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Executive Summary 

This literature review confirms prior work in the use of locomotive airbag technologies for 
vehicle or pedestrian collision mitigation, and to focus planned activities and tasks for this 
research. This report summarizes the state of the art in relevant technologies to assess the 
feasibility of this technology and identify critical model challenges for supporting impact 
simulations. The literature review did not reveal any currently deployed locomotive airbag 
solutions. In patent literature, external airbag technology has been described for crash mitigation 
between railcars and motor vehicles, but no meaningful analysis of feasibility has been discussed 
in detail in scientific or professional literature. Therefore, it appears that although crash 
mitigation technology using airbags in front of locomotives has been conceptualized, it has not 
yet been rigorously engineered or implemented. 

Prior applications of airbag-based crash mitigation systems for large vehicles have been 
demonstrated. Deployed external airbags have been successfully used for impact mitigation in 
the Mars lander and proposed for impact mitigation in the Orion Space capsule, in helicopters, 
and in automobiles (e.g., front-to-side impact vehicle crashes and vehicle-pedestrian crashes). 
The sizing and the necessary components for these related applications are sufficient to mitigate 
automobile crashes; therefore, the research results in these applications show that an airbag-
based solution for locomotive-automobile crash mitigation is likely to be viable. 

A variety of computational tools exist to investigate the feasibility of locomotive airbags and 
identify the critical design requirements for such systems. Simulations would focus on the 
development of relevant airbag materials and parameters (e.g., size, material strength, location) 
and the overall kinematics between train and impacted vehicles or pedestrians that would reduce 
the risk of injury. 

The following overall observations were generated from this review: 

• Airbag-based mitigation of human injury risk in locomotive-road vehicle collisions has been 
conceptualized but not put into practical implementation. 

• Existing airbag technologies that have been successfully employed in the automotive and 
aerospace industries may be adaptable for use in locomotive applications. 

• While airbag technology can mitigate the initial collision, careful consideration of post-crash 
behavior must be included in the design and analysis of crash mitigation systems to prevent 
subsequent inertia-related damage to vehicles and their occupants. 

• Computational models of locomotives, a range of occupant vehicle types (small vehicle, 
small truck, and large truck), and human kinematics are readily available for collision 
analysis. 
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1. Introduction 

This literature review surveyed relevant background information from both the crash 
environment and current mitigation technologies to understand the state of the art and technical 
requirements for deployment of airbag-based crash mitigation systems for locomotives (Figure 
1). The literature describing the locomotive crash environment focused on grade crossings and 
closely analogous situations, in order to assess the environment in which such a collision can be 
considered. Analyses of derailment in collisions with road-going or other vehicles were also 
reviewed since derailment in a collision is significantly more dangerous than a simple collision. 
The available mitigation technologies were reviewed next, including existing ideas for 
locomotive crash mitigation and analogous external airbag literature for automobiles, helicopters, 
and spacecraft. These findings will establish the crash mitigation requirements and the state of 
the art for airbags, which will focus attention on the computational impact simulation 
assessments of locomotive airbag feasibility. 

 

Figure 1. Background Components in Computational Modeling Efforts 
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2. Crash Environment 

2.1 Locomotive and Struck Vehicle Parameters 
The impacting vehicle in this project has been specified as a locomotive, but does not provide 
specifics for locomotive model or design. Therefore, as a relevant geometry, an LS-Dyna model 
of the SD70 MAC locomotive will be used. It is important to note that the resulting feasibility 
analysis of the airbag components (size, pressure, baffles, deployment methods) for crash 
mitigation will not be limited by the geometry of this specific locomotive, but should be 
applicable for a broad range of relevant locomotive models. 

The struck vehicles have been selected in this project as a small car (roughly 2,500 lb), a mid-
size pickup truck (roughly 5,000 lb), a tractor-trailer (roughly 15,000 lb), and a school bus 
(roughly 10,000 lb), as described in Section 5.2. LS-Dyna models for the passenger cars are 
available from the National Crash Analysis Center (NCAC), and the tractor-trailer model is 
available from the National Transportation Research Center. A model for a passenger bus is 
available from NCAC, and a school bus model has been developed by the Mercer Engineering 
Research center (MERC), although availability is not yet known (see below). 

The approximate size and weight of vehicles anticipated for use in simulated crash impacts are 
shown in Table 1. Details of the vehicle geometries and available modeling tools are discussed in 
Section 5.2 of this report. 

Table 1. Approximate Size and Weight Parameters of Locomotive and Struck Vehicles 

Vehicle Type Model 
Weight  
(pounds) 

Dimensions (feet) 
(length × width × height) 

Locomotive SD70 MAC  SD70 MAC  74 × 10 × 16 
Small sar Geo Metro Geo Metro 13 × 5 × 5 
Mid-sized pickup truck Ford F-250 Ford F-250 19 × 7 × 7 
Tractor trailer truck NTRC Model NTRC Model TBD 
School bus MERC Model MERC Model 35 × 8 × 7 

2.2 Grade Crossing Collisions 
Grade crossings represent the environment with the highest likelihood for occurrence of 
locomotive impacts with cars or pedestrians. Therefore, a survey of relevant literature studies 
was conducted to extract details of relevant crash scenarios, such as impact velocities, to provide 
context for subsequent literature studies of relevant technologies and to guide boundary 
conditions for future impact simulations. 

Collisions at grade crossings involve the entire local environment. The high energy involved in a 
collision with a locomotive and its following railcars results in an extended crash event. The 
colliding train usually does not stop during the collision but proceeds until braking brings it to a 
stop. To develop a useful model for a grade crossing, and to understand the eventual resting point 
of the struck vehicles, the overall layout of the crossing must be specified. The dimensions of the 
grade crossing typically depend on the number of locomotive rails and the number of lanes on 
the crossing roadway. The specific location of a collision on the grade crossing is important, 
because the grade crossing has a finite width, and the rails on a road bed can have a significant 
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effect on the path of a struck vehicle if the vehicle is pushed past the edge of the grade crossing. 
Grade crossing design has received substantial attention [1], including design factors that are 
meant to decrease the incidence of collisions with freight or passenger locomotives [2, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 12]. Specific discussion of derailments [13, 14, 15, 16, 17, 18, 19, 20], pedestrian 
accidents [21, 22, 23, 24], and vehicular accidents [25, 26, 27] are available. Discussions of 
European [28, 29, 30], Indian [31] Australian [32], and Japanese [33] experiences in prevention 
strategies are also available. Although many common aspects of grade crossing designs exist to 
minimize accidents, the experiences indicate that accidental collisions will occur at grade 
crossings. 

Estimates of collision speed for freight train collisions are also available [34]. The range of 10 to 
60 miles per hour (mph) spans nearly all the reported impact speeds in the reported collisions, 
and a relative peak is apparent at 20-30 mph. 

Surveys of driver injuries due to grade crossing collisions are available [35, 36, 37, 38, 39]. They 
show that grade crossing accidents have been mitigated by good crossing design, but that 
collisions are a continuing issue. Older and female passengers tend to sustain more serious 
injuries in a grade crossing collision, and the likelihood of serious injury increases with the speed 
of the road-going vehicle. While grade crossing design can decrease the incidence of these 
collisions, their consequences are sufficiently dire to make mitigation technology relevant and 
important. 

2.3 Derailment Analyses in Collisions 
Derailment is the most dangerous result of a collision, given the mass of the locomotive and the 
trailing railcars. Analyses of derailment in general, and of derailment in collisions, exist in the 
literature [40, 41, 42, 43, 44, 45, 46] based on wheel-climbing dynamics. Derailment in collisions 
due to side loads on the railset has been addressed [47, 48] based on rail climbing. Other analyses 
of derailment in crash scenarios are based on the dynamics of the whole consist and the changes 
in side and vertical loads to be expected during a collision. These calculations are well-
developed, and we used VI-Rail to perform them [49]. 

Derailment due to debris from a collision is a significant risk, because the hard steel components 
of an automobile (wheels, axles, springs, etc.) can become loose on the rails and disrupt the 
wheel-rail interaction of the leading wheelset. This is more likely when a struck vehicle is 
pushed along the rail bed ahead of the train. Butler [50] describes a collision mitigation system 
that is intended to lift colliding vehicles onto a flatbed, using a ramp, and then cushion the 
collision. If feasible, that technology would mitigate the risk of derailment by lifting the 
automobile off the railbed and away from the wheelsets; however, it seems expensive and 
cumbersome for day-to-day use. 

2.4 Crash Mitigation Requirements Summary 
The following list summarizes observations generated from this portion of the literature review: 

• Effective crash mitigation efforts should target displacement of an impacted vehicle to the 
side of the railway, removing it from the path of the locomotive. This is because the mass of 
the locomotive and trailing rail cars is very large compared to that of the struck vehicle, and 
although the train may be applying brakes, the leading car will proceed across the grade 
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crossing for a very substantial distance. This is different from most other crash mitigation 
scenarios, where the striking vehicle will stop in a short distance. 

• Overall dimensions of the grade crossing and location of the impacted objects in the crossing 
will influence the post-crash impact mechanics and should be considered in analysis of 
mitigation strategies. 

• Train derailment represents a “worst case” crash scenario, wherein the train can impact 
objects removed from the track, in addition to producing complex crash dynamics. Effective 
strategies to mitigate peripheral damage resulting from locomotive impacts should focus on 
maintaining the railcar on the rails. 
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3. Current Airbag/Deployable Crash Mitigation Technologies 

External airbag deployment is a natural extension of crash mitigation using the now-standard 
internal airbags. Current thinking in automotive crash mitigation is that, between restraints and 
airbags, the space available within an automobile interior has been almost fully utilized for 
protection. Therefore, externally deployed mitigation systems (e.g., airbags or collapsible 
structures) are the most promising next technologies. Statically deployed structures (energy 
absorbers deployed on the rear of parked vehicles) have become common in highway repair 
work, as well. The following sections review the existing technologies that use external airbags 
in mitigating collisions. 

3.1 Locomotive Impact Applications Using External Airbags 
The literature search performed here did not reveal any currently employed external airbag 
technologies for improved safety during locomotive impacts with automobiles or pedestrians. 
Although our literature search showed no currently implemented locomotive airbags, concepts 
have been considered in the patent literature [51, 52, 53]. In these patents, the inventions are 
deployable energy absorbers mounted to the front of a locomotive, with several potential energy-
absorbing technologies described, including airbags. These patents do provide a general 
discussion of the estimated airbag size and deployment methods. However, they do not often 
consider practical implications of the technology, such as visibility, clearance for couplers, or 
access to the locomotive front door. They also do not address the overall feasibility and cost-
effectiveness of the system for grade crossing accidents. Additionally, continued literature 
searches of many professional scientific databases did not reveal an airbag-based crash 
mitigation technology for locomotives that has been analyzed quantitatively. 

Although not a rigorous scientific study, the search did reveal one effort that explored a 
mitigation concept. The information was available only in an episode of a Discovery Channel 
show called “Smash Lab,” which “explored a type of airbag specifically designed for trains in 
hopes of lessening the impact of crashing into a car” [54]. The team showed a staged collision in 
which an automobile was impacted by a locomotive with a deployed airbag moving at 25 mph. 
The impact between the car and train was orthogonal, with impact centered on the vehicle 
midpoint. No meaningful engineering measurements were taken in this collision, so it is not 
possible to generalize this experience to a meaningful design. However, the video does show the 
effect of an automobile being pushed off the grade crossing onto the rail bed. In the video, the 
wheels of the impacted automobile become positioned outside the rails on the locomotive 
roadbed as it is pushed off the grade crossing ahead of the locomotive. The vehicle tires are 
blown, and the wheels of the vehicle slide along the exterior of the rails. This restricts the 
movement of the automobile, so that it is difficult to move the struck automobile off the roadbed 
in front of the locomotive. The occupants in an automobile being pushed along a rail by a 
locomotive are at a very high risk for injury and death due to crushing or shredding of the vehicle 
frame. 
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4. Computational Model Development 

This section reviews the components that need to be modeled to simulate airbag technologies 
during a locomotive impact. The goal is to summarize the technology that can be brought to bear 
to model grade crossing collisions and to model the available technology that can mitigate 
injuries in the collisions. 

4.1 Model Parameters 
While externally deployed airbag concepts have not yet been realized for locomotive safety, 
alternative energy-absorbing and energy-managing devices have been used to mitigate damage in 
railroad collisions for many years [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]. An examination of the 
existing rail crash mitigation technologies will inform computational parameters, such as 
material models, of the planned impact simulations between locomotives and occupant vehicles. 
A series of specifications for rail crashworthiness have been developed [66, 67, 68], and several 
analyses of specific incidents and structures have been carried out [69, 70, 71, 72, 73, 74, 75, 76, 
77, 78, 79]. The studies concentrate on the rail car deformation and on the specifics of rail 
passenger protection; as such, they show the state of the art in modeling, and they indicate the 
likelihood of deformation in a locomotive collision with an automobile. 

The rail crash mitigation analyses show that most road-traveling vehicles have much lower 
stiffness and strength than railroad cars. Therefore, in this project, as a first approximation, we 
consider the rail cars as rigid. Also, given the limited scope of this initial investigation, we 
concentrate on locomotive-led consists. Given the mass and construction of a locomotive, we 
consider the locomotive as rigid. Also, given the relative mass of a typical passenger or freight 
locomotive (over 150,000 lb) and the typical mass of a road-traveling vehicle (under 15,000 lb), 
we consider the velocity of the locomotive as constant during the collision. These operating 
assumptions will be revisited as necessary. 

4.2 Available Locomotive and Vehicle Models for Crash Simulations 

4.2.1 Locomotive 
Because the goal of this research is a feasibility study, the degree of detail in the models that are 
available should be chosen to gain insights into specific issues, such as airbag size and shape, the 
reaction of the struck automobile, and the ability to move the struck vehicle off the track. As 
such, we will use a specific locomotive model as an impacting vehicle. A large-scale locomotive 
finite element model is available at JHU/APL. The model is based on a SD70-MAC freight 
locomotive (Figure 2). As discussed above, this computational model will be considered as rigid, 
with a constant velocity during the collision analyses. 
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Figure 2. SD70-MAC Finite Element Model 

4.2.2 Automobiles 
An array of computational models for automobiles is available at the National Crash Analysis 
Center (NCAC) at George Washington University [80]. These models have been validated 
against collision testing in specific circumstances, and they are in LS-Dyna format. In this 
project, we will use the models as discussed in the SOW as targets in the collision analysis. The 
models are detailed enough to be useful for airbag contact, as will be discussed below. Two 
automobile models will be used for this project (Figure 3): a small passenger car (Geo Metro), 
and a mid-size pickup truck (Ford F-250). 

 
Figure 3. Geo Metro (left) and Ford F-250 (right) Finite Element Models from NCAC 

4.2.3 Large Commercial Vehicles 
Detailed models for a tractor-trailer (see Figure 4) have been developed under RITA Grant 
DTRT06G-0043 at the National Transportation Research Center (NTRC) [81]. These 
computational models, implemented in LS-Dyna, are based on three typical tractor designs and a 
48-foot trailer. The models have been verified against experimental crash tests, as discussed on 
the web site of the National Transportation Research Center [82]. Similarly to the finite element 
models for vehicles, the geometric detail is well-suited for airbag contact analyses. 
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Figure 4. Finite Element Model of Tractor (Day Cab) from NTRC 

4.2.4 School Bus 
Computational models for school buses in collisions with tractor-trailers have been reported [83, 
84], and detailed tests have been run to assess crashworthiness in these extreme situations. 
However, the wide variation in bus design complicates the collision analysis. The following 
school bus model (Figure 5) is detailed online from MERC [85], but its availability for use in the 
current project has not been confirmed. 

 
Figure 5. Finite Element Model of School Bus from MERC 

4.2.5 Human Models (Pedestrians and Vehicle Occupants) 
Computational models of pedestrians are available from several sources, with varying degrees of 
fidelity. In the existing work on pedestrian impacts with automobiles [86, 87, 88, 89, 90], the 
pedestrian models typically are based on a MADYMO simulation [91], or a finite element model 
of the Polar II dummy developed by Honda [92]. Livermore Software Technology Corporation 
(LSTC) supplies a standing Hybrid-III dummy model as well [93]. Because the dummy models 
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are useful for evaluating overall trends, rather than specific injuries in individuals, they will be 
used to compare reactions to collision mitigation systems in a parametric fashion. 

Standard LSTC Hybrid-III models will be used for evaluating the reactions of passengers in the 
struck vehicles to collisions in this project. The passenger dummies will be belted using standard 
techniques, and standard injury metrics will be compared, as in the automotive tests reviewed 
above [94]. 

4.2.6 VI-Rail Modeling Components 
VI-Rail is a suite of tools that runs within the commercial dynamics code ADAMS [95]. A 
library of standard rail components is available, along with specific tools to model wheel-track 
dynamics. ADAMS is a validated commercial code for the dynamic analysis of structures and 
vehicles, and JHU/APL has an existing software license. VI-Rail will be added to the existing 
ADAMS capability to perform the analysis of derailment risk during grade-crossing collisions 
with airbag-based crash mitigation technologies. The decreased peak forces due to a mitigation 
system will be coupled with an increased time of contact, and the process necessary to deliver 
the struck vehicle to the side of the rail bed will generate lateral forces on the locomotive. By 
incorporating these features of the collision, the VI-Rail and ADAMS simulations will evaluate 
the risk for derailment. 

4.2.7 Airbag Crash Mitigation Components 
The LS-Dyna tools for airbag modeling are well developed and have been used in several 
applications [96]. Airbag models will be developed and implemented in simulated locomotive 
crashes for a variety of impact conditions in order to identify airbag size, stiffness, material 
characteristics, shapes, and position for optimized protection. In this project, we will use existing 
airbag technology with a number of modifications and some simplifications. The following 
assumptions will be made for airbag deployment in the locomotive applications: 

• Simulations will model a fully deployed airbag for initial concept feasibility studies. This 
assumes that if a stopped vehicle is on a grade crossing, ample time will be available for the 
mitigating equipment to be fully deployed. Therefore, the technology for airbag inflation can 
be more robust than the technologies for many automotive-based airbag systems (compressed 
air, high-speed fans, etc.). This assumption may not hold for sudden vehicle crossings (e.g., a 
speeding vehicle attempting to cross in front of a moving train). However, the tradeoffs 
necessary for an automatic, high-speed deployment mechanism will be considered in later 
phases of this program. 

• The deployed volume will be substantial, and the deployed shape will require an interior 
structure for the airbag, similar to inflatable structures used for recreation. Therefore the 
design of the filling process must consider the interior structure of the airbag. 

• The load carried by the mitigation system will be substantial, compared to passenger airbags, 
but will be in the range of the loads carried in the analogous applications reviewed (see Table 
1). This requires careful consideration of the strength of fabrics and joints in the design. 



 11 

5. Conclusions 

A review of existing airbag-based crash mitigation technology relevant to a locomotive collision 
with a road-going vehicle or pedestrian at a grade crossing has been completed. Airbag-based 
crash mitigation technology in these collisions has been conceptualized but not engineered to the 
point where a feasible design has been developed. 

The review of technologies from other crash applications (e.g. automotive, aerospace) indicated 
that an airbag-based crash mitigation system for locomotives at grade crossings is likely to 
succeed. The goals of such a system are more complex than those of most automotive crash 
mitigation systems, because the striking vehicle (i.e., the locomotive) will not stop during the 
collision but will proceed for a significant distance after the collision. The mitigation system 
must therefore address the process of moving the struck vehicle or pedestrian to the side of the 
railway in order to be effective. 

The next step in the project is to perform computational simulations of locomotive impacts, to 
investigate feasibility further and to identify design requirements for deployed airbag systems. 
While there are a number of existing modeling components that could be used in the 
achievement of this goal, there are also several key technical issues that will require specific 
expertise: 

• Airbag modeling to estimate proper sizing: An inflated airbag will compress under load, 
according to a predictable process in which the bag changes shape, and the baffles, vents, or 
permeable sections designed into the airbag modify the force-time-deflection characteristics. 
The design of the airbag will be developed to deliver the struck vehicle or pedestrian to the 
side of the railway without collapsing the airbag or causing excessive speed for the vehicle or 
pedestrian. 

• Versatility of the mitigation system: The goal of the mitigation system is to decrease the 
potential for injury to pedestrians, occupants of small vehicles, and occupants of large 
vehicles. Given the large variation of struck objects, a collision mitigation system should be 
adaptable, either by command from the train crew or through automated sensing during the 
collision. 

• Mechanisms to exit struck vehicles or pedestrians to the side of the railbed: As 
mentioned above, the train will brake to a stop during a collision, but the locomotive will 
proceed a substantial distance past the grade crossing after striking the object in the grade 
crossing. A specific and reliable mechanism to propel a vehicle or pedestrian to the side of 
the tracks is key to effective mitigation 

• Control of the struck vehicle or pedestrian: Upon exit from the roadbed, the struck 
pedestrian or vehicle will be at significant risk for injury, given the exit velocity from the 
railbed. The trajectory of the struck vehicle or pedestrian should be controlled to decrease 
injury risk (possibly by minimizing velocity). 
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Abbreviations and Acronyms 

LSTC Livermore Software Technology Corporation 

MERC Mercer Engineering Research Center 

mph miles per hour 

NCAC National Crash Analysis Center 

NTRC National Transportation Research Center 
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