedures described in
Equations (8.3) and (8.4), and results are shown in Figure (8.8b). Both
the rigorous, Equation (8.4), and simplified, Equation (8.4), procedureé
for'calcu]ating ,, seems to give similar results. Comparison with the
results given by Naylor et al. [57] is very good. A typical pattern of
displacement vectors is given in Figure (8.9) at a footiné Toad of 300

kN. Further comments on these two procedures, Equations (8.3) and (8.4),

are given in Chapter 9.

8.8 Beam-BendingAAThreé-Dimensiona] Analysis

- A problem of cantilever beam subjected to end loads is analyzed by
,gsiqglthgu;hree-dimensional prbcedure with elastic properties. Since
bending ef%étté_need to be simulated with regular sofid elements, a 20-
node brick elements with three integration points are used herein. The
finite element mesh used is shown ih Figure (8.10a). A uniform load is
applied at the end of the beam, and it is distributed to the nodes as
shown in Figure (8.10b).

The following material properties are used
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E

20 x 10° psi (13.78 x 10°® kN/m?)

v = 0.30

The finite element predictions are compared in Figure (8.11) with
the closed-form solution given by Timoshenko and Goodier [84] for pure
_bending under plane stress conditions. Finite element predictions.for
the shear stress distribution appear to be close to the exact values;
they give satisfactory distribution across the section. The closed-form

solution for displacements is given in reference [84] as

_ Px®  Pa?x , Pg? '
V= 8ET " ZET T ET (8.5)

 Here v is the vertical displacement, 2 is the length of the beam, EI is
the flexural rigidity, and x is the distance measured from the free end.
Predictions of normal stress and displacements seem to compare very well

with the closed-form solution.

8.9 Cap Model: Two- and Three-Dimensional Analysis

Since there is a general lack of previouély solved problems in two-
and three-dimensional analysis with the cap model, the accuracy is
verified with resepct to the analysis of a test specimen which is sub-
jected to a triaxial state (conventional) of stress. The finite element
meshes with one element used in the analysis are shown in Figure (8.3).

The following properties are relevant to an artificial soil

reported in references [20,64] are used in the analysis:

o = 5.6 psi (38.58 kN/m?)
8 = 5.6 psi (38.58 kN/m?)
y = 0.062

R=2.0
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D = 0.05 psi~! [0.00725 (kN/m2)™!]
W=0.18

E = 4000.0 psi (27,560.0 kN/m?*)

v = 0.35

po = 10 psi (68.90 kN/m?)

The analysis is carried out by using increments of 1.0 psi (6.89
kN/m?) with one iteration per increment . Predicted stress-strain
curve is shown in Figure (8.12b). Comparison of results from two-
dimensional axisymmetric, and three-dimensional analysis, is considered
to be very good. The theoretical ultimate strength along the used CTC
stress path, Chapter 7, is obtained as shown in Figure (8.12a). The
ultimate value of /355 is 5.1 psi (35.14 kN/m?), Figure (8.12a). This
value seems to compare very well with the finite element predictions of

ultimate states as shown in Figure (8.12b).

8.10 Interface Behavior

In order to study the interface behavior, a simple plane strain
problem is solved. Two elements with an interface in between is loaded
with a nonuniform load as shown in Figure (8.13).

The following properties are used in the analysis.
Interface:

Thickness of interface = 0.1 inch (0.254 cm)

- : 3 2
Eint = 10000. psi (68.9 x 10° kN/m?)
Vint = 0.30
G = 20 psi (137.8 kN/m?)

int
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Solid:
E = 10000. psi (68.9 x 10% kN/m?)
v = 0,03 for example (a)
v = 0.0 for example (b)

Details of loading are shown in Figure (8.13). Since, the loading
intensity on the fwo solid elements is different, a relative displace-
ment can be expected. Presence of interface element allows re]étive
displacements as shown in Figure (8.13a) andl(8.13b). A closed-form
solution can be obtained for the case when v = 0.0, Figure (8.13b). For
this case, the finite element predictions of relative disp]acements seem
to be in good agreement with the theoretical values, Figure (8.13b);

The improvement of relative displacements obtained by using the
interface element is demonstrated in Figure (8.14). In this figure, A
and B are two points across the interface before deformatjons. With
the interface, points A and B move to A' and B', respectively. With-
out the interface, A and B move to A" and B", respectively. The
performance of this e1ément appears to be satisfactory. Effect of
normal interface stiffness on the deformation behavior is studied by
varying the elastic modu]us,_E, of the interface element. Figure
(8.15) shows that the normal stiffness has negligible effects on the
relative displacement between the solid elements.

A three-dimensiona]‘problem is analyzed, Figure (8.16), by using
the same properties used for two-dimensional cases. As could be seen
in Figure (8.16), the interface element permits relative displacements

between the solid elements. Here the points A and B, move to A' and B',
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during deformations, respectively. Effects of normal interface
stiffness is seen to have negligible effects on relative displacements
similar to the two-dimensional case. However, the interface shear
stiffness, Gint’ seems to have a significant effect on the relative
displacements as shown in Figure (8.17).

Effect of interface Poisson ratio is studied by varying this value
between 0.00 and 0.5, as shown in Figure (8.17). This seems to have a
negligible effect on the relative displacements between the solid
elements. |

'The above study reveals that the element used in the current
research can perform satisfactorily both in the two- and three-

dimensional analysis.
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Chapter 9
APPLICATIONS TO SOIL-STRUCTURE INTERACTION PROBLEMS

As discussed previously, the purpose of this research is to develop
computatisna] pfocedures'for studying nonlinear soil-structure inter-
action pfoblems. Underlying theoretical foundation is given in the
previous chapters. The three computer codes developed in this study are
verified with respect to a few problems in Chapter 8. In this chapter,
three additional problems are studied to show the applications of the
procedures déve]oped. Analysis of one of the problems is verified with

respect to experimental data available.

9.1. Analysis of a Footing-Soil System

As an application of the procedures developed herein, nonlinear
behavior of a strip footing is studied. A plane strain éna]ysis is
carried out by using the two-dimensional code, Chapter 3, with different
constitutive mode]s such as linear elastic, variable modulii, Drucker-
Prager, critical stgte and cap models, Chapter 4. Soil-structure
1nte?actioﬁ behavior is studied by using the interface element described

in Chapter 6.

Selection of the Finite ETlement Mesh

Unlike linear problems, the nonlinear finite element analysis
usually includes incremental and 1tefative techniques. Here, the
nonlinear problem is solved by considering a series of piecewise
Tinear problems. Therefore, the computational effort involved in a
nonlinear analysis depends on the number of tim<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>