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Executive Summary

The objective of this study has been to develop analysis tools for 

predicting the safety related performance of rail cars. An analytical frame

work has been developed for simulating rail vehicle response to extreme track 

conditions, including those prescribed by the Association of American Rail

roads' (AAR) in Chapter XI of Reference [1]. The analysis has been imple

mented for a prototype two-axle, trailer-on-flat-car rail vehicle, which has 

been tested extensively over Chapter XI track conditions at the AAR Transpor

tation Test Center.

Computer simulations of the unloaded vehicle, for which a complete set 

of vehicle parameters has been determined by the AAR from component tests, 

have been compared directly with field test results. Additionally, both the 

model and field data have been reviewed to identify potentially unsafe condi 

tions. The results of the comparisons for the unloaded baseline vehicle, 

where the simulations are based upon track representations using measured 

track data are summarized below:

(1) Hunting - Field tests on tangent track identified no hunting in tests 

up to 90 mph, while simulations indicated that hunting commenced above 

105 mph. Simulations have indicated a decrease in hunting speed to 35 

mph when the hydraulic longitudinal suspension yaw damper is reduced to 

25-percent effectiveness.

(2) Steady-State Curving - Field tests on constant radius curved track have 

indicated maximum wheel lateral-to-vertical force (L/V) ratios of 0.1, 

0.51, and 0.6 on 5 degree, 7.5 degree and 10 degree curves, respec-
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tively, while simulations for these degree curves indicated L/V ratios 

of 0.05, 0.36, and 0.51 respectively. The trends of field test and 

simulation wheel L/V ratios with respect to speed are similar. Addi

tional simulations have indicated maximum wheel L/V ratios of less than

0.6 for baseline wheel-rail conditions for curves from 5 to 15 degrees. 

They have also shown that changes in rail conditions from new to worn 

may change L/V ratios measurably in a manner similar to that observed in 

the field tests.

(3) Yaw-Sway on Track with 39 Foot Wavelength, 1.25-Inch Amplitude 

Sinusoidal Perturbations - Field tests conducted at speeds oflO mph to 

80 mph on laterally perturbed track indicated a maximum axle L/V ratio 

of 0.95, while corresponding simulations indicated a maximum axle L/V 

ratio of 0.98 at these speeds. Additionally, simulations for 78-ft 

wavelength perturbations indicated axle L/V ratios of less than 1.0 at 

20 mph to 70 mph but a ratio of 1.3 at 80 mph.

(4) Dynamic Curving on Curved Track with Alignment and Crosslevel 

Perturbations - In field tests axle L/V ratios above 1.35 were reached 

at speeds between 20 mph and 23 mph, the speed at which the tests were 

terminated. In corresponding simulations, axle L/V ratios above 1.2 

were reached at 23 mph and severe wheel climb approaching derailment 

occurred at 26 mph. 5

(5) Rock and Roll on Track with 0.75-Inch Crosslevel Perturbations - In

field tests conducted on track with crosslevel perturbations at speeds 

of 36 mph to 60 mph, a maximum carbody roll angle of 2.1 degrees was
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measured. In simulations conducted at speeds of 15 mph to 75 mph, a 

maximum carbody roll angle of 2.2 degrees was computed.

(6) Bounce and Pitch on 0.75-Inch Amplitude 39 Foot In-Phase Vertical 

Perturbations - Both field tests and simulations indicated that on 

vertical perturbed track wheel unloading increased as vehicle speed 

increased. At 70 mph, full wheel unloading occurred for short periods 

of time corresponding to 3 feet of travel.

(7) Bounce and Pitch in Negotiation of a Single 2-Inch Vertical Bump - 

Field tests over a single vertical bump have shown that full wheel

unloading occurs momentarily at speeds above 38 mph, while corresponding 

simulations have indicated that at speeds above 40 mph full wheel 

unloading occurs for short time periods corresponding to a travel 

-j distance of approximately 4 feet.

Overall, the baseline vehicle model closely agrees with field tests 

conducted on vertical and crosslevel track perturbations thereby validating 

the representation of the vehicle vertical suspension and carbody mass and 

inertial characteristics. The model also has good agreement with field data 

in predicting trends and identifying conditions approaching wheel climb 

derailments for conditions exciting lateral motions through wheel-rail inter

actions. However, the lateral plane model does not closely agree with 

several specific test measurements including the lateral suspension stroke in 

sinusoidal alignment tests and wheel set angular alignment in the 10-degree 

curve. These conditions have been shown to be very sensitive to the wheel - 

rail profile and friction coefficient.
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Both the analysis and test data identified only one set of conditions, 

dynamic curving where tests were stopped at 23 mph under which a potential 

wheel climb derailment was approached. Under these conditions, cars equipped 

with standard three-piece freight trucks would also be expected to experience 

severe wheel climb at the same speeds.

This study has illustrated the importance of complementary experimental 

and analytical evaluation of rail vehicle safety performance. Field tests 

are indispensible in vehicle evaluation but are necessarily limited by time 

and cost constraints. Thus, the tests represent the vehicle behavior for 

only the specific set of conditions which exist for the tests. Analyses are 

valuable to explore vehicle operating conditions which are not tested and may 

result from changes in vehicle characteristics, wheel-rail profiles, or track 

conditions not available for tests. The study scope has been limited to 

unloaded vehicle tests and simulations which correspond to relatively small 

wheel loads. It is recommended that further effort be undertaken to conduct 

detailed comparisons of test and simulation data for fully loaded vehicles so 

that simulation model validity may be assessed over the complete range of 

wheel loads occurring in the rail industry.
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1. INTRODUCTION

1.1 BACKGROUND
A significant number of new freight car designs have been developed in 

the last few years to provide improved productivity in the rail industry, 
particularly for intermodal transport. The increased rate at which new 
types of cars are being introduced requires the ability to assess the 
safety related dynamic performance of new cars critically and rapidly.

The Federal Railroad Administration (FRA) is conducting research to 
develop analytical and experimental techniques to aid in the assessment of 
the safety related performance of new types of rail vehicles. The follow
ing efforts have been conducted over the past five years in cooperation 
with the Association of American Railroads (AAR) to develop criteria for 
the evaluation of new types of vehicles:

(1) Establishment of Recommended Safety Test Conditions [1]
(2) The Vehicle/Track Interaction Assessment Program [2]
(3) Perturbed Track Tests on Freight Locomotives [3]
(4) Track Geometry Specification Research [4,5]
(5) Vehicle Safety Tests on Two-Axle Vehicles [6]

The evaluation of vehicle safety requires a combined analytical and 
experimental approach. Tests conducted on a vehicle on any given day 
represent an evaluation for a specific set of track conditions and vehicle 
state. Test results may be strongly influenced by the presence or lack of 
track lubrication, by the amount of wear on the rail head and wheels, and 
by many other factors. It is not economically feasible to test a vehicle 
over all possible operating scenarios. Thus, while track tests are indis- 
pensible to vehicle safety evaluation, they should be coupled with-
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analytical studies which explore vehicle performance for sets of track and 
vehicle conditions representing potentially unsafe conditions which cannot 
be readily evaluated experimentally. For such analytical studies to be 
meaningful, analytical models which have been carefully validated by 
experimental data are required.

In the last two years, a combined analytical and experimental approach 
for assessing vehicle safety has been formulated by the AAR and described 
in Chapter XI [1], The FRA has initiated a research program to evaluate 
the effectiveness of the specific analytical and experimental procedures 
described in Chapter XI. As a part of this evaluation, a light weight 
two-axle trailer on flat car was tested at the AAR Test Center over track 
conditions prescribed by Chapter XI. The results of the test series are 
described in [6]. As part of the effort to evaluate the capabilities of 
analytical models to predict vehicle safety performance, the FRA has 
sponsored, through the Transportation Systems Center, the research compiled 
in this report.

1.2 STUDY OBJECTIVES
The general objective of the study is to establish experimentally 

validated analysis tools for evaluation of the safety related performance 
of rail cars. The scope of the effort is focused on the dynamic perfor
mance of a single car, and specifically considers the safety related 
dynamic performance resulting from vehicle-track interactions. Specific 
objectives of the work are

(1) Formulation of a general framework for rail vehicle state- 
of-the-art dynamic modeling

(2) Implementation of a dynamic model for the two-axle vehicle 
operating on perturbed track
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(3) Assessment of the model validity and limitations using test 
data obtained on the car operating over Chapter XI track 
scenarios

(4) Determination of the dynamic safety related performance of 
two-axle vehicles

(5) Formulation of recommendations with respect to evaluation 
methodologies for vehicle dynamic safety related performance

The overall objective of the study is to provide information to assess 
the safety performance of a wide variety of rail vehicles. In this study, 
the specific evaluation of the two-axle freight vehicle is used to illus
trate the critical areas which must be addressed during the performance 
evaluation of a new vehicle.

1.3 SAFETY EVALUATION METHODOLOGY
1.3.1 Vehicle-Track Interactions

Under extreme conditions, the interactions between a rail vehicle and 
the track can lead to a number of potentially unsafe conditions including:

(1) Incipient derailment in which either a flanging wheel climbs 
the rail (wheel climb) or a nonflanging wheel displaces 
sufficiently to drop off the rail (wheel drop).

(2) Large vehicle motions in which carbody displacements are 
sufficient for .the carbody to hit wayside obstacles or 
another vehicle, to cause separation between the carbody 
and truck, or to result in permanent damage to car or track 
components.

The propensity to approach an unsafe condition is a strong function of 
car characteristics including load, wheel profile, and suspension charac
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teristics; track conditions including curvature, superelevation, track 
perturbations, and the presence or absence of lubrication and operating 
conditions including speed and location of a car in the train consist. 
Unsafe conditions may result from single events, such as when a car 
encounters an isolated track perturbation sufficient to cause derailment, 
or from a series of events, such as when a periodic track perturbation 
excites a vehicle at resonance and leads to carbody motions either suffi
ciently large to hit an obstruction or derailment. In both single and 
multiple event cases, the potential to reach an unsafe condition is a 
result of the combination of car characteristics, track characteristics, 
and operating conditions.

To assess car safety using a finite set of analytical and experimental 
studies requires:

(1) The quantitative definition of a set of safety criteria 
which' indicate incipient unsafe conditions and which can be 
practically measured and computed, and

(2) The definition of a set of safety evaluation scenarios which 
can define the car safety boundaries for the critical 
combinations of car characteristics, track charateristies, 
and operating conditions leading to unsafe conditions.

A number of analytical and experimental studies have been performed to 
develop both safety criteria and test scenarios [1-6]. A recent document, 
Chapter XI of the AAR Manual of Standards and Recommended Practice [1], 
defines a set of quantitative safety criteria and a set of experimental 
test scenarios and analytical studies to assess car .safety performance. 
Sections 1.3.2 and 1.3.3 discuss the available data and studies relating to 
safety criteria and safety evaluation scenarios.
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1.3.2 Safety Criteria
Incipient derailment may result from wheel drop or wheel climb condi

tions. In the first condition, derailment occurs because the wheelset has 
displaced a sufficient lateral distance for the wheel to drop off the rail. 
This condition is usually associated with sections of track in which the 
track gage has increased or lateral restraint has decreased because of 
repeated vehicle loading or environmental conditions. The potential for 
wheel drop has been considered by F. B» Blader and G. L. Mealy [5], who  ̂
have defined an incipient wheel drop condition as one in which the inward 
displaced wheel has less than 1.25-inch overlap with the supporting rails. 
Thus, any combination of dynamic wheel motion and track gage changes which 
allow wheel-track overlaps of less than 1.25 inches are considered unsafe. 
The specific maximum lateral wheel displacement allowable before wheel drop 
depends upon the wheel profile and the track gage and profile. For a 
standard AAR wheel and AREA rail with a gage of 59 inches, the wheelset may 
be displaced 1.5 inches before incipient wheel drop. A significant consid
eration in assessing wheel drop is the dynamic gage widing due to vehicle 
1oading.

An experimental study [4] of gage spreading on perturbed, curved track 
and its influence on wheel drop conditions has shown that large lateral 
forces are generated at low speeds in tight radius curves (12-degree 
curves) which are relatively insensitive to vehicle velocity at speeds of 5 
mph to 20 mph. Additionally, significant lateral forces resulting from 
crosslevel and alignment variations in curved track, were measured. Thus, 
potential wheel drop conditions may be expected on curved, perturbed track 
when large lateral gage spreading forces combine with significant lateral 
wheelset displacements.
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Wheel climb derailments result when a flanging wheel has sufficient 
lateral force to climb over the rail. As the wheel climbs the rail, 
usually due to the combination of reduced vertical force and increased 
lateral force, it reaches a point of maximum angle between the plane of 
flange-rail contact and the track. Further displacements reduce this angle 
and eventually lead to derailment. The wheel displacement at the maximum 
contact angle has been proposed as the limit of displacement for incipient 
derailment [5,7]. Under field conditions, the small displacements of the 
wheel relative to the track are difficult to measure; however, lateral and 
vertical wheel forces can be measured with instrumented wheel sets and way- 
side measurements. Thus, practical indicators of wheel climb derailment 
have generally been expressed in terms of the wheel lateral-to-vertical 
force (L/V) ratio. A number of analytical [5,7] scale model [8] and full- 
scale field test [4,9,10] studies of the relationship of wheel L/V ratios 
to incipient derailment have been conducted. A recent review of work has 
been performed by H. Weinstock [7], who has concluded that a good measure 
of incipient wheel climb derailment is provided by the instantaneous wheel 
L/V ratio. The study described in [7] concluded that wheel climb derail
ment will not occur if any of the following criteria are met:

(1) The L/V ratio on each wheel is less than Nadal's limit.
(2) The sum of the magnitudes of L/V ratios for both wheels on 

an axle is less than 1.0.
(3) For the case in which the flanging wheel vertical force is 

less than the nonflanging wheel vertical force, the sum of 
the magnitudes of L/V ratios for both wheels on the axle is 
less than the sum of Nadal's limit and the coefficient of 
friction.
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(4) For the case in which the lateral forces on both wheels are 
in the same direction (a negative angle of attack), the sum 
of the two wheel L/V ratios for the axle is less than the 
sum of Nadal's limit and the coefficient of friction.

Criterion (1) represents the classical Nadal 's limit, which is appro
priate for large effective angle of attack conditions (greater than 1.0 
degree). Criteria (2) and (3) represent modifications to Nadal's limit 
which correct for the conservative nature of Nadal's limit at small 
positive effective angles of attack, and criterion (4) is formulated for 
negative effective angles of attack. Most of the scenarios in which wheel 
climb derailment is considered represent flanging wheel lift, and the 
vertical force on the flanging wheel is less than the vertical force on the 
non-flanging wheel. For these cases, criterion (3) is appropriate. Thus 
for a large number of cases of interest, if the sum of magnitudes of wheel 
L/V ratios on the axle is less than the sum of Nadal's limit and the 
coefficient of friction, a wheel climb derailment is not imminent. For a 
typical U.S. freight car wheelset with a maximum wheel-rail flange contact 
angle of 65 degrees operating under conditions of varying friction, the sum 
of L/V magnitude ratios is tabulated as below:

Sum of L/V Magnitudes
1.75 
1.42 
1.30 
1.28

Friction Coefficient
0.1
0.3
0.5
0.7

The limiting values of the sum of L/V magnitudes increase as the 
friction coefficient decreases. Thus, if.a criterion for a friction-
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coefficient of 0.5 is selected as 1.3, the criterion is conservative for 
conditions with lower friction coefficients.

It is noted that Chapter XI [1] recommends a derailment wheel climb 
criterion in which the sum of L/V magnitudes is less than 1.3. While this 
criterion is applicable and conservative for most derailment scenarios of 
interest, it would not be conservative for cases in which the flanging 
wheel vertical load is greater than the nonflanging wheel vertical load.
For those cases, alternative criteria such as those described in criteria
(1) and (2) are appropriate.

Large vehicle motions leading to the vehicle hitting wayside obstruc
tions or other vehicles, to separation of the carbody from the truck, or to 
damage of car and track components can result from a number of conditions. 
The establishment of vehicle safety performance criteria in terms of limits 
to excessive motions during the safety analysis and testing of a car are. 
dependent upon specific car geometry. For example, the motion envelope 
which can be allowed to avoid wayside obstructions can be established [11]; 
however, the roll motion limits of a specific vehicle to remain within the 
envelope are vehicle specific. Additionally, the motions permitted to 
avoid car-truck separation and excessive vehicle forces are somewhat 
vehicle dependent. Thus., while detailed criteria must be somewhat vehicle 
specific, these criteria can be established from consideration of the 
operating envelope, car-truck separation effects, and excessive forces 
leading directly to damage,

1.3.3 Test Scenarios and Evaluation Criteria
A defined set of analytical and experimental test conditions and 

criteria must be established to evaluate the safety performance of a new
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vehicle critically and rapidly. The number of analyses and tests performed 
to qualify the safety performance of a new car are limited by both cost and 
time considerations. Thus, a finite set of test scenarios must be 
identified which can identify the limits to safety considering the range of 
vehicle conditions, track conditions, and operating conditions which may 
occur in practice. Because only limited field testing is feasible, a 
general goal is first to use critical field tests to establish performance 
limits of the most critical conditions and then to use analyses which have 
been confirmed by the field tests to explore conditions which have not been 
tested and to evaluate the potential for nontested conditions to represent 
potential problems. As a part of test planning, analyses can provide 
information concerning the sensitivity of performance to the variations in 
vehicle parameters expected from vehicle to vehicle in a fleet or as a 
vehicle has been in service over time. Thus, while it is not possible to 
conduct field tests for all conditions, a carefully selected set of 
critical field tests coupled with comprehensive analytical studies can 
provide a meaningful safety evaluation of new cars.

Efforts to develop a set of critical test scenarios and safety 
criteria for new cars have been described in the analytical study 
referenced in [5] and the experimental study referenced in [4] which 
together with historical field test data have been used to formulate the- 
recommendations of Chapter XI [1],

The test scenarios described in Chapter XI include evaluation of the 
vehicle on:

(1) Unperturbed tangent track to identify the vehicle lateral 
stability limits in terms of hunting speed

(2) Unperturbed, spiral entry and constant radius curved track to 
identify wheel climb derailment propensity
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(3) Vertically perturbed track with crosslevel perturbations 
which excite vehicle rock and roll to determine wheel 
unloading and maximum car roll angle which could lead to car- 
track separation or derailment

(4) Vertically perturbed track including a bump to represent 
grade crossings and a series of periodic in-phase perturba
tions to excite vehicle pitch and bounce near resonant condi
tions to determine whether excessive wheel unloading occurs

(5) Laterally perturbed track with periodic 39-foot sinusoidal 
alignment perturbations under a 1.0 inch wide gage condition. 
These perturbations are designed to excite vehicle lateral 
and yaw motions under resonant conditions to determine if 
wheel climb derailment conditions are approached.

(6) A condition with curved, perturbed track which has in-phase 
periodic perturbations in both gage and crosslevel to 
determine if either wheel climb derailment or excessive 
wheel unloading occurs.

The test scenarios in Chapter XI are designed to represent a combina
tion of conditions which are expected to represent meaningful limits for 
safety evaluation. A set of tests can only practically evaluate a finite 
set of conditions. Thus, for a given vehicle, additional conditions to 
those specified may be important. For example, the yaw-sway tests are con
ducted only for track disturbances with 39-foot perturbations. For some 
vehicles, other wavelengths of track perturbation would represent more 
severe conditions. Thus, experimental tests need to be complemented with 
analytical studies to explore operating conditions and changes in the 
vehicle and track which are not represented in the specific safety tests 
conducted.
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2. ANALYTICAL MODEL FORMULATION

2.1 CURRENT STATUS OF RAIL VEHICLE MODELING
In the past few years, several general purpose dynamic simulation pro

grams have been developed for evaluation of rail vehicle dynamic perfor
mance. These efforts have built strongly on past work in which models have 
been developed for a specific vehicle or class of vehicles to assess 
hunting or curving or the response to track perturbations. Three general 
purpose programs are

(1) NUCARS, Association of American Railroads
(2) VAMPIRE, British Rail (BR)
(3) MEDYNA, Deutsche Forschungs und Versuchsanstadt fur Luft 

und Raumfahrt, Munich, West Germany
All three of these programs can construct a dynamic model of a rail 

vehicle from an assembly of car parts, suspension elements, and wheel sets. 
The programs contain a wheel-rail interaction model which computes 
wheel-rail forces and moments based upon Kalker's formulation [15]. These 
models can represent arbitrary wheel and track profiles and track lateral 
and longitudinal perturbations and thus are generally useful for evaluation 
of rail vehicles over a wide range of conditions. While these models are 
based upon the application of first principles in mechanics and dynamics 
and have produced results which have been compared with available test 
data, none have been fully validated in terms of the complete range of 
conditions approaching the limits to safety. Additionally, the programs 
currently have some limitations with respect to their ability to represent 
the types of friction which typically occur in U.S. freight vehicles.
While the models represent the current state-of-the-art in rail vehicle
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modeling and have built strongly upon previous modeling efforts and model 
validation studies, further effort is still needed in the development of 
models validated for limiting wheel-rail conditions which occur as safety 
limits are approached.

In the current research effort, a model is formulated which, like 
those cited above, employs a state-of-the-art wheel-rail model. (The 
wheel-rail model is very similar to that utilized in NUCARS.) The current 
research model was developed in the same time period as NUCARS and VAMPIRE 
and reflects discussions held with AAR and BR researchers in its formula
tion. Thus, the model described in this report is representative of the 
current rail vehicle modeling capability, and the general results of the 
model are expected to be similar to those of the models cited.

2.2 CONCEPTUAL MODEL FORMULATION
A model has been formulated for a two-axle prototype vehicle tested by 

the AAR at the Pueblo Test Center. The model for the specific vehicle has 
been developed within a general model framework using a matrix equation 
formulation which can be used for the efficient development of models for a 
spectrum of rail vehicles.

The model framework has been developed specifically to meet a number 
of objectives. First, the model must represent vehicle dynamic performance 
in response to tangent and curved superelevated track containing vertical 
and alignment track perturbations. Second, the model must be valid for 
extreme conditions involving significant displacements of the vehicle 
suspension into contact with geometric stops and significant displacements 
of the wheels with respect to the rail requiring representation of wheel- 
rail mechanics under wheel climb conditions. Thus, a nonlinear model has
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been formulated to accurately represent large dynamic motions which occur 
at safety limits.

The model framework uses a general matrix equation formulation repre 
senting Newton's Law equating the sum of the forces on a mass to the mass 
times the acceleration which may be written in terms of the products of
(1) a mass matrix and acceleration vector, (2) a damping matrix and 
velocity vector, (3) a stiffness matrix and displacement vector, and (4) 
number of forces, as shown in the following equation:

M X + 0 X + K X = WGW + FGF +FGI + FI + FC

The terms in this equation are defined as follows:

M: Mass matrix; contains all mass and moment of inertia terms
on the diagonal

X: Second derivative of the degree of freedom vector; contains
all the states' second derivatives

0: Structural damping matrix; contains damping values of
flexible modes on the diagonal

X: First derivative of degree of fredom vector; contains
all the states' first derivatives

K: Structural stiffness matrix; contains stiffness values
for the flexible modes on the diagonal
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X: Degree of freedom vector; contains all the states

WGW: Weight vector; contains all weight forces

FG: Force geometry matrix; contains all geometry terms
pertinent to calculating suspension forces and moments

F: Suspension force vector; contains suspension forces

FG1: Rail force vector; contains rail forces and torques

FI: Inertial force vector; contains purely geometric inertial
forces (those that depend upon only track geometry)

FC: Cross term force vector; contains state rate/geometry
coupling inertial force terms.

A specific vehicle model is implemented by defining the appropriate 
model state vector, the mass, the damping and stiffness matrices, and the 
system forces which represent nonlinear characteristics of wheel-rail 
interactions and suspension forces.

2.3 WHEEL-RAIL INTERACTION MODEL
Wheel-rail interaction models which represent nonlinear geometry, as 

well as nonlinear creep force-creepage relationships, have been developed 
and are currently used in many state-of-the-art models. Forces and torques 
developed for a wheel set are strongly influenced by local contact geometry,

2-4



Left Flange

Right
Contact
Plane

Single—point 
Tread Contact

Two—point 
Contact

Single-point 
Flange Contact

THREE REGIMES OF CONTACT

FIGURE 2-1. WHEEL/RAIL GEOMETRY

2-5



as well as by creep force-creepage relationships. As illustrated in Figure
2.1, a rigid wheel set may interact with a rail so that one or more points 
of contact occur between each wheel and the rail. The resulting contact 
area geometry depends upon both detailed wheel and track geometry and know
ledge of the profiles is required to characterize the interaction. As a 
wheelset is displaced laterally, wheel-rail contact changes from the wheel 
tread region to the flange region, where multiple contact points may occur 
between the wheel and rail. As the flange is approached, significant 
changes in the contact geometry occur including the wheel rolling radius 
and the contact angle, as shown in Figures 2.2 through 2.5 respectively for 
AAR and CN Heumann (CNH) wheel profiles interacting with new rail and mea
sured profiles on 5-degree and 10-degree curves at the Pueblo Test Center. 
The figures show that there are significant differences in rolling radius 
and contact angle at the same lateral excursion for the two profiles on new 

^ rails. Similarly,' for the same CNH wheel profile interacting with new rail 
in the 5-degree curve and worn rail in the 10-degree curve, significant 
differences in rolling radius and contact angle occur for the same wheelset 
displacement. In the simulation model developed, tables of wheel-rail 
geometry as a function of wheelset displacements for a specific wheel set- 
rail condition are used to represent the detailed contact area geometry 
based upon the Hertzian solution to determine the contact area between two 
elastic bodies in contact.

The forces and torques generated by a wheelset interacting with a rail 
are a function of the local geometry and the contact patch constitutive 
relationship between lateral, longitudinal, and spin.creep forces and 
creepages, i.e., local relative lateral, longitudinal and spin velocities 
in the contact area. The general form of the lateral creep force versus
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lateral creepage shown in Figure 2.6 consists of an approximately linear 
relation between force and creepage, and as an increasing fraction of wheel 
slippage occurs, a constant saturation creep force is approached with full 
wheel slip. While the linear portion of the characteristic is generally 
represented as relatively independent of the sliding friction coefficient, 
in saturation with full slip, the creep force is a strong function of the 
sliding friction coefficient. A consistent formulation for computation of 
the creep forces has been developed by Kalker [15] with creep forces 
computed as a function of detailed wheel-rail contact geometry, as well as 
creepages ranging from zero to full slip. The Kalker representation 
(tables) is used in the model developed in this report with the detailed 
development of the equations described in Appendix B.

The role of geometry and friction in the generation of wheel-rail .
interaction forces is illustrated in Figures 2.7 and 2.8, which show the

•>nondimensional moment on the wheel set versus P/W (the ratio of net lateral 
wheel set force divided by vertical load) for a given set of conditions as a 
wheel set is displaced laterally through the tread region onto the flange. 
Data for an AAR wheel profile and CNH wheel profile on new rail for two 
values of wheel-rail friction coefficient are plotted. The data show that 
the torque-lateral load characteristic is relatively independent of fric
tion for a wheel set with no yaw angle on tangent track. However for the 
wheel set with a 10-mrad yaw angle On a 10-degree curve, a significant 
difference occurs in moment for the same lateral force between the case 
with a wheel-rail friction coefficient of 0.5 and 0.25. The data show that 
changes in friction can significantly influence wheel-rail forces under 
high slip conditions.
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FIGURE 2-7. NONDIMENSIONAL YAW MOMENT VERSUS LATERAL FORCE CHARACTERISTIC ON TANGENT TRACK, NO WHEELSET YAW
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2.4 SIMULATION MODEL FOR PROTOTYPE VEHICLE
A schematic representation of the two-axle prototype vehicle is shown 

in Figure 2.9. The vehicle consists of a beam-like carbody supported on two 
axles through swinglink-leaf spring suspensions. A description of the vehi
cle, which is designed for carrying trailers is contained in Reference [12]. 
In the model vehicle, the twelve degrees of freedom listed in Table 2.1 have 
been defined including rigid carbody lateral, vertical, roll, pitch, and yaw 
displacements, as well as flexible carbody vertical and lateral bending and 
longitudinal twist motions. Each axle is represented with a lateral and yaw 
degree of freedom.

In addition to the 12 explicit degrees of freedom, 2 types of implicit 
degrees of freedom are used— one for each axle rotation in the computation of 
wheel-rail spin creep and a second for each bushing spring in the computation 
of the longitudinal damper-bushing forces.

For all rotational and flexible degrees of freedom, small angle assump
tions are employed in equation derivations. These are valid even for the 
current large displacement model, since the angles of the major body compon
ents, even under extreme conditions, are small enough for the small angle 
assumption to be valid. With the small angle assumption, the strokes across 
the suspensions are directly proportional to angles of rotation, and moment 
arms used in calculating suspension torques are constant. In addition to the 
small angle assumption, only first bending modes are considered, since higher 
body modes have frequencies outside the primary range of model interest.

The suspension of the dual-axle vehicle utilizes a leaf spring for ver
tical springing and damping. The carbody is hung from the leaf spring 
through swinglinks which are hinged in the center. The swinglinks provide 
both the lateral and longitudinal stiffness. The lateral damping is caused

2-15



2-16



by dry friction in the swinglinks while the longitudinal damping is provided 
by a hydraulic damper. This damper is connected to the car frame through a 
rubber bushing. A schematic of the suspension is shown in Figure 2.10.

TABLE 2.1 VEHICLE DEGREES OF FREEDOM

X( 1) = Carbody Lateral
X( 2) = Carbody Vertical
X( 3) = Carbody Roll
X( 4) = Carbody Pitch
X( 5) = Carbody Yaw
X( 6) = Carbody Vertical Bend
X( 7) = Carbody Lateral Bend
X( 8) = Carbody Longitudinal Twist 
X( 9) = Leading Wheel set Lateral 
X(10) = Leading Wheel set Yaw 
X(11) = Trailing Wheel set Lateral 
X(12) - Trailing Wheelset Yaw

In this section the elements of the suspensions between the car and 
wheel sets are described. The detailed suspension force equations are pre
sented in Appendix C. The model incorporates four sets of longitudinal, 
lateral, and vertical suspension elements, one set associated with each wheel

2.4.1 Car/Wheel Longitudinal Suspension
The car/wheel longitudinal suspension is a swing hanger suspension which 

is oriented vertically with the wheelset connection point at the top and the
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car connection point at the bottom. As the car and wheelset move longitu
dinally relative to each other, there is an effective pendulum length which 
affects the stiffness of the suspension. Although the pendulum length is 
variable, the stiffness of this first stage is represented as constant over 
the range in which the pendulum swings freely. The pendulum stiffness is:

KLON WGTCAR
4-LLON

where
KLON: Longitudinal swing hanger stiffness
WGTCAR: Car weight
LLON: Effective longitudinal pendulum length

In addition to the pendular spring, an axle guard effectively serves 
as a very high second-stage stiffness. Damping is provided by a hydraulic ~ 
damper connected to the carbody through a rubber bushing. The modeling of 
this series spring-damper element is discussed in Appendix C. Figure 2.11 .. 
shows an idealization of the car/wheel longitudinal suspension.

Strokes across the car/wheel longitudinal suspension are considered 
positive when the wheel connection point is displaced in the positive 
direction relative to the car connection point.

2.4.2 Car/Wheel Lateral Suspension
The car/wheel lateral suspension is a swing hanger suspension, which is 

oriented vertically with the wheelset connection point at the top and the car 
connection point at the bottom. The stiffness of the lateral suspension as 
the car and wheelset move laterally relative to each other is determined from
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the swing hanger pendulum stiffness in a similar manner as the longitudinal 
suspension.

The first and smallest pendular stiffness occurs during relatively small 
strokes when the full length of the swinglink is in motion. If the stroke is 
large enough, a stop is encountered, cutting the swinglink length in half and 
thereby doubling the theoretical pendular stiffness. Experiments have shown 
that the leaf spring contacts the axle guard at this point, which leads to a 
higher second-stage stiffness than that predicted using only the effective 
pendulum length [13],

The final change in stiffness occurs when the axle guard stop is 
encountered. This final stiffness is substantially larger than the second- 
stage stiffness. Damping is provided by coulomb friction in the swinglinks. 
Figure 2.12 shows an idealization of the car/wheel lateral suspension.
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2.4.3 Car/Wheel Vertical Suspension

The car/wheel vertical suspension is a two-stage leaf spring. Because 

it is two-staged, a loaded car generally operates in the region of the 

stiffer second stage. The leaf spring is modeled as a hysteretic element 

which consists of a two-stage piecewise linear spring in parallel with cou

lomb friction. The model used to represent the leaf spring has been adapted 

from a detailed study of the damping and stiffness properties of leaf springs 

[14], In the model, the transition from positive to negative coulomb damping 

is represented as an exponential trajectory. Figure 2.13 shows an idealiza

tion of the car/wheel vertical suspension.

2.5 VEHICLE AND TRACK PARAMETERS

The parameters representing the vehicle body and suspension elements for 

the prototype vehicle are summarized in Appendix D. These parameters have 

been determined by AAR from measurements of vehicle components for the 

unloaded vehicle.

.The vehicle was operated on a series of track segments constructed to 

establish Chapter XI track conditions. For each of these conditions, the 

wheel-rail profile appropriate for the track section as measured in the field 

was used in the simulations. These profiles are summarized in Appendix D. 

Addditionally, for perturbed track tests, field measured track lateral and 

vertical perturbations were used to represent the test track directly. These 

sections of field track geometries have been stored on magnetic disks in a 

form convenient for simulation. Thus, simulations conducted in this study 

have utilized measured track data for perturbed track sections.
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3 . VEH ICLE PERFORMANCE EVALUATION

3.1 SCOPE OF STUDY

An extensive set of field tests was conducted on the unloaded two-axle 

vehicle equipped with instrumented wheel sets. These tests were conducted on 

tangent, curved, and perturbed track specifically constructed at the AAR 

Test Center to provide track conditions described by Chapter XI. These 

tests have provided some of the most detailed dynamic performance data 

available in North America [6 ]. The test data provide an opportunity to 

assess both the performance of the prototype vehicle and capabilities of the 

analytical model to predict field performance. In the study described in 

this report, areas of agreement and disagreement between the field data and 

the simulations are identified, and, in particular, the fidelity of the 

wheel-rail model is assessed. Additionally, simulations have been conducted 

to complement the field tests by assessing conditions for which test data 

are not available. These simulations were designed to determine performance 

for vehicle or track conditions which have been identified as important in 

an overall evaluation of the vehicle-safety-related dynamic performance.

3.2 VEHICLE LATERAL HUNTING STABILITY

The unloaded baseline vehicle was simulated operating on unperturbed 

tangent track to assess vehicle lateral stability. Time histories of the 

vehicle leading wheelset lateral motions from an initially displaced lateral 

position of 0.35 inches at 100 mph and at 105 mph are illustrated in Figure 

3-1. At 100 mph, the initial displacement dies out, and the vehicle is 

stable. At 105 mph, however, sustained hunting oscillations occur with 

flange-to-flange wheel lateral displacement.
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Field tests conducted on the unloaded vehicle operating on tangent 

track indicated no evidence of sustained hunting between 40 mph and 90 mph. 

Thus, the field tests and simulation generally agree.

In shakedown tests of the vehicle prior to field testing, the vehicle 

longitudinal suspension which includes an elastically mounted hydraulic 

shock absorber, was tuned to provide good lateral stability. The simulation 

parameter values reflect the field test values of the parameters as deter

mined by AAR tests. Additional simulations, summarized in Figure 3-2, were 

conducted to evaluate the influence of the shock absorber on the hunting 

speed. As the hydraulic damper is reduced to 50-percent effectiveness, the 

vehicle hunting speed decreases to 60 mph, and as the hydraulic damper is 

reduced to 25-percent effectiveness, the hunting speed decreases to 33 mph. 

These simulations indicate that an effective hydraulic damper is required to 

achieve an acceptable hunting speed for the vehicle.

The baseline simulations were conducted for the vehicle operating on a 

dry track with a wheel-rail friction coefficient of 0.5. Simulations con

ducted with the lower friction coefficient of 0.4, reflecting the presence 

of some moisture or lubrication, have indicated that the hunting speed 

increases to above 110 mph. Thus, these simulations illustrate, as has 

often been observed in field testing, that a reduction in the wheel-rail 

friction coefficient increases the hunting speed.

3.3 STEADY-STATE CURVING

An extensive set of field data was measured using instrumented wheel- 

sets for the vehicle operating on 5-degree, 7.5-degree and 10-degree curves 

at the Pueblo Test Track. The instrumented wheelsets provide measurements 

of vertical, lateral, and longitudinal force for each wheel on the vehicle.
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Data summarizing the steady-state forces, torques, and axle angles occurring 

as the vehicle traversed the curves at constant speed, for two runs each in 

clockwise and counterclockwise directions, are summarized in Figures 3-3 

through 3-9. Also summarized in each plot are simulation results based upon 

measured wheel-rail profiles for the curves. To indicate the sensitivity of 

the simulations to changes in wheel-rail friction coefficient, results are 

shown for wheel-rail coefficients of 0.5 and 0.4.

The measured wheel vertical forces for four experimental runs at each 

speed on each curve for all of the test runs are plotted in Figures 3-3 and 

3-4. Also plotted are corresponding computer simulations conducted with 

wheel-rail coefficients of friction of 0.4 and 0.5. These data show the 

transfer of vertical force from the inner wheels to the outer wheels as 

vehicle speed is increased from below balance speed to above balance speed. 

The trends in the test data as a function of speed are similar to those of 

the computed data. Very little difference occurs between the two sets of 

computed data for friction coefficients of 0.4 and 0.5. The test data 

plotted for clockwise and counterclockwise tests have, in general, about as 

much variation in their values for a given test as the variation between the 

test data and the computed data. The primary difference between the test 

data and computed data is for the lead inner wheel, where the experimental 

data for every test indicates a lower vertical load than does the computed 

data. Part of this difference may be due to the instrumented wheel set cali

bration, since the total sum of the measured vertical forces on the four 

wheels was 600 pounds less than the stated vehicle weight and the front-axle 

measurements identified were lower than those expected from the vehicle 

weight distribution.
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-1- -  -  + m u = .4 a  CW 2 V CCW 2

FIGURE 3-7. STEADY CURVING WHEELSET L/V RATIOS - TRA IL ING  EDGE
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The net lateral forces on the front and rear axles for each test are

plotted in Figure 3-5. The computed data plotted show very little sensi

tivity to a variation in wheel-rail friction coefficient from 0.5 to 0.4. 

Both the computed data and the test data show identical trends for the 

lateral force variation as the vehicle speed increases from an underbalanced 

to an overbalanced condition. Test data for the trailing axle have rela

tively little variation with a maximum of 500 pounds among the four test 

runs for each test condition and are in relatively close agreement (+500 

pounds) with the computed lateral forces. The lead axle test data have 

relatively significant variations between tests run clockwise and counter

clockwise. The major difference, of greater than 2,500 pounds, occurred on 

the 10-degree curve. It is thought that this difference in test data was 

caused by suspension friction and axle misalignment; however, causes have 

not yet been conclusively determined. The computed data lie between the 

clockwise and counterclockwise data for the lead axle on the 1 0-degree curve 

and exhibit similar trends to the test data.

Plots of L/V'ratios for each wheel for all of the tests are summarized 

in Figures 3-6 and 3-7. The computed data show that the wheel L/V ratios 

for the 5-degree curve are relatively insensitive to changes in friction 

levels. They show more sensitivity for the 7.5-degree and 10-degree curves 

where increased flanging occurs. For the 10-degree curve, a reduction of 

between 0.05 and 0.01 occurs in wheel L/V when the friction coefficient is 

reduced from 0.5 to 0.4. The L/V ratios for the lead outer wheel are the 

largest recorded during the test. For this wheel, L/V ratios increased from 

approximately 0.05 for the 5-degree curve to 0.4 for. the 7.5-degree curve to 

0.5 for the 10-degree curve. The trends in both the test data and the 

computed data as speed increases and the degree of curvature increases are
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similar. All of the computed and test data indicate L/V ratios of less than 

0.8 in all tests. For the 10-degree curve, data variations in L/V of 0.25 

occurred between clockwise and counterclockwise data. The computed data lie 

between these two sets of test data for the lead outer wheel. Data for the 

trailing axle indicate L/V ratios of less than 0.3 for all curves.

The axle net yaw torque and yaw angles for each test are plotted in 

Figures 3-8 and 3-9, respectively. Although these quantities are relatively 

insensitive to changes in the wheel-rail friction coefficient for the 5- 

degree curve, the computed yaw angle and torque of the lead axle on the 1 0- 

degree curve vary significantly with changes in friction coefficient from 

0.4 to 0.5, with the lead-axle yaw angle increasing from 8 mrad to 21 mrad 

as the coefficient of friction is increased from 0.4 to 0.5. Similarly, the 

yaw torque increases from approximately 20 inch-kips to 60 inch-kips. Thus, 

the yaw torques resulting from longitudinal creep forces in high-degree 

curves where significant flanging occurs are relatively sensitive to changes 

in friction levels.

For the 5-degree curve, there is relatively close agreement between the 

tested and computed values of yaw torque and yaw angle. In contrast, for 

the 1 0-degree curve where significant flanging and creep force saturation 

occur, the analysis predicts significantly higher yaw torque when based on a 

friction coefficient of 0.5. That is, a computed torque of 60 inch-kips for 

the lead axle compares with test data in the range of 20-40 inch-kips, a 

computed torque of 160 inch-kips for the trailing axle compares with test 

data in the 40 inch-kip range. The sensitivity of yaw torques to changes in 

friction in strongly flanging conditions make the precise comparison of test 

data and computed data difficult. In these strongly flanging conditions, 

small changes in wheel-rail contact geometry, as well as in friction and
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creep force saturation mechanisms, can significantly influence the produc

tion of longitudinal forces. Both experimental measurements and the compu

tation of wheel-rail forces are difficult under strongly flanging conditions 

because of the strong sensitivity of wheel-rail forces to small values of 

displacement.

To provide a view of the overall vehicle curving performance, wheel L/V 

ratios have been computed for a wheel-rail friction coefficient of 0.5 and 

the baseline wheel-rail geometry (Heumann wheel profile on new 136-pound 

rail) for curves of 5-degrees to 15-degrees. These data, plotted in Figures 

3-10 and 3-11, illustrate that under these nominal conditions wheel L/V 

ratios less than 0.6 occur under all operating conditions. For this range 

of curves, the simulation indicates that the unloaded vehicle curving 

performance does not approach severe wheel climb.

3.4 VEHICLE RESPONSE TO ALIGNMENT PERTURBATIONS

Tests were performed on the vehicle operating at speeds of 10 mph to 80 

mph over 0.5 inch wide gage track with sinusoidal 39-foot periodic alignment 

variations of 1.25-inch amplitude. Data measured during the test series 

included the longitudinal stroke, minimum vertical load, and axle L/V ratios 

for the front axle, and the lateral strokes and peak lateral wheel loads for 

the front and rear axles. In Table 3-1, these data are summarized and are 

compared with computed data for the baseline vehicle. Both the computed 

data and test data for suspension longitudinal stroke for the front axle 

indicate that as speed increases from 20 mph to 70 mph the longitudinal 

strokes decrease, but then increase from 70 mph to 80 mph. The stroke 

amplitudes indicated, by the model longitudinal stroke data for all speeds 

are approximately 50-percent larger than those of the measured data. The
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FIGURE 3-10. STEADY CURVING WHEELSET L/V RATIOS WITH
SUPERELEVATION OF 6 INCHES - LEADING AXLE
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FIGURE 3-11. STEADY CURVING WHEELSET L/V RATIOS WITH
SUPERELEVATION OF 6 INCHES - TRAILING AXLE
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TABLE 3-1. VEHICLE RESPONSE TO 39-FOOT SINUSOIDAL
ALIGNMENT PERTURBATIONS

Velocity
(mph)

Experimental
Results

Model 
Results 
f i = 0.5

Model 
Results 
t i = 0.4

Longitudinal 10 .60 .940 .822Suspension 15 .47 .716 .607Stroke, 20 .35 .575 .480Front Aide 25 .35 .484 .436(in) 30 .35 .426 .413
40 .30 .436 .365
50 .22 .391 .342
60 .20 .352 .321
70 .28 .336 .347

. 80 .32 .419 .362
Longitudinal 10 .989 .869
Suspension 15 .774 .662Stroke, 20 .623 .537Rear Axle 25 = .526 .449(in) 30 .439 .387

40 .371 .300
50 .298 .248
60 .274 .243
70 .275 .258
80 .290 .281

Lateral 10 .12 .151 .059
Suspension 15 .15 .129 .044Stroke, 20 .18 .131 .037
Front Aide 25 .15 .124 .081

(in) 30 .20 .169 .126
40 .15 .325 .147
50 .18 .259 .150
60 .30 .225 .279
70 .70 .361 .407
80 .70 .645 . .764

Lateral 10 .20 .288 .133
Suspension 15 .20 .661 .141
Stroke, 20 .22 2.130 .143
Rear Axle 25 .22 2.341 .356

(in) 30 .28 2.490 .500
40 .45 2.002 .701
50 .80 1.160 .691
60 1.20 1.083 .803
70 1.45 .991 1.450
80 1.40 2.336 2.080
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TABLE 3-1. VEH ICLE RESPONSE TO 39-FOOT SINUSOIDAL ALIGNMENT
PERTURBATIONS (CONTINUED)

Velocity
(mph)

Experimental
Results

Model 
Results 
A* = 0.5

Model 
Results 
H = 0.4

Maximum Lateral 10 1540 3833 3110Load, Front Axle 15 1250 3481 2927
(lbf) 20 750 3653 3005

25 1020 3770 305230 1020 3691 3370
40 1250 4921 4331
50 1800 5884 3780
60 2550 4406 5309
70 6100 6180 7021
80 5500 7320 8034

Maximum Lateral 10 1540 3856 3158
Load, Rear Axle 15 1540 3434 2397

(lbf) 20 750 3493 2251
25 1250 3599 1583
30 1250 4707 1282.
40 1540 1370 1241
50 2050 1167 1291
60 2300 1238 1344
70 2050 1304 1421
80 2050 2835 2110

Front Axle 10 .40 .977 .761
L/VaSum 15 .35 .845 .700

20 .25 .833 .712
25 .35 .809 .679
30 .32 .760 .707
40 .40 .822 .698
50 .45 .899 .569
60 .55 .629 .700
70 .85 .852 .877
80 .95 .965 .971

Rear Axle 10 .982 .763
L/V Sum 15 .839 .657

20 .843 .513
25 .823 .343
30 .755 .278
40 .338 .215
50 - .203 .226
60 - .215 .248
70 • .230 .256
80 - .505 .393
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TABLE 3-1. VEH ICLE RESPONSE TO 39-FOOT SINUSOIDAL ALIGNMENT
PERTURBATIONS (CONTINUED)

Velocity
(mph)

Experimental
Results

Model 
Results 
p = 0.5

Model 
Results 
0 = 0.4

L/V Ratio, 10 .20 .494 .389Wheel 1 15 .15 .422 .35520 .15 .388 .34225 .17 .385 .34830 .20 .376 .35240 .25 .423 .397
50 .30 .509 .28760 .42 .354 .274
70 .75 .318 .316
80 .75 .358 .500

L/V Ratio, 10 .20 .511 .420
Wheel 2 15 .20 .461 .399

20 .10 .445 .410
25 .17 .435 .314
30 .17 .422 .29940 .15 .340 .279
50 .15 .353 .402
60 .20 .434 .514
70 .22 .571 .64480 .25 .651 .723

L/V Ratio, 10 * .501 .415
Wheel 3 15 - .458 .375

20 - .472 .316
25 - .452 .224
30 - .535 .181
40 - .194 .161
50 ° .151 .171
60 - .163 .174
70 .171 .182.
80 - .331 .249

L/V Ratio, 10 ■» .482 .365
Wheel 4 15 .415 .332

20 .399 .224
25 .377 .172
30 .416 .169
40 .167 .172
50 .169 .181
60 - .183 .199
70 .190 .206
80 - .278 .226
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The data for the measured suspension lateral stroke for the front axle 

has local peaks at approximately 20 mph and 30 mph and then monotonically 

increasing strokes above 40 mph. The model data illustrate local peaks at 

approxmately 20 mph and 40 mph and then monotonically increasing strokes 

above 60 mph. The front-axle test data vary from a stroke of 0.12 inches at 

10 mph to 0.7 inches at 80 mph, while the model data vary from 0.15 inches 

at 10 mph to 0.65 inches at 80 mph.

The measured rear suspension stroke increases monotonically from 0.2 

inches at 10 mph to 1.4 inches at 80 mph. The model rear stroke is sensi

tive to changes in wheel-rail friction. At a friction coefficient of 0.5, 

the model stroke indicates a resonance in the lateral suspension at 30 mph 

with the stroke approaching 2.5 inches. At a friction coefficient of 0.4, 

however, the stroke exhibits no resonance and monotonically increases with 

speed reaching a maximum stroke of 2 inches at 80 mph.

The measured and computed peak lateral loads for the front and rear 

axles, for a friction coefficient of 0.5, are plotted in Figure 3-12. The 

model predicts significantly higher lateral loads at speeds below 40 mph 

than those indicated by the measured data. Predicted front-axle lateral 

loads are twice those measured.

Test data for axle L/V ratios is only available for the front axle. 

Front axle L/V ratios predicted by the model approach 1.0 at both low and 

high speeds, while measured data indicate axle L/V ratios of approximtely 

0.4 at speeds below 50 mph and. L/V ratios of 0.85 and 0.95 at 70 mph and 80 

mph respectively. Both the test data (for the front axle) and the model 

data (for both axles) indicate that axle L/V ratios at all speeds are below 

a value of 1.3 which is associated with a potential wheel climb condition.

model data  a re  r e l a t i v e l y  in s e n s i t iv e  to  changes in  f r i c t i o n  c o e f f ic i e n t

from  0 .5  to  0 .4 .
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In summary, the model indicates that a possible rear-axle lateral 

resonance condition exists for levels of wheel-rail friction of 0.5, a con

dition that is not observed in the test data. The resonance is a strong 

function of wheel-rail friction and is not present when values of friction 

are reduced to 0.4. Both the model and the test data indicate that axle L/V 

ratios for all speeds are less than 1.0, a value below the value (1.3) 

nominally associated with severe wheel climb.

Simulations were also conducted with the vehicle to determine its 

response to 78-foot wavelength periodic perturbations of 1.25-inch ampli

tude, which should excite vehicle yaw motion. The results of these simula

tions for baseline conditions are summarized in terms of axle L/V ratios in 

Table 3-2. These data indicate axle L/V ratios of less than 1.0 at speeds 

of 20 mph to 70 mph and axle L/V ratios of less than 1.3 at 80 mph.

3.5 VEHICLE RESPONSE TO CURVED TRACK PERTURBATIONS

The vehicle was tested on a section of 12-degree curved track which had 

a combination of 1 .0 -inch amplitude in-phase alignment and gage variation 

coupled with 0.5-inch amplitude crosslevel variations, as prescribed by 

Chapter XI. This track geometry is designed to excite vehicle lateral and 

roll motion while negotiating a curve. The vehicle wheel force measurements 

for speeds of 14 mph to 23 mph are summarized in Table 3-3. Tests were not 

conducted above 23 mph because unsafe conditions with significant wheel 

climb were approached. The test data in terms of peak lateral wheel loads 

on the front axle and axle L/V ratios are plotted in Figures 3-13 and 3-14, 

respectively. In both figures, the test data are compared with model 

results computed for speeds of 14 mph to 28 mph, the speed at which the 

model indicated excessive wheel climb. In both the experiment and the
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TABLE 3-2. VEH ICLE RESPONSE TO 78-FOOT SINUSOIDAL
ALIGNMENT PERTURBATIONS

Velocity
(mph)

Experimental
Results

Model
Results

0.5
Front Axle 20 c .519L/V Sum 30 .518

40 *> .545
50 .593
€0 o .670
70 « .862
80 1.023

Rear Axle 20 . e .433L/V Sun' 30 = .408
40 • .393
50 - .396
60 .238
70 - .886
80 - 1.242
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TABLE 3-3. VEHICLE RESPONSE TO ALIGNMENT AND CROSSLEVEL
PERTURBATIONS ON 12-DEGREE CURVED TRACK

Velocity
(mph)

Experimental
Results

Model 
Results 
M — 0.5

Model 
Results 
A* = 0.4

Maximum Lateral 14 5800 5366 5288Load, Wheel 1 16.5 7600 6383 6557(lbf) 18.5 7400 7549 7133
21 7400 7952 7857
23 8000 8444 8322
25.5 8989 8970
28 9357 9237

Maximum Lateral 14 2700 3303 2794Load, Wheel 2 16.5 3700 3296 2782(lbf) 18.5 4000 3272 2764
21 3700 3261 2732
23 3300 3234 2708
25.5 3262 3151
28 3172 2781

Front Axle 14 1.15 1.046 .888
L/V Sum 16.5 1.35 1.056 .926

18.5 1.35 1.083 .963
21 1.65 1.157 1.033
23 1.60 1.207 1.066
25.5 1.303 1.142
28 1.265 1.165

Rear Axle 14 .75 1.053 .870
L/V Sum 16.5 .78 1.035 .784

18.5 .80 1.004 .738
2 1 .87 .970 .712
23 .90 .938 .704
25.5 .900 .729
28 .954 .806

Minimum Percent 14 53 68 66
Vertical Load 16.5 46 66 65

{%) 18.5 46 62 63
21 46 57 59
23 34 57 59
25.5 51 57
28 41 52
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TABLE 3 - 3. VEHICLE RESPONSE TO ALIGNMENT AND CROSSLEVEL PERTURBATIONS 
ON 12-DEGREE CURVED TRACK (CONTINUED) rtKlUKdATIONS

Velocity
(mph)

Experimental
Results

Model 
Results 
\x = 0.5

Model 
Results 
H — 0.4

L/V Ratio, 14 .81 .564 .535Wheel 1 16.5 .80 .610 .630
18.5 .85 .711 .67121 .80 .779 .73023 .83 .848 .75725.5 .881 .805
28 .846 .842

L/V Ratio, 14 .60 .522 .428Wheel 2 16.5 .67 .519 .42718.5 .70 .516 .427
21 .95 .513 .426
23 .92 .509 .42525.5 .507 .424
28 .507 .423

L/V Ratio, 14 .50 .466 .411Wheel 3 16.5 .52 .462 .420
18.5 .50 .461 .409
21 .47 .467 .409
23 .50 .465 .408
25.5 .440 .434
28 .487 .497

L/V Ratio, 14 .35 .587 .505
Wheel 4 16.5 .37 .573 .463

18.5 .40 .549 .443
21 .47 .533 .433
23 .52 .510 .419
25.5 .551 .399
28 .665 .379
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FIGURE 3-13. DYNAMIC CURVING TEST PEAK LATERAL WHEEL LOADS ON FRONT AXLE
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model, the peak lateral force on the inner wheel of the front axle remained 

relatively constant at approximately 3,500 pounds as the speed increased.

As speed increased from 14 mph to 25 mph, the speed at which the tests were 

stopped, the peak force on the outer wheel increased from 5,500 pounds to

8,000 pounds. The test data and model data are in good agreement on the. 

peak lateral forces as a function of speed.

As shown in Figure 3-14 the test data indicate higher L/V ratios than 

do the model predictions. The measured front-axle L/V ratios increase from

1.15 at 14 mph to above 1.6 at 23 mph, while the L/V ratios predicted by the 

model increase from 1.05 at 14 mph to above 1.3 at 28 mph. Since the 

lateral loads predicted by the model and measured in the tests are in good 

agreement, higher L/V ratios in the measured data are primarily attributable 

to the lower vertical loads, i.e. more wheel unloading, in the measured 

data, as shown in Table 3-3. Both the test data and the model predictions 

indicate that significant wheel climb occurs on the outer wheel as the speed 

is increased beyond 20 mph and that unsafe wheel climb conditions are 

approached at 23 mph in the test and at 28 mph in the model.

3.6 VEHICLE RESPONSE TO CROSSLEVEL PERTURBATIONS

The vehicle was tested on track with 0.75-inch amplitude crosslevel 

perturbations repeated every 39 feet. The perturbations are out of phase on 

the right and left rails to excite roll and twist in the car. In Table 3-4, 

test data are summarized for speeds varying from 36 mph to 60 mph and com

pared with model data. In Figure 3-15, the vehicle roll angle is plotted as 

a function of speed where the roll angles in both the test data and model 

are noted to increase from approximately 1.6 degrees to 2.1 degrees over the 

speed range. The roll angles for the unloaded vehicle are relatively small,
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TABLE 3-4. VEH ICLE RESPONSE TO CROSSLEVEL PERTURBATIONS

Velocity Experimental Model(mph) Results Results
Minimum Percent 15 • 75Vertical Load, 36 53 69Wheel 1 (% ) 44 42 55

52 40 61
60 42 60
75 - 55

Minimum Percent 15 • 76
Vertical Load, 
Wheel 2 {% )

36 62 62
44 45 52
52 48 59
60 50 60
75 - 48

Minimum Percent 15 O 80
Vertical Load, 36 55 58
Wheel 3 {% ) 44 43 61

52 36 57
60 32 58
75 - 57

Minimum Percent 15 « 80
Vertical Load, 36 65 47
Wheel 4 (% ) 44 55 62

52 62 61
60 58 62
75 *' 56

Carbody 15 a 1.53
Peak-fco-Peak 36 1.7 1.69
Roll Angle 44 1.8 1.73
(degrees) 52 1.8 1.80

60 2.1 1.93
75 - 2.17
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and the unloaded vehicle is  not excited sign ificantly by the crosslevel 

perturbations.

3.7 VEHICLE RESPONSE TO VERTICAL PERTURBATIONS

Tests were also conducted on the vehicle over track with periodic 39- 

foot in-phase 0 .75-inch amplitude vertical perturbations designed to excite 

vehicle bounce and pitch. In Figure 3-16, the percent of wheel unloading 

measured as a function of speed in the tests  is  plotted and compared with 

model predictions. Both the te s t  and model data indicate that as speed 

increases the percent of wheel unloading increases with fu ll unloading 

occurring at 70 mph.

In Table 3-5, test data for the unloaded vehicle traversing a single 

vertical bump with a 2-inch amplitude and 36-foot length are summarized.

The test data, as well as model predictions, indicate that as the speed is 

increased to 40 mph complete wheel unloading occurs. The test and model 

data closely agree.
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TABLE 3-5. VEHICLE RESPONSE TO VERTICAL PUMP

« Velocity Experimental Model
(mph) Results Results

Minimum Percent 20 . 26
Vertical Load, 30 20 5
Front Axle 40 0 0

(%) * 50 14 0
60 5 0
70 - 0
80 - 0

Minimum Percent 20 - 18
Vertical Load, 30 24 5
Rear Axle 40 0 5

(%) 50 5 5
60 3 0
70 0
80 0

Maximum Percent 20 175
Vertical Load, 30 197
Front Axle 40 350

(%) 50 280
60 210
70 250
80 - 330

Maximum Percent 20 - 160
Vertical Load, 30 - 190
Rear Axle 40 - 290

{%) 50 - 230
60 - 220
70 - 280
80 - 310
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4. SUMMARY AND CONCLUSIONS

4.1 UNLOADED VEHICLE DYNAMIC PERFORMANCE

Extensive te s t  data have been obtained and processed for the unloaded 

two-axle prototype vehicle operating over Chapter XI prescribed track con

ditions. Computer simulations have also been conducted to determine vehicle 

performance. The results of these studies have indicated the following:

(1) Hunting Speed on Unperturbed, Tangent Track

(a) Field tests indicated a hunting speed above 90 mph.

(b) Simulations indicated a hunting speed above 100 mph.

(2) Constant Speed Negotiation of Unperturbed, Constant Radius

Curved Track

(a) Field tests indicated maximum wheel L/V ratios of 0 .1 , 

0.51, and 0.6 on 5-degree, 7 .5-degree and 10-degree 

curves, respectively.

(b) Simulations indicated maximum wheel L/V ratios of 0.05, 

0.36, and 0.51 on 5-degree, 7.5-degree and 10-degree 

curves respectively. Additional simulations indicated 

maximum wheel L/V ratios of less than 0.6 for curves from

5-degree to 15-degree.

(3) Yaw-Sway Tests on Track with Sinusoidal Alignment Perturbations

(a) Field tests conducted from 10 mph to 80 mph indicated a 

maximum axle L/V ratio of 0.95.

(b) Simulations indicated a maximum axle L/V ratio of 0.98 

between 10 mph to 80 mph.

(4) Dynamic Curving on Curved Track with Alignment and Crosslevel

Perturbations
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(a) Field tests indicated axle L/V ratios above 1.35 above 20 

mph and were terminated at 23 mph.

(b) Simulations indicated axle L/V ratios above 1.2 at 23 mph 

and severe wheel climb at 28 mph.

(5) Rock and Roll on Crosslevel Track Perturbations

(a) Field tests indicated a maximum carbody roll angle of 2.1 

degrees between 36 mph and 60 mph.

(b) Simulations indicated a maximum carbody roll angle of 2.2 

degrees between 15 mph to 75 mph.

(6) Bounce and Pitch on Vertical Sinusoidal Track Perturbations

(a) Field tests have shown fu ll wheel periodic unloading above 

70 mph.

(b) Simulations have indicated fu ll wheel unloading above 70 

mph for short time periods corresponding to a distance of 

approximately three fee t.

(7) Bounce and Pitch in Negotiation of a Single Vertical Bump

(a) Field tests  have shown fu ll wheel unloading above 40 mph.

(b) Simulations have indicated full wheel unloading above 40 

mph for short time periods corresponding to a travel 

distance of less than four feet.

In both fie ld  tests and simulations, the unloaded two-axle vehicle 

approached an unsafe condition associated with severe wheel climb only in 

the dynamic curving te s ts , where tests  were stopped at 23 mph. These track 

conditions represent severe conditions in which cars equipped with standard 

three-piece freight trucks would also be expected to experience severe wheel 

climb conditions at low speeds, as shown by the te s ts  described in reference 

[4].
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Additional simulations have indicated that the vehicle hunting speed 

decreases sign ifican tly , to 33 mph, i f  the hydraulic damper effectiveness 

is  reduced to 25 percent of i t s  design value. Thus, an effective  hydraulic 

damper is  necessary to maintain a hunting speed in excess of 90 mph. Simu

lations have also shown that the specific  performance of the vehicle in terms 

of L/V ratios on curved and/or perturbed track can be strongly influenced by 

both wheel-rail profiles and by wheel-rail friction  coeffic ien ts. However, 

the variations in both wheel-rail profiles and friction  coefficients from the 

baseline values considered in the study did not result in a change from safe 

to unsafe operating conditions.

4.2 MODEL VALIDATION

The two-axle unloaded baseline vehicle model has agreed closely with 

f ie ld  test data for all tests  conducted on vertical and crosslevel track 

perturbations with an indication within +_5 mph of when wheel unloading 

conditions are reached. These series of tests which excite vehicle bounce, 

pitch and roll motions primarily exercise the vehicle suspensions and are not 

strongly influenced by wheel-rail creep forces. The close agreement between 

the model and tes t results provides strong confidence in the modeling and 

parameter values of the vehicle vertical suspension and carbody mass and 

inertia parameters.

The vehicle model has also predicted trends and identified maximum L/V 

ratios which closely agree with fie ld  tests that excite the vehicle laterally  

through wheel-rail creep and the vehicle's lateral and longitudinal suspen

sion. However, the lateral plane model has not agreed closely with field  

test data in a number of specific  measurements, including the lateral suspen

sion stroke in sinusoidal alignment tests and the wheel set alignment in 10-
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degree steady-state curving te s ts . For both of these conditions, the model 

results were shown to be sensitive to changes in wheel-rail friction co effi

c ients, as well as wheel-rail profile . While these differences occurred, it  

is  also noted that in dynamic curving severe wheel climb conditions were 

identified by both the fie ld  tests  and simulations at comparable speeds.

While the model validation with respect to detailed wheel-rail creep force 

prediction under flanging conditions requires some additional attention, in 

the prediction of general trends and in the identification of safety limiting 

conditions, the model and fie ld  test data are in good agreement.

4.3 CONCLUSIONS AND RECOMMENDATIONS

The study has shown the importance of a complementary evaluation through 

f ie ld  tests and computer analyses of the safety performance of rail vehicles. 

Although fie ld  tests  are indispensable in vehicle evaluation, they are neces

sarily  limited by time and cost to a specified number of tests representing " 

the behavior of the vehicle for a given set of operating and track conditions 

on the day of the te s t . Analyses are valuable to explore vehicle operating 

conditions which may result from changes in vehicle parameters such as 

friction  or damping in suspension elements, wear, changes in wheel profile , 

and variations in vehicle loading, as well as to variations of track condi

tions such as changes in track profile due to wear, lubrication, and track 

perturbations such as alignment wavelengths not included in te s ts . The 

effectiveness of an analytical model depends strongly on it s  degree of 

validation by experimental data. The model developed in the study has been 

shown to generally agree with fie ld  data in terms of predicting trends and 

identifying cases where safety lim its are aproached; however, the model did 

not have universally close agreement with the fie ld  data in terms of

4-4



predicting detailed longitudinal and lateral creep forces for conditions 

involving substantial flanging. Further effort to assess the basic wheel- 

rail model under flanging conditions is  recommended in terms of acquiring 

additional fie ld  test data, as well as reviewing the wheel-rail model formu

lation for these cases. Additionally, all of the comparisons between the 

model and test data have corresponded to the ligh tly  loaded wheel conditions 

(7,000 lbs) for the unloaded car. Further effort is required to assess in 

detail the validity of the wheel-rail model under wheel loads appropriate for 

a fu lly  loaded vehicle, particularly for strongly flanging conditions.
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A p p e n d i x  A

K i n e m a t i c  Analysis

Several frames of reference are used to describe the motion of the carbody 

and wheelsets in the two-axle vehicle dynamic curving model. The position of the 

carbody center of mass is expressed with respect to the ideal “deterministic” track 

frame, which is a frame which undergoes curving and superelevation rotations like 

the actual track, but which is not subjected to crosslevel perturbations. Since the 

wheel/rail mechanics are most naturally described in the plane of the track, the 

positions of the wheelsets are expressed relative to the local track plane which 
rolls relative to the deterministic track frame.

To achieve the rotational equations of each element in the simplest form, it 
is necessary to express the motion of each object in a frame of reference which 
is a principal axis system of the body. Such a principal axis system may or 
may not be fixed with respect to the body. If the body possesses rotational 
symmetry as a wheelset does, then the body has many principal axis systems.

In the following, it is assumed that the velocity of the rail vehicle is constant. 
The small angle approximation is frequently used, and terms of second order or 
higher in angles are neglected in the final results. Also, the product of a small 
angle and the time derivative of a small angle are considered to be negligible. 
Terms consisting of the product of two small angular velocities are neglected in 

acceleration relations.
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A . l  T h e  P h y s i c s  of C o o r d i n a t e  R o t a t i o n s

In Newton’s second law, the relation

F  =
r

is valid only when the acceleration is referred to an inertial coordinate frame, 
where F  is the force acting on the body, P  is the momentum of the body, m is 
the mass, and a is the inertial acceleration of the body. This is the governing 

equation for translational motion.

The corresponding equation for rotational motion is given by:

r = d H
dt

where r is the torque acting on the body, H  is the angular momentum, I  is 
the moment of inertia tensor, and uj is the instantaneous angular velocity of 

the body with respect to an inertial frame. If the angular momentum vector is 

expressed in a coordinate system which is a principal axis system of the body, 
then the off-diagonal elements of the inertia tensor are zero and the expression 

may be simplified. Furthermore, the inertias are then time invariant. However, 
this will generally be the case only when a transformation to a noninertial frame 

of reference has been made.

Consider a coordinate system, F ,  which is rotating with respect to inertial 
space. This angular velocity may be expressed in the coordinates of the F  system, 

as follows: I
( w f x  A

I —F u> = U>FY

\  UJpz J {F}

The notation adopted here should be explained, as it will be used extensively. 
The I  and F  superscripts are used to indicate that a velocity or acceleration
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refers to the motion of the F  frame relative to the I frame. In the case of a 
position vector such as

xR f

it is understood that the notation indicates the vector from the origin of the I 
frame to that of the F  frame. Column vectors will often be subscripted with a 
letter or number indicating in which frame of reference the vector is expressed. 
Thus, the {F} below indicates that the component values are expressed in terms 
of the F  frame coordinates.

u =

/ ux \

Uy

\u z J

=  Ux^F +  uYjF +  Uzkp

{F}

The fundamental law giving the inertial velocity of a point Q , expressed 
with respect to the rotating frame of reference F, is as follows:

5 ('*) = 5 W  + I M  + x

where, on the right hand side, the ordinary derivative gives the time rate of . 
change in the inertial system, the partial derivative is the simple time derivative 
with respect to the rotating system, and the angular velocity is that of the 
rotating system relative to the inertial frame. In component form,

T Q  r  P  JT Q
—  Vx +  Vx +  ZUf y  —  y^FZ

JVy  =  IVy +  +  X U F Z  —  Z U F X

Ivz =  Iyz +  Fvz +  y^FX -  a:uFy

A  - 3



For rotational motion, the angular velocity of the body relative to inertial 
space is projected onto a principal axis coordinate system of the body. The 
angular momentum is thus easily found. For all bodies except the wheelsets, 
the frame of reference in which the motion will be expressed is the body-fixed 
coordinate system. In the case of the wheelsets, the appropriate frame of reference 
is a principal axis system which does not spin with the wheelset.

If frame F  is a principal axis system of the body, and G  is a body-fixed 

principal axis system, then the angular momentum is given by:

IH a =

f Ix^GX \ 

IyUGY

\ Iz^GZ J {F}

For the wheelset dynamic equations, the objective is to calculate the torque t 
in the frame F , since it is more convenient than the spinning body-fixed system 

G. Using (A.1.1),

T  =

(Ix&GX \ (

Iy & g y +

V Iz&GZ y {F} V

( IZ^FY^GZ~Iy^FZ^GY \ 

IxUFZUGX — Iz^FX^GZ (A.1.2)

If the F  frame is identical to the G  frame, as is the case for the carbody:

/ Ix & g x  \ 

Iy & g y

V I z &g z  J

+

{G}

/ (Iz — Iy)ugYUgZ ̂
{ l x  -  I z )u g x w g z

\{Iy  - Ix )u g XUGY J {G}

(A.1.3)
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The translational acceleration of an object expressed in the coordinates of 
a rotating reference frame must also be considered. The time differentiation 
operation implied in (A.1.1) may be applied twice to the position of a point Q, 
measured with respect to a frame with origin F  located at position 1R F and 
rotating at an angular velocity I u F relative to inertial space. With vrel and 
arei corresponding to the relative motion of Q with respect to the frame F ,  the 
following acceleration formula is found:

^  ( IgQ) = &  i'**) + + 2 <A-L4>
+ IQF x f R9 + IuF X (juF x FM9̂

In component form,

^a<X =  ^ aX  d~ ^  a<x  d” 2{v z <jJf y  — VyUpz) d* ZUlpy ~  y&FZ  

+  y ^ F X ^ F Y  d"  Z U p x ^ F Z  ~  x ( u p Y 2 d* W F Z 2)

1 dy  — 1aF +  Fdy  +  2 { v x ^ F Z  ~~ v Z <jJF x )  d- XU>FZ ~  Z& FX  

+  Z(jJ f y <jJ f z  d- X U Jp x ^ F Y  ~~ y ( “ F X 2 +  W p z 2)

1 0% +  2 [vy u f x

+  XUfx^FZ d~ yUpY^FZ ~ Z(UF X 2 +  k>FY2)

In practice, this equation is applied repeatedly through successive transfor
mations to achieve the acceleration of a complicated motion with respect to an 
inertial frame of reference.
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A . 2  S y s t e m  T r a n s f o r m a t i o n s

Two distinct motions must be examined in the transformation from inertial 
coordinates to the deterministic track frame. The first is a rotation about the 
vertical axis due to the curvature of the track in vehicle curving situations. The 
second is a rotation about the longitudinal axis at the inside rail due to the track 
superelevation. A further rotation about the track centerline due to the crosslevel 
perturbation is necessary to describe the perturbed track plane. Finally, the 
track surface perturbation is a vertical displacement of the actual track centerline 
relative to the deterministic track plane. The three body rotations then follow.

Figure A .l illustrates the six coordinate rotations used to describe the most 
complicated system, the wheelsets. The crosslevel rotation is not used for the 
carbody system.

Before proceeding further, a discussion of our right-handed coordinate system 
is required. The i  axes are oriented longitudinally parallel to the track, positive 
in the direction of motion of the vehicle; the j  axes axe aligned across the track 
in the lateral direction, positive to the left when looking forward; and the k 
axes are oriented vertically, with the positive direction upward. The x  direction 
is along the t axis, the y direction is along the j  axis, and the z direction is 
along the k axis. The particular coordinate systems under consideration have 

unit vectors which have been rotated in one or more ways with respect to the 

“pure” definitions above.
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(A) Track Curvature
(B) Superelevation
(C) Crosslevel

(D) Body Yaw
(E) Body Roil
(F) Body Pitch

F ig u re  A . l  Diagram showing the six coordinate rotations for the wheelset 
system. The other bodies do not include the perturbed track plane rotation.
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A . 2.1 R o ta t io n  o f the D  and  P  T rack  Fram es

The rotational motions of the deterministic and track plane systems is 
developed in this section. Let the inertial system be denoted by the subscript 
I  and the horizontal system, which curves with the track, be marked with the 
subscript H . The horizontal frame is rotating with respect to the inertial frame 
with an angular velocity which depends upon the vehicle velocity V  and the 
curvature of the track p.

OJH =  - V p k H =
0 A
0

V - V p J  {H}

The superelevated track frame S rolls with respect to the horizontal frame 
H  at a rate given by the time rate of change of the superelevation angle. The 

origins of the two frames coincide at the top of the right rail of the ideal, 

deterministic track.

H u s =  4>s e

The coordinate rotation necessary to express a vector u, expressed in H  

frame coordinates, in terms of S frame coordinates may be written in matrix 
form as follows, where the approximate matrix is obtained by considering the 

small angle approximation:

/ 1 0 ° \
0 cos($5#) sin(^5£-)

Vo —  sin^ss) COS {<j>SE)

f 1 0 0 A
0 (1 -  \<t>SE2) $SE U{H}

Vo — <I>SE (1 - k4>SE2) )

Since the matrix is an orthogonal transformation, the inverse operation of trans
forming from the S frame to the H  frame may be found by simply taking
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the transpose of the matrix. Figure A.2 illustrates the basic track and wheelset 
coordinate systems in the absence of crosslevel perturbations.

The origin of the deterministic track frame D  is located midway between 
the rails (assuming no track irregularities), and as it is fixed in the S system 

it has the same angular velocity with respect to inertial space as the S frame. 
Additionally, the S and D  frame coordinate systems are perfectly aligned.

(  <t>SE \

—<}>s e V p

V-(l - \ej>SE2)Vp) {£>}

Applying the small angle approximation,

i  -*Dw  =
(  <!>s e  \  

0

V -  V p j

*UD =

m

(  4>s e  \

—  <t>SEVp

V - V p  J {D}

(A.2.1)

As noted previously, the wheelsets are most naturally considered in reference 
frames which roll with the crosslevel of the track, a rotation about the track 
centerline. The sum of the superelevation and crosslevel rotations occurs frequently, 
and it is useful to define the total roll 4>t r  of the track plane relative to the 
horizontal frame, as well as its derivatives, as follows:

<f>SE +  4>c r  

4>s e  +  4>c r
V V
<f>SE +  &CR

<f>TR =  

4>TR =  

4>t r  =

The inertial angular velocity of the track plane may be obtained as the sum 

of two vectors,
Iu p =  TujD +  Du P
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Figu re  A .2  Coordinate systems of wheelset and track.
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Since the longitudinal axes of the D  and P  systems are aligned, one may 
write directly,

(  <I>c r \

D ~ p  w = 0

V o ; {D}

The angular velocity and acceleration of the P  frame are then given as 
follows:

IuSp

( <pTR V 
0

\ ~ V p J

(  4>t r  \ 

—  4>s e V p 

\  - V p  J

(  j>TR \

o

{£>} V - V p J  {p }
V

(  <t>TR \  

~  <f>TR.Vp

(A.2.2)

{D} v - v p  ; {py

A.2.2 Translation of the Origin of the Track Frames

The translational velocity and acceleration of the origin of the two track 

frames are basic quantities used in many other expressions. Relations (A .l.l)  
and (A.1.4) are applied as appropriate for successive frames of reference, with 

the following results.
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(  V  \ /  aVp \

0 £  ( w )  = - V 2p
dt2 V /

\ a<i>SE J {D} \<f>SEV2P +  o4 s e )

(  V  ^
/  aVp  \

0 T i  ( 'R f )  = - V 2p
dt2 V J

\a<i>SE ) { p } \<I>t r V 2p +  afasE )

(A .2 .3 )

{D}

{P}

A.2,3 Translation Relative to the Deterministic Track Frame

The translational motion of the carbody, expressed in the coordinates of the 

deterministic track frame, may be considered with relations (A .l.l) and (A.1.4) 
and the following values for a body with center of mass at point Q,

tR d juJd  =

(  4>s e  \ 

-<I>s e V p

V - ( l  - & S E 2)V p J {D}

( x \ ( ( x \

d R q = y Vrel — y Urel = y

{ z j \ z ) {D \ \ z ) {D }

The velocity and acceleration of a point Q in the D  frame is determined 

with (A .l.l) and (A.1.4), as follows:
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/  x +  V  +  yV  p \

y -  xV p  -  zfisE

Vi +  (a +  y)4>sE +  x ^s e V p J {£,}
/  x +  (a +  y)Vp -  x p V 2p

y — V 2p — z $ s e  — %Vp 

\ z  +  4>s e V * p  +  [a  +  y )< j> sE  +  x <I>s e V P  J { d }

(A .2 .4 )

A .2.4 Translation Relative to the Track Plane

The frame of reference of the track plane is used to describe the motion of 

the wheelsets. The derivation of translational motion relative to the P  frame is 

similar to that with respect to the D  frame, except that the track roll due to 

crosslevel must be included.

The motion of a point Q at the center of mass of a body which is described 
in P  system coordinates may be written using relations (A.1.1) and (A.1.4) with 

the following values:
(  <j>TR \

tR p tQ p  = -4> t r V  P 

V —(1 -  \4>TR2)V p J  {P}

(
/x\ f x \

P R ?  = y vrel — V &rel — y

w {P } [ z j {P} \ z j {P}

Note that the transformation between D  and P  frames may be used to 
transform to D  coordinates a point expressed in the P  system:

f  x \

2/(1 — \<f)CR2) —  Z(f)CR
1 A

IR P =

f x \

y -

\ z j {p }
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The velocity and acceleration are then:

d_

dt

£ _  
dt2

/  x  +  V  +  yV p \  

y — xV p  -  zcf)TR 

\Z +  apSE +  yj>TRj {p}
/  x  +  (a +  y )V p  > '

y -  V 2p -  z<J>t r  -  xV p
« V V

\& +  $Tr V  P +  a<f>SE + y$TR J {P}

(A.2.5)

Ao2.5 Rigid Body Rotations

Each rigid body in the model has some rotational freedom relative to its 
corresponding track system. The most general case of yaw, roll, and pitch freedom 
will be considered here.

Three rotations are required to describe the angular position of a body with 
respect to a track system T. First, an intermediate frame 1 is defined by a 
yaw motion ip relative to the T  frame. The body frame 2 is defined by a roll 
displacement with respect to the intermediate frame 1 by the angle <p. Finally, 
the body frame F  is given by a pitch displacement 0.

Combining these rotations defines the transformation from the track frame 

T  to the body frame F. To second order, it is given as follows:

/ 1 —\{02 + ip2) iP -6 \

<P U{ T }

V 9 + <pip —<p + Oxp l-i(<P2 +  62)J

To first order, the forward and inverse transformations are given by:
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f 1 - e \ ( l -4> & \

U{F } — — 4> l H T }  = i U{F} (A.2.6)

V e -<P i ) { - e <P 1 )

The angular velocity of the F  frame with respect to the T  frame may be 

written as

t 6jf  =  i})ki +  j>i2 +  9jf

The angular velocity of the T  frame relative to inertial space may be 

simply expressed in the T  frame coordinates, using either (A.2.1) or (A.2.2) as 

appropriate.
( u t x \

i  - Tuj = u t y

\ u TZ J {T}

Transforming this vector to the F  frame, and adding the angular velocity of 
the F  frame relative to the T  frame, one arrives at the angular velocity of the 
F  system relative to inertial space. Preserving angular terms of second order in 
the resulting expressions,

1 - 1
U F X  =  (l —  2 ^ 2 +  ®2))w rx +  <£(1 —  2^2) +  t/jWTY — 9{u>t Z +  4>)

u ip Y  =  —t fw T x  +  ( 1  —  r ( V ’ 2 +  <f>2) ) u T Y  +  <f>(wTZ +  ip) +  0
&0 l

W FZ =  9 { u t x  +  4>) — <pUTY +  ( 1  — ~ { 9 2 +  (f>2) ) { ^ T Z  +

Applying the small angle approximation,
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( v f x \ ( <j> + WTX A
I —F CJ = u>f y = 9 +  u t y

V Wpz ) in +  WTZ J

(A .2 .7 )

The second order relations may be differentiated, neglecting terms consisting 
of the product of a small angle and a small angular velocity, as well as two small 
angular velocities. The terms Oupz and 9u>f x  are eliminated from the roll and 
yaw relations, respectively, since they will be the product of small angular rates 
for the carbody. In the case of the wheelsets, these relations will be applied to 
the 2 frame, not W , for which 6 is identically zero.

( & F X \

UJpY (A.2.8)

\  & F Z  / i n
where:

V
& F X  =  <t> + 1Xhi

•3 o[i> + w t z )

UJpY ~  @+ Cj T y  — 1pd>TX +  4>{ij) +  Cj x z )
V

(Jjpz =  ^ + U T Z  + + X■3

Equations (A.1.2) and (A. 1.3), applied to the time rate of change of rotational 
momentum in a reference frame F , may both be expressed in a general form, 

with the cross terms x  suitably defined:

(Ix^FX \ (  X x \

T = IyUlpY + XY

\ Iz&FZ / KXZ J
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tx = Ix{4 -  6i> + Tx) + Xx
Ty =  ly(0 + <j>if + Ty) + XY

Tz =  I z $  +  94 +  r  z) +  Xz

These expressions may be reduced in order to uncouple the angular acceler
ations from each other. Solving for each of the individual angular accelerations 
and neglecting small terms, with the cross terms x from (A.1.2) or (A.1.3) as 
appropriate,

One now seeks expressions for the accelerations -0, <ji, and 9. Defining some
terms T, without writing their detailed components, one may rewrite the above
relations as follows:

$ = X x )  +  0 —  TZ
i-z

- UTX (A.2.9)

0 = 1 , XY) - (f)~— Tz 
iz

—  d?TY +  l/jWTX

V =
h {Tz

xz) - ej^Tx — U>TZ

A . 3  T r a n s f o r m a t i o n s  B e t w e e n  C o o r d i n a t e  S y s t e m s

The motions of the rigid bodies may be neatly described by coordinate systems 
located at the longitudinal positions of the body centers of mass. Interactions 
between these bodies occur at suspension elements which act between two bodies, 
each “end” of which may be considered to be at fixed positions relative to the 
two centers of mass of the bodies to which it is attached. Since these body 
centers are generally described in different D  coordinate systems, a derivation of 
the suspension strokes requires methods to transform between D  systems located 
at different positions along the track. Both translational and rotational differences 
between frames must be reconciled.
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A .3.1 T ran s la tion a l D ifferences Betw een Fram es

Consider two points Q and Q ' which have positions and velocities given in 
coordinate systems D  and D \  respectively. The position and velocity of Q ' may 
be expressed in D  system coordinates by transforming from D ' to S ', then to 
H ',  onwards to H ,  then to S, and finally to D . (Recall that these frames have 
been previously defined.) These steps will be written out below.

First, write the positions of Q and Qf in the D  and D '  frames.

( x \ ( x ' \

d r q = y d ' bP '  = y '

\ z ) \ z ' J

The frame S ' has the same orientation as D ' and is merely shifted laterally 

by the track half-gauge. Then a rotation through the local superelevation angle 

yields the position of Q ' in coordinates of the horizontal frame H '. Thus,

H' B?'

( x' \

a +  y' - z'<j>sE

\z' +  {a +  y')<j>sE'' J {H'}

Considering the transformation from the H  system to the H ' system, both 
a rotation and a translation axe required. The H  and H '  frames have a different 
orientation since the x axis of each frame is directed along the track centerline.

A
The magnitude of the angle of rotation about the uy  axis is approximately 
given by the longitudinal distance times the average curvature. The sign of the 
rotation is negative for the case of 3 '  forward of H  and positive if H '  is aft 
of H .  (This is consistent with the convention that positive curve radii indicate 
curving to the right.) If the longitudinal distance between the two D  frames is
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given by l, and the curvature averaged at the two locations is p a v g  =  (p) a v g > 
then

where:

( 1 7 ° \ /I - 7  0 >

U{H'} = -7 1 0 U{H) U{H} = 7 1 0

V 0 0 1 ) Vo 0 l j

7 = 

l =

- IP a v g
( positive if H '  forward of H  

1 negative if H '  aft of H

Observe that H '  is always displaced laterally in a negative sense from H  
since the track is curving to the right. The magnitude of this lateral shift is 

given approximately by l 2 p a v g /2 '

Finally, note that the vertical position of the right rail does not vary due 
to track superelevation. Then the position of Q ' relative to H ,  expressed in H  
coordinates, may be written by adding two vectors when both are expressed in 

the coordinates of the H  system:

a RQ' =  h R h ' +  h 'r q>

( l  +  x r — y ' i

y  Pa v g  +  a, +  y ' — z'<f>sE +

This expression must be transformed to the coordinates of the superelevated 

track system S, followed by a lateral translation equal to the track half-gauge. 
The resulting vector from D  to Q' is then expressed in D  system coordinates. 
Subtracting these components from the position of Q relative to the D  frame 
yields the difference of position, written in D  coordinates:
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/  x  -  l — x 1 +  y'~t \

d r q -  d r q ' = y +  V p a v g  — y' — z'{<f>sE — 4>s e ) -  x ' l (A.3.1)

\ z  +  {a  +  y'){<i>sE — <I>s e ) — z' — 4>s e 2 Pa v g / {D }

Consider now the difference between the inertial velocities and accelerations 

of points Q'  and Q. Previous formulae provide the value of the inertial velocity 

and acceleration of a point expressed in the coordinates of its local D  frame. The 

difference between the values for two points is obtained simply by transforming 

the value for Q ' to D  coordinates and subtracting the result from the value for 

the point Q.

The inertial velocities and accelerations of the two points may be written as

follows:

I M  =
{D}

( VX \
Vy

\ v z  J  

(ax\ 
a y  

\ a z  J

5  ('*■) “

(*x\

' VZ ' {£>'}

£  ( ' * * )  - a\
\ az  J {D>}

The orientations of the D  and D ' frames are identical to those of the S and 
S ' frames, respectively. The rotation between the D  and D '  coordinate systems, 
to first order, is given as follows:

U{D }  =

(1 -1 0

7 1 ( <i>SE -  <t>SE )

V o  —{4>s e  — 4>s e ')  1

\

U {D '}

Transforming the velocity and acceleration of Q ' to the D  system and
subtracting the result from that of Q  yields the following:
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A . 3 . 2  R o t a t i o n a l  D i f f e r e n c e s  B e t w e e n  F r a m e s

The orientation of the principal axes of each rigid body may be represented 
by roll, pitch, and yaw rotations relative to the appropriate D  system for each 
body, as indicated in (A.2 .6 ). Consider two bodies, F  and F ',  which are oriented 
with respect to the frames D  and D 1 with the following transformation matrices:

( 1 -9\ f  1 -9'\
U { F }  ~ 1 * u {D } U { F '}  = 1 4 f

\ 9 -<t> 1 J V o' -<p> 1 J

These matrices and that which describes the orientation of D '  with respect 
to D  may be manipulated to arrive at the transformation from the F '  to the F  

orientation:

(
U {F }  =

-  ip* -  7 )  - ( 9  -  9 ') \

- ( t p  -  ip' -  7 )  1 {(pF -  4>'f )

(9-9') -{4>F-tt0 1

U{F '} (A.3.3)

where:

<pF =  <PsE + <P 
4>f  =  4>s e ' +  4>
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The above result indicates that the frame F  is obtained from the F '  frame 
by rolling through an angle equal to (4>f  — <f>'F ), by pitching through an angle 
(6 — O'), and by rotating in the yaw sense through an angle (4> — ip' — q ) .

Finally, the difference between angular rates of rotation of the principal axes 

of two rigid body systems is found in a manner analogous to the difference 

in the translational velocities. The differences in the time rate of change of 

angular velocity may be obtained in the same fashion. The angular velocities 

and accelerations may be written as follows:

i  ->F u> =

IuF =

f “ ' x \
I  -F ' fU)y w  = W y

\WZ ) W W z )

f  C)x^ f “ x \
Cjy i f r '  = W y

\& Z  ) {D} ^ w'z )

{ D ' }

{D > }

Applying the transformation from the D ' frame to the D  system in order 
to find the differences in the angular velocity and acceleration between the two 
frames,
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A ppendix B

Wheel /  Rail Mechanics

In this appendix, the dynamic interactions between wheel and rail are con
sidered. Based on the kinematics presented in Appendix A, wheelset translational 
and rotational equations axe found. These relations are then extended to include 

translation of points defined relative to the wheelset frame of reference.

The frictional contact patch forces are calculated using Kalker’s method, 
and the wheel/rail forces are resolved in both the wheelset and track frames 
of reference. With the applied forces given from wheel/rail considerations, and 
kinematic and geometric relations found in this appendix, the equations of motion 
of a wheelset are found for the general case of two points of contact between a 
single wheel and the rail.

B .l  The Wheelset System

The wheelset model includes the wheelset motion which is permitted, which 
involve lateral, yaw, and spin movement. The wheelset roll and vertical position 
of the center of gravity are determined by the constraint of wheel/rail contact. 
The wheelset rolls and is displaced vertically relative to the track plane as a 
result of the differences in left and right rolling radii and the heights of the 
contact patches. The wheelset vertical and roll equations of motion are used to 
solve for the wheelset normal loads; these relations are important even though 
the wheelset motion is constrained in these modes.

Originating at the track centerline in the P  frame, one displacement and 
three rotations are required to describe the motion of the wheelset. The position
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of the center of mass is determined with respect to the perturbed track frame 
P , and it is given by the following,

/ 0 ^ ( 0 A

II yw = yw —  ZW (f>CR

\Z w  ) {py V ZW J
where:

yw  =  wheelset lateral position

zw  =  f 0 +  z w r  +  z s u r f  — wheelset vertical position 

r 0 =  nominal wheelset rolling radius 

zw r  =  vertical height of wheel w.r.t. rail 

z s u r f  — track vertical surface perturbation

The zw r  term is obtained from wheel/rail geometry tables, for it is the 
vertical position of the wheelset centroid as a function of lateral excursion. The 

surface perturbation, z s u r f , is the vertical track roughness perturbation.

B . 1 . 1  R o t a t i o n  o f  t h e  W h e e l s e t

A principal axis coordinate system for the wheelset is obtained by rotating 
through the yaw angle -tjjw and rolling through an angle (f>w- This is defined to 
be the 2  coordinate system for the wheelset, following the discussion of section 
A.2.5. (Note that the wheelset pitch is considered to be a “half-state” since only 
its first derivative, the wheelset spin, is involved in the model.) To first order, 
the transformation matrix from the track plane P  to the 2  system is written 
using (A.2.6) with no pitch angle:

/ 1 tffW 0 \

U{2} = — 0VV

V 0

1  <j>w

-<j>w 1 J

U{P}
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Using the roll transformation from the D  to the P  frame,

u{2> =

( 1 ° \

~i>W  1 [<t>CR +  M  # {£ > }

V 0 —{<f>CR +  4>w) 1 J

The angular velocity of the 2  frame is developed using (A.2.7), with no spin 
term 6, as well as the relations for the P  frame angular velocity from (A.2.2), 
expressed in the P  coordinate frame. The wheelset system W  is axially aligned 
with the 2  frame but is spinning with the wheel.

The angular acceleration may be written for the W  frame, in the 2 coordinate 

system with 0 — 0, using (A.2.8):

where:

( \

<1>WY

\  & W Z  J  { 2 }

V V
Cj w x  =  4>w +  4>t r

v V V
Cj w y  =  Ow — ^ t r Y P — W<f>TR +  — V  p)

<*>wz — i>w — Vp

(B .1 .2 )

The 2  system must be always axially aligned with the W  frame, but it is 
not subjected to the spin accelerations 9w- One may then write:
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f  % x  A

=
V

U W Y — Ow ( B . 1 . 3 )

V / { 2 }

The rotational equations for the wheelset are now found using the general 

solution (A.1 .2 ) with (A.2.9), noting that due to symmetry I w x  =  Iw z ,

4>W =  7 ---- {TW X +  I w y Qw WWz ) ~  <f>TR
iw x

( B . 1 . 4 )

V, 1 1 . V
9 w  =  7 ---- TW Y  —  4W 7 ---- T w z  +  4>TrV P  +  1pW<i>TR

J-W Y  i w z

4>w — 7 — ~ {jw z  — I w y 'Qw u w x ) +  V p  
iw z

B . 1 . 2  T r a n s l a t i o n  o f  t h e  W h e e l s e t

Separate P  frame systems are constructed beneath each wheelset. With the 
approximations previously noted, the position vector and relative motion are found 

below.

(  ° ^
/ 0 A f  ° A

PRW = yw vrel — yw &rel — yw
\z w  ) \ZW  J {P} <zw J

Note that the first and second derivatives zw  and zw  are obtained from kinematic 
considerations involving wheel/rail contact.

Defining the velocity and acceleration of the wheelset, measured in the P  
system, the following is found using (A.2.5) (neglecting small terms):
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V

i  M

£  C * w )

\
y w  —  z w 4>t r  

\  z \ v +  o-4>s e  J  { p y

( aVp

VW ~  V 2p — Z\y<t>TR
sj 2 v v\ z w  +  <f>TRV P +  a<f>SE +  y w < t> T R J {P}

(B.1.5)

1
my/

( Fwx ̂ 
F w y

V F w z J  {py

B ' 1 . 3  D i s p l a c e m e n t  R e l a t i v e  t o  t h e  W h e e l s e t  S y s t e m

The positions of points fixed with respect to the 2 system axe used in the 

consideration of both wheel/rail and suspension forces. The motion of points 
fixed relative to both the wheelset system and the 2  system (which does not 
spin with the wheelset) may be found and expressed in coordinates of both the 
D  and P  frames of reference. (Three of these four cases will be encountered 
in the discussions of wheel/rail interaction and primary suspension forces.) Note 

that the origins of the W  and 2  frames coincide. Consider a point with position 

expressed in coordinates of the 2  system, and with no motion relative to the F  

system, where the F  system may be either the W  or 2  system:

W £ Q  =

< x \ / ° \ ( 0 \

y Vrel — 0 &rel — 0

\ z ) { 2 } VoJ { F } V o  J

Since the position of a point fixed relative to the 2 system is needed, upon 
transforming to the P  and D  systems the following results are obtained:

d R q =  d R 2 +  2R q
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( x -  ytpw \

d r q = yw +  xifrw +  y — zcf>w (B.1.6)

\ zw  +  y<f>w +  z / {p }

( X -  yifrw \

= yw — Zw<f>CR +  XlpW + y —  z (<Pc r  +  4>w)

V zw  +  y{<i>cR +  4>w) +  z /

The motion of points relative to the W  and 2  systems may be considered 
in a general sense using equations (A.1.1) and (B.1.5), where the spin angular 
velocity may be either that for the wheelset W  system or the 2 system. The F  

system is used to represent either of these cases. Note that w ?x and u>f z  are 
small angular rates, whereas ujpy is not a small angular rate when the frame F  

is the wheelset frame W . Applying the small angle approximation,

(B.1.7)

{P}

(  v  + vx  \

VW —  Zy/4>TR +  Vy +  Ztjj\yUJpY +  X(j>w<^FY

\  zw +  a<j>SE +  vz J
(  V +  vx  \

i/W — Zw 4>TR -  <I>CRZW +  VY  +  Ztj)W ^ F Y  +  x {<f>CR +  4>w ) ^ f y  

\ z w  +  a<f>sE +  <t>CRVw +  v z  J

where:

Vx  =  ZUf Y — yUFZ 

Vy =  XOJpz — ZUIpx

V z  —  y U F X  —  X U ) F Y

{D}
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B.2 W heel /  Rail Contact

The forces developed at the wheel/rail contact patches have a significant 
effect on the dynamic performance of a rail vehicle. The total force at a contact 
patch is the sum of the normal force, which acts perpendicular to the plane of 
contact, and the frictional creep force, which acts in the plane of contact.

Consideration of the relative motion between wheel and rail at the points 

of contact yields the wheel/rail creepage, which is a measure of the amount of 
relative slip between the two bodies. The frictional creep forces at the interface 

are determined by the creepages and the wheel/rail contact geometry.

B . 2 . 1  L o c a t i o n  o f  t h e  C o n t a c t  P a t c h e s

The point of contact between wheel and rail may be described with respect : 

to the wheelset center of gravity using 2  system coordinates. The lateral and 

vertical positions arise from consideration of the half-gauge of the track and the 
wheel rolling radius, respectively. The longitudinal component results from a shift 
in the contact patch location as the wheelset yaws. For a positive yaw angle, 
this shift is in the forward direction at the left wheel, relative to the 2  system,, 
and in the negative direction at the right wheel [16]. The contact patch locations 

may be written as follows:

where:

/ a £ \
( ~ A R \

W  fiCPL _ a W g C P R  _ — a

K ~ r L J { 2 } K. - r R  )

(B. 2 .1 )

At =  r^w tan(7x) 
A r = rn'tyw tan(7fl)
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It is convenient at this point to write down the relations for accessing the 
wheel/rail contact geometry tables. The contact parameters are provided as a 
function of wheelset lateral excursion relative to the rail. It is approximately 
correct to assume that the contact geometry for each wheel is independent of 
the other wheel, and thus one may take the net lateral excursion of each wheel 
separately and perform two table lookups. This approach permits implied gauge 
changes due to rail flexibility, and it can also be used to handle models with large 
gauge variations. In the following, ulr  and ijrr  are the lateral displacement of 
the left and right rails, respectively, due to rail and track flexibility.

Vnet,L —  yw — VPER,L ~  yLR (B.2.2)

ynet,R =  yw ~  yPER,R ~  yRR

B . 2 . 2  T r a n s f o r m a t i o n  o f  W h e e l  /  R a i l  R e l a t i v e  V e l o c i t y

In order to consider the wheel/rail contact constraint and the wheel/rail 
creepages, it is necessary to first transform the differences between the velocities 
of wheel and rail to contact patch coordinates.

The contact patch plane at each wheel is defined by a roll transforma
tion about the rail surface. The angle involved in the transformation is the 
angle between the contact patch plane and the wheelset axle, the contact an

gle 6, corrected for the roll of the wheelset axle relative to the track plane, 

4>w° Figure B .l illustrates the necessary rotations at each rail. Since the 
combination of the contact angle and the wheelset roll angle appears fre
quently, it is convenient to define the angle 7  between the contact patch
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and the P  frame. The transformations for the left and right rails are thus:

where:

n 0

U { C P L }  ~ 0 c o s ( 7 l )

u -  s in (7 x,)

n 0

U { C P R } = 0 cos (7 * )

v o s in (7 p )

7  L = h +  4>w

1 R = -  4>w

0 \

sin(7i)

cos^ l ) J
u{P}

0 \

-sin  (^h) 

cos(7 fl) y

u{P}

Relation (B.1.7) gives the inertial velocity of an arbitrary point fixed with 
respect to the W  system, expressed in P  and 2 system coordinates. These terms 
may be transformed to the left and right contact patch planes. Using the small 
angle and small angular rates approximations, with cos 6 =  cos 7  ±  4>w sin 7  and 
sin<5 =  sin7  ±  <f>w cos 7 , and noting that r u w x  — z w 4>t r  «  rcfrw, one finds the 
following:
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Figu re B . l  Diagram showing the contact patch coordinate systems.
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where:

( W  lx^
W  L Y

V WLZ J  {CPL}

d_
dt (XRwPL) d_

dt
' I  fiCPL
L KR )

w l x  =  V  — rjjOw — a uw z

( B . 2 . 3 )

w l y  =  cos('7i)(yw — Vl r  +  ^L^>w)

V f L Z  = C O s (7  i ) ( i w  +  +  O W W X  —  & L 0 w )

—  s i n ( 7 i , ) ( y w  -  2/l p  +

/Wrx^
wry

V 7  { cpjz }̂
where:

d_
dt ( ■w y

d_
dt

' I  -pCPRkr
)

wjix =  V  — rj*0vv +  auwz

( B . 2 . 4 )

way =cos(7jz)(yw - ypp +  rR<f>w)

w r z  — cos (7 h) (zw +  aj>sE — o ^ w x  +  A r Qw ) 

+  sin(7fl)(yvy -  yjir +  tr ŵ )
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B . 2 . 3  W h e e l  /  R a i l  C o n t a c t  C o n s t r a i n t

The constraint that wheel and rail remain in contact implies that v?l z  — 0 
and wr z  =  0. That is, normal to the plane of contact, there is no relative 
motion between wheel and rail. These constraints will be used to simplify the 
creepages in the following section. Formally,

w l z  —  c o s ( '7 Z ) ( i w  +  a $ s E  +  < ^ w x  —  A  l &w )

— sin(7 i) (yw - Vlr +  r^w) (B.2.5)

=  0

WRZ =  cos(-7H)(ivv +  a<j>sE ~ auwx +  A r&w)
+ sin('Yfl) (yw — Vrr + tr<1>w)

=  0

B » 2 ' 4  W h e e l  /  R a i l  C r e e p a g e s

The wheel/rail creepage represents the rigid slip between a small patch of 
steel on the wheel and a patch on the rail at the wheel/rail contact patch, 
normalized with respect to the velocity of the vehicle [15]. The creepages are 
considered in terms of their longitudinal, lateral, and spin components, defined in 
the contact patch coordinate systems. If the translational and rotational velocities 
of the wheel at the point of contact are given by W  and I u w , and the rail 
has only a lateral velocity given by R y , then the following definitions give the 

creepages,

Z c x  =  y ( W  -  R )  • iCp =  y ( W x )

£c y  =  y ( W  — R) • JcP  =  y {W y  -  R y )

Zcsp =  y  { ^ w  -  7wH) • kCp =  y  If2 w  • k Cp
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For the purpose of calculating the creepages, the lateral and longitudinal 
velocity of the wheel may be found with (B.1.7), (B.3.4), and (B.3.5) using the 
angular velocity of the W  system and the positions of the contact patches. The 
creepage definitions may be used with the relations thus found to determine the 
longitudinal and lateral creepages at the left and right contact patches.

The translational creepages axe then given below. As previously noted, the 
lateral rail velocities are taken to be zero in the computational model for numerical 
reasons. It is included in these expressions for completeness.

ZcXL — y\v ~ tlQw  - avwzj

t c Y L  =  y 'c \ ? W +  r L ( $ w  ~  ® W ^ w ) ~  VLr ) j  

i c x n  =  y ^ V  — r R 0w  +  a b J w z ^

t c Y R  =  7cos(/yfl) \ ? W +  T R ^ W ~  Q w i> w ) -  yB fl)}

(B.2.6)

Applying the definition of the spin creepage, relations may be found for the 

left and right contact patches. After cancelling the products of small angles and 

small angular rates,

B - 13



B.3 Contact Patch Forces and M oments

The forces developed at the wheel/rail contact patches have a large effect on 
the dynamic performance and energy dissipation of a rail vehicle. The total force 

at a contact patch is the sum of the normal force, which acts perpendicular to 

the plane of contact, and the frictional creep force, which act in the plane of 

contact.

Transformations to contact patch coordinates and the creepage expressions 

were derived in the previous section. These relations are used in the present 

development of the calculation of the creep forces and their resolution in the P  

and 2  frames of reference.

B . 3 . 1  W h e e l  /  R a i l  C r e e p  F o r c e s

Following the method of Kalker [15] (see also Elkins and Eickhoff [17]), the 
creepages are normalized using contact patch data. The normalization depends 
upon the coefficient of friction and the geometry of the wheel/rail contact. The 
method given below is consistent with recent evidence that the creep force does 
not depend upon the friction coefficient for low creepages.

ep ic x  ePticY sP^CSP
e = f ----  V =  f---- X = /-----

fjLC f i c  fJL

where:

/  =  constant factor, equal to 1.0 for full Kalker method 

c =  V a6

a =  major axis of contact ellipse

b =  minor axis of contact ellipse

1 1( 1 1 1 J _ \
~p ~  4 \ R +  +  R ~  +  R +  +  R2- )

Rf^ =  principal radii of curvature of ra.il

R f  =  principal radii of curvature of wheel

(B.3.1)
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These normalized creepages are used in a procedure in the computational 
model which performs a table lookup to arrive at normalized creep forces in the 
longitudinal and lateral contact patch directions, Tx and r y .  This procedure is 
based on the output from Kalker’s DUVOROL program, as modified by British 
Rail. The normalized forces must be multiplied by the maximum frictional force, 
f i F N , to get the actual friction forces in the contact patch plane, F c p x  and 

F c p y -

F c p x  =  h F n  »7,x ) (B.3.2)

F c p y  =  t * F x  ?y(e, V ,x)

The normal force is the only other force acting between wheel and rail, which 

can be written as F n - The vector sum of these components will be denoted P
for “patch” forces; these forces will be discussed in depth below.

The power dissipated at the contact patch is taken as the dot product of the 

creep force and the relative velocity between wheel and rail. The former consists 
of longitudinal and lateral components, in the plane of contact, determined by

Kalker’s method. The relative velocity between the two bodies is obtained as
the product of the velocity of the vehicle V  and the creepages in the component 
directions. Writing the power separately in the longitudinal and lateral directions, 
and inserting negative signs to yield positive values for energy dissipation,

F c p x  — ~  Fc p x V i c x  (B.3.3)

P c p y  =  — F c p y V  Zc y
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The creep forces and the normal loads must be transformed to P  frame 
coordinates for consideration of their longitudinal, lateral, and vertical effects. 
When these forces are transformed to the 2  frame of the wheelset, and when the 

position vector of the contact patch relative to the wheelset center of gravity is 
expressed in 2  coordinates, the torque on the wheelset due to these forces may 

be found.

B .3 .2  R e so lu t io n  o f  th e  C o n ta c t P a tc h  F orces

The contact patch forces will be written in a fashion to facilitate the 

developments of the next section. In particular, the creep and normal forces and 
moments will be kept separate, for they will be treated differently. The forces 
may be transformed to the P  coordinate system for the purposes of translational 
considerations. These components will then be transformed to the 2  frame of 
reference, and the cross-product with the position vector of the contact patch 
will then give the moments acting on the wheelset.

Inverting transformation matrices presented previously, vectors may be trans
formed from contact patch coordinates to those of the P  and 2 frames. For the 

left wheel:

/1

U{P } =

0 \

0  co s^ i) - s in ( 7 i )

VO sin('yi) c o s ( 'Y l )  J

U{CPL}

/  1 tyw cos (7 i ) - i]jw  sin(7 i )  \

£ { 2 }  = -V ’w COS (<?£,) -  sin(<5L) U{CPL}

v- 0 sin (^ ) cos(SL) )
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For the right wheel, the transformations are:

( 1 0  0 \

U{P} = 0 cos (7 r ) sin(-7fl) U {C P R }

\ o - s i n (i r ) cos('7.r) /

f 1 cos(7 K) i/)W sin(7 fl) N

“ { 2 } = xjjw cos(tffl) sin(5fl)

\ 0 -sin(«5jR) cos(<5h) /

Conversion of the contact patch forces at the left

U{C P R }

yields the following results:

< F c p x l  ^ ( F x l ^ (  F c x l  ^

P l  = F c p y l = F y l = F c y l  +  F n y l

 ̂ F n l  ) {C P L } K F z l  J { P } K F c z l  +  F n z l  J
where:

( B . 3 . 4 )

F c x l  =  F c p x l  

F c y l  =  cos {^ l ) F c p y l  

F n y l  =  — s in ^ iJ -F jv i  

F c z l  — sin (7  l ) F c p y l  

F n z l  =  cos (i l ) F n l

This relation defines the P  frame components of the creep and normal forces 
at the left wheel. It should be mentioned that the N  subscripts correspond to 
the normal forces; the C subscripts relate to the creep forces; the L  indicates 
the left side; an R  is used to indicate the right side. For the right wheel,
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P r  =

where:

( F c p x r ^

F c p y r

V F n r  J  {c p r }

/  F x r  ^

F y r

\ F z r  J  {p y

F c x r  =  F c p x r  

F c y r  =  cos {i r ) F c p y r  

F n y r  =  s in (7  r ) F n r  

F c z r  =  — s in (7fl) F c p y r  

F n z r  =  cos(7  r ) F n r

(  Fcxr  ̂

F c y r  +  F ^ y r  

\ F c z r  +  F ^ z r  J  {p}

(B .3 .5 )

Thus the forces due to creep and normal forces are determined for left and 
right wheels in the P  frame. The rotational kinematic equations for the wheelset 
consider the torques about each axis in the 2 coordinate system. The position 
vectors of the contact patches are given in (B .2.1); these relations express the 
positions in the 2  frame. The contact forces, expressed above in the P  system, 
may be transformed to the 2  frame. The torques due to wheel/rail contact are 

then given by the vector cross-product, as follows:
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f M X L \ /  M e  X L  +  M t fX L  \

r L x  PL = M Y l = M c y l  +  M n y l

^ M z l  ) {2} v M c z l  +  M X z l  J
w h e r e :

(B.3.6)

M Cx l  — — i'l '̂w Fc x l  + {rL ~ 0‘4>w )Fc y l + (rL<t>w + o)Fc z l
M n x l  =  { r L  ~  0’4>w ) F n y l  +  {fL<Pw  +  o) F n z l

M c y l  =  —t l F c x l  -  t l ^ w F c y l  -  & l F c z l  

M n y l  =  —r L ^ w F ^ Y L  ~  & l F n z l  

M c z l  =  —O'Fc x l  +  (A l — a r jjw )F c Y L  

M nzl =  (Al — o.iJ}w )Fnyl

(  M x r  ^ /  M c x r  +  M n x r  ^

? r  x  P r  = M y r = M c y r  +  M N Y r

 ̂M z r  J {2}  ̂M c z r  +  M n z r  J
w h e r e :

(B.3.7)

M c x r  =  - r r R i fr w F c x R  +  (r.R +  0‘4>w ) F c y r  +  (rr 4>w  — <l) F c z r

M nxr =  (fr + a<f>w)FxYR +  [rR<f>w — <l)Fnzr
M C y r  =  —r r F c x r  — t r ^ w F c y r  +  A  r F c z r

M nyr — —rRipwFNYR + ArFnzr
M czr =  gFcxr ~ (Ar — <ni>w)FcYR
M x z r  =  —(A r — ax()w)FNYR
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B .4 Wheelset Equations o f M otion

The basic kinematics of a wheelset have been presented in the first section 
of this appendix. The actual wheelset equations of motion may be found using 
those relations with the contact patch forces discussed above, as * well as the 
forces and moments applied by the suspension connection to the “truck” (which 
happens to be the carbody in this instance). Figure B.2 illustrates the forces 
and moments applied to the wheelset system.

It may be simply stated that the truck exerts a ' lateral force F t w y  and a 

vertical force F t w z  on the wheelset, as well as a roll moment M ? w x  and yaw 

moment M t w z > These forces and moments, in addition to the contact forces, 
axe those that influence the wheelset.

The degrees of freedom for the wheelset consist of lateral, yaw, and spin 

states. (In the computational model, the spin perturbation, or difference from 

nominal spin rate, is integrated. Technically, the perturbation is considered to 

be a “half-degree of freedom.” However, this has no effect on the equations 

considered here.)

The equations of motion are derived for the most general case of two points 

of contact (tread and flange) at each wheelset. Single-point tread contact is an 

ordinary type of contact condition, requiring calculations for one contact patch at 
each wheel. Two points of contact may occur at a single wheel within a small 
range of lateral excursion at the inception of flange contact with the rail. At 
further lateral excursions, single-point contact on the flange may occur at a wheel, 
again requiring only one contact patch. The non-flanging wheel experiences a 
single point of tread contact when the flanging wheel is in two-point or single-point 
flange contact.

Despite these complexities, the equations can be written .to assume two points 
of wheel/rail contact at each wheel, and the several cases described above are 
then degenerate cases in which the forces at one or two of the wheelset contact 
patches are taken to be zero. Note that a 1 is used to represent the first point 
of contact at the left or right wheel; in the instance of single-point contact, this
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CR

F ig u re  B . 2  Diagram showing the forces and moments applied to the wheelset.
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is the only active contact condition. A 2 is used to indicate the second point of 
contact if one exists.

It is common in vehicle dynamic analyses to define the cant deficiency, <j>defi 

which represents the net lateral force per unit weight acting on a mass due to 
the combined effects of curving and superelevation,

V 2
4>def =  ---- P ~  <t>SE9

Additionally, it is fruitful to define the component-wise sums of the wheel/rail 
forces and moments. It is also useful to simultaneously define the normal and 

creep contributions of each of these.
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F x  = F c x  + F n x (B .4 .1 )

= F c x n + Fc x L2 + FcXRl + FcXR 2  

+ FxXLl + Fn XL2 + Fx x RI + Fn XR2

Fy = Fc y + Fn Y
= FcYLl + Fc YL2 + Fc YRI + F c y R2  

+  FtfYLl + FNY L2 + F x YRI + F n YR2

Fz =  Fez +  Fnz
= Fc z LI + FcZL2 + FcZRl + FcZR 2  

+ Fn ZLI +  Fff ZL2 + FtfZRl + F n z R2

Mx =  Max +  Mxx
= M c x LI + M c XL2 + McXRl + M c XR2 

+ M n x LI + M n XL2 + MxXRl + M n XR2

My =  M qy + M ny
= McYLl + M c YL2 +  M c YRI + M c YR2 
+ M n y LI + M n YL2 + M n YRI + M x YR2

M z  =  M e z  +  M x z

= M c z LX + M c ZL2 + MeZRX + M q ZR2 
+ M x z LI + M x  ZL2 + M x z RI + M x z R2
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B . 4 . 1  S o l u t i o n  o f  V e r t i c a l  a n d  R o l l  E q u a t i o n s

The wheelset lateral, yaw, and spin equations of motion are solved for the 

rate of acceleration of the respective state variable. In the computational model, 
these derivatives are used to integrate the motion at each timestep. The wheelset 
vertical and roll equations are also considered, for they are necessary to determine 
the normal forces at the wheel/rail contact patches.

For single point contact at each wheel, the problem is well-posed in that two 

equations axe available to solve for two unknowns. Computationally, the normal 
loads from the previous timestep are updated at each timestep. When there is 

two-point contact at a wheel, the problem is no longer well-posed in that there 

are now three unknown normal loads and two equations to be satisfied. The 
modeling approach adopted here is to develop a relationship between the two 
normal loads at the wheel which is in two-point contact (Blader, 1986). This 
relation specifies the distribution of the normal load between the tread and flange 
contact patches, depending upon how far the wheel has traveled across the zone 
of two-point contact.

From previous kinematic expressions (B.1.4) and (B.1.5), and knowledge of 
the forces and moments influencing the wheelset, the vertical and roll equations 

may be written els follows:

Wheelset Vertical Equation

m w 2 w  +  <1>Tr V 2P +  a4>SE +  VW<t>TR =  Fz +  Ftwz ~ mw9

Wheelset Roll Equation

4>w = l
■Iwx

+  M t w x ) +  I w y ^w ^ w z
V

-  <t>TR

Now use (B.4.1) to expand the F z  and M x  terms. In doing so, the relations 
of (B.3.2) may be used to express the dependency of the creep forces on the
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normal loads, and (B.3.4) through (B.3.7) provide the detailed composition of 
each wheel/rail interaction. In this analysis, the dominant moment terms are 
preserved and the lower order terms are neglected.

It is useful to recognize that the total wheel/rail vertical interaction consists 
of terms such as:

(cos 7  ±  fiTy  sin 7 ) Fpf

and the total lateral interaction includes terms such as:

{llTy  cos 7  ±  sin7)jPjv

Note that ry depends on F x  through a one-third power term in the normalization 
for the Kalker table, which is a relatively weak dependence, with the result that 

often the previous values for F n  axe sufficient to determine the value of ry. 
However, it is reasonable to iterate once if the change in normal load from the 
previous value is great, as might be expected during wheelset flanging.

To simplify the expression of these relations, define the following geometric 

and force terms (for i =  1  or 2  for the first or second point of wheel/rail contact):

= .cos(7 Li) +  /xryii sin(7 W) (B.4.2)

era =  cosfrfii) - /«Y*sin(7Bi)

VLi  =  (J-Ty l  c o s ( 7 i i )  -  s i n ( 7 i t )

VRi =  f iT Y R C o s ^ R i)  +  sin(7ra)

rt v V
F% =  mw g +  %w +  4>t r V  P +  a<f>SE +  yw<f>TR 

M-£ =  Iwx{<i>TR + $w) — Iw y &w u w z  — M r w x

J- T W Z

Then the wheelset vertical equation may be rewritten as follows:

F-z =  cliFnli +  (-liFnli +  ejii-F’jvizi +  r̂iFnr2
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Similarly, the wheelset roll equation may be expressed as the following (where 
the rolling radius r* is generally equal to the nominal rolling radius r0):

M e =  ajez,i-Fjv£i +  £L2Fnl2 — eriFnri — cr2Fnr2
+  r *  ̂ Ll-FiVLl +  V L 2F N L 2 +  V R i F n r i  +  l'H2-PiVjR2]

It is now necessary to derive the relation between the normal loads during 
two point contact. Two parameters, /?£, and /3r , are defined as functions of 
wheelset excursion. When the wheelset is in two-point contact, the net excursion 

of wheel relative to rail, v n e t ,  is between two values \v t r e a d \ and \ v f l a n g e \ ,  

which are determined by examination of the wheel/rail contact profile. The value 

of the net excursion, yNETi is positive during two-point contact on the left, 
and it is negative during two-point contact on the right. Both \u t r e a d \ and 
\v f l a n g e \ are defined to be positive, and the current net wheelset excursion is 
compared with these values.

The modelling assumption to be made here is that the vertical component 
of the total normal load, summed over the two patches, is distributed between 
the two patches on the basis of the net wheelset excursion across the two-point 
band. The definitions are thus as follows:
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F n l 2 =  Pl  F n l i  (B.4.3)

F n R2 =  Pr F n r i

where:

p L  — (  Vn e t  ~  \v t r e a d \ A _ ( cos(7x1) \  

\|j/FLAiVGs| -  VNEt J  \C0 s(7 x,2) /
if \v t r e a d \ <  Vn e t  <  \v f l a n g e \ 

Pl  =  0  otherwise

0 R _  _  f  VNET +  \VTREAd \ \  _ f  COs(7fli) \  

VlyFLAJVGsl +  VN ET/ \-CO s(lR2) )
if -  \v t r e a d I >  Vn e t  >  — \v f l a n g e \ 

Pr  =  0  otherwise

This algorithm satisfies the desired boundary conditions. As the net wheelset 
excursion approaches the tread or flange boundary of the two-point contact 
zone, the normal loads approach that of single-point contact at tread and flange 
contact, respectively. Thus, there is continuity in the normal loads at the tread 
and flange boundaries of two-point contact. It is important to note that the 
geometric discontinuities at the contact patches of tread and flange are used, even 
though the wheelset excursion passes continuously through the two-point contact 
zone.

Thus, the above relations for the wheelset vertical and roll equations may 

be written in terms of two unknowns, .Fjvli and F ^ r i , using the following 
definitions:

cl =  eLl +  Pl*L2 
£r =  £hi +  Plcr2
V L  =  I ' L l  +  P l V L 2

V R  =  i 'R l  +  P l VR2
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with the following results:

i'll =  clF n l i  +  £r F n r i

M e  =  a ^l F n l x  — efl-F jvizx] +  r* +  I 'jz-Fj v r i ]

These two equations may now be used to derive the left and right wheelset 
normal loads at the first point of contact. The appropriate value for the second 
point of contact is given by the relation F 2 =  f iF \  as above:

^  _  (o £ fl -  r*uR )F-z +  C f lM s
Fn u ------------ A -----------

( a e i  +  r*uL ) F x  —  £l M e  
fnri------------ ^ -------:

where:

A =  eR(aeL +  r*vL ) +  eL {a iR -  r*vR )

(B.4.4)

During severe flanging, occasionally a negative value for a normal load is 

generated with r* =  r0. This has been found to be a result of the inclusion 

of the lateral normal and creep forces in the wheelset roll equation. Rather 

than proceed with negative loads, a compromise approach has been taken. If a 
negative normal load is calculated, the value of r* is reduced by 2 0  % from 

its previous value, and the loads axe then recalculated. If a negative load still 
results, this process is repeated. If r* is driven to zero and a negative load is still 
obtained, true wheel lift is declared. It is thought that high frequency dynamics 

are involved in these very short duration wheel lifts with r* =  r0, which are 
characteristically different from wheel lift which lasts on the order of a fraction 
of a second. This approach has proven to work reasonably well in practice.
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B . 4 . 2  F o r m u l a t i o n  o f  t h e  W h e e l s e t  S t a t e  E q u a t i o n s

In the computational model, the normal and creep forces are determined in 
the contact patch frame. These forces are then resolved into their components 

in the P  frame, and the moments are calculated in the 2 frame of reference. 
The lateral, spin, and yaw accelerations are then found; these state equations 

are given below.

Wheelset Lateral State Equation  (B.4.5)

yw =  9<j>def -  g<t>CR +  ZW <f>TR H-------- [ F y  +  F t w y ]my/

Wheelset Spin State Equation

Ow = T M y  <f>w T [ M z  + M t w z \ + 4>t r V p  +  ^ w 4>t r  
J-w y  J-wz

(B.4.6)

Wheelset Yaw State Equation

„ i r i 
Tpw —  T M z  +  M t W Z  IwyQwWwX +  V p  

twz L

(B.4.7)
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Appendix C

Carbody and Suspension Model

T h e  c a x b o d y  has  f iv e  r ig id  b o d y  degrees o f  fre e d o m  ( la te ra l,  v e r t ic a l,  r o l l ,  

p i t c h ,  a n d  y a w ) a n d  th re e  f le x ib le  b o d y  m od es  ( tw is t ,  la te ra l,  a n d  v e r t ic a l 

b e n d in g ) .  T h is  a p p e n d ix  co n s id e rs  th e  d e v e lo p m e n t o f  th e  v e h ic le  su s p e n s io n  

fo rce s  a n d  th e ir  use in  d e te rm in in g  th e  s ta te  e q u a tio n s  fo r  th e  above  degrees o f  

fre e d o m .

T h e  k in e m a tic s  o f  A p p e n d ix  A  a re  a p p lie d  to  d e te rm in e  th e  su sp e n s io n  s tro ke s  

a t  each  o f  th e  fo u r  c o n n e c tio n s  b e tw e e n  th e  c a rb o d y  a n d  w h e e lse ts . A t  each su ch  

c o n n e c tio n , th e re  a re  lo n g itu d in a l,  la te ra l,  a n d  v e r t ic a l su s p e n s io n  e le m e n ts . U s in g  

th e  su s p e n s io n  s tro k e s  a n d  th e  e le m e n t c o n s t i tu t iv e  re la t io n s , th e  su sp e n s io n  fo rces  

a re  d e te rm in e d . W i t h  these  su sp e n s io n  fo rces , th e  fo rc e  a n d  m o m e n t s u m m a t io n s  

a p p lie d  to  th e  c a rb o d y  a n d  w hee lse ts  m a y  b e  d e te rm in e d . T h e  c a rb o d y  s ta te  

e q u a tio n s  a re  th e n  d e ve lo p e d , re s o r t in g  once m o re  to  A p p e n d ix  A .

C.l Suspension Stroke Equations

I n  th is  s e c tio n , e q u a tio n s  fo r  th e  su spe ns ion  s tro k e s  a re  p re se n te d . F ig u re

C . l  show s th e  b a s ic  g e o m e try  o f  th e  v e h ic le . T h e re  a re  fo u r  c o n n e c tio n s  b e tw e e n  

c a rb o d y  a n d  w h e e lse ts , n u m b e re d  f r o m  1 to  4. S u sp e n s io n  n u m b e r  1 re fe rs  to  

th e  le f t  le a d in g  w h e e l, n u m b e r  2 in d ic a te s  th e  r ig h t  le a d in g  w h e e l, n u m b e r  3 

in d ic a te s  th e  r ig h t  t r a i l in g  w h e e l, a n d  n u m b e r 4 re fe rs  to  th e  r ig h t  t r a i l in g  w h e e l. 

T h is  is a  n o ta t io n  w h ic h  p roceeds c lo ckw ise  f r o m  th e  p o s it io n  o f  th e  le f t  le a d in g  

w h e e l. T h e  lo n g itu d in a l,  la te ra l,  a n d  v e r t ic a l p o s it io n  o f  each  c o n n e c tio n  is g iv e n  

b y  th e  va lu es  A x d i s t j H a f a x , a n d  Ve r c o g , re s p e c tiv e ly .

T h e  s tro ke s  a n d  s tro k e  ra te s  across each su sp e n s io n  a re  o b ta in e d  b y  a p p ly in g  

th e  re s u lts  o f  s e c tio n  A .3  w i th  th e  a p p ro p r ia te  g e o m e try  d a ta . S ince  th e re  is a 

su s p e n s io n  e le m e n t in  each c o o rd in a te  d ire c t io n , th e  d if fe re n c e  in  p o s it io n  b e tw e e n  

c a rb o d y  a n d  w h e e lse t a lo n g  each a x is  w i l l  be  re q u ire d .
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F ig u r e  C . l  D ia g ra m  s h o w in g  th e  g e o m e try  o f  th e  s u sp e n s io n  c o n n e c tio n s .
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T e rm s  s ta r t in g  w i t h  M o d  a lso  have  ind ices  c o rre s p o n d in g  to  th e  su s p e n s io n  

n u m b e r in g ; th ese  a re  th e  va lues  o f  th e  m od e  sh a p e  fu n c t io n s  a t th e  su s p e n s io n

c o n n e c tio n  p o in ts ,  fo r  each f le x ib le  b o d y  m ode . M q d t w i  M o d v b > a n d  M o d  l b  

re p re s e n t b e n d in g  a b o u t  th e  lo n g itu d in a l ( tw is t ) ,  la te ra l  ( v e r t ic a l b e n d in g ) ,  a n d  

v e r t ic a l ( la te ra l b e n d in g )  axes, re s p e c tiv e ly .

C.1.1 Longitudinal Strokes

T h e  lo n g itu d in a l su sp e n s io n  m o d e l depends u p o n  b o th  th e  s tro k e  a n d  s tro k e  

ra te s , so  b o th  w i l l  b e  s h o w n  b e lo w . N o te  t h a t  a  y a w  a n g le  c o r re c t io n  te rm  

p A x d i s t  is  n ece ssa ry  because  th e  w hee lse t fram e s  o f  re fe re n ce  a re  r o ta te d  re la t iv e  

to  th e  c a rb o d y  fra m e  a b o u t th e  v e r t ic a l ax is  in  a  c u rv e .

Longitudinal Suspension Strokes (C .1 .1 )

S l o n i =  — S a f a x i  • { i ’w  1 —  V’c  —  p A x d i s t i ) 

S l O N 2  =  H a F A X 2 ■ ( ^ W l  —  V ’C  —  P A-XDIST2) 

S l O N 3 =  H a F A X 3 • {i>W2 ~  +  P A x D I S T Z )
s 'LON4 =  -  H a F A X 4 • {i>W2 -  V'c +  P A x d i s t a )
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T h e  la te ra l su s p e n s io n  m o d e l re q u ire s  k n o w le d g e  o f  b o th  s tro ke s  a n d  s tro k e  

ra te s , w h ic h  a re  g iv e n  b e lo w . N o te  th a t ,  in  a  c u rv e , th e  w h e e lse t fra m e  o f  

re fe ren ce  is o ffse t la te r a l ly  f r o m  th e  c a x b o d y  b y  a n  a m o u n t e q u a l to  \̂-"x d i s t P •

C.1.2 Lateral Strokes

Lateral Suspension Strokes (C .1 .2 )

Slati — - Vc + Vwi — r0<PcRi ~ A x d i s t \ • {i>c + P A x d i s t i/2)

— Ve r c o g i - 4>c — M o d l b i • (z — Ve r c o g i • M o d t w i  • Dr 
Slati — — yc +  Vwi — r0<f>CRi — A x d i s t z • {'Pc + P A x d i s t z !̂ )

— Ve r COG 2 ° <Pc — M 0 DLB 2 • (z — Ve r COG 2 • M o D T W 2 " Dr 
SlATZ = — yc + VW 2 — f‘o(t>CR2 + AxDISTZ ' {'Pc ~ P AxDISTz/%)

— VERCOG3 • 4>c — M o DLBZ • iz — VERCOG3 • M o DTW3 • Dr 
Sl a t a —  ~yc +  ywz — ro<PcR2 + A x d i s t a - {fpc - P A x d i s t a /̂ )

— Ve r c o g a ■ 4>c — M o d l b a • $z — Ve r c o g a • M o d t w i • Dr

Slati = — yc + i/wi ~ ro<PcRi ~ A xdi st x • “Pc
— Ve r c o g i • Pc — M o d l b i • iz — Ve r c o g i • M o d t w i • Dr 

Sl a t 2 = — yc +  ywi —  foPcRi — A x d i s t z • Pc
— Ve r c o g 2 • Pc — M o d l b z • £2 ~ Ve r c o g 2 • M o d t w 2 • Dr 

Sl aT3 = — yc +  VW 2 — ^oPcRZ + AxDIST3 ‘ Pc
—  V e r c OG3 • Pc — M o D L B 3  • f z  —  V e RCO G3 • M o d TW 3  • Dr 

S l a TA =  — yc +  i/W 2  — r 0<j>CR2  +  A x D ISTA  • 'P c

— Ve r c o g a  • Pc — M q d l b a • fz — V£7bco g4 • M q d t w i • Dr
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I n  c o n tra s t t o  th e  lo n g itu d in a l a n d  la te ra l su sp e n s io n  m o d e ls , th e  “ b e ta ”  

m o d e l fo r  th e  v e r t ic a l  s u sp e n s io n  ( to  be  d e sc rib e d  b e lo w ) re q u ire s  o n ly  th e  s tro k e s  

a n d  n o t  th e  s tro k e  ra te s . T h is  m o d e l w i l l ,  h o w e v e r, re q u ire  s tro k e  va lu e s  saved 

f r o m  th e  p re v io u s  t im e s te p . I n  th e  fo llo w in g , zw  re p re se n ts  th e  v e r t ic a l  t r a c k  

in p u t  to  th e  w h e e lse ts .

C.1.3 Vertical Strokes

Vertical Suspension Strokes (C .1 .3 )

S v e r i  =  — zc — H a f a x i • <t>c + A x d i s t i ’ Sc

—  M o d v b i  • -  S a f a x i  • M o d t w i • ?x + z w \

SVER2 = — Zc + H a FAXZ ' <I>C + A-XDIST2 ' Sc

— M o d v b 2 ■ fy. + H a f a x 2 • M o d t w 2 • £x + ZW 2  

&VER3 =  ~ Zc + H a FAXZ • <f>C ~ -A-XDIST3'0C
— M o d v B3 • fy + H a f a x 3 • M o d t w z  • fx + zws 

Sv e r 4 = — zc - H a f a x 4 • <!>c - A x d i s t 4 ■ Sc
—  M q d v b 4 • fy — H a f a x 4 • M q d t w 4 • ?x + ZW4
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C.2 Suspension Constitutive Relationships

S u spe n s io n  e le m e n ts  a c t a t  each  c o n n e c tio n  lo c a t io n  a lo n g  each  o f  th e  th re e  

c o o rd in a te  axes. F ig u re  C .2  i l lu s tra te s  th e  n o ta t io n  u sed , w h e re  F l o w s  F l a t s  

a n d  F v b r  re p re s e n t th e  fo rces  a c t in g  o n  th e  c a rb o d y  in  th e  lo n g itu d in a l,  la te ra l,  

a n d  v e r t ic a l d ire c t io n s , re s p e c tiv e ly . S ince  w he e lse t lo n g i tu d in a l  m o t io n  re la t iv e  

to  th e  c a rb o d y  is n e g le c te d , th e  d iffe ren ce s  b e tw e e n  lo n g i tu d in a l  fo rces  o n  le f t  

a n d  r ig h t  s ides re s u lt  in  y a w  m o m e n ts  b e tw e e n  th e  b o d ie s .

Co2»l Longitudinal Suspension Model

T h e  lo n g itu d in a l s u s p e n s io n  m o d e l co n s is ts  o f  a tw o -s ta g e  s p r in g  (re p re s e n t

in g  th e  s w in g  l in k  s tiffn e s s ) in  p a ra l le l w i t h  b o th  a  C o u lo m b  f r ic t io n  e le m e n t 

( re p re s e n tin g  d r y  f r ic t io n  in  th e  s w in g  l in k )  a n d  a  series s p r in g -d a m p e r  e le m e n t 

( re p re s e n tin g  th e  y a w  d a m p e r) .  T h e  p o s it io n  o f  th e  ju n c t io n  b e tw e e n  s p r in g  a n d  

d a m p e r  o f  th e  series y a w  d a m p e r  e le m e n t is in te g ra te d  lo c a l ly  to  o b ta in  th e  fo rc e  

a t  each t im e s te p . T h e  to ta l  lo n g itu d in a l fo rce  m a y  be  w r i t t e n  as fo llo w s :

F l o w  =  F s t i f f  +  F s e r i e s  +  F c o u l (C .2 .1 )

where

F l o w total longitudinal suspension force
F s t i f f swing link suspension force
F s e r i e s yaw damper force
F c o u l swing link Coulomb friction

T h e  fo rc e  in  th e  tw o -s ta g e  s p r in g , re p re s e n tin g  th e  a c t io n  o f  th e  s w in g  l in k  

a n d  its  c o n ta c t w i t h  th e  a x le  g u a rd , is g iv e n  as fo llo w s :
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Car
X

F ig u r e  C .2  D ia g ra m  s h o w in g  th e  n o ta t io n  fo r  th e  fo rces a c t in g  a t  each 

su s p e n s io n  c o n n e c tio n .
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I f  — L o n s t p  <  S l o n  <  L o n s t p  '• (C.2.2)
F s t i f f  =  S l o n  • K l o n i  

E l s e l f  S l o n  >  L o n s t p  •

F s t i f f  — L o n s t p  ■ K l o n i +  { S l o n  —  L o n s t p ) • K l o n 2 

E ls e lf  S l o n  <  L o n s t p  :
F s t i f f  =  —L o n s t p  • K l o n \ +  (^LOiv +  L o n s t p ) • K l o n 2

w h e re

L o n s t p lo n g itu d in a l su sp e n s io n  c le a ra n ce

S l o n su spe ns ion  s tro k e

K l o n  i f i r s t  s ta ge  s tiffn e s s

K l o n 2 second s ta ge  s tiffn e s s

T h e  fo rc e  in  th e  y a w  d a m p e r  is fo u n d  b y  in te g ra t in g  th e  t im e  ra te  o f  change  

o f  d is p la c e m e n t across th e  s p r in g ,  u s in g  th e  fa c t  th a t  th e  fo rc e  in  th e  s p r in g  

m u s t b e  e q u a l to  th a t  in  th e  d a m p e r  in  th e  absence  o f  in e r t ia l  e ffe c ts .

F s e r i e s {U) =  F s e r i e s [ U - i ) (C.2.3)
+  K b U S H • (j>LON -  Z2(FsEJtIEs(ti))) ‘ A T

w h e re

y a w  d a m p e r b u s h in g  s tiffn e ss  

lo n g itu d in a l s u sp e n s io n  s tro k e  ra te  

v e lo c ity  o f  ju n c t io n  b e tw e e n  s p r in g  a n d  d a m p in g  

e lem en ts  o f  th e  y a w  d a m p e r 

in te g ra t io n  t im e  s te p

T h e  v e lo c i ty  o f  th e  ju n c t io n  b e tw e e n  s p r in g  a n d  d a m p e r  is fo u n d  b y  in v e r t in g  

th e  fo rc e  -  s tro k e  ra te  r e la t io n  o f  th e  d a m p e r, w h ic h  is d e te rm in e d  b y  a p ie cew ise - 

l in e a r  re la t io n s h ip .  I f  th e  c u r re n t  fo rc e  in  th e  y a w  d a m p e r, F s e r i e s , lies  b e tw e e n

K b u s h

S l o n

x 2

C - 8



two values Fsci and Fs c 2 of the characteristic, then the velocity ±2 is determined 
in the interval from Vsci to Vsc2 as follows:

X2 =  V s c i + Vsc2 ~ Vsci 
&SC2 ~  F s c i

(F s e r i e s  ~ Fsci) (C .2 .4 )

F in a lly ,  th e  lo n g itu d in a l C o u lo m b  f r ic t io n  in  th e  s w in g  l in k s , Fcoui, is 

c a lc u la te d  u s in g  th e  l in e a r  v iscou s  b a n d  m o d e l:

(  - F b r e a k if S l o n  < — 6
(C .2 .5 )

F c o u l =  s (S l o n / 6 ) F b r e a k if — 6 <  S l o n  <  $

'  F b r e a k if S l o n  >  &

w h e re

F b r e a k  b re a k o u t fo rce  leve l

6 l in e a r  v iscous  h a lf -b a n d w id th

C.2.2 Lateral Suspension Model

T h e  la te r a l  su s p e n s io n  fo rc e -d e fle c tio n  c h a ra c te r is t ic  co n s is ts  o f  a th re e -s ta g e  

s p r in g  in  p a ra l le l w i t h  C o u lo m b  f r ic t io n .  T h e  la t t e r  is  re p re s e n te d  b y  th e  l in e a r  

v isco u s  b a n d  m o d e l,  w h ic h  has a h ig h ly  v iscou s  re g io n  fo r  lo w  s tro k e  ra te s  a n d  

a b re a k o u t le v e l fo r  h ig h  s tro k e  ra te s .

F l a t  =  F s t i f f  +  F d a m p (C .2 .6 )
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F o r  su spe ns ion s  1 a n d  4 , F s t i f f  is c a lc u la te d  as fo llo w s :

F s t i f f  =  K l a t  • S l a t  (C .2 .7 )

+  [ K s t p l a  — K l a t ) • { ^ ^ { S l a t j L s t o p i ) — L s t o p i )
+  [ K s T R U C  — K s t P L a ) ’ {m a x { S L A T > L s T O P 2) ~  L s T O P z )

F o r  suspe ns ion s  2 a n d  3 , F s t i f f  is  c a lc u la te d  as fo llo w s :

F s t i f f  =  K l a t  • S l a t  (C .2 .8 )

+  (K s t p l a  ~  K l a t ) ° ( ^ ^ { S l a t , —L s t o p i ) +  L s t o p i )

+ {Ks t r u c  — K s t p l a ) ° (h^ ( S l a t ,— L s t o p 2) + L s t o p 2)

w h e re

S l a t la te ra l su s p e n s io n  s tro k e

K l a t f i r s t  s tage  s tiffn e s s

L s t o p i c lea ra n ce  fo r  se con d  s tage  s tiffn e s s

K s t p l a second  s tage  s tiffn e s s

L s TOP2 c lea ra n ce  fo r  t h i r d  s tage  s tiffn e ss

K s t r u c t h i r d  s ta ge  ( s t r u c tu ra l)  s tiffn e ss

T h e  d a m p in g  fo rce , m o d e le d  w i t h  th e  l in e a r  v is c o u s  b a n d  a p p ro x im a t io n  to  

th e  C o u lo m b  f r ic t io n  c h a ra c te r is t ic ,  is g iv e n  as fo llo w s :
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(C .2 .9 )

—F b r e a k  i f  S l a t  <  ~ 8

F d a m p  =  < ( S l a t / 8 ) F b r e a k  i f  —8 <  S l a t  < 8

- F b r e a k  i f  S l a t  > 8

w h e re

S l a t  la te ra l  suspens ion  s tro k e  ra te

F b r e a k  b re a k o u t fo rce  leve l

8 l in e a r  v iscous  h a lf - b a n d w id th

C.2.3 Vertical Suspension Model

T h e  v e r t ic a l  su sp e n s io n  cons is ts  o f  a le a f s p r in g , w h ic h  is re p re s e n te d  u s in g  

a  te c h n iq u e  in i t i a l l y  d eve loped  fo r  t r u c k  su spe ns ion s . T h is  m e th o d  w as f i r s t  

d e v e lo p e d  b y  F a n c h e r, E r v in ,  M a c A d a m , a n d  W in k le r  [14 ]. I t  has b ee n  m o d if ie d  

b y  O ’ C o n n e ll [18] w h o  fo u n d  th a t  th e  use o f  th e  c u r re n t e nve lo pe  c h a ra c te r is t ic  

e v a lu a te d  a t  th e  p re v io u s  d is p la c e m e n t, FENV(8i-i ) 5 e lim in a te d  a ra m p - fo llo w in g  

e r r o r  o b se rve d  in  e x p e r im e n ta l m e a su re m e n ts .

FvER^i) = F tENV[8i)
+ (i'VEfl(ii-i) - FENV{8i-1)) ■ exp ̂

(C .2 .1 0 )

0  )

w h e re

F v E R ^ i)  

Fv e r {U-i) 
Sv e r  (ii)
S v E R ^ i - l )

s u sp e n s io n  fo rce , c u r re n t t im e s te p  

s u sp e n s io n  fo rce , p re v io u s  t im e s te p  

s u sp e n s io n  s tro k e , c u r re n t  t im e s te p  

s u sp e n s io n  s tro k e , p re v io u s  t im e s te p
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FgN V (Si) fo rc e  fo r  c u r re n t e n v e lo p e , a t  c u r re n t d is p la c e m e n t

FgN V (6i-i) fo rce  fo r  c u r re n t e n v e lo p e , a t  p re v io u s  d is p la c e m e n t

/3 “ b e ta ”  p a ra m e te r  w h ic h  d escribes  th e  r a te  a t  w h ic h

su sp e n s io n  fo rc e  w i t h in  h y s te re s is  lo o p  a pp ro ach es  e nve lo pe

T h e  e nve lo pe  fo rce  depends  u p o n  w h e th e r  th e  le a fs p r in g  is u n d e rg o in g  c o m 

p re s s io n  o r  e x te n s io n , w h ic h  is  d e te rm in e d  b y  c o m p a r in g  th e  c u r re n t s tro k e  w i t h  

t h a t  saved  f r o m  th e  p re v io u s  t im e s te p ,  as fo llo w s :

If SvER.i > SvER,i-l • (C.2.11)

F e n v  =  C\ ° Sv e R +  C 2

+  (m a x ( iSv e r , C h g s t r i ) — C h g s t r x ) • (C3 ~  C\)

Elself SvER,i < SvERi-l •
F e n v  ~  C\ • S v e r  + C q

+  ( m a x ( S y £ . R ,  C h g s t r 2 )  —  C h g s t r z ) • {C7  -  C 1)

w h e re

C i

C h g s t r i

C 5

C 3

C 2

CHGSTR2

C 7

C q

f i r s t  s tage  le a f s p r in g  s tiffn e s s  

c o m p u te d  v a lu e  o f  S v e r  a t w h ic h  Fv e r  

equa ls  C 5 fo r  in c re a s in g  Sv e r  

v a lu e  of F v e r  f ° r  w h ic h  le a f s p r in g  

reaches th e  se con d  s ta g e  s tiffn e ss  

second  s tage  le a f s p r in g  s tiffn e s s  fo r  in c re a s in g  S v e r  

C o u lo m b  f r ic t io n  fo rc e  fo r  in c re a s in g  S v e r  

c o m p u te d  va lu e  o f  S v e r  a t w h ic h  F v e r  

equa ls  C 5 fo r  d e c re a s in g  S v e r  

second  s tage  le a f s p r in g  s tiffn e s s  fo r  d e c re a s in g  S v e r  

C o u lo m b  f r ic t io n  fo rc e  fo r  d ecrea s ing  Sv e r
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I n  th is  s e c tio n , th e  to ta l  fo rce s  a n d  m o m e n ts  a p p lie d  to  th e  c a rb o d y  a n d  

w h e e lse ts  a re  d e v e lo p e d . T h e  c o n v e n tio n  used h e re  is  t h a t  Fq 3y , Fq ,z , M Q tx, 
M q ^, a n d  M q tz a re  th e  fo rces  a n d  m o m e n ts  a c t in g  o n  th e  b o d y  Q, w h e re  Q 
m a y  b e  C  fo r  th e  c a rb o d y  o r  W 1 o r  W 2 fo r  th e  f i r s t  a n d  second  w h e e ls e ts . T h e  

te rm s  f Iv b , a n d  f i t w  a re  u se d  to  re p re s e n t th e  la te ra l b e n d in g , v e r t ic a l

b e n d in g , a n d  tw is t in g  m o m e n t lo a d s .

C.3.1 Forces and Moments Acting on the Wheelsets

T h e  n e t la te r a l  a n d  v e r t ic a l fo rce s , as w e ll as th e  r o l l  a n d  y a w  m o m e n ts , 

r e s u lt in g  f r o m  th e  above  s u s p e n s io n  fo rces are  p re s e n te d  b e lo w . R e s u lts  axe g iv e n  

f i r s t  fo r  th e  le a d in g  w h e e lse t, th e n  fo r  th e  t r a i l in g  w h e e lse t.

C.3 Suspension Force and M o m e n t  Equations

Leading Wheelset (C .3 .1 )

F w i ,y  =  —F l a t i  — F l a t z  

Fw\,z — —F v e r i  ~  F v ER2 

Mw\,x — —H a f a x i  • F v e r i  + H a f a x i  • F v e r 2

M w i ,z  =  S a f a x i  ° F l o n  1 —  H a F A X 2  ■ F l o N2

*

Trailing Wheelset (C .3 .2 )

F w 2,y  =  —F l a t z  — F l a t  a 

F w 2,z  =  —F v e r z  — F v e r a  

M w 2,x  =  — H a f a x a  • F v e r a + S a f a x 3 • F v e r z  

M w 2,z  =  —H a f a x z  • F l o n z  +  H a f a x a  ' F l o n a
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T h e  s u s p e n s io n  fo rces  g iv e  r is e  to  b o th  r ig id  b o d y  a n d  f le x ib le  b o d y  fo rces 

a n d  m o m e n ts . F i r s t ,  th e  to ta l  la te ra l  a n d  v e r t ic a l fo rces  a c t in g  o n  th e  c a rb o d y  

a re  g iv e n  as fo llo w s :

C.3.2 Forces and Moments Acting on the Carbody

Car Rigid Body Forces (C .3 .3 )

L a te ra l  F orce

Fc ,y  = Flati + Fl a t 2 + Flats + Flata 

V e r t ic a l  F o rce

Fc,Z = Fv ERI + Fy ER 2 + FyER3 + FyERA

T h e  r ig id  b o d y  m o m e n ts  a re  fo u n d  in  th e  u s u a l m a n n e r  b y  c o n s id e r in g  th e  

e ffe c tiv e  m o m e n t a rm s  a b o u t th e  c e n te r  o f  g ra v it y  fo r  each c o n t r ib u t in g  fo rc e .

C - 14



Car Rigid Body Moments (C.3.4)

R o ll  M o m e n t

Mc,x =  V e r c o g i  • Flati +  V E R C O G 2  • F l a T2

+  Ve r c o g z  • F latz  +  Ve r c o g a  • F l a t a  

+  { S a f a x i  +  Ve r c o g i  • <t>c +  S l a t i ) • F v e r i  

+  {~ H a FAX2 +  VERCO G 2  ’ <j>C +  S L A T 2 ) ' F v ER2 

+  ( — H a f a x s  +  Ve r c o g z  • <t>c +  S l a t z ) • F v e r z  

+  { S a f a x  a +  VEr c o g a  • 4>c +  S l a t  a) • F v e r a

P itc h  M o m e n t

M c ,y —  — A-x d i s t x  • F v e r i  — A x d i s t 2 • F v e r .2 

+  A x d i s t z  • F v e r z  +  A x d i s t a  • F v e r a

Y a w  M o m e n t

Mc,z = A x d i s t i • Flati — S a f a x i • F l o n i

+ A x di st z - Fl a t2 + S a f a x 2 • Fl o n 2

— A xdi st z • Flatz + S a f a x z • Fl o n z

- A x di s t a • Flata — S a f a x a • Fl o n a

T h e  fo rces a n d  m o m e n ts  fo r  th e  th re e  b e n d in g  m o d e s  a re  g e n e ra te d  by- 

c o n s id e r in g  each c o n t r ib u t in g  fo rce  a n d  th e  v a lu e  o f  th e  c o rre s p o n d in g  m o d e  

sh a p e  a t each c o n n e c tio n  lo c a t io n . T h e  re s u lts  axe as fo llo w s :
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(€.3.5)Car Flexible Body Forces and Moments 

V e r t ic a l B e n d in g

CIv b  = M o d v b i • Fv e r i + M o d v b i • Fv e r z
+ M q d v b z • Fv e r z + M q d v b 4 • Fv e r a

L a te ra l B e n d in g

Q l b  =  M o d l b i  • F l a t i  +  M o d l b z  ■ F ^ A T 2

+  M q d LB Z ' F l A T Z  + .  M q d l b a  • F l a T4

L o n g itu d in a l T w is t

firw =  M o d t w i ■ [-FVs-Ri • H a f a x i  +  F l a t i  * V e h c o g i ]
+  M o d t w 2  • [ — • S a f a x z  +  F l a t z  • V b j j c o g 2]  

+  M o d t w 3  • [— F v e r z  • H a f a x z  +  F LAtz  * V e ^ c o g s ] 

+  M o DTWA • [ i V E i J 4  • H a FAX4  +  F l a T4 ' ^ERCOG4]
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C.4 Carbody State Equations

T h e  a n a ly s is  in  A p p e n d ix  A  m a y  be  used to  d e v e lo p  th e  c a rb o d y  d y n a m ic  

» e q u a tio n s  o f  m o t io n ,  u s in g  th e  a p p lie d  su spe ns ion  fo rce s  a n d  m o m e n ts  c o n s id e re d

above . I n  th e  fo l lo w in g ,  fo r  th e  f le x ib le  m odes  f ,  d is  th e  c a rb o d y  s t r u c tu r a l  

« d a m p in g  r a t io ,  a n d  w  is  th e  c a rb o d y  fu n d a m e n ta l n a tu r a l  fre q u e n cy .

Car Rigid Body Equations (C .4 .1 )

L a te ra l  E q u a t io n

m e(yc ~ roc<j>SE) =  - m cg<t>sE +  m cV 2p +  Fc,y 

V e r t ic a l  E q u a t io n

m c(z'c +  a(f>sE) = - meg — m cV 2p<f>SE + Fc,z

R o ll  E q u a t io n  ' ' ‘

lcx(4>c +  4'̂se) =  {Icy - Icz)9c{i>c — Vp) +  Mc,x

P itc h  E q u a t io n

Icy ĉ =  (Icz ~ Icx){4>c +  4>SE)(i}c — Vp) + M c,y 

Y a w  E q u a t io n

Ic z { i* c  — Vp) = (l e x  — I c y )8c {$c  + 4>s e ) + ̂ c , z
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Car Flexible Body Equations (C .4 .2 )

V e r t ic a l B e n d  E q u a t io n

m efy- +  2 d y w y m c < y +  iwy2m cfy =  C Iv b

L a te ra l B e n d  E q u a t io n

mc $z + 2dzwzmc<;z + wz2mc$z =  CIlb

L o n g itu d in a l T w is t  E q u a t io n

IcxOc + 2dxv)xIcxScidt\P-i2Icxix — &tw

Rial)

Jay 10

a*-- ;al a ~ '■> f '• £ /

uU V
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Appendix D

Model Parameters

D.l Vehicle Parameters

T h e  p a ra m e te rs  chosen  to  re p re s e n t th e  u n lo a d e d  tw o -a x le  v e h ic le  a re  l is te d  

b e lo w . M o s t  o f  th ese  re s u lt  f r o m  v e h ic le  a n d  t r u c k  c h a ra c te r iz a t io n  te s ts  p e r fo rm e d  

o n  a  p r o to ty p e  v e h ic le  a t  th e  T ra n s p o r ta t io n  T e s t C e n te r, P u e b lo , C O .

D.1.1 Inertial Parameters

m cg =  c a r  w e ig h t =  21520 .0  lb f

lex =  c a r  x  m ass m o m e n t o f  in e r t ia  =  3 .7 0 E 0 4  lb f - in - s e c * * 2  

I c y  =  c a r  y  m ass m o m e n t o f  in e r t ia  =  2 .5 0 E 0 6  Ib f- in -s e c * * 2  

Icz — c a r  z m ass m o m e n t o f  in e r t ia  =  2 .2 5 E 0 6  lb f - in - s e c * * 2  

m wg =  w h e e lse t w e ig h t =  2222 .0  lb f

Iwx  =  w h e e lse t x  m ass m o m e n t o f  in e r t ia  =  2600 .0  lb f - in - s e c * * 2  

Iw y  —  w h e e lse t x  m ass m o m e n t o f  in e r t ia  =  1500.0  lb f - in - s e c * *2  

g  =  g ra v ita t io n a l a c c e le ra tio n  =  386.04  in /s e c * * 2
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D.1.2 Geometric Parameters

V E R C O G ( l,2 ,3 ,4 )  =  16.0  in  

A X D IS T ( 1 ,2 )  =  224 .3  in  

A X D IS T ( 3 ,4 )  =  213 .7  in  

H A F A X ( l ,2 ,3 ,4 )  =  39 .0  in

R A D IU S  =  w h e e l n o m in a l r o l l in g  ra d iu s  =  14.0  in  

R O W  =  d is ta n c e  f r o m  t r a c k  CS o r ig in  to  w hee ls  e t eg =  14.0  in  

R O C  =  d is ta n c e  f r o m  t r a c k !  CS'Gofcigm taucar.i>cg.nsi230.0r,inp l,: ;; 

'̂ HAFCAĈ ŜtJacK'.HalfJî huge \=; '&9s7r5 w.ov

R A IL E iK  — - n o f r i l h k i / r a i l  lfeflgth^^"3S.Ors% n?...:ib  i

D.1.3 Structural Parameters aolfensqsr-g le-;*?....!

D A M P V B  =  cat-' y ^ r t ik a te  b e n d in g rm d d a fc d a m p iir fg  £ & & &  =*■■■. . £ \ \ .  n 

DAMPLB **= -C&- la t e fa l “ b ^n d 3 r ig ? m o d a lf id a iH :p in g : i. ra t io  ds= 

D A M P T W  =  ca r lo n g itu d in a l tw is t  m o d a l d a m p in g  r a t io  =  .15 

N A T V B  =  ca r v e r t ic a l b e n d in g  n a tu r a l  fre q u e n c y  =  56 .5  r a d /s  

N A T L B  =  c a r la te ra l b e n d in g  n a tu r a l  fre q u e n c y  =  55 .0  r a d /s  

N A T T W  =  c a r lo n g itu d in a l tw is t  n a tu r a l  fre q u e n c y  =  45 .9  r a d /s
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D.1.4 Longitudinal Suspension

K L 0 N 1  =  lo n g itu d in a l s w in g  s tiffn e s s  =  789 .0  l b f / i n

L O N S T P  =  lo n g itu d in a l c le a ra n ce  =  .875 in

K S T O P  =  lo n g itu d in a l a x le  g u a rd  s tiffn e ss  =  1 .0E 06  lb f / i n

L T H L N K  =  n o m in a l f u l l  s w in g  l in k  le n g th  =  12.6  in

L O N C O U  =  lo n g itu d in a l C o u lo m b  f r ic t io n  =  200 lb f

L O N B R K  =  l in e a r  v iscou s  h a lf - b a n d w id th  =  0 .5  in /s e c

KBUSH^—  bushing >stifihess =£20000: M/dxt m oil <yxx&~«;& ~ ;>OH

V S C (1 ,2 ,3 ,4 )  =  y a w  d a m p e r w e lb c ity  s f i? ^ O |s 0 .2 ik ^ 0 j6 6 3 ,£ iL 13 fe / s e c

F S C (1 ,2 ,3 ,4 )  =  y a w  d a m ^ W -'f& tc e -  =*Ug2Q( 310,112Q% >2O23 l I M l l i - . i ;

D . 1 . 5  L a t e r a l  S u s p e n s io n  lo - i r r in r m .S  £ . '

K L A T  ■ = " : l i t e r a l  ^ f l i i t o s ta g fe .s t i& f3 » l^ i4 9 8 > 2 u i fe f / i% ;  Q,V HM.I C

L T H L A T  =  1$*8 i n  £j qp■/..<

L S T O P 1  =  f i r s t  s to p  =  .97 in  ? • v , -

K S T P L A  =  la te ra l second  s ta ge  s tiffn e ss  =  9600 .0  l b f / i n  

L S T O P 2  =  second  s to p  =  1.21 in

K S T R U C  =  la te ra l t h i r d  s tage  s tiffn e ss  =  23500 .0  l b f / i n

L A T C O U  =  la te ra l C o u lo m b  f r ic t io n  ( F C 0 E F F * W G T C A R / 4 )  =  390 lb f

L A T B R K  =  lin e a r  v iscou s  h a lf - b a n d w id th  =  .06 in /s e c
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D.1.6 Vertical Suspension

C 0 N ( 1 )  =  4 020 .0  l b f / i n  

C O N (2 )  =  600  lb f  

C O N (3 )  =  15400 .0  l b f / i n  

C O N (4 )  (b e ta , c o m p re s s io n ) =  .05 

C O N (5 )  =  10000 .0  lb f

C O N , (.6) =  -600.. l b f , .....
XXW.' K + y y ;

' lbf/in'

,u -l >v; c. - v/ ~ r

gn.; ••••*:.O otxnsxr
X J l w  : - . e : ; ; j r o  

e1AhV/'.d3-[ jyj).

TOD JaJniE P'.:?'.. 05------:-----
iOD.DX J08"TT C?

5ajVr-boJ’
eonvoB.

y- ’ X -• _ ■ _ ■ , c/iu fl Uo;
D72 Whe^:/^Et^~a®^1Dr,adE: “Parameters— 1---------

T h e  p a ra m e te rs  a ffe c tin g  w h e e l / r a i l  in te ra c t io n s  in c lu d e  b o th  th e  w h e e l / r a i l  

c o n ta c t g e o m e try  a n d  th e  t r a c k  s y s te m  in p u ts .  T h e  w h e e l/ r a i l  c o n ta c t g e o m e try  

is d iscussed  in  C h a p te r  2 , w h e re  se v e ra l d if fe re n t p ro file s  a re  i l lu s t r a te d  a n d  th e ir  

e ffec ts  o n  s y s te m  response  is d iscu ssed .

M e a s u re d  t r a c k  d a ta  is .used  fo r  th e  p e r tu rb e d  t r a c k  a n a ly s is  fo r  th o s e  

in s ta n ce s  in  w h ic h  th e  d a ta  w as a v a ila b le . T h is  d a ta  w as o b ta in e d  f r o m  th e  T e s t 

C e n te r a n d  p rocessed  w i t h  th e  M I T  “ T R A C K ”  p ro g ra m , w h ic h  a na lyze s  th e  d a ta  

to  g e n e ra te  c o e ffic ie n ts  fo r  c u b ic  s p lin e s . T h e  o u tp u t  f ile  o f  co e ffic ie n ts  m a y  th e n  

be  re a d  b y  th e  s im u la t io n  p ro g ra m , u s in g  s p e c ia l s o ftw a re , in  o rd e r  to  re p re s e n t 

th e  a c tu a l m e a s u re d  t ra c k . T h is  p ro c e d u re  has been  done  fo r  se ve ra l s e c tio n s  o f  

t ra c k .

T a b le  D . l  l is ts  th e  v e h ic le  te s t,  th e  m e a s u re d  t ra c k  d a ta  file n a m e  fo r  th a t  

te s t,  a n d  th e  w h e e l/ r a i l  g e o m e try  f ile n a m e  u sed  in  th e  a n a ly s is . N o te  a lso  th a t  

th e  n o m in a l w h e e l/ r a i l  f r ic t io n  c o e ff ic ie n t is /z =  0 .5 .
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Table D.l
P ro f i le  a n d  T ra c k  D a ta  fo r  S im u la t io n s

1

9
T e s t T ra c k  D a ta W h e e l/R a i l  P ro f ile

H u n t in g (none ) C N H 1 3 6 S .W R X

C u rv in g  (5  deg) (no ne ) F 5 D E G .W R X  (F ro n t)  
R 5 D E G .W R X  (R e a r)

C u r v in g  (7 .5  deg) (no ne ) F 5 D E G .W R X  (F ro n t)  
R 5 D E G .W R X  (R e a r)

C u r v in g  (10  deg) * (no ne ) F 1 0 D E G .W R X  (F ro n t)  
R 1 0 D E G .W R X  (R e a r)

Y a w -S w a y P T T L A T .C O F F  Y A W  S W A Y ; W R X  - (F ro n t)  
R Y A W S W A Y .W R X  (R e a r)

D y n a m ic  C u rv in g X N O R T H Y .C O F - i \ w ;  c M 4 3 6 S . W X P

R o l l - T w is t P T T R K R L L .C O F C N H 1 3 6 S .W R X

B o u n c e P T T B O U N C .C O F :"  cai^ J( : N f e i3 ^ s . W R i£ " ' '

1 V e r t ic a l B u m p (a n a ly t ic a l) C N H 1 3 6 S .W R X
—g ? ■ CJ--------A~.rr------------- ;-------------

" * 3 sbirbrr: a.ioiJa'sis.TDi !Lr;'.fodjd[w jn* ; iXU?\u‘i 0 > ; r

c \l?3xivr rfx iT  ftfocm xnatsyg o tb  hn.6 x ^ s r x j o e %

s ij iJ  -rus ssliicTc J-ivreliib i.619V£fe "19 {{w £  1-J.t0.ibO ni h&SH Vu & a D
yii.aoqai'-T a::» ?. \:-ci

8f irxsu baiossdJk

i
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