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Executive Summary

The objective of this study has been to develop analysis tools for
predicting the safety related performance of rail cars. An analytical frame-
work has been developed for simulating rail vehicle response to extreme track
conditions, including those prescribed by the Association of American Rail- -
roads' (AAR) in Chapter XI of Reference [1]. The analysis has been imple-
mented for a prototype two-axle, trailer-on-flat-car rail vehicle, which has
been tested extensively over Chapter XI track conditions at the AAR Transpor-
tation Test Center,

Computer simulations of the unloaded vehicle, for which a complete set
of vehicle parameters has been determined by the AAR from component tests,
have been compared directly with field test results. Additionally, both the
model and field data have been reviewed to identify potentially unsafe condi-
tions. The results of the comparisons for the unloaded baseline vehicle,
where thé simulations are based upon track representations using measured

track data are summarized below:

(1) Hunting - Field tests on tangent track identified no hunting in tests
up to 90 mph, while simulations indicated that hunting commenced above .
105 mph. Simulations have indicated a decrease in hunting speed to 35
mph when the hydraulic longitudinal suspension yaw damper is reduced to

25-percent effectiveness.

(2) Steady-State Curving - Field tests on constant;fadfus curved track have
indicated maximum wheel lateral-to-vertical force (L/V) ratios of 0.1,

0.51, and 0.6 on 5 degree, 7.5 degree and 10 degree curves, respec-



(4)

(5)

tively, while simulations for these degree curves indicated L/V ratios
of 0.05, 0.36, énd 0.51 respectively. The trends of field test and
simulation wheel L/V ratios with respect to speed are similar. Addi-

tional simulations have indicated maximum wheel L/V ratios of less than
0.6 for baseline wheel-rail conditions for curves from 5 to 15 degrees.
They have also shown that changes in rail conditions from new to worn

may change L/V batios measurably in a manner similar to that observed in

the field tests.

Yaw-Sway on Track with 39 Foot Wavelength, 1.25-Inch Amp1litude

Sinusoidal Perturbations - Field tests conducted at speeds ofl0 mph to

80 mph on laterally perturbed track indicated a maximum axie L/V ratio
of 0.95, while corresponding simulations indicated a maximum axle L/V
ratio of 0.98 at these speeds. Additionally, simulations for-78-ft
wavelength perturbations indicated axle L/V ratios of less than 1.0 at

20 mph to 70 mph but a ratio of 1.3 at 80 mph.

Dynamic Curving on Curved Track with Alignment and Crosslevel

Perturbations - In field tests axle L/V ratios above 1.35 were reached

at speeds between 20 mph and 23 mph, the speed at which the tests were
terminated. In corresponding simulations, axle L/V ratios above 1.2
were reached at 23 mph and severe wheel climb approaching derailment

occurred at 26 mph,

Rock and Roll on Track with 0.75-Inch Crosslevel Perturbations - In

field tests conducted on track with crosslevel perturbations at speeds

of 36 mph to 60 mph, a maximum carbody roll angle of 2.1 degrees was

xi



measured. In simulations conducted at speeds of 15 mph to 75 mph, a

maximum carbody roll angle of 2.2 degrees was computed.

(6) Bounce and Pitch on 0.75-Inch Amplitude 39 Foot In-Phase Vertical

Perturbations - Both field tests and simulations indicated that on

vertical perturbed track wheel unloading increased as vehicle speed
increased. At 70 mph, full wheel unloading occurred for short periods

of time corresponding to 3 feet of travel.

(7) Bounce and Pitch in Negotiation of a Single 2-Inch Vertical Bump -

Field tests over a single vertical bump have shown that full wheel

~

unloading occurs momentarily at speeds above 38 mph, while corresponding
simuTations have indicated that at speeds above 40 mph full wheel

unloading occurs for short time periods corresponding to a travel

—_— distance of approximately 4 feet.

Overall, the baseline vehicle model closely agrees with field tests
conducted on vertical and crosslevel track perturbations thereby validating
the representation of the vehicle vertical suspension and carbody mass and
ineftia] characteristics. The model also has good agreement with field data 
in predicting trends and identifyingbconditions‘approaching wheel climb -
derailments for conditions exciting.latera1 motions through wheel-rajl inter-;
actions. However, the lateral p]ane.mode1 does not closely agree with

several specific test measurements including the lateral suspension stroke in

sinusoidal alignment tests and wheelset angular a}?ghment in the 10-degree
curve. These conditions have been shown to be very sensitive to the wheel-

rail profile and friction coefficient.

xii



Both the analysis and test data identified only one set of conditions,
dynamic curving where tests were stopped at 23 mph under which a potential
wheel climb derailment was approached. Under these conditions, cars equipped
with standard three-piece freight trucks would also be expected to experience
severe wheel climb at the same speeds.

This study has illustrated the importance of complementary experimental
and analytical evaluation of rail vehicle safety performance. Field tests
are indispensible in vehicle evaluation but are necessarily limited by time
and cost constraints. Thus, the tests represent the vehicle behavior for
only the specific set of conditions which exist for the tests. Analyses are
valuable to explore vehicle operating conditions which are not tested and may
result from changes in vehicle characteristics, wheel-rail profiles, or track
conditions not available for tests. The study scope has been limited to
unloaded vehicle tests and simulations which correspond to fe]ative]y small
whée] loads. It is recommended that further effort be undertaken to conduct - -
detailed comparisons of test and simulation data for fully loaded vehic]es‘so
that simulation model validity may be assessed over the complete range of

wheel loads occurring in the rail industry.

xiii









1. INTRODUCTION

1.1 BACKGROUND

A significant number of new freight car designs have been developed in
the last few years to provide improved productivity in the rail industry,
particularly for intermodal transport. The increased rate at which new
types of cars are being introduced requires the ability to assess the
Safety related dynamic performance of new cars critically and rapidly.

The Federal Railroad Administration (FRA) is conducting research to
develop analytical and experimental techniques to aid in the assessment of
the safety related performance of new types of rail vehicles. The foliow-
ing efforts have been conducted over the past five years in cooperation
with the Association of American Railroads (AAR) to deye]op criteria for
the evaluation of new types of vehicles:

(1) Establishment of Recommended Safety Test Conditions [1]
(2) The Vehicle/Track Interaction Assessment Program [2]
(3) Perturbed Track Tests on Freight Locomotives [3]

(4) Track Geometry Specification Research [4,5]

(5) Vehicle Safety Tests on Two-Axle Vehicles [6]

The evaluation of vehicle safety requires a combined analytical and
experjmenta] approach. Tests conducted on a vehicle on any given day J
répresent an evaluation for a specific set of track conditions and vehicle
state. Test results méy be strongly influenced by the presence or lack of
track lubrication, by the amount of wear on the rail head and wheels, and
by many other factors. It is not economically feasible to test a vehicle
over all possible operating scenarios. Thus, while track tesfs are.indis-

pensible to vehicle safety evaluation, they should be coupled with-
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analytical studies which explore vehicle performance'for sets of track and -
vehicle conditions representing potentially unsafe conditions which cannot
be readily evaluated experimentally. For such analytical studies to be
meaningful, analytical models which have been carefully validated by
experimental data are required.

In the last two years, a combined analytical and experimentai approach
for assessing vehicle éafety has been formulated by the AAR and described
in Chapter XI [1]. The FRA has initiated a research program to evaluate
the effectiveness of the specific analytical and experimental procedures -
described in Chapter XI. As-a part of this evaluation, a light weight
two-axle trailer on flat car was tested at the AAR Test Center over track
conditions prescribed by Chapter XI. The results of the test series are
described in [6]. As part of the effort to evaluate the capabilities of

analytical models to predict vehicle safety performance, the FRA has

sponsored, through the Transportation Systems Center, the research compiled

in this report.

1.2 STUDY OBJECTIVES
The general objecfive of the study is to establish experimentally

validated analysis tools for evaluation of the safety related performance - . -
of rail cars. The‘scope of the effort is focused on the dynamic perfor-”
mance of a single car, and specifically considers the safety related
dynamic performance resu]ting from vehicle-track interactions. Specific
objectives of the work are

(1) Formulation of a general framework for rail vehicle state-

of-the-art dynamic modeling
(2) Imp]ementatién of a dynamic model for the two-axle vehjc]e

operating on perturbed track
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 (3) Assessment of the model validity and limitations using test
data obtained on the car operating over Chapter XI track
scenarios
(4) Determination of the dynamic safety related performance of
two-axle vehicles
(5) Formulation of recommendations with respecf to evaluation
methodologies for vehicle dynamic safety related performance
The overall objective of the study is to provide information to assess
the safety performance of a wide variety of rail vehicles. In this study,
the specific evaluation of the two-axle freight vehicle is used to illus-
trate the critical areas which must be addressed during the performance

evaluation of a new vehicle.

1.3 SAFETY EVALUATION METHODOLOGY
1.3.1 Vehicle-Track Interactions

Under extreme conditions, the interactions between a rail vehicle and
the track can lead to a number of potentially unsafe conditions including:

(1) Incipient derailment in which either a flanging wheel climbs
the rail (wheel climb) or a nonflanging wheel displaces
sufficiently to drop off the rail (wheel drop).

(2) Large vehicle motions in which carbody displacements are )
sufficient for.the carbody to hit wayside obstacles or
anothgr vehicle, to cause separation between the carbody
and truck, or to result in permanent damage to car or track
components, |

The propensity to approach an unsafe condition is a strong function of

car characteristics including load, wheel profile, and suspension charac-
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teristics; track conditions including curvature, superelevation, track
perturbations, and the presence or absence of lubrication and operating
conditions including speed and location of a car in the train consist.
Unsafe conditions may result from single events, such as when a car
encounters an isolated track perturbation sufficient to cause derailment,
or from a series of events, such as when a periodic track perturbation
excites a vehicle at resonance and leads to carbody motions either suffi-
ciently large to hit an obstruction or derailment. In both single and
multiple event cases, thé potential to reach an unsafe condition is a
result of the combination of car characteristics, track characteristics,
and operating conditions.

To assess car safety using a finite set of analytical and experimental
studies requires:

(1) The quantitative definition of a set of safety criteria
which indicate incipient unsafe conditions and which can be
practically measured and computed, and .

(2) The definition of a set of safety evaluation scenarios which
can define the car safety boundaries for the critical
combinations of car characteristics, track charateristics,
and operating conditions leading to unsafe conditioné.

A number of analytical and experimental studies have been performed to
develop both safety criteria and test scenarios [1-6]. A recent document,
Chapter XI of the AAR Manual of Standards and Recommended Practice [1],
defines a set of quaniitative safety criteria and.a set of experimental
test scenarios and analytical studies to assess carléafety performance.
Sections 1.3.2 and 1.3.3 discuss the available data and studies re]ating‘to

safety criteria and safety evaluation scenarios.
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1.3.2 Safety Criteria

Incipient derailment may result from wheel drop or wheel climb condi-
tions. In the first condition, derailment occurs because the wheelset has
displaced a sufficient lateral distance for the wheel to drop off the rail.
This condition is usually associated with sections of track in which the
track gage has increased or lateral restraint has decreased because of
repeated vehicle loading or environmental conditions. The potential for
wheel drop has been considered by F, B. Blader and G. L. Mealy [5], who .
have defined an incipient wheel drop condition as one in which the inward
displaced wheel has less than 1.25-inch overlép with the supporting rails.
Thus, any combination of dynamic wheel motion and track gage changes which
allow wheel-track overlaps of less than 1.25 inches are considered unsafe.
The specific maximum lateral wheel displacement allowable before wheel drop
depends upon the wheel profile and the track gage and profile. For a
" standard AAR wheel and AREA rail with aAgage of 59 inches, the wheelset may
be displaced 1.5 inches before incipient wheel drop. A significant consid-
eration in assessing wheel drop is the dynamic gage widing due to vehic]e
loading.

An experimental study (4] of gage spreading on perturbed, curved track
and its influence on wheel drop conditions has shown that large lateral
forces are generated at low speeds in tight radius curves (12-degree
curves)‘which are relatively insensitive to vehiéle velocity at speeds of 5
mph to 20 mph. Additionally, significant lateral forces resulting from
crosé]eve] and alignment variations in curved track, were measured. Thus,
potential wheel drop conditions may be expected on curved, ‘perturbed track
when large lateral gage spreading forces combine wifh significant lateral

wheelset displacements.
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Wheel climb derailments result when a flanging wheel has sufficient
lateral force to climb over the rail. As the wheel climbs the rail,
usually due to the combination of reduced vertical force and increased
lateral force, it reaches a point of maximum angle between the plane of
flange-rail contact and the tra;k. Further displacements reduce this angle
and eventually lead to derailment. The wheel displacement at the maximum
contact angle has been proposed as the Timit of displacement for incipient
derailment [5,7]. Under field conditions, the small displacements of the
wheel relative to the track are difficult to measure; however, lateral and
vertical wheel forces can be measured with instrumented wheelsets and way-
side measurements. Thus, practical indicators of wheel climb deraiiment
have generally been expressed in terms of the wheel lateral-to-vertical
force (L/V) ratio. A number of analytical [5,7] scale model [8] and full-
scale field test [4,9,10] studies of the relationship of wheel L/V ratios
to incipient derailment have been conducted. A recent review of work has
been performed by H. Weinstock [7], who has concluded that a good measure
of incipient wheel climb deraiiment is provided by the instantaneous wheel
L/V ratio. The study dgscribed in [7] concluded that wheel climb derail-
ment will not occur if any of the following criteria are met:

(1) The L/V ratio on each wheel is less than Nadal's limit. -

(2) The sum of the magnitudes of L/V ratios for both wheels on”“
an axle is less than 1.0.

(3) For the case in which the flanging wheel vertical force is
less than the nonflanging wheel vertical force, the sum of
the magnitudes of L/V ratios for both wheels on the axle is
Tess than the sum of Nadal's limit and the coefficient of

friction.
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(4) For the case in which the lateral forces on both wheels are
in the same direction (a negative angle of attack), the sum
of the two wheel L/V ratios for the axle is less than the
sum of Nadal's limit and the coefficient of friction.

Criterion (1) represents the classical Nadal's limit, which is appro-
priate for large effective angle of attack conditions (greater than 1.0
degree). Criteria (2) and (3) represent modifications to Nadal's limit
which correct for the conservative nature of Nadal's limit at small
positive effective angles bf attack, and criterion (4) is formulated for
negative effective angles of attack. Most of the scenarios in which wheel
climb derailment is considered represent flanging wheel 1ift, and the
vertical force on the flanging wheel is Tess than the vertical force on the
non-flanging wheel. For these cases, criterion (3) is appropriate. Thus
for a large number of cases of interest, if the sum of magnitudes of wheel
L/V ratios on the axle is less than the sum of Nadal's 1limit and the
coefficient of friction, a wheel climb derailment is not imminent. For a
typical U.S. freight car wheelset with a maximum wheel-rail flange contact
angle of 65 degrees operating under conditions of varying friction, the sum

of L/V magnitude ratios is tabulated as below:

" Sum of L/V Magnitudes : Friction Coefficient

1.75 - | 0.1
1,42 0.3
1.30 | 0.5
1,28 .'.'0.7

The 11m1ting values of the sum of L/V magnitudes increase as the

friction coefficient decreases. Thus, if a criterion for a friction-
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coefficient of 0.5 is selected as 1.3, the criterion is conservative for
conditions with lower friction coefficients.

It is noted that Chapter XI [1] recommends a derailment wheel climb
criterion in which the sum of L/V magnitudes is less than 1.3. While this
criterion is app]icab]e\and conservétive for most derailment scenarios of
interest, it would not be conservative for cases in which the flanging
wheel vertical load is greater than the nonflanging wheel vertical load.
For those cases, alternative criteria such as those described in criteria
(1) and (2) are appropriate.

Large vehicle motions leading to the vehicle hitting wayside obstruc-
tions or other vehicles, to separation of the carbody from the truck, or to
damage of car and track components can Eesult from a number of conditions.
The establishment of vehicle safety performance criteria in terms of 1imfts
to excessive motions during the safety analysis and testing of a car are.
dependent upon specific car geometry. For example, the motion envelope
which can be allowed to avoid wayside obstructions can be established [11];
however, the roll motion limits of a specific vehicle to remain within the
envelope are vehicle specific. Additionally, the motions permitted to
avoid caf-truck separatibn and excessive vehicle forces are somewhat
vehicle dependent. Thus, while detailed criteria must be somewhat vehicle
specific, these criteria can be established from consideration of the :
operating envelope, car-truck separation effects, and excessive forces

leading directly to damage.

1.3.3 Test Scenarios and Evaluation Criteria
A defined set of analytical and experimental test conditions and

criteria must be established to evaluate the safety performance of a new



vehicle critically and rapidly. The number of analyses and tests performed
to qualify the safety performance of a new car are limited by both cost and
time considerations. Thus, a finite set of test scenarios must be
identified which can identify the 1imits to safety considering the range of
vehicle conditions, track conditions, and operating conditions which may
occur in practice. Because only Timited field testing is feasible, a
general goal is first to use critical field tests to establish performance
limits of the most critical conditions and then to use analyses which have
been confirmed by the field tests to explore conditions which have not been
tested and to evaluate the potential for nontested conditions to represent
potential problems. As a part of test planning, analyses can provide
information concerning the sensitivity of performance to the variationé in
vehicle parameters expected from vehicle to vehic]é in a fleet or as a )
vehicle has been in service over time. Thus, while it is not possible to
conduct field tests for a]l conditions, 5 carefu11y selected set of
critical field tests coupled with comprehensive analytical studies can
provide a meaningful safety evaluation of new cars.

h Efforts to develop a set of critical test scenarios and safety
criteria for new cars have been deécribed in the analytical study
referenced in [5] and the experimental study referenced in [4] which
together with historical field test data have been used to formulate the-
recommendations of Chapter XI [1].

The test scenarios described in Chapter XI include evaluation of the
vehicle on:
(1) Unperturbed tangent track to identify'the vehicle iateré]
stability limits in terms of hunting'speed
(2) Unperturbed, spiral entry and constant radius curved track to

identify wheel climb derailment propensity
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(3) Vertically perturbed track with crosslevel perturbations
which excite vehicle rock and roll to determine wheel
unloading and maximum car roll angle which could lead to car-
track separatjon or derailment

(4) Vertically perturbed track including a bump to represent
grade crossingsland a series of periodic in-phase perturba-
tions to excite vehicle pitch and bounce near resonant condi-
tions to determine whethér excessive wheel unioading occurs

(5) Laterally perturbed tr&ck with periodic 39-foot sinusoidal
alignment perturbations under a 1.0 inch wide gage condition.
These perturbations are designed to excite vehicle lateral
and yaw motions under resonant conditions to determine if
wheel climb derailment conditions are approached.

(6) A condition with curved, perturbed track which has in-phase
periodic perturbations in both gage and crosslevel to
determine if either wheel c1iﬁb derailment or excessive
wheel unloading occurs.

The test scenarios in Chapter XI are designed to represent a combinaé
tion of conditions which are expected to represent meaningful limits for
‘safety evaluation. A set of tests can only practically evaluate a finite . -
set of conditions. Thus, for a given vehicle, additional conditions to B
those specified may be 1mportant; For example, the yaw-sway tests are con-
ducted only for track disturbances with 39-foot perturbations., For some
vehicles, other wavelengths of track perturbation would represent more
severe conditions. Thus, experimental tests need to be complemented with
“analytical studies to explore operating conditions and changes in the
vehicle and track which are not represented in the specific safetyvtésts
conducted.
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2, .ANALYTICAL MODEL FORMULATION

2.1 CURRENT STATUS OF RAIL VEHICLE MODELING
In the past few years, several general purpose dynamic simulation pro-

grams have been developed for evaluation of rail vehicle dynamic perfor-
mance. These efforts have built strongly on past work in thch models have
been developed for a specific vehicle or class of vehicles to assess
hunting or curving or the response to track perturbations. Three éenera]
purpose programs are

(1) NUCARS, Association of American Railroads

(2) VAMPIRE, British Rail (BR)

(3) MEDYNA, Deutsche Forschungs und Versuchsanstadt fur Luft

und Raumfahrt, Munich, West Germany
A1l three of these programs can construct a dynamic model of a rail

vehicle from an assembly of car parts, suspension elements, and wheelsets.
The programs contain a wheel-rail interaction model which computes
wheel-rail forces and moments based upon Kalker's formuiation [15]. These
models can represent arbitrary wheel and track profiles and track lateral
and 1ongitudinai perturbations and thus are generally useful for evaluation
of raf1 vehicles over a wide range of conditions. While these models are
based upon the application of first principles in mechanics and dynamics”
and have produced results which have been compared with available test
data, none have been fully validated in terms of the comp]eﬁe range of
conditions approaching the 1imits to safety. Additionally, the programs
currently have some Timitations with'respect to their ability to represent
the types of friction which typically occur in U.S. freight vehic]és;

While the models represent the current state-of-the-art in rail vehicle
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modeling and have built strongly upon previous modeling efforts and model
validation studies, further effort is still needed in the development of
models validated for limiting wheel-rail conditions which occur as safety
limits are approached. |

In the current research effort, a model is formulated which, like
those cited above, employs a state-of-the-art wheel-rail model. (The
wheel-rail model is very similar to that utilized in NQCARS.) The current
research model was developed in the same time period as NUCARS and VAMPIRE
and reflects discussions held with AAR and BR researchers in its formula-
tion. Thus, the model described in this report is representative of the
current rail vehicle modeling capability, and the general results of the

model are expected to be similar to those of the models cited.

2,2 CONCEPTUAL MODEL FORMULATION

A model has been formulated for a two-axle prototype vehicle tested by
the AAR at the Pueb]o‘Teét Center. The model for the specific vehicle has
been developed within a general model framework using a matrix equation
formulation which can be used for the efficient development of models for a
spectrum of railAvehicles;

The model framework has been developed specifically to meet a number
of objectives. First, the model must represent vehicle dynamic performanée
in responée to tangent and curved sdpere]evated track containing vertical
and alignment track perturbations. Second, the model must be valid for
extreme conditions involving significant displacemen?s of the vehicle
éuspension into contact with geometric stops and significant displacements
of the wheels with respect to the rail requiring representation of Whee1—

rail mechanics under wheel climb conditions. Thus, a nonlinear model has



been formulated to accurately represent large dynamic motions which occur
at safety limits.

The model framework uses a general matrix equation formulation repre-
senting Newton's Law equating the sum of the forces on a mass to the mass
times the acceleration which may be written in terms of the products of
(1) a mass matrix and acceleration vector, (2) a damping matrix and
velocity vector, (3) a stiffness matrix and displacement vector, and (4) a

number of forces, as shown in the following equation:
MX+D X+KX=WGH + FGF +FGI + FI + FC
The terms in this equation are defined as follows:

M: Mass matrix; contains all mass and moment of inertia terms

on the diagonal

X: Second derivative of the degree of freedom vector; contains

all the states' second derivatives

D:  Structural damping matrix; contains damping values of

flexible modes on the diagonal

X: First derivative of degree of fredom vector; contains

. all the states' first derivatives

K: Structural stiffness matrix; contains stiffness values

for the flexible modes on the diagonal
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WGW:

FG:

FGL:

FI:

FC:

Degree of freedom vector; contains all the states
Weight vector; contains all weight forces

Force geometry matrix; contains all geometry terms

pertinent to calculating suspension forces and moments
Suspension force vector; contains suspension forces
Rail force vector; contains rail forces and torques

Inertial force vector; contains purely geometric inertial

forces (those that depend upon only track geometry) .

Cross term force vector; contains state rate/geometry

coupling inertial force terms.

A specific vehicle model is implemented by defining the appropriate

model state vector, the mass, the damping and stiffness matrices, and the

system forces which represent nonlinear characteristics of wheel-rail

interactions and suspension forces.

2.3 WHEEL-RAIL INTERACTION MODEL

Wheel-rail interaction models whiéh represent nonlinear geometry, as

well as nonlinear creep force-creepage relationships, have been developed

and are currently used in many state-of-the-art models. Forces and torques

developed for a wheelset are strongly influenced by Tocal contact geometry,
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3

as well as by creep force-creepage relationships. As illustrated in Figure
2.1, a rigid wheelset may interact with a rail so that one or more points
of contact occur between each wheel and the rail. The resulting contact
area geometry depends upon both detailed wheel and track geometry and know-
ledge of the profiles is required to characterize the interaction. As a
wheelset is displaced laterally, wheel-rail contact changes from the wheel
tread region to the flange region, where multiple contact points may occur
between the wheel and rail. As the flange is approached, signif%cant
changes in the contact geometry occur including the wheel rolling radius
and the contact angle, as shown 1n.Figures 2.2 through 2.5 respectively for
AAR and CN Heumann (CNH) wheel profiles interacting with new rail and mea-
sured profiles on 5-degree and 10-degree curves at the Pueblo Test Center.
The figures show that there are significant differences in rolling radijus
and contact angle at the same lateral excursion for the two profiles on new
rails. Similarly, for the same CNH wheel profile interacting with new rail
in the 5-degree curve and worn rail in the 10-degree curve, significant
differences in rolling radius and contact angle occur for the same wheelset
displacement. In the simulation model developed, tables of wheel-rail
geometry as a function of wheelset displacements for a specific wheelset-
rail condition are used to represent the deta11ed‘contact area geometry
based upon the Hertzian solution to determine the contact area between two
elastic bodies in contact.

The fofceé and torques generated by a wheelset interacting with a rail
are a function of the Tocal geometry and the contact patch constitutive
relationship between lateral, longitudinal, and spin. creep forces and
creepages, i.e., local relative lateral, longitudinal and spin velocities

in the contact area. The general form of the lateral creep force versus
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lateral creepage shown in Figure 2.6 consists of an approximately linear
relation between force and creepage, and as an increasing fraction of wheel
slippage occurs, a constant saturation creep force is approached with full
wheel slip. While the linear portion of the characteristic is generally
represented as relatively independent of the sliding friction coefficient, '
in saturation with full slip, the creep force is a strong function of the
sliding friction coefficient. A consistent formulation for computation of
the creep forces has been developed by Kalker [15] with creep forces
computed as a function of detailed wheel-rail contact geometry, as well as
creepages ranging from zero to full é]ip. The Kalker representation |
(tables) is used in the model developed in this report with the detailed
development of the equations described in Appendix B.

The role of geometry and friction in the generation of wheel-rail.
interaction forces is illustrated in Figures 2.7 and 2.8, which show the
nondimensional moment on the wheelset versus P/W (the ratio of net 1ate;a1
wheelset force divided by vertical load) for a given set of conditions as a
wheelset is displaced laterally through the tread region onto the flange.
Data for an AAR wheel profile and CNH wheel profile on new rail for two
values of wheel-rail friction coefficient are plotted. The data show that
the torque-Tateral load characteristic is relatively independent of fric-
tion for a wheelset with no yaw angle on tangent track. However for the'
wheelset with a 10-mrad yaw angle on a 10-degree curve, a significant
difference occurs in moment for the same lateral force between the case
with a wheel-rail friction coefficient of 0.5 and O<25. The data show that
changes in friction can sighificant1y influence wheel-rail forces.under

high slip conditions.
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2.4 SIMULATION MODEL FOR PROTOTYPE VEHICLE

A schematic representation of the two-axle prototype vehicle is shown
in Figure 2.9. The vehicle consists of a beam-like carbody supported on two
axles through swiqglink-]eaf spring suspensions. A description of the vehi-
cle, which is designed for carrying trailers is contained in Reference [12].
In the model vehicle, the twelve degrees of freedom listed in Table 2.1 have
been defined including rigid carbody lateral, vertical, roll, pitch, and yaw
displacements, as well as flexible carbody vertical and lateral bending and
longitudinal twist mptions. Each axle is represented with a lateral and yaw
degree of freedom.

In addition to the 12 explicit degrees of freedom, 2 types of implicit
degrees of freedom are used--one for each axle rotation in the eomputation of
wheel-rail spin creep and a second for each bushing spring in the computation
of the longitudinal damper-bushing forces.

For all rotatiéna] and flexible degrees of freedom, small angle assump- ’
tions are employed in equation derivations. These are valid even for the
current large displacement model, since the angles of the major body compon-
ents, even under extreme conditions, are small enough for the small angle
assumption to be valid. With the small angle assumption, the strokes across
the suspensions are directly proportional to angles of rotétion, and moment . -
arms used in calculating suspension torques are constant. In addition td.the
small angle assumption, only first bending modes are considered, since higher
body modes have frequencies outside the primary range of model interest.

The suspgnsion of the dual-axle vehicle uti]izgs a leaf spring for ver-
tical springing and damping. The carbody is hung from the leaf spring
through swinglinks which are hinged in the center. The swing]inks.provide

both the lateral and longitudinal stiffness. The lateral damping is caused
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by dry friction in the swinglinks while the longitudinal damping is provided
by a hydraulic damper. This damper is connected to the car frame through a

rubber bushing. A schematic of the suspension is shown in Figure 2.10.

TABLE 2.1 VEHICLE DEGREES OF FREEDOM

X( 1) = Carbody Lateral

X(.2) = Carbody Vertical

X( 3) = Carbody Roll

X( 4) = Carbody Pitch

X( 5) =»Carb0dy Yaw

X( 6) = Carbody Vertical Bend

X( 7) = Carbody Lateral Bend

X( 8) = Carbody Lo&gitudina] Twist
X( 9) = Leading Wheelset Lateral
X(10) = Leading Wheelset Yaw
X(11) = Trailing Wheelset Lateral
X(12) = Trailing Wheelset Yaw

In this section the elements of the suspensions between the car and
wheelsets are described. The detailed suspension force equations are pre- -
sented in Appendix C. The model incorporates four sets of longitudinal,

lateral, and vertical suspension elements, one set associated with each wheel.
2.4.1 Car/Wheel Longitudina] Suspension

The car/wheel Tongitudinal suspension is a swing hanger suspension which

is oriented vertically with the wheelset connection point at the top and the
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car connection point at the bottom. As the car and wheelset move longitu-
dinally relative to each other, there is an effective'pendulum length which
affects the stiffness of the suspension. Although the pendulum length is
variable, the stiffness of this first stage is represented as constant over

the range in which the pendulum swings freely. The pendulum stiffness is:

WGTCAR

KLON = ZZTToN

where
KLON:  -Longitudinal swing hanger stiffness
WGTCAR: Car weight

LLON: Effective longitudinal pendulum length

In addition to the pendular spring, an axle guard effectively serves

as a very high second-stage stiffness. Damping is provided by a hydraulic =~ =~ °

damper connected to the carbody through a rubber bushing. The modeling of
this series spring-damper element is discussed in Appendix C. Figure 2.11
shows an idealization of the car/wheel Tongitudinal suspension. \

Strokes across the car/wheel longitudinal suspensjon are considered
positive when the wheel connection point js displaced in the positjve

direction relative to the car connection point.

2.4.2 Car/Wheel Latepa] Suspension

The car/wheel lateral suspension is a swing hanger suspension, which is
oriented vertically with the wheelset connection poiﬁt at the top and the car
connection point at the bottom. The stiffness of the lateral suspgﬁsion as

the car and wheelset move laterally relative to each other is determined from
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the swing hanger pendulum stiffness in a similar manner as the longitudinal
suspension,

The first and smallest pendular stiffness occurs during relatively small
strokes when the full length of the swinglink is in motion. If the stroke is
large enough, a stop is encountered, cutting the swinglink length in half and
thereby doubling the theoretical pendular stiffness. Experiments have shown
that the leaf spring contacts the axle guard at this point, which leads to a -
higher second-stage stiffness than that predicted using only the effectivé
pendulum length [131.

The final change'in stiffness occurs when the axle guard stop is
encountered. This final stiffness is substantially larger than the second-
stage stiffness. Damping is provided by coulomb friétion in the swinglinks.

Figure 2.12 shows an idealization of the car/wheel lateral suspensidn.
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2.4.3 Car/Wheel Vertical Suspension

The car/wheel vertical suspension is a two-stage leaf spring. Because
it is two-staged, a loaded car generally operates in the region of the
stiffer second stage. The leaf spring is modeled as a hysteretic element
whicﬁ consists of a two-stage piecewise linear spring in parallel with cou-
lomb friction. The model used to represent the leaf spring has been adapted
from a detailed study of the damping'and stiffness properties of leaf springs
[14]. In the model, the transition from positive to negative coulomb damping
is represented as an exponential trajectory.  Figure 2.13 shows an idealiza-

tion of the car/wheel vertical suspension.

2,5 VEHICLE AND TRACK PARAMETERS

The parameters representing the vehicle body and suspension elements for
the prototype vehicle are summarized in Appendix D. These parameters have |
been determined by AAR from measurements of vehicle components for the
unloaded vehicle.

.The vehicle was operated on a series of track segments constructed to
establish Chapter XI track conditions. . For each of these conditions, the
wheel-rail profile appropriate for the track section as measured in the field -
was used in the simulations. These proffies are summarized in Appendix D. -
" Addditionally, for perturbed track tests, field measured track lateral ana
vertical perturbatfons were used to represent the test track directly. These
sections of field track geometries have been stored on magnetic disks in a
forﬁ convenient for simulation. Thus, simulations conducted in this study

have utilized measured track data for perturbed track sections.
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3. VEHICLE PERFORMANCE EVALUATION

3.1 SCOPE OF STUDY

~ An extensive set of field tests was conducted on the unloaded two-axle
vehicle equipped with instrumented wheelsets. These tests were conducted on
tangent, curved, and perturbed track specifically constructed at the AAR
Test Center to provide track conditions described by Chapter XI. These
tests have provided some of the most detailed dynamic performance data
available in North America [6]. The test data provide an opportunity to
assess both the performance of the prototype vehicle and capabilities of the
analytical model to predict field performance. In the study described in
this report, areas of agreement and disagreement between the field data and
the simulations are identified, and, in particular, the fidelity of the
wheel-rail model is assessed. Additionally, simulations have been conducted
to complement the field tests by assessing conditions for which test data
are not available., These simulations were aesigned to determine performance
for vehicle or track conditions which have been identified as important in

an overall evaluation of the vehicle-safety-related dynamic performance.

3.2 VEHICLE LATERAL HUNTING STABILITY

The unloaded baseline vehicle was simulated operating on unperturbéa
tangent track to assess vehicle lateral stability. Time histories of the
vehicle Teading wheg]set lateral motions from an initially displaced lateral
position of 0,35 inches at 100 mph and at 105 mph are illustrated in Figure
3-1. At 100 mph, the initial displacement dies ou#; and the vehicle is
stable. At 105 mph, however, sustained hunting oscillations occur with

flange-to-flange wheel lateral displacement.
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Field tests conducted on the unloaded vehicle operating on tangent
track indicated no evidence of sustained hunting between 40 mph and 90 mph.
Thus, the field tests‘and simulation generally agree.

In shakedown tests of the vehicle prior to field testing, the vehicle
longitudinal suspension which includes an elastically mounted hydraulic
shock absorber, was tuned to provide good lateral stability. The simulation
parameter values reflect the field test values of the parameters as deter-
mined by AAR tests. Additional simulations, summarized in Figure 3-2, were
conducted to evaluate the influence of the shock absorber on the hunting
speed. As the hydraulic damper is reduced to 50-percent effectiveness, the
vehicle hunting speed decreases to 60 mph, and as the hydraulic damper is
reduced to 25-percent effectiveness, the hunting speed decreases to 33 mph.
These simulations 1ndi;ate that an effective hydraulic damper is required to
achieve an acceptable hunting speed for the vehicle. |

The baseline simulations were conducted for the vehicle operating on a
dry track with a wheel-rail frictjon coefficient of 0.5. Simulations con-
ducted with the lower friction coefficient of 0.4, reflecting the presence
of some moisture or lubrication, have indicated that the hunting speed
increases to above 110 mph. Thus, these simulations illustrate, as has
often been observed in field testing, that a reduction in the wheel-rail

friction coefficient increases the hunting speed.

3.3 STEADY-STATE CURVING -

An extensive set of field data was measured using instrumented wheel-~
sets for the vehicle operating on 5-degree, 7.5-degrgé and 10-degree curves
at the Pueblo Test Track. The instrumented wheelsets provide measurements

of vertical, lateral, and Tongitudinal force for each wheel on the vehicle.
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Data summarizing the steady-state forces, torques, and axle angles occurring -
as the vehicle traversed the curves at constant speed, for two runs each in
clockwise and counterclockwise directions, are summarized in Figures 3-3
through 3-9., Also summarized in each plot are simulation results based upon
measured wheel-rail profiles for the ‘curves. To indicate the sensitivity of
the simulations to changes in wheel-rail friction coefficient, results are
shown for wheel-rail coefficients of 0.5 and 0.4.

The measured wheel vertical fprces for four experimental runs at each
speed on each curve for all of the test runs are plotted in Figures 3-3 and
3-4. Also plotted are corresponding computer simulations conducted with
wheel-rail coefficients of friction of 0.4 and 0.5. These data show the
transfer of vertical force from the inner wheels to the outer wheels as
vehicle speed is increased from below balance speed to above balance speed.
The trends in the test data as a function of speed are similar to those of
the computed data. Very Tittle difference occurs between the two sets of
computed data for friction coefficients of 0.4 and 0.5, The test data
plotted for clockwise and éounterc]ockwise tests have, in general, about as
much variation in their values for a given test as the variation between the
test data and the computed data. The primary difference between the test
data and computed data is for the lead inner wheel, where the experimental
data for every teét indicates a lTower vertical load than does the computed
data. Part of this difference may be due to the instrumented wheelset cali-
bration, since the topal sum of the measured vertical forces on the four
wheels was 600 pounds less than the stated vehicle weight and the front-axle
measurements identified were lower than those expected from the vehicle

weight distribution.

3-5



9 - Vertical Force, Leading Quter Wheel
8 v
) »
7 - /./, r‘(d
o ./0/! v
.3- 6 & X ]
X
S
3 -
g 49
3 -
2 - S Degree Curve 7.5 Degres Curve 1G Degree Curve
L V=17 Vm3i Vm4i V=20 V=30 V=40 V=9 V=15 V=23
O L LI 1 ] L
i0
g4  Vertical Force, Leading Inner Wheel
8 -
7 -
n 6 ;5\\:\\‘] ‘\\\.\\\l
g x ) S :\
< s5- o = 4 x i
g : 1
5 4
w
3 -
2 S Degree Curve 7.5 Degres Curve 10 Degree Curve
- 1 1 1 1 1 1
Vmi7 Vm3i Vmd41l = Um=m20 V=30 V=40 V=g V=15 V=23
0 1 L LN 1 ’ LN
Simulation Experiment
—s mu=S5 o CW1 X  CCW 1
+==+ mu=.+4 a Cw2 . v cCcCcw2

FIGURE 3-3. STEADY CURVING WHEELSET VERTICAL FORCES - LEADING AXLE

3-6



10
9 Vertical Force, Trailing Inner Wheel
8
¥ - b b-4 A b4 2
7 w 2
"? -\‘\‘ a g\‘:\.
2 6 - s a a a
3 Y IS
g 5-
o
(T 4 -
3 —
2 5 Degree Curve 7.5 Degree Curve 10 Degree Curve
14 V=17 V=31 V=41 V=20 V=30 V=40 Va9 V15 Vw23
O T 1 1 ] L]
10
9 <4 . Vertical Force, Trailing Quter Wheel
8 - s v
, ¢ ° s .
B ¥ a
) g”’:’/’; ’,//g//f' %,_—r”’:
a 6 - ]
= X 3
) S
2
2 4 o
3 -4
2 S Degres Curve 7.5 Degree Curve 10 Degree Curve
14 V{7 V31 Vmdq V=20 V=30 V=40 V=9 V=15 V=23
0 ] : i L8 ] v
Simulation Experiment
—s mu=5 o CW1 X CCW 1
+-—+ mu=.4 a Cw2 - Vv CCW2

FIGURE 3-4. STEADY CURVING WHEELSET VERTICAL FORCES - TRAILING AXLE

3-7



Farce (kips)

Force (kips)

2
5 Oegree Curve 7.5 Qagree Curve 10 Oegree Cﬁm
I I 1 I I 1 11
1 V=17 Va3t V4t Vu20 V=30 V=40 V=g Vei5 V=23
s 8
0 :\x - S & )
v v a )
O : =
2
-1 = A L v
b
-2 - .
Net Lateral Force, Front Axle ]
B
"3 1 T T 1] 1
2
S Dagree Curve 7.5 Degres Curve 10 Degree Curve
1 1 1 1 B D
1 - V=17 V=31 V=41 V=20 V=30 V=40 V=g Ve=i{§ Vw23
. ]
0 k
-1 ] 2
-2 )
Net Lateral Force, Rear Axle
—'3 ‘r- R 4 ] 1]
Simulation Experiment
——8 mu=5 o CW1 x CCW 1
+=-=-+ mu= a CW2 -~ ¥ CCW 2
FIGURE 3-5. STEADY CURVING NET WHEELSET LATERAL FORCES




0.8

5 Degrea Curve 7.5 Dagree Cu‘m 10 Degree Curve j
0779 r—T1 LN T |
Vmi7 Vm3t V=41 V=20 V=30 V=40 Ve V=15 V=23 |
0.6 1 . - S
g v
0.5 = ._———.”"
A 2 -
o o ——-r .
0.4 - A x * !
{ g v a 2
- 0.3 -——'—’:B ’
m——"
- 0.2 -
0.1 1 5 L/V Ratio, Leading Outer Wheel
0 H i
'r
—0.1 R 1 B b
0.8
S Degree Curve 7.5 Dagree Curve 1Q Dagree Curve
079 71 —T 1 T 1
0.6 Vmi7 Va3l Va4 Vm2Q V=30 V=40 Vg Vmi§ Vu23
0.5 - 2 S (O B
< 3 F--g--§
T 0.4- x x ¥
0.3 4 RN
. -
0.2 - 3
0.1 - 3 . L/V Ratio, Leading Inner Wheel
0 z <
-0.1 T —T —T -
Simulation Experiment
—sa mu=.5 o CWi1 X CCW 1
o= -t mu=.4" A cw 2 v CCw 2

FIGURE 3-6. STEADY CURVING WHEELSET L/V RATIOS - LEADING AXLE

3-9



0.8

0.7 4 5 Degree Curve 7.5 Degree Curve 10 Degree Curve
| B 1 1 I I !
0.5 - Vo177 Vm31 Vm4i V=20 V=30 V=40 V=g Vmi15 V=23
z 0.5 7 L/V Ratio, Trailing Inner Wheel
-~ 0.4
0.3 4
e c—
0.2 4 -
8 %
0.1 - _ | 1\.\ . o 2
x -
04— -
—~ "
"0.1 i : -l L) 1
0.8
0.7 5 Degree Curve 7.3 Degree Curve 10 Degrse Curve
0.6 V17 Vm3] V49 V=20 V=30 V=40 VG Vm15 Ym23
0.5 L/V Ratio, Trailing Outer Wheel
-+ 0.4
0.3
-————'f:ij:
0.2 4 oo
’ 'y { ¥ g »
0.1 4 é
x
v .
0 p"/‘ 4.—;{'/.
-001 1 L 1 T
Simulation Experiment
——=a ' mu=.5 o CWi1 X CCW 1
=t mu=.4 A CW2 .9 CCW 2

FIGURE 3-7. STEADY CURVING WHEELSET L/V RATIOS - TRAILING EDGE

3-10




Torque (inch—kips)

Torque (inch—kips)

40 - Yaw Torque, Front Axle
. i v
]
] 2 : i_-i__:
=407 Q_J'—' « a V%
-
v ° ———s
v
- v
- X
—-120 - T -
=160 - T
—-200 - S Degres Curve 7.5 Degres Curve 10 Oegree Curve
- [ I 1 I | i 1
—240 4 V=17 V=31 Vmdl V=20 V=30 Vw40 V=g V=15 V=23
‘ k] L 1 L] 1
240 4 S Degree Curve 7.5 Dagree Curve 10 Degree Curve
7 11 1 1 1 1
200 - V=17 V=31 Vmdd V=20 V=30 V=40 Va9 V15 V=23
160 - ' ~g —
- S .
120 4 | v N
| v
x
80 - - A e ¢
°
- x _ 3 T b S
404 +—+3 *
0 :
4 7 -
—40 Yaw Torgque, Rear Axle
1 ) i RN n
Simulation Experiment
—» mu=.5 o CW1 x  CCW 1
= mu=.4 A CW 2 S 4 CCWw 2

FIGURE 3-8. STEADY CURVING WHEELSET YAW TORQUE

3-11



The net lateral forces on the front and rear axles for each test are
plotted in Figure 3-5. The computed data plotted show very little sensi-
tivity to a variation in wheel-rail friction coefficient from 0.5 to 0.4,
Both the computed data and the test data show identical trends for the
lateral force variation as the vehicle speed increases from an underbalanced
to an overbalanced condition. Test data for the trailing axle have rela-
tively little variation with a makimum of 500 pounds among the four tesf
runs for each test condition and are in relatively close agreement (+500
pounds) with the computed lateral forces. The lead axle test data have
relatively significant variations between tests run clockwise and counter-
clockwise. The major difference, of greater than 2,500 pounds, occurred on
the 10~degree curve., It fs thought that this difference in test data was
caused by suspension friction and axle misa]ignment; however, causes have
not yet been conclusively determined. The computed data 1ie between the
clockwise and counterclockwise data for the lead axle on the 10-degree curve
and exhibit similar trends to the test data.

Plots of L/V-ratios for each wheel for all of the teéts are summarized
in Figures'3—6 and 3-7, The computed data show that the wheel L/V ratios
for the 5-degree curve are relatively insensitive to changes in friction
levels, They show more sensitivity for the 7.5-degree and 10-degree curves
where increased flanging occurs. ' For the 10-degree curve, a reduction ofﬁ
between 0.05 and 0.01 occurs in wheel L/V when the friction coefficient is
reduced from 0.5 to 0.4. The L/V ratios for the lead outer wheel are the
1afgest recorded during the test. For this wheel, L/V ratios increased from
approximately 0.05 for the 5-degree curve to 0.4 for the 7.5-degree curve to
0.5 for the 10?degree curve, The trends in both the test data and the

computed data as speed increases and the degree of curvature increases are
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similar. A1l of the computed and test data indicate L/V ratios of less than
0.8 in all tests. For the 10-degree curve, data variations in L/V of 0.25
occurred between clockwise and counterclockwise data. The computed data lie
between these two sets of test data for the lead outer wheel. Data for the
trailing axle indicate L/V ratios of less than 0.3 for all curves.

The axle net yaw torque and yaw angles for each test are plotted in
Figures 3-8 and 3-9, respectively. Although thesé quantities are relatively
insensitive to changes in the wheel-rail friction coefficient for the 5-
degree curve, the computed yaw angle and torque of the lead axle on the 10-
degree curve vary significant]y with changes in friction coefficient from
0.4 to 0.5, with the lead-axle yaw angle increasing from 8 mrad to 21 mrad
 as the coefficient of friction is increased from 0.4 to 0.5. Simifar]y, the
yaw torque increases from approximately 20 inch-kips to 60 inch-kips. Thus,
the yaw torques resulting from longitudinal creep forces in high~-degree
curves where significaﬁt flanging occurs are relatively sensitive t6 changes =~
in friction levels.

For the 5-degree curve, there is reTative]y close agreement between the
tested and computed va]ues of yaw torque and yaw angle. In contrast, for
the 10-degree curve where significant flanging and creep force saturation
occur, the analysis predicts significantly higher yaw torque when based on a
friction coefficient of 0.5. That is, a.computed torque of 60 inch-kips for
the lead axle compares with test data in the range of 20-40 inch-kips, a
computed torque of 160 inch-kips for the trailing axle compares with test
data in the 40.1nch-kip range. The sensitivity of yaw torques to changes in
friction in stroﬁg]y flanging conditions make the pfécise comparison of test
data and computed data difficult. In these strongly flanging conditions,

small changes in wheel-rail contact geometry, as well as in friction and
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creep force saturation mechanisms, can significantly influence the produc-
tion of longitudinal forces. Both experimental measurements and the compu-
tation of wheel-rail forces are difficult under strongly flanging conditions
because of the strong sensitivity of wheel-rail forces to small values of
displacement.

To provide a view of the overall vehicle curving performance, wheel L/V
ratios have been computed for a wheel-rail frictfon coefficient of 0.5 and
the baseline wheel-rail geometry (Heumann wheel profile on new 136-pound
rail) for curves of 5-degrees to 15-degrees. These data, plotted in Figures
3-10 and 3-11, illustrate that under these nominal conditions wheel L/V
ratios less than 0.6 occur under all operating conditions. For this range
of curves, the simulation indicates that the unloaded vehicle curving

performance does not approach severe wheel climb.

3.4 VEHICLE RESPONSE TO ALIGNMENT PERTURBATIONS ,
Tests were performed on the vehicle operating at speeds of 10 mph to 85
_ mph‘over 0.5 inch wide gage track with sinusoidal 39-foot periodic alignment
variations of 1.25-inch amplitude. Data measured during the test series
included the longitudinal stroke, minimum vertical load, and axle L/V ratios
for the front axle, and the lateral strokes and peak lateral wheel loads foh
the front andArear axles. In Table 3-1, these data are summarized and are’
compared with computed data for the baseline vehicle. Both the computed
data and test data for suspension longitudinal stroke for the front axle
indicate that as speed'increases from 20 mph‘to 70 mph- the Tlongitudinal
strokes decrease, but then increase from 70 mph ‘to SQ:mph. The stroke
amplitudes indicated by the model longitudinal stroké data for all speeds

are approximately 50-percent larger than those of the measured data. The
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TABLE 3-1. VEHICLE RESPONSE TO 39-FOOT SINUSOIDAL
ALIGNMENT PERTURBATIONS

Velocity Experimental Model Model
(mph) Results Results Results
n=035 u=04
Longitudinal 10 .80 940 822
Suspension 15 .47 718 .807
Stroke, 20 .35 575 480
Front Axle 25 .35 484 438
(in) 30 .35 426 413
40 30 .436 .3685
50 22 391 342
80 .20 352 321
70 .28 .336 347
) 80 32 419 .362
Longitudinal 10 - .089 .869
Suspension 15 - 7174 .662
Stroke, 20 - 623 537
Rear Axle 25 - 526 449
(in) 30 . 439 387
40 - 371 .300
50 - .298 248
60 - 274 243
70 - 275 .258
80 - 290 281
Lateral 10 .12 151 .059
Suspension 15 .15 - .129 044
Stroke, 20 .18 .131 .037
Front Axle 25 ‘ .15 124 .081
(in) 30 .20 .169 128
. 40 .15 325 147
50 .18 .259 .150
60 ’ .30 225 279
70 B 361 .407
80 .70 645 . 7684
Lateral 10 .20 .288 133
Suspension i5 .20 .861 141
Stroke, 20 .22 2.130 143
Rear Axle 25 22 2.341 .3568
(in) 30 .28 2.490 .500
40 .45 2.002 701
50 .80 1.160 .691
60 1.20 1.083 .803
70 1.45 991 1,450
80 1.40 2.336 2.080
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TABLE 3-1. VEHICLE RESPONSE TO 39-FOOT SINUSOIDAL ALIGNMENT
PERTURBATIONS (CONTINUED)

Velocity Experimental Model Model
{mph) Results Results Results
u=0.5 =04
Maximum Lateral 10 1540 3833 3110
Load, Front Axle 15 1250 3481 2927
(1bf) 20 750 3653 3005
25 1020 3770 3052
30 1020 3691 3370
. 40 1250 1 4921 4331
50 1800 5884 3780
60 2550 4406 5309
70 6100 6180 7021
80 5500 7320 8034
Maximum Lateral 10 1540 3858 3158
Load, Rear Axle 15 1540 3434 2397
(1bf) 20 750 3493 2251
25 1250 3599 1583
30 1250 4707 1282.
40 1540 1370 1241
50 2050 1187 1291
60 2300 1238 1344
70 2050 1304 1421
80 2050 . 2835 2110
Front Axle 10 40 977 761
L/VzSum 15 . .35 845 700
20 .25 .833 712
25 .35 809 .679
30 .32 .760 07
40 .40 822 .698
50 45 .899 569
60 .55 .629 700
70 .85 .852 877
80 .95 .965 971
Rear Axle 10 - .982 763
L/V Sum 15 - - .839 857
20 - .843 513
25 - - .823 343
30 - 755 278
40 - 338 215
50 - - 203 226
60 - 218 .248
70 - .230 .258
80 - . .508 393
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TABLE 3-1.

VEHICLE RESPONSE TO 39-FOOT SINUSOIDAL A

PERTURBATIONS (CONTINUED)

LIGNMENT

Velocity Experimental Model Model
(mph) Results Results Results
u=035 u=04
L/V Ratio, 10 20 494 .389
Wheel 1 15 .15 422 .355
20 .15 .388 342
25 17 .385 348
30 .20 376 352
40 .25 423 397
50 .30 509 287
80 42 354 274
70 75 318 .316
80 .75 .358 .500
"LV Ratio, | 10 20 511 420
Wheel 2 15 .20 461 .399
20 .10 445 410
25 A7 438 314
30 A7 422 .299
40 .15 .340 279
&0 .15 .353 .402
60 .20 434 514
70 22 571 644
80 .25 .651 .723
L/V Ratio, 10 - .501 415
Wheel 3 15 - 458 375
20 - 472 316
25 - 452 224
30 - .535 181
40 .,, .194 .161
50 - .151 171
60 . .163 174
70 - 171 .182.
80 - 331 .249
L/V Ratio, 10 . 482 365
Wheel 4 15 - 415 332
20 - .399 224
25 - 377 172
30 - 416 .169
40 - 187 172
50 - .169 .181
60 - .183 199
70 - .190 208
80 - - .278 .226
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model data are relatively insensitive to changes in friction coefficient
from 0.5 to 0.4. |

The data for the measured suspension lateral stfoke for the front axle
has local peaks at approximaie]y 20 mph and 30 mph and then monotonically
increasing strokes above 40 mph. The model data illustrate local peaks at
approxmately 20 mph and 40 mph and then monotonically increasing‘strokes
above 60 mph. The front-axle test data vary from a stroke of 0.12 inches at
10 mph to 0.7 inches at 80 mph, while the model data vary from 0.15 inches
at 10 mph to 0.65 inches at 80 mph.

The measured rear suspension stroke increases monotonically from 0.2
inches at 10 mph to 1.4 inches at 80 mph. The model rear stroke is sensi-
tive to changes in wheel-rail friction.. At a friction coefficient of 0.5,
the model stroke indicates a resonance in the lateral suspension at 30 mph
with the stroke approaching 2.5 inches. At a friction coefficient of 0.4,
however, the‘stroke exhibits no resonance and monotonicai]y increases with
speed reaching a maximum stroke of 2 inches at 80 mph.

The measured and computed peak lateral loads for the front and rear
axles, for a friction coefficient of 0.5, are plotted in Figure 3-12. The
model predicts significantly higher lateral loads at speeds below 40 mph
than those indicated by the measured data. Predicted frbnt-ax]e lateral
loads are twice those measured.

Test data for axle L/V ratios is only avajlable for the front axle.
‘Front axle L/V ratios predicted by the‘model approach 1.0 at both low and
high speeds, while meésured data 'indicate axle L/V ratios of approximtely
0.4 at speeds beTow 50 mph and L/V ratios of 0.85 anﬁ 0.95 at 70 mph and 80
mph' respectively. Both the test data (for the front axle) and the model
data (for both axles) indicate that axle L/V ratios at all speeds are below

a value of 1.3 which is associated with a potential wheel climb condition.
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In summary, the model indicates that a possible rear-axle lateral
resonance condition exists for levels of wheel-rail friction of 0.5, a con-
dition that is not observed in the test data. The resonance is a strong
function of wheel-rail friction and is not present when values of friction
are reduced to 0.4. Both the model and the test data indicate that axle L/V
ratios for all speeds are less than 1.0, a value below the value (1.3)
nominally associated with severe wheel climb.

Simulations were also conducted with the vehicle to determine its
response to 78-foot wave]eﬁgth periodic perturbations of 1.25-inch ampli-
tude, whfch should excite vehicle yaw motion. The results of these simula-
tions for baseline conditions are summarized in terms of axle L/V ratios in
Table 3-2. These data indicate axle L/V ratios of less than 1.0 at speeds

of 20 mph to 70 mph and axle L/V ratios of less than 1.3 at 80 mph.

3.5 VEHICLE RESPONSE TO CURVED TRACK PERTURBATIONS

The vehicle was tested on a section of 12-degree curved track which had
a combination of 1.0-inch amplitude in-phase alignment and gage variation
coupled with 0.5-inch amplitude crosslevel variations, as prescribed by
Chapter XI. This track geometry is designed to excite vehicle lateral and
roll motion while négotiating a curve. The vehicle wheel force measurements
for speeds of 14 mph to 23 mph are summarized in Table 3-3. Tests were nof
conducted above 23 mph because unsafe conditions with signifiﬁant wheel
climb were approached. The test data in terms of peak lateral wheel loads
on the front axle and axie L/V ratios are plotted 1nuFigures 3-13 and 3-14,
respectively. In both figures, the test data are compared with model |
results computed for speeds of 14 mph to 28 mph, the speed at which the

model indicated excessive wheel climb. In both the experiment and the
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TABLE 3-2. VEHICLE RESPONSE TO 78-FOOT SINUSOIDAL
ALIGNMENT PERTURBATIONS

Velocity | Experimental Model
(mph) Results Results
w=0735
Front Axle 20 - .519
L/V Sum 30 - 518
40 - 548
50 - .593
80 ° 879
70 e .862
- 80 o 1.023
Rear Axle 20 - - 433
L/V Sum’ 30 - .408
40 . 393
50 - .396
60 - .238
70 - 886
80 - 1.242

3-24



TABLE 3-3. VEHICLE RESPONSE TO ALIGNMENT AND CROSSLEVEL
PERTURBATIONS ON 12-DEGREE CURVED TRACK

Velocity Experimental Model Model
(mph) Results Results Results
u=05 u=04
Maximum Lateral 14 5800 5368 5288
Load, Wheel 1 16.5 7600 6383 6557
(Ibf) 185 7400 7549 7133
21 7400 7952 7857
23 8000 8444 8322
25.5 8989 8970
28 9357 9237
Maximum Lateral 14 2700 3303 2794
Load, Wheel 2 16.5 3700 3296 2782
(1bf) 18.5 4000 3272 2764
: 21 3700 3261 2732
23 3300 3234 2708
25.5 3262 3151
28 3172 2781
Front Axle 14 1.15 1.046 .388
L/V Sum 16.5 1.35 1.056 928
18.5 1.35 1.083 .963
21 . 1.65 1.157 1.033
23 1.60 1.207 1.066
25.5 . 1.303 1.142
28 1.285 1.165
Rear Axle 14 15 1.053 .870
L/V Sum 16.5 .78 1.035 .784
18.5 .80 1.004 .738
21 .87 .970 T12
23 .90 .938 .704
25.5 900 729
28 954 .806
Minimum Percent i4 53 68 66
Vertical Load 16.5 46 66 65
(%) 18.5 48 82 63
21 46 57 59
23 34 57 59
25.5 51 57
28 41 - 52

3-25



TABLE 3-3. VEHICLE RESPONSE TO ALIGNMENT AND CROSSLEVEL PERTURBATIONS
ON 12-DEGREE CURVED TRACK (CONTINUED)

Velocity Experimental Model Model
(mph) Results Results Results
4=05 4=04
L/V Ratio, 14 .81 564 .535
Wheel 1 - 16.5 .80 810 630
18.5 .85 711 671
21 .80 79 730
23 .83 848 757
25.5 .881 .805
28 .846 842
L/V Ratio, 14 .80 522 428
Wheel 2 16.5 87 519 427
18.5 .70 .516 427
21 95 513 426
23 - 92 .509 428
25.5 507 424
28 .507 .423
L/V Ratio, 14 .50 468 411
Wheel 3 16.5 .52 462 420
18.5 .50 461 .409
21 47 467 409
23 .50 465 408
25.5 .440 .434
28 487 497
L/V Ratio, 14 35 587 505
Wheel 4 16.5 37 573 463
18.5 .40 .549 .443
21 AT .533 433
23 ’ .52 510 419
255 - .551 .399
28 865 379
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model, the peak lateral force on the inner wheel of the front axle remained
relatively constant at approximately 3,500 pounds as the speed increased.
As speed increased from 14 mph to 25 mph, the speed at which the tests were
stopped, the peak force on the outer wheel increased from 5,500 pounds to
8,000 pounds. The test data and model data are in good agreement on the
peak lateral forces as a function of speed.

As shown in Figure 3-14 the test data indicate higher L/V ratios than
do the model predictions. The measured front-axle L/V ratios increase from
1.15 at 14 mph to above 1.6 at 23 mph, while the L/V ratios predicted by the
model increase from 1.05 at 14 mph to above 1.3 at 28 mph. Since the
lateral loads predicted by the model and measured in the tests are in good
agreement , -higher L/V rafios in the measured data ére primarily attributable
to the lower vertical loads, i.e. more wheel unloading, in the measured
data, as shown in Table 3-3. Both the test data and the model predictioné
indicate that significant wheel climb occurs on the outer wheel as the speed -
is increased beyond 20 hph and that unsafe wheel climb conditions are

approached at 23 mph in the test and at 28 mph in the model.

3.6 VEHICLE RESPONSE TO CROSSLEVEL PERTURBATIONS

The vehicle was tested oﬁ track with 0.75-inch amplitude croés]evel
perturbations repeated every 39 feet, The perturbations are out of phase:on
the right and left rails to excite roll and twist in the car. In Table 3-4,
test data are summarized for speeds varying from 36 mph to 60 mph and com-
pared with model data. In Figure 3-15, the vehicle roll angle is plotted as
a function of speed where the roil angTes in both tﬁé test data and model
are noted tb 1n¢rease from approximately 1.6 degrees fo 2.1 degrees‘over the

speed range. The roll angles for the unloaded vehicle are relatively small, -
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TABLE 3-4. VEHICLE RESPONSE TO CROSSLEVEL PERTURBATIONS

Velocity Experimental Model
(mph) Results Results
Minimum Percent 15 - s
Vertical Load, 36 53 © 89
Wheel 1 (%) 44 42 55
52 40 61
- 60 42 60
75 - 55
Minimum Percent 15 - 76
Vertical Load, 36 62 62
Wheel 2 (%) 44 45 52
52 48 59
60 50 60
75 - 48
Minimum Percent 15 - 80
Vertical Load, 36 55 ' 58
Wheel 3 (%) 44 43 61
' 52 36 57
60 32 58
75 - 57
Minimum Percent 15 - 80
Vertical Load, 36 65 47
Wheel 4 (%) 44 55 | 62
52 62 61
60 . 58 62
75 - 56
Carbody - 15 - 1.53
Peak-to-Peak 36 1.7 1.69
Roll Angle - 44 1.3 1.73
(degrees) 52 1.8 | 180
60 2.1 1.93
75 - o217
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and the unloaded vehicle is not excited significantly by the crosslevel

perturbations.

3.7 VEHICLE RESPONSE TO VERTICAL PERTURBATIONS

Tests were also conducted on the vehicle over track with periodic 39~
foot in-phase 0.75-inch amplitude vertical perturbations designed to excite
'vehicle bounce and pitch. In Figure 3-16, the percent of wheel unloading
measured as a function of speed in the tests is plotted and compared with
model predictions. Both the test and model data indicate that as speed
'increéses the percent of wheel unloading increases with full unloading
occurring at 70 mph.

In Table 3-5, test data for the unloaded vehicle traversing a single
vertical bump with a 2-inch amplitude and 36-foot length are summarized.
The test data, as well as model predictions, indicate that as the speed is
inéreased to 40 mph complete wheel unloading occurs. The test and model

data closely agree.
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TABLE 3-5. VEHICLE RESPONSE TO VERTICAL PUMP

Velocity Experimental Model
{mph) Results Results
Minimum Percent 20 - 26
Vertical Load, 30 20 5
Front Axle 40 0 0
(%) 4ot 50 14 0
‘ 60 5 0
70 - 0
80 - 0
Minimum Percent 20 - 18
Vertical Load, 30 24 5
Rear Axle 40 0 5
(%) 50 5 5
60 3 0
70 - 0
‘80 - 0
Maximum Percent 20 - 175
Vertical Load, 30 - 197
Front Axle 40 - 350
() 50 . 280
60 - 210
70 - 250
80 - 330
Maximum Percent 20 - 160
Vertical Load, 30 - 190
Rear Axle 40 - 290
(%) 50 - 230
60 - 220
70 . 280
80 - 310
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4. SUMMARY AND CONCLUSIONS

4,1 UNLOCADED VEHICLE DYNAMIC PERFORMANCE
ExtensiVe test data have been obtained and processed for the unloaded
two-axle prototype vehicle operating over Chapter XI prescribed track con-
ditions. Computer simulations have also been conducted to determine vehic]e
performance. The results of these studies have indicated the'f011owihg:
(1) Hunting Speed on Unperturbed, Tangent Track
(a) Field tests indicated a hunting speed above 90 mph.
(b) ‘Simulations indicated a hunting speed above 100 mph.
(2) Constant Speed Negotiation of Unperturbed, Constant Radius
Curved Track
(a) Field tests indicated maximum wheel L/V ratios of 0.1,
0.51, and 0.6 on 5-degree, 7.5-degree and 10-degree .
curves, respectively.
(b) Simulations indicated maximum wheel L/V ratios of 0.05,
0.36, and 0.51 on 5-de§ree, 7.5-degree and 10-degree
curves respectively. Additional simulations indicated
maximum wheel L/V ratios of less than 0.6 for curves from
5-degree to 15;degree.
(3) Yaw-Sway Tests on Track‘with_Sinusoida1 Alignment Perturbatiéns
(a) Field tests conducted from 10 mph to 80 mph indicated a
maxjmum axle L/V ratio of 0.95.
(b) Simulations indicated a maximum axle L/V ratio of 0.98
between‘lO.mph to 80 mph.
(4) Dynamic Curving on Curved Track with Alignment and Croés]eve]

Perturbations
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(a) Field tests indicated axle L/V ratios above 1.35 above 20
mph and were terminated at 23 mph.

“(b) Simulations indicated axle L/V ratios above 1.2 at 23 mph
and severe wheel climb at 28 mph.
(5) Rock and Roll on Crosslevel Track Perturbations

(a) Field tests indicated a maximum carbody roll angle of 2.1
degrees between 36 mph and 60 mph. 1

(b) Simulations indicated a maximum carbody roll angle of 2.2
degrees between 15 mph to 75 mph. |

(6) Bounce and Pitch on Vertical Sinusoidal Track Perturbations

(a) Field tests have shown full wheel periodic unloading above
70 mph.

(b) Simulations have indicated full wheel unloading above 70
mph for short time periods corresponding to a distance of
approximately three feet.

(7) Bounce and Pitch in Negotiation of a Single Vertical Bump

(a) Field tests have shown full wheel unloading above 40 mph.

(b) Simulations have indicated full wheel unloading above 40
mph for short time periods corresponding to a travel
distance of less than four feet.

In both field tests and simulations, the unloaded two-axie vehicle
ﬁapproached an unsafe condition associated with severe wheel climb only in
the dynamic curving tests, where tests were stopped at 23 mph. These track
conditions represent severe conditions in which cars equipped with standard
three-piece freight trucks would also be expected to;éxperience severe wheel

climb conditions at low speeds, as shown by the tests described in reference

f41.
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Additional simulations have indicated that the vehicle hunting speed
de@reases significantly, to 33 mph, if the hydraulic damper effectiveness
is reduced to 25 percent of its design value. Thus, an effective hydraulic
damper is necessary to maintain a hunting speed in excess of 90 mph. Simu-
lations ha?e also shown that the specific performance of the vehicle in terms
of L/V ratios on curved and/br perturbed track can be strongly influenced by
both wheel-rail profiles and by wheel-rail friction coefficients. Hoﬁever,
the variations in both wheel-rail profiles and friction coefficients from the
baseline values considered in the study did not result in a change from safe

to unsafe operating conditions,

4.2 MODEL VALIDATION

The two-axle unloaded baseline vehicle model has agreed closely with
field test data for all tests conducted on vertical and crosslevel track
perturbations with an indication within + 5 mph of when wheel unloading
conditions are reached. AThese series of tests which excite vehicle bounce,
pitch and roll motions primarily exercise the vehicle suspensions and are not
strongly influenced by wheel-rail creep forces. The close agreement between
the model and test results provides strong confidence in the modeiing and
parameter vaiues'of the vehicle Vertita]ﬂsuspension and carbody mass ahd
inertia parameters.

The vehicle model has also predicted trends and identified maximum L/V
~ ratios which c]ose]y,agree with field tests that excite the vehicle laterally
through wheel-rail creep aﬁd the vehicle's lateral and longitudinal suspen-
sion. However, the lateral plane model has not agréed c]osé]y with field
test data in a number of_speéific measurements, including the lateral suspen-

sion stroke in sinusoidal alignment tests and the wheelset é]ignment in 10~
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degree steady-state curving tests. For both of these conditions, the model
results were shown to be sensitive to changes in wheel-rail friction coeffi-
cients, as well as wheel-rail profile. While these differences occurred, it
is also noted that in dynamic curving severe wheel c¢climb conditions were
identified by béth the field tests and simulations at comparable speeds.
While the modeiivalidation with respect to detailed wheel-rail creep force
prediction underlflanging conditions requires some additional attention, in

- the prediction of general trends and in the identification of safety limiting

conditions, the model and field test data are in good agreement.

4.3 CONCLUSIONS AND RECOMMENDATIONS

The study has shown the importance of a complementary evaluation through
field tests and computer analyses of the safety performance of rail vehicles.
A1th6ugh field tests are indispensable in vehicle evaluation, they are neces-
sarily limited by time and cost to a specified number of tests representing
the behavior of the vehicle for a given set of operating and track conditions
on the day of the test. Analyses are valuable to explore vehicle operating
conditions which may result from changes in vehicle parameters such as

friction or damping in suspension elements, wear, changes in wheel profile,

s
¥

and variations in vehicle loading, as well as to variations of track condi-

tions such as changes in track profile due to wear, lubrication, and track
perturbations such as alignment wavelengths not included in tests. The
effectiveneﬁs of an analytical model depends strongly on its degree of
validation by experimenta]ydata. The model developed in the stﬁdy has been.
shown to generally agree with field data in terms of predicting trends and
jdentifying cases where safety limits are aproached; however, the model did

not have universally close agreement with the field data in terms of
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predicting detailed longitudinal and lateral creep forces for conditions
1nvb]v1ng substantial flanging. Further effort to assess the basic wheel-
rail model under flanging conditions is recommended in terms of acquiring
additional field test data, as well as reviewing the wheel-rail model formu-
lation for these cases. Additionally, all of the comparisons between the
model and test data have corresponded to the lightly loaded wheei conditions
(7,000 1bs) for the unloaded car. Further effort is required to assess in
detail the validity of the wheel=-rail model dnder wheel loads appropriate for

a fully loaded vehicle, particularly for strongly flanging conditions.
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Appendix A

Kinematic Analysis

Several frames of reference are used to describe the motion of the carbody
and wheelsets in the two-axle vehicle dynamic curving model. The position of the
carbody center of mass is expressed with respect to the ideal “deterministic” track
frame, which is a frame which undergoes curving and superelevation rotations like
the actual track, but which is not subjected to crosslevel perturbations. Since the
wheel/rail mechanics are most naturally described in the plane of the track, the
positions of the wheelsets are expressed relative to the local track plane which
rolls relative to the deterministic track frame. |

To achieve the rotational equations of each element in the simplest form, it |
is necessary to express the motion of each object in a frame of reference which
is a principal axis system of the body. Such a principal axis system may or
may not be fixed with respect to the body. If the body possesses rotational

symmetry as a wheelset does, then the body has many principal axis systems. . -

In the following, it is assumed that the velocity of the rail vehicle is constant.
The small angle approximation is frequently used, and terms of second order or
higher in angles are neglected in the final results. Also, the product of a small
angle and the time derivative of a small angle are considered to be negligible.
Terms consisting of the product of two small angular velocities are neglected in -

acceleration relations.



A.1 The Physics of Coordinate Rotations

In Newton’s second law, the relation

-

dP

F=E=ma

is valid only when the acceleration is referred to an inertial coordinate frame,
where F is the force acting on the body, P is the momentum of the body, m is
the mass, and @ is the inertial acceleration of the body. This is the governing

equation for translational motion.

The corresponding equation for rotational motion is given by:

=1}

d

F=

S a

(12)

.

t

where 7 is the torque acting on the body, 'H is the angular momentum, I is
the moment of inertia tensor, and & is the instantaneous angular velocity of
the' body with respect to an inertial frame. If the angular momentum vector is
expressed in a coordinate system which is a principal axis system of the body,
then the off-diagonal elements of the inertia tensor are zero and the expression
may be simplified. Furthermore, the inertias are then time invariant. However,
this will generally be the case only when a transformation to a noninertial frame
of reference has been made.

Consider a coordinate system, F, which is rotating with respect to inertial
space. This angular velocity may be expressed in the coordinates of the F system,
as follows:

wWrx
IGF = | wry
wWrz {F}

The notation adopted here should be explained, as it will be used extensively.

The I and F superscripts are used to indicate that a velocity or acceleration
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refers to the motion of the F frame relative to the I frame. In the case of a

position vector such as
IGF

it is understood that the notation indicates the vector from the origin of the I
frame to that of the F frame. Column vectors will often be subscripted with a
letter or number indicating in which frame of reference the vector is expressed.
Thus, the {F} below indicates that the component values are expressed in terms
of the F frame coordinates. ‘

ux
Z= | uy = uxip + uyjr + uzkr

Yz 7 (r}

The fundamental law giving the inertial velocity of a point @, expressed

with respect to the rotating frame of reference F, is as follows:

dt at

4 (IR‘Q) — % (IR‘F) + 8 (FR'Q) + IgF x FR@ (A.l.l)- .

where, on the right hand side, the ordinary derivative gives the time rate of
change in the inertial system, the partial derivative is the simple time derivative
with respect to the rotating system, and the argular velocity is that of the

rotating system relative to the inertial frame. In component form, ’

I I F F
v§= vy + ‘Ugg + 2Wrpy — YWrz

I I F F
'08= vy + ’U}Q, + TWFz — 2ZWFX

I F F
vg = Ivz + vg + Yywrx — TWFrYy



For rotational motion, the angular velocity of the body relative to inertial
space is projected onto a principal axis coordinate system of the body. The
angular momentum is thus easily found. For all bodies except the wheelsets,
the frame of reference in which the motion will be expressed is the body-fixed
coordinate system. In the case of the wheelsets, the appropriate frame of reference

is a principal axis system which does not spin with the wheelset.

If frame F is a principal axis system of the body, and G is a body-fixed
principa,l axis system, then the angular momentum is given by:

Ixwex
IHG = IwaY

Tzwez / (7}

For the wheelset dynamic equations, the objective is to calculate the torque 7

in the frame F, since it is more convenient than the spinning body-fixed system
G. Using (A.1.1),

Ixwex Izwrpywez — Iywrzway
7= | Iywgy + | Ixwrzwex — Izwpxwez (A.1.2)
Izwez / (7 Iywrpxwey — Ixwrywex / (ry

If the F frame is identical to the G frame, as is the case for the carbody:

Ixwex (Iz — Iv)weywez
7= | Iywgy + (Ix - Iz)wexwez (A13)
Izwgz {G} (IY - IX)WGXWGY {G}




The translational acceleration of an object expressed in the coordinates of
a rotating reference frame must also be considered. The time differentiation
operation implied in (A.l.1) may be applied twice to the position of a point @,
measured with respect to a frame with origin F located at position IRF and
rotating at an angular velocity &@¥ relative to inertial space. With ¥y and
dre; corresponding to the relative motion of @ with respéct to the frame F, the

following acceleration formula is found:

gti? (Iﬁq) - &(% (IEF) + e + 2707 X Trel (A.1.4)

+ IGF x FRQ 4 IGF (IﬁFxFRQ)

In component form,

I I_F F ) : - . .
a)Q( =‘ayxy + GJQ( + 2(Uszy — ’Uywli'z) + zZwpy — YWrpz
’ 2 2
+ ywpxwry + 2wpxwrz — T(wpy”® + wrz”)
Ia.g = Ia,g + Fa$ + 2(vxwpz - vzwpx) + zwrpz — ZWFX

2 2
+ zwpywpz + zwpxwry — Y(wrx® + wrz®)

148 = 1af + Fad + 2(vywrx — vxwry) + Yopx — TWry

2 2
+ TwrpxwWrz + Ywrywrz — 2(Wrx® + wry®)

In practice, this equation is applied repeatedly through successive transfor-
mations to achieve the acceleration of a complicated motion with respect to an

inertial frame of reference.



A.2 System Transformations

Two distinct motions must be examined in the transformation from inertial
coordinates to the deterministic track frame. The first is a rotation about the
vertical axis due to the curvature of the track in vehicle curving situations. The
second is a rotation about the longitudinal axis at the inside rail due to the track
superelevation. A further rotation about the track centerline due to the crosslevel
perturbation is necessary to describe the perturbed track plane. Finally, the
track surface perturbation is a vertical displacement of the actual track centerline
relative to the deterministic track plane. The three body rotations then follow.

Figure A.1 illustrates the six coordinate rotations used to describe the most
complicated system, the wheelsets. The crosslevel rotation is not used for the
carbody system.

Before proceeding further, a discussion of our right-handed coordinate system
is required. The 7 axes are oriented longitudinally parallel to the track, positive
in the direction of motion of the vehicle; the j axes are aligned across the track
in the lateral airection, positive to the left when looking forward; and the k
axes are oriented vertically, with the positive direction upward. The z direction
is along the % axis, the y direction is along the 7 axis, and the z direction is
along the k axis. The particular coordinate systems under consideration have
unit vectors which have been rotated in one or more ways with respect to the
“pure” definitions above.
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Figure A.1 Diagram showing the six coordinaté rotations for the wheelset
system. The other bodies do not include the perturbed track plane rotation.

A- T



A.2.1 Rotation of the D and P Track Frames

The rotational motions of the deterministic and track plane systems is
developed in this section. Let the inertial system be denoted by the subscript
I and the horizontal system, which curves with the track, be marked with the
subscript H. The horizontal frame is rotating with respect to the inertial frame
with an angular velocity which depends upon the vehicle velocity V' and the
curvature of the track p.

0

Vo) (my

The superelevated track frame S rolls with respect to the horizontal frame
H at a rate given by the time rate of change of the superelevation angle. The
origins of the two frames coincide at the top of the right rail of the ideal,

deterministic track.

B3S = ¢spin

The coordinate rotation necessary to express a vector u, expressed in H
frame coordinates, in terms of S frame coordinates may be written in matrix
form as follows, where the approximate matrix is obtained by comsidering the
small angle approximation: o

1 0 0
@gsy=|0 cos(psp) sin(¢se) | Tm
0 -—sin(¢sg) cos(¢sE)
1 0 0
~ |0 (1-1i4s8%) ¢sm ;5
0 —¢sm (1-36s8°)

Since the matrix is an orthogonal transformation, the -inverse operation of trans-

forming from the S frame to the H frame may be found by simply taking
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the transpose of the matrix. Figure A.2 illustrates the basic track and wheelset
coordinate systems in the absence of crosslevel perturbations.

The origin of the deterministic track frame D is located midway between
the rails (assuming no track irregularities), and as it is fixed in the S system
it has the same angular velocity with respect to inertial space as the S frame.
Additionally, the S and D frame coordinate systems are perfectly aligned.

sk
'GP = —¢sEVp

—(1 - %¢SE2)VP {D}

Applying the small angle approximation,

¢sE OsE
IGP = 0 I@:D = — osgVp (A.2.1)
—VoJ (py —Vé /oy

As noted previously, the wheelsets are most naturally considered in reference
frames which roll with the crosslevel of the track, a rotation about the track
centerline. The sum of the superelevation and crosslevel rotations occurs frequently,
and it is useful to define the total roll ¢rr of the track plane relative to the
horizontal frame, as well as its derivatives, as follows: '

¢TR = $sE + dcRr
éTR = $SE + ¢.’CR

(ZTR = $SE + 503

The inertial a.ngula.r velocity of the track plane may be obtained as the sum
of two vectors,

IgP _IgD L DgP
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Figure A.2 Coordinate systems of wheelset and track.
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Since the longitudinal axes of the D and P systems are aligned, one may
write directly,

dcr
DGJ‘P = 0
0 J(p}

The angular velocity and acceleration of the P frame are then given as
follows:

PTR ¢TR
IgP=1 o ={ o0 (A.2.2)
Vel oy \"Ve/yp
TR érr
IGF = | —¢seVs = | —¢rrRVp
—Vé Jipy —Vés Jypy

A.2.2 Translation of the Origin of the Track Frames

The translational velocity and acceleration of the origin of the two track
frames are basic quantities used in many other expressions. Relations (A.1.1)

and (A.1.4) are applied as appropriate for successive frames of reference, with =
the following results.
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(7)) , ()

% (’ED) =1 o %3 (’ED) = —V2p (A.2.3)
\MSSE} D \¢SEV2P + adsg / D
{D} {D}
/ vV \ ( aVp \
sw)-| o | Eee)-[
\a'd.’SE} {P} , kd’TRVzP + GJ’SE] (P}

A.2.3 Translation Relative to the Deterministic Track Frame

The translational motion of the carbody, expressed in the coordinates of the
deterministic track frame, may be considered with relations (A.1.1) and (A.1.4)
and the following values for a body with center of mass at point @,

$sE
I 5D 15D _ —bsEVp
—-(1- %¢SE2)VP {D}
z : z z
PRe =]y Vel = | ¥ | Grel = | ¥
z/ (D} 2/ (py 2/ oy

The velocity and acceleration of a point @ in the D frame is determined
with (A.1.1) and (A.1.4), as follows: '
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z+V + yVp
d /1= ; :
= ("79) = g — 2Vp — 2¢sE (A.2.4)
¢+ (a+y)pse + zésEVp (D}
2+ (a+ yVp — 2oV
iii(IR‘Q)_ Y — V2p — 5 - V5
7z = g p —~ 2¢sp — ZV)
t+ ¢suV2p + (a+ y)bse + 2658V ) (py

A.2.4 Translation Relative to the Track Plane

The frame of reference of the track plane is used to describe the motion of
the wheelsets. The derivation of translational motion relative to the P frame is
similar to that with respect to the D frame, except that the track roll due to
crosslevel must be included. '

The motion of a point @ at the center of mass of a body which is described
in P system coordinates may be written using relations (A.1.1) and (A.1.4) with .
the following values:

$rr
TRP 6P = —¢TrRVp
—(1 - 31=°)Vo/ (py
z z z
PR =1y Uret = | ¥ Grer= | ¥
2/ (p) 2) (py 2/ ¢py

Note that the transformétion between D and P frames may be used to
transform to D coordinates a point expressed in the P system:
T T

TRP = | y =1 y(1- %95032) - 2;"¢CR
2/ (p} véor + 21— 36cr”)/ (py
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The velocity and acceleration are then:

( z+V + yVp

i(’}i‘?)— ) — Vo — 2 A25
p7 =| 9 p — ZPTR (A.2.5)
\2+014'5$E+y<i->1'12 (P}

/ ¥+ (a+y)Vp

a2 /= .

= (R =| §-V% - 2dra - avp

dt?
\é + ¢rrV30 + adsp + ydrr (P}

A.2.5 Rigid Body Rotations

Each rigid body in the model has some rotational freedom relative to its
corresponding track system. The most general case of yaw, roll, and pitch freedom
will be considered here.

Three rotations are required to describe the angular position of a body with
respect to a track system T. Firsi;, an intermediate frame 1 is defined by a
yaw motion 3 relative to the T frame. The body frame 2 is defined by a roll
displacement with respect to the intermediate frame 1 by the angle ¢. Finally,
the body frame F is given by a pitch displacement 4.

Combining these rotations defines the transformation from the track frame

T to the body frame F. To second order, it is given as follows:

1—3(02+4%) ¥ ~6
@y = —¢ 1- (6% + %) ¢ TT)

0+ o9 —¢ + 0 1 - 3(¢* + 6%

To first order, the forward and inverse transformations are given by:
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6 —-o 1 -0 ¢ 1

The angular velocity of the F frame with respect to the T frame may be
written as

TGF = %/'11:71 + 4.552 + éjF

The angular velocity of the T frame relative to inertial space may be
simply expressed in the T frame coordinates, using either (A.2.1) or (A.2.2) as
appropriate.

wrx
I(D‘T — wry
wrz {T}

Transforming this vector to the F frame, and adding the angular velocity of
~ the F' frame relative to the T frame, one arrives at the angular velocity of the
F system relative to inertial space. Preserving ‘angula,r terms of second order in
the resulting expressions,

wrx = (1 — %('gbz + 8 wrx + 45(1 - %02) + Ywry — O(wrz + ¢)
wry = —pwrx + (1 - %(¢2+¢2))wry + plwrz + ¥) + 4

wrz = f(wrx + @) — dwry + (1— %(92 +¢))(wrz + ¥)

Applying the small angle approximation,
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Wrx ¢ + wrx

IGF = Wrpy =14 + wry ' (A.2.7)

wrz /J (g} ¥ + wrz/ (g

The second order relations may be differentiated, neglecting terms consisting
of the product of a small angle and a small angular velocity, as well as two small
angular velocities. The terms éwpz and éwpx are eliminated from the roll and
yaw relations, respectively, since they will be the product of small angular rates
for the carbody. In the case of the wheelsets, these relations will be applied to
the 2 frame, not W, for which @ is identically zero.

WFX

I(jF = | wpy ' (A.2.8)

‘;JFZ {F}
where:
Grx = + wrx — 0% + drz)
wpy =8 + wry — Yarx + (@ + orz)

Grz =9 + wrz + 0($ + wrx)

Equations (A.1.2) and (A.1.3), applied to the time rate of change of rotational -
momentum in a reference frame F, may both be expressed in a general fdrm,'

with the cross terms x suitably defined:

Ixwrx Xx
7= Iywry + | xy
Izwrz {F} Xz /) (Fr}
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One now seeks expressions for the accelerations 1,Zv, 55, and 4. Defining some
terms I', without writing their detailed components, one may rewrite the above
relations as follows:

rx =Ix($ — 6 + Tx) + xx
v =Iy(§ + ¢P + Ty) + xv
rz=1Iz(% + 09 + I'z) + xz

These expressions may be reduced in order to uncouple the angular acceler-.
ations from each other. Solving for each of the individual angular accelerations
and neglecting small terms, with the cross terms x from (A.1.2) or (A.1.3) as
appropriate,

v 1 1 _

¢=—(rx — xx) + 0—71z — wrx (A.2.9)
Ix Iz _

" 1 1 . .

§=—(ry — xy) — ¢—7z — wry + Ywrx
Iy Iz

v 1 1
= —(r, — — =7y — ¢
(4 I (rz — xz) Tx X — Wrz

A.3 Transformations Between Coordinate Systems

The motions of the rigid bodies may be neatly described by coordinate systems
located at the longitudinal positions of the body centers of mass. Interactions
between these bodies occur at suspension elements which act between two bodies, -
each “end” of which may be considered to be at fixed positions relative to the
two centers of mass of the bodies to which it is attached. Since these body
centers are generally described in different D coordinate systems, a derivation of
the suspension strokes requires methods to transform between D systems located
at different positions along the track. Both translational and rotational differences

between frames must be reconciled.
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A.3.1 Translational Differences Between Frames

Consider two points @ and @’ which have positions and velocities given in
coordinate systems D and D’, respectively. The position and velocity of Q' may
be expressed in D system coordinates by transforming from D’ to S’, then to
H', onwards to H, then to S, and finally to D. (Recall that these frames have
been previously defined.) These steps will be written out below.

First, write the positions of @ and Q' in the D and D’ frames.

!

T T
DRQ — y D' R — y
2/ (p) 2'J (o

The frame S’ has the same orientation as D’ and is merely shifted laterally
by the track half-gauge. Then a rotation through the local superelevation angle
yields the position of @’ in coordinates of the horizontal frame H’. Thus,

.’D’

H’EQI — a + yl _ ZI¢SE,

2 + (a+y')¢SE’ {H'}

Considering the transformation from the H system to the H’ system, both

a rotation and a translation are required. The H and H' frames have a different

orientation since the z axis of each frame is directed along the track centerline. - -

The magnitude of the angle of rotation about the I::{ g} axis is approximately
given by the longitudinal distance times the average curvature. The sign of the
rotation is negative for the case of H’ forward of H and positive if H' is aft
of H. (This is consistent with the convention that positive curve radii indicate

curving to the right.) If the longitudinal distance between the two D frames is
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given by [, and the curvature averaged at the two locations is pave = (0) svar
then

1 ~4 0 1 -y 0
tigy=| -y 1 0 |u(my tigy=|v 1 0 |%gn
0 0 1 0 0 1
where:
7= —lpave

, { positive if H’ forward of H

negative if H' aft 6f H

Observe that H' is always displaced laterally in a negative sense from H
since the track is curving to the right. The magnitude of this lateral shift is -
given approximately by 2 pavea/2.

Finally, note that the vertical position of the right rail does not vary due
to track superelevation. Then the position of @’ relative to H, expressed in H
coordinates, may be written by adding two vectors when both are expressed in

the coordinates of the H system:

HEQ' _ HRH' | H'BQ

I+ 2" — ¢y
= "'%PAVG’ +a+y — 2ése + 2'v

(a+y)dse' + 2 (H}

This expression must be transformed to the coordinates of the superelevated -
track system S, followed by a lateral translation equal to the track half-gauge."
The resulting vector from D to Q' is then expressed in D system coordinates.
Subtracting these components from the position of @ relative to the D frame

yields the difference of position, written in D coordinates:
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z—1 -z + ¢y
12

DR? PR = | y+ Spave — ¥ — 2(¢s5—¢sE’) — ='v (A.3.1)

z + (a+y)(s5 — dsE") — 2 — dsEY Pave (D}

Consider now the difference between the inertial velocities and accelerations
of points Q' and Q. Previous formulae provide the value of the inertial velocity
and acceleration of a point expressed in the coordinates of its local D frame. The
difference between the values for two points is obtained simply by transforming

the value for Q' to D coordinates and subtracting the result from the value for
the point Q.

The inertial velocities and accelerations of the two points may be written as

follows: L ox o

d (; = d (7250 '

20m)-|w| g0
vz {D} _ . ‘U’Z {D"}
ax\ a.fx

d? - d? ot

@ (B =|ar w (B¥)=| &
az / (o) az / (D1}

The orientations of the D and D’ frames are identical to those of the S and
S' frames, respectively. The rotation between the D and D’ coordinate systems, =

to first order, is given as follows: -

1 - 0
@ipy=| 7 1 (452 — ¢s8") | Tioy
0 —(¢sg—¢se’) 1

Transforming the velocity and acceleration of Q' to the D system and

subtracting the result from that of @ yields the follo‘&ving:x
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vx — vl + vy

d = d =g U
E(IRQ) T odt (IRQ ) = | vy — vy — Wy — (¢sg—¢sE')vy | (A3.2)

vz — vy + (bsE—9s2')vy  / (py
ax — GS( + 'YG'IY
d* - d? =/
%5 (IRQ) - = (IRQ ) = | ay — daf — vdx — (¢s5 — ds&’)ay

az — a7 + (¢sE — és5’)ay (D}

A.3.2 Rotational Differences Between Frames

The orientation of the principal axes of each rigid body may be represented
by roll, pitch, and yaw rotations relative to the appropriate D system for each
body, as indicated in (A.2.6). Consider two bodies, F and F’, which are oriented

with respect to the frames D and D’ with the following transformation matrices:

1 ¢ —6 1 o =
pm=|-¢ 1 ¢ |dp dw=|-¢ 1 ¢ |dw
' 8 —¢ 1 o —¢ 1

These matrices and that which describes the orientation of D’ with respect

to D may be manipulated to arrive at the transformation from the F’ to the F
orientation:

1 (- —) —(0-0) _

dpy =1 —(¥—9' =) 1 (6r —¥p) |Gy (A3.3)]

| (6-0)  —~(¢r—dF) 1
where: :

¢Fr =¢sg + ¢
¢7 =¢s5’ + ¢
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The above result indicates that the frame F is obtained from the F’ frame
by rolling through an angle equal to (¢r — ¢%), by pitching through an angle
(0 — 6"), and by rotating in the yaw sense through an angle (¢ — ¢’ —~).

Finally, the difference between angular rates of rotation of the principal axes
of two rigid body systems is found in a manner analogous to the difference
in the translational velocities. The differences in the time rate of change of
angular velocity may be obtained in the same fashion. The angular velocities
and accelerations may be written as follows:

— !
IGF = | wy IgF' Wl
. !
wz / (D} Wz / (D%}
W vl
X Wx
IGF = | &y IGF = | o,
° N .
“z / (D} Wz / (D%}

Applying the transformation from the D’ frame to the D system in order. -

to find the differences in the angular velocity and acceleration between the two

frames,

wx — wh + i
GF - IGF = | wy — wy — Wi — (psE — dsE')wh (A.3.4) '
wz — wy + (¢s5 — ¢pse’)wy (D}
wx — Wy + Yy
IGF — IGF' = | Gy — & — vk — (sE — ésE’)iy

Wz — Wy + (dsg — ¢se )Wl (D}
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Appendix B

Wheel / Rail Mechanics

In this appendix, the dynamic interactions between wheel and rail are con-
sidered. Based on the kinematics presented in Appendix A, wheelset translational
and rotational equations are found. These relations are then extended to include
translation of points defined relative to the wheelset frame of reference.

The frictional contact patch forces are calculated using Kalker’s method,
and the wheel/rail forces are resolved in both the wheelset and track frames
of reference. With the applied forces given from wheel/rail considerations, and
kinematic and geometric relations found in this appendix, the equations of motion
of a wheelset are found for the general case of two points of contact between a
single wheel and the rail

B.1 The Wheelset System

The wheelset model includes the wheelset motion which is permitted, which
involve lateral, yaw, and spin movement. The wheelset roll and vertical position
of the center of gravity are determined“by the constraint of wheel/rail contact.
The wheelset rolls and is displaced vertically relative to the track plane as a
result of the differences in left and right rolling radii and the heights of the
contact patches. The wheelset vertical and roll equations of motion are used to -
"solve for the wheelset normal loads; these relations are important even though .

the wheelset motion is constrained in these modes.

Originating at the track centerline in the P frame, one displacement and -

three rotations are required to describe the motion of the wheelset. The position



of the center of mass is determined with respect to the perturbed track frame
P, and it is given by the following,

0 0
PRV = | yw = | yw — zwédcr
2w / (P} 2w {D}

where:
yw = wheelset lateral position
2w =To + 2wRr + ZSURF = V\{heelset vertical position
ro = nominal wheelset rolling radius
zwgr = vertical height of wheel w.r.t. rail

zsurr = track vertical surface perturbation

The zwgr term is obtained from wheel/rail geometry tables, for it is the
vertical position of the wheelset centroid as a function of lateral excursion. The

surface perturbation, zsygrr, is the vertical track roughness perturbation.

B.1.1 Rotation of the Wheelset T

A principal axis coordinate system for the wheelset is obtained by. rotating
through the yaw angle ¥w and rolling through an angle ¢w. This is defined to
be the 2 coordinate system for the wheelset, fqllowing the discussion of section
A.2.5. (Note that the wheelset pitch is considered to be a “half-state” since only
its first derivative, the wheelset spin, is involved in the model.) To first order, .
the transformation matrix from the track plane P to the 2 system is written -
using (A.2.6) with no pitch angle: ' '

1 Yw 0
digy=| —¥w 1  oéw | U(p}
0 —w 1



Using the roll transformation from the D to the P frame,

1 vw - 0
17.'{2} = | —Yw 1 (¢cr + dw) E{D}
0 —(écr+ow) 1

The angular velo;:ity of the 2 frame is developed using (A.2.7), with no spin
term 6, as well as the relations for the P frame angular velocity from (A.2.2),
expressed in the P coordinate frame. The wheelset system W is axially aligned
with the 2 frame but is spinning with the wheel.

¢°SW + &TR éw + ‘I.STR
T2 = 0 IgW = bw . (B.a.a)

@LW - Vo {2} 1/-)W - Vo {2}

The angular acceleration may be written for the W frame, in the 2 coordinate.

system with 6 =0, using (A.2.8):

wwx

wwy (B.1.2)

IGW —

“:’WZ {2}
where:
dwx = dw + PR
Gwy = bw — ¢TRVS — bwdrr + dw(dw — V5)

v

wwz =.¢W -V

The 2 system must be always axially aligned with the W fra.me, but it is

not subjected to the spin accelerations 5W. One may then write:
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wwy — fw (B.1.3)

The rotational equations for the wheelset are now found using the general
solution (A.1.2) with (A.2.9), noting that due to symmetry Iwx = Iwz,

v 1 o v

dw = I—-—(‘rwx + Iwybwwwz) — éTR ‘ (B.1.4)
WX _ '

" 1 1 ) y

0w = wy — ¢w——7rwz + dTrRVP + YwoéTr
Iwy Iwz '

v 1 . .

Yw = I——(Twz ~ Iyybwwwx) + Vp
wz

B.1.2 Tra?xslation of the Wheelset

Separate P frame systems are constructed. beneath each wheelset. With the

approximations previously noted, the position vector and relative motion are found
below.

0 0 0
PI:’;W = yw ' 17,-31 = yW Grel = !7W
2w /) (py tw/ (py 2w/ (py

Note that the first and second derivatives 2w and 2w are obtained from kinematic.

considerations involving wheel/rail contact. -

" Defining the velocity and acceleration of the 'Wh-eelset, measured in the P
system, the following is found using (A.2.5) (neglecting small terms):
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|4
(B2 | ow ~ swdra (B.1.5)
| tw + adse / (py
aVp Fwx
di;- (Iﬁw) = Iw — Vi — zwérr = -ml—W Fwy
\*w + ¢TRV?p + adsE + ywérr (P} Fwz / (p}

B.1.3 'Displacement Relative to the Wheelset System

The positions of points fixed with respect to the 2 system are used in the
consideration of both wheel/rail and suspension forces. The motion of points
fixed relative: to both the wheelset system and the 2 system (which does not
spin with the wheelset) may be found and expressed in coordinates of both the
D and P frames of reference. (Three of these four cases will be encountered
in the discussions of wheel/rail interaction and primary suspension forces.) Note
that the origins of the W and 2 frames coincide. Consider a point with position -
expressed in coordinates of the 2 system, and with no motion relative to the F

system, where the F' system may be either the W or 2 system:

z 0 0
WR'Q =1Y Urer = | O dres= | 0
2/ (2) 0/ (ry 0/ try

Since the position of a point fixed relative to the 2 system is needed, upon
transforming to the P and D systems the following results are obtained:

DFEQ - D2 . 25Q



T — yhw
PRe= | yw + otw + y — 2¢w (B.1.6)
zw + yoéw + 2 (P}
| z — yYw
= | yw — zwécr + sbw + y — 2(dcr + éw)
2w + y(¢cr +ow) + 2 (D}

The motion of points relative to the W and 2 systems may be considered
in a general sense using equations (A.1l.1) and (B.1.5), where the spin angular
velocity may be either that for the wheelset W system or the 2 system. The F
system is used to represent either of these cases. Note that wrx and wpz are
small angular rates, whereas wpy is not a small angular rate when the frame F
is the wheelset frame W. Applying the small angle approximation,

% ("79) = % (TR) + 1o x *RO (B-1.7)
V + vx
= | 9w — z2wérr + vy + 2Wwwry + Tdwwry
iw + apsg + vz (P}
V + vx
= | iw — zwérr — dcriw + vy + 2Wwwry + z(dcr + dw)wFy
tw + adse + boriw + vz | (D}
where:
VX = 2WFY — wa;Z
Vy =TWpz — 2WFX
Vz = Yywrx — IWFY




B.2 Wheel / Rail Contact

The forces developed at the wheel/rail contact patches have a significant
effect on the dynamic performance of a rail vehicle. The total force at a contact
patch is the sum of the normal force, which acts perpendicular to the plane of

contact, and the frictional creep force, which acts in the plane of contact.

Consideration of the relative motion between wheel and rail at the points
of contact yields the wheel/rail creepage, which is a measure of the amount of
relative slip between the two bodies. The frictional creep forces at the interface

are determined by the creepages and the wheel/rail contact geometry.

B.2.1 Location of the Contact Patches

The point of contact between wheel and rail may be described with respect °
to the wheelset center of gravity using 2 system coordinates. The lateral and ’
vertical positions arise from consideration of the half-gauge of the track and the
wheel rolling radius, respectively. The longitudinal component results from a shift
in the contact patch location as the wheelset yaws. For a positive yaw angle,
this shift is in the forward direction at the left wheel, relative to the 2 system,_
and in the negative direction at the right wheel [16]. The contact patch locations
may be written as follows:

Ag [ —Ar
WRCPL - a W RCPR — —-a | (B.2.1)
—rL/ (2 ~TR/ (3

where:
Ar = rpyw tan(yr)
Ap = rpypw tan(vr)




It is convenient at this point to write down the relations for accessing the
wheel/rail contact geometry tables. The contact parameters are provided as a
function of wheelset lateral excursion relative to the rail. It is approximately
correct to assume that the contact geometry for each wheel is independent of
the other wheel, and thus one may take the net lateral excursion of each wheel
separately and perform two table lookups. This approach permits implied gauge
changes due to rail ﬂexibi-lity, and it can also be used to handle models with large
gauge variations. In the following, yrr and yrr are the lateral displacement of
the left and right rails, respectively, due to rail and track flexibility. ‘

Ynet,L =YW — YPER,L — YLR - (B.2.2)

Ynet,R = YW — YPER,R — YRR

B.2.2 Transformation of Wheel / Rail Relative Velocity

In order to consider the ‘wheel/ra.il contact constraint and the wheel/rail

creepages, it is necessary to first transform the differences between the velocities .

of wheel and rail to contact patch coordinates.

The contact patch plane at each wheel is defined by a roll transforma-
tion about the rail surface. The angle involved in the transformation is the
angle between the contact patch plane and the wheelset axle, the contact an-
gle 6§, corrected for the roll of the wheelset axle relative to the track plane,
¢w. Figure B.1 illustrates the necessary rotations at each rail. Since the
combination of the contact angle and the wheelset roll angle appears fre-

quently, it is convenient to define the angle 4 between the contact patch



and the P frame. The transformations for the left and right rails are thus:
1 0 0
Gepry= |0 cos(yr) sin(yn) | @gpy

\0 - sin(yz) cos(vL)
1 0 0

@icpry=| 0 cos(yr) —sin(yr) | Z(p}

\0 sin(yr)  cos(vr)
where:

4L =6 + dw
Yr=6p — dw

Relation (B.1.7) gives the inertial velocity of an arbitrary point fixed with
respect to the W system, expressed in P and 2 system coordinates. These terms
may be transformed to the left and right contact patch planes. Using the small
angle and small angular rates approximations, with cosé =cosy = ¢wsin~y and
sind = siny £ ¢w cos~, and noting that rwwx — quBTR = rq‘SW, one finds the -
following:



Figure B.1

c(d ) 88 }

°¢(6Lﬂv) e(ékw‘g) k

0

]

c(da-od)

-(lev)

'(Ja"u)

€(3|°’v)

Diagram showing the contact patch coordinate systems.
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WLXx

_ 4 (r3cPL d (1 5cPL
WLz / {cpL}
where: ‘ R
WLX =V — TLéW - aWwz
wry =cos(yr)(§w — 9rr + rLéw)
+ sin(yz) (3w + adsg + awwx — Ardw)
wrz = cos(1L) (3w + adse + awwx — Ardw)
—sin(yz)(dw — 9rr + rLdw)
WRrRX
_ @ (13cPr d (1 3cPR :
WRY == ( Ry ) - E( Eg™ ) | (B.2.4)
WRZ / {(CPR¥}
where:

wrx =V — rriw + awwz

wry = cos(Yr)(Iw — UrR + rROW)

— sin(vr) (3w + adsz — awwx + Agrbw)

wrz = cos(vr) (3w + adsp — awwx + Agdw)

+ sin(vg) (9w — Yrr + rROW)

B- 11




B.2.3 Wheel / Rail Contact Constraint

The constraint that wheel and rail remain in contact implies that wyz =0
and wrz = 0. That is, normal to the plane of contact, there is no relative
motion between wheel and rail. These constraints will be used to simplify the
‘creepages in the following section. Formally,

wrz = cos(yr)(2w + adsp + awwx — ALéW)

— sin(yz)(gw — yrr + rréw) (B.2.5)
=0

wrz = cos(vr) (2w + a435E - awwx + AR(;W)

+ sin(yr)(w — YRR + rROW)
=0

B.2.4 Wheel / Rail Creepages

The wheel/rail creepage represents the rigid slip between a small patch of
steel on the wheel and a patch on the rail at the wheel/rail contact patch,
normalized with respect to the velocity of the vehicle [15]. The creepages are
considered in terms of their longitudinal, lateral, and spin components, defined in
the contact patch coordinate systems. If the translational and rotational velocities
of the wheel at the point of contact are given by W and &%, and the rail

has only a lateral velocity given by Ry, then the following definitions give the -
creepages, o
— 1

- X
fcx =‘7(W — R)-icp = F(Wx)
S —~ 1
§C’Y = V(W — R)-jep = ";:(WY — Ry)
1 - o a 1 ;. a
fcsp = 7 (faW — 5% kep = = &% -kep




For the purpose of calculating the creepages, the lateral and longitudinal
velocity of the wheel may be found with (B.1.7), (B.3.4), and (B.3.5) using the
angular velocity of the W system and the positions of the contact patches. The
creepage definitions may be used with the relations thus found to determine the

longitudinal and lateral creepages at the left and right contact patches.

The translational creepages are then given below. As previously noted, the
lateral rail velocities are taken to be zero in the computational model for numerical

reasons. It is included in these expressions for completeness.

(B.2.6)

éoxr = -:;{V — rpbw = awwz}

écyL = WO:TYH{QW + ri(¢w — Owiw) — ﬂLR)}

1 )
cxr = V{V - TRGW + awwz}

§cyr = {yw + rp(dw — bwiw) — ilRR)}

V cos(vr)

Applying the definition of the spin cfeepa.ge,' relations may be found for the
left and right contact patches. After cancelling the products of small angles and

small angular rates,

1 . : o
ECSPL = V{ - sm(éL)GW + COS(&L)wwz}' .

(B.2.7) |

1. :
§cspr = V{Sln(&a)aw + C.OS(5R)wwz}
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B.3 Contact Patch Forces and Moments

The forces developed at the wheel/rail contact patches have a large effect on
the dynamic performance and energy dissipation of a rail vehicle. The total force
at a contact patch is the sum of the normal force, which acts perpendiéular to
the plane of contact, and the frictional creep force, which act in the plane of
contact.

Transformations to contact patch coordinates and the creepage expressions
were derived in the previous section. These relations are used in the present
development of the calculation of the creep forces and their resolution in the P
and 2 frames of reference.

B.3.1 Wheel / Rail Creep Forces

Following the method of Kalker [15] (see also Elkins and Eickhoff [17]), the
creepages are normalized using contact patch data. The normalization depends
upon the coefficient of friction and the geometry of the wheel/rail contact. The .
method given below is consistent with recent evidence that the creep force does

not depend upon the friction coefficient for low creepages.

- prcx n = fP€CY X fpé'csp .

e pe . K

(B.3.1)
where:
f = constant factor, equal to 1.0 for full Kalker method
¢c=Vab '
a = major axis of contact ellipse

b = minor axis of contact ellipse

1 1/ 1° 1 1 1
5é1<ﬁ?+E+R_I+E>

Rli = principal radii of curvature of rail

R;': = principal radii of curvature of wheel
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These normalized creepages are used in a procedure in the computational
model which performs a table lookup to arrive at normalized creep forces in the
longitudinal and lateral contact patch directions, rx and ry. This procedure is
based on the output from Kalker’s DUVOROL program, as modified by British
Rail. The normalized forces must be multiplied by the maximum frictional force,
uFy, to get the actual friction forces in the contact patch plane, Fcpx and

Fepy-

Fcpx = u Fn tx(€,n,X) (B.3.2)
Fepy = p Fyrv(e,n,x)

The normal force is the only other force acting between wheel and rail, which
can be written as Fy. The vector sum of these components will be denoted P
for “patch” forces; these forces will be discussed in depth below. ‘

The power dissipated at the contact patch is taken as the dot product of the
creep force and the relative velocity between wheel and rail. The former consists
of longitudinal and lateral components, in the plane of contact, determined b'y
Kalker’s method. The relative velocity between the two bodies is obtained as
the product of the velocity of the vehicle V' and the creepages in the component
directions. Writing the power separately in the longitudinal and lateral directions,

and inserting negative signs to yield positive values for energy dissipation,

Pecpx = — FepxVécx (B.3.3)|

Popy = — FepyVécy
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B.3.2 Resolution of the Contact Patch Forces

The creep forces and the normal loads must be transformed to P frame
coordinates for consideration of their longitudinal, lateral, and vertical effects.
When these forces are transformed to the 2 frame of the wheelset, and when the
position vector of the contact patch relative to the wheelset center of gravity is

expressed in 2 coordinates, the torque on the wheelset due to these forces may
be found.

The contact patch forces will be written in a fashion to facilitate the
developments of the next section. In particular, the creep and normal forces and
moments will be kept separate, for they will be treated differently. The forces
may be transformed to the P coordinate system for the purposes of translational
considerations. These components will then be transformed to the 2 frame of
reference, and the cross-product with the position vector of the contact patch

will then give the moments acting on the wheelset.

Inverting transformation matrices presented previously, vectors may be trans-
formed from contact patch coordinates to those of the P and 2 frames. For the
left wheel:

1 0o 0
@ipy = | 0 cos(yr) —sin(yz) | @icpry

0 sin(yz) cos(vL)

1 Yweos(yz) —vdw Sin(’YL)_

Ty = | —Yw cos(6y) —sin(6g) t{cPL}y

-0 sin(dg) cos(6)
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For the right wheel, the transformations are:
1 0 0
@py= | 0 cos(yr) sin(yr) | @{cpr}

0 -—sin(ygr) cos(vr)

1 ¢wcos(yr) Ywsin(vz)
ﬁ{z} = | —¢Yw cos(dg) sin(dg) ﬁ{ch}

0 —sin(ér) cos(6g)

Conversion of the contact patch forces at the left wheel to the P frame
yields the following results: '

FepxL Fxr Fext
‘P‘L = | FepyL =| FrL = 1| Fevr + FnyL (B.3.4) |
Fyr J (cpry Fzr ) (py Fezr + FnzL/ (py

where:
Foxi = FepxL
Fcyr = cos(vL)FepyL
Fyyrp = — sin(ve)Fyi
Fozr =sin(yr)Fepyr

Fnzr =cos(yL)Fne

This relation defines the P frame components of the creep and normal forces
at the left wheel. It should be mentioned that the N subscripts correspond to
the normal forces; the C subscripts relate to the creep forces; the L indicates
the left side; an R is used to indicate the right side. For the. right wheel,
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Fepxr Fxr Fexr

Pr=| Fcpyr = | Fyr = | Fcyr + Fnyr (B.3.5)

Fnr / (cpr} FzrJ (py  \Fczr + Fyzr ) (p)
where:

Fcxr = Fcpxr

Foyr = cos(yr)Fcpyr
Fnyr =sin(vg)Fnr
Fozr = — sin{yr)Fcpyr

Fynzr = cos(r)Fnr

Thus the forces due to creep and normal forces are determined for left and
right wheels in the P frame. The rotational kinematic equations for the wheelset
consider the torques about each axis in the 2 coordinate system. The position
vectors of the contact patches are given in (B.2.1); these relations expresé the
positions in the 2 frame. The contact forces, expressed above in the P system,.
may be transformed to the 2 frame. The torques due to wheel/rail contact are
then given by the vector cross-product, as follows: |
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Mxy,

Mcxr + Myxt

FL x Pp = | Mys = | Mcyr + Myyr (B.3.6)
MzL ) (3 Mczr + MyzL J (3
where:
Mcxy = ~ri¥wFext + (ro — adw)Fevr + (rodéw +a)FeozL
Myxr = (rp —adw)Fyyr + (roéw + a)FnzL
My = ~riFoxt — rivwFoyr — ArFoz
MyyrL=—riywFnyL — ALFNzL
Mczr = —aFcxt + (AL — ayw)FoyL
Myzr = (AL~ adw)FrnyL
Mxr Mcxr + Myxr
Fr x Pr=| Myg = | Moyr + Myvr (B.3.7)
Mzr ) 3y Mczr + Mnzr J (3
where:
Moxr = ~redwFoxr + (re + adw)Fovr + (rréw — o) Fozr

Myxr = (rr+ adw)Fyyr + (rrRéw — @)} Fnzr
Mcyr = —rrFcxr — rr¥wFcyr + ArFczr
Myyr=~rrYwFNyrR + ArRFNzZR

Mczr = aFcxr ~ (Ar —adw)Feyr

Myzr = —(Ar — a¥w)FynyRr
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B.4 Wheelset Equations of Motion

The basic kinematics of a wheelset have been presented in the first section
of this appendix. The actual wheelset equations of motion may be found using
those relations with the contact patch forces discussed above, as- well as the
forces and moments applied by the suspension connection to the “truck” (which
happens to be the carbody in this instance). Figure B.2 illustrates the forces

and moments applied to the wheelset system.

It may be simply stated that the truck exerts a lateral force Frwy and a
vertical force Frwz on the wheelset, as well as a roll moment Mpwx and yaw
moment Mrwz. These forces and mdinents, in addition to the contact forces,
are those that influence the wheelset. .

The degrees of freedom for the wheelset consist of lateral, yaw, and spin
states. (In the computational model, the spin -perturbé;tion, or difference from
nominal spin rate, is integrated. Technically, the perturbation is considered to
be a “half-degree of freedom.” However, this has no effect on the equations

considered here.)

The equations of motion are derived for the most general case of two points ~
of contact (tread and flange) at each wheelset. Single-point tread contact is an
ordinary type of contact condition, requiring calculations for one contact patch at
each wheel. Two points of contact may occur at a single wheel within a small
range of lateral excursion at the inception of flange contact with the rail. At
further lateral excursions, single-point contact on the flange may occur at a wheel, B
again requiring only one contact patch. The non-flanging wheel experiences a
single point of tread contact when the flanging wheel is in two-point or single-point
flange contact. | :

Despite these complexities, the equations can be written .to assume two points
of wheel/rail contact at each wheel, and the several cases described above are
then degenerate cases in which the forces at one or two of the wheelset contact
patches are taken to be zero. Note that a 1 is used to represent the first point
of contact at the left or right wheel; in the instance of single-point contact, this
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Figure B.2 Diagram showing the forces and moments applied to the wheelset.
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is the only active contact condition. A 2 is used to indicate the second point of

contact if one exists.

It is common in vehicle dynamic analyses to define the cant deficiency, ¢4y,
which represents the net lateral force per unit weight acting on a mass due to

the combined effects of curving and superelevation,

2
Pdef = 7/’ - ¢sE

Additionally, it is fruitful to define the component-wise sums of the wheel/rail
forces and moments. It is also useful to simultaneously define the normal and
creep contributions of each of these.
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Fx=Fcx + Fnx
= Fexr1 + Foxrz + Foexrr + Foxre

+ Fyxri1 + Fvxr2 + Fvxr:r + Fnxre

Fy = Fcy + Fny
= Fecyr1 + Fcyrz2 + Feyr1 + Fcyr2

+ Fynyri1 + Fnyro2 + Fyyri + Fnyr2

Fz=Fcz + Fnz
=Fozr1 + Fczra + Fczri + Fezra

+ Fynzr1 + Fyzrz + Fnzri + Fnzre

Mx =Mcx + Mnx
= Mcxr1 + Mcxr2 + Mcxr1 + Mcxr2
+ Mnxr1 + Myxr2 + Myxrt + Myxre

My = Mcy + Mny
= Mcyr1 + Mcyr2 + Mcyr1 + Mcyr2
+ Myyri + Mnyr2 + Myyr1 + MyyRr2

Mz=Mcz + Mnz
= Mczr1 + Mczr2 + Mczr1 + Mczr2
+ Myzr1 + Myzre + Myzr1 + Myzrsa

(B.4.1)
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B.4.1 Solution of Vertical and Roll Equations

The wheelset lateral, yaw, and spin equations of motion are solved for the
rate of acceleration of the respective state variable. In the computational model,
these derivatives are used to integrate the motion at each timestep. The wheelset
vertical and roll equations are also considered, for they are necessary to determine
the normal forces at the wheel/rail contact patches.

For single point contact at each wheel, the problem is well-posed in that two
equations are available to solve for two unknowns. Computationally, the normal
loads from the previous timestep are updated at each timestep. When there is
two-point contact at a wheel, the problem is no longer well-posed in that there
are now three unknown normal loads and two equations to be satisfied. The
modeling approach adopted here is to develop a relationship between the two
normal loads at the wheel which is in two-point contact (Blader, 1986). This
relation specifies the distribution of the normal load between the tread and flange

contact patches, depending upon how far the wheel has traveled across the zone
of two-point contact.

From previous kinematic expressions (B.1.4) and (B.1.5), and knowledge of -
the forces and moments influencing the wheelset, the vertical and roll equations
may be written as follows:

Wheelset Vertical Equation

mwy [Ew + ¢rrV2p + adsg + ywéTR] =Fgz + Frwz — mwg

Wheelset Roll Equation

1

dw = y -~ [(Mx + Mrwx) + Iwyéwwwz] - ¢rR
Iwx

Now use (B.4.1) to expand the Fz and Mx terms. In doing so, the relations
of (B.3.2) may be used to express the dependency of the creep forces on the

B- 24



normal loads, and (B.3.4) through (B.3.7) provide the detailed composition of
each wheel/rail interaction. In this analysis, the dominant moment terms are

preserved and the lower order terms are neglected.

It is useful to recognize that the total wheel/rail vertical interaction consists
of terms such as:
(cosy £ prysinq)Fy

and the total lateral interaction includes terms such as:

(ury cosy + siny)Fy

Note that 7y depends on Fy through a one-third power term in the normalization
for the Kalker table, which is a relatively weak dependence, with the result that
often the previous values for Fy are sufficient to determine the value of ry.
However, it is reasonable to iterate once if the change in normal load from the
previous value is great, as might be expected during wheelset flanging.

To simplify the expression of these relations, define the following geometric

and force terms (for ¢ =1 or 2 for the first or second point of wheel/rail contact):

eri =.cos(vri) + pryrsin(yri) (B.4.2)
€ri = cos(Yri) — pryrsin(vg;)
vii = pryrcos(yri) — sin(yz:)

VRi = uTy pcos(Yri) + sin(vr:)

Fg = mw [g + tw + é72V?0 + adsm + ywé’;TR] — Frwz

Mg = Iwx(¢rr + éw) — Iwvbwwwz — Mrwx

Then the wheelset vertical equation may be rewritten as follows:

Fn=€1Fnr1 + €2Fnp2 + €riFNr1 + €r2FNr2
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Similarly, the wheelset roll equation may be expressed as the following (where

the rolling radius r* is generally equal to the nominal rolling radius r,):

Mz = a[€L1FNL1 + €r2Fnr2 — €r1FNR1 — €R2FNR2]

+ r* [VLIFNLl + vieFnr2 + vriFNrl + VRzFNR2]

It is now necessary to derive the relation between the normal loads during
two point contact. Two parameters, B and Bgr, are defined as functions of
wheelset excursion. When the wheelset is in two-point contact, the net excursion
of wheel relative to rail, yxyer, is between two values |yrreap| and |yrrance|,
which are determined by examination of the wheel/rail contact profile. The value
of the net excursion, yygr, is positive during two-point contact on the left,
and it is negative during two-point contact on the right. Both |yrrrap| and
lyrrance| are defined to be positive, and the current net wheelset excursion is
compared with these values.

The modelling assumption to be made here is that the vertical component
of the total normal load, summed over the two patches, is distributed between
the two patches on the basis of the net wheelset excursion across the two-point
band. The definitions are thus as follows:
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Fnr2 =0r Fnria ' ' ' (B.4.3)
Fxro=Pr Fngm

where:

ﬂL — ( YNET — IyTREADI ) ] (COS(7L1)>

lyrrance| — ynET cos(Yr2)
if |yrreap| <yneT < |YFLANGE|

Br =0 otherwise

= — ( YNET + |YTREAD ) _ (COS(’Ym))

lyrrance| + ynET cos(Rra)
if — |lyrreap|>ynveT > — |YFLANGE
Br=0 otherwise

This algorithm satisfies the desired boundary conditions. As the net wheelset
excursion approaches the tread or flange boundary of the two-point contact
zone, the normal loads approach that of single-point contact at tread and flange
contact, respectively. Thus, there is continuity in the normal loads at the tread
and flange boundaries of two-point contact. It is important to note that the
geometric discontinuities at the contact patches of tread and flange are used, even
though the wheelset excursion passes continuously through the two-point contact

zone.

Thus, the above relations for the wheelset vertical and roll equations may-
be written in terms of two unknowns, Fyr; and Fypg;, using the following':
definitions: '

€L = €1 + BLerz
€r = €R1 t BLER2
vy =vr1 + Brvrz
vp = Vr1 + BLVR2
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with the following results:

Fr=eFynp1 + €rFnr1
Mg = a[eLFNLl - GRFNRI] + r* [VLFNL1 + VRFNRI]

These two equations may now be used to derive the left and right wheelset
normal loads at the first point of contact. The appropriate value for the second
point of contact is given by the relation F, = 8F; as above:

(aeg — r*vg)Fy + erMgy

Fypy = A

(B.4.4)

(aer + r*vi)Fs — e My
A

Fyxgy =

where:

A = ¢eg(aer, + r*vi) + er(aer — r*vg)

During severe flanging, occasionally a negative value for a normal load is
generated with r* = r,. This has been found to be a result of the inclusion
of the lateral normal and creep forces in the wheelset roll equation. Rather
than proceed with negative loads, a compromise approach has been taken. If a
negative normal load is calculated, the value of r* is reduced by 20 % from
its previous value, and the loads are then recalculated. If a negative load still" .
results, this process is repeated. If r* is driven to zero and a negative load is still -
obtained, true wheel lift is declared. It is thought that high frequency dynatﬁi&:s _
are involved in these very short duration wheel lifts with r* = r,, which are '
characteristically different from wheel lift which lasts on the order of a fraction

of a second. This approach has proven to work reasonably well in practice.
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B.4.2 Formulation of the Wheelset State Equations

In the computational model, the normal and creep forces are determined in
the contact patch frame. These forces are then resolved into their components
in the P frame, and the moments are calculated in the 2 frame of reference.
The lateral, spin, and yaw accelerations are then found; these state equations
are given below.

Wheelset Lateral State Equation | (B.4.5)

) v 1
Jw = gPdes — 99cr + 2wéTR + m—W[Fy + Frwy)

Wheelset Spin State Equation: (B.4.6)

v 1 1 . v
0w = —My — ¢w—[Mz + Mrwz| + ¢7rVS + Ywoérr
Iyy Iwz

Wheelset Yaw State FEquation (B.4.7)
v 1 A ° ‘
Yw = oo [Mz + Mrwz — Iwyowwwx] + Vo
wz
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Appendix C

Carbody and Suspension Model

The carbody has five rigid body degrees of freedom (lateral, vertical, roll,
pitch, and yaw) and three flexible body modes (twist, lateral, and vertical
bending). This appendix considers the development of the vehicle suspension
forces and their use in determining the state equations for the above degrees of
freedom.

The kinematics of Appendix A are applied to determine the suspension strokes
at each of the four connections between the carbody and wheelsets. At each such
connection, there are longitudinal, lateral, and vertical suspension elements. Using
the suspension strokes and the element constitutive relations, the suspension forces
are determined. With these suspension forces, the force and moment summations
applied to the carbody and wheelsets may be determined. The carbody state

equations are then developed, resorting once more to Appendix A.

C.1 Suspension Stroke Equations

In this section, equations for the suspension strokes are presented. Figure
C.1 shows the basic geometry of the vehicle. There are four connections between
carbody and wheelsets, numbered from 1 to 4. Suspension number 1 refers to
the left leading wheel, number 2 indicates the right leading wheel, number 3
indicates the right trailing wheel, and number 4 refers to the right trailing wheel.
This is a notation which proceeds clockwise from the position of the left leading
wheel. The longitudinal, lateral, and vertical position of each connection is given

by the values Axprst, Harax, and Vercog, respectively.

The strokes and stroke rates across each suspension are obtained by applying
the results of section A.3 with the appropriate geometry data. Since there is a
suspension element in each coordinate direction, the difference in position between

carbody and wheelset along each axis will be required.
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Figure C.1 Diagram showing the geometry of the suspension connections.
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Terms starting with Mop also have indices corresponding to the suspension
numbering; these are the values of the mode shape functions at the suspension
connection points, for each flexible body mode. Moprw, Mopvs, and MopLrB
represent bending about the longitudinal (twist), lateral (vertical bending), and

vertical (lateral bending) axes, respectively.

C.1.1 Longitudinal Strokes

The longitudinal suspension model depends upon both the stroke and stroke
rates, so both will be shown below. Note that a yaw angle correction term
pAxprst is necessary because the wheelset frames of reference are rotated relative
to the carbody frame about the vertical axis in a curve.

Longitudinal Suspension Strokes (C.1.1)7

Ston1 = — Harax1 - (Yw1 — ¥c — p AxprsT1)
Scon2 = Haraxz2 - (Yw1 — Yo — p AxpIsT2)
Srons = Haraks - (Yw2 — ¥c + p AxprsTs)

SponNa= — Haraxs  (Yw2 — ¥c + p AxDIsT4)

Stoni= —Harax1- ("Z’Wl - ¢c)
Scon2 = Haraxz - (¢W1 - ¢c)
Srons = Haraxs - (dfwz - ¢c)

Srona= — Haraxs- (llfwz - ¢c)




C.1.2 Lateral Strokes

The lateral suspension model requires knowledge of both strokes and stroke
rates, which are given below. Note that, in a curve, the wheelset frame of

reference is offset laterally from the carbody by an amount equal to %A§CDISTP'

Lateral Suspension Strokes (C.1.2)

SpaT1= —Yc + yw1 — Todbcr1 — Axprsti-(Yc+p AxDrsT1/2)
— Vercoeg: *9c — Mopirp1-$z — Vercoe:  Moprwi " ¢x

SpaT2 = —Yc + Yyw1 — Todcr1 — Axpistz - (Yc +p AxpI15T2/2)
— Vercogz - $c — Mopirsz ¢z — Vercogz - Moprw2 - $x

Spats = —yc + Ywz2 — Tobcrz + Axpists - (Yc — p AxprsT3/2)
| — Vercogs -¢c — Moprss-$z — Vercogs - Moprws * {x

Spata= —Yc + ywz — Tobcrz + AxprsT4 (Yo — p AxD15T4/2)

— Vercogs - bc — MoprBs-$z — VErcocs  MopTwi - Sx

el
P

Spam = — o + w1 — ropcr1 — Axprsti Yo

— Vercoa1 *$c — Moprs: ¢z — Vercoc1 - Moprw: * $x
Spara= —9c + w1 — ropcr1 — Axprstz - e

— Vercoez *bc ~ Moprp2 ¢z — Vercosz - Moprwe * éx
Spara= —¥c + 9wz — Tobcrz + Axprsrs- Yo ‘

— Vercoegs - $c ~ Mopirss $z — VERCOG3 - MoDTW3 * X ~

Spara= —¥c + 9wz — Tobcrz + AxpIST4 - YC

— Vercogaéc ~— MopLps$z — VErcOG4s  Moprwi - $x




C.1.3 Vertical Strokes

In contrast to the longitudinal and lateral suspension models, the “beta”
model for the vertical sus'pensionk (to be described below) requires only the strokes
and not the stroke rates. This model will, however, require stroke values saved
from the previous timestep. In the following, zw represents the vertical track
input to the wheelsets.

Vertical Suspension Strokes (C.1.3)

SvER1 = —2c — Haraxi1-éc + Axpisti-bc

= Mopve1 Sy — Harax1 Moprwi-$x + zw1
Sverz = —2zc + Harax2+ éc + Axprst2fc

— Mopvpz ¢y + Haraxz - Moprwz - $x + 2wz
Sygrs = —2c + Haraxs-$c — Axpists-Oc

— MopvB3 ¢y + Haraxs Moprwsa-¢{x + 2ws
Svere = —zc — Haraxs $c — Axpista-bc

— MopvBsa Sy — Haraxa Moprws-$x + 2w




C.2 Suspension Constitutive Relationships

Suspension elements act at each connection location along each of the three
coordinate axes. Figure C.2 illustrates the notation used, where Frown, Frar,
and Fygr represent the forces acting on the carbody4 in the longitudinal, lateral,
and vertical directions, respectively. Since wheelset longitudinal motion relative
to the carbody is neglected, the differences between longitudinal forces on left
and right sides result in yaw moments between the bodies.

C.2.1 Longitudinal Suspension Model

~ The longitudinal suspension model consists of a two-stage spring (represent-
ing the swing link stxﬁness) in parallel with both a Coulomb friction element
(representmg dry friction in the swing link) and a series spring-damper element
(representing the yaw da.mper). The position of the junction between spring and
damper of the series yaw damper element is integrated locally to obtain the force
at each timestep. The total longitudinal force may be written as follows:

-

Fron = Fsrirr + Fsgries + Fcoulr (C.2.1)
where
Fron total longitudinal suspension force
Fsrirr swing link suspension force
Fsgries yaw damper force
Feour swing link Coulomb friction

The force in the two-stage spring, representing the action of the swing link
and its contact with the axle guard, is given as follows:



Car

Y € i
'I /
v .
/‘ FLAT(1) FLAT(2)
y / FLON(1) ‘ PLON(2) |
PVER(1) PVER(2)
4 3
|
!
PLAT(4) FLAT(3)
PLON(4) PLON(3) PVER(3)

PYER(4)

Figure C.2 Diagram showing the notation for the forces acting at each

suspension connection.



If —Lonstp <Sion < Lonstp: (C.2.2)
Fsrirr = Scon - Krom
Elself Sron > LonsTP:

Fstirr = Lonstp * Kroni + (Scon — LonsTr) - KLon?
Elself Spon < LonsTP:

Fsrirr = —Lonstp - KrLon1 + (Scon + LonsTp) - Kron2

where

LonsTP longitudinal suspension clearance
SLoN , suspension stroke

Kroni first stage stiffness

Kronz second stage stiffness

The force in the yaw damper is found by integrating the time rate of change
of displacement across the spring, using the fact that the force in the spring
must be equal to that in the damper in the absence of inertial effects. '

Fsgrres(t:) = Fserigs(ti-1) (C.2.3)
+ Kpush (SLON - iz(FSERIEs(ti))) -Ap

where

Kpuswu yaw damper bushing stiffness

S.'LON longitudinal suspension stroke rate

To A velocity of junction between spring and damping
elements of the yaw damper

A integration time step

The velocity of the junction between spring and damper is found by inverting
the force - stroke rate relation of the damper, which is determined by a piecewise-

linear relationship. If the current force in the yaw damper, Fsgrrgs, lies between
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two values Fgc:1 and Fscs of the characteristic, then the velocity £, is determined
in the interval from Vsci to Vsc2 as follows:

Vsc2 — Vsci
Fscqa — Fscy

2 =Vsc1 + ‘(Fsgries — Fsci) (C.2.4)

Finally, the longitudinal Coulomb friction in the swing links, Fcovr, is
calculated using the linear viscous band model:

(C.2.5)
—FpRrEAK if Spon <—6
Foovr = { (Spon/6)Fereax if —6 <Sron <6
Freak if Spon>6
where
FprEax breakout force level
6 linear viscous half-bandwidth

C.2.2 Lateral Suspension Model

The ‘lateral suspension force-deflection characteristic consists of a three-stage -
spring in parallel with Coulomb friction. The latter is represented by the linear
viscous band model, which has a highly viscous region for low stroke rates and
a breakout level for high stroke rates.

Frar = Fsrirr + Fpamp (C.2.6)




For suspensions 1 and 4, Fsrrrpr is calculated as follows:

Fsrirr = Kpar - Scar
+ (Kstpra — Kpar) - (max(Spaz, Lstop1) — Lstopi)

+ (Kstruc — Kstpra) - (max(Spar, LsTrop2) — Lsrop2)

(C.2.7)

For suspensions 2 and 3, Fsrrrr is calculated as follows:

Fsrirr = Kpar - Spar
+ (Kstpra — Kpar) - (min(Szar, —Lstor1) + Lsrop1)

+ (Kstruc — Kstpra) - (min(Spar, —Lstop2) + Lsrop2)

(C.2.8)

where

SraT
Krar
Lstop1
Ksrpra
Lsrop2
Kstruc

lateral suspension stroke

first stage stiffness

clearance for second stage stiffness

second stage stiffness

clearance for third stage stiffness
third stage (structural) stiffness

The damping force, modeled with the linear viscous band approximation to

the Coulomb friction characteristic, is given as follows:

C -
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(C.2.9)
~FprEak if Spar < —6
FDAMP= (SLAT/(S)FBREAK if =46 <.'S"LAT <é

FprEAK if SLAT > 6
where
S LAT lateral suspension stroke rate
FerEAK breakout force level
6 linear viscous half-bandwidth

C.2.3 Vertical Suspensioh Model

The vertical suspension consists of a leaf spring, which is represented using
a technique initially developed for truck suspensions. This method was first.
developed by Fancher, Ervin, MacAdam, and Winkler [14]. It has been modified
by O’Connell (18] who found that the use of the current envelope characteristic
evaluated at the previous displacement, Fiyy (6i—1), eliminated a ramp-following

error observed in experimental measurements.

Fyer(t:) = Fpnv(6:) - (C.2.10)‘ }

+ (FVER(ti—l) _ FENV(‘Si—l)) . exp (_ |Sver(t:) —ﬂSVER(ti—l)i>

where

Fyer(ts:) suspension force, current timestep
Fygr(ti—1) suspension force, previous timestep
Sver(t) suspension stroke, current timestep
Sy ER(t;_l) suspension stroke, previous timestep

Cc- 11



F§ Nv(6) force for current envelope, at current displacement
F},J Nv (6i-1) force for current envelope, at previous displacement
B “beta” parameter which describes the rate at which

suspension force within hysteresis loop approaches envelope

The envelope force depends upon whether the leafspring is undergoing com-
pression or extension, which is determined by comparing the current stroke with

- that saved from the previous timestep, as follows:

If Sver;> SvER,i-1: | (C.2.11)
Fgny =C1-Sver + C2
+ (max(Svgr,Crestr1) — Crestr1) - (Cs — Ci)
ElselIf Sveri<SvERi-1:

Fgyv =C1-Svgr + Cs

+ (mex(Syer,CucsTr2) — Crastrz2) - (Cr — C1)

where
C, first stage leaf spring stiffness
CHGeSTR1 computed value of Sygr at which Fygp
' equals Cs for increasing Svggr
Cs value of Fygp for which leaf spring
reaches the second stage stiffness
Cs _ second stage leaf spring stiffness for increasing Svgr
Cq Coulomb friction force for increasing Svegr
CHGSTR2 computed value of Sygr at which Fyer
equals C5 for decreasing Sygr
Cy second stage leaf spring stiffness for decreasing Svgr
Cs Coulomb friction force for decreasing Sy ggr

C - 12



C.3 Suspension Force and Moment Equations

In this section, the total forces and moments applied to the carbody and
wheelsets are developed. The convention used here is that Fgy, Fg,z, Mg,x,
Mgy, and Mg,z are the forces and moments acting on the body Q, where Q
may be C for the carbody or W1 or W2 for the first and second wheelsets. The
terms Qrp, Qvpe, and Qrw are used to represent the lateral bending, vertical
bending, and twisting moment loads.

C.3.1 Forces and Moments Acting on the Wheelsets

The net lateral and vertical forces, as well as the roll and yaw moments,
resulting from the above suspension forces are presented below. Results are given
first for the leading wheelset, then for the trailing wheelset.

Leading Wheelset : (C.3.1)
Fwiy = —Frar1 —Frar |
Fwi,z = ~Fvgr1 — FvERr2
Mwyi,x =—Hapaxi Fver1 + Haraxz  Fver2
Mwi1,z = Harax1- Fron: — Haraxz  Fron:

Trailing Wheelset ~ (CB.2)

Fway = —Frars — Frata
Fwe,z=—Fvgrs — FvERs
Mw2,x = —Haraxs Fvers + Haraxs Fvers

Mwa,z=—Hapaxs Fions + Haraxa  Frons

C- 13




C.3.2 TForces and Moments Acting on the Carbody

The suspension forces give rise to both rigid body and flexible body forces
and moments. First, the total lateral and vertical forces acting on the carbody

are given as follows:

Car Rigid Body Forces : (C.3.3)

Lateral Force

Foy = Frat: + Frare + Frars + Frara

Vertical Force

"Fo,z = Fygr1 + Fverz + Fveras + FvER4

~ The rigid body moments are found in the usual manner by considering the

effective moment arms about the center of gravity for each contributing force. . -

Cc- 14



Car Rigid Body Moments

Roll Moment

Mc,x = Vercoci - Frar:1 + VErcog2 * Frar2
+ Vercogs* Frars + VErcoGa* FLaT4
+ (Harax1i+ Vercoc: ¢c+ Srar) - Fveri
+ (—Haraxz2 +VercOG2 - 6c + SpaT2) - FvER2
+ (—Haraxs +Vercogs - ¢c + Srars) - Fvers
+ (Haraxs+ VErcoGa $c+ SpaTs) - FvER4

Pitch Moment

- Mcy = — Axprsti* Fverr — Axprst2 - FvER2

+ Axprsts - FveErs + AxpisT4* FvER4

Yaw Moment
Mc,z = AxprsT1  Frati — Harax1 - From:
+ Axprst2  Frare + Haraxz - Fron:
— Axpista Frars + Haraxs-Frons

— Axp1sT4  Frati — Haraxa  Frons

(C.3.4)

The forces and moments for the three bending modes are generated by

C- 15

considering each contributing force and the value of the corresponding mode
shape at each connection location. The results are as follows:



" Car Flezible Body Forces and Moments (C.3.5)

Vertical Bending
Q0vB = Mopvs1: Fver1 + Mopvgea - FveEr:

+ Mopvpes: Fvers + Mopves: Fvera

Lateral Bending
Q1B =Mopre1-Frar1 + Moprp2 - Frar:

+ Moprps - Frars + Moprpa - Frara

Longitudinal Twist ’
Qrw = Moprwi * [FvER: - Haraxi + Frari- Vercoai]
+ Moprws - [~Fver2- Haraxz2 + Fpar:-Vercog:]
+ Moprws * [—FvErs- HAFAX3 + Frara- VERCOGS]

-+ Moprwa- [FVEP4 H araxs + Frars -Vercocd

C- 16




C.4 Carbody State Equations

The analysis in Appendix A may be used to develop the carbody dynamic
equations of motion, using the applied suspension forces and moments considered
above. In the following, for the flexible modes ¢, d is the carbody structural

damping ratio, and w is the carbody fundamental natural frequency.

Car Rigid Body Equations ' (C.4.1)

Lateral Equation

me(Yc ‘"’c‘;SE) = —m.gdsg + mV?p + Fey

Vertical Equation
C 7 mi(lc+adss)’= Smyg = mV2pése + Foz
‘"“Roliluﬁqu;;ti&ri ) _
 Toxldo + dse) = ey Teaiclc ~ V/) + Mox

Pitch Equation
Icybc = (Icz - ch)(J’c_: + ¢sg)(hc ~Vp) + Mcy

 Yaw Equation

Icz(dc = Vh) = (Iex - Icy)bc(dc + ésE) + Mc,z‘

Cc- 17



Car Flexible Body Egquations

Vertical Bend Equation

mcS:i’ + Zdy'wymcgi’ + wyzmch =Qlyp

Lateral Bend Equation

mcS'vZ + 2dzwzr"'cS;Z + wzzmcfz =QrB

Longitudinal Twist Equation

Icx$x + 2dsweloxsx +witloxetx = Qrw

(C.4.2)
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Appendix D

Model Parameters

D.1 Vehicle Parameters

The parameters chosen to represent the unloaded two-axle vehicle are listed
below. Most of these result from vehicle and truck characterization tests performed

on a prototype vehicle at the Transportation Test Center, Pueblo, CO.

D.I.1 Inertial Parameters

- S smin 00 e R L S s 3 A R Smrr RGeS S A e 1 o v

meg = car weight = 21520.0 lbf

Icx = car x mass moment of inertia = 3.70E04 l|bf-in-sec**2

Icy car y mass moment bf inertia = 2.50E06 [bf-in-sec**2
Icz = car z mass moment of inertia = »2.25»E06“lbt.'-in-sec**2
Mypg = whgelset -Weight = 2222.0 lbt."

Iwx = wheelset x mass moment of inertia = 2600.0 lbf-in-sec*f“Z

Iwy = wheelset x mass moment of inertia = 1500.0 lbf-in-sec**2

g = gravitational acceleration = 386.04 in/sec**2



D.1.2 Geometric Parameters
VERCOG(1,2,3,4) = 16.0 in
AXDIST(1,2) = 224.3 in ’
AXDIST(3,4) = 213.7 in
HAFAX(1,2,3,4) = 39.0 in
RADIUS = wheel nominal rolling radius = 14.0 in
ROW = distance from track CS origin to wheelset. cg = 14.0 in
ROC = distance from track] CS'origin t0::Carscgra-30.0-in5 :v
*HAFGAG. 284Facki Half {gauge =:29:75 mm’&‘ diew wmo LD T

RAILEN =0nofifial .pall ledgth: =:88.0:fman wey = (250117

IR A

D.1.3 Structural Parameters colenegzn? [gror
DAMPVEB = ca.iéf‘i’i@*ﬁtiifzaﬂ%be&diﬁgzﬁﬁdda&g@ampiﬂg zatio, =1
DAMPLB = ‘chr latetal “bénding zmodalsdampingiratio = k. ¢
DAMPTW = car longitudinal twist modal damping ratio = .15
'NATVB = car vertical bending natural frequency = 56.5 rad/s
NATLB = car lateral behding natural frequency = 55.0 rad/s

NATTW = car longitudinal twist natural frequency = 45.9 rad/s



D.1.4 Longitudinal Suspension
KLON1 = longitudinal swing stiffness = 789.0 Ibf/in
LONSTP = longitudinal clearance = .875 in
KSTOP = longitudinal axle guard stiffness = 1.0E06 Ibf/in
LTHLNK = nominal full swing link length = 12.6 in
LONCOU = longitudinal Coulomb friction = 200 1bf
LONBRK = linear viscous half-bandwidth = 0.5 in/sec
KBUSHIff—-J-’E‘ishing::‘.stiﬁhess =t%000 Ibffin mo*" saastal = 000
VSC(1,2,3,4) = yaw dampér Felocity =e::020}:0.21;50:663,c1:18 3n sec

FSC(1,2,3,4) = yaw damﬁ‘éff}féi‘cef ={i220] 310,{1200,.2023 Abf71i s &

D.1.5 Lateral Suspension - Emmlaingan lowednors® o &

KLA’B’ == |atéral q%ﬁrét;‘stagétx.fstxirﬂ:?gg;ﬁsfi% &9;8:;2_:::;1@{2/ I S Xe
LTHLAT = i:iéminal%a‘lateta.lisswmvg slink«length. .= 10.8 Wm NI
LSTOP1 = first stop = .97 in

KSTPLA = lateral second stage stiffness = 9600.0 1bf/in
LSTOP2 = second stop = 1.21 in

KSTRUC = lateral third stage stiffness = 23500.0 lbf/in

LATCOU = lateral Coulomb friction (FCOEFF*WGTCAR/4) = 390 Ibf

LATBRK = linear viscous half-bandwidth = .06 in/sec
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D.1.6 Vertical Suspension

CON(1) = 4020.0 Ibf/in
CON(2) = 600 Ibf
CON(3) = 15400.0 Ibf/in

CON(4) (beta, compression) = .05

CON(5)

10000.0 Ibf

= -600 lbf

TG 1’ T HU A vl ) Simieo

{rw, J JARErTT saiw T -lo!

ciogrtra

v o L& i N
fEmisvicon arincél lgoitray

AT )
D2 Wheel" f Rall anid- Track- Parame‘ters - -

The parameters affecting wheel/rail interactions include both the wheel/rail
contact geometry and the track system inputs. The -wheel/rail contact geometry -
is discussed in Chapter 2, where several different profiles are illustrated and their

effects on system response is discussed.:

Measured track data is .used for the perturbed track analysis for those
instances in which the data was available. This data was obtained from the Test .
Center and processed with the MIT “TRACK” program, which analyzes the data -
to generate coefficients for cubic splines. The output file of coefficients may then
be read by the simulation program, using special software, in order to represent ’.
the actual measured track. This procedure has been done for several sections of

track.

Table D.1 lists the vehicle test, the measured track data filename for that
test, and the wheel/rail geometry filename used in the analysis. Note also that

the nominal wheel/rail friction coefficient is u = 0.5.
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Table D.1

Profile and Track Data for Simulations

Test

- Track Data

Wheel/Rail Profile

Hunting

(none)

CNH136S.WRX

Curving (5 deg)

(none)

F5DEG.WRX (Front)
RSDEG.WRX (Rear)

‘Curving (7.5 deg)

(none)

F5DEG.WRX (Front)
R5DEG.WRX (Rear)

Curving (10 deg) -

(none)

F10DEG.WRX (Front)
RI1I0DEG.WRX (Rear)

Yaw-Sway

PTTLAT.COF

FYAWSWAY.WRX . (Front)-
RYAWSWAY.WRX (Rear)

Dynamic Curving

XNORTHY.COF

T GNHL368 WRX

Roll-Twist

PTTRKRLL.COF

CNH136S.WRX

Bounce

PTTBOUNC.COF _

T ENHI36S WRX

Vertical Bump

(analytical)

CNH136S.WRX
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