

of Transportation Federal Railroad Administration

National Maglev Initiative Washington, D.C. 20590 Comparison of Major Parameters In Electrodynamic and Electromagnetic Levitation Transport Systems

W. S. Brown C. R. Dauwalter F. Heger M. S. Weinberg

The Charles Stark Draper Laboratory, Inc. 555 Technology Square Cambridge, Massachusetts 02139

DOT/FRA/NMI-92/15

September 1992

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

11 - Advanced Systems

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

1. Report No.	2. Government Accession No.	3. Recipient's Cataloo No.	
		·····	
DOT/FPA/NMI-92/15			
4. Litte and Subtitle		5. Report Date	
COMPARISON OF MAJOR PARAM ELECTROMAGNETIC LEVITATIO	METERS IN ELECTRODYNAMIC AND ON TRANSPORT SYSTEMS	September 1992	
		6. Performing Organization C	Code
7. Authors (s)		8. Performing Organization R	leport No.
W.S. Brown, C.R. Dauwalter, F. Heg	er, M.S. Weinberg	CSDL-R-2420	
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)	
The Charles Stark Deer on Lakanster	T		
555 Technology Square	, INC.	11. Contract or Grant No.	· · · ·
Cambridge, MA 02139			
		DTFR53-91-C-0005	5
2. Sponsoring Agency Name and Address		13. Type of Report and Perio	d Covered
U.S. Department of Transportation		Final Report	
Federal Railroad Administration Office of Research and Development		July 1991-September	r 1992
Washington, D.C. 20590			
		14. Sponsoring Agency Code	-
 Supplementary Notes Contracting Officer Technical Repres Abstract 	entative: Mr. Thomas D. Schultz		
 5. Supplementary Notes Contracting Officer Technical Repress 6. Abstract 6. Abstract 5. This study compiles quantitative desystem. Analytic models were developed EDS) systems, and for linear induction assumptions. The following results indicesters studied require smooth guidewateleveloped; 2) the estimated weight of the comparable to the weight of the EMS on SDS is similar to EMS when practical comparables. 	entative: Mr. Thomas D. Schultz sign information that can be used in selecti ed for three configurations of electromagner and synchronous motors. The models perr cate that the hoped-for advantages of EDS ays to achieve acceptable ride quality unless the superconducting magnets for the EDS sy aboard electromagnets; and 3) real power co onfigurations and end effects are considere	ng a high-speed magnet ic (EMS) and three elect nit comparisons based o are difficult to realize: s active control techniqu stems is surprisingly lar onsumption in sheet guid	ic levitation trodynamic n consistent 1) all of the les are ge and deway null flux
 Supplementary Notes Contracting Officer Technical Repress Abstract This study compiles quantitative desystem. Analytic models were developed (EDS) systems, and for linear induction assumptions. The following results indivisems studied require smooth guidewaleveloped; 2) the estimated weight of the comparable to the weight of the EMS or 3DS is similar to EMS when practical c Key Words 	entative: Mr. Thomas D. Schultz sign information that can be used in selecting of for three configurations of electromagnet and synchronous motors. The models perr cate that the hoped-for advantages of EDS ays to achieve acceptable ride quality unless be superconducting magnets for the EDS sy aboard electromagnets; and 3) real power can onfigurations and end effects are considere	ng a high-speed magnet ic (EMS) and three elec nit comparisons based o are difficult to realize: s active control techniqu stems is surprisingly lar onsumption in sheet guid d.	ic levitation trodynamic in consistent 1) all of the les are ge and deway null flux
 Supplementary Notes Contracting Officer Technical Repress Abstract This study compiles quantitative desystem. Analytic models were developed: EDS) systems, and for linear induction assumptions. The following results indisystems studied require smooth guidewaleveloped; 2) the estimated weight of the comparable to the weight of the EMS on EDS is similar to EMS when practical c 7. Key Words Electrodynamic suspensions Electromagnetic suspensions High-speed ground transportation Magnetic levitation Magnetic suspensions Linear induction motors Linear synchronous motors Ride comfort 	entative: Mr. Thomas D. Schultz sign information that can be used in selecting and synchronous motors. The models perri- cate that the hoped-for advantages of EDS ays to achieve acceptable ride quality unless the superconducting magnets for the EDS synboard electromagnets; and 3) real power can onfigurations and end effects are considered 18. Distribution Statement This document is National Technica Virginia 22161	ng a high-speed magnet ic (EMS) and three elec nit comparisons based o are difficult to realize: a active control techniqu stems is surprisingly lar onsumption in sheet guid d.	ic levitation etrodynamic in consistent 1) all of the ues are ge and deway null flux blic through the Springfield,
 Supplementary Notes Contracting Officer Technical Repress Abstract This study compiles quantitative desystem. Analytic models were developed (EDS) systems, and for linear induction assumptions. The following results indisystems studied require smooth guidewateveloped; 2) the estimated weight of the comparable to the weight of the EMS or 3DS is similar to EMS when practical c Key Words Electrodynamic suspensions Electromagnetic suspensions High-speed ground transportation Magnetic levitation Magnetic suspensions Linear induction motors Linear synchronous motors Ride comfort Security Classif. (of this report) 	entative: Mr. Thomas D. Schultz sign information that can be used in selecting and for three configurations of electromagnet and synchronous motors. The models perri- cate that the hoped-for advantages of EDS ays to achieve acceptable ride quality unless be superconducting magnets for the EDS synboard electromagnets; and 3) real power co- onfigurations and end effects are considered 18. Distribution Statemen This document is National Technica Virginia 22161 20. Security Classif. (of this page)	ng a high-speed magnet ic (EMS) and three elec nit comparisons based o are difficult to realize: s active control techniqu stems is surprisingly lar onsumption in sheet guid d.	ic levitation etrodynamic in consistent 1) all of the les are ge and deway null flux blic through the Springfield,
 Supplementary Notes Contracting Officer Technical Repress Abstract This study compiles quantitative desystem. Analytic models were developed EDS) systems, and for linear induction assumptions. The following results indisystems studied require smooth guidewateveloped; 2) the estimated weight of the comparable to the weight of the EMS of EDS is similar to EMS when practical c Key Words Electrodynamic suspensions Electromagnetic suspensions Linear induction motors Linear synchronous motors Ride comfort Security Classif. (of this report) 	entative: Mr. Thomas D. Schultz sign information that can be used in selection and synchronous motors. The models perrocate that the hoped-for advantages of EDS ays to achieve acceptable ride quality unless the superconducting magnets for the EDS synboard electromagnets; and 3) real power cate onfigurations and end effects are considered [18. Distribution Statement This document is National Technicated Virginia 22161 [20. Security Classif. (of this page)]	ng a high-speed magnet ic (EMS) and three elec nit comparisons based o are difficult to realize: s active control techniqu stems is surprisingly lar onsumption in sheet guid d. available to the U.S. pul available to the U.S. pul and Information Service, S	ic levitation trodynamic in consistent 1) all of the ues are ge and deway null flux blic through the Springfield,

-

r

.

DOT/FRA/NMI-92/15

COMPARISON OF MAJOR PARAMETERS IN ELECTRODYNAMIC AND ELECTROMAGNETIC LEVITATION TRANSPORT SYSTEMS

W. S. Brown C. R. Dauwalter F. Heger M. Weinberg

3

September 1992

Contract No. DTFR53-91-C-00055

The Charles Stark Draper Laboratory, Inc. Cambridge, Massachusetts 02139-3563

TABLE OF CONTENTS

Section			Page
	EXEC	UTIVE	SUMMARYix
1	INTR	ODUCT	ION 1-1
	1.1	Objecti	ves 1-1
	1.2.	Assum	ptions 1-2
2	FIFC	ͲͲϽʹͿͶ	CNETIC SYSTEMS 2 1
2	20	General	1 2 1
	2.0	Comora	I
	2.1.	Induction	on Motor (LIM)
	2.2.	Stagger Linear	ed Lift and Lateral Magnets with Induction Motor
	2.3.	Combir Lateral	ned Lift and Synchronous Motor and Separate Guidance Magnets2-3
	2.4	Assum	otions, Constraints and Optimization
	2.5	Compa	risons Between Electromagnetic Systems
	2.6	Summa	ry 2-11
	1		
3	ELEC	TRODY	NAMIC SYSTEMS 3-1
	3.0	General	Description of the Electrodynamic Suspensions
<		3.0.1	Image Flux 3-1
		3.0.2	Null Flux
		3.0.3	Hybrid Null Flux 3-5
	3.1	Descrip	tions of the Electrodynamic Configurations
		3.1.1	Image Flux
		3.1.2	Null Flux
		3.1.3	Hybrid Null Flux
	3.2	Aerody	namic Differences among Systems
	3.3	Superco	onducting Magnets and the Electrodynamic Systems 3-18
	3.4	Side Wa	all Null Flux Trade-Offs
	*	3.4.1	Japanese Magnet Dimensions, Single Vehicle (J-single)
		3.4.2	Side Wall Null Flux Japanese Magnet Dimensions, 10 Car Train

TABLE OF CONTENTS (CONT.)

~		
×.	000000	κ.
• •	сстил	
~	<u>vvuv</u> i,	١.

3.5

Page

3.4.3	Side Wall Null Flux Baseline with Improved Estimate of Aerodynamic Drag
3.4.4	Side Wall Null Flux Five Centimeter Mechanical Clearance
3.4.5	Side Wall Null Flux Magnet Current Reduced to 600 k Amps
3.4.6	Side Wall Null Flux Reduced Guideway Levitation Conductor
3.4.7	Side Wall Null Flux Reduced Guideway Motor Aluminum
3.4.8	Baseline at 134 meters per second and at 89 meters per second
Hybrid N	Null Flux Trade-Offs 3-25
3.5.1	Hybrid Null Flux Baseline at 134 meters per second with Side Load
3.5.2	Hybrid Null Flux Baseline Operating Without Side Load
3.5.3	Hybrid Null Flux Baseline at 89 meters per second with Side Load
3.5.4	Hybrid Null Flux Baseline operating without side load at 89 meters per second
3.5.5	Hybrid Null Flux Baseline with
	Aerodynamic Corrections 3-28
3.5.6	Hybrid Null Flux Mechanical Clearance Reduced to 5 centimeters
3.5.7	Hybrid Null Flux Reduced Vehicle Magnet Current 3-28
3.5.8	Hybrid Null Flux Thinner Guideway Conductor, at 134 meters per second
3.5.9	Hybrid Null Flux Thinner Guideway Conductor at 89 meters per second
3.5.10	Hybrid Null Flux Reduced Pole Pitch, 134 meters per second
3.5.11	Hybrid Null Flux Reduced Pole Pitch and Reduced Guideway Sheet Thickness, at 134 meters per second

TABLE OF CONTENTS (CONT.)

Section

4

5

.

	3.5.12	Hybrid Null Flux Reduced Pole Pitch and Guideway Sheet Thickness at 89 meters per second 3-32
	3.5.13	Hybrid Null Flux Optimizations
3.6	Image H	Flux Trade-Offs
	3.6.1	Image Flux Baseline at 134 meters per second with Substantial Side Load
	3.6.2	Image Flux Baseline at 134 meters per second
	3.6.3	Image Flux Baseline with Aerodynamic Corrections
	3.6.4	Image Flux Baseline at 89 meters per second
	3.6.5	Image Flux Baseline at 89 meters per second Magnet Current for 134 meters per second
	3.6.6	Image Flux Guideway Levitation Sheets Reduced to 1 centimeter
-	3.6.7	Image Flux Pole Pitch Reduced to 1 meter 3-36
3.7	Déscrip	tion of Electrodynamic Systems Spreadsheets,
	Overvie	ew
	3.7.1	Hybrid Null Flux Spreadsheet 3-37
	3.7.2	Image Flux Spreadsheet 3-37
	3.7.3	Side Wall Null Flux Spreadsheet
	3.7.4	Magnetic Fields Spreadsheets 3-38
COM	IPARISOI	N OF SYSTEMS 4-1
4.0	Major p	parameters 4-1
4.1	Weight	Comparison 4-1
4.1	Power (Comsumption
4.2	Ride Qu	ality
4.3	Other C	Considerations
SUM	MARY	
5.1	Unantic	ripated Results 5-1
5.2	Discuss	ion 5-1
5.3	Observa	ations

TABLE OF CONTENTS (CONT.)

Appendix		<u>Page</u>
Α	MODELS FOR ELECTROMAGNETIC SUSPENSION SYSTEMS	A-1
В	MODEL FOR LINEAR INDUCTION MOTOR	B-1
С	DYNAMICS OF SIMPLE SUSPENSION MODELS	C-1
D	WEIGHT AND POWER ESTIMATION FOR ADDITIONAL ON-BOARD EQUIPMENT	D-1
E	SPREADSHEETS FOR ELECTROMAGNETIC SYSTEMS WITH FORMULAS	E-1
F	COMPLETE SPREADSHEETS FOR ELECTROMAGNETIC SYSTEMS	F-1
G	SPREADSHEETS FOR ELECTRODYNAMIC SYSTEMS WITH FORMULAS	G- 1
Η	COMPLETE SPREADSHEETS FOR ELECTRODYNAMIC SYSTEMS	H-1
REFEREN	vces	R-1

EXECUTIVE SUMMARY

Electrodynamic and Electromagnetic Levitation Transport Systems

Objective

The objective of this study is to compile quantitative design information on magnetic levitation transportation systems which will assist in the determination of the most promising direction to pursue for future system development.

Background

The choice between electromagnetic and electrodynamic systems is under deliberation. Electromagnetic systems incorporate conventional electromagnets which are servoed to lift the vehicle even at zero operating speeds. Electrodynamic systems fix a large magnetic field, generated by superconducting coils, to the vehicle. When the vehicle moves, currents are induced in the guideway that generate lift. Most effort in the U.S. has focused on electrodynamic systems.

Under this program, preliminary design and analysis was performed to quantify engineering parameters, such as ride quality, power, and vehicle weight and payload, to contribute factual information to the decision between electromagnetic and electrodynamic systems. To cover many possible variations and to obtain general results while limiting the work scope, these systems were analyzed:

Electromagnetic Systems (EMS)

- I. Separate magnets for heave and lateral guidance and a separate linear induction motor.
- II. Staggered magnets which combine lift and lateral guidance and a separate linear induction motor.
- III. Combined heave and synchronous propulsion magnets with separate lateral magnets. The lift magnets are used as the moving element (rotor) for a linear synchronous motor, similar to Transrapid. This option, EMS III is preferred and is the basis for the results below.

ix

Electrodynamic Systems (EDS)

- Image flux in which the superconducting magnets move above a continuous circular arc cross section guideway (the Magneplane configuration). Because of its large air gaps, only the image flux configuration has no secondary suspension. The three options all include a linear synchronous motor with the armature winding in the guideway.
- 2. Null flux with coils in the guideway and on-board superconducting magnets. The coils are arranged so that at zero lift, no current flows through the guideway coils
- 3. Hybrid null flux, similar to null flux but with a continuous sheet guideway.

Results

In terms of required guideway smoothness, and passenger payload, the electromagnetic system (EMS III) and the electrodynamic systems EDS 1 and 2 (image flux and hybrid null flux) are comparable. The resistive power for EDS systems were higher than EMS while the reactive power was lower (EDS 1 and 3) and similar (EDS 2). In addition, the EDS systems require significant development (which implies risk) to demonstrate the feasibility of operation. <u>Until major developments in the technology of electrodynamic systems are realized, the electromagnetic system (EMS 3, similar to Transrapid) is preferred.</u> If EDS is to be competitive, further development will be required and significant risks addressed. Major results are summarized:

- All the systems require smooth guideways (equivalent to welded steel rails) to achieve acceptable ride quality (passive secondary suspensions were assumed except for image flux). The expectation that the EDS systems, because of the larger guideway-vehicle clearances, would permit rougher guideways was not realized.
- The weight of the superconducting magnets with shields, supports, and insulation for the EDS image and null flux systems was similar to that of EMS III at 25% total vehicle weight. For a 40 Mg vehicle, 113 passengers can be accommodated. Fewer passengers could be handled with the hybrid null flux (EDS 3).
- Total power dissipation for propulsion and magnetic drag was 1,500 W/m of powered guideway for EMS III (linear synchronous motor). 2,000 W/m of

powered guideway for EDS 1 (image flux) and 1,000 W/m of powered guideway for EDS 3 (coil null flux). For a 40 Mg vehicle at 134 m/s, aerodynamic drag power was estimated at 5.4 MW. The reactive guideway power was larger in EMS III (25 kVA/m of powered guideway) than in the EDS systems (5 kVA/m of powered guideway for image flux, 22 kVA/m of powered guideway for hybrid null flux and 5.3 kVA/m of powered guideway for coil null flux).

 Little data was available to estimate the effect of guideway AC fields quenching EDS superconducting magnets, an important effect in superconducting generators.
 Feasibility of electrodynamic systems cannot be fully determined until the issue of possible quenching of superconducting magnets due to AC guideway fields is resolved.

Other important results include:

• Magnetic saturation limits the EMS III propulsion capability to 0.1 g, which makes operation at 134 m/s marginal, with negligible hill climbing capability at that speed.

4.45

 T_{a}^{I}

2

5

N. S.

1

• Because the relative displacements between the vehicle and the bogey are small, active secondary suspensions, which would enable rougher roadways, should be considered for EDS.

xi

SECTION 1 INTRODUCTION

1.1 Objective

The objective of this study is to compile quantitative design information on magnetic levitation transportation systems which will assist in the determination of the most promising candidates for pursuit of future system development.

Background

The choice between electrodynamic and electromagnetic levitation systems for high speed ground transportation systems is under deliberation. Proponents of both Electrodynamic Systems (EDS) and Electromagnetic Systems (EMS) emphasize the advantages of their approach, but are not always quick to point out the disadvantages, both known and potential. This natural tendency makes objective evaluations difficult.

EDS generally feature larger mechanical clearances between vehicle and guideway and thus appear to be more tolerant of guideway roughness, suggesting the possibility of lower guideway cost (a major component of the cost of acquisition of a complete system, according to many studies). On the other hand, EMS require smaller clearances for efficient design and operation, but are magnetically self-shielding, can provide levitation at zero speed, and can have lower drag then EDS, except at very high velocities. In both types of levitation systems, the on-board magnets can be used to implement linear synchronous motors.

In order to provide objective information to aid in the selection of high speed magnetic levitation systems, this study compiled detailed quantitative design information based on assumptions which were consistent across all of the systems examined. The consistency of assumptions which were made provides results which can reliably identify significant differences between systems, even though their accuracy may be less than perfect. The results should be able to contribute to a rational first order evaluation of the viability, both technical and economic, of these levitation systems.

The parameters which were evaluated include

- (1) Effect of guideway roughness and cross-winds on:
 - (a) Vehicle design requirements, e.g., adequate vehicle-guideway clearances.

- (b) Passenger comfort.
- (2) Mass of levitation and propulsion components
 - (a) In the vehicle.
 - (b) On the guideway.
- (3) Mass of vehicle including structure, furnishings, utilities such as environmental control, on-board power conditioning equipment and batteries.
- (4) Passenger capacity, including baggage.
- (5) Power consumption from aerodynamic drag, eddy current losses in the guideway and ohmic power losses in both guideway and on-board the vehicle.

1.2. Assumptions

Six different configurations of magnetically levitated high speed ground transportation systems were selected for study and comparison. The selection includes the major system types presently under consideration. The intent of the study was, in addition to providing quantitative comparison information, to clarify the trade-offs between systems by holding some important system parameters invariant between the systems. These parameters are:

- (1) Vehicle speed; two different speeds were examined for each system:
 - (a) 134 meters/second (300 miles per hour).
 - (b) 89 meters/second (200 miles per hour).
- (2) Vehicle weight, frontal area and volume; A vehicle weight of 40 Mg was selected as being representative of the vehicles being studied elsewhere. Initially, a decision was necessary as to whether the vehicle weight or the vehicle payload should be maintained the same for all of the systems under comparison. Vehicle weight was selected for this study because it fixes the levitation capability requirement of the magnet system, leading to direct calculations of the magnet design. Fixing the payload capability would have required iterative solutions to the magnet design because the magnet size would depend on the total vehicle weight (which depends in turn on the magnet weight). With this choice, payload (which for this study consisted entirely of passengers and their baggage) for the fixed vehicle weight could be calculated because simple relationships were identified for estimating the weight of all vehicle components except the magnets, once the magnet weight was determined. This still required

iterative solutions for payload/passenger capacity, but these were much simpler than iterative solutions for the magnet designs would have been.

- (3) Magnetic force capability; two sets of requirements for magnetic force capability were selected for the study, corresponding to the two design speeds addressed, 89 meters/second and 134 meters/second; these are shown in Table 1-1. They were selected to provide the vehicles studied with the capability to withstand the static and dynamic levitation and guidance loads which could be reasonably expected and to provide a propulsion margin above aerodynamic drag to provide for reasonable acceleration and permit negotiation of hills. The requirements differed for the two design speeds because the aerodynamic drag and the lateral component of the crosswind forces depend on the vehicle speed. The lateral force requirements were divided into two categories, continuous (e.g., force due to steady crosswind) and short term (e.g., force due to wind gusts). The duration of the short term lateral force was set at five seconds.
- (4) Magnetic field in the passenger compartment; Magnetic field exposure might present a health risk. Even though, at the present time, there are no definitive standards for such exposure or unequivocal evidence of adverse consequences, public concern demands that factors with possible health implications be addressed. Consequently, estimates were made of the strength of the magnetic fields which riders would be exposed to in the passenger compartment of each of the vehicles and magnetic shielding provided, if necessary, to prevent exposure to high field levels.
- (5) Ride quality; Ride comfort is expected to be an important determinant of public acceptance of Maglev transportation systems. While it is possible that an extremely comfortable ride may not itself attract passengers from alternative modes, it seems likely that significantly poorer ride quality may discourage public acceptance. Consequently, each of the vehicles studied was evaluated for ride quality according to the Pepler index, a frequently used measure for ride comfort.

		Design Speed	
Description	Units	89 m/s	134 m/s
Propulsion			
Aerodynamic drag ($C_d = 0.3$ assumed) [†]	g	0.044	0.1
Hill climbing (3% grade)	g	0.03	0.03
Acceleration at low speed	g	0.15	0.15
Acceleration at high speed	g	0.075	0.075
Net propulsion requirement (Propulsion minus magnetic drag)	g	0.15	0.21
Vertical support	g	1.1	1.1
Lateral Guidance			-
27 m/s (60 mph) lateral wind loads	g	0.16	0.32
14 m/s (30 mph) lateral wind loads	g	0.08	0.16
6° banked curve (at standstill)	g	0.1	0.1
Lateral force requirement			
Short term (5 seconds)	g.	0.26	0.42
Continuous	g	0.18	0.26

Table 1-1. Vehicle force requirements.

† Cd is the coefficient of Drag

SECTION 2

ELECTROMAGNETIC SYSTEMS

2.0 General

The electromagnetic systems described in this report are characterized by the effective confinement of the magnetic flux of the levitation and propulsion components within a ferromagnetic core, except for the leakage and air gap fluxes. The leakage flux density decreases rapidly with distance away from the device, with a characteristic distance of the order of the air gap. As a result, even though the fields may be as high as 1 Tesla in the air gap, because typical gaps are of the order of only 1 cm the magnetic fields experienced in the vehicle passenger compartment are small, and special shielding to control these fields is usually not necessary. The magnetic fluxes which produce the required levitation, guidance and propulsion forces are induced by electrical currents flowing in coils suitably placed on the iron cores; these coils are typically made from copper or aluminum wire, the latter often used when cost or weight are important.

The magnetic structures, or rails, on the guideway which provide the levitation and guidance functions alone are entirely made of iron, without any electrical conductors. This is in contrast with the guideway portion of the motors for propulsion, which do incorporate electrical conductors.

All of these electromagnetic components are characterized by an attractive magnetic force between the vehicle magnets structures and the iron guideway which is unstable; that is, as the air gap decreases, the attractive magnetic force tends to increase (this is not the case for lateral suspension of EMS II, as is discussed in Section 2.2). Consequently, it is necessary to implement a closed-loop controller for the magnet currents to enable stable operation of the suspension elements.

The three electromagnetic systems analyzed in this study are illustrated in Figures 2-1 through 2-4. The systems are termed EMS I, EMS II and EMS III in this report and are described in more detail in Sections 2-1 through 2-3, respectively. Electromagnets, such as the one shown in Figure 2-5, are located at the corners of the vehicles or along

Figure 2-1. EMS Maglev vehicle, side view.

۲

1

2-2

T

۲

Figure 2-2. EMS I vehicle and guideway cross section.

Figure 2-3. EMS II vehicle and guideway cross section.

House and the

town in der will be

Figure 2-4. EMS III vehicle and guideway cross section.

Figure 2-5. Nomenclature for simple electromagnet (EMS I & EMS III).

•

both sides to provide control of translational (vertical, sometimes termed heave, and horizontal, sometimes termed sway) and rotational (pitch,roll and yaw) motions. The guideway rail which interacts with each of these magnets is located symmetrically in the lateral or vertical direction with respect to the levitation and guidance magnets, respectively. For EMS I and EMS III, the poles of the guideway rail are usually somewhat wider than the poles of the vehicle magnet so that the air gap reluctance is, to first order, unaffected by the lateral (in the case of the levitation magnets) or vertical (in the case of the guidance magnets) motions of the vehicle.

In EMS I and EMS II, a separate magnetic structure which implements a Linear Induction Motor (LIM) is included to provide the propulsion forces. For the vehicle systems using the LIM, the full propulsion power, approximately five megawatts for velocities in the 134 meters/second range, must be transmitted by some means from the wayside to the vehicle, and converted on the vehicle into a form suitable for the LIM (in general, 3 phase power of controllable frequency and amplitude). The guideway portion of the LIM includes a layer of an electrical conductor, typically aluminum for reasons of cost, over the guideway iron. In EMS III, both the levitation and propulsion functions are provided by the same vehicle magnetic structure, which interacts with a guideway structure containing suitably excited conductors (like the LIM, 3 phase power of controllable frequency and amplitude) to produce a moving magnetic field to provide propulsion.

2.1. EMS I, Separate Lift and Lateral Magnets and Linear Induction Motor (LIM)

The first system, termed EMS I and illustrated in Figure 2-2, utilizes separate magnetic structures, both on the vehicle and on the guideway, to provide levitation, guidance and propulsion forces. The levitation and guidance structures are similar to the simple electromagnet illustrated in Figure 2-5, and interact with iron rails installed on the guideway. The propulsion function for this configuration is provided by a LIM, which is illustrated in Figure 2-6 (the illustrative figures define the nomenclature used in the spreadsheets which evaluate the major parameters; the models and the spreadsheets used to calculate the major parameters are described in Appendix A. The spreadsheets containing the numerical results appear in Appendix F, and Appendix E contains the formulas used for the calculations). EMS I is the only one of the 3 EMS configurations which utilizes a separate set of devices for each of the required functions, levitation, or lift, guidance and propulsion. The other two system configurations both utilize a

common magnetic structure to provide two of the three necessary functions.

2.2. EMS II, Staggered Lift and Lateral Magnets with Linear Induction Motor

EMS II is characterized by pairs of magnets located at each corner of the vehicle. A single magnet of such a pair is illustrated in Figure 2.7. Each magnet of an individual pair is "staggered" or displaced laterally with respect to its mate, with both magnets of the pair interacting with a single rail on the guideway. Unlike the levitation and guidance magnets of EMS I, the poles of both the vehicle magnets and the guideway rails of this configuration have more or less the same width; the air gap reluctance in this system is consequently affected by both the vertical and lateral motions of the vehicle and both lift and guidance forces are produced. The lift forces of the simple electromagnet of Figure 2-5 are unstable in that, for a constant coil current, the attractive force increases as the magnet and rail approach each other more closely i.e., as the air gap (h1x in Figure 2-5) decreases. In contrast, the lateral force of the magnet is stable in that, as the magnet moves laterally with respect to the rail (increasing "del" in Figure 2-7) the magnetic force tends to return the magnet to the centered position ("del"=0, i.e., the magnet and rail centerlines coincident).

The separate magnet control systems for the vertical and lateral motion are so designed that both motions are stably controlled and, moreover, so that there is no crosscoupling between the two directions of motion. To accomplish this decoupling requires a specific gain value for the lateral magnet controller, called the decoupling gain [2]; and this determines the lateral natural stiffness and thus the natural frequency of the suspension. This frequency is often lower than might otherwise be chosen, based on tracking considerations only, and results generally in a softer ride but larger gap excursions than would be the case with higher natural frequency values. In general, the increased "gap" excursions (gap is somewhat a misnomer in this case, because the air gap, or perpendicular distance between the moving and stationary parts, does not change as a result of the lateral motions) can be acceptable because the lateral displacement limits are substantially larger than the air gap. For the configurations analyzed in this study, the range of lateral motions for which lateral force is a linear function of lateral displacement ranged from 1.5 to 1.9 times the air gap. Wormley, et al [2] have shown that the lateral force continues to increase for some distance beyond the linear range.

2.3. EMS III, Combined Lift and Synchronous Motor and Separate Lateral Guidance Magnets

EMS III is essentially similar to the German Transrapid System [8]. Illustrated in Figure 2-3; the model assumes four vehicle magnets, one at each corner (Transrapid has magnets distributed continuously along the vehicle length), which simultaneously provide the functions of levitation, or lift, and act as the "rotor" of a Linear Synchronous Motor (LSM) in conjunction with the windings installed in the guideway rails. These rails are slotted transversely and are provided with a winding consisting of 3 conductors which "meander" through the slots of the guideway. These conductors, when excited by three-phase wayside inverters, provide a moving magnetic field which acts against the field of the vehicle magnets, propelling them synchronously with the guideway field. Maglev systems using LSM are usually operated with the LSM excitation applied to a limited length of the guideway because, as will be seen in Section 2.5, the guideway power is quite high, of the same order of magnitude as the aerodynamic drag power, for a block length of only one kilometer. Thus, block lengths of many kilometers are impractical from an operating economy point of view. On the other hand, short block lengths are undesirable because the wayside power transmission, conditioning and control equipment is duplicated for each block so that short block lengths increase the capital cost of system acquisition. A proper balance between these two conflicting requirements will have to be resolved based on economic considerations, not addressed in this study. The combined lift magnet and linear synchronous motor configuration is illustrated in Figure 2-8.

The Transrapid Maglev system differs from the configuration studied here in having many independent magnets along the length of its vehicle. In addition, the Transrapid lateral magnets are suspended vertically and the lift magnets horizontally by rubber springs with a resonant frequency of about 1.5 Hz. This has the effect of somewhat isolating the magnets from motions of the bogey parallel to the air gap surfaces, thus reducing the effective unsprung weight for improved ride quality and reduced air gap variations.

Figure 2-7. Nomenclature for combined (staggered) lift and guidance magnets (EMS II).

Figure 2-8. Combined lift magnets and linear synchronous motor (EMS III).

٩.

1

2.4 Assumptions, Constraints and Optimization

The suspension and propulsion performance requirements for all of the systems examined in this study are listed in Table 1-1, which also shows some of the selected conditions which determined those requirements. Some additional constraints were applied to the EMS studied. A major constraint on the design is the practical necessity for levitating the system from a power-off condition in which the vehicle has settled onto the skids, increasing the air gap beyond its normal operating value. In this study, the air gap at levitation is taken as twice the normal operating value. This constraint effectively determines the back iron dimensions necessary to prevent magnetic saturation.

The electromagnetic components of all three systems studied were optimized for operation at two design speeds, 134 meters/second and 89 meters/second; these optimized designs are termed Design 1, or baseline (b/l), on the spreadsheets. Optimization of a design can involve many different considerations, such as size, weight, power consumption, temperature rise, efficiency and others. Clearly, parameters such as power consumption and efficiency are important in the design of an economical operational system, but the scope of this study precluded inclusion of such economic considerations. In this study, optimization was limited to minimizing the weight of the individual magnetic components.

The constraints applied to the optimization were that the force capability be no less than the maximun requirement, that the winding insulation temperature be limited to the rating of the insulation, that the flux density in the iron portions of the magnets not exceed the saturation flux density of the material and that the coil window width to height ratio (w/h) be not greater than two, the approximate limit of validity of the expression used to evaluate interpole leakage permeance.

In the case of insulation temperature limitations, two conditions were considered for the lateral suspension magnets; these were short term requirements (5 seconds in this study) and continuous operation. As seen from Table 1-1, the short term requirements for lateral force are the more demanding. The study determined that the temperature rise from the continuous requirements was higher than that from the short term requirements. The remaining magnet dimensions were then systematically varied until the minimum value of magnet weight was achieved, consistent with the stated constraints.

In order to indicate the sensitivity of the optimization to two important magnet dimensions, two variations of the optimized designs, were examined; these are termed Design 2 and Design 3 on the spreadsheets. Design 2 has the additional constraint that

the magnet pole width (lp), is 3/4 the value for Design 1, while Design 3 has an air gap (h1x) that is 80% that of Design 1 and the same magnet pole width. With these additional constraints, the remaining dimensions of Designs 2 and 3 were again systematically varied to determine the minimum magnet weight. After the three designs were optimized for each of the two operating speeds, the performance of each was then determined at a speed 2/3 the design speed (89 meters/second for the 134 meters/second optimization and 59 meters/second for the 89 meters/second optimization to provide an indication of the effect of operating speed on the performance parameters of each particular design.

2.5 Comparisons Between Electromagnetic Systems

All of the data generated in this study is contained in the spreadsheets for each of systems, which appear in Appendix F. The major results for each of the systems are extracted from the spreadsheets and appears in Tables 2-10 through 2-15 at the end of this section. These results for all of the systems are combined and presented below in the major categories of weight and power; each of these categories is subdivided into onvehicle and on-guideway components. Finally, a relative ranking, from best to worst, for each of the categories is presented.

The Table 2-1 compares the weights of the on-vehicle electromagnetic components.

Tr-	1	~	1	1	•
12	101	e	2-	·1,	

	EMS I		EMS II		EMS III	
Optimization Speed (m/s)	89	134	89 134		89	134
Levitation magnets	1.54	1.54	4.74	4.79	5.30	5.30
Guidance Magnets	1.55	1.93	Included in Levitation		1.55	1.93
Motor Stator	2.52	3.71	2.52	3.71	¹ Included in Levitation	
Total	5.61	7.18	7.26	8.50	6.85 7.23	

Electromagnetic on-vehicle component weight (Mg)

In every case, the weight of the guidance magnets is higher for designs optimized for operation at 134 meters/second, as compared with those optimized for 89 meters/second; the reason for this is that the guidance force requirements are higher for the 134 meters/second speed, as seen in Table 2-1. On the other hand, the levitation magnet weights are the same because the levitation force requirements are the same for both speeds. The Linear Induction Motor stator weight is higher for the 134 meters/second optimization speed because the propulsion force requirement is higher, as also shown in Table 2-1. The propulsion force for the Linear Synchronous Motor in EMS III was designed to 0.1 g, because the on-vehicle weight was so much larger for the 0.21 g requirement of Table 1-1 that it was judged to be impractical to design to the higher force level. With this restriction, the weight of the vehicle magnets for EMS III is comparable to that of the other two configurations.

The weights of the electromagnetic components mounted on the guideway is shown in Table 2-2.

	EMS I		EMS II		EMS III	
Optimization Speed (m/s)	89	134	89	89 134		134
Levitation	113	113	48.8	48.9	271	271
Guidance	82.8	113	Included in Levitation		82.8	113
Propulsion Motor	159	180	159 180 In L		Inclue Levit	led in tation
Total	512.8 586 365.8 408.8 35		353.8	384		

Table 2-2.	
Electromagnetic on-guideway component weight (Mg	y/km)

As might be expected, the weight of the EMS III combined levitation/LSM guideway components is higher than that of the EMS I levitation magnets, since they provide two functions instead of one. The LIM guideway components comprise the heaviest single element. However, it is important to note that the propulsion capability of the LIM design meets the same requirements as the EDS at 0.21 g for 134 meters/second and 0.15 g for 89 meters/second, whereas that of the EMS III LSM is limited to 0.1g. Overall, total weight of the guideway mounted components of EMS III is the lightest of the three configurations, and that of the EMS I components is the heaviest, as might be expected since in the latter all of the functions are provided by separate components.

The power dissipation of the vehicle mounted components is shown in Table 2-3.

	EMS I		ΕΜЅ Π		ΕΜЅ ΠΙ	
Optimization Speed (m/s)	89	134	89	134	89	134
Levitation magnets	119	119	74.4 75.1		51.3	47.9
Guidance Magnets	17.6	18.8	Included in Levitation		17.6	18.8
Motor Stator	60.0	82.8	60.0	82.8	Included in Levitation	
Total	196.6	220.6	134.4	157.9	65.5	66.7

Table 2-3.Electromagnetic on-vehicle power dissipation (kW)

EMS I vehicle mounted components have by far the largest power dissipation, followed by EMS II, with EMS III having the least power dissipation. The guidance magnets of EMS I and III have the same dissipation because they are of identical design, as are the Linear Induction Motor stators of EMS I and II. Note that the LIM on-vehicle power dissipation was not separated into vehicle and guideway components and includes that due to the eddy currents in the guideway conductor sheet and iron; due to the high LIM efficiency, guideway power dissipation is relatively small.

The reactive power of the on-vehicle components is summarized in Table 2-4. Reactive power was calculated because the rating, and thus size and weight, of the power conditioning equipment used to drive the electromagnetic components is determined, more or less, by the total volt-amperes which must be accommodated; the weight of the power conditioning equipment was included in the total vehicle weight, requiring reactive power to be calculated. Reactive power is also relevant to the sizing of the wayside power equipment and the electric utility requirements for the system, for the same reason. It is also potentially relevant to the cost of power for the system, because it affects the power factor of load presented by the system, and some electric utilities levy a charge for non-unity power factor.

	EMS I		EMS II		EMS III	
Optimization Speed (m/s)	89	134	89	134	89	134
Levitation magnets	N/A	N/A	N/A N/A		N/A	N/A
Guidance Magnets	N/A	N/A	Included in Levitation		N/A	N/A
Motor Stator	1,570	3,220	1,570 3,220		Included in Levitation	
Total	1,570	3,220	1,570	3,220	N/A	N/A

 Table 2-4

 Electromagnetic on-vehicle reactive power (kVA)

EMS III reactive power is relatively small, of the order of kVA, and is due to the current variations in the vehicle magnets in response to guideway roughness and wind gusts. However, the guideway reactive power is nearly an order of magnitude larger than the on-board LIM reactive power. The reactive power associated with the eddy currents in the guideway of the LIM are, like the real power, included in the on-vehicle table.

17

Power dissipated in the guideway components is listed in Table 2-5.

Licen on agreete on-guideway power dissipation (KW)								
	EMS I		EMS II		EM	S III		
Optimization Speed (m/s)	89	134	89	134	89	134		
Eddy Current Power Dissipation due to Vehicle Magnets								
Levitation magnets	29.3	66.3	14.0 31.6		11.1	23.6		
Guidance Magnets	7.34	33.1	Included in Levitation		7.34	33.1		
Total Eddy Current Power	36.64	99.4	14.0	31.6	18.14	57.5		
Propulsion Motor Power Dissipation (1 km block length assumed)								
Guideway Windings	N/A	N/A	N/A N/A		1,470	1,470		
Guideway Eddy Currents	N/A	N/A	N/A	N/A	33.4	75.8		
Total Guideway Power	36.64	99.4	14.0	31.6	1,522	1,603		

Table 2-5.Electromagnetic on-guideway power dissipation (kW)

Total system power dissipation is not listed, because the LSM power is stated in terms of the power dissipation per kilometer of excited guideway; thus the total EMS III power depends upon the length of an excited block. The choice of block length depends on a number of factors, mainly economic; major ones include the capital cost of the electric utilities required to supply the power, and the cost of wayside power conversion equipment (assuming this is duplicated for each block). The same considerations also apply to the EDS, which also use LSM and some of the factors also bear on the other EMS, but not necessarily in exactly the same way. Thus, the question of which system may be better in terms of dissipated power does not have a simple answer, although it is clear that EMS III will have the highest system dissipation unless the blocks are very short (probably impractically short).

Table 2-6 depicts the guideway reactive power per kilometer, which only applies to EMS III since it is the only EMS to utilize a linear synchronous motor having guideway excitation.

	EMS I		EMS II		EMS III			
Optimization Speed (m/s)	89 134		89	134	89	134		
Winding Reactive Power								
Linear Synchronous Motor	N/A	N/A	N/A	N/A	16,600	25,000		
Total Reactive Power	N/A	N/A	N/A	N/A	16,600	25,000		

Table 2-6.Electromagnetic on-guideway reactive power (kVA/km)

It is important to note that the reactive power for a 1 kilometer block of guideway for EMS III at 134 meters/second is approximately 5 times larger than the power required to propel the vehicle. This is an important consideration since the size, and cost, of the wayside power conditioning equipment is governed to a large extent by the total voltamperes which it must handle. The motor efficiency at that speed is about 78%. The large reactive power and relatively low efficiency are a result of having to excite the windings of a considerable length of guideway while the vehicle traverses it. The actual values will, of course, depend upon the actual length of guideway block to be excited which depends, in turn, on considerations such as required headway between vehicles, desired passenger throughput, etc. Note that EMS I and II also have reactive power, which must also be processed by power conditioning equipment and is supplied from the wayside by electric utilities. However, reactive power for EMS I and II are roughly an order of magnitude lower than for EMS III because the latter requires excitation for a very long (relative to the LIM length of EMS I and II) motor stator.

Table 2-7 shows a comparison of the total electrical power dissipated on the vehicle and on the guideway with the aerodynamic drag power for systems optimized for operation at both 89 meters/second and 134 meters/second and operating at those design speeds; power dissipation is lower at lower operating speeds mostly because the eddy current power is lower and since the aerodynamic drag is lower, the propulsive power required is correspondingly lower.

	Units	EMS I		EMS II		EMS III	
Optimization Speed	m/s	89	134	89	134	89	134
On-Vehicle Power	kW	196.6	220.6	134.4	157.9	65.5	66.7
Guideway Power	kW	36.6	99.4	14.0	31.6	1,522†	1,603†
Total Power Dissipation	kW	233.2	320.0	148.4	189.5	1,588†	1,670†
Aerodynamic Power	kW	1,520	5,200	1,520	5,200	1,520	5,200
Total Power/Aero Power		0.15	0.06	0.10	0.04	1.04	0.32

 Table 2-7.

 Electrical Power Dissipation Comparison with Aerodynamic Drag Power

† 1 kilometer block length assumed

It can be seen that for EMS III optimized for operation at 89 meters /second and operating at that speed, the total power dissipation is approximately the same as the aerodynamic drag power, whereas for EMS I and EMS II also optimized for operation at 89 meters/second the electrical power dissipation is from 6 to 10 times lower than the aerodynamic drag power. This large discrepancy is entirely a result of the large guideway power dissipation of EMS III, a consequence of the necessity for powering a guideway block (long stator) which is a great deal longer than the length of the LIM stator (short stator) on the vehicle. As a result of this large guideway power dissipation, EMS III has by far the largest ratio of electrical power dissipation to aerodynamic drag power for a one kilometer guideway block length; for a 1 km block length, the guideway power dissipation is completely dominated by the LSM power, of which the winding resistive power is an order of magnitude larger than the rail eddy current power.

2.6 Summary

0

Of the three EMS configurations, EMS I has the lowest total weight of electromagnetic components mounted on the vehicle for 89 meters/second optimization, while EMS I and EMS III are comparable for optimization at 134 meters/second operation. EMS II is heaviest at both optimization speeds: 25% of EMS 1 and 105% of EMS III for 89 meters/second optimization and 118% of EMS I and 17% of EMS III for 134 meters/second. Since magnet weight is a major contributor to total vehicle weight, EMS I and III could be expected to have roughly equal payload capacity for 134 meters/second optimization, with EMS I slightly better at 89 meters/second optimization; EMS II would have the smallest payload at each of the speeds.

The weight of the components mounted on the guideway does not affect the payload capacity of the vehicles; rather, its major impact is on the capital cost of acquisition. In this comparison, EMS I has the greatest weight of guideway mounted components, EMS III the least and EMS II is $\approx 5\%$ greater than EMS III for both optimization speeds. For 89 meters/second, EMS I weight is 145% of EMS III and 152% at 134 meters/second.

In terms of on-vehicle power dissipation, EMS III is lower by a substantial margin at both optimization speeds. For the 89 meters/second optimization, EMS I on-vehicle power is 300% of EMS III and EMS II is 205% of EMS III. For the 134 meters/second optimization, EMS I power is 330% of EMS III and EMS II is 237% of EMS III.

For reactive power, EMS I and EMS II are identical, since they have identical LIM, which is the source of the reactive power, while EMS III has no on-board reactive power.

The on-guideway power dissipation is due entirely to eddy currents induced in the rails by the vehicle magnets for EMS I and EMS II. In addition to this, EMS III also has eddy current dissipation due to the guideway LSM excitation, but its guideway total power dissipation is dominated by the LSM winding dissipation for block lengths greater than about twice the vehicle length, and is still an order of magnitude larger than EMS I and II even for the impractically short block length of 100 meters, which is only about three times the length of the vehicle. The guideway eddy current power dissipation due only to the vehicle magnets is about a factor of two lower for EMS III than for EMS I.

The above summary is condensed into relative rankings of the three systems in
Tables 2-8 and 2-9. In the rankings, 1 denotes best and 3 worst, where best denotes lowest weight, lowest power and lowest ratio of electrical power dissipation to aerodynamic drag power.

Parameter	EMS I	EMS II	EMS III
Weight On-Vehicle	1	3	2
Weight	3	2	1
Power Dissipation On-Vehicle	3	2	1
Power Dissipation On-Guideway	2	1	3†
Reactive Power On-Vehicle	3	3	N/A
Reactive Power On-Guideway	N/A	N/A	3
Electrical Power/Aero Drag Power	2	1	3

Table 2-8.	
Rankings for 89 meters/second Optimizations	

† 1 kilometer block length assumed

Table 2-9.Rankings for 134 meters/second Optimizations

Parameter	EMS I	EMS II	EMS III
Weight On-Vehicle	1	3	2
Weight On-Guideway	3	2	1
Power Dissipation On-Vehicle	3	2	1
Power Dissipation On-Guideway	2	1	3†
Reactive Power On-Vehicle	3	3	N/A
Reactive Power On-Guideway	N/A	N/A	3
Electrical Power/Aero Drag Power	2	1	3

† 1 kilometer block length assumed

Table 2-10.EMS I Summary; Design optimized for operation at 89 m/sSeparate Lift and guidance magnets and Linear Induction Motor

ElectroMagnetic Suspension I Optimized for operation at 89 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

		89 n	n/s Optimiz	ation	89 m/s O	ptimization	@ 59 m/s
DESCRIPTION	UNITS	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
		baseline	slim pole	small gap	baseline	slim pole	small gap
		<u>(b/l)</u>	(3/4 b/l)	(0.8 b/l)	•	(3/4 b/l)	(0.8 b/l)
EMS Summary							
Weight on Vehicle	•						
Lift Magnets	kg	1.54E+03	1.99E+03	1.23E+03	1.54E+03	1.99E+03	1.23E+03
Guidance Magnets	kg	1.55E+03	2.17E+03	1.23E+03	1.55E+03	2.17E+03	1.23E+03
Linear Induction Motor	kg	2.52E+03	2.52E+03	2.28E+03	2.52E+03	2.52E+03	2.28E+03
Total	kg	5.61E+03	6.68E+03	4.75E+03	5.61E+03	6.68E+03	4.75E+03
Weight on Guideway							
Lift Magnets	kg/m	1.13E+02	7.17E+01	8.94E+01	1.13E+02	7.17E+01	8.94E+01
Guidance Magnets	kg/m	8.28E+01	5.36E+01	6.49E+01	8.28E+01	5.36E+01	6.49E+01
Linear Induction Motor	kg/m	1.59E+02	1.59E+02	1.39E+02	1.59E+02	1.59E+02	1.39E+02
Total	kg/m .	3.55E+02	2.84E+02	2.93E+02	3.55E+02	2.84E+02	2.93E+02
Real Input Power Dissipation							1
Ohmic Power Dissipation				Ĭ			ľ
Lift Magnets	W	1.19E+05	1.95E+05	1.06E+05	1.19E+05	1.95E+05	1.06E+05
Guidance Magnets	W	1.76E+04	3.97E+04	2.18E+04	1.76E+04	3.97E+04	2.18E+04
Linear Induction Motor	W	6.00E+04	6.00E+04	5.62E+04	2.56E+04	2.56E+04	2.35E+04
Total Ohmic Power	w	1.96E+05	2.95E+05	1.84E+05	1.62E+05	2.60E+05	1.52E+05
Eddy current Power							
Lift Magnets	w	2.93E+04	4.94E+03	1.93E+04	1.29E+04	2.17E+03	8.47E+03
Guidance Magnets	w	7.34E+03	1.21E+03	4.72E+03	3.23E+03	5.31E+02	2.07E+03
Total eddy current Power	w	3.66E+04	6.14E+03	2.40E+04	1.61E+04	2.70E+03	1.05E+04
Total Real Power Dissipation	w	2.33E+05	3.01E+05	2.08E+05	1.78E+05	2.63E+05	1.62E+05
Reactive Input Power	-	, 1					
Linear Induction Motor	V-A	1.57E+06	1.57E+06	1.53E+06	4.68E+05	4.68E+05	4.57E+05
Total	V-A .	1.57E+06	1.57E+06	1.53E+06	4.68E+05	4.68E+05	4.57E+05

Table 2-11.EMS I Summary; Design optimized for operation at 134 m/sSeparate Lift and guidance magnets and Linear Induction Motor

ElectroMagnetic Suspension I Optimized for operation at 134 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

		134	m/s Optimiz	zation	134 m/s C	Optimization	@ 89 m/s
DESCRIPTION	UNITS	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
		baseline	slim pole	small gap	baseline	slim pole	small gap
			(3/4 b/l)	(0.8 b/i)		(3/4 b/l)	(0.8 b/l)
EMS Summary							
Weight on Vehicle							
Lift Magnets	kg	1.54E+03	1.99E+03	1.23E+03	1.54E+03	1.99E+03	1.23E+03
Guidance Magnets	kg	1.93E+03	2.58E+03	1.54E+03	1.93E+03	2.58E+03	1.54E+03
Linear Induction Motor	kg	3.71E+03	3.71E+03	2.89E+03	3.71E+03	3.71E+03	2.89E+03
Totai	kg	7.18E+03	8.28E+03	5.67E+03	7.18E+03	8.28E+03	5.67E+03
Weight on Guideway							
Lift Magnets	kg/m	1.13E+02	7.17E+01	8.94E+01	1.13E+02	7.17E+01	8.94E+01
Guidance Magnets	kg/m	1.13E+02	7.17E+01	8.87E+01	1.13E+02	7.17E+01	8.87E+01
Linear Induction Motor	kg/m	_1.80E+02	1.80E+02	1.56E+02	1.80E+02	1.80E+02	_ 1.56E+02
Total	kg/m	4.06E+02	3.23E+02	3.34E+02	4.06E+02	3.23E+02	3.34E+02
Real Input Power Dissipation							1
Ohmic Power Dissipation							1
Lift Magnets	W	1.19E+05	1.95E+05	1.06E+05	1.19E+05	1.95E+05	1.06E+05
Guidance Magnets	w	1.88E+04	3.88E+04	2.08E+04	1.88E+04	3.88E+04	2.08E+04
Linear Induction Motor	w	8.28E+04	8.28E+04	8.00E+04	3.40E+04	3.40E+04	3.08E+04
Total Ohmic Power	w	2.20E+05	3.16E+05	2.07E+05	1.71E+05	2.68E+05	1.58E+05
Eddy current Power							ll ll
Lift Magnets	w	6.63E+04	1.12E+04	4.37E+04	2.93E+04	4.94E+03	1.93E+04
Guidance Magnets	W	3.31E+04	5.49E+03	2.16E+04	1.46E+04	2.42E+03	9.52E+03
Total eddy current Power	W	9.94E+04	1.67E+04	6.52E+04	4.39E+04	7.36E+03	2.88E+04
Total Real Power Dissipation	w	3.20E+05	3.33E+05	2.72E+05	2.15E+05	2.75E+05	1.87E+05
Reactive Input Power	-	1					
Linear Induction Motor	V-A	3.22E+06	3.22E+06	3.27E+06	9.47E+05	9.47E+05	9.32E+05
Total	V-A	3.22E+06	3.22E+06	3.27E+06	9.47E+05	9.47E+05	9.32E+05

34

Table 2-12. EMS II Summary; Design optimized for operation at 89 m/s Combined Lift and guidance magnets (staggered) and Linear Induction Motor

ElectroMagnetic Suspension II Optimized for operation at 89 m/s maximum speed (Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

	ş	89 7	n/s Ontimiz	ation	80 m/s (Dotimization 6	59 m/s
DESCRIPTION	LINITO	DESIGNA	DESIGNA	DESIGNIZ	DESIGN 1	DESIGNO	DESIGNA
DESCRIPTION	UNITS	DESIGN	DESIGN 2	DESIGNS	DESIGN	DESIGNZ	DESIGNS
		Daseline	siim pole	small gap	baseline	sim pole	small gap
VEHICLE PARAMETERS		<u>(b/l)</u>	(3/4 b/l)	(0.8 <u>b/i)</u>	(b/l)	(3/4 b/l)	(0.8 b/l)
EMS_II_Summary							
<u>Weignt on Vehicle</u>	1						
Lift/Guidance Magnets	kg	4.74E+03	5.60E+03	3.60E+03	4.74E+03	5.60E+03	3.60E+03
Linear Induction Motor	kg	2.52E+03	2.52E+03	2.28E+03	2.52E+03	2.52E+03	2.28E+03
Total	kg	7.26E+03	8.12E+03	5.88E+03	7.26E+03	8.12E+03	5.88E+03
Weight on Guideway	-						
Lift/Guidance Magnets	kg/m	4.88E+01	3.54E+01	4.07E+01	4.88E+01	3.54E+01	4.07E+01
Linear Induction Motor	kg/m	3.17E+02	3.17E+02	2.78E+02	3.17E+02	3.17E+02	2.78E+02
Total	kg/m	3.66E+02	3.53E+02	3.19E+02	3.66E+02	3.53E+02	3.19E+02
Real Input Power Dissipation							
Ohmic Power Dissipation							
Lift/Guidance Magnets	w	7.44E+04	1.08E+05	6.07E+04	7.44E+04	1.08E+05	6.07E+04
Linear Induction Motor	w	6.00E+04	6.00E+04	5.62E+04	2.56E+04	2.56E+04	2.35E+04
Total Ohmic Power	w	1.34E+05	1.68E+05	1.17E+05	1.00E+05	1.34E+05	8.41E+04
Eddy current Power							
Lift/Guidance Magnets	w	1.40E+04	3.77E+03	1.17E+04	6.17E+03	1.66E+03	5.12E+03
Total eddy current Power	W	1.40E+04	3.77E+03	1.17E+04	6.17E+03	1.66E+03	5.12E+03
Total Real Power Dissipation	w	1.48E+05	1.72E+05	1.29E+05	1.06E+05	1.36E+05	8.92E+04
Reactive Input Power							
Linear Induction Motor	V-A	1.57E+06	1.57E+06	1.53E+06	4.68E+05	4.68E+05	4.57E+05
Total	V-A	1.57E+06	1.57E+06	1.53E+06	4.68E+05	4.68E+05	4.57E+05

Table 2-13.EMS II Summary; Design optimized for operation at 134 m/sCombined Lift and guidance magnets (staggered) and Linear Induction Motor

ElectroMagnetic Suspension II Optimized for operation at 134 m/s maximum speed (Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

¥		134	m/s Ontimi	zation	134 m/s	Ontimization	@ 89 m/s
DESCRIPTION	LINITS	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	
DESCRIPTION	ONITS	becoline			beseline		
		Daseline		inali yap	Dasenne (F/I)		O O D
			(3/4 0/1)	(0.0 0/1)	(0/1)	(3/4 0/1)	(0.0 0/1)
EMS II Summary							
<u>Weight on Vehicle</u>							
Lift/Guidance Magnets	kg	4.79E+03	5.60E+03	3.60E+03	4.79E+03	5.60E+03	3.60E+03
Linear Induction Motor	kg	3.71E+03	3.71E+03	2.89E+03	3.71E+03	3.71E+03	2.89E+03
Total	kg	8.50E+03	9.31E+03	6.49E+03	8.50E+03	9.31E+03	6.49E+03
Weight on Guideway						•	
Lift/Guidance Magnets	kg/m	4.89E+01	3.54E+01	4.07E+01	4.89E+01	3.54E+01	4.07E+01
Linear Induction Motor	kg/m	3.60E+02	3.60E+02	3.12E+02	3.60E+02	3.60E+02	3.12E+02
Total	kg/m	4.09E+02	3.95E+02	3.52E+02	4.09E+02	3.95E+02	3.52E+02
Real Input Power Dissipation							
Ohmic Power Dissipation		-		1			
Lift/Guidance Magnets	W	7.51E+04	1.08E+05	6.07E+04	7.51E+04	1.08E+05	6.07E+04
Linear Induction Motor	W	8.28E+04	8. <u>2</u> 8E+04	8.00E+04	3.40E+04	3.40E+04	3.08E+04
Total Ohmic Power	w	1.58E+05	1.91E+05	1.41E+05	1.09E+05	1.42E+05	9.14E+04
Eddy current Power							
Lift/Guidance Magnets	w	3.16E+04	8.55E+03	2.65E+04	1.40E+04	3.77E+03	1.17E+04
Total eddy current Power	w	3.16E+04	8.55E+03	2.65E+04	1.40E+04	3.77E+03	1.17E+04
Total Real Power Dissipation	w	1.90E+05	2.00E+05	1.67E+05	1.23E+05	1.46E+05	1.03E+05
Reactive Input Power							l
Linear Induction Motor	V-A	3.22E+06	3.22E+06	3.27E+06	9.47E+05	9.47E+05	9.32E+05
Total	V-A	3.22E+06	3.22E+06	3.27E+06	9.47E+05	9.47E+05	9.32E+05

enter C

Table 2-14.EMS III Summary; Design optimized for operation at 89 m/sSeparate guidance magnet, Combined lift magnet and LSM

ElectroMagnetic Suspension III Optimized for operation at 89 m/s maximum speed (Separate vertical suspension & synchronous motor, lateral suspension)

		89 n	n/s Optimiz	ation	89 m/s O	ptimization	@ 59 m/s
DESCRIPTION	UNITS	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
		baseline	slim pole	small gap	baseline	slim pole	small gap
•			(3/4 b/l)	(0.8 b/l)		(3/4 b/l)	(0.8 b/l)
EMS III Summary							
<u>Weiant on Vehicle</u>		_			_		
Lift Magnets/LSM	kg	5.67E+03	5.30E+03	3.40E+03	5.67E+03	5.30E+03	3.40E+03
Guidance Magnets	kg	1.55E+03	2.17E+03	1.23E+03	1.55E+03	2.17E+03	1.23E+03
Total	kg	7.22E+03	7.47E+03	4.64E+03	7.22E+03	7.47E+03	4.64E+03
Magnet Weight/Vehicle Weight	%	18.05%	18.67%	11.59%	18.05%	18.67%	11.59%
<u>Weignt on Guideway</u>						•	
Lift Magnets/LSM	kg/m	2.71E+02	2.71E+02	2.71E+02	2.71E+02	2.71E+02	2.71E+02
Guidance Magnets	kg/m	8.28E+01	5.36E+01	6.49E+01	8.28E+01	5.36E+01	6.49E+01
Total	kg/m	3.54E+02	3.25E+02	3.36E+02	3.54E+02	3.25E+02	3.36E+02
Vehicle Real Power				<i>,</i>			
Ohmic Power Dissipation				:			
Lift Magnets/LSM	W	5.13E+04	4.79E+04	2.95E+04	5.13E+04	4.79E+04	2.95E+04
Guidance Magnets	Ŵ	1.76E+04	2.87E+04	1.58E+04	1.76E+04	2.87E+04	1.58E+04
Total Ohmic Power	W	6.88E+04	7.65E+04	4.53E+04	6.88E+04	7.65E+04	4.53E+04
Eddy current Power Dissipation	n'						
Lift Magnets/LSM	W	1.11E+04	1.04E+04	6.41E+03	4.90E+03	4.57E+03	2.82E+03
Guidance Magnets -	W	7.34E+03	1.21E+03	4.72E+03	3.23E+03	5.31E+02	2.07E+03
Total eddy current Power	W	1.85E+04	1.16E+04	1.11E+04	8.12E+03	5.10E+03	4.89E+03
Total Vehicle Power Dissipation	W:	8.73E+04	8.81E+04	5.64E+04	7.70E+04	8.16E+04	5.02E+04
Electrical Power/Aero Drag Power	1%	5.73%	5.79%	3.71%	17.35%	18.40%	11.31%
Guideway Power		2					
Real Power Dissipation							
Guideway LSM Winding	kW/m	1.47E+00	1.47E+00	1.47E+00	1.47E+00	1.47E+00	1.47E+00
Total	kW/m	1.47E+00	1.47E+00	1.47E+00	1.47E+00	1.47E+00	1.47E+00
Reactive Input Power		<u>.</u>					
Linear Synchronous Motor	kVA/m	1.66E+01	1.66E+01	1.66E+01	1.11 <u>E+01</u>	1.11E+01	1.11E+01
Total	kVA/m	1.66E+01	1.66E+01	1.66E+01	1.11E+01	1.11E+01	1.11E+01

Table 2-15.EMS III Summary; Design optimized for operation at 134 m/sSeparate guidance magnet, Combined lift magnet and LSM

<u>i</u>

ElectroMagnetic Suspension III Optimized for operation at 134 m/s maximum speed (Separate vertical suspension & synchronous motor, lateral suspension)

		134	m/s Optimiz	ation	134 m/s C	ptimization	@ 89 m/s
DESCRIPTION	UNITS	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
		baseline	slim pole	small gap	baseline	slim pole	small gap
<i>'</i>		(b/l)	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
EMS III Summary		^					
<u>Weight on Vehicle</u>							
Lift Magnets/LSM	kg	5.30E+03	5.58E+03	3.78E+03	2.22E+03	2.22E+03	2.22E+03
Guidance Magnets	kg	1.93E+03	2.58E+03	1.54E+03	1.93E+03	2.58E+03	1.54E+03
Total		7.23E+03	8.16E+03	5.32E+03	4.15E+03	4.80E+03	3.76E+03
Magnet Weight/Vehicle Weight	t %	. 18.07%	20.40%	13.31%	10.38%	12.00%	9.41%
Weight on Guideway							
Lift Magnets/LSM	kg/mi	2.71E+02	2.27E+02	2.57E+02	2.71E+02	2.27E+02	2.57E+02
Guidance Magnets	kg/m	1.13E+02	7.17E+01	8.87E+01	1.13E+02	7.17E+01	8.87E+01
Total	kg/m .	3.84E+02	2.99E+02	3.46E+02	3.84E+02	2.99E+02	3.46E+02
Vehicle Real Power							
Ohmic Power Dissipation							
Lift Magnets/LSM	W	4.79E+0À	6.07E+04	3.28E+04	4.79E+04	6.07E+04	3.28E+04
Guidance Magnets	w	1.88E+04	3.13E+04	1.68E+04	1.88E+04	3.13E+04	1.68E+04
Total Ohmic Power	w	6.66E+04	9.20E+04	4.96E+04	6.66E+04	9.20E+04	4.96E+04
Eddy current Power							`
Lift Magnets/LSM	w	2.36E+04	1.96E+04	1.84E+04	1.04E+04	8.67E+03	8.10E+03
Guidance Magnets	w	3.31E+04	5. <u>49</u> E+03	2.16E+04	1.46E+04	2.42E+03	9.52E+03
Total eddy current Power	W	5.67E+04	2.51E+04	3.99E+04	2.50E+04	1.11E+04	1.76E+04
Total Real Power Dissipation	W	1.23E+05	1.17E+05	8.96E+04	9.16E+04	1.03E+05	6.72E+04
<u>Guideway Power</u>							
Real Power Dissipation							
Guideway LSM Winding	kW/m	1.47E+00	1.39E+00	1.44E+00	1.47E+00	1.39E+00	1.44E+00
Total	kW/m	1.47E+00	1.39E+00	1.44E+00	1.47E+00	1.39E+00	1.44E+00
Reactive Input Power				•			
Linear Synchronous Motor	kVA/m	2.50E+01	2.10E+01	2.42E+01	1.66E+01	1.40E+01	1.61E+01
Totai	kVA/m	2.50E+01	2.10E+01	2.42E+01	1.66E+01	1.40E+01	1.61E+01

د <u>111</u>

SECTION 3

ELECTRODYNAMIC SYSTEMS

3.0 General Description of the Electrodynamic Suspensions

This report considers three electrodynamic systems. These are image flux, hybrid null flux, and side wall null flux. Qualitative descriptions of these systems are in section 3.1.

Electrodynamic systems employ vehicle magnets that interact with conducting elements of a guideway. The electrodynamic vehicles considered in this report use superconducting magnets. While it is possible to consider permanent magnets or other vehicle magnets, superconducting vehicle magnets are the only choice. For magnets large enough for vehicle levitation and propulsion, superconducting magnets are much lighter than any alternative.

3.0.1 Image Flux

In an image flux system, superconducting vehicle magnets above a conducting sheet guideway provide lift when the vehicle is moving. Of the three electrodynamic systems, the image flux is the easiest to understand. If two permanent magnets come close to each other with the proper orientation, they push against each other. This is very close to what happens when an image flux vehicle is traveling at high speed. The conducting sheet guideway reflects an image of the vehicle magnets because at high speeds the vehicle magnet fields cannot diffuse through the conducting sheet of the stationary guideway. At high speeds the magnetic fields approach those that would result if an image of the vehicle were behind the guideway. (High speeds are those where the magnetic skin depth is less than the thickness of the guideway conducting sheet. For a two centimeter aluminum sheet and vehicle magnets with 1.5 meter pole pitch, speeds above 185 kilometer per hour are high speeds. For a one centimeter aluminum sheet, high speeds are above 738 kilometer per hour.) The high speed lift force can be calculated by finding the force from an image magnet.

Magnetic drag in an image flux system arises because the conducting sheet of the guideway carries electric currents while the vehicle is passing. The image fields are the result of these guideway currents. Magnetic drag on the vehicle must supply the energy dissipated in the guideway from resistive heating from these currents. If the resistive guideway suspension losses in any electrodynamic system are known, then magnetic drag is calculated as resistive losses divided by vehicle velocity. This is an energy balance. For an image flux system, a useful approximation for intermediate speeds is that the resistive losses are constant, independent of speed. This is reasonable since the current distribution needed to generate the image magnet field is roughly independent of speed, for some range of speed. (Intermediate speeds are below high speeds, as described above, and above the speed at which the guideway impedance is equally resistive and inductive. For a one centimeter thick guideway, and 1.5 meter pole pitch, this speed range is from 16 kilometer per hour to 738 kilometer per hour. For a two centimeter thick guideway this speed range is from 8 kilometer per hour to 185 kilometer per hour.) This implies that for these intermediate speeds, drag is inversely proportional to velocity. The intermediate speed range for which this is a good approximation is bounded at its upper limit by current distributions becoming non-uniform from near to far surface of the guideway sheet. When the magnetic skin depth becomes less than the guideway thickness, resistive losses increase with increasing speed. Magnetic drag continues to decrease with increasing speed, but not so quickly. The constant resistive loss approximation predicts unlimited drag as velocity approaches a stand-still. The drag does get very large at the bottom end of the intermediate speeds. But for speeds below the intermediate range, the image fields, resistive losses, lift, and drag decrease and approach zero as speed approaches zero.

Useful approximations for estimating the velocity dependence of forces in image flux systems have been published. Richards and Tinkham [38], which we used to develop our spreadsheets, is an example. Richard and Tinkham's approximations agree with other publications.

One complication of image flux force calculations for which we know of no easy solution involves forces from vehicle magnets near guideway edges. In any practical system, edge effects are important. This is certainly the case with the Magneplane configuration considered in this study.

One variation on the image flux system is to use guideway coils instead of a guideway sheet. The Japanese used this in their Miyazaki tests. The system is an image flux system because guideway coils reflect the vehicle fields that can not much penetrate the coils at normal operating speeds. The motivation for using coils instead of sheets is

that lower drag is possible. One limitation of the guideway sheet implementation is magnetic skin depth at high speeds. For sheet guideways at low speeds, when the guideway thickness is less than the magnetic skin depth, increasing guideway thickness reduces drag. This strategy is unproductive if the skin depth is less than the guideway thickness. With wound coil guideways, skin depth limitations do not apply if the coils are wound with suitable fine wire. So the inductance to resistance ratio of wound coil guideways can be substantially better than for sheet guideways.

3.0.2 Null Flux

Null flux systems use superconducting vehicle magnets, and the guideway has coils, not sheets. The following are the most striking differences between image flux systems and null flux systems.

- Magnetic drag is lower.
- Suspension forces are stiffer.
- Either the vehicle magnets or the guideway coils have a more complicated shape.
- Suspension forces can either pull or push. There is a vehicle position of zero force.

4

a.

The motivation for null flux is lower magnetic drag. The underlying principle that produces lower drag in both null flux and hybrid null flux systems, compared to image flux systems, is to produce lift using more powerful vehicle magnets with smaller guideway currents. Magnetic drag arises from guideway currents and associated resistive heating. Vehicle lift for any electrodynamic system depends in a complicated way on many parameters, but there is always a product of vehicle current and guideway current, or an equivalent. The essence of null flux systems is to use larger vehicle currents and smaller guideway currents. Vehicle currents are in superconductors and have essentially no resistive losses. They do not cause magnetic drag. Guideway currents with larger vehicle currents is appealing.

If vehicle currents in an image flux system increase, the vehicle rises higher above the guideway and drag is approximately unchanged. So it is not possible to decrease magnetic drag by increasing vehicle current. Null flux systems are different in this regard. If vehicle currents increase in a null flux system, the vehicle will move slightly closer to a zero force position. Normal operation is typically about two centimeters from this zero force position. When the vehicle is in the zero force position, no guideway currents flow, by symmetry. That is, the shape of the vehicle and guideway coils is such that at the zero force position, the mutual inductance between vehicle and guideway coils is zero. This zero force position is a vertical position for lift force, or a horizontal position for guidance force. At the zero force position, mutual inductance is zero for all positions in the forward motion direction. This means that either the guideway or vehicle coil has a double loop topology, with the two loops near each other and opposed. In the configuration analyzed for this study, the vehicle coil is a single loop while the guideway coil has two loops in a figure eight configuration. Both coils are vertical. The classic configuration described by Powell and Danby[44] has a horizontal vehicle coil and connected guideway coils above and below the vehicle. This double coil in either the guideway or vehicle is the more complicated shape referred to above. The double coil provides a vertical position where, by symmetry typically, mutual inductance is zero. It is this arrangement that allows much higher vehicle currents than would be useful for image flux systems.

Suspension forces depend on vertical position in the following way. Lift and drag are both zero at the zero force position. Lift increases nearly linearly with displacement from the zero force position. This means that there can be both up and down forces on the vehicle. The suspension supports the vehicle, and traps it. Drag forces vary approximately as the square of the displacement from zero. One implication of these force dependencies is that talking about a lift to drag ratio is dangerous. If the suspension was providing a roll torque in response to either a cross wind, turning force, or vehicle weight unbalance, drag would increase due not only to increased lift forces for some cases, but to the uneven forces among vehicle magnets. Another consequence of the linear dependence and square dependence of lift and drag forces, respectively, on displacement is that there is a drag reduction incentive to have vehicle lift magnets spread over as much of the vehicle as possible. Richard and Tinkham[38] discuss the linear and square dependence of lift and drag forces.

Both high vehicle currents and more vehicle magnets reduce magnetic drag. Both these design strategies increase vehicle weight. This is a practical reason why magnetic drag can not be made arbitrarily small.

Magnetic drag force has a dependence on vehicle speed that is similar to image null flux. The difference is that there should not be any skin depth limitation. The coils will be wound with insulated strands of wires, so the product of magnetic drag and velocity will remain constant for normal operating speeds.

Another consequence of freedom from magnetic diffusion effects it that benefits from adding guideway conductor material are possible at high speeds. With an image flux system, if the guideway suspension sheets are made thicker than the magnetic skin depth, drag is not reduced significantly. With null flux there is no skin depth limitation. Guideway suspension coils can be wound with more turns and drag will decrease. Magnetic coupling decreases limit this process. Thicker coils move guideway components away from the vehicle so that magnetic couplings between vehicle and guideway, measured by mutual inductances, fall. Another limit, of course, is guideway expense.

Null flux systems are easier to analyze than systems using sheet guideways. These latter systems are magnetic diffusion systems with three dimensional fields. Magnetic diffusion is not an important phenomenon in null flux systems, and the three dimensional fields of the other systems reduce to mutual inductances between coils that are easy to calculate.

3.0.3 Hybrid Null Flux

Hybrid null flux systems have characteristics that are similar to and different from the other two systems. The major points of comparison with image flux and straight null flux systems follow.

- Guideway suspension conductors are sheets like image flux, but thinner.
- Vehicle magnets have a double coil topology, like some null flux designs.
- Magnetic drag is typically less than image flux but greater than null flux.
- Suspension forces are stiff like null flux.
- Suspension forces push, pull, and have a zero force position like null flux.
- Each design has minimum drag at some velocity, unlike either image or null flux.

A simple hybrid null flux system, first described by Richards and Tinkham [38], is a vehicle with an upper and lower horizontal coil pair with opposing polarity. The currents in both coils are equal. The fields from this pair will have the pattern of an image flux system except both the upper and lower fields are present. In the plane half way between the upper and lower coil, magnetic fields are tangential. There are no vertical magnetic field components in this mid plane. The conducting guideway sheet is very close to this mid plane position.

The key to understanding the hybrid null flux concept is to recognize the absence of vertical field components in the mid plane, and to recognize some consequences of this condition.

If a very thin conducting sheet is in the mid plane, no currents will flow in the sheet as the vehicle passes, because of the absence of vertical magnetic fields. Choose any closed loop in the sheet. The passing vehicle causes no flux to pass through this loop, so no voltage is induced around it. No current flows.

The next feature of the fields to consider is that although there are no vertical fields, the fields tangential to the plane can be arbitrarily strong.

Now consider a thin guideway sheet displaced slightly from the center. In this position the guideway encounters vertical fields, and currents flow in the guideway. These guideway currents interact with the tangential fields to produce force that is in the direction to restore the guideway sheet to the center. Because the vehicle fields near the guideway can have very strong tangential components, the lift forces can be produced by strong vehicle currents and weak guideway currents compared to image flux systems. For this reason, hybrid null flux drag can be lower than image flux drag. This is the same result, coming from a similar mechanism, that makes the straight null flux system appealing.

To emphasize the connection between hybrid null flux and straight null flux, if coils in the plane of the sheet replace the sheet guideway of the hybrid null flux, lift is produced, and the system is a straight null flux system.

There are two drag components in a hybrid null flux system. Both arise from currents in the guideway sheet. The first component is due to currents that flow because the sheet is displaced from the mid plane. These currents produce lift. The second component is due to the thickness of the guideway sheet. The normal magnetic field is zero only in the mid plane. Since the guideway has thickness, it will see normal fields even when centered. These currents related to thickness do not produce lift.

The two components of guideway current present a conflict. If only the lift producing currents are considered, the guideway should be thick to decrease drag. If only the thickness currents are considered, the guideway should be thin. The best compromise between thick and thin is a function of vehicle speed. For any single guideway thickness, there will be a speed where drag is least. Figure 3.0 shows the

relationship between total magnetic drag, and overhead drag, at various speeds, with no side load. On this figure the thickness related drag is labeled "overhead drag." The curve shown in figure 3.0 is for the baseline design that is suited to low speed operation due to its thick guideway sheets.

For small displacements of the guideway relative to vehicle magnet centers, lift forces are proportional to displacement, and displacement drag forces are proportional to displacement squared. This is the same dependence shown by null flux suspensions. A major difference between null flux and hybrid null flux is that hybrid null flux has the thickness related, overhead drag, and null flux does not.

Modeling hybrid null flux forces is difficult. The paper by Richards and Tinkham [38] that introduced hybrid null flux has appealing approximate analytical expressions for lift and drag. They obtained these expressions by making some simplifying assumptions that appear to influence the results significantly. The major assumption is that the vehicle magnets are two dimensional. They are assumed to be very wide, so variations of the field from side to side are more gradual than variations in the direction of vehicle motion and in the vertical direction. The analytical result from this simplification says that making the vehicle magnets long in the direction of motion reduces drag. Both components of drag are improved by making the fields change slowly. If a system is designed following this guideline, the field variations that were assumed to be unimportant can become near dominant.

.T...

1365

Urankar and Miericke [41] published an exact solution to yet a different simplified configuration. The simplification in this case was to ignore guideway edges, as did Richards and Tinkham, but at least the two dimensional assumption of Richards and Tinkham could be checked. They also used more than the fundamental spatial component of magnetic fields, unlike Richards and Tinkham. The result was substantially higher drag than Richards and Tinkham predict. Urankar and Miericke's result is not suitable for spreadsheet evaluation. For the working spreadsheet the analytical expressions of Richards and Tinkham were modified to approximately account for the third dimension, and the result was then in acceptable agreement with Urankar and Miericke.

3.1 Descriptions of the Electrodynamic Configurations

This report has calculated parameters for specific configurations. The choice of a particular configuration allows some degree of accuracy and realism that can not be obtained when considering general concepts, but these choices precluded other

possibilities. Our results are valid for the particular configurations chosen. Within a configuration a parameter such as guideway sheet thickness can be varied to "optimize" the design. But different approaches to self shielding vehicle magnets, for example, can not be explored with a single configuration.

3.1.1 Image Flux

The image flux configuration analyzed here is Magneplane, but Magneplane is a developing system. The configuration used here is based on information available in the fall of 1991 when Henry Kolm gave a presentation at Professor Thornton's maglev seminars. Since then, the Magneplane System Concept Definition team has made changes, based on presentations at the second National Maglev Initiative conference at Argonne National Laboratory, April 1992. Abstracts are available from NMI.

Figures 3.1a, b, and c show the configuration analyzed.

One feature that this configuration shares with every Magneplane configuration known is stronger magnets in the center of the vehicle. The motivation for these magnets is to make coupling between the vehicle and motor efficient. The configuration shown here has four times more magnet current in the central sections than in the outer sections used for levitation and guidance. Any image flux system will face a similar need. Image flux vehicle magnets sized for levitation will be weaker than appropriate for the field of a linear synchronous motor. The need for stronger motor magnets is not necessarily a problem with image flux systems. The stronger magnets are easily provided. The linear motor described here for Magneplane is good. One cost that is not apparent is that the space occupied by the motor is not available for levitation. Another cost that deserves special attention is the effect of the linear synchronous motor on vehicle roll dynamics. A discussion of this follows.

The stronger magnets in the center of the vehicle interact with the guideway sheets to the side. This is a problem. Strong magnets must be in the center for the reasons above. Much space can not separate the two, because the motor should be wide, for good efficiency, and the levitation sheets need to be beneath the vehicle. The interaction pushes the stronger magnets to the center of the gap between the two levitation sheets, to the center of the motor. This to some extent prevents Magneplane from self-banking in turns. The roll stiffness produced by the interaction of the motor magnets and the levitation sheets limits roll motion of the vehicle. Stability from keel magnets is not needed for a self banking vehicle. Keel magnets degrade self banking.

The Magneplane configuration shown here limits passenger exposure to magnetic fields by separating passengers from high field regions. Figure 3.4 shows passenger

Ar .

13

(a) Cross section

(b) Top view of a magnet cluster

Figure 3-1. Circular arc cross section guideway with image force levitation. (Cont.)

compartment magnetic fields for all electrodynamic configurations. The second image flux field strength curve, described in the figure as "modified," achieves a noticeable improvement by simply making the first and second rows of magnets weaker while making the middle row stronger. Making the middle row carry twice the current of the first and third rows reduces the total dipole moment of the magnets to zero. The overall magnet strength was adjusted to provide similar motor and levitation behavior. The magnets can be modified to provide more self shielding. Judging from what was revealed at the Argonne meeting, the Magneplane team has pursued this.

One compelling characteristic of the Magneplane concept is simplicity. As shown here, and as Magneplane has been described traditionally, the vehicle is uncomplicated by secondary suspension. This is possible because the natural frequency of the primary suspension is approximately one hertz. The magnetic suspension is soft. But the suspension is not as simple as first appearances suggest. Not shown are aerodynamic control surfaces needed to achieve roll and pitch damping. The linear motor can provide heave damping. The first cut comparisons ignored aerodynamic differences among the systems. Section 3.2 discusses these differences.

Another complication is a landing gear. Vehicle weight estimates include landing gear. This estimate and other structural weight estimates were made using aircraft experience. Landing gear weight either increases vehicle weight or reduces payload.

A third complication is a restriction on tight, low speed turns. If the vehicles must pass through turns tighter than about 1 kilometer radius, the vehicles must be articulated or made shorter, or the system shown must be otherwise modified. For this study the vehicles were assumed to be unarticulated.

3.1.2 Null Flux

The configuration selected for the null flux system is based on the Japanese design. The Japanese used a single vehicle with two remarkably different guideways. The vehicle, MLU002, was used mostly with wound coil image flux guideway. It was also briefly used with a side wall null flux guideway. This is the configuration analyzed here.

Dimensions used in this analysis are from published descriptions of the Japanese system when available. Dimensions of the guideway levitation and guidance coils and motor windings are largely improvised.

The levitation coils analyzed here consist of an array of two interconnected loops of wire. The loops are vertical, one above the other on the side walls of the guideway. Each loop has many turns to achieve the desired winding cross section while avoiding

BOGIES AT EACH END

(a) Cross section and side view.

INTERCONNECTED GUIDEWAY LEVITATION COILS

INTERCONNECTED GUIDEWAY LATERAL FORCE WINDINGS

(b) Magnetic

magnetic skin depth effects. The results shown in table H-1 were obtained with levitation coil winding cross section diameters of 5.6 centimeter. The two loops are connected with two strands of the winding wire. The polarity of connection is such that if current flows, it flows in a figure eight pattern. The vehicle magnets are also vertical, on each side of the vehicle, facing the levitation coils. Normal operating position is for the vehicle magnets to be about two centimeters below the mid plane of the guideway levitation magnets. The vehicle and guideway coils are shown in figure 3.2.

The guideway guidance coils also consist of an array of interconnected pairs. Each pair consists of two thick loops wound with thinner wire. The interconnected guidance winding loop pairs are on either side of the guideway. The two interconnecting strands go below the vehicle. The polarity of interconnection is such that if the vehicle is centered from side to side in the guideway, the mutual inductances of the guidance coils and the vehicle magnets on the two sides cancel.

The linear synchronous motor windings are positioned between the levitation coils, which are closest to the vehicle, and the guidance windings. These coils are in each other's way due to their thickness. The levitation coil is 5.6 centimeters thick. The propulsion winding is 3 centimeters thick. Two gaps for insulation, each one centimeter thick, separate the three winding layers. These layers push the guidance windings back 10.6 centimeters and the magnetic coupling to the vehicle is significantly worse back that far. This configuration has space competition among levitation, guidance, and propulsion functions as does Magneplane.

One requirement for this configuration's safety is that superconducting coil pairs on two sides of the vehicle be linked so that if one quenches, the other goes down as well. If this is not done, then loss of one coil would result in a powerful side force.

Redundant vehicle magnets are desirable. The goal is to be able to continue operating a vehicle that loses a single magnet pair due to a quench until the vehicle reaches a station. The Japanese configuration with a pair of coils per side on each end of a vehicle is perhaps able to continue after a quench. This question was not pursued. If vehicle coils with the dimensions proposed by the Japanese are replaced by twice as many magnets half as long, then coil redundancy is almost certainly achieved.

Motor efficiency is another reason for changing the vehicle magnets as described above. The Japanese choice of pole pitch is too long for good motor efficiency for the single vehicles considered in this report. When used in trains with multiple cars, the Japanese pole pitch produces efficient motors.

3.1.3 Hybrid Null Flux

The hybrid null flux configuration is shown in figure 3.3, which shows the baseline values of the principal parameters. The vehicle travels above a box beam guideway. The vehicle has superconducting magnets of a complicated shape. The hybrid null flux suspension requires a double coil magnet as described in section 3.0.3. This is formed by the inner four conductors shown in the cross section portion of figure 3.3. In addition, there are four outer superconducting loops per magnet unit. The purpose of these is to reduce magnetic fields in the passenger compartment by providing some self-shielding. The linear synchronous motor also uses these outer loops.

The self-shielding vehicle magnets considered in this study are much less effective than initial calculations indicated. Superconducting vehicle magnets can be self-shielding, up to a point. One self shielding magnet design considered for the Bechtel system produced fields in the passenger compartment no higher than 16 gauss, which is a substantial reduction in field compared with configurations that ignore passenger field reduction. The self shielding idea tried in the hybrid null flux configuration was based on two dimensional arguments. The position and magnitude of the currents shown in Figure 3.3 form a symmetrical arrangement that causes remarkably rapid drop off in magnetic field at distances that are larger than two meters from the magnet if only the longitudinal conductor segments are considered. When fields from end turns are included, as they must be, then fields are about 110 gauss at the passengers' feet instead of one sixth that without end turns.

To be self shielding, a magnet's dimensions should be small. This is a conflict for the present configuration. The dimensions from side to side should be large for other reasons. Width is needed to resist torques from side forces.

3.2 Aerodynamic Differences among Systems

The main results' tables are based on the assumption that each vehicle has a cross section three meters wide by four meters high. While this was a fast starting point and was in the spirit of evaluating technologies with even assumptions, some information is being lost. In particular, different technologies produce vehicles with different shapes. A box beam guideway uses taller vehicles than Magneplane.

The two charts below, figures 3.5 and 3.6, show aerodynamic, suspension, and motor losses for four systems, with and without aerodynamic corrections. The first four stacks in each chart use the three by four meter cross section assumption. The last four stacks estimate vehicle cross section and coefficient of aerodynamic drag based on

(b) Magnet unit and side view.

Figure 3-3. Small beam guideway with null flux.

Figure 3-4. Passenger compartment B fields.

known parameters. The vertical scale has units of megawatts. Losses at 134 meters per second assume a .26 g side load. Losses at 89 meters per second assume a .18 g side load.

A number of basic design decisions affect aerodynamic characteristics. Channel guideways have higher drag. Aerodynamic control surfaces have drag. Secondary suspensions with irregular surfaces between bogies and passenger compartment will increase drag. Designs that have passengers above superconducting vehicle magnets will

Figure 3.5. The importance of aerodynamic drag at 134 m/s

Figure 3.6. Aerodynamic drag is less important at 89 m/s

have higher vehicles and more aerodynamic drag from larger vehicle front area. Designs which separate passengers from magnetic components will have higher aerodynamic drag from increased vehicle length.

Since aerodynamic drag is the most important loss mechanism, small percentage differences in drag may be significant.

3.3 Superconducting Magnets and the Electrodynamic Systems

Superconducting magnets are necessary for any practical electrodynamic system. There is very little experience using them for vehicle suspension. There is concern that these magnets will be heavier than might be expected from projections based on static superconducting magnet applications, such as medical imaging systems.

Professor Joseph Smith of MIT's Mechanical Engineering Department, who has used superconducting magnets in rotating electrical machinery, has described these problems. Losses in the magnets are much higher in such an application than static thermal calculations predicted. The chief difficulty is that ac fields must be kept from the superconductors. This is done with normal metal shields which will probably be at cryogenic temperatures, but not superconducting temperatures. These shields need to be held very rigidly relative to the superconductor. Motion between shield and magnet will expose the magnet to ac fields, even though the original field, which may have caused the motion between shield and magnet, can not penetrate the shield. Lack of experience with such shields and supporting structures makes magnet calculations uncertain.

Another area of uncertainty is the weight of refrigeration equipment. Both the refrigeration load and refrigeration strategy are unknown. One design approach is to have on-board refrigeration. Another strategy is to have liquid helium supplied to the vehicle at stops, and to store warmed helium that is recycled through refrigeration equipment at stations.

Another uncertainty is the appropriate level of design margin for the magnets. A conservative design increases weight while decreasing the probability of magnet quench.

This study recognizes the importance and uncertainty of the superconducting magnet systems. No attempt was made to solve the above problems. To calculate cryosystem weight, the superconducting wire weight was calculated using the guidelines provided by the MIT Plasma Fusion Center as part of their current National Maglev Initiative work. These guidelines are understood to be conservative. Then the uncertainty was summarized in a "technology factor," T, the ratio of total cryogenic system weight to superconductor weight. A value of 5 was used for the technology

factor in all calculations shown in this report. One estimate was T could be as low as three. Possibly the cryosystem weights could be twice as much as shown.

3.4 Side Wall Null Flux Trade-Offs

Motor Voltage (kV/phase)

Motor Reactive Power (MVA)

Magnet Weight (Mg)

Table H-1 is a summary of eight side wall null flux designs. Seven of the designs show the effects of a limited change away from the design designated as "baseline." Boxes around numbers indicate design parameters that differ from baseline, and the more interesting consequences of these changes. Table H-1 has two parts. The first evaluates the eight designs at 134 meters per second; the second evaluates the designs at 89 meters per second.

3.4.1 Japanese Magnet Dimensions, Single Vehicle (J-single)

The published dimensions of the Japanese MLU002 were followed when available. This design was expected to be the baseline, but when the motor losses were calculated, the problem with this design was apparent. A new design with pole pitch half the Japanese pole pitch became the baseline.

¢

19.5

1.8

6.9

12

The analysis assumes there are two magnets per bogie on each side, and the next closest bogie is far enough away that the guideway coils interact with only one bogie at a time. The guideway currents are assumed to die to zero between bogie encounters. This was a good assumption for the Japanese magnets, but when the magnet pole pitch was halved, twice as many magnets were needed. The effect of closer magnets is to improve the efficiency of the levitation system. Thus, the calculations for the baseline estimate lift low and drag high. Due to this, performance is better than calculations indicate.

	Baseline	Japan, Single Vehicle
Pole Pitch (m)	1.35	2.7
Number of Bogies	4	2
Motor Constant (V/m/s)	30.2	13.4
Motor Losses (MW)	0.56	2.2
Motor Current (kA)	0.48	1.1

4.1

8.7

5.3

The major differences between baseline and a Japanese single vehicle are summarized in the chart below, for 134 meters per second.

The main difference is the motor, and the motor constant tells the whole story. The other motor parameters follow from the motor constant change.

This example can be used to discuss some concepts of linear synchronous motors. Linear synchronous propulsion motors require a strong magnetic field on the vehicle. The single vehicle electrodynamic designs considered in this report would all have better linear synchronous motors if the strengths of the vehicle magnets increased. Lower motor current is a desirable tradeoff for all vehicles considered except when insulation breakdown is approached.

The reason motor constant improves with shorter (by a factor of two) pole pitch is that the number of poles doubles, the number of active motor winding segments doubles, and the force per ampere and motor constant approximately doubles as well. This reduces current squared losses by about a factor of four.

One noticeable cost of the baseline magnet configuration is higher magnet weight. Another difference in the magnets that is not apparent at first is the baseline magnets have much shorter spacing between magnets in the direction of vehicle motion. This means the baseline has much stronger force between magnets. Presumably these magnets are in separate cryostats for redundancy, so that a quench will not cause the vehicle to crash. This means the magnetic forces between adjacent magnets must be carried to ambient temperature. The inner magnets in a bogie must be able to take this force even though it is balanced in normal operation. The force between adjacent magnets is approximately 210,000 newtons, which is 8.4 times the working force of supporting the vehicle. The Japanese magnet design has only 28,000 newtons between coils, which is .58 times the working force. This structure would be a source of heat leak and possibly added weight. The strength required to withstand this magnetic force may be less than the strength required for magnetic shielding as described in section 3.3.

3.4.2 Side Wall Null Flux Japanese Magnet Dimensions, 10 Car Train

As mentioned earlier, Japanese magnet dimensions are inappropriate for a single vehicle, but they work well for a train of vehicles. The reason is that the motor for a train has many additional field poles, and the current for a train is actually less than for a single vehicle, with everything possible held constant. A given guideway motor current produces a force per magnet coil. For a train the magnet coils are multiplied by the number of cars. The motor losses remain constant while the motor output goes as the number of cars. The most important parameters are summarized below for 134 meters per second.

	Baseline	Japan, 10 Car Train
Number of Bogies	4	20
Vehicle Weight (Mgram)	40	400
Pole Pitch (meters)	1.35	2.7
Coefficient of Aero Drag	0.3	1
Aero Drag Power (MW)	5.4	18
Motor Constant (volt/m/s)	30.2	134
Motor Losses (MW)	0.56	0.32
Motor Current (A)	490	410
Motor Voltage (kV back EMF)	4.1	17.9
Passengers	≈100	≈1000

The aerodynamic drag coefficient for the ten car train is a guess. This is an important number, but not the focus of this report.

The effect of greatest interest here is that the motor losses per passenger drop dramatically. With these reduced losses come higher motor voltages. The ten car train design shown here could be pushing insulation limits, and if so, the guideway could be wound with fewer turns of thicker wire to reduce motor voltages while keeping motor losses constant.

1,129

air.

3.4.3 Side Wall Null Flux Baseline with Improved Estimate of Aerodynamic Drag

As part of the uniform assumptions, all vehicles were assumed to have equal vehicle sizes and shapes, and hence equal aerodynamic drag. The actual vehicles as developed for the calculations have different cross sections. As discussed in section 3.2, the side wall null flux and image flux vehicles developed here have lower cross sections than the box beam guideway. Future experience may indicate whether this is an inherent characteristic of box beam guideways, or just a consequence of the design decisions made for this report. At any rate, the effect of using calculated vehicle cross section is shown in the "BL-aero" column in the side wall null flux summary. The most important parameters are shown below, calculated for 134 meters per second.

	Baseline	Baseline-aero
Frontal Area (m ²)	12.2	8.2
Aero Drag Power (MW)	5.4	3.6
Motor Current (A)	490	340
Motor Losses (MW)	0.56	• 0.27

Motor losses drop simply because less current is needed to propel the smaller vehicle.

The aerodynamic drag is by far the most important loss mechanism. Section 3.2 discusses this.

3.4.4 Side Wall Null Flux Five Centimeter Mechanical Clearance

The side wall null flux configuration is surprisingly sensitive to the mechanical clearance allowed between the vehicle and guideway. The baseline has eight centimeters of clearance. The effect of changing this to five centimeters is shown in table H-1 in the column with "5cm clear" at the top. The most important parameter changes are shown below. Parameters shown are for 134 meters per second.

	Baseline	Five Centimeter Clearance
Mechanical Clearance (cm)	. 8	5
Vehicle Vertical Position (cm)	2.7	1.8
Motor Constant (V/m/s)	30.2	34
Motor Losses (MW)	0.56	0.42
Lift Losses (MW)	0.43	0.28
Lift/Drag (no guidance forces)	123	186

The explanation for the improvement is understandable. By reducing the mechanical clearance, the superconducting vehicle magnets are three centimeters closer to the guideway. The difference can be thought of as stronger fields at the guideway or better magnetic coupling between vehicle and guideway. Either way, both null flux levitation and synchronous motor propulsion do better with the smaller gap.

These results do not apply to other systems. Any linear synchronous motor will be better with closer spacing between field and armature. But neither the hybrid null flux nor the image flux suspensions improve with smaller mechanical clearance. The electromagnetic systems depend strongly on small clearance. Because the air gap field comes from normal metal conductors, the magnetic design is completely different and mechanical clearances need to be an order of magnitude smaller than electrodynamic systems.

The reduction in vehicle vertical position is a measure of primary suspension stiffness. Since the levitation force is nearly linear with vertical position, the natural frequency is, to a good approximation, the square root of gravity over vertical position. The primary natural frequency changes from 3 Hz for baseline to 3.7 Hz for the design with 5 centimeter clearance. Notice how lower suspension losses are associated with higher suspension natural frequencies. This is typically, but not always, the relationship between stiffness and efficiency for electrodynamic systems.

3.4.5 Side Wall Null Flux Magnet Current Reduced to 600 k Amps

Reducing the superconductor magnet current makes everything worse except magnet weight. The increase in motor and levitation losses is caused by exactly the same phenomena that made these losses smaller in the reduced clearance case above. The results are shown in the "600 kA" column of table H-1, and summarized below. Parameters are calculated at 134 meters per second.

	Baseline	600 kA Magnet Current
Magnet Current (kA)	800	600
Weight of Cryogenics (Mgram)	8.7	6.5
Motor Constant (V/m/s)	30.2	23.1
Motor Losses (MW)	0.56	1.08
Lift Losses (MW)	0.43	0.74
Lift/Drag (no guidance forces)	123	71
Vehicle Vertical Position (cm)	2.7	4.6

- P.

The 2.2 megagram saving in magnet weight is again based on a technology factor of 5 (section 3.3.) A 2.2 megagram weight reduction would allow perhaps 15 more passengers per 40 megagram vehicle. These numbers suggest that energy consumption per passenger seat would decrease about 2% with the lower magnet current. (Aerodynamic losses that dominate are constant and seats increase.) The uncertainty in the technology factor make this too close to call.

3.4.6 Side Wall Null Flux Reduced Guideway Levitation Conductor

The seventh column in table H-1, with "Rlc<BL" at the top, shows the effect of reducing the amount of aluminum in the guideway levitation conductors. As expected, levitation losses increase. The following table for 134 meters per second summarizes the results.

	Baseline	Reduced Levitation Aluminum
Levitation Coil Radius (cm)	2.8	2.4
Lift Losses (MW)	0.43	0.56
Lift to Drag Ratio	123	94
G'way Lev Aluminum (kg/m)	50	37
Vehicle Vertical Position (cm)	2.7	2.8

One curious feature of this example is that the vehicle vertical position did not greatly change while levitation losses increased significantly. In the previous two examples, this parameter was closely tied to levitation losses.

Analysis shows a slight improvement in the motor constant due to the motor windings moving closer to the vehicle due to decreased levitation coil diameter. However, motor losses increased due to lift losses requiring higher motor current.

3.4.7 Side Wall Null Flux Reduced Guideway Motor Aluminum

The last column in table H-1 shows that if guideway motor winding aluminum is reduced, motor losses increase. The table below summarizes the results for 134 meters per second.

	Baseline	Reduced Motor Aluminum
Motor Conductor Radius (cm)	1.5	1.3
G'way Motor Aluminum (kg/m)	115	86
Motor Resistance (mΩ/m)	0.8	1.06
Motor Losses (MW)	0.56	0.72

These last two cases illustrate that although any parameter can be improved, the cost of that improvement is probably a worsening of something else.

3.4.8 Baseline at 134 Meters per Second and at 89 Meters per Second

The second half of table H-1 evaluates the eight designs discussed above at 89 meters per second. Aerodynamic loss is much less important. Magnetic drag is higher at 89 meters per second for the side wall null flux designs and lift losses are also higher at the lower speed for all the side wall null flux designs considered. Magnetic losses associated with side loads are higher at 134 meters per second for the baseline because we assume higher side loads for the higher speed. For any linear synchronous motor, motor constant is not a function of speed. The table below summarizes baseline parameters.

	Baseline at 134 m/s	Baseline at 89 m/s
Aerodynamic Drag Loss (MW)	5.4	1.6
Magnetic Drag (kN)	3.6	5.4
Lift/Levitation Drag	123	78
Magnetic Losses (MW/vehicle)	0.49	0.48
Motor Losses (MW/km block)	0.56	0.15

3.5 Hybrid Null Flux Trade-Offs

Table H-2 shows twelve variations of the hybrid null flux configuration. The first column of numbers is a baseline, and most other columns differ from this design in only one respect. The parameters that differ from baseline, and the major effects of these differences, are in boxes.

3.5.1 Hybrid Null Flux Baseline at 134 Meters per Second with Side Load

The cryosystem is 35% of the vehicle weight, based on a technology factor of 5 (section 3.3.) This hybrid null flux configuration's cryosystem is especially heavy.

Magnetic losses are higher than side wall null flux losses, but lower than image flux losses. Baseline design has 1.8 MW magnetic losses at 134 meters per second with 0.26 g side load. The magnetic losses are mostly the result of two design characteristics. First, this system has continuous sheets instead of wound coils in the guideway. Second, the narrow box beam guideway balances torque from the side load with high forces. This lack of efficiency of the hybrid null flux design was not apparent before work began.

This configuration is notably inefficient when presented with a cross wind or other side load. The effects from side loads have two components that need explanation. Lateral drag is the drag that results from supporting the side force. This would be the only loss if the force acted at just the correct height low down on the vehicle so no torques were required from the levitation suspension elements. Wind and cornering forces are applied much higher than the lateral force center, so torques are involved. In fact, losses from lateral torque are substantially higher than the lateral force losses. This is characteristic of box beam configurations, which have suspension forces well toward the bottom of the vehicle, and a narrow track from which to balance torques.

ŝ

The guidance guideway conductor crowds the motor of this design away from the best vehicle magnetic fields. Placing the guidance conductor above the levitation sheet would improve this. So placing the guidance conductor would also decrease losses from side load torques.

3.5.2 Hybrid Null Flux Baseline Operating Without Side Load

The next column in table H-2, labeled "134, no T" shows the effects of removing the side load from the baseline design. This is not a design option, of course, but clarifies where the baseline magnetic losses originate. The table below summarizes the differences between operating with and without side load.

	Baseline @ 134 m/s, side load	Baseline, no side load
Lateral force (g's)	0.26	0
Lateral drag loss (MW)	0.02	0
Lateral torque loss (MW)	0.8	0
Total magnetic losses	1.76	0.95
Motor winding losses	0.76	0.6

The above table does not explicitly show an overhead loss associated with the hybrid null flux configuration. Because of the sheet guideway conductors, there is magnetic drag if no levitation or guidance force is supplied by the system. So in the absence of side forces, there is still drag associated with the guidance conductor. This drag is included, arbitrarily, in lift losses. Sections 3.0.3 and 3.5.7 discuss this overhead drag.

3.5.3 Hybrid Null Flux Baseline at 89 Meters per Second with Side Load

The table H-2 column labeled "89 m/s" describes this case. The table below summarizes the major effects.

	Baseline at 134 m/s	Baseline at 89 m/s
Velocity (m/s)	134	89
Lateral force (g's)	0.26	0.18
Wind drag loss (MW)	5.4	1.58
Motor voltage (kV back EMF)	2.6	1.7
Total magnetic losses (MW)	1.76	0.88
Motor winding losses (MW)	0.76	0.2

Losses go down dramatically as velocity decreases. Besides the obvious wind drag losses, there are two additional reasons for this improvement. One is that the lateral force is lower, for a given cross wind, at lower speeds. The second factor is that the "overhead" magnetic drag for the baseline design decreases noticeably with speed.

Notice that motor open circuit voltage (back EMF) is lower at the lower speed. All synchronous electric motors, rotary or linear, have open circuit voltage proportional to relative air gap velocity.

3.5.4 Hybrid Null Flux Baseline operating without side load at 89 m/s

The column labeled "89, no T." in table H-2 describes this case. The table below shows the most interesting numbers.

	Baseline @ 89 m/s, side load	Baseline, 89 m/s, no side load
Lateral force (g's)	0.18	0
Lateral drag loss (MW)	0.01	0
Lateral torque loss (MW)	0.39	0
Total magnetic losses	0.88	0.48
Motor winding losses	0.2	0.14

Again, as at 134 meters per second, the major loss associated with side loads arises from the need to apply restoring torques with the levitation portions of the suspension.

Motor losses are higher with side forces due to the additional motor output required to overcome magnetic losses.

3.5.5 Hybrid Null Flux Baseline with Aerodynamic Corrections

The table H-2 column labeled "134 Aero" describes the effects of estimating the vehicle frontal area and using this to compute drag forces. The best estimate of vehicle frontal area, based on the known details of the design, is slightly greater than the standard assumption of 12.2 square meters. Section 3.2 discusses the 12.2 square meter assumption. The table below summarizes the differences between baseline and best estimate aerodynamic effects.

	Baseline, 134 m/s, no side load	Aero, 134 m/s, no side load
Vehicle frontal area (m ²)	12.2	12.7
Wind drag loss (MW)	5.4	5.64
Motor winding loss (MW)	0.6	0.64

3.5.6 Hybrid Null Flux Mechanical Clearance Reduced to 5 Centimeters

The column labeled "5 cm clear" shows the effects of reducing mechanical clearance between vehicle and guideway from 8 centimeters to 5 centimeters. The table below summarizes the effects.

	Baseline @ 134 m/s	Reduced clearance @ 134 m/s
Mechanical clearance (cm)	8	5
Motor voltage (kV back EMF))	2.6	2.9
Motor winding loss (MW)	0.76	0.59
Total magnetic losses (MW)	1.76	1.76

Compared with the side wall null flux configuration, the most surprising feature of this variation is that magnetic losses are unaffected by the reduced mechanical clearance. The difference is that the hybrid null flux operates mechanically centered with a small offset. Reduced mechanical clearances do not allow any improvement in the preferred operating position.

The motor does benefit from closer spacing between guideway motor windings and vehicle magnets.

	Baseline @ 134 m/s	Reduced magnet current
Main conductor current (kA)	800	600
Cryosystem weight (kg)	14,000	10,500
Motor voltage (kV)	2.6	2.1
Lift loss (MW)	0.95	0.68
Loss from lateral drag (MW)	0.02	0.03
Loss from lateral torque (MW)	0.8	1.41
Total magnetic losses (MW)	1.76	2.12
Motor winding losses (MW)	0.76	1.22
Primary natural freq. (Hz)	4.1	3.1

3.5.7 Hybrid Null Flux Reduced Vehicle Magnet Current

The column labeled "600 kA" shows the effect of reducing the vehicle superconducting current from 800 kA to 600 kA. The table below summarizes the result.

The reduction in cryosystem weight and motor voltage is predictable. Of more interest is the effect on magnetic loss. Some categories of magnetic loss increase, others decrease. The reason is there are two components of magnetic loss. One is the overhead component that exists independent of whether useful force is being supplied by the suspension. At a constant speed and fixed magnet current, the overhead loss is constant, independent of vehicle position or vehicle suspension force. The "lift loss" row of table H-2 and the table above includes the entire overhead loss. The other component increases with useful applied force, approximately proportionally with the square of the useful force. As a function of magnet current, overhead loss decreases and the proportional term increases with decreasing vehicle magnet current.

If the system only operated at a single velocity and side load, then the magnet current could be optimized to minimize some combination of loss and vehicle weight. But the vehicle must operate over a range of states. The side load from wind is hard to control. The change from 800 to 600 kA looks attractive for magnetic losses if operating without side loads, but side loads favor the higher current. In addition, motor efficiency suffers from lower magnet currents. The lighter vehicle could carry about 30 additional passengers.

3.5.8 Hybrid Null Flux Thinner Guideway Conductor, at 134 Meters per Second

The table H-2 column labeled "d=.004" shows the effects of making the thickness of the conducting sheets in the guideway thinner by one third. The following table summarizes the effects. Overall, the results are similar to the last example. The overhead magnetic losses go down but the losses proportional to useful force squared go up.

	Baseline @ 134 m/s	Reduce g'way sheets @ 134 m/s	
Guideway sheet thickness (mm)	6	4	
Guideway sheet mass (kg/m)	39	26	· ·
Magnetic lift/drag, no lateral force	56	124].
Lift loss (MW)	0.95	0.42	
Loss from lateral drag (MW)	0.02	0.02	
Loss from lateral torque (MW)	0.8	1.21	7
Total magnetic loss (MW)	1.76	1.65	
Motor winding loss (MW)	0.76	0.74	1.*

The thinner guideway sheets are a better design at this speed. Absence of side forces enhances this advantage. The overhead drag goes down sharply, which accounts for the greatly improved lift to drag ratio for no lateral force. The loss associated with lateral force goes up because no overhead drag loss is included in this item.

3.5.9 Hybrid Null Flux Thinner Guideway Conductor at 89 Meters per Second

This case is the same as above except vehicle speed is 89 meters per second. It is in the table H-2 column labeled "4mm, 89m/s." The table below summarizes results.

The thinner guideway sheet is more attractive at 134 meters per second than at 89 meters per second. At the lower speed the loss difference between the two guideway sheet thicknesses is small. This is because at lower speeds the overhead loss term becomes less important and the loss proportional to useful suspension force squared is more important.
	Baseline @ 89 m/s	Reduced Guideway sheets @ 89 m/s	
G'way sheet thickness (mm)	6	4	
Guideway sheet mass (kg/m)	39	26	
Magnetic lift/drag, no lateral force	72	121	
Lift loss (MW)	0.48	0.29	
Loss from lateral drag (MW)	0.01	0.01	
Loss from lateral torque (MW)	0,39	0.58	
Total magnetic loss (MW)	0.88	0.88	
Motor winding loss (MW)	0.2	0.2	

3.5.10 Hybrid Null Flux Reduced Pole Pitch, 134 Meters per Second

The table H-2 column labeled "P=1m" shows the effect of reducing the pole pitch to 1 meter. The overall effect is to reduce vehicle weight, but to increase losses. The table below shows the most interesting results.

	Baseline @ 134 m/s	Reduced pole pitch @ 134
Pole pitch (m)	2	1
Cryosystem weight (kg)	14,000	9,200
Motor open circuit voltage (kV)	2.6	2.4
Motor winding resistance (Ω)	0.29	0.37
G'way motor mass (kg/m)	46	58
Magnetic lift/drag, no side force	56	28
Lift loss (MW)	0.95	1.9
Loss from lateral drag (MW)	0.02	0
Loss from lateral torque (MW)	0.8	0.22
Total magnetic loss (MW)	1.76	2.12
Motor winding loss (MW)	0.76	1.2

The loss effects are similar to those produced by increasing vehicle magnet currents. The overhead loss increased while the term proportional to useful force squared decreased. With this combination of changes comes greater stiffness and a higher natural frequency. Ignoring overhead loss, the suspension efficiency improved, and this improvement is associated with higher stiffness. Notice that this trade substantially reduced the vehicle magnet weight. The results are complementary to reduced guideway sheet thickness. This suggests the next design.

3.5.11 Hybrid Null Flux Reduced Pole Pitch and Reduced

Guideway Sheet Thickness, at 134 Meters per Second

The table H-2 column labeled "P&d<BL" shows the results of reducing the pole pitch to 1 meter and the guideway sheets to 4 mm. The table below shows the most interesting numbers.

The combination of reduced pole pitch and reduced guideway sheet thickness has reduced losses and reduced vehicle magnet weight compared with the baseline. Reactive power supplied by the motor is worse.

	Baseline @134 m/s	Reduced P and d
Pole Pitch (m)	2	1
Guideway sheet thickness (mm)	6	. 4
Cryosystem weight (kg)	14,000	9,200
Motor resistance (Ω)	0.29	0.37
Total guideway aluminum (kg/m)	84.8	83.8
Magnetic lift/drag (no side load)	56	87
Lift loss (MW)	0.95	0.6
Loss from lateral drag (MW)	0.02	0.01
Loss from lateral torque (MW)	0.8	0.34
Total magnetic losses (MW)	1.76	0.94
Motor winding loss (MW)	0.76	0.85
Primary natural frequency (Hz)	4.1	6.8
Motor reactive power (MVA)	24	45

3.5.12 Hybrid Null Flux Reduced Pole Pitch and Guideway Sheet Thickness, 89 m/s

The last column in table H-2 shows the design above operating at 89 meters per second. The results are similar. Magnetic losses are again down by about a factor of two, and motor winding losses are nearly unchanged. Motor reactive power increases by about 55%, not quite such a sharp increase as that at 134 meters per second.

3.5.13 Hybrid Null Flux Optimizations

For an operating condition of vehicle weight, speed, and side load, there are optimal thicknesses for the levitation and guidance sheets. Table H-2.1 shows four optimal designs and the conditions for which they are optimized. The optimization varied horizontal and vertical guideway sheet thicknesses while keeping other parameters, including pole pitch, at baseline values. The tables show performance for each design at two operating conditions.

The existence of the two components of magnetic drag leads to a best guideway thickness for an operating condition. The overhead component of drag increases with increasing sheet thickness. The lift related component of drag decreases with guideway sheet thickness. There is a thickness that minimizes magnetic drag.

The optimum is sensitive to operating conditions. Since the .26 g side-load at 134 meters per second and .18 g side load at 89 meters per second represent unusually high side loads, the system losses would be lower if a more typical side load was chosen as the optimizing point.

Design	Optimized for vel, side load	Lev sheet thickness	Guidance sheet t'ness	Mag loss @ conditions	Mag loss @ conditions
op1	134, 0.26	5.2 mm	2.3 mm	1.48@134, 0.26	.63@134, 0.09
op2	134, 0.09	3.6 mm	1.4 mm	1.74@134, 0.26	.49@134, 0.09
op3	89, 0.18	5.5 mm	2.4 mm	.77@89, 0.18	.37@89, 0.06
op4	89, 0.06	4.2 mm	1.4 mm	.85@89, 0.18	.32@89 ,0.06

The following table summarizes the optimizations.

The cells with bold font show the magnetic losses, in megawatts, at the optimizing conditions. For comparison, designs op1 and op2 are both evaluated at the same two operating points. Designs op3 and op4 are also both evaluated at two common points. The units of conditions are meters per second and gravities of side load.

3.6 Image Flux Trade-Offs

Table H-3 shows eight variations of the image flux configuration. The first column of numbers is the baseline. Other columns show the effects of deviating from the baseline by single parameters. Boxes show the changed parameters and the more interesting consequences of the changes.

3.6.1 Image Flux Baseline at 134 Meters per Second with Substantial Side Load

Table H-3 column labeled "134 m/s" shows this case.

This design follows the Magneplane design as it was understood in the fall of 1991, except for one important parameter. Following the level playing field convention, the vehicle is assumed to have a frontal area of 12.2 square meters. The realistic area is 8.5 square meters, based on vehicle geometry.

Notice that the motor losses are lower for this design than for either the side wall null flux or hybrid null flux designs at 134 meters per second.

3.6.2 Image Flux Baseline at 134 Meters per Second, No Side Load

The table H-3 column labeled "134, no T" shows this case.

Removing the side load has only a modest effect on magnetic drag and other parameters shown in the summary calculations table. However, there are dynamics and ride quality effects associated with side loads that are believed to be important but are difficult to calculate with great confidence. The motor magnets act as a keel held between the guideway levitation sheets. These concerns are described in appendix C.

The following table summarizes differences between the baseline at 134 meters per second with and without side force.

,	Baseline @ 134 m/s	Baseline, 134, no side load
Lateral force (g's)	0.26	0
Total magnetic loss (MW)	1.79	1.36

3.6.3 Image Flux Baseline with Aerodynamic Corrections

Two aerodynamic corrections were made to the baseline to reflect what is believed to be the nature of Magneplane. The frontal area used for drag calculation is based on vehicle geometry. The coefficient of drag is increased to reflect the higher drag expected from channel guideways and Magneplane's aerodynamic control surfaces. Table H-3 in the column labeled "134 Aero" shows these changes. The table below summarizes the results. Wind drag is much lower.

The coefficient of drag for both the baseline and vehicle with aerodynamic corrections is an engineering estimate.

4

	Baseline @134 m/s	Aerodynamic corrections		
Assumed frontal area (m ²)	12.2	8.5		
Coefficient of drag	0.3	0.35		
Wind drag power (MW)	5.4	4.4		
Motor winding loss (MW)	0.17	0.13		

The wind drag power is loss per vehicle, and the motor winding losses are for one vehicle on a block one kilometer long.

3.6.4 Image Flux Baseline at 89 Meters per Second

The fourth column table H-3 shows the effect of operating the baseline vehicle at 89 meters per second. Wind drag is 29 % of the 134 meters per second value. The table below summarizes this.

	Baseline @ 134 m/s	Baseline @ 89 m/s
Lateral force (g's)	0.26	0.18
Motor voltage (kV)	4.1	2.8
Motor reactive power (kVA)	5,100	1,200
Wind drag power (MW)	5.4	1.6
Total magnetic loss (MW)	1.8	1.35
Motor winding loss (MW)	0.17	0.06

Motor winding losses and motor reactive power are for a vehicle on a one kilometer long block. Wind drag power and magnetic loss is for a vehicle.

3.6.5 Image Flux Baseline at 89 Meters per Second, Magnet Current for 134 m/s

As an electrodynamic vehicle slows, it drops until wheels or the equivalent touch the guideway. For the baseline at 89 meters per second, the vehicle magnet currents increased just slightly compared with the baseline at 134 meters per second. The fifth column in table H-3, labeled "89, HSI," shows the vehicle dropping slightly if the magnet current stays at the 134 meters per second value. The model predicts almost no change, as summarized below.

	Baseline @89 m/s	Baseline@ 89 with 134 current
Vehicle vertical position (mm)	0	-0.05
Vehicle outer current (kA)	145.66	145.63

3.6.6 Image Flux Guideway Levitation Sheets Reduced to 1 Centimeter

The sixth column in the summary table, labeled "d=.01" shows the effects of reducing the thickness of the guideway levitation sheets, with the vehicle operating at 134 meters per second. This variation tests the possibility of reducing capital cost by increasing operating cost. One clear difference between image flux system and the other electrodynamic systems is image flux uses more aluminum in the guideway. If this aluminum is reduced, magnetic drag increases. With the thickness reduced from two to one centimeter the image flux design still uses more aluminum than the others.

The seventh column in table H-3, labeled "10mm, 89" shows the same variation operating at 89 meters per second.

The following two tables, one for each speed, summarize the thinner guideway. The columns on the right indicate that magnetic losses are nearly equal for the thin sheet guideway at 89 and 134 meters per second. For the thin sheet guideway, the speed at which magnetic skin depth is equal to 1 centimeter is 205 meters per second. So both 89

	Baseline at 134 m/s	Reduced guideway Al at 134 m/s
G'way sheet thickness (cm)	2	1
G'way lev. Aluminum, (kg/m)	213	106
Total magnetic losses (MW)	1.8	2.2

meters per second and 134 meters per second are in the intermediate speed range where levitation power is independent of speed, as described in section 3.0.1.

	Baseline at 89 m/s	Reduced guideway Al at 89 m/s		
G'way sheet thickness (cm)	2	1		
G'way lev. Aluminum, (kg/m)	213	106		
Total magnetic losses (MW)	1.4	2.1		

3.6.7 Image Flux Pole Pitch Reduced to 1 meter

The last column in table H-3, labeled "P=1 m" shows the effect of reducing the pole pitch from 1.5 meter to 1 meter. This reduces cryosystem weight and increases magnetic losses. The motor constant improves due primarily to higher currents in the vehicle magnets needed to levitate the vehicle with the smaller magnets. But motor resistance increases due to the increased number of meanders per block length. The table below summarizes this.

	Baseline @ 134 m/s	Reduced pole pitch @ 134 m/s
Pole pitch (m)	1.5	1
Magnet length (m)	1.3	0.8
Magnet outer current (kA)	146	155
Cryosystem weight (kg)	6,500	5,800
Motor voltage (kV back EMF)	4.1	4.5
Total magnetic losses (MW)	1.8	2.2
Motor winding losses (MW)	0.17	0.19

Magnetic losses are for a vehicle. Motor winding losses are for a vehicle on a one kilometer block.

3.7 Description of Electrodynamic Systems Spreadsheets, Overview

The three electrodynamic system spreadsheets differ in complexity. The hybrid null flux is the simplest. It is linear in the sense that the active formulas are in a single column. Consequently it is easy to see the structure and details of this spreadsheet by formatting the formulas as text.

The image flux spreadsheet is more complicated since portions of the spreadsheet dealing with the motor are two dimensional.

The side wall null flux is the most complicated. There are three separate spreadsheets that are linked together. A first spreadsheet computes levitation forces. Another spreadsheet computes motor parameters. A third spreadsheet computes guidance forces.

In addition, another spreadsheet computes magnetic fields in the passenger compartments.

3.7.1 Hybrid Null Flux Spreadsheet

Table G-1 shows the hybrid null flux spreadsheet in text format.

The suspension and propulsion calculations on this spreadsheet are suitable for hand calculations. As mentioned elsewhere, the suspension calculations are based on Richards and Tinkham. Their results were modified for three dimensional fields, using engineering judgment so the results agree with Urankar and Miericke.

3.7.2 Image Flux Spreadsheet

Tables G-2a, b, and c show the image flux spreadsheet in text format.

The suspension forces are based on Richards and Tinkham. For this configuration, calculating the high speed force limits directly using images avoids the problems of Richards and Tinkham's Fourier transforms of the coils.

The second and third sheets are motor related calculations. The large blocks of formulas are not legible with these spreadsheets printed in text format because of the length of the equations. These figures give some flavor of the calculations which are mostly two dimensional blocks of inductance calculations (Grover [40].)

3.7.3 Side Wall Null Flux Spreadsheet

Tables G-3a, b, c, and d show the side wall spreadsheets in text format.

The levitation, guidance, and propulsion forces are calculated with mutual inductances. As a consequence there is much less question of the reliability of the suspension forces for the side wall null flux compared with the other electrodynamic systems.

Each of the levitation, guidance, and propulsion spreadsheets has a two dimensional block of inductance calculations. Again these are based on Grover. A macro uses these inductance calculations, stepping position and recording inductance information for each position step in a table. The tables of inductance values, generally hundreds of steps long, are mostly not shown on the figures.

The more detailed motor calculations done for the side wall null flux configurations were compared to less exhaustive methods that were used for the hybrid null flux and image flux systems. The results were not significantly different.

3.7.4 Magnetic Fields Spreadsheets

Table G-4 represents the spreadsheets used to calculate magnetic fields in passenger compartments. A single string of formulas is shown although the actual spreadsheet is two dimensional.

The spreadsheets are organized with a core row that is used repeatedly, with different sources for each row. Each row represents a straight segment of vehicle magnet conductor. The formulas in each row are identical. Only the starting and ending coordinates of the conductor segment and the current differ. A single row shows the logic of the spreadsheet. A single row is transposed into a single column in table G-4. The formulas when formatted as text are thus legible.

The magnetic field from a straight line conducting filament is simply expressed in a coordinate system that has an axis lying on the filament. Most of the spreadsheet transforms vehicle coordinates to segment coordinates and then back again.

18.

د پېږد محرفات

SECTION 4

COMPARISON OF SYSTEMS

4.0 Major parameters

The results of the calculations of major parameters of the EMS and EDS systems which were studied in this work are summarized in Tables 4-1 through 4-6. The following discussion will describe the tables and highlight the significant results. These results apply to the reference vehicle of 40 Mg mass and 35 meters length. While tables for forward speeds of 89 and 134 meters/second are included, the 134 meters/second results are emphasized. The optimization and trade-offs resulting in the designs listed in Tables 4-1 through 4-6 are discussed in Sections 2 and 3.

4.1 Weight comparison

Tables 4-1 and 4-2 summarize the weights for the six systems and use these results to project a passenger capacity for each system. The passenger capacity was determined by assuming that the total vehicle mass was 40 Mg. The magnet, shielding, and cryogenic insulation and refrigeration required to lift and guide 40 Mg (including the magnets) were than designed. The mass remaining after the magnet mass was subtracted from the 40 Mg was allotted to vehicle structure, utilities and furnishings, passengers and baggage and landing gear (EDS vehicles only), as calculated using aviation industry techniques [Ref. 48 and 49].

The weight of the superconducting magnets with shields, supports, and thermal insulation for the EDS 1 (image flux) and EDS 3 (coil null flux) systems was similar to that of EMS III at 25% total vehicle weight. Thus, the passenger payload for these systems was similar at 118, 113 and 113, respectively, passengers for the 40 tonne reference vehicle. For the EDS 2 (hybrid null flux) system, the magnets weighed more because of the complexity of conforming the magnets to a continuous sheet. At the beginning of this study, many expected that the superconducting magnets would weigh less than the iron cores for EMS. This study determined that the Dewars (vacuum insulation systems), magnetic shielding, and mechanical supports were quite heavy and end effects, neglected in simpler analyses and especially important for considerations, prevents the practical realization of the theoretically low power of null flux levitation systems [Ref 38].

The total weight of vehicle mounted magnetic components for EMS I (separate propulsion, lateral guidance, and lift) was smaller at 5.6 Mg than for EMS II (combined lateral and lift) and EMS III (combined lift and propulsion), which were similar at 7.2 and 7.3 Mg, respectively. Because EMS I and II require large powers to be brought on-board, EMS III is the preferred electromagnetic system and is emphasized throughout this report. However, it should be noted that, as mentioned below, this advantage is offset to some extent by the limitation of the maximum propulsion thrust to $\approx 0.1g$ in contrast to the other five systems, which provide the desired 0.21g.

4.2 Power comparison

Tables 4-3 and 4-4 summarize the results of the calculations of real and reactive power for the systems. Utility cost of energy depends mainly on real power and secondly on reactive power. In general, the size and cost of wayside electrical equipment such as transformers and inverters, as well as power transmission lines and on-board equipment, depends on total Volt-Amperes.

The propulsion power was that required to overcome the aerodynamic drag. Drag powers for lift and lateral guidance, which result from eddy currents in the guideway, are tabulated separately. As discussed in Section 1.2, the lateral drag was calculated for a maximum continuous lateral acceleration of 0.26 g for 134 meters/second and 0.15 g for 89 meters/second.

Because the large propulsion power must be transferred to the vehicle from the wayside, linear induction motors are not considered a viable candidate for either EMS (shown here as EMS I and II) or EDS. Linear induction motors require that the propulsion losses, plus the power used for overcoming aerodynamic drag, for hill climbing and for acceleration be transferred and conditioned on-board. This total power of ≈ 6 MW was one to two orders of magnitude higher than that which must be transferred on-board for the systems using linear synchronous motors with guideway propulsion excitation on the guideway.

Total real power for propulsion and drag was 1.6 kW/m of powered guideway for EMS III (linear synchronous motor) at 134 meters/second (300 mph). For EDS 1 (image flux), the real power consisted of 1.83 MW/vehicle drag and 170 W/m of powered guideway propulsion winding loss. For EDS 2 (image flux), the real power consisted of 2.18 MW/vehicle drag and 700 W/m of powered guideway propulsion winding loss. EDS 3 (sidewall coil null flux) real power consisted of 6491 kW/vehicle drag and 560

W/m of powered guideway winding loss. For a 40 Mg vehicle at 134 meters/second, wind drag power was estimated at 5.40 MW for all the vehicles.

In the electromagnetic systems, the largest power was dissipated in the EMS III guideway linear synchronous motor, in which the space (slots) for propulsion windings was small and the excitation currents must flow through relatively long distances of guideway. The iron guideway core resulted in high winding inductances and the reactive power was 25 kVA/m. Magnetic saturation limits the EMS propulsion capability, for reasonable size and weight, to ≈ 0.1 g, which makes operation at 134 meters/second marginal, with negligible hill climbing capability at that speed.

In the electrodynamic systems, the guideway power resulted from the eddy currents produced in the guideway by the magnetic fields required for lift and for lateral guidance and the power dissipation in the motor windings. The EDS linear synchronous motors had smaller inductances and generally more space for windings than the EMS III LSM, but required larger currents. Thus, for the EDS 1 (image flux) system, which provided the most winding space, the powers were the lowest of the EDS systems at 5 kVA/m of powered guideway reactive and 2 kW/m of powered guideway real. Because of the space constraints on the guideway winding of EDS 2 (hybrid null flux), the guideway propulsion reactive power was 22 kVA/m of powered guideway while the real power was 2.18 kW/m of powered guideway. In the EDS 3 (sidewall coil null flux) system, the coils were wound of small diameter filaments so that the penetration depth of magnetic fields was a greater fraction of the conductor diameter, reducing the effective resistance; the motor power dissipation at 134 meters/second was only 560 W/m of powered guideway, but the suspension stiffness was low. Because of the reduced volume available for motor windings, the current density was higher and the motor real power was 560 W/m of powered guideway with a reactive power of 5.3 kVA/m of powered guideway.

2154

14 Spin-

To summarize the power comparison, the resistive powers for EDS systems were higher than EMS while the reactive power was lower for EDS 1 and 3 and similar for EDS 2.

4.3 Ride Quality

Tables 4-5 and 4-6 summarize ride quality results for the six systems. It is essential that a practical system concept have the potential for providing its passengers with an acceptably comfortable ride. Guideway roughness equivalent to welded steel rails was assumed in this study. While Table 4-5 summarizes ride quality for forward

speeds of 89 meters/second (200 mph), the discussion below focuses on the 134 meters/second (300 mph) results of Table 4-6.

In heave motion, the suspension parameters and ride quality of the three electromagnetic suspensions were similar. With a 1 cm nominal gap between the onboard magnets and the guideway rail, the closed loop controller was set to achieve stable operation and avoid rail-to-vehicle contact so that the bogey resonant frequency was 5 Hz and the damping ratio was 0.7. Passive secondary suspensions were assumed. Generally 1 Hz is accepted as the lowest practical natural frequency for a passive suspension. A damping ratio of 0.25 is an optimal trade off between ride quality and guideway tracking. The RMS (one sigma) passenger heave acceleration was 0.023 to 0.024 g for all of the EMS systems. The RMS gap variation was 20% and the current variation 21% to 25%, acceptable figures since 100% represents vehicle to rail contact. The reactive power for EMS II and EMS III, which combined two functions into one set of magnetic structures.

For sway and roll motion, parameters similar to those for heave were assumed with the exception of EMS II where decoupling of the vertical and sway modes required that the lateral suspension controller gain be set to a specific value, the decoupling gain; the resulting natural frequency for lateral displacements was 1.7 Hz when the eigenfrequency for vertical motion was set at 5 Hz. The parameters of the vertical suspension determine the roll stiffness and damping.

The variations in lateral primary suspension gap for EMS II (combined lift plus lateral, staggered magnets) was 45%, a permissible figure since the magnet moves parallel to, rather than normal to the rail for this motion. The RMS current and voltage variations were an order of magnitude smaller than for the other EMS cases because the magnetic forces are inherently stable whereas in the other configurations the magnet and rail move toward one another and the magnetic forces are unstable, requiring large control currents just to maintain stability.

Because the roll motion decouples the secondary from the primary, the passenger RMS lateral acceleration from guideway roughness was 0.015 g (less than for the vertical motion) for EMS II and III. The RMS lateral acceleration for EMS II (combined lift plus lateral, staggered magnets), was still lower because of the softer primary suspension. Similarly, the RMS roll rates were 0.8 and 0.4 degrees/second for EMS I for guideway roughness and wind inputs, respectively, and 0.5 and 0.3 degrees/second for EMS II. The

which was 2.1 for EMS I (three separate functions) and EMS III (LSM propulsion combined with lift). Lower lateral primary suspension stiffness results in a Pepler index of 1.8, which is in the very comfortable to comfortable range, for EMS II.

For the EMS systems, which have primary suspension damping, the response to the design (high) wind input was generally half of that for the road inputs and did not have significant influence on ride quality.

The EDS 1 (image flux) system had a large 0.15 m clearance between the vehicle and guideway and soft 1 Hz natural frequency primary suspension with only passive control, so that no secondary suspension was assumed. The calculations assumed that the propulsion motor was used to provide vertical damping, as indicated in Section 3.1.1, with a damping ratio of 0.7 and the damping proportional to velocity relative to inertial space (rather than to the relative velocity between vehicle and guideway as in passive suspensions). The passenger acceleration of 0.012 g for heave motion in response to road inputs was superior to the other EDS systems because of the optimal damping. No damping was assumed for the lateral motion and roll damping was assumed to be produced by actively controlled aerodynamic surfaces resulting in a damping ratio of 0.7. The response to guideway roughness was 0.022 g (comparable to the EMS systems) but the response to the design maximum wind was high at 0.036 g. Roll rate responses were 1 and 1.9 degrees/second for lateral guideway and wind inputs, respectively. The large lateral motion responses were attributed to the lack of roll stiffness in the primary suspension. The Pepler comfort index in response to road inputs was 2.1, in the comfortable to somewhat comfortable range, comparable to the EMS systems. The RMS vehicle displacements relative to the guideway were less than 6% of the air gap.

-

The electrodynamic null flux cases (EDS 2 and 3) had stable, relatively stiff primary suspensions with no active control. Since simplicity is generally desirable, no primary damping was assumed in contrast to the image flux case; that is, the vehicle and suspension bogie motions were damped only by the passive secondary suspensions. For EDS 2 (hybrid null flux continuous guideway), the vertical and lateral primary suspension natural frequencies were 4.1 and 2.9 Hz, respectively. The heave and sway secondary suspensions for both EDS 2 and EDS 3 have damping ratios of 0.25 and resonant frequencies of 1 Hz. The heave RMS acceleration was large at 0.044 g, compared to 0.023-0.024 g for all the EMS, and was attributable to the lack of primary damping and the small ratio (1.28) of sprung to unsprung masses. The lower natural frequency of the lateral primary suspension resulted in lower RMS lateral accelerations of 0.012 g from guideway roughness inputs and 0.017 g from wind inputs. The Pepler index

0.012 g from guideway roughness inputs and 0.017 g from wind inputs. The Pepler index was an acceptable 2.6, again in the somewhat comfortable to comfortable range. As discussed in Section 4.1.3, the ratio of sprung to unsprung mass was only 1.28 so that passenger payload was poor compared to the other EDS systems and EMS III.

The primary suspension parameters of EDS 3 (sidewall coil null flux) differed from EDS 2 (hybrid null flux, continuous guideway), in that the sprung to unsprung mass ratio was higher, 3.6 compared to 1.3, and the natural frequencies were lower. Because of the channel guideway and magnet configuration, the lateral secondary suspension acted through the center of gravity of the unpsrung mass, so that lateral guideway roughness inputs did not directly cause roll. These parameters resulted in higher accelerations and lower roll rates than for EDS 2. The ride quality approached that of EMS III and EDS 1, with a Pepler index of 2.0, on the borderline between very comfortable and somewhat comfortable. The RMS lateral acceleration response to design maximum wind inputs was 0.035 g (a factor of five higher than for the EMS systems). While active primary suspensions are a necessary complexity for the EMS systems, to overcome the unstable magnetic attractive forces, it results in better ride performance. The soft undamped lateral primary suspension of EDS 3 resulted in relatively large lateral magnet-guideway RMS displacements of 10% and 17% of the nominal air gap for road and wind inputs, respectively; thus guideway roughness can be increased only by a factor of two if active secondary suspensions reduce passenger accelerations. The thin filaments, or laminations, of the guideway coils allow current to penetrate the conductors more completely, reducing the effective resistance, with the result that the effective guideway-vehicle clearance is increased; thus, the effective stiffnesses increases as the drag decreases.

In summary, all of the systems required smooth guideways (equivalent to welded steel rails) to achieve acceptable ride quality (passive secondary suspensions assumed except for EDS 1 (image flux)). At the beginning of this study, it had been expected that the EDS systems, because of their larger guideway-vehicle clearances, would permit rougher guideways while maintaining adequate ride comfort. The potential for guideway roughness increase for EDS 1 and EDS 3 is limited to a factor of two by passenger ride comfort considerations. To achieve adequate ride quality, EDS 1 (image flux, or Magneplane) curved guideway systems required aerodynamic roll damping. The large bogey masses of the EDS null flux systems also degraded ride quality. Because of the requirement to limit guideway-magnet contact, guideways rougher than welded steel rails

will be difficult to accommodate unless the magnet control bandwith is increased substantially.

4.4 Other Considerations

Other important results include the following:

- No data was available to estimate the effect of AC fields produced by guideway eddy currents in inducing quenching or gradual decay of magnet fields of the superconducting magnets of EDS systems. Null flux systems with coils are particularly vulnerable to such effects, compared to EDS systems with sheet guideways. M.I.T.'s experience with superconducting generators indicate that this effect is very important. The feasibility of electrodynamic systems cannot be assured until these possible effects of AC guideway fields are resolved.
- EMS III (combined lift and LSM propulsion) is the most attractive electromagnetic system. Because of the large power required on-board the vehicle, which must be transferred from the wayside, systems using linear induction motors are considered to be secondary candidates. Variants of EMS I and EMS II built with a LSM with guideway propulsion windings are also secondary candidates. Such a variant of EMS I would be a poor candidate because of low passenger capacity resulting from the high on-board magnet weight of three separate magnetic cores. A LSM powered EMS II would incur the expense of two sets of laminated guideway cores. Weight, ride quality, and power estimates for LSM powered EMS I and II variations can be obtained from the cases studied and do not offer advantages over EMS III.

1945 1940

- Although guideway cost, like other economic issues, has not been considered here, several comments are offered. For EMS III, the guideway rails for the synchronous motor/lift magnets are constructed of laminated steel while the lateral rails may be constructed of solid steel. These structures have relatively small cross sections, and thus lower expected construction costs, compared to the guideway sheets and coils proposed for EDS systems.
- Active control for primary and secondary for EDS should be considered. While ride quality was near the Pepler index comfort limit, the displacements of the secondary suspensions were small. Active secondary suspensions would permit larger suspension strokes and reduced accelerations so that road roughness (∝√A in Appendix D) could increase by a factor of five compared to the 1 Hz natural frequency passive secondary suspensions assumed in this study. Active primary damping from aerodynamic control surfaces could improve ride quality as seen in the EDS 1 case. In EMS systems, active secondary suspensions can provide improved

In EMS systems, active secondary suspensions can provide improved ride quality but will not permit rougher guideways because the small guideway to magnet clearances will be limiting.

Table 4-1. EMS and EDS Vehicle Weight and Passenger Capacity Comparison; Designs optimized for operation at 89 m/s

`

			EMS I	EMS II	EMS III	EDS I	EDS II	EDS III
		Sep &	oarate heave sway, LIM	Combined heave & sway, LIM	Separatate sway, combined heave & LSM	Image flux, LSM (Magneplane)	Hybrid null flux, LSM	Sidewall coil null flux, LSM
Category	Description	Units						
BASIC V	EHICLE							
	Vehicle body structure	Mg	9.8	9.8	8.9	9.4	5.5	8.9
	Interior furnishings (seats, lavs, etc.)	Mg	4.6	4.6	4.2	4.4	2.2	4.2
HVAC,IN	STRUMENTS, LANDING GEAR							
	Basic equipment	Mg	0.5	0.5	0.5	0.5	0.3	0.5
	Power conditioning & batteries	Mg	0.5	0.5	0.5	0.5	0.5	0.5
	Instruments	Mg	0.2	0.2	0.2	0.2	0.2	0.2
	Landing gear	Mg	N/A	N/A	N/A	1.2	1.2	1.2
	Roll damper & actuator	Mg	N/A	N/A	N/A	0.1	N/A	N/A
LEVITA	TION & PROPULSION							
	Levitation & guidance magnets	Mg	3.1	4.7	1.6 (guid	lance) 6.4	14.0	7.2
	Motor stator	Mg	2.5	2.5	5.7 (& le	ev.) inc. in Lev.	inc. in Lev.	inc. in Lev.
	Bogie structure & secondary susp.	Mg	2.8	3.6	3.6	3.2	7.0	3.6
	Power conditioning & batteries	Mg	1.6	1.1	1.1	N/A	N/A	N/A
CRYOGE	INIC REFRIGERATION							
	Power conditioning & batteries	Mg	N/A	N/A	N/A	TBD	TBD	TBD
PAYLOA	D							
	Passenger weight	Mg	9.9	9.9	9.2	9.6	6.0	9.2
	Carry-on baggage	Mg	1.1	1.1	1.0	1.1	0.7	1.0
	Checked baggage	Mg	3.6	3.6	3.4	3.5	2.2	3.4
	Total payload	Mg	14.6	14.6	13.6	14.2	8.9	13.6
SUMMA	RY							
	Total Gross Weight, loaded	Mg	40.0	40.0	40.0	40.0	40.0	40.0
	Passenger capacity	-	121	121	113	118	74	113

ł

Table 4-2. EMS and EDS Vehicle Weight and Passenger Capacity Comparison; Designs optimized for operation at 134 m/s

		EMS I Separate heave & sway, LIM		EMS II Combined heave & sway, LIM	EMS III Separatate sway, combined heave	EDS I Image flux, LSM (Magneplane)	EDS II Hybrid null flux, LSM	EDS III Sidewall coil null flux, LSM
Catego	ry Description	Units			& LSM			
BASIC	VEHICLE				•	· .		
	Vehicle body structure	Mg	8.8	8.8	8.9	9.4	5.5	8.9
	Interior furnishings (seats, lavs, etc.)	Mg	4.1	4.1	4.2	4.4	2.2	4.2
HVAC	INSTRUMENTS, LANDING GEAR							
	Basic equipment	Mg	0.5	0.5	0.5	0.5	0.3	0.5
	Power conditioning & batteries	Mg	0.5	0.5	0.5	0.5	0.5	0.5
	Instruments	Mg	0.2	0.2	0.2	0.2	0.2	0.2
	Landing gear	Mg	N/A	N/A	N/A	1.2	1.2	1.2
	Roll damper & actuator	Mg	N/A	N/A	N/A	0.1	N/A	N/A
LEVIT	ATION & PROPULSION							
	Levitation & guidance magnets	Mg	3.5	4.8	1.9 (guida	unce) 6.4	14.0	7.2
	Motor stator	Mg	3.7	3.7	5.3 (& Le	v.) inc. in Lev.	inc. in Lev.	inc. in Lev.
	Bogie structure & secondary susp.	Mg	3.6	4.3	3.6	3.2	7.0	3.6
	Power conditioning & batteries	Mg	1.6	1.1	1.1	N/A	N/A	N/A
CRYO	GENIC REFRIGERATION							
	Power conditioning & batteries	Mg	N/A	N/A	N/A	TED	TBD	TBD
PAYLO	DAD					e.		
	Passenger weight	Mg	9.1	9.1	9.2	9.6	6.0	9.2
	Carry-on baggage	Mg	1.0	1.0	1.0	1.1	0.7	1.0
	Checked baggage	Mg	3.4	3.4	3.4	3.5	2.2	3.4
	Total payload	Mg	13.5	13.5	13.6	14.2	8.9	13.6
SUMM	ARY		•					
	Total Gross Weight, loaded	Mg	40.0	40.0	40.0	40.0	40.0	40.0
	Passenger capacity	-	112	112	113	118	74	113

.

ŝ

Table 4-3	EMS and EDS	Vehicle Power (Comparison	Designs (ontimized fo	r operation	at 20 r	n/e
I abic T-J.			companson,	Designa	spinnizza io	i opcianon	ai 07 i	цэ

· ·

		EMS I Separate heave & sway, LIM	EMS II Combined heave a & sway, LIM	EMS III Separatate sway, combined heave & LSM	EDS I Image flux, LSM (Magneplane)	EDS II Hybrid null flux, LSM	EDS III Sidewall coil null flux, LSM
EVITATION							
Heave	1-337	110.0	74.4	51.2	1 100 0	220.0	450.0
Reactive power @ 1g	кw kVA	5.4	8.5	11.5	1,100.0 N/A	330.0 N/A	430.0 N/A
						-	
Sway	1 337	17.6		17 (240.0	440.0	01.0
Real power @ .26 g	KW	17.0	inc. in neave	17.0	240.0	440.0	31.0
Reactive power@ .20 g	KVA	5.1		5.0	N/A	N/A	N/A
PROPULSION Vehicle							
Dissipated power	kW	60.0	60.0	inc. in Lev.	0.0	0.0	0.0
Reactive power	kVA	1,570.0	1,570.0	inc. in Lev.	0.0	0.0	0.0
Guideway							
Dissipated power	W/m	36.6 (kW)) 14.0 (kW	7) 1,489	62.0	190.0	160.0
Reactive power	VA/m	0	0	16,600	1,200	3,900	980
REFRIGERATION							
Hotel	kW	69.0	69.0	67.7	68.5	61.2	67.7
Cryogenic	kW	N/A	N/A	N/A	TBD	TBD	TBD
VEHICLE & GUIDEWAY TOTAL	(1 km o	udeway assumed)					
Dissinated power	kW	233 2	148 4	1.557	1 402	960	641
Reactive power	kVA	1,578.5	1,578.5	16,617	1,200	3,900	980
AFRODYNAMIC DRAG		· .					
`_J\\/J\/JLZ_FI_\/T\/YIIL\LZI\/T\\I							

~

i

		EMS I	EMS II	EMS III	EDS I	EDS II	EDS III
		Separate heave & sway, LIM	Combined heave S & sway, LIM	Separatate sway, combined heave & LSM	Image flux, LSM (Magneplane)	Hybrid null flux, LSM	Sidewall coil null flux, LSM
				<i>w</i> 20112			
LEVITATION							
Heave							
Real power @ 1 g	kW	119.0	75.1	47.9	1,400.0	510.0	430.0
Reactive power @ 1g	kVA	12.3	17.7	22.1	N/A	N/A	N/A
Sway							
Real power @ .26 g	kW	18.8	inc. in heave	18.8	430.0	970.0	61.0
Reactive power@ .26 g	kVA	6.6		10.8	N/A	N/A	N/A
PROPULSION							
Vehicle							
Dissipated power	kW	82.8	82.8	inc. in Lev.	0.0	0.0	0.0
Reactive power	kVA	3,220.0	3,220.0	inc, in Lev.	0.0	0.0	0.0
Guideway							
Dissipated power	W/m	99.4 (kW)) 31.6 (kW) 1,470	170.0	700.0	560.0
Reactive power	VA/m	0	0	25,000	5,000	22,000	5,300
REFRIGERATION							
Hotel	kW	67.5	67.5	67.7	68.5	61.2	67.7
Cryogenic	kW	N/A	N/A	N/A	TBD	TBD	TBD
VEHICLE & GUIDEWAY TOTAL	(1 km g	uideway assumed)					
Dissipated power	kW	320.0	189.5	1,537	2,000	2,180	1,051
Reactive power	kVA	3,238.9	3,237.7	25,033	5,000	22,000	5,300
AERODYNAMIC DRAG							
Power	kW	5,400	5,400	5,400	5,400	5,400	5,400

ŧ

Table 4-4. EMS and EDS Vehicle Power Comparison; Designs optimized for operation at 134 m/s

		EMS I Separate & sway,	heave LIM	EMS II Combine & sway,	ed heave LIM	EMS III Separatate combined & LSM	e sway, 1 heave 1	EDS I Image flu (Magnep	ıx, LSM lane)	EDS II Hybrid flux, LS	null M	EDS III Sidewall null flux, 1	coil LSM
Sprung/Unsprung mass ratio		2.7		3.94		3.12		N/A		1.28		3.6	
Gap		0.01		0.01		0.01		0.150		0.08		0.08	
HEAVE MOTION													
Primary natural frequency	Hz	5.0		5.0		5.0		1.0		4.1	•	2.7	
Primary damping ratio	-	0.7		0.7		0.7		0.0		0.0		0.0	
Secondary natural frequency	Hz	1.0		1.0		1.0		N/A		1.0		1.0	
Secondary damping ratio	-	0.25		0.25		0.25		N/A		0.25		0.25	
Passenger RMS acceleration	g	0.019		0.019		0.019		0.010		0.034		0.022	
Primary RMS gap change	%	15.2		16.7		18.8		2.7		3.5		3.9	
Secondary suspension stroke	'n	0.004		0.004		0.004		N/A		0.005		0.005	
Control current variation	%	15.9		17.6		19.6		N/A		N/A		N/A	
Control reactive power	kVA ⁻	5.4		8.5		11.5		N/A		N/A		N/A	
SWAY/ROLL MOTION													
Primary natural frequency	Hz	5.0		1.7		5.0		1.0		2.9		1.7	
Primary damping ratio	-	0.25		0.25		0.25		0.10		0.00		0.00	
Secondary natural frequency	Hz	1.0		1.0		1.0		N/A		1.0		1.0	
Secondary damping ratio	-	0.25		0.25		0.25		N/A		0.25		0.25	
		Road	Wind	Road	Wind	Road	Wind	Road	Wind	Road	Wind	Road	Wind
Passenger RMS acceleration	8	0.012	0.007	0.008	0.006	0.012	0.007	0.018	0.032	0.009	0.017	0.016	0.035
Passenger RMS roll rate	°/s	0.7	0.4	0.4	0.3	0.7	0.4	0.8	1.7	1.0	2.1	0.4	0.8
Primary RMS gap change	%	15.0	7.6	35.6	26.3	17.7	8.4	3.0	5.8	5.5	3.6	7.7	16.7
Secondary suspension stroke	m	0.005	0.004	0.004	0.003	0.005	0.004	N/A	N/A	0.010	0.028	0.005	0.010
Control current variation	%	16.4	8.0	36.2	26.6	19.1	8.9	N/A	N/A	N/A	N/A	N/A	N/A
Control reactive power	kVA	3.1	0.3	11.4	2.2	5.6	0.4	N/A	N/A	N/A	N/A	N/A	N/A
Peplar Index from road inputs		1.8		1.7		1.9		1.9		2.2		1.8	

ł

Table 4-5. EMS and EDS Vehicle Ride Quality Comparison; Designs optimized for operation at 89 m/s

	EMS I EMS II Separate heave Combined hea & sway, LIM & sway, LIM		ed heave LIM	EMS III EDS I Separatate sway, Image fly combined heave (Magney & LSM			EDS II 1x, LSM Hybrid nu Iane) flux, LSM		EDS III Iull Sidewall coil M null flux, LSM				
Sprung/Unsprung mass ratio		2.7		3.94		3.12		N/A		1.28		3.6	
Gap	m	0.01		0.01		0.01		0.150		0.08		0.08	
HEAVE MOTION													
Primary natural frequency	Hz	5.0		5.0		5.0		1.0		4.1		2.7	
Primary damping ratio	-	0.7		0.7		0.7		0.7		0.0		0.0	
Secondary natural frequency	Hz	1.0		1.0		1.0		N/A		1.0		1.0	
Secondary damping ratio	-	0.25		0.25		0.25		N/A		0.25		0.25	
Passenger RMS acceleration	g	0.024		0.024		0.023		0.012		0.044		0.027	
Primary RMS gap change	%	20.3		21.7		23.7		3.3		4.7		4.9	
Secondary suspension stroke	m	0.005	•	0.005		0.005		N/A		0.083		0.006	
Control current variation	%	21.4		23.0		24.8		N/A		N/A		N/A	
Control reactive power	kVA	12.3		17.7		22.1		N/A		N/A		N/A	
SWAY/ROLL MOTION													
Primary natural frequency	Hz	5.0		1:7		5.0		1.0		2.9		1.7	
Primary damping ratio	-	0.25		0.25		0.25		0.70		0.00		0.00	
Secondary natural frequency	Hz	1.0		1.0		1.0		N/A		1.0		1.0	
Secondary damping ratio	-	0.25		0,25		0.25		N/A		0.25		0.25	
, 1, j		Road	Wind	Road	Wind	Road	Wind	Road	Wind	Road	Wind	Road	Wind
Passenger RMS acceleration	g	0.015	0.007	0.009	0.006	0.015	0.007	0.022	0.036	0.012	0.017	0.020	0.035
Passenger RMS roll rate	°/s	0.8	0.4	0.5	0.3	0.8	0.4	1.0	1.9	1.3	2.1	0.5	0.8
Primary RMS gap change	%	20.2	7.7	44.2	25.6	22.7	8.5	3.7	6.4	7.1	4.0	9.6	17.0
Secondary suspension stroke	m	0.006	0.004	0.005	0.003	0.007	0.004	N/A	N/A	0.012	0.026	0.006	0.010
Control current variation	%	22.4	8.1	45.0	25.9	24.6	9.0	N/A	N/A	N/A	N/A	N/A	N/A
Control reactive power	kVA	6.6	0.4	21.0	2.4	10.8	0.5	N/A	N/A	N/A	N/A	N/A	N/A
Peplar Index from road inputs		2.1		1.8		2.1		2.1		2.6		2.0	

÷

Table 4-6. EMS and EDS Vehicle Ride Quality Comparison; Designs optimized for operation at 134 m/s

.

1

SECTION 5

SUMMARY

5.1 Unanticipated Results

Several results were obtained in this study which were unanticipated at the beginning. These results indicate that the hoped-for advantages of EDS will be difficult to realize.

- Perhaps the most surprising was that all of the systems studied require smooth guideways to achieve acceptable ride quality. At the outset, it had been expected that the EDS systems, because of the larger guideway-vehicle clearances, would exhibit better ride quality. As mentioned in Section 4.3, this advantage is negated by the combined effects of stiffer primary suspensions, relative to the secondary suspensions, and the absence of primary damping.
- The estimated weight of the superconducting magnets for the EDS systems was surprisingly large, relative to initial expectations.
- It was initially expected that the hybrid null flux levitation system would be quite efficient due to the high magnet strength employed, but this was not the case for the configuration studied.

5.2 Discussion

EMS 3, combined lift and synchronous propulsion, is the most attractive electromagnetic system and is the EMS system employed for comparisons with EDS. Because of the large power required on board the vehicle, linear induction models (EMS 1 and 2) are secondary candidates. EMS 1 and 2 built with a synchronous motor with guideway propulsion windings could be secondary candidates. The synchronous EMS 1 is poor because of high on board magnet weight (low passenger load) from three separate magnetic cores. A synchronous EMS 2 would require two sets of laminated guideway cores. Weight, ride quality, and power estimates of synchronous EMS 1 and 2 can be obtained from the cases studied and do not offer any advantages over EMS 3.

For comparable guideway roughness, the ride quality of those EDS systems with 1 Hz secondary suspensions is similar or higher to that of EMS systems, notwithstanding the larger

vehicle-guideway clearances typical of EDS. This is a result of the lack of damping in all the EDS systems and the high stiffness, relative to the secondary suspensions, of the EDS 2 and EDS 3 primary suspensions. While the EMS systems need high primary stiffness to avoid magnet-to-guideway contact, the active control which they employ makes it possible to optimize the primary damping, thus offering improved ride quality. Thus, a perceived advantage of EDS systems i.e., that guideway roughness requirements can be relaxed with resulting lower construction and maintenance costs, may be limited by the requirement to maintain adequate ride comfort for passengers. To achieve ride quality, the Magneplane curved guideway systems need aerodynamic damping, a development area. The large bogey masses of the EDS null flux systems also degraded ride quality. Because the relative displacements between the vehicle and the bogey are small, active secondary suspensions, which would enable rougher roadways, should be considered for EDS.

A major advantage of the image flux (EDS 1, Magneplane type) systems is that the vehicle and guideway geometry appear to be very feasible, both in terms of construction and operation. However, these systems also have some potential disadvantages. The relatively close proximity of the passenger compartment to the levitation/propulsion magnets tends to increase the level of magnetic field intensity to which the passengers are exposed. Thus, if it is shown that magnetic fields affect humans, it will be important to carefully address the control of magnetic fields by providing adequate magnetic shielding, which may exact a weight penalty in comparison with other EDS systems, by vehicle design which distances the magnets from passengers, and by magnet designs which provide some measure of magnetic field cancellation. While this type of system offers the advantage of self-banking in negotiating curves, the roll freedom which makes this possible is not inherently damped and the undamped roll motions can be large enough to adversely affect passenger ride comfort. Consequently, an auxiliary means of roll damping must be provided, such as by means of actively controlled aerodynamic actuators, with the accompanying weight and power penalty. A similar consideration applies to the sway (lateral motion) degree of freedom.

An expected advantage of the hybrid null flux systems was that high lift-to-drag ratios could be realized. This expectation was based upon simplified analyses which did not include end effects. When these are properly included, the lift efficiency is degraded, and the expected advantage is not realized. To achieve an effective system the relatively complex geometry of the magnet/guideway must be carefully addressed, particularly with respect to the modeling of the magnetic interaction in providing levitation and guidance. Additionally, because this configuration utilizes higher magnetic strength to achieve efficient levitation, the issue of passenger shielding must also be carefully addressed. Also, because the primary suspension has high stiffness and is undamped, some provisions may be required to achieve adequate ride comfort.

All of the EDS designs must address the problem of shielding the superconducting magnets from the AC fields generated in the guideway. Guideway roughness and wind gusts impinging on the vehicle result in these AC fields, which can cause losses in the superconducting magnets. These losses decrease the thermal margin in the magnets and, unless adequately designed for, can result in magnet quench and loss of levitation. It is also possible that these AC fields can result in gradual decay of the magnet current, which would require periodic recharging of the magnets. These problems may be particularly significant for coil guideway designs, which produce perturbations even in the absence of guideway and wind inputs, because of their discrete structure. M.I.T.'s experience with superconducting generators indicate that this effect is very important.

The sidewall discrete coil null flux system exhibits better levitation efficiency than the other EDS systems, for example, the primary suspension stiffness is approximately 7 times higher than the image flux system and the drag is approximately 3 times lower. However, the discrete nature of the guideway has an unfavorable impact on ride quality, due to the periodic variations of primary suspension stiffness, and AC fields effects, as discussed above. These effects must still be addressed.

The weight of the superconducting magnets with shields, supports, and insulation for the EDS image and null flux systems was similar to that of EMS 3 at 25% total vehicle weight. For a 40 Mg vehicle, 120 passengers can be accommodated. For the hybrid null flux, the magnets weighed more because of the complexity of wrapping the magnets around a continuous sheet.

Total power at 134 m/s for propulsion and magnetic drag was 1.5 kW/m for EMS 3 (linear synchronous motor) and 2 kW/m for EDS 1 (image flux), 2.2 kW/m for EDS 2 (Hybrid null Flux) and 1 kW/m for EDS 3 (coil null flux). For a 40 Mg vehicle at 134 m/s wind drag power was estimated at 5.4 MW. In the electromagnetic systems, the largest power was dissipated in the guideway linear synchronous motor and, in the electrodynamic, the power was consumed in the eddy currents required for lift or propulsion winding losses. The reactive guideway power was larger in EMS (25 kVA/m) than in the EDS systems (5 kVA/m for image flux, 22 kVA/m for hybrid null flux).

Magnetic saturation limits the EMS 3 propulsion capability, for reasonable size and weight, to ≈ 0.1 g, which makes operation at 134 m/s marginal, with negligible hill climbing capability at that speed.

All of the systems studied, except the two EMS systems using Linear Induction Motors (LIM), use Linear Synchronous Motors (LSM), in which propulsion power is supplied to the guideway. LIM's require the transfer of propulsion power to the vehicle from the wayside by

means such as third rail or overhead catenary systems. This power transfer, at the very high speeds envisioned, can be troublesome in terms or reliability and maintenance, and require the addition of the power collection apparatus, with its weight penalty. It should be noted, however, that wayside power transfer to the vehicle at station stops was postulated for all of the systems studied, to avoid the substantial weight penalty which would otherwise be incurred by batteries to supply power at stations.

5.3 Observations

Models of sufficient detail were obtained or developed to perform the desired quantitative comparisons. Calculations for the EMS components are relatively straightforward and provide good approximations for levitation magnets and LSM. This is a result of the maturity of this technology and the large literature base which supports it.

The performance estimates obtained for the image flux system approximately matches the results cited in the literature and estimates in this study are judged to be good.

While the null flux concept promises a number of advantages, including high levitation efficiency, practical physical realizations lead to complicated configurations, especially when attempts are made to provide field cancellation to minimize the requirements for shielding passengers from stray magnetic fields. These complicated conductor and guideway configurations are not adequately treated by the closed form solutions appearing in the literature, requiring expensive numerical integration or finite element techniques for adequate analysis.

APPENDIX A

MODELS FOR ELECTROMAGNETIC SUSPENSION SYSTEMS

A.1 Model for a Single Function Electromagnet

The model and nomenclature for the single function electromagnet follows closely the development in Weinberg [1]. The geometry and nomenclature for the dimensional details of the model are shown in Figure 2-5. The vehicle magnet basically consists of a channel shaped iron body having coils of magnet wire mounted on each of the legs of the channel. The coils are connected in series, aiding, so that the magnetomotive force of the two coils is additive. The guideway mounted component is a continuous channel-shaped iron rail, the legs (also called poles) of which are the same distance apart as those of the vehicle magnet, but are shorter, usually from 2 to 3 times the gap dimension. The poles of the rail are wider than those of the magnet.

The computational model for this magnet is implemented in Microsoft Excel and may be found in Table E-1 of Appendix E, which is similar to the results spreadsheets of Appendix F, except that, instead of showing numerical values, it presents the formulas used to calculate those values. Each of the variables is described by name in column B, the units of the variable are shown in column C and the variable name appears in column D; these variable names correspond to the nomenclature of Figure 2-5.

The process of solution in the spreadsheet is as follows:

First, the values of the input variables are entered (the description of these variables is preceded by an asterisk (*) in column B).

The first step in the computation is to determine the coil ampere-turns which correspond to saturation in the stator iron. This computation is made with the air gap set at the maximum permissible value of twice the normal gap because this is the worst case for magnet back iron saturation.

Next, the dimensions of the vehicle magnet back iron and rail are determined to place the flux density in those parts at the saturation value(diminished by the saturation safety factor if entered) with the air gap at the normal operating value

The coil parameters are calculated, including the resistance, and the coil power

and temperature.

Finally, the magnet length is calculated such that the developed levitation of guidance force is that required.

This procedure yields a single design point for the input parameters, but this will generally not be an optimum value. The design is next optimized using the Solver add-in of Excel. The pole width, window width and window height are varied, subject to the specified constraints, such that the weight of the magnet is minimized. The constraints applied are that the coil temperature not exceed the maximum allowed value for the wire insulation and that the window width-to-height ratio not exceed 2 (the approximate maximum value for which the pole-to-pole leakage permeance function is valid) and that the magnet length lie between 5m and 15m (1/2 the vehicle length). The minimum value of L is chosen so that the rail eddy current losses are not too high. The constraint that the flux density in the iron not exceed the saturation value is implicit in the relationships determining the relevant dimensions of the magnet and rail. The optimization procedure is followed for both the levitation and guidance magnets, for the baseline case and also for Design 2 and Design 3, in which the pole width is 3/4 the baseline value and the air gap 80% of the baseline value, respectively. These latter two cases are provided to give some indication of the sensitivity of magnet weight to non-optimum values of the pole width and air gap.

A.2 Model for Combined Lift and Lateral Magnets (Staggered Magnets)

In contrast to the EMS I system which implements lift and guidance functions with separate, independent, magnets and magnet control systems, this configuration implements both lift and guidance with a single set of magnets and an integrated control systems for the vertical and lateral directions of motion. In addition to reducing the complexity of the control system, certain other advantages can be obtained with this system. These include lower total weight of magnets for a given force and air gap requirement and longer allowable stroke for the lateral motion of the system.

The model and parameter nomenclature for this configuration is shown in Figure 2-7. The model follows closely the development given in Wormley, et al [2], with a number of corrections of typographical errors appearing in that report. Proper operation of this system requires the lateral controller gain to be set to a particular value to decouple lateral forces from vertical forces. When the gain is set at this value, the vertical force is independent of the lateral force and the lateral force is a linear function of the lateral displacement, independent of the vertical displacement, up to a maximum value of lateral displacement called y^* , the decoupling displacement limit. Although, in general, the

A-2

lateral force continues to increase somewhat after the lateral displacement exceeds y^* , in normal operation the displacement would probably be limited to this value to avoid problems with controller instability due to the nonlinearity, etc.; the increasing force beyond y^* provides a safety margin in normal operation.

The computational model for this magnet is also implemented in Microsoft Excel and may be found in Table E-2 of Appendix E, which is similar to the results spreadsheets of Tables F-3 and F-4 of Appendix F, except that instead of showing numerical values, it presents the formulas used to calculate those values. As for the EMS I model, each of the variables is described in column B, the units of the variable are shown in column C and the variable name appears in column D.

The solution procedure for this model is similar to that for EMS II with the following exception: after setting the dimensions of the model, the value of y^* , the decoupling displacement limit, is determined as the value which equates alpha(g, delta) with alpha(g, delta+ y^*) using the Excel goal seeker. Then the optimization process proceeds as in EMS I using the Solver add-in.

35

4

A.3 Model for Lift Magnets Combined with Synchronous Motor

The model and nomenclature for lift magnets combined with the "rotor" of the Linear Synchronous Motor (LSM) is shown in Figure 2-8. The computational model for this magnet is also implemented in Microsoft Excel and may be found in Table E-3 of Appendix E, which is similar to the results spreadsheets of Tables F-5 and F-6 of Appendix F, except that instead of showing numerical values, it presents the formulas used to calculate those values. Each of the variables is described in column B, the units of the variable are shown in column C and the variable name appears in column D.

The solution procedure for this model closely follows that of EMS I.

APPENDIX B

MODEL FOR LINEAR INDUCTION MOTOR

The literature on Linear Induction Motors (LIM) is fairly extensive at the present time [References 13-37]. However, those with a level of detail useful for design and analysis are not numerous. Since the typical configuration of LIM for high speed transportation vehicles includes an iron secondary covered by a conducting layer between the wound primary structure and the secondary iron, accurate calculations of performance necessarily involve solution of the electromagnetic field equations in the secondary region; the same configuration is used in this study. Among the more useful of these papers are the work of Skobelev, et al [36], Epifanov, et al [33], Gieras, et al[27] and Tevan, et al [23]. With the exception of the last, these describe rather elaborate computations and do not furnish much detail about programs for implementing the calculations, even though they do offer the promise of accurate results. In any event, the programs which had been developed to perform the calculations described in those works were not available to us. Tevan, et al on the other hand describe a relatively simple algorithm for the calculations which could be implemented within the scope of this study.

It was initially planned to implement the LIM calculations in the same spreadsheet format as used for the other EMS and EDS calculations, but this proved to be impractical because many of the parameters are complex numbers and the calculations proved to be impractically complicated in the spreadsheet format. It was therefore decided to utilize the MatLab[®] program for the calculations. MatLab[®], which was also used for the ride comfort computations, handles complex numbers in a natural and convenient way, making the programming relatively straightforward and simple.

The program developed to implement the calculations described by Tevan, et al is shown in Table B-1. The numbers in parentheses following some statements are the numbers of the Tevan equations which the statement evaluates. The program calculates motor performance at constant primary current with a one turn per coil winding; it was assumed that the number of turns and wire size could subsequently be adjusted as required to accommodate the requirements of a reasonable drive electronics design.

One of the major characteristics of single-sided LIM is the presence of a substantial normal force, which is usually attractive at the low values of slip at which maximum tractive force and efficiency are realized; at higher values of slip, and for particular configurations, the normal forces can be repulsive, and several authors have proposed to use these repulsive forces to augment, or replace, the lift function of the vehicle's magnetic suspension. In this study, the normal forces, while calculated in the analysis, are not further considered. This implies that either the vehicle configuration utilizes LIM primaries in opposing pairs, as shown in Figures 2-2 and 2-3, so that the normal forces cancel, or that the configuration is such that the normal forces aid the lift forces of the vertical magnetic suspensions. In the latter case, this could have a beneficial effect on the overall design by providing some of the required lift in the erection phase of operation (one of the constraints assumed in the design of the levitation magnets is that the entire 1g lift force be provided at twice the operating air gap; this determines the back iron thickness, a major contributor to the core weight, from saturation considerations). Relaxing this requirement by utilizing the attractive force of the LIM would lead to smaller levitation magnet core weight. This possibility was not included in this study. The basic design of vehicles utilizing LIM in this study uses four LIM, arranged in two pairs; the primary (the vehicle mounted portion, usually termed the "stator" in rotating machinery terminology) cores of a pair are arranged "face-to-face" with the secondaries (guideway portion, corresponding to the rotor of rotating machines) between them. Two such pairs are used on each vehicle so that the bogies can move independently in negotiating curves and cresting hills.

The model was used to establish optimum LIM designs for the system configurations selected for comparison. Optimization has, of course, many possible considerations including weight, physical size, cost of acquisition, cost of operation, maintenance cost, etc. While operating cost (cost of electrical energy) is obviously a strong consideration in the design of an operating system, economic considerations were beyond the scope of this study and the design optimization consisted primarily of minimizing the on-vehicle weight, subject to the constraints which were applied. Weight of the guideway components was also addressed, but was given secondary importance. These same comments also apply to the optimizations of the levitation and guidance electromagnets described in Appendix A. The design requirements for the propulsion motors are listed in Table 1-1

The LIM configuration which was addressed in selecting optimum designs for the various systems studied was a single-sided design with a primary having a laminated core of M-19 silicon iron with half-filled slots at each end, and a two layer, fractional pitch, distributed winding. The configuration is illustrated in Figure 2-6. The secondary consisted of a solid rail of low carbon steel covered with an aluminum cap. Four optimum designs were identified, for maximum operating speeds of 89 meters/second and 134 meters/second and mechanical clearances between primary and secondary of 0.01 meters and 0.008 meters, corresponding to the variations of the levitation and guidance magnets which were studied.

Some of the results of the design optimization process for the LIM designed for operation at 134 m/s are summarized in Figure B-1 which plots approximate motor weight, and insulation and core and surface temperatures as a function of pole pitch with constant stack height and maximum traction force. The plotted weight neglects the weight of the end sections of the primary which contain half-filled slots; this weight is included in the motor weight for the final optimization results. The major impact of pole pitch on the motor design is very apparent as is the importance of insulation temperature constraints.

- 5

.7.

A major constraint on the design of any electromagnetic device is the necessity for maintaining the maximum wire insulation temperature within the rating of the insulation material. As will be seen, for a given traction force capability the insulation temperature rating has a significant impact on the weight of the motor. In this study, Class H insulation (rated at 220°C continuous operation) was selected to minimize the weight of the vehicle mounted electromagnets. The approximate motor weight is plotted vs maximum insulation temperature as pole pitch is varied in Figure B-2 which clearly shows the favorable effect on motor weight of increasing the insulation temperature rating. A limit of 200 °C was selected for the coil surface temperature in the calculations to allow for the internal temperature rise in the coils; a maximum ambient temperature of 50°C (122°F) was assumed.

Approximate Motor Weight vs Coil Surface Temperature as Pole Pitch is Varied Figure B-2

The motor parameters which resulted from the optimization procedure were for

the most part quite close to the design recommendations presented by Nonaka and Higuchi[18]; for example, the optimized pole pitches were between 0.28 meters and 0.33 meters compared with their recommendation of "about 300mm regardless of the speed" and the stack heights of 0.18 meters to 0.22 meters is comparable to their recommended values of 0.22 meters to 0.23 meters. Such comparisons confirm the appropriateness of the model for the purposes of this study.

<u>.</u>

%filename: FINAL_LIM
%Linear Induction Motor with constant current excitation
%after Tevan & Toth, Acta Technica (Hungaricae), Tomus 86(3-4), pp.331-362(1978)
%parameter names, mostly, are same as in the Toth paper; (xx) are T&T equations
%by C.R. Dauwalter, 3/21/92
%rev 5/18/92 6:45 P.M.
%MOST RECENT RUN 6/28/92 12:06 PM
%PARAMETERS FROM "LINEAR INDUCTION MOTOR" EXCEL SPREADSHEET

format compact

%Following are outputs of "LINEAR INDUCTION MOTOR" Excel spreadsheet a=.281: % pole pitch % excitation frequency (Hz) f0=160: % total current/slot @s=0, limited by core saturation Iw=3.482e3: % nominal"circumferential" current linear density (A/m) Icirc=7.42e4: % Carter factor kc=1.18: % slot width g=2.56E-02; % coreloss power(from spreadsheet) coreloss = 4.11e3. % guideway iron width l=0.220; %primary leakage reactance proportionality factor(check this!) alpha=1.65: b=0.008: % mechanical air gap clearance % 2*guideway conductor overreach beyond iron; d=1.0: % number of pole pairs p=8: % thickness of guideway conductor v=0.005: % primary resistivity (AT OPERATING TEMPERATURE!!) rho1=4.16E-08;%End of spreadsheet output % primary winding fill factor ff=3.14159/4: gamma=1/(0.37e-7);% conductivity of guideway conductor % conductivity of guideway conductor %gamma=1/(0.27e-7); % reduced conductor height (primary) hred=0.045; 11 = 1.05 * a * 2/3;% length of one end turn (2/3) fractional pitch) mu0=4*3.14159e-7; % permittivity of free space % nominal slip nomslip=0.01; % number of slots/phase/pole q1=2; s=0.025; % slip v0=2*a*f0: %synchronous velocity %vzero=0.5*v0; % onset velocity for end effect changes of thrust &

В-6

Z, etc.

diary off

%PRELIMINARY CALCULATIONS (FOR VARIABLES NOT CHANGED INSIDE FOR LOOPS)

dslot=hred; A1=g*dslot*ff; area=2*p*a*l; circumItotal=2*p*q1*3*Iw; dI=3*Iw*q1/a; h=3*q1*A1*l/(a*(l+11)); $lambda=[0.44 \ 0.28*(1-3.14159*3.14159/(108*p*p nu=[1 \ 1+1/(2*p) \ 1-1/(2*p)];$ R1=rho1*l/(b*a/(3*q1));	%%%%%%))%	depth of slot area of copper in 1 slot area of motor core not used in calculations (41) (36) 0.28*(1-3.14159*3.14159/(108*p*p))]; (37)	% (58)
%slip=[0:0.01:1]; slip=[0:0.001:0.1]; %slip(1)=1e-6; w0=2*3.14159*f0;	% %	CAUTION!! slip MUST have one zero value!! excitation angular frequency	
Xt1=alpha*w0*R1/(2*3.14159*50); [YY,II]=min(abs(slip-nomslip)); Nslots=q1*p*2*3;	% % %	(38) Il is the index of nominal slip total slots in the machine	
%PRE-ALLOCATES VECTORS, WITH ZERO VALUE FF=zeros(slip);	ES, '	FO SAVE COMPUTATION TIME LATER	
nFF=FF; currentratio=FF; Eab=FF; eta=FF; FFn=FF; I2=FF; I1=FF; km=FF; ke=FF;	%	Added 6/24/92	
ktemp=FF; normalF=FF; Pmech=FF; ratio=FF;		γ,	
R2prime=FF; sigma=[0 0 0];	.,	-ġ	

1

B-7
speed=FF; tractionF=FF; tractionForce_per_slot=FF; TotalTractionForce=FF; Vin=FF; X2prime=FF; zeta=[0 0 0]; Z2prime=FF;

%END OF PRELIMINARY CALCULATIONS

for iii=1:length(slip) % beginning of main outside loop s=slip(iii); speed(iii)=3.6*v0*(1-slip(iii));% vehicle speed (km/hr) for i=1:3m(i)=(a/nu(i))*(a/nu(i))*gamma*mu0*w0*s/(3.14159*3.14159); %(10)kinf(i)=1/(sqrt(1+i*m(i))*tan(-i*sqrt(1+i*m(i))*3.14159*v*nu(i)/a));%(14)c1(i) = real((3.14159*l*nu(i)*sqrt(1+j*m(1))/(2*a))/tanh(3.14159*l*nu(i)*sqrt(1+j*m(i))/(2*a)));%(24)c2(i) = imag((3.14159*l*nu(i)*sqrt(1+j*m(i))/(2*a))/tanh(3.14159*l*nu(i)*sqrt(1+j*m(i))/(2*a)));q(i)=3.14159*l*nu(i)/(2*a)*(exp(3.14159*d*nu(i)/a)-1)/(exp(3.14159*d*nu(i)/a)+1);%(25)ka(i)=i*a/(3.14159*v*nu(i))/((1+j*m(i))*(c1(i)+q(i)+j*(c2(i)+m(i)*q(i))));%(26b) end k=kinf-ka: ktemp(iii)=k(1); % value of k(iii); added for diagnostics bprime=b*sqrt(1+0.554*a*a/(1*1));% (32a) $K = [0 \ 0 \ 0];$ for i=1:3K(i)=(k(i)+j*tanh(3.14159*bprime*nu(i)/a))/(1-j*k(i)*tanh(3.14159*bprime*nu(i)/a));% (32b) end

ł

% REACTANCE/IMPEDANCE CALCULATIONS

r=[0 0 0]; km=[0 0 0]; FFtemp1=0; FFtemp2=0; for i=1:3 zeta(i) = sin(nu(i)*3.14159/6)*sin(nu(i)*3.14159*g/(2*a))/(nu(i)*3.14159*g/(2*a)*(q1*sin(nu(i)*3.14159/(6*q1))));% (40) sigma(i)=(k(i)*conj(k(i))-1)/(2*real(k(i)));% (62a) FFtemp1=FFtemp1+sigma(i)*lambda(i)*zeta(i)*zeta(i)*real(K(i)); FFtemp2=FFtemp2+lambda(i)*zeta(i)*zeta(i)*real(K(i)); L(i)=3.14159*1*nu(i)/(2*a);V(i)=3.14159*v*nu(i)/a;vprime(i) = (a/(3.14159*nu(i)))*atanh(V(i)*(L(i)/tanh(L(i))+q(i)));%(45) $r(i)=3*q1*zeta(i)^2*w0*mu0*1/3.1459;$ % (51) km(i)=k(i)/(1+j*k(i)*tanh(3.14159*vprime(i)*nu(i)/a));chiO(i) = 1/(tanh(3.14159*vprime(i)*(nu(i)/a))*cosh(3.14159*bprime*(nu(i)/a)+sinh(3.14159*bprime*(nu(i)/a)));%(48) chi1(i) = tanh(3.14159*bprime*(nu(i)/(2*a))*(1+chi0(i)*tanh(3.14159*vprime(i)*(nu(i)/a))));%(49) chi2(i)=chi0(i)*(cosh(3.14159*bprime*(nu(i)/a)-1));% (50) end % CALCULATE THE SLOT IMPEDANCES (without end effect) temp=0; for i=1:3temp=temp+lambda(i)*zeta(i)*zeta(i)*K(i)/nu(i); end Zwi(iii) = (3*q1/3.14159)*w0*mu0*l*temp;% (60) Zw(iii)=R1+i*Xt1+Zwi(iii);% (39) Zin(iii)=Zw(iii)*Nslots; % Total input impedance, added 5/18/92 %END OF REACTANCE/IMPEDANCE CALCULATIONS (without end effect) % FORCE CALCULATIONS FOR CONSTANT INPUT CURRENT (without end effect) % FF=tractive force per unit area FF(iii)=mu0*dI*dI*FFtemp2; % (61) nFF(iii)=FF(iii)*FFtemp1/FFtemp2: % Added 6/24/92 tractionF(iii)=FF(iii)*2*p*a*l; % (62a) normalF(iii)=tractionF(iii)*FFtemp1/FFtemp2; % (62b)

1.1.4 24

B-9

%BEGIN CALCULATIONS FOR CONSTANT INPUT VOLTAGE

Vin(iii)=Iw*Zin(iii);

% CALCULATE SLOT POWERS AND EFFICIENCY

Pin(iii)=Iw*Iw*real(Zin(iii));% real input PowerPinx(iii)=Iw*Iw*imag(Zin(iii));% reactive input PowerPout(iii)=tractionF(iii)*v0*(1-s);% output Powereta(iii)=100*Pout(iii)/Pin(iii);% efficiencyPF(iii)=Pin(iii)/sqrt(Pin(iii)*Pin(iii)+Pinx(iii)*Pinx(iii));% Power

%Power Factor

end

% end of main outside loop (with index=iii)

diary on

```
%CALCULATE PARAMETERS FOR SPREADSHEET INPUT
[ZZ,JJ]=max(tractionF);
legend
a,f0,Iw,Icirc,coreloss,rho1,kc,g,l,alpha,b,d,p,v
velout=f0*2*a
slipout=slip(JJ)
tractionFout=tractionF(JJ)
tractionFperA=FF(JJ)
normalFout=normalF(JJ)
normalFperA=nFF(JJ)
realPout=Pout(JJ)
reactPin=Pinx(JJ)
realPin=Pin(JJ)
primaryIsqR=Iw^2*R1*2*3*q1*p
secondaryPin=realPin-realPout-primaryIsqR
efficiency=100*realPout/(realPin+coreloss)
```

APPENDIX C DYNAMICS OF SIMPLE SUSPENSION MODELS

C.1 Summary of Pepler Ride Quality Index

Research into ride quality of transportation systems has resulted in the development of quantitative indices for the assessment of passenger comfort and ride acceptability. A particular ride comfort index, which has become widely known as the "Pepler Index", was specified as the standard to be used in this work for comparison of ride quality among the vehicle systems studied. The comfort rating C', or "Pepler Index", is defined as

$$C' = 1.0 + 0.5\omega_R + 0.1[db(A) - 65] + 17a_T + 17a_V$$

where

 $\omega_{\rm R}$ = passenger roll rate (angular velocity about longitudinal axis) (°/sec)

 $a_T = passenger lateral acceleration (m/sec²)$

 $a_V = passenger vertical acceleration (m/sec²)$

db(A) = sound level (db(A))

Comfort ratings of between 2 and 3, corresponding to subjective assessments of ride comfort of "comfortable" and "somewhat comfortable", respectively, are generally viewed as representing a satisfactory ride (comfort ratings of 2 and 3 correspond to \approx 92% and \approx 97%, respectively, of passengers satisfied with ride comfort). A comfort rating of 4 corresponds to a neutral assessment of ride comfort.

C.2 Assumed Spectral Densities for Ride and Cross Wind Inputs

Guideway roughness

Guideway surface irregularities are modeled as a stationary random process with a (single sided) spectral density function of the form

 $S_{y0}(F) = KF^{-n}$ (units of m²/(cycle/m)).

where $F = 1/\lambda$ is the spatial frequency and λ is the roughness wavelength.

Typical values for welded steel railroad rails were used in this study:

$$K = 6.1 \times 10^{-8}$$

n = 2.0

With this definition, the mean square value of x is

$$\overline{x}^2 = \int_0^\infty S_x(f) df$$

For a vehicle moving at velocity V, the temporal frequency of the disturbance produced by the irregularity is

$$f = FV$$

with a spectrum of

$$S_{y0}(f) = \frac{KV}{f^2}$$

With angular frequency $\omega = 2\pi f$, the spectrum becomes

$$S_{y0}(\omega) = \frac{2\pi KV}{\omega^2}$$

Setting $A = \pi K$, the spectrum becomes

$$S_{y0}(\omega) = \frac{2AV}{\omega^2} = 2\Phi_{y0}(\omega)$$

where

 $\Phi_{y0}(\omega) = \frac{AV}{\omega^2}$ is the double-sided spectrum in ω , used in this study

<u>Wind</u>

Wind is modeled as a first order Markov process (low-pass filtered white noise) in which the break frequency is determined by the correlation distance, assumed to be 200 meters in this study. Cross wind velocity is assumed to be 4.5 meters/second (10 miles/hour).

C.3 Vehicle Suspension Dynamic Models

Since assessment of the ride quality of each of the vehicle systems being considered was necessary, dynamic models of the systems were developed. The original intention was to develop a single model for determining the heave, lateral and roll motions of the vehicles, but to keep the model sufficiently simple for ready analysis, it was subsequently decided to use two separate models, one for only heave motions, and the second for combined lateral motions and roll.

C.3.1 Heave Model

The simple single degree of freedom model developed for heave is shown in Figure C-1(a). This model is used, with appropriate adjustment of parameters, for evaluating the performance of both EMS and EDS systems. The vehicle primary suspension is represented by the spring k_{y1} and the secondary suspension by the parallel combination of a spring, k_{y2} , and damper, b_{y2} . Although the primary suspension is indicated on the figure as a simple spring, in the model k_{y1} can be implemented as an active controller with selectable dynamics (to model EMS systems which utilize such control for the primary) and provision is also made to include passive damping if desired (although in the EDS systems, without active primary control, the damping is usually considered to be negligible, which is assumed in this study). The guideway is assumed to be perfectly rigid. y_0 represents the guideway roughness amplitude, which has a spectrum represented by AV/ω^2 .

This single degree of freedom, four state model was implemented in MatLab[®], a linear systems dynamics computer code. The secondary suspension can be represented either by passive damping proportional to relative motion between the vehicle passenger compartment, represented by m_2 , and the suspension bogie, represented by m_1 , or (not indicated on the figure) by active damping proportional to the passenger compartment velocity relative to inertial space. The model incorporates a finite magnet length filter to

C-3

Figure C-1. Vehicle Suspension Dynamic Models

C-4

6

simulate the effect of averaging the short wavelength guideway roughness components over the length of the primary suspension magnets.

The input to the model is a guideway roughness spectrum as described in section C.2, the vehicle velocity, the relevant vehicle dimensional and mass property information and pertinent parameters of the suspension and controllers.

The model provides numerous outputs, numerically in the form of total RMS values and, if desired, as plots vs frequency of the spectra of magnitude and phase (plots only) of significant responses:

- Accelerations of passenger compartment (m_1) and suspension bogie (m_2) .
- RMS Clearance variations between guideway and suspension bogie, and between suspension bogie and passenger compartment. The former is provided to permit assessment of probability of vehicle-guideway contact, and the latter to assess the probability of secondary suspension "bottoming" (the model is a strictly linear one, and cannot be used to quantitatively evaluate the effect on ride quality of "bottoming"; thus the suspension parameters must be selected to prevent it from occurring).
 - RMS Current and voltage of the primary suspension magnet controller and the secondary suspension active control forcer. These permit assessment of the power (active and reactive) of the controllers, used in the estimation of their weight.

Additionally, RMS values are calculated for a number of the model responses; these include:

- Primary suspension to guideway clearance.
- Passenger compartment and bogie accelerations.
- Primary suspension controller current, voltage and reactive power.

The MatLab code for the model used for all of the EMS systems and for EDS 2 and EDS 3 appears in Table C-1. The code for the model used for EDS 1 appears in Table C-2

C.3.2. Lateral Motion/Roll Model

The Pepler Index includes lateral acceleration and roll rate. In all of the systems studied (with the exception of the image flux system) the centers of gravity of the bogie and passenger compartment (unsprung and sprung masses) are separated. Thus, a lateral guideway input moves the bogie laterally which causes the passenger compartment to both translate and rotate, coupling lateral acceleration and roll rates. A two mass, two rotational inertia, eight state model was developed, since none was available in the maglev literature.

The model is shown in Figure C-1(b). In this model, the roll degree of freedom is

coupled to the lateral inputs of both the guideway and the wind. However, the roll is not coupled to the vertical disturbances from the guideway, in particular, differential guideway roughness between right and left sides does not excite the roll motions of bogie and passenger compartment.

The vehicle primary lateral suspension is represented by the spring k_1 . The displacement y_0 of the guideway end of k_1 provides for guideway roughness inputs, which are represented as in the heave model. k_1 is located a distance l_{w1} above the center of mass of the bogie, providing roll moment inputs. As in the heave model, the primary suspension is indicated on the figure as a simple spring, but can be implemented in the model as an active controller with selectable dynamics, including damping if appropriate. Finite magnet length filtering of guideway roughness is also provided.

The primary vertical suspension is represented by reaction forces $\pm F_m/2$, located a distance l_m from the bogie center of mass. The reaction forces are produced by springs $k_m/2$ at those locations; as mentioned above, these are not excited by guideway roughness and hence produce roll moments on the bogie only in response to the bogie roll displacements.

The secondary lateral suspension is represented by the spring k_2 and parallel damper b_2 , located distances l_{v1} above the bogic center of mass and l_{v2} below the passenger compartment center of mass. When $l_{v2}\neq 0$, they also provice roll restraint for the passenger compartment.

The secondary vertical suspension is represented by two pairs of parallel springs $k_v/2$ and dampers $b_v/2$; each pair of parallel spring and damper is located a horizontal distance l_h from the passenger compartment center of gravity and provides roll restraint.

Wind force inputs W_1 to the bogie and W_2 to the passenger compartment are provided, with relative magnitudes proportional to their respective lateral areas exposed to the wind and with points of application located distances l_{w1} and l_{w2} above the bogie and passenger compartment centers of mass, respectively.

The inputs to the model are parameter values for the guideway roughness and wind force spectra, the vehicle velocity and pertinent suspension and controller parameters. Outputs are similar to those of the heave model, except describing the horizontal responses, and with the addition of the roll responses.

Each of the RMS responses is calculated separately for guideway roughness and for wind inputs since the roughness inputs are always present, but the wind inputs are not necessarily. In subsequent calculations of the Pepler index, only the outputs due to guideway roughness are used. Since the guideway roughness and wind inputs are statistically independent, RMS responses to the combined inputs can be obtained as the RSS of the individual components.

The MatLab code for the model used for all of the EMS systems and for EDS 2 and EDS 3 appears in Table C-3. The code for the model used for EDS 1 (image flux) appears in Table C-4

Determination of optimal performance is complicated, compared to the heave model, because of the larger number of degrees of freedom and forcer/torquer options and because of questions concerning the location of sensors such as accelerometers and relative position sensors. Consequently, the study was restricted to passive suspension springs and dampers, except for EDS 1 (image flux, or Magneplane, system). In the case of EDS 1, active roll damping was employed by the use of aerodynamic control surfaces. The model, however, is capable of modeling active secondary suspensions in which the damping force is determined by signals from accelerometers located at the centers of gravity of suspension bogey and passenger compartment. These active secondary suspensions can be implemented either through actuators (e.g., hydraulic) between the passenger compartment and bogey, or by aerodynamic control surfaces in which the damping forces act between the passenger compartment and inertial space.

Accuracy of both models was assessed by exercising them with model parameters taken from Wormley, et al [47] and comparing the results with theirs. Since their results were for a heave-only model without wind excitations, the lateral motion/roll model parameters were selected to prevent excitation of the roll motion and the wind input was set to zero. For both models, the resulting RMS values of accelerations and displacements and the ISO-type plots (RMS accelerations in one-third octave bands) were substaitially identical to those reported by Wormley, thus validating the models.

114

Ì.

 Table C-1.
 MatLab Code for Two Degree of Freedom Heave Model

%/MATLAB/MW/EM1.M %TWO DEGREE OF FREEDOM MODEL FOR ELECTROMAGNETIC **SUSPENSION** %MARC S. WEINBERG 9/16/91 %LATEST REVISION MARC S. WEINBERG 12/12/91 %LATEST RUN 12/13/91 format short e format compact diary em.dia clg i=sqrt(-1);dtr=pi/180: g=9.8; %PARAMETERS FOR DIMENSIONLESS SCALING mass=4e4 gap=0.01 wsc = sqrt(g/gap)vsc=sqrt(g*gap) psc=2*mass*g*vsc %UNSPRUNG MASS IS #1 m1 = 1%SPRUNG MASS IS #2 $m^{2}=6$ k2=m2*(6.283/wsc)^2 b2=2*m2*.25*(6.283/wsc) k1 = -2*(1 + m2/m1)b1=0 % %MAGNET PARAMETER %FORCE COEFFICENT fi=2*(1+m2/m1)%INDUCTANCE 11 = 2.18**%RESISTANCE** r1=0.0%r1=0.26 %CHANGE IN INDUCTANCE WITH AIR GAP lh=1% %MAGNETIC FIELD CONTROLLER %EXTRA PROOF MASS win=6.283*20 mc11=0mc12=0%LAG FREQUENCY w1=10000*win/wsc %PRIMARY CONTROLLER-DAMPING & STIFFNESS $kc1=-k1+m1*(win/wsc)^2$ bc1=2*0.7*win/wsc*m1 %HIGH PASS FILTER FOR VELOCITY INTEGRATION-BREAK FREQUENCY wv=0

Table C-1 (continued). MatLab Code for Two Degree of Freedom Heave Model % %SECONDARY FORCER CONTROLLER mc22=0mc21=0%LAG FREQUENCY w2=w1kc2=0bc2=2*m2*0.7*(6.283/wsc)*0.0001 %FINITE LENGTH FILTERING %LENGTH l=2%VELOCITY v=134 %MAGNITUDE OF ROAD ROUGHNESS SPECTRA (DOUBLED SIDED IN R/S) av=6.283e-7*v*2*.3048/(gap*vsc) %WIND INPUT SPECTRA fw=0.053 nuw=6.283/wsc numw=2*nuw*fw^2/pi*[1] denw= $[-10 \text{ nuw}^2]$ %WIND FACTOR (PER CENT OF TOTAL WIND LOAD ON UNSPRUNG MASS) aw=1 % %STATE VECTOR IS [Y1DOT H1 F1 Y2DOT H2 F2 Y1DOTINT] %INPUT VECTOR IS [YODOT W AN] %OUTPUT VECTOR IS [Y1DD H1 I1 V1 Y2DD H2 F2] %DEFINE THE COEFFICIENTS OF D /DT ix=zeros(7,7);ix(1,1)=m1;ix(2,2)=1; $ix(3,:)=[mc11 \ 0 \ 1/w1 \ mc12 \ 0 \ 0 \ 0];$ ix(4,4)=m2;ix(5,5)=1.; $ix(6,:)=[mc21 \ 0 \ 0 \ mc22 \ 0 \ 1/w2 \ 0];$ ix(7,:)=[-100001]%DEFINE THE STATE MATRIX at=zeros(7,7); $at(1,:)=[-b1-b2-k1 \ 1 \ b2 \ k2 \ -1 \ 0];$ at(2,1)=1; at(3,:)=[0 -kc1 - 1000 - bc1]; $at(4,:)=[b2 \ 0 \ 0 \ -b2 \ -k2 \ 1 \ 0];$ $at(5,:)=[-1\ 0\ 0\ 1\ 0\ 0\ 0];$ $at(6,:)=[0\ 0\ 0\ -bc2\ -kc2\ -1\ 0];$ at(7,7) = -wvaa=inv(ix); a=aa*at [evec,eval]=eig(a); poles=diag(eval) %DEFINE THE INPUT MATRIX bt=zeros(7,3);bt(1,:)=[b1 aw 0];

• ••

 $bt(2,:)=[-1\ 0\ 0];$ bt(3,:)=[0.0-mc11]; $bt(4,:)=[0 \ 1-aw \ 0];$ $bt(7,:)=[0\ 0\ 1]$ b=aa*bt %WORK THE OUTPUTS c=zeros(7,7);d=zeros(7,3);c(1,:)=a(1,:);d(1,:)=b(1,:);c(2,2)=1;c(3,3)=1/fi;%NOTE THAT H1=Y1-Y0 DIFFERENT FROM MSW THESIS c(4,:)=a(3,:)*l1/fi+r1/fi*[001000]+lh*[100000];d(4,:)=b(3,:)*l1/fi+lh*b(2,:); c(5,:)=a(4,:);c(6,5)=1;c(7,6)=1d(5,:)=b(4,:)%FREQUENCY RESPONSE FOR ROAD INPUTS %[num,den] = ss2tf(a,b,c,d,1)%zerov1dot=roots(num(1,1:7)) %zeroh1=roots(num(2,1:7)) %zerov2dot=roots(num(5,1:7)) %zeroh2=roots(num(6,1:7)) %poles=roots(den) $\mathscr{R}[z,p,k] = ss2zp(a,b,c,d,1)$ %[z,p,k] = tf2zp(num,den) $w = \log space(-2, 1, 100);$ %w=[0.1:0.1:20]; [mag,phase]=bode(a,b,c,d,1,w); output1=[w;mag';phase']; %FINITE LENGTH FILTERING finl=sin(0.5*w*l*wsc/v)./(0.5*w*l*wsc/v);breakw=2.764*v/(1*wsc)temp=log(finl*(1+0*i))';mf=exp(real(temp)); pf=imag(temp)/dtr; %clg.subplot(211) %plot(w,mf) %plot(w,pf) %pause %GENERATE VECTOR TO CONTROL THE PLOTTING AXES n = length(w)v = [log10(w(1)), log10(w(n)), -3, 2];**%OBTAIN CLEARANCE AT POINT BELOW MAGNET** t1=mag(:,1).*mf.*exp(i*dtr*phase(:,1)).*exp(i*pf*dtr)./(-w.*w)'; t2=ones(n,1)./(i*w');temp=log(t1-t2);pypt=imag(temp/dtr); magypt=exp(real(temp));

Table C-1 (continued).

%OBTAIN RMS VALUES FOR ROAD INPUTS phiroad=av*ones(n.1); rmshpt=rms(magypt,phiroad,w) phiroad=phiroad.*mf.*mf; rmsh1=+rms(mag(:,2),phiroad,w) rmsh2=+rms(mag(:,6),phiroad,w) rmsy1dd=rms(mag(:,1),phiroad,w) rmsy2dd=rms(mag(:,5),phiroad,w) rmsi=rms(mag(:,3),phiroad,w) rmsv=rms(mag(:,4),phiroad,w) rmsf2=rms(mag(:,7),phiroad,w) iv=rmsi*rmsv*psc h2m=rmsh2*gap %PLOT THE ACCELERATIONS axis(v),clg,subplot(211); loglog(w,mag(:,1).*mf,w,mag(:,5).*mf),xlabel('angular freq. (rad/sec)') ylabel('acceleration'), grid title('ACCEL OF MASSES IN RESPONSE TO ROAD INPUT'), axis; semilogx(w,phase(:,1)+pf,w,phase(:,5)+pf) xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid pause %PLOT THE CLEARANCES axis(v),clg,subplot(211); loglog(w,mag(:,2).*mf,w,mag(:,6).*mf,w,magypt), xlabel('angular freq. (rad/sec)'), ylabel('clearance'), grid title('CLEARANCE OF MASSES IN RESPONSE TO ROAD INPUT'), axis; semilogx(w,phase(:,2)+pf,w,phase(:,6)+pf,w,pypt) xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid pause %PLOT THE MAGNET CURRENT AND VOLTAGE AND SECONDARY FORCER axis(v);clg,subplot(211) loglog(w,mag(:,3).*mf,w,mag(:,4).*mf,w,mag(:,7).*mf),xlabel('angular freq. (rad/sec)'),ylabel('I, V, & F2'),grid title('MAG. CURRENT, VOLT., & F2, IN RESPONSE TO ROAD INPUT'), axis; semilogx(w,phase(:,3).*mf,w,phase(:,4).*mf,w,phase(:,7).*mf), xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid pause diary off

Table C-2.MatLab Code for Two Degree of Freedom Heave Model for EDS 1
(image flux)

%/MATLAB/MW/EDSIM1.M NAME CHANGED FROM EDS1.M TO NAME ON DISK (edsim1), 3/29/92 %TWO DEGREE OF FREEDOM MODEL FOR ELECTRODYNAMIC IMAGE FLUX **SUSPENSION** %SECONDARY SET TO ZERO BY M2 = 0%IDENTICAL TO EM1.M EXCEPT FOR SUSPENSION PARAMETERS %MARC S. WEINBERG 11/13/91 %BAA VEHICLE PARAMETERS FROM S. BROWN ADDED BY CRD, 3/29/92 %LATEST REVISION MARC S. WEINBERG 12/13/91 %LATEST RUN 8/13/92 by C. R. Dauwalter format short e format compact diary edsim1_89.dia clg i = sqrt(-1);dtr=pi/180; g=9.8: %PARAMETERS FOR DIMENSIONLESS SCALING mass=4e4 gap=0.15 wsc=sqrt(g/gap) vsc=sqrt(g*gap) psc=2*mass*g*vsc %UNSPRUNG MASS IS #1 m1 = 1%SPRUNG MASS IS #2 win=6.283*1.04 m2 = 1e - 4k2=m2*(628.3/wsc)^2 b2=2*m2*.25*(628.3/wsc) $k1=-2*(1+m2/m1)*0+m1*(win/wsc)^2$ b1=2*m1*win/wsc*0% Zero primary heave damping for magneplane % %MAGNET PARAMETER %FORCE COEFFICENT fi=2*(1+m2/m1)%INDUCTANCE 11 = 2.18%RESISTANCE r1=0.0%r1=0.26%CHANGE IN INDUCTANCE WITH AIR GAP lh=1% %MAGNETIC FIELD CONTROLLER %EXTRA PROOF MASS mc11=0mc12=0%LAG FREQUENCY w1=10000*win/wsc

```
Table C-2 (continued).
                          MatLab Code for Two Degree of Freedom Heave Model
                          for EDS 1 (image flux)
%PRIMARY CONTROLLER-DAMPING & STIFFNESS
kc1=(-k1+m1*(win/wsc)^{2})*0
bc1=2*0.7*win/wsc*m1
%HIGH PASS FILTER FOR VELOCITY INTEGRATION-BREAK FREOUENCY
wv=0
%
%SECONDARY FORCER CONTROLLER
mc22=0
mc21=0
%LAG FREOUENCY
w2=w1
kc2=0
bc2=2*m2*0.7*(6.283/wsc)*0.0001
%FINITE LENGTH FILTERING
%LENGTH
l=4.5
%VELOCITY
v=134
%MAGNITUDE OF ROAD ROUGHNESS SPECTRA (DOUBLED SIDED IN R/S)
av=6.283e-7*v*2*.3048/(gap*vsc)
%WIND INPUT SPECTRA
fw=0.053
nuw=6.283/wsc
numw=2*nuw*fw^2/pi*[1]
denw=[-10 \text{ nuw}^2]
%WIND FACTOR (PER CENT OF TOTAL WIND LOAD ON UNSPRUNG MASS)
aw=0
%
%STATE VECTOR IS [Y1DOT H1 F1 Y2DOT H2 F2 Y1DOTINT]
%INPUT VECTOR IS [Y0DOT W AN]
%OUTPUT VECTOR IS [Y1DD H1 I1 V1 Y2DD H2 F2]
%DEFINE THE COEFFICIENTS OF D /DT
ix=zeros(7,7);
ix(1,1)=m1;
ix(2,2)=1;
ix(3,:)=[mc11 \ 0 \ 1/w1 \ mc12 \ 0 \ 0 \ 0];
ix(4,4)=m2;
ix(5,5)=1.;
ix(6,:)=[mc21 \ 0 \ 0 \ mc22 \ 0 \ 1/w2 \ 0];
ix(7,:)=[-1000001]
%DEFINE THE STATE MATRIX
at=zeros(7.7);
at(1,:)=[-b1-b2-k1 \ 1 \ b2 \ k2 \ -1 \ 0];
at(2,1)=1;
at(3,:)=[0 -kc1 - 1 0 0 0 - bc1];
at(4,:)=[b2 0 0 - b2 - k2 1 0];
at(5,:)=[-1\ 0\ 0\ 1\ 0\ 0\ 0];
at(6,:)=[0\ 0\ 0\ -bc2\ -kc2\ -1\ 0];
at(7,7) = -wv
```

```
C-13
```

aa=inv(ix):

Table C-2 (continued).

MatLab Code for Two Degree of Freedom Heave Model for EDS 1 (image flux)

a=aa*at [evec,eval]=eig(a); poles=diag(eval) %DEFINE THE INPUT MATRIX bt=zeros(7,3);bt(1,:)=[b1 aw 0]; $bt(2,:)=[-1\ 0\ 0];$ $bt(3,:)=[0\ 0\ -mc11];$ bt(4,:)=[0 1-aw 0]; $bt(7,:)=[0\ 0\ 1]$ b=aa*bt %WORK THE OUTPUTS c=zeros(7,7);d=zeros(7,3);c(1,:)=a(1,:);d(1,:)=b(1,:);c(2,2)=1;c(3,3)=1/fi;%NOTE THAT H1=Y1-Y0 DIFFERENT FROM MSW THESIS c(4,:)=a(3,:)*11/fi+r1/fi*[0 0 1 0 0 0 0]+lh*[1 0 0 0 0 0 0];d(4,:)=b(3,:)*l1/fi+lh*b(2,:); c(5,:)=a(4,:);c(6,5)=1;c(7,6)=1d(5,:)=b(4,:)%FREOUENCY RESPONSE FOR ROAD INPUTS %[num,den]=ss2tf(a,b,c,d,1) %zeroy1dot=roots(num(1,1:7)) %zeroh1=roots(num(2,1:7)) %zeroy2dot=roots(num(5,1:7)) %zeroh2=roots(num(6,1:7)) %poles=roots(den) %[z,p,k] = ss2zp(a,b,c,d,1)%[z,p,k] = tf2zp(num,den)w=logspace(-2,1,100); %w=[0.1:0.1:20]; [mag,phase]=bode(a,b,c,d,1,w); output1=[w;mag';phase']; %FINITE LENGTH FILTERING finl=sin(0.5*w*l*wsc/v)./(0.5*w*l*wsc/v); breakw=2.764*v/(1*wsc)temp=log(finl*(1+0*i))';mf=exp(real(temp)); pf=imag(temp)/dtr; %clg,subplot(211) %plot(w,mf) %plot(w,pf) %pause %GENERATE VECTOR TO CONTROL THE PLOTTING AXES n = length(w)

Table C-2 (continued). MatLab Code for Two Degree of Freedom Heave Model for EDS 1 (image flux) v = [log 10(w(1)), log 10(w(n)), -3, 2];%OBTAIN CLEARANCE AT POINT BELOW MAGNET t1=mag(:,1).*mf.*exp(i*dtr*phase(:,1)).*exp(i*pf*dtr)./(-w.*w)';t2=ones(n,1)/(i*w');temp=log(t1-t2);pypt=imag(temp/dtr); magypt=exp(real(temp)): **%OBTAIN RMS VALUES FOR ROAD INPUTS** phiroad=av*ones(n.1); rmshpt=rms(magypt,phiroad,w) phiroad=phiroad.*mf.*mf; rmsh1 = +rms(mag(:,2), phiroad, w)rmsh2=+rms(mag(:,6),phiroad,w) rmsy1dd=rms(mag(:,1),phiroad,w) rmsy2dd=rms(mag(:,5),phiroad,w) rmsi=rms(mag(:,3),phiroad,w) rmsv=rms(mag(:,4),phiroad,w) rmsf2=rms(mag(:,7),phiroad,w) iv=rmsi*rmsv*psc h2m=rmsh2*gap %PLOT THE ACCELERATIONS axis(v).clg.subplot(211); loglog(w,mag(:,1).*mf,w,mag(:,5).*mf),xlabel('angular freq. (rad/sec)') ylabel('acceleration'), grid title('ACCEL OF MASSES IN RESPONSE TO ROAD INPUT').axis: semilogx(w,phase(:,1)+pf,w,phase(:,5)+pf) xlabel('angular freq. (rad/sec)').vlabel('phase').grid pause %PLOT THE CLEARANCES axis(v),clg,subplot(211); loglog(w,mag(:,2).*mf,w,mag(:,6).*mf,w,magypt), xlabel('angular freq. (rad/sec)'), ylabel('clearance'), grid title('CLEARANCE OF MASSES IN RESPONSE TO ROAD INPUT'), axis; semilogx(w,phase(:,2)+pf,w,phase(:,6)+pf,w,pypt) xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid pause %PLOT THE MAGNET CURRENT AND VOLTAGE AND SECONDARY FORCER axis(v);clg,subplot(211) loglog(w,mag(:,3).*mf,w,mag(:,4).*mf,w,mag(:,7).*mf), xlabel('angular freq. (rad/sec)'), ylabel('I, V, & F2'), grid title('MAG. CURRENT, VOLT., & F2, IN RESPONSE TO ROAD INPUT'), axis; semilogx(w,phase(:,3).*mf,w,phase(:,4).*mf,w,phase(:,7).*mf), xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid pause

diary off

 Table C-3.
 MatLab Code for Four Degree of Freedom Lateral/Roll Model

```
%/MATLAB/MW/EM2.M
%FOUR DEGREE OF FREEDOM MODEL FOR ELECTROMAGNETIC
SUSPENSION AND SECONDARY
%IN RESPONSE TO LATERAL INPUTS
%MARC S. WEINBERG 10/10/91
%LATEST REVISION C.R.D., per MARC S. WEINBERG 4/5/92
%LATEST RUN 4/5/92 by C.R.D.
format short e
format compact
diary em.dia
clg
i=sqrt(-1);
dtr=pi/180;
g=9.8;
%PARAMETERS FOR DIMENSIONLESS SCALING
mass=4e4
gap=.01
wsc=sqrt(g/gap)
vsc=sqrt(g*gap)
psc=2*mass*g*vsc
%LOCATIONS OF SUSPENSION FORCES
%VERTICAL MAGNET CG TO RAIL CENTER
lm=1.5/gap
%LATERAL RAIL FORCE ABOVE CG OF MASS 1
11=0/gap
%VERTICAL SECONDARY SUSPENSION FROM CG
lh=1.5/gap
%LATERAL SECONDARY SUSPENSION-DISTANCE ABOVE CG 1
lv1=0.7/gap
%LATERAL SECONDARY SUSPENSION-DISTANCE BELOW CG 2
lv2=1.3/gap
%UNSPRUNG MASS IS #1
m1=1
%SPRUNG MASS IS #2
m_{2=6}
m=m1+m2
%MOMENTS OF INERTIA ABOUT ROLL AXIS
lr=2/gap
i1=m1*lr^{2/3}
i2=m2*lr^2/3
%LATERAL SECONDARY SUSPENSION
k2=m2*(6.283/wsc)^2
b2=2*m2*.25*(6.283/wsc)
%VERTICAL SECONDARY SUSPENSION
kv=m2*(6.283/wsc)^2
bv=2*m2*.25*(6.283/wsc)
%LATERAL MAGNET CHARACTERISTICS
%RATIO OF NOMINAL CURRENT TO THAT REQUIRED FOR LIFT
ilat=0.5
win=6.283*5
k1=(-2*2*(1+m2/m1)*ilat^2)
```

Table C-3 (continued). MatLab Code for Four Degree of Freedom Lateral/Roll Model b1=0 %FORCE COEFFICENT-EXTRA TWO ASSUMES PUSH-PULL OPERATION $fi=2*2*(1+m2/m1)*ilat^2$ %INDUCTANCE l1x=2.18*ilat^2 % *ilat^2 added 4/5/92 per MSW %RESISTANCE r1=0.0*ilat^2 % *ilat^2 added 4/5/92 per MSW %r1=0.26*ilat^2 % *ilat^2 added 4/5/92 per MSW %CHANGE IN INDUCTANCE WITH AIR GAP lhx=1 % %LATERAL MAGNETIC FIELD CONTROLLER %EXTRA PROOF MASS %PRIMARY CONTROLLER-DAMPING & STIFFNESS $kh1 = (-k1 + m1*(win/wsc)^{2})$ bh1=2*0.7*win/wsc %PRIMARY VERTICAL CONTROLLER winv=6.283*5 km=m1*(winv/wsc)^2 %LATERAL SECONDARY FORCER CONTROLLER ks2=0bs2=2*m2*0.7*(6.283/wsc)*1e-6 %FINITE LENGTH FILTERING %LENGTH l=2%VELOCITY v=134 %MAGNITUDE OF ROAD ROUGHNESS SPECTRA (DOUBLED SIDED IN R/S) av=6.283e-7*v*2*.3048/(gap*vsc) %WIND INPUT SPECTRA fw=0.053 %CORRELATION LENGTH lc=200nuw=2*pi*v/(lc*wsc) $numw=\bar{2}nuw*fw^2/pi*[1]$ denw= $[-10 \text{ nuw}^2]$ %WIND FACTOR (PER CENT OF TOTAL WIND LOAD ON UNSPRUNG MASS) aw=0%CENTER OF LATERAL WIND FORCES ABOVE THE CG. lw1=0lw2=0% %STATE VECTOR IS [Y1DOT H1 Y2DOT H2 THETA1DOT THETA1 THETA2DOT THETA21 %INPUT VECTOR IS [Y0DOT W] %OUTPUT VECTOR IS % [Y1DOT H1 Y2DOT H2 THETA1DOT THETA1 THETA2DOT THETA2 i1, V1, FM. FS1 %DEFINE THE COEFFICIENTS OF D /DT ix=diag([m1,1,m2,1,i1,1,i2,1])

C-17

Table C-3 (continued).

```
%DEFINE THE STATE MATRIX
at=zeros(8,8);
at(1,:)=[-b1-b2-bh1 k1+kh1 b2+bs2 -k2 -b2*lv1-b1*l1 -k2*lv1+m1....
    -b2*lv2 -k2*lv2];
at(2,:)=[-1\ 0\ 0\ 0\ -11\ 0\ 0\ 0];
at(4,:)=[10-10000];
at(5,:)=[-b2*lv1-l1*(b1+bh1) l1*(k1+kh1) +lv1*(bs2+b2) -k2*lv1 0 0 0 0];
at(5,5) = -b2*lv1^2 - bv*lh^2 - b1*l1^2;
at(5.6) = -k2*lv1^{2}-kv*lh^{2}-km*lm^{2};
at(5.7) = -b2*lv1*lv2+bv*lh^{2};
at(5.8) = -k2*lv1*lv2+kv*lh^{2};
at(6.5)=1;
at(7,:)=[-b2*lv2 \ 0 \ lv2*(b2+bs2) \ -k2*lv2 \ at(5,7) \ at(5,8) \ -b2*lv2^2-bv*lh^2 \ ...
     -k2*lv2^2-kv*lh^2]:
at(8,7)=1
aa=inv(ix):
a=aa*at
[evec.eval]=eig(a):
poles=diag(eval)
eigenvectors=evec
%DEFINE THE INPUT MATRIX
bt=zeros(8,2);
bt(1,:)=[b1 aw];
bt(2,:)=[1 0];
bt(3,:)=[0 1-aw];
bt(5,:)=[l1*b1 lw1*aw];
bt(7,:)=[0 lw2*(1-aw)]
b=aa*bt
%WORK THE OUTPUTS
%OUTPUT VECTOR IS
% [Y1DOT H1 Y2DOT H2 THETA1DOT THETA1 THETA2DOT THETA2 i1, V1,
FM. FS1
c = [diag(ones(1,8)); zeros(4,8)];
d = zeros(12,2);
c(1,:)=a(1,:);
d(1,:)=b(1,:);
c(3,:)=a(3,:);
d(3,:)=b(3,:);
c(9,:)=[-bh1 kh1 zeros(1,6)]/fi;
c(10,:)=11x*(-bh1*a(1,:)+kh1*a(2,:))/fi-lhx*a(2,:)+r1*c(9,:);
d(10,:)=11x*(-bh1*b(1,:)+kh1*b(2,:))/fi-lhx*b(2,:)
c(11,:)=[zeros(1,5) - lm*km 0 0];
c(12,:)=[0\ 0\ -bs2\ 0\ 0\ 0\ 0]
%NOTE THAT H1=Y0-Y1-11*theta DIFFERENT FROM MSW THESIS
%FREQUENCY RESPONSE FOR ROAD INPUTS
%[num,den]=ss2tf(a,b,c,d,1)
%zeroy1dot=roots(num(1,1:7))
\%zeroh1=roots(num(2,1:7))
%zeroy2dot=roots(num(5,1:7))
```

%zeroh2=roots(num(6,1:7)) %poles=roots(den) %[z,p,k] = ss2zp(a,b,c,d,1)%[z,p,k] = tf2zp(num,den) $w = \log space(-2, 1, 100);$ %w=[0.1:0.1:20]; [mag,phase]=bode(a,b,c,d,1,w); output1=[w;mag';phase']; **%FINITE LENGTH FILTERING** finl=sin(0.5*w*l*wsc/v)./(0.5*w*l*wsc/v);breakw=2.764*v/(1*wsc)temp=log(finl*(1+0*i))';mf=exp(real(temp)); pf=imag(temp)/dtr; %clg.subplot(211) %plot(w.mf) %plot(w,pf) %pause **%GENERATE VECTOR TO CONTROL THE PLOTTING AXES** n = length(w)vv = [log10(w(1)), log10(w(n)), -3, 2];%OBTAIN CLEARANCE AT POINT BELOW MAGNET %t1=mag(:,1).*mf.*exp(i*dtr*phase(:,1)).*exp(i*pf*dtr)./(-w.*w)'; t1 = (mag(:,1).*exp(i*dtr*phase(:,1))./(-w.*w)'+...11*mag(:,6).*exp(i*dtr*phase(:,6))).*mf.*exp(i*pf*dtr); t0 = ones(n, 1)./(i*w');temp=log(t0-t1);pypt=imag(temp/dtr); magypt=exp(real(temp)): %OBTAIN RMS VALUES FOR ROAD INPUTS phiroad=av*ones(n,1); rmshpt=rms(magypt,phiroad,w) phiroad=phiroad.*mf.*mf; rmsh1 = +rms(mag(:,2), phiroad, w)rmsh2=+rms(mag(:,4),phiroad,w) h2m=rmsh2*gap rmsy1dd=rms(mag(:,1),phiroad,w) rmsy2dd=rms(mag(:,3),phiroad,w) rmst1d=rms(mag(:,5),phiroad,w) rmst1=rms(mag(:,6),phiroad,w) rmst2d=rms(mag(:,7),phiroad,w) t2ddps=rmst2d*wsc/dtr rmst2=rms(mag(:,8),phiroad,w) rmsi=rms(mag(:,9),phiroad,w) rmsv=rms(mag(:,10),phiroad,w) rmsfs=rms(mag(:,12),phiroad,w) %OBTAIN RMS VALUES FOR WIND INPUTS [phiw,phasew]=bode(numw,denw,w); %rmstest=rms(ones(n,1),phiw,w) rmsh1w=+rms(mag(:,2),phiw,w)

MatLab Code for Four Degree of Freedom Lateral/Roll Model

rmsh2w=+rms(mag(:,4),phiw,w) h2wm=rmsh2w*gap rmsy1ddw=rms(mag(:,1),phiw,w) rmsy2ddw=rms(mag(:,3),phiw,w) rmst1dw=rms(mag(:,5),phiw,w) rmst1w=rms(mag(:,6),phiw,w) rmst2dw=rms(mag(:,7),phiw,w) t2ddpsw=rmst2dw*wsc/dtr rmst2w=rms(mag(:,8),phiw,w) rmsiw=rms(mag(:,9),phiw,w) rmsvw=rms(mag(:,10),phiw,w) rmsfsw=rms(mag(:,12),phiw,w) iv=rmsi*rmsv*psc*2 % added 4/5/92 per MSW %PLOT THE ACCELERATIONS axis(vv),clg,subplot(211); loglog(w,mag(:,1).*mf,w,mag(:,3).*mf),xlabel('angular freq. (rad/sec)') ylabel('acceleration'), grid title('ACCEL OF MASSES IN RESPONSE TO ROAD VELOCITY'), axis; semilogx(w,phase(:,1)+pf,w,phase(:,3)+pf) xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid pause %PLOT THE CLEARANCES axis(vv),clg,subplot(211); $\log\log(w,mag(:,2),*mf,w,mag(:,4),*mf,w,magypt),$ xlabel('angular freq. (rad/sec)'), ylabel('clearance'), grid title('CLEARANCE OF MASSES IN RESPONSE TO ROAD VELOCITY'), axis; semilogx(w,phase(:,2)+pf,w,phase(:,6)+pf,w,pypt) xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid pause %PLOT THE MAGNET CURRENT AND VOLTAGE AND SECONDARY FORCER. axis(vv);clg,subplot(211) loglog(w,mag(:,9).*mf,w,mag(:,10).*mf,w,mag(:,12).*mf),xlabel('angular freq. (rad/sec)'), ylabel('I, V, & F2'), grid title('MAG. CURRENT, VOLT., & F2, IN RESPONSE TO ROAD VELOCITY'), axis; semilogx(w,phase(:,3)+pf,w,phase(:,4)+pf,w,phase(:,7)+pf), xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid pause %PLOT THE ANGLES vv = [log 10(w(1)), log 10(w(n)), -4, 0];axis(vv),clg,subplot(211); loglog(w,mag(:,6).*mf,w,mag(:,8).*mf), xlabel('angular freq. (rad/sec)'), ylabel('clearance'), grid title('ROTATION OF MASSES IN RESPONSE TO ROAD VELOCITY'), axis; semilogx(w,phase(:,6)+pf,w,phase(:,8)+pf) xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid diary off

Table C-4.MatLab Code for Four Degree of Freedom Lateral/Roll Model for EDS 1
(image flux)

%/MATLAB/MW/EDSIM2.M%FOUR DEGREE OF FREEDOM MODEL FOR MAGNEPLANE IMAGE AND SECONDARY IN RESPONSE TO LATERAL INPUTS %MARC S. WEINBERG 12/14/91 %LATEST REVISION MARC S. WEINBERG 3/31/92 %BAA VEHICLE PARAMETERS FROM S. BROWN ADDED BY CRD.3/29/92 %LATEST RUN 8/13/92 by C. R. Dauwalter format short e format compact diary edsim2_89.dia clg i=sqrt(-1);dtr=pi/180: g=9.8: %PARAMETERS FOR DIMENSIONLESS SCALING mass=4e4 gap=0.15 wsc=sqrt(g/gap) vsc=sqrt(g*gap) psc=2*mass*g*vsc %LOCATIONS OF SUSPENSION FORCES %VERTICAL MAGNET CG TO RAIL CENTER %lm=1.5/gap 11=0/gap%VERTICAL SECONDARY SUSPENSION FROM CG lh=1.5/gap %LATERAL SECONDARY SUSPENSION-DISTANCE ABOVE CG 1 lv1=0.7*1e-4/gap%LATERAL SECONDARY SUSPENSION-DISTANCE BELOW CG 2 lv2=1.3*1e-4/gap %UNSPRUNĞ MASS IS #1 m1 = 1%SPRUNG MASS IS #2. SMALL FOR MAGNEPLANE WHICH HAS NO SECONDARY SUSPENSION. m2=1e-6m=m1+m2%MOMENTS OF INERTIA ABOUT ROLL AXIS lr=2/gap %i1=m1*lr^2/3 i2=m2*lr^2/3 %LATERAL SECONDARY SUSPENSION $k_{2}=m_{2}(6283/wsc)^{2}$ b2=2*m2*.25*(6283/wsc) %VERTICAL SECONDÁRY SUSPENSION kv=m2*(6283/wsc)^2 bv=2*m2*.25*(6283/wsc) %SPECIAL SECTION FOR MAGNEPLANE %ANGLE OF CENTER OF LIFT COIL FROM CENTER th=45*dtr %KM DROPS OUT OF MAGNEPLANE ANALYSIS BY LM = 0win=6.283*1.0

Table C-4 (continued). MatLab Code for Four Degree of Freedom Lateral/Roll Model for EDS 1 (image flux) $km=m1*(win/wsc)^2$ $k1=km*(tan(th))^2$ b1=2*(win/wsc)*m*0.1%R=RADIUS OF MAGNEPLANE r=2.1/gaplm=0 **%POSITION OF VERTICAL SUSPENSIONS FROM CENTER** xmag=r*sin(th)/gaplcg=0.9/gap **%SINCE FORCE ACTS THROUGH CYLINDER CENTER LCG IS OFTEN** ANALOGOUS TO OLD L1 l1=lcg %LATERAL RAIL FORCE ABOVE CG OF MASS 1 %INERTIA ABOUT CG %inertia about cg=5e4 per S. Brown; %expressing i1 as m1*lbar^2 results in lbar=1.18m $\%i1=(m1*r^{2}/4)$ $i1=m1*(1.18/gap)^{2}$ %INERTIA ABOUT CYLINDER CENTER ic=i1+m1*lcg^2 %ROLL STIFFNESS ADDED 3/31/92 kroll=km*lm^2 wroll=sqrt((kroll+m1*lcg)/(i1+m1*lcg^2)) broll=2*(i1+m1*lcg^2)*wroll*0.7 % 0.7 is arbitrary-aero control assumed for BAA %LATERAL MAGNET CHARACTERISTICS %RATIO OF NOMINAL CURRENT TO THAT REQUIRED FOR LIFT ilat=0.5%FORCE COEFFICENT $fi=2*2*(1+m2/m1)*ilat^2$ %INDUCTANCE 11x = 2.18%RESISTANCE r1=0.0%r1=0.26%CHANGE IN INDUCTANCE WITH AIR GAP lhx=1 % %LATERAL MAGNETIC FIELD CONTROLLER %EXTRA PROOF MASS %PRIMARY CONTROLLER-DAMPING & STIFFNESS $kh1 = (-k1 + m1*(win/wsc)^{2})*0$ bh1=2*0.7*win/wsc*0 %PRIMARY VERTICAL CONTROLLER %winv=6.283*5 %km=m1*(winv/wsc)^2 %LATERAL SECONDARY FORCER CONTROLLER ks2=0bs2=2*m2*0.7*(6.283/wsc)*1e-6 %FINITE LENGTH FILTERING

```
%LENGTH
```

1 = 4.5%VELOCITY v=134 %MAGNITUDE OF ROAD ROUGHNESS SPECTRA (SINGLE SIDED IN R/S) av=6.283e-7*v*2*.3048/(gap*vsc) %WIND INPUT SPECTRA fw=0.053 %CORRELATION LENGTH lc=200nuw=2*pi*v/(lc*wsc) $numw = \hat{2} nuw fw^2/pi^{1}$ denw= $[-10 \text{ nuw}^2]$ %WIND FACTOR (PER CENT OF TOTAL WIND LOAD ON UNSPRUNG MASS) aw=1%CENTER OF LATERAL WIND FORCES ABOVE THE CG. lw1=01w2=0.7%STATE VECTOR IS [Y1DOT H1 Y2DOT H2 THETA1DOT THETA1 THETA2DOT THETA2] %INPUT VECTOR IS [Y0DOT W] %OUTPUT VECTOR IS % [Y1DOT H1 Y2DOT H2 THETA1DOT THETA1 THETA2DOT THETA2 i1, V1, FM. FS1 %DEFINE THE COEFFICIENTS OF D /DT ix=diag([m1,1,m2,1,i1,1,i2,1])%DEFINE THE STATE MATRIX at=zeros(8,8);at(1,:)=[-b1-b2-bh1 k1+kh1 b2+bs2 -k2 -b2*lv1-b1*l1 -k2*lv1+m1....-b2*lv2 -k2*lv2]; at(2,:)=[-1000-11000];at(4,:)=[10-10000];at(5,:)=[-b2*lv1-l1*(b1+bh1) l1*(k1+kh1) +lv1*(bs2+b2) -k2*lv1...0000]; $at(5,5)=-b2*lv1^{2}-bv*lh^{2}-b1*l1^{2}-broll;$ $at(5.6) = -k2*lv1^{2}-kv*lh^{2}-km*lm^{2}$ at(5,7)=-b2*lv1*lv2+bv*lh^2; $at(5,8) = -k2*lv1*lv2+kv*lh^{2}$: at(6,5)=1; $at(7,:)=[-b2*lv2 \ 0 \ lv2*(b2+bs2) \ -k2*lv2 \ at(5,7) \ at(5,8) \ -b2*lv2^2 \ -bv*lh^2 \ ...$ -k2*lv2^2-kv*lh^2]; at(8.7)=1aa=inv(ix); a=aa*at [evec,eval]=eig(a); poles=diag(eval) eigenvectors=evec %DEFINE THE INPUT MATRIX bt=zeros(8,2);bt(1,:)=[b1 aw];

```
bt(2,:)=[1 0];
bt(3,:)=[0 1-aw];
bt(5,:)=[11*b1 lw1*aw];
bt(7,:)=[0 lw2*(1-aw)]
b=aa*bt
%WORK THE OUTPUTS
%OUTPUT VECTOR IS
% [Y1DOT H1 Y2DOT H2 THETA1DOT THETA1 THETA2DOT THETA2 i1, V1,
FM, FS
c = [diag(ones(1,8)); zeros(4,8)];
d = zeros(12,2);
c(1,:)=a(1,:);
d(1,:)=b(1,:);
c(3,:)=a(3,:);
d(3,:)=b(3,:);
c(9,:)=[-bh1 kh1 zeros(1,6)]/fi;
c(10,:)=11x*(-bh1*a(1,:)+kh1*a(2,:))/fi-lhx*a(2,:)+r1*c(9,:);
d(10,:)=11x*(-bh1*b(1,:)+kh1*b(2,:))/fi-lhx*b(2,:)
%THIS LINE MAY NOT BE VALID FOR MAGNEPLANE
c(11,:)=[zeros(1,5) - lm*km 0 0];
c(12,:)=[0\ 0\ -bs2\ 0\ 0\ 0\ 0]
%NOTE THAT H1=Y0-Y1-11*theta DIFFERENT FROM MSW THESIS
%FREQUENCY RESPONSE FOR ROAD INPUTS
%[num.den]=ss2tf(a,b,c,d,1)
%zeroy1dot=roots(num(1,1:7))
\%zeroh1=roots(num(2,1:7))
%zeroy2dot=roots(num(5,1:7))
\%zeroh2=roots(num(6,1:7))
%poles=roots(den)
\sqrt[n]{z,p,k} = ss2zp(a,b,c,d,1)
%[z,p,k]=tf2zp(num,den)
w = logspace(-1, 1, 250);
w = [0.1:0.1:20];
[mag.phase]=bode(a,b,c,d,1,w);
output1=[w;mag';phase'];
%FINITE LENGTH FILTERING
finl=sin(0.5*w*l*wsc/v)./(0.5*w*l*wsc/v);
breakw=2.764*v/(1*wsc)
temp=log(finl*(1+0*i))';
mf=exp(real(temp));
pf=imag(temp)/dtr:
%clg,subplot(211)
%plot(w,mf)
%plot(w,pf)
%pause
%GENERATE VECTOR TO CONTROL THE PLOTTING AXES
n = length(w)
vv = [log10(w(1)), log10(w(n)), -3, 2];
%OBTAIN CLEARANCE AT POINT BELOW MAGNET
%t1=mag(:,1).*mf.*exp(i*dtr*phase(:,1)).*exp(i*pf*dtr)./(-w.*w)';
```

MatLab Code for Four Degree of Freedom Lateral/Roll Model for EDS 1 (image flux)

t1=(mag(:,1).*exp(i*dtr*phase(:,1))./(-w.*w)'+... 11*mag(:,6).*exp(i*dtr*phase(:,6))).*mf.*exp(i*pf*dtr); t0=ones(n,1)./(i*w');temp=log(t0-t1); pypt=imag(temp/dtr); magypt=exp(real(temp)); **%OBTAIN RMS VALUES FOR ROAD INPUTS** phiroad=av*ones(n,1); rmshpt=rms(magypt,phiroad,w) phiroad=phiroad.*mf.*mf; rmsh1=+rms(mag(:,2),phiroad,w) %rmsh2=+rms(mag(:,4),phiroad,w) %h2m=rmsh2*gap rmsy1dd=rms(mag(:,1),phiroad,w) rmsy2dd=rms(mag(:,3),phiroad,w) rmst1d=rms(mag(:,5),phiroad,w) rmst1=rms(mag(:,6),phiroad,w) rmst2d=rms(mag(:,7),phiroad,w) t2ddps=rmst2d*wsc/dtr %rmst2=rms(mag(:,8),phiroad,w) %rmsi=rms(mag(:,9),phiroad,w) %rmsv=rms(mag(:,10),phiroad,w) %rmsfs=rms(mag(:,12),phiroad,w) %OBTAIN RMS VALUES FOR WIND INPUTS [phiw,phasew]=bode(numw,denw,w); %rmstest=rms(ones(n,1),phiw,w) rmsh1w=+rms(mag(:,2),phiw,w) %rmsh2w=+rms(mag(:,4),phiw,w) %h2wm=rmsh2w*gap rmsy1ddw=rms(mag(:,1),phiw,w) rmsy2ddw=rms(mag(:,3),phiw,w) rmst1dw=rms(mag(:,5),phiw,w) rmst1w=rms(mag(:,6),phiw,w) rmst2dw=rms(mag(:,7),phiw,w) t2ddpsw=rmst2dw*wsc/dtr \ %rmst2w=rms(mag(:,8),phiw,w) %rmsiw=rms(mag(:,9),phiw,w) %rmsvw=rms(mag(:,10),phiw,w) %rmsfsw=rms(mag(:,12),phiw,w) %PLOT THE ACCELERATIONS axis(vv),clg,subplot(211); loglog(w,mag(:,1).*mf,w,mag(:,3).*mf),xlabel('angular freq. (rad/sec)') ylabel('acceleration'), grid title('ACCEL OF MASSES IN RESPONSE TO ROAD VELOCITY').axis; semilogx(w,phase(:,1)+pf,w,phase(:,3)+pf) xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid pause %PLOT THE CLEARANCES axis(vv),clg,subplot(211); loglog(w,mag(:,2).*mf,w,mag(:,4).*mf,w,magypt),

Table C-4 (continued).

MatLab Code for Four Degree of Freedom Lateral/Roll Model for EDS 1 (image flux)

xlabel('angular freq. (rad/sec)'), ylabel('clearance'), grid title('CLEARANCE OF MASSES IN RESPONSE TO ROAD VELOCITY'), axis; semilogx(w,phase(:,2)+pf,w,phase(:,6)+pf,w,pypt) xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid pause %PLOT THE MAGNET CURRENT AND VOLTAGE AND SECONDARY FORCER axis(vv);clg,subplot(211) loglog(w,mag(:,9).*mf,w,mag(:,10).*mf,w,mag(:,12).*mf),xlabel('angular freq. (rad/sec)'), ylabel('I, V, & F2'), grid title('MAG. CURRENT, VOLT., & F2, IN RESPONSE TO ROAD VELOCITY'), axis; semilogx(w,phase(:,3)+pf,w,phase(:,4)+pf,w,phase(:,7)+pf), xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid pause %PLOT THE ANGLES vv = [log10(w(1)), log10(w(n)), -3, 1];axis(vv),clg,subplot(211); loglog(w,mag(:,6).*mf,w,mag(:,8).*mf),xlabel('angular freq. (rad/sec)'), ylabel('clearance'), grid title('ROTATION OF MASSES IN RESPONSE TO ROAD VELOCITY'), axis; semilogx(w,phase(:,6)+pf,w,phase(:,8)+pf) xlabel('angular freq. (rad/sec)'), ylabel('phase'), grid diary off

APPENDIX D WEIGHT AND POWER ESTIMATES FOR ON-BOARD EQUIPMENT

D.1 Weight

D.1.1 Weight of Vehicle Structure

The weight of the vehicle structure, interior furnishings, certain equipment, and landing gear (in the case of the EDS vehicles) was estimated based on aircraft practice, since Maglev vehicles are expected to more closely resemble, in terms of weight criticality, aircraft than rail vehicles. A NASA Study[49] has demonstrated that there is a very good correlation between the weight of transport aircraft structures and subsystems with such basic parameters as the number of passengers and vehicle takeoff gross weight. Simple equations were developed in that study which, when applied to three existing transport aircraft covering the range from small to very large, predicted weight to within $\approx \pm 5\%$ of the actual values.

7

Table D-1 summarizes the equations which were used in estimating vehicle weight and passenger capacity; these equations are those contained in the spreadsheets appearing as Tables 4-1 and 4-2. As may be seen, total loaded vehicle weight was assumed to be 40 Mg. An iterative procedure was used to determine passenger capacity for that vehicle weight, since the weight of major elements (particularly cabin structure and vehicle furnishings) depends on the number of passengers.

The following sections provide additional explanation of the weight estimation details.

D.1.2 Vehicle Structure and Furnishings

The estimated weight of the cabin structure was arbitrarily increased by 50% over the value predicted by the equations from the reference, to account for the different service conditions expected to be encountered by Maglev vehicles, especially those which might be operated in multi-car trains. These conditions include especially the moving vehicle-to-vehicle contact which may be expected to occur.

The vehicle furnishings include seats, floor covering, insulation, side panels & ceiling structure, coat/baggage compartments, complete lavatory installation, complete

					Separate heave
					oc sway, Liivi
Categor	У	Description	Units	Symbol	Formula
	BASIC VEHICLE				
		Vehicle body structure	Mg	m_body	=1.5*0.0004536*1F(N_pass<=100,(110*N_pass),(161*N_pass-5110))
		Interior furnishings (seats, lavs, etc.)	Mg	m_furn	=0.0004536*IF(N_pass<=80,(62.3*N_pass+290),(118.4*N_pass-4190))
	HVAC, INSTRUMENTS, LANDING GEAR	Ł			
		HVAC			
		Basic equipment	Mg	m_hvac	=0.0004536*(1-0.29)*(13.6*N_pass)
		Power conditioning & batteries	Mg	m_batt_hvac	=0.0004536*P_hvac*lb_per_kW
		Instruments	Mg	m_inst	=0.0004536*(1.872*N_pass+128)
		Landing gear	Mg	m_land	=IF(ldg_gear="N/A","N/A",(1-0.038*(10-6))*0.0004536*(0.044*1000/0.4536*m_total-672))
	±	Roll damper & actuator	Mg	m_roll	=IF(A_tail="N/A","N/A",(5.03*A_tail+87+2.17*A_tail^0.973)*0.0004536)
	LEVITATION & PROPULSION				
		Levitation & guidance magnets	Mg	m_mag	=1.54+1.93
		Motor stator	Mg	m_motor	3.71
		Bogie structure & secondary susp.	Mg	m_bogie	=f_bogie*SUM(m_mag,m_motor)
		Power conditioning & batteries	Mg	m_batt_lev	=(P_hvac+P_lev)*lb_per_kW*0.0004536
	CRYOGENIC REFRIGERATION	-			
		Power conditioning & batteries	Mg	m_cyro	=IF(P_cryo="N/A","N/A",0.0004536*P_cryo*lb_per_kW)
	PAYLOAD	-	-	-	
		Passenger weight	Mg	m_pass	=0.0004536*N_pass*180
		Carry-on baggage	Mg	m_carry	=0.0004536*N_pass*20
		Checked baggage	Mg	m_chek	=0.0004536*N_pass*66
		Total payload	Mg	m_pay	=SUM(m_pass:m_chek)
	SUMMARY		-		
		Total Gross Weight, loaded	Mg	m_total	40
		Passenger capacity		N_pass	=IF(m_add>fuzz,N_pass+1,IF(m_add<-fuzz,N_pass-1,N_pass))
	MISCELLANEOUS				
		Atail	ft^2	A_tail	N/A
		Additional payload	Mg	m_add	=m_total-SUM(m_body:m_chek)
		HVAC power	kW	P_hvac	=0.001*(48770+N_pass*167.5)
		Levitation power	kW	P_lev	.=119+18.8
		Pwr cond + battery	lb/kW	lb_per_kW	17.4
		Refrigeration powe	kW	P_cryo	N/A
		Bogie structure & sec. susp.		f_bogie	0.5
		(fraction of magnet weight)		-	
		Limit of weight erro	Mg	fuzz	=0.0004536*(200+20+66+110+290)
		Landing gear		ldg_gear	N/A

EMS I

 Table D-1.
 Vehicle Weight and Passenger Capacity with equations

•

۲

:

galley installation, attendant seats, fire warning and extinguishing system, exterior finish and miscellaneous emergency equipment (excluding emergency exit slides).

D.1.3 Passengers and Baggage

Each passenger was assumed to weigh 81.7 kg (180 pounds), carry-on baggage 9.07 kg (20 pounds) per passenger and checked baggage 29.9 kg (66 pounds) per passenger.

Landing Gear

Landing gear were provided for all of the EDS vehicles, since the EDS levitation generally does not provide sufficient lift to support the vehicle at low speeds. The estimated landing gear weight for aircraft is a function of the takeoff gross weight; a gross vehicle weight of 40 Mg was used here for estimating gear weight. The landing gear weight for aircraft was estimated on the basis of a sink speed (vertical velocity) of 10 feet/second at touchdown[48]. This was deemed excessive for maglev vehicles, and a value of 6 feet/second was assumed (this is the vertical velocity at contact after a 6 inch free fall); gear weight was derated to this value using the formula provided for sink speeds greater than 10 feet/second.

Roll Damper Aerodynamic Actuator

The Image Flux system (Magneplane type) has no inherent damping for roll motion (through proper design, this system can implement either heave damping or roll damping, but not both, through suitable modulation of the propulsion windings; this study assumed that heave damping was thus provided). Consequently, an aerodynamic control surface was provided to implement the roll damping assumed in the ride quality evaluations. The weight of this surface and its control actuator was based on a surface area of $1.115 \text{ m}^2 (12 \text{ ft}^2)$.

Batteries and Power Conditioning Equipment Batteries

In all cases, wayside power was considered to be available at station stops, and the battery system was therefore assumed to be the power source when away from stations, except for EMS with Linear Induction Motors (LIM), which utilize wayside power pickup at all times, except for emergency operation. Emergency power requirements are assumed to be the same for all vehicle types. Nickel-cadmium wet cells were assumed, having a specific power of 25.35 Watt-hour/kg (11.5 Watt-hour/pound).

Maximum safe discharge current for these batteries is conservatively the amp-hour rating \div 15.

There are two separate constraints on battery sizing; battery weight was taken as the larger of the weight determined by each of the constraints.

(a) Minimum allowable operating time to discharge; this was assumed to be 12 minutes.

W' =
$$\frac{\text{Power x operating time}}{\text{Specific Power}} = \frac{1 \text{ kWx}\frac{12}{60}}{25.35 \text{ kW/kg}} = 7.88 \frac{\text{kg}}{\text{kW}} (17.4 \frac{\text{lb}}{\text{kW}})$$

10

(b) Maximum allowable discharge current.

Assuming 170 kW total power at a system operating voltage of 700 volts, the discharge current is

discharge =
$$\frac{170 \times 10^3}{700}$$
 = 243 Amperes

The minimum battery Ampere-hour rating is

 $(I x t)_{rated} = \frac{243}{15} = 16$ Ampere-hour

Battery system rated energy storage is then

$$E_{rated} = 16 \times 700 \text{ volts} = 11.33 \text{ kW-hours}$$

and battery weight is

$$W_{\text{battery}} = \frac{11.33 \text{ x } 10^3}{25.35} = 447 \text{ kg} (985 \text{ pounds})$$

For this battery, the time to discharge is

$$t_{\text{discharge}} = \frac{16}{243} \times 60 = 3.9 \text{ minutes}$$

Thus, the determining consideration was the minimum operating time at full

power, and the specific weight of the battery system was 7.88 $\frac{\text{kg}}{\text{kW}}$ (17.4 $\frac{\text{lb}}{\text{kW}}$).

Power Conditioning

Power conditioning for three purposes was required in this study. In all cases, wayside power was considered to be available at station stops, and the battery system was therefore assumed to be the sole power source when away from stations, except for EMS with LIM.

- (a) <u>EMS Levitation</u>: here the power conditioning system provides the active control power required for stable levitation of the primary suspension electromagnets. A conceptual design for this system was 60 pounds.
- (b) <u>Hotel Power:</u> HVAC, lighting, instrumentation, etc. Maximum HVAC power was much larger than any of the other components, which were therefore assumed negligible. A single phase Pulse Width Modulated inverter was assumed, whose weight was negligible in comparison with the batteries which provide the power during the operating periods when wayside power was not available.
- (c) <u>Propulsion for EMS with LIM</u>, in which the total propulsion power was conditioned on-board. In this case, wayside power pickup was assumed, and the power conditioning converted wayside power (assumed to be 700 VDC) to three phase AC for driving the LIM. A basic 3-phase Pulse Width Modulated inverter was designed, using Insulated Gate BiPolar transistors and simple LC filters for transient and noise suppression. The weight of this system was estimated to be 493 kg (1,087 pounds).

Heating, Ventilation and Air Conditioning (HVAC)

Estimates of both the power requirements and weight of the HVAC system is described. Following are the assumptions made about the parameters of the system:

Passenger compartment surface area:	124.5 m ² (1,340 ft ²) - 3.96 meter (13 ft) diameter, half-cylinder, 20 meters (65.6 ft) long		
Surface reflectivity	90%		
Window area:	5% of outside skin area = $6.21m^2$ (66.9 ft ²)		
Window optical transmissibility	25%		
Temperature	23.9C (75°F) inside		

	37.8C (100F) outside (summer)
Relative humidity	85% outside 50% inside
Mean solar constant	$0.7948 \text{ kW/m}^2 (252 \text{ BTU/hr/ft}^2) (42^\circ\text{N}, \text{June})[50]$
Thermal conductivities Windows Walls & floor	0.313 kW/m ² /°C (0.45 BTU/hr/ft ² /°F) 0.147 kW/m ² /°C (0.5 BTU/hr/ft ² /°F) (R-2)
Air changes per hour:	10
Passenger heat output	0.117 kW (400 BTU/hr)/person[50]
HVAC overall efficiency	70%

Using these parameters, the total HVAC power input for the vehicle was equal to (48.7 + 0.168 x number of passengers) kW, the value used in Table D-1. It is noted that the HVAC power requirement was dominated by the power required for dehumidification of the incoming ambient air.

D.1.5 Bogey Structure and Secondary Suspension Elements

The weights of the secondary suspension system elements (springs, dampers and actuators for active control) and the structure of the bogey were not individually estimated, since they would vary considerably in detail between the various system configurations. Instead, the combined weight of these elements was estimated at 50% of the weight of the magnets (including weight of cryostats for the EDS systems).

APPENDIX E

SPREADSHEETS FOR ELECTROMAGNETIC SYSTEMS WITH FORMULAS

ŝ

10
				The second se
	A]B	c	1 0	E
	ElectroMagnetic Suspensio	•		Optimized for operation at 134 m/s maximum speed
2	(Separate vertical & lateral suspension	,		
3	-NOW()			
1	Asterisk (*) before description indicate	4 -		
5	2 Astensks (*) aner beschphon moles			
7				
8	DESCRIPTION	UNITS	SYMBOL	
				oaseine
11	/E			
12	2ș			
13	Vehicle mass	kg 	m Luchiele	
14	"Design speed	m m/s	1 Aeurcie	30 134
16	'frontal area	m^2	ĂI .	12
17	fair density	kg/m^3	roair	1.2
18	drag coefficient		Cd	
20	wind drag torce	w	Pd Pd	
21	"Max, Lift Force(@Max disp.)	9	max_Fz	1.1
22	"Max. Lateral Force(")(cont.)	9	max_F.I	0.26
23	*Max. Lateral Force(")(short term)	9	max_sF.I	
25	"Ime or Max. (Short)Lateral P "Max propulsive force	50C 0	t_max Fo	
26	Maximum ambient temperature	°C	maxTamb	50
27	•			
28				
29	Power, (onmic+edoy)/aero, drag Weight (magnet+coll)/vehicle	70 %		-(UC+qC++PH+PF,1+NMOOT(PHI.Feal-P.rFact))/PD -/MMAGAMmaa LammatorVM
31	eddy/lit amp-T (up. bound)	%		
32	Aerodynamic drag/lift force	%		- FD/(9.8°M)
33	~			· · · · · · · · · · · · · · · · · · ·
35	*air permeability	N/A*2	mu	- P()*0.000004
36				
37	<u>Su</u>			
38	Construction materials			stal
40	*magnet			2V Perm.
41	'coil			alum.
42	Materials properties			
43	rail	ko/m^3	tot	7506 3562183
45	fmagnet	kg/m^3	rom	7784.3797819
46	*coil	kg/m^3	100	2780.1356364
47	maximum Ilux density	-	Bent	
49	'magnet	ť	Bsatm	
50	*Saturation Salety Factor(<1)	·	SF	
51	electrical resistivity			
52	'rall @20°C	ohm-m	11	0.000004061
34	*coll@140.deg.C	ohm-m	rc .	0,000000406
55	*Temp. coefficient of coil	ohm-m/°C	rc_tc	
56	Thermal			
57	"magnet heat transfer coel.	W/C-m^2	k	-0.09/39.4^2
믦	"Maximum wire insulation terms	•C	cp maxTins	1 10.09 200
60		-		
61				
62	Construction materials			hange t
64	rail conductor(s)			store aluminum
لمتغا				

ł

Table E-1. EMS I with formulas used to calculate the dependent parameters.

.

н.

.

i

٠

4

r			<u></u>						
\vdash	Al B	<u> </u>	<u> </u>	LE					
	ElectroMagnetic Suspensi	0		Optimized for operation at 134 m/s maximum speed					
2	(Separate vertical & lateral suspensio	N .							
HH.									
121									
7									
0	DESCRIPTION	UNITS	SYMBOL	DESIGN 1					
65	*magnet			M-19					
66	'magnet coil			aluminum					
67	Materials properties								
68	Mass density	ka/m12	tom a	7606 7667187					
70	-fail	kg/m^3	rom.g						
171	'magnet	ko/m^3	rom v	7650					
72	*coil	kg/m^3	roc v	2780.1356364					
73		3		·					
74	maximum liux densities								
75	'rail	۲	bsat.g	1.6					
76	*magnet	т	bsat.v	1.5					
끧	Magnetic permeability			herea di la constanza di la constanz					
78	fail Vebles (short) states	•••	mu.g	3500					
	Venicle (Short) Stator		UNU.V						
1	Core Loss @ 1.07 100 Hz	Wiko	rais loss	2.87					
82	Gora loss frequency exponent		fren exo	15					
83	Core lass induction exponent	-	B.exp	2.1					
84	Core loss @ fsync & Bcore	W/kg	c.loss	-reic.ioss*(Isync/100)*freq.exp*(Bcore.v/1)*B.exp					
85									
86	electrical resistivity								
87	*Magnet laminations @ 140°C	ohm-m	rm,v	-0.000005'1.4					
88	rail @20 deg C	ohm-m	rm.g	0.0000004061					
89	Vehicle coil @20 deg C	0000-00	ICHI.V	0.0000002781					
91	vehicle coil Conservation temperature	nhm.m	apna.v	0.004 urdRT w(1.alpha.v(Tw.lim.201)					
1 1 2	"Guideway conductor @20 deg c	obm-m	10.0	0 0000028					
93	actional constant (2.20 and 0								
94	Heat transfer coefficients								
95	"magnet heat transfer coef.	W/C-m^2	k.v	-3'k.g					
96	'rail heat transfer coef.	W/C-m^2	k.g	-0.009*39.4*2					
97	_								
98 0	ic .								
99 1									
	Degometric gimensions	-	le.	0.0354					
102	alia ang ang ang ang ang ang ang ang ang an	11) 07	rµ Htv						
103	window width	m	w	0.084					
104	window height	m	h.	0.045					
105	Window width/height	• • •		- W/4					
106	ů			-IF(E105<2,"OK","TOO LARGET)					
107	"coll packing factor		1	0.7					
108	*pole-coli clearance	m	z	-0.2/39.4					
109	Number magnets required	• • •	nmag						
110	magnet length	m	L	-9.8"M 'max_Fz'2'MU/(B0/2'LP'2'NMAG)					
+++	Magnet length/venicle tength ratio								
113	Magnet design								
114	leakaoe/frincino flux ratios		J						
115	√ tringing (across air gap)	•••	nut	~PF/PU					
116	√ leskage (between poles)	• • •	nul	-PL/PU					
117	viotal	•••	nut	- 1+(NUL+nu1)					
118	√nominal field in air gap(@2*H1x)	т	BO	-BSATM/(1+2"(nuf+NUL))					
119	VMax. Force per magnet(@2*H1x)	N	Fpm	-2'LP'L'B0^2/(2'MU)					
120	VMax, vertical g's @ twice nom, gap	9		-JF(4'Fpm/(M'9.8)>=max Fz, 'OK', 'TOO SMALLT')					

ł

E-2

١

A 1 1 2 (3 - 4 A 5 2 6 7 8 D 121 V	B ElectroMagnetic Suspensio (Separate vertical & lateral suspension -NOW() Asterisk (*) before description indicate 2 Asterisks (**) atter description indicate	C	D	E Optimized for operation at 134 m/s maximum speed
1 1 2 (3 - 4 A 5 2 6 7 8 D	ElectroMagnetic Suspensio (Separate vertical & lateral suspension -NOW() Asterisk (*) before description indicate 2 Asterisks (*) atter description indicate			Optimized for operation at 134 m/s maximum speed
2 (3 4 4 A 5 2 6 7 8 C	(Separate vertical & lateral suspension -NOW() Asterisk (*) before description indicate 2 Asterisks (**) after description indicate			· · · · · · · · · · · · · · · · · · ·
3 - 4 A 5 2 6 7 8 0 121 V	-NOW() Asterisk (*) before description indicate 2 Asterisks (**) after description indicate			
4 A 5 2 6 7 8 C	Asterisk (*) belore description indicate 2 Asterisks (**) after description indicate			•
5 2 6 7 8 0	2 Asterisks (**) after description indica			
3 6 7 8 121 √	2 Astensks () alter description more			
121I V	DESCRIPTION	UNIIS	SYMBOL	
	vMax amp turns per coll(@ 2H1x)	A	NI	
122 1	Max. steady state NI (1 coll@1g)		NI_SS	-B0 SOH (1/max_F2) H1X/MU
123 1	(core mass (1 mag)	kg	Mcore	-ROM'L'(W'LP+2'LP'(H+LP))
124 1	mass core + coil (4 mag)	kg	Minag	-4*(MCORE+2*Mc)
125 1	/Total magnet weight/vehicle wt.		%	-MMAGM
126				
127 0	Coil Design			
128 √	resist (1 coil, of 2 on magnet)	ohm	78SC	• RC_'LC/AC
129 1	Max. St. st. ohmic power(N mags)	w	qm_ss	• 2*RESC 'NMAG'(N_ss)^2
130 1	Max coil ohmic power (N magnets)	w	qc	-2"RESC"NIP2"NMAG
131 1	Maximum coil power(1 coil)	w	qc_max	- NIM2'RESC
132 1	Max. steady state coil power(1 coil)	w	qc_ss	-NI_ss^2*RESC
133 √	Steady state temperature rise	°C	Tm_ss	-qc_ss/(NMAG*ADIS*K)
134 √	Short term temperature rise	°C	Tm_st	-OC*1_max/(Mc*cp)
135 N	Maximum coll temperature	°C	Tc_max	-maxTamb+Tm_ss
136 √	mass(one coll)	kg	Mc	
137				
138 E	Rail design			
139 1	Vrail thickness	m	tr	-LP*(BSATM/BSATR)
140 V	√rail pole tip width	m	17	-TR+2'H1X
141 n	rail mass/length(2 rails)	kg/m	mr	- 2'ROR'(2'(TR+H1X)+TR'(W+LP-ir))
142		· ·		
143 n	nominal rail flux density	т	Br	-B0*(1+nul)*(LP/TR)
144 e	eff. treq. for eddy anal.	Hz	Fe	-0.5*V/L
145 d	dB/dt amp. first harmonic	T/s	Bix	- 4'FE'BR
146 0	eddy current power	w	Pr	-B1X^2`TR^3`L`(W+LP)`NMAG/(24*RR)
147 n	ms eddy amp turn			
148	(upper bound, 1 magnet)	A	Nte	-0.7071*B1X*TR^2*(W+LP)/(8*RR)
149 🗸	Total continuous power	W	P.v	-PR+qm_ss
150				
151 La				
152 (Geometric_dimensions			
153 '	'pole width	m	lp.i	0.023
154 1	window width	m	w,I	0.08
155	window height	m	h.i	0.075
156 V	Window width/height ratio	• • •		- w. l/n. ł
157 .	• '	•••		-IF(w.in.l<2,"OK","TOO LARGE(")
158 .	coil packing factor	• • •	1.1	0.7
159 .	'air gap	m	H1x.I	0.01
160 1	'pole-coil clearance	m	z.i	-0.2/39.4
161 '	Number magnets required	•••	nmag.l	k la
162 п	nagnet length	m	LI	-9.8°M*max_sF.i/(nmag.i/2)*2*MU/(2*(B0.i^2*ip.i))
163 N	Magnet length/vehicle length			-IF(LIA_vehicle<-0.5,"OK","TOO LONGI")
164				
165 A	Magnet design			
166 R	lux leakage coefficients			
167	fringing (across air gap)	•••	nul.l	- Pf,/Pa.i
168	leakage (between poles)		กษา.1	-P .//Pu.l
169	total	•••	nut,l	- 1+(nul.i+nul.i)
<u>170 n</u>	nominal field in air gap	T	B0.I	- BSATM/(1+2*(nuf.l+nul.l))
171 1	(Max, Force per magnet(@2*H1x.I)	N	Fpm.i	- 2*/p.1*L.1*B0.1*2/(2*MU)
172 M	Aax, lateral g's @ twice nom. gap	9		-IF(2'Fpm.I/M>-max_sF.I,"OK","TOO SMALL(")
173 M	lax. amp turns per coil@2H1x.l}	٨	NI.I	-2"H1x.I"B0.I/MU
174 1	Max. steady state NI (one coll)		NI_\$\$.I	-B0.I*SORT(max_F.I/max_SF.I)*H1x.I/MU
175 0	ore mass (1 mag)	kg	Mcore.I	-ROM*L.1*(w.I*Ip.I+2*Ip.I*(h.I+Ip.I))
176 1	mass core + coil (4 mag)	kg	Mmag.I	- 4*(Mcore.1+2*Mc.1)

. Н-З *

.

<u> </u>		_	·	· · · · · · · · · · · · · · · · · · ·
<u> </u>	N	<u> </u>	D	
11	ElectroMagnetic Suspensio	5		Optimized for operation at 134 m/s maximum speed
2	(Separate vertical & lateral suspensio	H		
3	-NOW()			
	Asterisk (*) before description indicat	tu		
5	2 Asterisks (**) after description indic	E		
6				
H	DESCRIPTION	LINUTE	SVMDCM	
1.77	Total magnet weight/vehicle wt	UNITS	31MBOL	uc skin (
178	Total magnet mergers tenase and			
179	Coil_desian			
180	vresist(1 coil, of 2 on magnet)	ohm	resc.l	- RC_11c.l/ac.l
181	VMax. St. st. ohmic power(N/2 mags)	w	qm_ss.l	- 2' qc_ss.I*nmag.I/2
182	√Max. ohmic power (N/2 magnets)	w	qc.l	- 2'qc_max.l'nmag.l/2
183	√Maximum coil power(1 coil)	W	qc_max.l	- Ni, / 2*resc. I
184	Max. steady state coil power(1 coil)	W	qc_ss.l	- NI_ss.I/2 resc.I
185	VSteady state temperature rise	°C	Im_ss.I	- qc, ss. //(a015.1 * K)
100	Veninum ecil temperature rise	-C	Tm_st.i	- gc. 1_indx/(Mc.; cp)
101	Vmassione coll	ka	Mc1	- ROC as (1/1/2) / 1/2
189	masione cont	שיי		
190	Rail design			
191	vral) thickness	m	tr.l	-Ip.I*(B0.I*BSATR)*(1+2*nul.)
192	√rail pole tip width (-tr)	m	Ir.I	-lp.j+2*H1x.j
193	rail mass/length(two rails)	kg/m	mr.i	- 2'ROR'(2'lr'(tr.l+H1x.l)+tr.l*(w.l+lp.l-lr.l))
194	•••	-		
195	nominal rail flux density(centered?)	T	Br.I	-B0.1*SORT(max_F.I/max_sF.I)*(1+nuf.I)*(1p.I/tr.I)
196	ell. Ireq. for eddy anal.	Hz	Fø.l	-0.5°V/L.i
197	dB/dt amp. first harmonic	T/s	B1x.i	- 4°Fe.1°Br.1
198	eddy current power	w	Pr.I	-B1x./2*tr.i^3*L.I*(w.I+ip.i)*nmag.i/(24*FRF)
199	rms eddy amp turn		NU- 1	
200	(upper bound, 1 magnet)	A W	NI8.I :	-0,7071 B13.7 K1,P22(W.1+10,1)(B*HH) B4 (Les of 120 terms 1/2
201	Peak Power(V max E & disol)	w	F. I	-11.1+40_351 € IMM84.06
203	(Bak / Dwoll(g) V, Inax I & Ospic)			
2041	ir.			
205	_			
206	Design maximum thrust	g	max.g	0.21
207	Design maximum thrust	N	max.thr	-max.g*M*9.8
208	Nominal excitation frequency	Hz	fsync	- V/(2*tau.v*(1-nom.slip))
209	Synchronous speed	m/s	vsync	- V()-nom.siip)
210	Nominal sup		nom.sup	u.u.
212	General			
213	Number of motors		Nmptor	4
214	Number of poles		Np.v	16
215	Geometric dimensions		•	
216	*Air gap (mechanical clearance)	m	cl.v	0.01
217	Pole pitch	m	tau.v	- 1/3
218	*Slots/pole/phase		Nsiots	2
219	Core width	m	d.v	0.21
220	*Tooth width/slot width ratio		tsr.v	1.2
221	"Slot depth	m	h.v	0.05
222	Lamination Inickness	m	uam.v	
224	Magnese gap (entrerer) Carter factor	434	y mag Koorter	***10
225	Effective magnetic gap	m	de tim	- un lo guing marine plant i guing marine particular a transmission of the plant i guing marine plant i guing
226	Back iron thickness, vehicle	m	tv.v	- Fod/24 (*bsat v)
227	Tooth width	m	H.V	-w.V/IST.V
228	Slot width	т	w.v	-tau.v/(Nslots*Nphase.v*(1+1/tsr.v))
229	Slot pitch (-tooth pitch)	ពា	sp.v	-lt.v+w.v
230	Number of laminations		Niams.v	-INT(d.v/tiam.v)
231	Motor effective length	m	Leff	
232	Motor physical length	m	Lphys	- Leff+2*(Nphase.v*Nslots-1)*sp.v

4

.

)

	в	c	D	E
	ElectroMagnetic Suspensio			Onlimited for operation at 134 m/s maximum sneed
	(Separate vertical & lateral suspension			
3	-NOW()			
	Asterisk (*) before description indicate	ı		
5	2 Asterisks (**) after description indice			
6				
7				
8	DESCRIPTION	UNITS	SYMBOL	DESIGN 1
233	Effective air gap area	m^2	Atace	- Leff d. v Drid with which divid along the second biological statement and the second statement of th
234	Core exposed surface area	m~2	ACOLA	-2 (0.4 (n.4+ty.4)+0.4 Lphys+(n.4+ty.4) Lphys+n.4 w.4 wpnase.4 ncoils.4 wp.4)
235	Winding parameters			
237	Number of phases		Nohase.v	3
238	Coll pitch/pole pitch ratio(fraction)		cp_tau	-2/3
239	Number of winding layers		Nayers.v	2
240	Number of coils/pole/phase		ncoils.v	2
241	*Coil packing lactor		1.v	0.785
242	Pole/coil clearance	រា	Z.V	
243	Find two apple	degrees	NPC.V alobe	an a
245	End turn projection	ពា ពា	enhine enhine	
246	Distribution factor/distributed windin		Kd	- SIN(PI()/Nphase.v)/(Nslots*SIN(PI{)/(Nslots*Nphase.v)))
247	Pitch factor(fractional pitch colls)	•	Кр	-COS(Pi()*(1-cp_tau)/2)
248	Winding factor(for distributed winding	1	Kw	-Kd'Kp
249	Coil pitch	m	tau_c.v	- tau, v*cp_ tau
250	Mean conductor length	m/coil	Icoil.v	-2"(tau.v°cp_tau/COS(alpha*PI()/180)+d.v+2"b)
251	Coll thickness	m 	tcoil.v	- (n. v. z. v)/Nia yörs. v
252	Conductor x-section area/slot/rayer	abm	Acoll.v	
254	Heat transfer area (1 coil)	m^2	Aht v	**************************************
255	Peak MMF per coil RMS amp-turns		MMFperNi	2*\$QRT(2):Nphase.v*Kw*Nslots/P(I)
256	Core operating flux density	T	Bcore.v	-bsat.v*E25/max_Fp
257	Coil RMS amp-turns @ Bsat of tooth	Amp-turn	Nicoil.v	-bsat.v*lt.v*ge.lim/(MU*sp.v*MMFperNł)
258	Total flux per pole @ Bsat of tooth	Webers	Fpp	- 2*MMFperNI*NIcoil.v*MU*d.v*tau.v*(1+nuf.lim)/(ge.lim*PI())
259	RMS phase current @ Bsat of tooth	Α	lphase.v	- Nicoii.v/Npc.v
260	Total AMS slot current @ Bsat of tooth	A	islot .v	- Nayers.v Iphase.v
261	Coll power (1coll)	W	Pcoil.v	- HColl Viphase, V ²
202	Con surface temperature rise	÷∪ ∾∩	Twilim	
264	Siot current	A-conduct	L slot	
265	Linear current loading	A/m	Lload	- Nicoli, V Niavers, V sp. v
266				
267	Stator Leakage Reactance Calculations			
268	Slot Leakage	ohm	Xslot	-(8'Pl()'Pl()'0.0000001)'Isync'(Nlayers.v'Npc.v)^2'd.v'(Nsiots'Np.v)'(2.v/w.v+(h.v-z.v)/(3'w.v))
269	End turn leakage	ohm	Xec	- [1.418*0.0000001'I'sync*SORT{2}'Kd^2*(Npc.v*Nlayers.v)^2*Nphase.v*((Pl()`cp_tau-SIN(Pl()`cp_tau))/Pl()`cp_tau)/(Pl()*(Np.v/2)^2))*tau_c.v*TAN(alpha*Pl()/180)/2
270	lotal Primary Leakage Reactance	ohm	X108X	-20W(F508,F50a)
272	Stator askaga Bosctance @ 50 Hz			
273	Leakage Reactance @ 50 Hz.	ohm/phese	X50	- Xleak*50/lsvnc
274	Coil Resistance	ohm/phase	Rone	-Rcoil.v*ncoils.v*Np.v*Nlayers.v
275	Reactance/Resistance ratio @ 50 Hz.	•	alpha50	- X50_/Rone
276				
277	Series turns/phase		stp.llm	- Npc. v*ncoils. v*Np. v
278	Resistance, Primary	ohm/phase	rp.lim	-ncolls.v*Nlayers.v*Np.v*Rcoll.v
279	Manage lange uplace algorithm and the	L		
280	Motor from weight, single stator	ng ka	ma.v	erum, v Epnys u.v. (g.v.vin.vig.1+1/15.v)) rea utvlatethobase utvla utvlauti utlautu
282	Total motor weight/Nimotor motors)	ng ka	mmotor	- Noter Transis representation and the second se
283	total motor worgantinition motors)			
284	Core toss power, single stator	w	Pcore	-c.loss*mi.v
285	Core temperature rise	°C	delTcore	-Pcore/(Acore*k.v)
286	Core surface temperature	°C	Tcore	-maxTamb+delTcore
287				
288	Motor Secondary (guideway) Design Pa			

t

)

D B C ElectroMagnetic Suspensio Optimized for operation at 134 m/s maximum speed 1 (Separate vertical & lateral suspension -NOW/ Asterisk (*) before description indicate 2 Asterisks (**) after description indice DESCRIPTION UNITS SYMBOL DESIGN 1 Iron Back iron thickness, guideway -Fpp/(2*d.g*bsat.g) m ty.g Back iron width d.g -d.v+2*g.mag m Guideway iron specific weight -rom.g*1*d.g*ty.g kg/m mi.g.) Conductor *Conductor overlap factor coll.g tc.g 0.005 Conductor thickness m -d.g+2*colf.g*tau.v Conductor width dc.g m Guideway conductor specific weight kg/m mc.g =roc.g*1*dc.g*1c.g Total guideway added weight kg/m m.gw -Nmotor*(mc.g+mi.g) Individual Motor Parameters at Maximu Thrust** 20427 N Thrust 41358 Slip** stip Traction Power** w P.tract 2736900 Pin.real 2819700 Real input Power** w 3219400 Reactive input Power** V-A Pin.react eff.v 96.5392 Efficiency % Power Factor PwrFac -COS(ATAN(Pin.react/Pin.real)) AUXILIARY CALCULATIONS LIFT MAGNETS permeances VAir gap tringing permeance/length Pf 1.92 -LP/H1X videal air gap permeance/length Pu ?Inter-pole leakage perm./length PI -(H-H1X)/W 318 319 320 321 322 323 324 325 326 327 328 329 coll dimensions -2"(L+PI()"W/4+LP) √Mean turn length I c m VColl crossectional area(one coil) m^2 ac -(H-Z)*W/2*F VCoil Surface area(for 1 coil) m^2 adis -0.5"(4"L"(LP+W+H)+4"H"LP+2"LP"(2"LP+W)+4"LP"W+PI()"W"W+2"(H-Z)"PI()"W) GUIDANCE MAGNETS permeances VAir gap fringing permeance/length Pf.I 1.92 -lp.i/H1x.i videal air gap permeance/length Pu.f ?Inter-pole leakage perm./length PL1 -(h.i-H1x.l)/w.l coll dimensions V Mean turn length(one coil) lc.l -2*(L,l+P!()*w.l/4+lp.l) m -(h.l-z.l)*w.l/2*l.l VCoil crossectional area(one coil) m^2 ac.i adis.i -0.5*(4*L.1*(ip.1+w.1+h.1)+4*h.1*)p.1+2*1p.1*(2*1p.1+w.1)+4*1p.1*w.1+P1()*w.1*w.1+2*(h.1-z.1)*P1()*w.1 VColl Surface area(for one coll) m^2 LINEAR INDUCTION MOTOR permeances -d.v/ge.lim Ideal air gap permeance/length Pu.lim Air gap tringing permeance/length Pt.lim -1.92 nuf.llm -Pf.lim/Pv.lim Fringing permeance ratio -MMAG Lift Magnets kg Guidance Magnets kg kg -Mmag.l Linear Induction Motor -mmotor -SUM(E340:E342) Total kg 344 ₩

. Е-б

	and the second sec								
	B	С	D	Ē					
1 2 3	ElectroMagnetic Suspension (Separate vertical & lateral suspension -NOWI)	0 %		Optimized for operation at 134 m/s maximum speed					
	Asterisk (*) before description indica	ta							
5	2 Asterisks (**) after description indic	ie.							
1									
171									
Hit	DESCRIPTION	UNITS	SYMBOL	DESIGN 1					
345	Lift Magnets	kg/m		-m/					
346	Guidance Magnets	kg/m		- Mmag i					
347	Linear Induction Motor	kg/m		-m.gw					
348	Total	kg/m		-SUM(E345:E347)					
349 F	6								
350	Ohmic Power Dissipation								
351	Lift Magnets	w		•qm_ss					
352	Guidance Magnets	w		-qm_ss.i					
353	Linear Induction Motor	w		-Pin,real-P.tract					
354	Total Ohmic Power	w		- SUM(E351:E353)					
355	Eddy current Power								
356	Lift Magnets	w		-PR 1					
357	Guidance Magnets	w		-Pr.I					
358	Total eddy current Power	w		- SUM(E356:E357)					
359	Total Real Power Dissipation	w		-SUM(E358,E354)					
360 A	6			1					
361	Linear Induction Motor	V - A		- Pin.react					
362	Total	V-A		-SUM(E361:E361)					

1 .

	8	C	0	E
	ElectroMagnetic Suspension IIA			
2	(Combined vertical & lateral suspens	sic		
3	≈NOW()			
4	Asterisk (") before description indic	al		
5	2 Asterisks (**) after description ind	ic		e de la companya de l
6				
121				
8	DESCRIPTION	UNITS	SYMBOL	Design 1
				oaseune .
10				
11 1	EH			
12 0	251			
13	Vehicle mass	kg	m	
14	Vehicle length	fin .	I_venicie	
15	Design speed	m/s	v	
16	frontal area	m*2	AI	
111	air density	Kg/m-3	roair	
18	drag coefficient		2	
11	wind drag torce	5N		
20	wind drag power	w		
131	Max. Lill Porce((gmax disp.)	9	max_F2	
122	Max, Lateral Porce(")(Cont.)	ч С	max_FJ	
143	max. Lateral rorce((snort term)	y soc	max_ar.i	
	Time of Max, (shori)Lateral P	200	Max Co	
H 문 문 H	Max propulsive lorce	9 9	max_rp	
4	maximum amorent temperaturo		MGA (dilly	
1.	221			
1.00	Dowor (obmic. oddy)/anzo drag	~		-100-104/10
20	Weight (magnet.coll/webicle	~		
121	addullit amo.T (un hound)	~		
13	Aorodynamic drag(weight	~		- FD/rg a*MA
33	Norodynamic oragiworgin	~		
1110				
100				
33 0	hair pormoshility	NI/A42	m u	- P(1) 0 000004
32	an permeasing	180 6		
130				
2012	Construction materials			
	trail			steel ·
1	*magnet			2V Perm
12	*coil			
	Materials properties			
	mass density			
45	'rall	ka/m^3	101	7850
46	'magnet	ka/m^3	rom	7850
47	"coil	kg/m^3	100	2550
48	Saturation flux density	-		
49	'rail	т	BsatR	IL-4
50	'magnot	т	BsatM	[]1.4
51	'Saturation Salety Factor(<1)		SF	(n
52	Electrical resistivity			1 I I I I I I I I I I I I I I I I I I I
53	rail @20 deg C	ohm m		0.000002
54	⁺coil@190 deg C	opiu-w	10~	j0.000000472
55	Thermal			
56	'magnet heat transfer coef.	W/°C·m^2	h_s	20
57	*Conductor thermal conductivity	W/(*C m*2)	k_c	220
58	'Insulation thermal conductivity	W/*C·m^2	k_ins	0.173
59	'coil packing factor		1	=PI()/4
60	"Coil Width packing factor		l_y	=SORT(F)
61	'Coil thickness packing lactor		1_2	=SQAT(F)
12	Maximum ambient temperature	°C	T	56
63	*Coil Specific heat	J/(kg*C)	cp	118.85
64	Maximum wire insulation temp	•C	maxTine	220
65				
65 14	26			
47	Construction materials			1. 1
68	'rail			steel
69	*rail conductor(s)			aiuminum
70	'magnet			M-19
21	*magnet coll			aluminum
72	Materials properties			
173	Mass density			

ŧ

.

۲

đ

	······································		·····	
⊢	Lastrablementia Supersonalian IIA	<u> </u>	<u> </u>	
<u></u>	Electromagnetic Suspension IIA			
H¥1	Complete vertical o lateral suspensi			
H	Actoriate (1) balaza description indica			
1	2 Actoricke (*) after description indice			
6	z Asteriska () alter Geschpubli i bit	•		
1				
H	DESCRIPTION	LINITS	SYMBOL	
74	'rail	ko/m^3	rom a	7506.3662183
75	rail conductor(s)	kg/m^3	Inc. C	2780 1356364
76	*magnet	ka/m^3	rom.v	7650
77	'coll	ka/m^3	roc.v	2780.1356364
78	maximum flux densities -			
78	*rail	т	bsat.g	1.6
80	'magnet	т	bsat.v	1.5
81	Magnetic permeability			
82	rail		mu.g	3500
83	Vehicle (short) stator		mu,v	
84	Core loss			
85	Core Loss @ 1.0T, 100 Hz	W/kg	retc.loss	2.87
86	Core loss frequency exponent		treq.exp	1.5
07	Core loss induction exponent		B.exp	2.1
	Core loss @ Isync & Bcore	W/kg	c.loss	=REFCLCSS'(FSYNC/100)*FEQ.EXP'(BCORE.W1)*B.EXP
	ma is a start to			
190	Electrical resistivity			
	Magnet 1200005 (pr 140°C	onim · m	rm.v	
0.2	Tan go 20 deg C	oram-m	rm.g	
	"vehicle coil temperature coefficient	1/06	aloha w	
1	vabide coil @operation temperature	ohm.m	Co N	
106	'Guideway conductor @20 deg c	ohm-m	10.0	
97				
99	Heat transfer coefficients			
90	'magnet heat transfer coef.	W/C·m^2	k.v	=3'K.G
100	'rail heat transfer coef.	W/C·m^2	k.g	=0.009`39.4^2
101			•	
102 00	*			
103 <u>Ve</u>	Li al			
104	Geometric dimensions			
105	'Lateral stagger	m	del	0.015
106	pole width	m	ip	0.04
107	'window width	m	W .	0.229
108	window neight	m	n (or c)	
100	ar gap	m (HIX	
111	blumber meanet sets securited	m v	E composibilitation	=0.2/35,4
113	Number individual magneticet		Nimore	
113				
1114 Pa	rl			
1115	Individual magnet total weight	ka	W mag coil	MOREMCOL
116	Lift-to-weight ratio		LTWA	=(M/BjW_MAG_COIL
117	Power-to-lift ratio	kW/tonne	PTLA	=B, OCVW
118	Total weight of magnet assemblies	ka -	M_magnets	-s'W_MAG_COL
110	-	ry		
	Magnet-to-Vehicle weight ratio	•••	MMAR	⊭M_MAGNETSM
120	Magnet-to-Vehicle weight ratio Max. lateral lorce @y*(1 set)	kg	MWR F_y_star	=M_MAGNETSM =4'F_CLASS'(2'H1X(PI()'LP))'ALPHA_G.DEL.Y_S
120	Magnet-to-Vehicle weight ratio Max. lateral force @y"(1 set) Required max lateral force(1 set)	kg kg	MWR F_y_star F_ymax	=M_MAGNETSM =4°F_CLASS'(2°H1X/(P())*ALPHA_G.DEL.Y_S =M*98°MAX_SF_L/NMAG_N.SETS
120 121 122	Magnet-to-Vehicle weight ratio Max, lateral force @y'(1 set) Required max lateral force(1 set) Max, lift force @y'(1 set)	kg kg kg	MWR F_y_star F_ymax Fz_y_star	=#_MAGNETSM =#F_CLASS'(2'HI X/[PI()'LP))'ALPHA_G.DEL.Y_S =#Y\$#MAX_SF_LNIMAG_N.SETS =#YF_CLASS'(1+(2'H) X/(PI()'LP))'(1-(DEL+Y_STAR)/HI X))
120 121 122 123	Magnet-to-Vehicle weight ratio Max, lateral lorce @y'(1 set) Required max lateral lorce(1 set) Max, lift lorce @y'(1 set) Required max. lift lorce(1 set)	kg kg kg kg	MWR F_y_star F_ymax Fz_y_star F_zmax `	-M_MAGNETSM -4'F_CLASS'(2'H1 X/[P(()'LP))'ALPHA_G.DEL.Y_S -M'9B'MAX_SFLINMAG_N.SETS -4'F_CLASS'(1+(2'H1 X/[P(()'LP))'(1-(DEL+Y_STAR)/H1X)'ATAN((DEL+Y_STAR)/H1X)) -M'9B'MAX_FZ/MAG_N.SETS
120 121 122 123 124	Magnet-to-Vehicle weight ratio Max, lateral lorce @y*(i set) Required max lateral lorce(i set) Max, lift lorce @y*(i set) Required max, lift lorce(i set) Classical lift lorce (i mag, y=0)	kg kg kg kg kg	MWR F_y_star F_ymax Fz_y_star F_zmax F_class	=M_MAGNETSM =4"F_CLASS'(2'H1X/[P(I)'LP))'ALPHA_G.DEL.Y_S =4"9.6*MAX_SF_LNMAG_N.SETS =4"F_CLASS'(1+(2'H1X/[PI)'L+D)'(1-(DEL+Y_STAR)/H1X)'ATAN((DEL+Y_STAR)/H1X)) =M*98"MAX_FZ/MAG_N.SETS =MU'NI*2'L'LP/(4'H1X*2)
120 121 122 123 124 125	Magnet to-Vehicle weight ratio Max. lateral lorce @y'(1 set) Required max lateral lorce(1 set) Max. Lit lorce @y'(1 set) Required max. Lit lorce(1 set) Classical Lith force (1 mag, y=0) Lateral stituess (4 sets)	kg kg kg kg kg N/m	MWR F_y_star F_ymax Fz_y_star F_zmax` F_class K_latoral	=M_MAGNETSM =4*F_CLASS'(2*H1X/[P[()*LP])*ALPHA_G.DEL.Y_S =4*F_CLASS'(1+(2*H1X/[PI()*LP])*(1+(DEL+Y_STAR)/H1X)*ATAN((DEL+Y_STAR)/H1X)) =M*9.6*MAX_FZ/NMAG_N.SETS =MU*Ni*2*L*LP/(4*H1X*2) =4*F_Y_STARYY_STAR
120 121 122 123 124 125 125	Magneto-Vehide weight ratio Max, lateral lorce @yil set) Required max lateral force(1 set) Max, lith lorce @yi(1 set) Required max. lith lorce(1 sot) Classical lift force (1 mag, y=0) Lateral stiftness (4 sets)	kg kg kg kg kg N/m	MWR F_y_star F_ymax Fz_y_star F_zmax` F_class K_latoral	-M_MAGNETSM =4"F_CLASS'(2*H1X/(P(()'LP))*ALPHA_G.DEL.Y_S =M"9:8"MAX_SF_LNMAG_N.SETS =4"F_CLASS'(1+(2*H1X/(PI))*(1+(DEL+Y_STAR)/H1X)*ATAN((DEL+Y_STAR)/H1X)) =M"9:8"MAX_FZ/NMAG_N.SETS =MU*NI*2"L*LP(/4*H1X*2) =4"F_Y_STAR/Y_STAR
120 121 122 123 124 125 125 125 125	Magneto-Vehide weight ratio Max, Latoral lorce @y'(1 set) Required max latoral lorce(1 set) Max, Lit lorce @y'(1 set) Required max. Lit lorce(1 set) Classical Lit force (1 mag, y=0) Latoral stittness (4 sets) <u>Magnet design</u>	kg kg kg kg kg N/m	MWR F_y_star F_ymax Fz_y_star F_zmax F_class K_latoral	M_MAGNETSM =4"F_CLASS'(2*H1X/[P(I)'LP))*ALPHA_G.DEL.Y_S =M*9:6*MAX_SF_LNIMAG_N.SETS =4"F_CLASS'(1+(2*H1X/[PI)'L+(DEL+Y_STAR)/H1X)*ATAN((DEL+Y_STAR)/H1X)) =M*9:8*MAX_FZ/MAG_N.SETS =MU*NI*2*L*LP/(4*H1X*2) =4"F_Y_STAR/Y_STAR
120 121 122 123 124 125 125 125 125 125	Magnet to-Vehicle weight ratio Max, lateral force @y'(1 set) Required max lateral force(1 set) Max, lift force @y'(1 set) Required max. lift force (1 mag, y=0) Classical lift force (1 mag, y=0) Latoral stiftness (4 sets) <u>Magnet dasion</u> Decoupling displacement limit	kg kg kg kg kg N/m	MWR F_y_star F_ymax Fz_y_star F_class K_latoral y_star	M_MAGNETSM =4°F_CLASS'(2°H1X/[P[()°LP])°ALPHA_G.DEL.Y_S =4°F_CLASS'(1+(2°H1X/[P[()°LP])°(1-(DEL+Y_STAR)/H1X)*ATAN((DEL+Y_STAR)/H1X)) =4°F_CLASS'(1+(2°H1X/[P])°(1-(DEL+Y_STAR)/H1X)*ATAN((DEL+Y_STAR)/H1X)) =4°F3MAX_FZ/MAG_NSETS =4°F_Y_STAR/Y_STAR 0.021
120 121 122 123 124 125 126 127 128 120	Magneto-Vehide weight ratio Max, lateral lorce @yil set) Required max lateral lorce(1 set) Max, lith rorce @yil set) Required max. Bit lorce(1 set) Classical lift force (1 mag, y=0) Lateral stiftness (4 sets) <u>Macanet design</u> Deccuping displacement limit magnet longth	kg kg kg kg kg N/m m	MWR F_y_star F_ymax Fz_y_star F_zmax F_class K_latoral Y_star L	
120 121 122 123 124 125 128 127 128 127 128 129	Magneto-Vehide weight ratio Max, latoral lorce @y'(1 set) Required max latoral lorce @y'(1 set) Required max. Bit lorce(1 set) Required max. Bit lorce(1 set) Classical lift force (1 mag, y=0) Latoral stiftness (4 sets) <u>Magnant dasion</u> Decoupling displacement limit magnet length width of polo basa	kg kg kg kg kg N/m m m	MWWR F_y_star F_ymax Fz_y_star F_class K_latoral y_star L W_P	M_MAGNETSM =4"F_CLASS'(2*H1X/(P(I)'LP))'ALPHA_G.DEL.Y_S =4"9.6*MAX_SF_LNIMAG_N.SETS =4"F_CLASS'(1+(2*H1X/P))'1-(DEL+Y_STAR)/H1X)'ATAN((DEL+Y_STAR)/H1X)) =4"F_Y_CLASS'(1+(2*H1X*2) =4"F_Y_STAR/Y_STAR 0.021 =M"9.8*MAX_FZ'4"H1X*2)(NMAG_N.SETS'N.MAGS'MU'NI*2"LP*ALPHA_G.DEL) =LP[1+(NU_LPRU_G)) 1.0*10-00
120 121 122 123 124 125 128 127 128 127 128 120 130 131	Magneto-Vehicle weight ratio Max, lateral lorce @y'(1 set) Required max lateral lorce(1 set) Max, lift lorce @y'(1 set) Required max. lift lorce(1 set) Classical lift lorce (1 mag, y=0) Lateral stiftness (4 sets) <u>Macanet desion</u> Decoupling displacement limit magnet length width of polo baso Magnet yoko length	kg kg kg kg kg N/m m m	MWR F_y_star F_ymax Fz_y_star F_class K_latoral y_star L W_P Ly	LM_MAGNETSM =4°F_CLASS'(2*H1X/P(I)'LP))'ALPHA_G.DEL,Y_S =4°F_CLASS'(1+(2'H1X/P(I)'LP))'(1-(DEL+Y_STAR)/H1X)'ATAN((DEL+Y_STAR)/H1X)) =4°F_CLASS'(1+(2'H1X/P())'(1-(DEL+Y_STAR)/H1X)'ATAN((DEL+Y_STAR)/H1X)) =4°F_ZTARAY_SZAMAG_NSETS =4°F_Y_STARAY_STAR 0.021 =4°F_Y_STARAY_STAR 0.021 =4°F_Y_STARAY_STAR =4°F_Y_NMAX_FZ'4'H1X*2/(NMAG_NSETS'N.MAGS'MU'NI'2'LP'ALPHA_G.DEL) =LP'(1+(NU_L-P/NU_G)) =L-2'HOR_D_ =LD'(1+(NU_L-P/NU_G))
120 121 122 123 124 125 126 127 128 129 130 130 131 132	Magnet to-Vehicle weight ratio Max. lateral lorce @yits set) Required max lateral lorce(1 set) Max. illt lorce @yits set) Required max. Bit lorce(1 set) Classical lift lorce (1 mag, y=0) Lateral stillness (4 sets) <u>Macanet desion</u> Deccuping displacement limit magnet longth width of polo baso Magnet yoke length Magnet yoke height	kg kg kg kg kg N/m m m m m m	MWR F_y_star F_ymax Fz_y_star F_zmax` F_class K_latoral L U U_y_star L U_y d_y d_y	LM_MAGNETSM =4*F_CLASS*(2*H1X/[P[()*LP])*'ALPHA_G.DEL.Y_S =4*F_CLASS*(2*H1X/[P[()*LP])*'(1-(DEL+Y_STAR)/H1X)*ATAN((DEL+Y_STAR)/H1X)) =4*F_CLASS*(1+(2*H1X*2) =4*F_CLASS*(1+(2*H1X*2) =4*F_CLASS*(1+(2*H1X*2) =4*F_CLASS*(1+(2*H1X*2) =4*F_CLASS*(1+(2*H1X*2) =4*F_CLASS*(1+(2*H1X*2) =4*F_CLASS*(1+(2*H1X*2) =4*F_CLASS*(2*H1X*2)(NMAG_N.SETS*N.MAGS*MU*NI*2*LP*ALPHA_G.DEL) =L*P*(1+(NU_L.PR(U_G)) =L*P*(1+(LAMBDA)/(1+(2*HOR_D_/L)) =L*P*(1+(AMBDA)/(1+(2*HOR_D_/L)) =L*P*(1+(AMBDA)/(1+(2*HOR_D_/L))
120 121 122 123 124 125 126 127 128 127 128 120 130 131 132 133	Magneto-Vehicle weight ratio Max, latoral lorce @y'(1 set) Required max latoral lorce(1 set) Max, lith lorce @y'(1 set) Required max. lith lorce(1 set) Classical lift force (1 mag, y=0) Latoral stiftness (4 sets) <u>Magnat dasion</u> Decoupling displacement limit magnet length width of polo baso Magnet yoko height Yoke area	kg kg kg kg kg N/m m m m m m m m	MMMR F_y_star F_ymax Fz_ystar F_zmax ` F_class K_lateral y_star L W_P L_Y d_y A_yoke	M_MAGNETSM =4*F_CLASS*(2*H1X/[P[()*LP])*4LPHA_G.DEL.Y_S =4*F_CLASS*(2*H1X/[P[()*LP])*(1+(DEL+Y_STAR)/H1X)*ATAN((DEL+Y_STAR)/H1X)) =4*F_TCLASS*(1+(2*H_X0PI)*(1+(DEL+Y_STAR)/H1X)*ATAN((DEL+Y_STAR)/H1X)) =4*F_Y_STAR/Y_STAR =0.021 =4*F_Y_STAR/Y_STAR =0.021 =L*(1+(NU_LPRU_G)) =L-2*
120 121 122 123 124 125 127 128 127 130 131 132 133 134	Magneto-Vehicle weight ratio Max. lateral force @yi(1 set) Required max lateral force(1 set) Max. ill: force @yi(1 set) Required max. lift force(1 set) Classical lift force (1 set) Classical lift force (1 set) Macanet design Deccuping displacement limit magnet length Width of pole base Magnet yoke length Magnet yoke height Yoke arcs	kg kg kg kg kg N/m m m m m m m m	MMMR F_y_star F_ymax Fz_y_star F_cmax ` F_cmax ` F_class K_latoral y_star L w_P L_y d_y A_yoke	M_MAGNETSM =4*F_CLASS*(2*H1X/[P(()*LP))*(ALPHA_G.DEL.Y_S =4*F_CLASS*(2*H1X/[P(()*LP))*(1.(DEL+Y_STAR)/H1X)*ATAN((DEL+Y_STAR)/H1X)) =4*F_CLASS*(1+(2*H1X*2) =4*F_T/MAG_NSETS =MU*NI*2*L*LP(A*H1X*2) =4*F_T_STAR/Y_STAR 0.021 =4*F_T_STAR/Y_STAR 0.021 =M*9.8*MAX_FZ*4*H1X*2/(NMAG_NSETS*N.MAGS*MU*NI*2*LP*ALPHA_G.DEL) =LP*(1+(NU_LPRNU_G)) =LP*(1+LAMBDA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+LAMBA)/(1-(2*HOR_D_/L)) =LP*(1+
120 121 122 123 124 125 128 128 127 128 120 130 130 130 131 132 133 134	Magneto-Vehicle weight ratio Max. lateral lorce @yits ext) Required max lateral lorce(1 set) Max. lith lorce @yits ext) Required max. lith lorce(1 set) Classical lith lorce (1 mag, y=0) Lateral stillness (4 sets) <u>Macanet dosion</u> Decoupting displacement limit magnet longth Magnet yoke length Magnet yoke length Magnet yoke height Yoke area thinging (across alr gap) leaterad (barbagen point)	kg kg kg kg kg kg N/m m m m m m m	MMMR F_y_star F_ymax Fz_ymax Fz_tar F_tar tar tar tar tar tar tar tar tar tar	M_MAGNETSM =4*F_CLASS*(2*H1X/[P[()*LP])*'ALPHA_G.DEL.Y_S =4*F_CLASS*(2*H1X/[P[()*LP])*'(1+(DEL+Y_STAR)/H1X)*ATAN((DEL+Y_STAR)/H1X)) =4*F_CLASS*(1+(2*H1X*2) =4*F_CLASS*(1+(2*H1X*2) =4*F_T_STARY_STAR =0.021 =4*F_T_STARY_STAR 0.021 =4*F_T_STARY_STAR 0.021 =4*F_CASS*(2*H1X*2)(NMAG_N.SETS*N.MAGS*MU*N*2*LP*ALPHA_G.DEL) =LP*(1+(NU_L_PRU_G)) =LP*(1+(NU_L_PRU_G)) =LP*(1+(AMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LAMBDA)/(1+(2*HOR_D_/L)) =LP*(1+(1+LAMBDA)/(1+(2*HOR_D_/L)) =PFPU
120 121 122 123 124 125 124 125 128 120 130 130 131 133 134 135 136	Magneto-Vehicle weight ratio Max, latoral lorce @y'(1 set) Required max latoral lorce(1 set) Max, lith lorce @y'(1 set) Required max. lith lorce(1 set) Classical lift force (1 mag, y=0) Latoral stiftness (4 sets) <u>Magnet dasion</u> Decoupling displacement limit magnet length width of polo base Magnet yoke length Magnet yoke height Yoke area tringing (across air gap) leakage (between poles) total	kg kg kg kg kg kg M/m m m m m m m m	MWMR F_y_star F_ymax Fz_ystar F_zmax ` F_class K_lateral y_star L W_P L_Y d_y A_yoke nul nul	M_MAGNETSM =4*F_CLASS*(2*H1X/[P[()*LP])*(1+(DEL+Y_STAR)/H1X)*ATAN((DEL+Y_STAR)/H1X)) =4*F_CLASS*(1+(2*H1X/[P1()*LP))*(1+(DEL+Y_STAR)/H1X))*ATAN((DEL+Y_STAR)/H1X)) =4*F_STAR/Y_STAR =MU*Ni*2*L*LP((4*H1X*2) =4*F_Y_STAR/Y_STAR 0.021 =M*9.8*MAX_FZ*4*H1X*2/(NMAG_NSETS*N.MAGS*MU*NI*2*LP*ALPHA_G.DEL) =LP*(1+LNM_LPRNU_G)) =L-2*HOR_D_ =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =LP*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =L*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBDA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+LNMBA)/(1+(2*HOR_D_/L)) =D*D*(1+
120 121 122 123 124 125 126 127 120 130 131 130 131 134 135 136 137	Magneto-Vehicle weight ratio Max. lateral lorce @yit set) Required max lateral lorce(1 set) Max. lith lorce @yit set) Required max. lith lorce(1 set) Classical lith lorce (1 set) Classical lith lorce (1 set) Macanet design Deccuping displacement limit magnet length Weight of pole base Magnet yoke length Magnet yoke length Magnet yoke length Magnet yoke length Magnet yoke length Magnet yoke length Magnet goke	kg kg kg kg kg Mm m m m m m m m m T	MWR F_y_star F_ymax Fz_ymax Fz_tar F_ztmax` F_class K_latoral Y_star L U U y_star L L y d_y d_y d_y d_y d_y d_y d_y d_y d_y d	M_MAGNETSM =4*F_CLASS*(2*H1X/[P(I)'LP))*(1-LDEL-Y_S =4*F_CLASS*(1-L(2*H1X/[P(I)'LP))*(1-(DEL-Y_STAR)/H1X)) =4*F_CLASS*(1-L(2*H1X/P))*(1-(DEL-Y_STAR)/H1X)*ATAN((DEL-Y_STAR)/H1X)) =4*F_CLASS*(1-L2*H1X*2) =4*F_Y_STARY_STAR 0.021 =4*F_Y_STARY_STAR 0.021 =4*F_Y_STARY_STAR -4-2*H_LOR_D =L-2*H_LOR_D =L-2*H_LOR_D =L-2*H_LOR_D =LP*(1+LAMBDA)/(1-(2*H_LOR_D/L)) =L-2*H_LOR_D =LP*(1+LAMBDA)/(1-(2*H_LOR_D/L)) =LP*(1+LAMBDA)/(1-(2*H_LOR_D/L)) =PF/PU =PF/PU =PF/PU =1+(NUL-NUF) =054TU/SS*(1-14*PDA0(MAX/NUT_MAX) NUT_MAX2)

E-9

;

	<u> </u>	<u> c</u>	<u>P</u>	
4	Electromagnetic Suspension IIA	<i></i>		· · · · · · · · · · · · · · · · · · ·
-	(Combined Vertical & lateral suspens	566		
	Actorick (1) hoters description india	-1		
귀	2 Astalists (*) after description indic	ai . Ìc		
	2 Astenaka () alter beschpton no			
;				
à	DESCRIPTION	UNITS	SYMBOL	DESIGN 1
139	Nominal pole tip flux density	т		=B0'NU_G
140	Nominal pole base flux density	T		=B0'(NU_G·NU_L.P)
141	Nominal yoke flux density	T		=B0'NU_T
142	Force per magnet	N	Fpm	=LP'L'B0*2/MU
143	amp turns per magnet	A	NI	=2'H1X'B0/MU
144	core mass (1 mag)	kg	Mcore	=RON'V_MAG
145	mass core + coil (4 mag)	kg	Mmag	=8'(MCORE+MCOL)
146				
147	Coil design			
148	resistance (1 magnet, 1 turn)	01111	resc	
149	coll onnic power (1 magnel)	w v	qc dellaŤ sw	
151	Surface temperature fise	°C	Te	
152	Internal temperature rise	•Č	deltaT int	RC 'N''2//4'F'W'H OR D '12'H OR D 'F Y/W).W'F Z//2'H OR D))
153	Maximum internal temperature	•C	T int	T-DELTAT SUR DELTAT INT
154	mass(one coil)	kg	Mcoil	
155	Total ohmic power, Nmag*n_mags	Ŵ	P_total	=CC'NIMAGS'NIMAG_N.SETS
156				
157	Rail design			
158	rail thickness	m	tr	=LP'(80/BSATR)*(1+2*NUF)
159	rail mass/length	kg/m	mr	=2*ROR*(2*E289*(TR+H1X)+TR*(W-2*H1X))
60	nominal rall flux density	Ţ	Br	=80°(1+NUF)*(LP/TR)
61	elf, freq. for eddy anal,	HI	Fe	=0.5*V/L
62	dB/dt amp, first harmonic	1/5	Bix	
	addy current power	w	Pr	=01%-%_1H-2-C_(M+Ch),UWV0_U'2E12/(50, HH)
	tuneer bound it moonally	•	Alla	
6.6	Total continuous neuros	ŵ.		=0.77
	Total conditions power		r.v	- Thu
6.8				
169				
170 Lin	2			
171	-			
172				
73	Design maximum thrust	9	max.g	0.21
174	Design maximum thrust	N	max.thr	=MAX.G'M'9.8
175	Nominal excitation frequency	Hz	lsync	=V/(2*TAU.V*(1-NOM.SLIP))
76	Synchronous speed	m/s	vsync	=V((1-NOM.SLIP)
44	Nominal slip		nom.slip	
÷.	Sumber of malore		Newstar	
	Number of notes		No v	E. I
	Geometric dimensions			
82	'Air gap (mechanical clearance)	m	cl,v	0.01
83	Pole pitch	m	tau.v	= 1/3
84	'Slots/pole/phase		Nslots	
85	*Core width	m	d.v	0.21
86	'Tooth width/slot width ratio		tsr.v	1.2 · · · · · · · · · · · · · · · · · · ·
87	'Slot depth	m	h.v	0.05
	Lamination thickness	m	tlam,v	0.000356
	Magness gap (entreter)	m	g.mag Konstor	
	Effective maggetic can	-	nearter ge lim	La MacAcatela
12	Rack iron thickness ushicle	 m	younn ty y	
13	Tooth width	 m	lt.v	wytsky
94	Sio1 width	 m	W.V	TAU WINSLOTS'NPHASE V'11+ MTSR VN
95	Slot pitch (=tooth pitch)	m	Sp.V	=LT.V.W.V
86	Number of laminations		Nlams.v	589
97	Motor effective length	m	Leff	=NP.V"TAU.V
	Motor physical length	៣	Lphys	=LEFF+2'(NPHASE.V'NSLOTS-1)'SP.V
19	Effective air gap area	៣* 2	Aface	=LEFF*0.V
00	Core exposed surface area	m*2	Acore	=2"(D.V"(H.V+TY.V)+D.V"LPHYS+(H.V+TY.V)'LPHYS+H.V"W.V"NPHASE.V"NCOILS.V"NP.V)
01				
0 2 Win	l			
03	Number of phases		Nphase.v	<u>p</u>

E-10

ì

٨ С ElectroMagnetic Suspension IIA (Combined vertical & lateral suspensit 2 3 4 5 7 8 204 205 206 207 208 209 210 211 =NOW() Asterisk (*) before description indicat 2 Asterisks (") after description indic DESCRIPTION UNITS SYMBOL DESIGN 1 *Coll pitch/pole pitch ratio(traction) cp_tau 2/3 *Number of winding tayers Nłayers.v *Number of coils/pole/phase ncoils.v *Coil packing factor t.v 0.785 'Pole/coil clearance Z.V 0.005 *Turns/coil Npc.v 'End turn anole 30 deorees alpha 0.01 *End turn projection ь SIN(PI()/NPHASE.V)/(NSLOTS'SIN(PI()/(NSLOTS'NPHASE.V)) Distribution factor(distributed windin 212 Kd COS(PI()*(1 CP_TAU)/2) 213 Pitch factor(fractional pitch coils) Кр 214 Winding factor(for distributed winding Κw =KD'KP 215 Coll pitch TAU.V'CP_TAU m tau_c.v 216 217 218 219 220 221 222 223 223 224 Mean conductor length lcoil.v =2'(TAU.V'CP_TAU/COS(ALPHA'PI()/180)+D.V+2'B) m/coil Coil thickness tcołl.v =(H.V-Z.V)/NLAYERS.V =TCOIL.V'W.V'F.V Conductor x-soction area/slot/layer m^2 Acoil.v **Coil Resistance** Rcoil,v =NPC.V*RC.V*LCOIL.V/ACOIL.V ohm Heat transfer area (1 coil) =2"(W.V+TCOIL V)"(D.V+2"(TAU V"CP_TAU/COS(ALPHA"PI()/180)+2"B)) m^2 Aht.v Peak MMF per coil RMS amp turns =2'SORT(2)'NPHASE.V'KW'NSLOTS/PI() **MMFperNI** =BSAT.V'SORT(E25/MAX_FP) Core operating flux density Bcore.v Coll RMS amp turns @ Bsat of tooth NIcoil.v =BSAT,V'LT.V'GE.LIM/(MU'SP.V'MMFPERNI) Amp-turn =2"MMFPERNI"NICOL.V"MU"D.V"TAU.V"(1+NUF.LIMV(GE.LIM"PI()) Total flux per pôle @ Bsat of tooth Webers Fpp 225 226 227 228 229 NICOIL VINPC V RMS phase current @ Bsat of tooth lphase.v Δ Total RMS slot current @ Bsat of tooth A islot .v =NLAYERS.V'IPHASE.V Coll power (1coll) Pcoil.v =RCOIL.V"IPHASE.V*2 Coil surface temperature rise ٩C delTavg.v =PCOIL.V/(AHT.V*K.V) Maximum coil surface temperature Tw.lim =MAXTAMB+DELTAVG.V °C 230
231
232
233
233
233
235 A-conduct. NICOIL VINLAYERS,V Slot current l.slot ≈NICOIL.V'NLAYERS.V/SP.V Linear current loading A/m 1.load Stator Leakage Reactance Calculation: Slot Leakage =(8*PI()*PI()*0.0000001)*FSYNC*(NLAYERS.V*NPC.V)*2*D.V*(NSLOTS*NP.V)*(Z.V/W.V+(H.V-Z.V)/(3*W.V)) Xslot ohm End turn leakage =(1.418'0.0000001'FSYNC'SORT(2)'KD'2'(NPC.V'NLAYERS.V)*2'NPHASE.V'([PI()'CP_TAU-SIN(PI()'CP_TAU)/PI()'CP_TAU)/(PI()'(NP.V/2)*2))'TAU_C.V'TAN(ALPHA*PI()/180/2 ohm Xnc Total Primary Leakage Reactance =SUM(E234.E235) 236 237 238 238 240 241 242 243 244 245 246 247 248 ohm Xleak Stator Leakage Reactance @ 50 Hz. Leakage Reactance @ 50 Hz. =XLEAK'50/FSYNC ohm/phase X50 =RCOIL.V'NCOILS.V'NP.V'NLAYERS.V Coll Resistance ohm/phase Rone Reactance/Resistance ratio @ 50 Hz. alpha50 =X50_/RONE Series turns/phase stp.lim NPC.V'NCOILS.V'NP.V Resistance, Primary ohm/phase rp.lim =NCOILS,V'NLAYERS,V'NP,V'RCOIL,V Weight ROM.V'LPHYS'D.V'(TY.V+H.V/(1+1/TSR.V)) Motor iron weight, single stator mi.v kg #ROC.V'NSLOTS'NPHASE.V'NP.V'ACOIL.V'LCOL.V Motor conductor weight, single stator kg mc.v Total motor weight(Nmotor motors) kg NMOTOR (MI, V+MC,V) mmotor Power CLOSS'MI.V Core loss power, single stator w Pcore 249 PCORE/(ACORE*K.V) Core temperature rise ۰C delTcore 250 251 252 263 Core surface temperature •C MAXTAME+DELTCORE Tcore Motor Secondary (quideway) Design P. fron Back Iron thickness, guideway 254 255 FPP/(2*D.G*BSAT.G) ly.g m Back fron width D.V.2 G.MAG m dg ROM.G'1'D.G'TY.G 256 Guideway iron specific weight kg/m mi.g Conductor 259 259 260 261 262 263 264 263 264 263 264 263 264 263 264 265 1 265 *Conductor overlap factor colf.g *Conductor thickness 0.005 tc.g Conductor width =D.G+2"COLF.G"TAU.V dc.g Guideway conductor specific weight kg/m =ROC.G'1'DC.G'TC.G mc.g =NMOTOR*(MC.G+MI.G) Total guideway added weight ko/m m.gw Individual Motor Parameters at Maximu Thrust" Thrust 20427 N 267 Slip** 41358 slip 268 Traction Power* 73690 P.trac

	P	<u> </u>	1 0	
	ElectroMagnetic Suspension IIA	<u> </u>	<u> </u>	
2	(Combined vertical & lateral suspens	ir		
3	NOW()			
4	Asterisk (*) before description indica	a1		
5	2 Asteriaks (") after description indi	c		
6				
7				
	DESCRIPTION	UNITS	SYMBOL	
2 8 8	Real input Power**	W A	Pin.real Dia react	
271	Efficiency**	¥-A	offu	
272	Power Eactor	-	PwrFac	
273				
274				
275 AU	x			
276	Litvovidance_magnets			
277	permeances			
278	VAir gap fringing permeance/length		Pf	1.92
279	videal air gap permeance/length		PU	
280	nmer-pole leakage perminengin alobato doltat		ri alaha a dal	-(m
282	alpha(g,oura)		aloba o dol v ***	
283	example using function "alphatvol o		0	
284	Cail dimensions	•		
285	Average turn length		Ic	=2°L_Y+2°D_Y+PI()`HOR_D_
286	Coil conductor crossectional area		ac	=H_OR_D_WF
287	Ellective surface area/heat trans.		adis	=4°L'(LP+W+HOR_D_)+4'HOR_D_'LP+2'LP'(2'LP+W)+4'LP'W+PI()'W'W+2'(HOR_D_'2)'PI()'W
288	Coll volume	m*3	V_coil	=W'(2'H_OR_D_'L_Y+2'H_OR_D_'D_Y+PI()'H_OR_D_*2)
289	M			
200	Magnet volume		V ====	
2 8 2	Nayner volume Nuv trakana coefficients	m.a	v_mag	2L (2 2 MA L+2 (M_UM_V,2 MA) (L+W_Y)212 W_Y U_1)+L_Y U_Y W
293	Gan fringing flux coefficient		nu 0	= 1+2"H1X/Ph11 P1(1+0.5") N(1+(DE) /H1X1+2)-(DE) /H1X1+ATAN/DE(/H1X1+
294	Pole leakage flux coefficient		nu j.p	=2'H OR D 'HIX/W'LP)
295	Yoke leakage flux coefficient		nu_l.y	=2'H1 X/(P()'LP)
296	Total leakage & fringing flux coef.		nu_t	=NU_G+NU_LP+NU_LY
297	Total leakage flux coefficient		nu_l	=NU_L.P-NU_L.Y
298	Total leakage flux/gap flux		Lambda	=NU_LAU_G
200	nu_t@go200,y≈0		nu_l.max1	-{1+2*/2*H1XP/H0/15-P}*{1+1:K11+1;0EL/(2*H1X)}*2;0EL/(2*H1X))*ATAN(DEL/(2*H1X)))*2*NU_L
201	un"r (fa dede' AsATzrai		nu_t.max2	=2 (1+2 HIM((FIL) LP) (1+0.5 LN(1+1(UEL+T_SIAH/HIA)*2)-{(UEL+T_SIAH/HIA); AIAN((UEL+T_SIAH/HIA)))+2*NU_L
302	Linear induction motor			
303	permeances			
304	Ideal air gap permeance/length		Pu.lim	=D.V/GE.LIM
305	Air gap tringing permeance/length		Pt.lim	=1.92
306	Fringing permeance ratio		nuf.lim	=PFLIMPULIM
307				I
308	-			1
130 BEM				
1211	a Litt/Guidaoce Magnets	ka		Ant/A
312	Linear Induction Motor	ka		-MACTOR
313	Total	ka		=SUM(E311)E312)
314 We	ġ.			
315	LitvGuidance Magnets	kg/m		-AR
316	Linear Induction Motor	kg/m		-MGW
317	Total	kg/m		=\$UM(E315:E316)
1318 Her				
1220	Linguidance Magnate	w		
321	Linear Induction Motor	w		
322	Total Ohmic Power	w		SUME320 F321)
323	Eddy current Power		1	
324	Lifr/Guidance Magnets	w		=PR
325	Total eddy current Power	w		=SUM(E324:E324)
326	Total Real Power Dissipation	W		=SUM(E325,E322)
327 Bez	b			
328	Linear Induction Motor	V-A		=PNREACT
320	Total	<u>V·A</u>		=SUM(E328)

. -

-3

ł

. ----

	А В	C	D	Ē
1	ElectroMagnetic Suspension IIIA		filename	: Final EMS III, 134 m/s Optimization
2	(Separate vertical suspension & synchronous m	¢		
3	=NOW()			
4	Asterisk (*) before description indicates input.			
5	······································			
6	DESCRIPTION	UNITS	SYMBOL	DESIGN 1
7			0	baseline
à				
- a	VE			
10				
11	*Vehicle mass	ka	m	40000
12	Vehicle length	ny m	l vehick	
12	*Design speed	m/c	1_VOINCR	
13	tirestal area	mA2	v 	134 0
	toinal alea	line kermaa	Al .	
13	air densky	Kg/m^3	roair	
16	COPILICIONI	 NI	Ca Ca	
17	wind drag torce	IN	r0	
18	wind drag power	W	Pd _	
19	Max. Litt Force(@Max disp.)	9	max_Fz	
20	*Max. Laleral Force(*)(cont.)	9	max_F.I	0.26
21	*Max. Lateral Force(*)(short)	9	max_sF.	0.42
22	*Time of Max. (short)Lateral F	SOC	t_max	5
23	*Maximum ambient temp.	°C	maxTamt	50
24				· · · · · · · · · · · · · · · · · · ·
25	Payload	kg	Pload	
26	Total Power	k₩	Pt	0
27	Total Power/weight	kW/kg		
28				
29	Propulsion/suspension system			
30	Added guideway weight/length	kg/m		0
31	Added vehicle weight	kg		
32				
33				
34				
35	CC*air permeability	N/A^2	mυ	-PI()*0.0000004
36	Ge			
37	Construction materials			1
38	La [•] rail			steel .
39	*magnet			2V Perm.
40	*coil			atum.
41	Materials properties			(
142	mass density			
43	*rail	ko/m^3	ror	7505 3662183
1	*magnet	ka/m^2		7784 3797810
	fool	ka/mA9	100	7790 1369364
	maximum flux densitu	NB/III	100	(100.1550504
47	rali Trali	т	Beatr	
1	tau tmagnot	ч т	Dodin Beat-	
40	Magner	1	⊳saim or	
1421	Saturation Satety Factor(<1)	•••	51-	
50	Electrical resistivity			
51	Trail @20 deg C	ohm-m	rr	0.000004061
52	coil @140 deg C	ohm-m	rc	0.000000406

ł

E-13

ي متد ر

æ

,				
	A B	С	D	E
1	ElectroMagnetic Suspension IIIA		filename	Final EMS III. 134 m/s Optimization
2	(Separate vertical suspension & synchronous me			
3	=NOW()			
4	Asterisk (*) before description indicates input.			
5				
6	DESCRIPTION	UNITS	SYMBOL	DESIGN 1
53	*coil @220 deg C	ohm-m	rc 220	
54	Thermal	, ,		
55	"magnet heat transfer coef	W/C-m^2	k	-0.004*39.4*2
5.6	"Coil Specific beat	WkaPC)	n CD	
57	Maximum when insulation toma	57(ng 0)	mayTing	
50	Maximum wite institution temp	C	1114 1 1115	
50				
59	Construction motorials			
00	Construction materials			
01				51001
62	rail windings			
63	-magnet			2V Perm.
64	*magnet coil			aluminum
65	Densities			
66	*rail	kg/m^3	rogm	7506.3662183
67	rail windings	kg/m^3	rogc	8900
68	*magnet	kg/m^3	rovm	7784.3797819
69	*coll	kg/m^3	rovc	2780.1356364
70	Maximum Ilux densities			
71	*rail	т	bsatg	1.6
72	"magnet	т	bsatv	2.3
73	Magnetic permeabilities			
74	Rail		mug	3500
75	Electrical Resistivity		-	
76	rail @20 deg C	ohm-m	rmg	0.000004061
77	vehicle coil @140 deg C	ohm-m	rcv	0.000000406
78	rail coli *140 deg c	ohm-m	rca	-0.00000001673*1.47
79	Thermal		U	
80	*magnet beat transfer coefficient	W/C-m^2	kv	0.009*39.4*2
81	rali heat transfer coef	W/C.m^2	ka	
82			69	0.003 03.4 2
83				
84				
85	CC Geometric dimensions			
86	la toole width	rin.	1.0.1	0.029
	rwiedew width	 		
	window width twindow holebt		W.I	
	Mindow Height	111	0.1	
	window width/neight ratio			-W.DA.L
	toli packing factor	•••	1.1	
	air gap	m	H1X.I	
92		m	Z.1	-0.2/39.4
93	Number magnets required	• • •	nmag.i	4
84	magnet length	m	L.I	-9.8'M'MAX_SF.L/(NMAG.L/2)'2'MU/(B0.L^2'LP.L'2)
95	Magnet length/vehicle length			-IF(L.L/I_vehicle<=0.5,"OK","TOO LONGI")
96	<u>Magnet_Design</u>			
97	flux leakage coefficients			
198	fringing (across air gap)		nuf.l	=PF.L/PU.L

page 2

ł

.

			T	
<u>⊢</u> <u>/</u>	B B	<u> </u>	<u>I U</u>	
	Electromagnetic Suspension IIIA		mename	rinai EMƏ III, 134 M/S OPTIMIZBUON
2	(Separate ventical suspension & synchronous m	ι.		
- 3	=IVUVV() Astarisk (*) balara decoristion indicator instit			
	Asterior () perore description indicates input.			
5	DESCRIPTION		SYMPO	DESIGN 1
	lookage (between noies)	01411.0	oul l	
100	total		nutl	
100	nominal field in air dan	т	BO I	
102	Force per magnet	Ň	Enm I	
102	amp turns per magnet	Δ	NII	2*H12 1*D0 [/MI]
104		ko	Mcore I	
104	mass core + coil (4 mag)	ka	Mman I	
105	mass core + con (+ mag)	rg	minagi	
100	Coil Design			
107	resist (1 magnet 1 turn)	ohmi	resci	
100	St state coll power(N/2 mans)	W	ac ss.	OCL (1/4)*(MAX_EL/MAX_SEL)
110	Max coll power (N/2 magnets)	w	ac.1	-2'RESC1'NL12'MAG.L2
111	Steady state temperature rise	°C	Tm ss.i	-(1/2) OC SSL/(ADISL'K)
112	Short term temperature rise	°Č	Tm st.i	-QC L/(NMAG L/2) T MAX//MC L*CP)
113	Maximum coil temperature	°Č	Tc max.	-MAXTAMB+MAX/TM SSLIM STL)
114	mass(one coil)	ka	Mc.I	-ROC'ACL'LCL
115				
116	Rail Design			
117	rail thickness	m	tr.l	-LP.L'*(BSATM/BSATR)
118	rail pole tip width (-tr)	m	tr.I	-TRL
119	rail mass/length(two rails)	kg/m	mr.1	-2*ROR*(2*LR.L*(TR.L+H1X.L)+TR.L*(W.L+LP.L-LR.L))
120		•		
121	nominal rail flux density	Ť	Br.I	=B0.L*(1+NUF.L)*(LP.L/TR.L)
122	elf. freq. for eddy anal.	Hz	Fe.I	=0.5*V/L.L
123	dB/dt amp. first harmonic	T/s	B1x.l	-4°FE.L*BR.L
124	eddy current power	W	Pr.ł	B1X.L^2*TR.L^3*L.L*(W.L+LP.L)*NMAG.L/(24*RR)
125	rms eddy amp turn			
126	(upper bound, 1 magnet)	Α	Nie.ł	=0.7071*B1X.L*TR.L^2*(W.L+LP.L)/(8*RR)
127	Total power	w	P.I	=PRL+OC.L
128	•			
129				
130	Geometric Dimensions-on board magnet			
131/	<u>if</u> *Xpole thickness	m	tpv	-LPV
132	Xpole to pole distance	m	wcv	-WV+LPV-TPV
133	"pole face width	m	lpv:	0.2
134	Xface to face dist.	m	wv	-0.5°LPV
135	*window height	m	hv	0.08
136	*magnet depth	m	dv	0.1
137	*yoke thickness	ជា	tyv	0.085
138	*coil packing factor	•••	ffv	0.7
139	*air gap	m	H1v	0.01
140	*pole-coil clearance	m	zv	-0.2/39.4
141	*number laminations	•••	nlammv	5
142	lamination thickness	m	tmv	-DV/NLAMMV
143	*Number magnets required	• • •	nmagv	10
144	number of poles per mag	· · ·	กรอฐง	10

.

. ----

	B	C	D	E
11	ElectroMagnetic Suspension IIIA	·	filename	Final EMS III. 134 m/s Optimization
2	(Separate vertical suspension & synchronous m	c		
3	=NOW()	•		
4	Asterisk (*) before description indicates input.			
5	······································			
6	DESCRIPTION	UNITS	SYMBOL	DESIGN 1
145	magnet length	m	Lv	=NSEGV*(LPV+WV)
146	• •			
147	Geometric Dimensions-auideway			1
148	*pole width	m	lpg	-0.4°LPV
149	slot width	m	wg	=0.1°LPV
150	XMagnet & guideway pole & slot dimensions?		-	=IF(AND{MOD{LPV+0.0001,LPG+WG}<∞0.001,MOD(WV+0.0001,LPG+WG}<∞0.001),"OK","POOR")
151	XSlots and phases?			=IF(MOD((LPV+WV)/(LPG+WG)+0.0001,NP)<=0.001,"OK","POOR")
152	Guideway poles per mag. pole	• • •	Ng	LPV/(LPG+WG)
153	*window height	m	hg	0.06
154	*magnet depth	m	dg	_ DV+4*H1V
155	coil packing factor		tig	0.8
156	*number electrical phases	• • •	Np	3
157	*pole-coil clearance	m	zg	0.005
158	number laminations	•••	nlammg	400
159	lamination thickness	m	tmg	► DG/NLAMMG
160	skin depth	m	delg	-SORT(2'RMG/(2'PI()'FS'MU'MUG))
161	•		-	
162	Magnet Design			
163	*amp turns/pole (mag seg)	A	Niv	6500
164	flux leakage coefficients			
165	fringing (across air gap)	•••	nutv	- PFV/PUV
166	leakage (between poles)	• • •	nulv	-PLV/PUV
167	total		nutv	=1+(NULV+NUFV)
168	Xnom. lift field in air gap	т	B0v	■NIV*MU/H1V*TPV/LPV
169	Xmax B in yoke @2 h1v, lift only	т	Byv	=0.5*B0V*(1+2*(NUFV+NULV))*LPV/TYV
170	check field in yoke			-IF(BYV<-BSATV, OK, SATURATED")
171	total lift force-Nmag magnets	Ν	Fv	-NMAGV*NSEGV*NG*LPG*DV*0.5*B0V^2/MU
172				
173	Xcore mass (1 mag)	kg	Mcorev	ROVM*NSEGV*DV*(TYV*(LPV+WV)+TPV*(HV-ZV)+ZV*LPV)
174	mass core + coll (Nmagv mag)	kg	Mmagv	-NMAGV*(MCOREV+MCOILV)
175			-	
176	<u>Vehicle Coll Design</u>			
177	resist (1 magnet, 1 turn)	ohm	resv	-RCV·LCV/ACV
178	coil ohmic power (N mag)	W	qv	-RESVINIV^2'NMAGV'NSEGV
179	temp. rise	deg C	Tv	-QV/(NMAGV*NSEGV*KV*ADISV)
180	mass (1 magnet)	kg	Mcoilv	-ROVC'NSEGV'ACV'LCV
181				
182	Rail_Coll_Design			
183	rail yoke thickness	m	tyg	0.1
184	*amp turns per phase (0-P)	Α	Nig	1200
185	flux leakage coefficients		-	
186	fringing (across air gap)	•••	nufg	-PFG/PUG
187	leakage (between poles)	• • •	nulg	-PLG/PUG
188	total		nutg	-1+NUFG+NULG
189	B in air gap-1 phase	т	B0g	-MU'NIG/H1V
190	max, field in poles		-	

ţ

4

[]	Al B	6	0	
	ElectroMegnetic Suspension IIIA	·····	filename	Einat EMS III 134 m/s Ontimization
12	(Separate vertical suspension & synchronous m	,	monumo	
3	-NOW()	•		
4	Asterisk (*) before description indicates input.			-
5				
	DESCRIPTION	UNITS	SYMBOL	DESIGN 1
1.91	from 1 phase & b1v	T	Bota	BOG'(1+NL)EG+NLI(G)
192	from lift @ 2°h1v	Ť	Bn2a	
193	check B in pole			-F/RSATG_15*RP1G_BP2G *OK* *SATI BATE*)
194	max field in voke			
195	from 1 phase & h1v	т	By1a	
196	X from lift @ 2*h1v	Ť	Bv2o	=0.5*B0V(1+2*NUEV)1 PG*NG*DV//TYG*DG)
197	check field in voke		-,-a	=E(BSATG>15;BV1G+BV2G *OK* "SATIBATE")
198				
199	core mass (2 rails)	ka/m	Mcoren	NSEGG*BOGM*2*/DG*TYG*/I PV+WV)+3*HG*WG*DGY1000
200	mass core + coil (2 rails)	ko/m	Mmagn	-MCOREG-MCOIL G1000
201				
202	Rail Winding Design-1 segment is 3 pole pieces			
203	seaments/km [*]	1/km	nseaa	= 1000/(LPV+WV)
204	resist (1 phase)	ohm/km	resa	-RCG'LCG'NSEGG/ACG
205	ohmic power (3 phase, 2rail)	W/km	Pohm	-3*2*0.5*NIG*2*RESG
206	temp. rise	deg C	Tg	-POHW(2"NSEGG*ADISG*KG)
207	Xmass	kg/km	Mcoilg	-ROGC'6'NSEGG'ACG'LCG
208	freq. at nom speed	Hz	fs	-V/(2*(LPV+WV))
209	• •			
210	track without vehicle			
211	Xtrack self L (1 rail)	H/km	Laax	=(0.5°PLG+PL2G)°MU°NSEGG
212	rail reactive impedance	ohms/km	Zit	-2°PI()°FS°LAAX
213	mutual inductance	H/km	Mabi	
214	voltage/phase/turn	V/km	Vt	=NIG*SQRT(RESG*2+ZLT*2)
215	Xmagnetic field in yoke	т	Bt	=1.5*MU*N\V*0.5*(PLG+PL2G)/(DG*TYG)
216	dB/dt amp. first harmonic	T/s	Btx	=4°FE°BT
217	guideway eddy losses	W/km	Pteddy	-BTX^2*TMG^3*TYG*NLAMMG*1000*2/(24*RMG)
218	Xreact. power (3ph-2 rails)	VA/km	Pzg	-2*1.5*NIG*VT
219			•	
220				
221	Inductances			
222	PRXinductance-self L field	H/(2 seg)	Lbasic	=4*(1+NUFV)*MU*DV*NG*LPG/(2*H1V)
223	X stator self L-mean value	H/(2 seg)	Laa	-LBASIC+4*0.25*PLG*MU
224	stator self L-second harm.	H/(2 seg)	Laa2	-0*LBASIC
225	mutual-first harmonic	H/(2 seg)	Mvg	-1.05*LBASIC
226	stator mutual-mean	H/(2 seg)	Mab	=0.21'LBASIC
227	stator mutual-second harm.	H/(2 seg)	Mab2	-0.614*LBASIC
228				
229	Propulsive forces-maximum values			
230	design force (Mvg calc)	N -	FI	-1.5*NMAGV*0.5*NSEGV*MVG*NIV*NIG*2*PI()/(2*(LPV+WV))
231	reluctance force (Mab2)	N		=1.5*NMAGV*0.5*NSEGV*MAB2*NIG^2*PI(//(2*(LPV+WV))
232	rail self induct (Laa2)	N		=1.5*0.5*NMAGV*0.5*NSEGV*LAA2*NIG^2*Pi()/(2*(LPV+WV))
233				i i i i i i i i i i i i i i i i i i i
234	hunting stiffness	N/m	Khunt	-FL*PI()/(LPV+WV)
235	hunting freq.	Hz	fhunt	-SQRT(KHUNT/M)/(2*PI())
236	Xmax. propel (B fleid)	<u>N</u>		-2'1.5'NMAGV'NSEGV'PI()'0.5'H1V'DV'(2'(1+NUFG)/PI())^2'B0G'B0V/MU

E-17

. موجد الم

ł

	А В	С	D	E
	ElectroMagnetic Suspension IIIA	<u> </u>	filename	Final EMS III. 134 m/s Optimization
H	(Separate vertical suspension & synchronous m	· ·	monane	
	-NOW/)	•		
	Asterisk (*) before description indicates input			
	Asienak () berole description indicates input.			
	DESCRIPTION	UNITS	SMAROL	DESIGN 1
237	DESCRIPTION	UNITS	STIMLAL	DECIGN (
230	Losses from oddy currents			
230	nom: rail 8 from vehicle	т	8,	
240	off free for addy anal	, Цэ	En	
241	dB/dt amo first barmonic	T/s	B1v	
242	addy current nower	1/3		
242	was eddy amo turo		<i></i>	
243	(upper bound 1 magnet)	۵	MIo	-BIX*TMGA2*TXV///R*BMG1
245	(opper bound, i magner)	0	1416	
246		%		
240	(mannet+coil)/vehicle wt	%		
240	eddy/lift amo-T (up bound)	%		
240	wind drag/weight	%		
250	whice drugs worgin	70		
250	ratio propel E/weight	0 /_		- FL //Q. 8*AA)
251	ratio proper //weight	70 9/		
252	ratio litt/weight	0/.		
255	ratio mag weight/lift	/0 9/_		
254	ratio mag. weight/int	70		
233	track losses/wind drag	9/ /km		
257	llack losses/willo uray	/0/ NIU		
257				
250				
258	81			
261	o Permeances			
262	permeances-vehicle magnet		Pfv	-2*NG*(/2*0 26+2*) N(2)/P!())*(DV+1 PG))+4*NG*(0 308+0 5)*H1V
263	useful 1 air gap		Puv	
264	X		Plv	-2'(HV,H1V)*(DV/WCV+2'(0.26+1N(1+TPV/WCV/PI/)))
265	pole useful area	m^2	Auv	
266	Ycoll dimensions-1 coil on 1 pole		lev	
267	X 1 coil on 1 nole		acy	
268	X 1 segments-1 pole		adisv	2°TYV'II PV+WV)-2°HV'ITPV+DV)+I PV*DV+(HV-ZV)*PI()*WCV+0 5*PI()*WCV+2
269	X (colliment (hore		40101	
270	nermeances-guideway windings		Pia	-PEV
271	vehicle in place		Pua	-PUV
272			Pla	-2'/HG-H1V\'/DG/WG+2'(0.26+) N(1+2') PG/WG)/PI()))
273	X no vehicle magnets		Pi2a	-4*DG*(0.26+1 N(1+2*) PG/WG/P[/))
274	Coll dimensions			
275	coll dimen1 phase-1 turn-3 pole pieces		100	-2*(3*LPG+3*WG+DG+WG*PI()/4)
276	1 -coll but 2 coils per slot		acq	-(HG-ZG)*WG*FFG/4
277	1 seg. 3 pole pieces		adiso	-6'(LPG+WG)'(TYG+HG-ZG+0.5'DG+2'WG)+6'ZG'(LPG+DG)
278	• · · · · · · · · · · · · · · · · · · ·			
279				
280	Permeances			
281 G	Air gap fringing permeance/length		P1.1	1.92
282	Ideal air gap permeance/length		Pu.I	=LP.L/H1X.L

E-18

ł

.

Table E-3. EMS III with formulas used to calculate the dependent parameters.

B	C	D	Ε
1 ElectroMagnetic Suspension IIIA		filename	Final EMS III, 134 m/s Optimization
2 (Separate vertical suspension & synchi	ronous ma	•	
3 =NOW()			
4 Asterisk (*) before description indicate	es input.		
5			
6 DESCRIPTION	UNITS	SYMBOL	DESIGN 1
283 Inter-pole leakage perm./length		PI.I	=(H.L-H1X.L)/W.L
284 Coil dimensions			
285 Mean turn length	m	Ic.I	=2*(L.L+PI()*W.L/4+LP.L)
286 Coll crossectional area	m^2	ac.l	=(H.L-Z.L)*W.L/2*F.L
287 Coil Surface area	m^2	adis.i	=4°L.L°(LP.L+W.L+H.L)+4°H,L°LP.L+2°LP.L°(2°LP.L+W.L)+4°LP.L°W.L+Pi()°W.L°W.L+2°(H.L-Z.L)°Pi()°W.L
288			
289			
290	<u>.</u>		
291 EN Lift Magnets/LSM	kg		I-MMAGV
292 W Guidance Magnets	Kg		
293	KG ·		=500/(E29).(292)
294 Magnet Weight/Venicle Weight	70		■C233/M
295 10 206 Lift Magnets/I SM	ka/m		- MAMOR
290 Elli Magnela/LOM	' ko/m		AND I
298	ka/m		SIM(E296:E297)
299			
300 To			
301 Re Lift Magnets/LSM	w		
302 Of Guidance Magnets	w		
303	w		=SUM(E301:E302)
304			
305 To Lift Magnets/LSM	w		-PR
306 Ed Guidance Magnets	w		=PR.L
307	w		-SUM(E305:E306)
308	W		-SUM(E307,E303)
309 To	%		-E308/PD
310 To			H I I I I I I I I I I I I I I I I I I I
311 EkLinear Synchronous Motor	V-A		=P2G
312 Re	V-A		SUM(E311)

~~<u>~</u>~

ر چې سرخې ک

.1

E-19

APPENDIX F

COMPLETE SPREADSHEETS FOR ELECTROMAGNETIC SYSTEMS

Table F-1. Complete EMS I Spreadsheet; Design optimized for operation at 89 m/s Separate Lift and guidance magnets and Linear Induction Motor

ElectroMagnetic Suspension I Optimized for operation at 89 m/s maximum speed

(Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab Linear Induction Motor Analysis program.

			89	m/s_Optimi2	ation	89 m/s C	Optimization	@_59_m/s_
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
			(b/l)	(3/4 b/l)	(0.8 b/h		(3/4 b/l)	(0.8 b/h
VEHICLE PARAMETERS							<u></u>	
Design Parameters								
*Vehicle mass	ko	m	4 00 5+04	4 00 5+04	4 00 E+04	4 00 5+04	4 00E+04	4 00 5+04
*Vohiolo longth	~y	Luchiel	9.00E+04	9.002+04	9.000	2.005.01	9.000-104	4.00E+04
*Design anod		I_venicit	3.00E+01	3.000+01	3.002+01	3.00E+01	3.00E+01	3.00E+01
Design speed	m/s	v	8.90E+01	8.90E+01	8.90E+01	5.90E+01	5.90E+01	5.90E+01
Trontal area	mr2	AT	1.20E+01	1.20E+01	1.20±+01	1.20E+01	1.20E+01	1.20E+01
Tair density	kg/m^3	roair	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00
*drag coefficient		Cd	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01
wind drag force	N	Fd	1.71E+04	1.71E+04	1.71E+04	7.52E+03	7.52E+03	7.52E+03
wind drag power	W	Pd	1.52E+06	1.52E+06	1.52E+06	4.44E+05	4.44E+05	4.44E+05
*Max. Lift Force(@Max disp.)	g	max_Fz	1.10E+00	1.10E+00	1.10E+00	1.10E+00	1.10E+00	1.10E+00
Max. Lateral Force()(cont.)	ģ	max F.I	1.80E-01	1.80E-01	1.80E-01	1.80E-01	1.80E-01	1.80E-01
*Max. Lateral Force(")(short term)	a	max_sF.I	2.60E-01	2.60E-01	2.60E-01	2.60E-01	2.60E-01	2.60E-01
*Time of Max. (short)Lateral F	Sec	tmax	5.00E+00	5.00F+00	5.00F+00	5.00E+00	5.00F+00	5.00E+00
*Max propulsive force	0	max En	2 10E-01	2 10E-01	2 10E-01	2 10 E-01	2 105-01	2 10E-01
*Maximum ambient temperature	а С	mayTami	5 00E 01	E 00E 01	5.00E.01	E.00E.01	E 00E-01	5 00E-01
	U	INGA I GUII	5.002401	5.002+01	3.00E+01	5.00E+01	5.002+01	5.00E+01
Destamona Deservation								
Performance Parameters						·		
Power, (onmic+eddy)/aero. drag	%		5.91E-01	7.79E-01	5.01E-01	1.67E+00	2.36E+00	1.39E+00
Weight, (magnet+coil)/vehicle	%		1.40E-01	1.67E-01	6.17E-02	1.40E-01	1.67E-01	6.17E-02
eddy/lift amp-T (up. bound)	%		1.25E-01	3.57E-02	1.07E-01	8.32E-02	2.37E-02	7.11E-02
Aerodynamic drag/lift force	%		4.36E-02	4.36E-02	4.36E-02	1.92E-02	1.92E-02	1.92E-02
CONSTANTS								
*air permeability	N/A^2	mu	1.26E-06	1.26E-06	1.26E-06	1.26E-06	1.26E-06	1.26E-06
Suspensions								
Construction materials								
*roil			staal	ataal	ata al	ataal	ataal	at a a l
			Sleer		SLUUI	STAAL	SLOOI	
magner			zv Perm.	2v Perm.	2v Perm.	2v Perm.	zv Perm.	2V Perm.
COII			alum.	alum.	aium.	alum.	alum.	alum.
Materials properties								
mass density								
*rail	kg/m^3	ror	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03
*magnet	kg/m^3	rom	7.78E+03	7.78E+03	7.78E+03	7.78E+03	7.78E+03	7.78E+03
*coil	ka/m^3	roc	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03
maximum flux density								
*rail	т	Beatr	1.60E+00	1.605+00	1 60 5+00	1 60 5+00	1.605+00	1.60 5+00
*magnet	т т	Beatm	2 205 00	2 205.00	2 205.00	2 205.00	2 205 .00	1.002+00
Returning Selety Fester(-1)	1	osalm or	2.302+00	2.300+00	2.302+00	2.302+00	2.302+00	2.302+00
Saturation Salety Factor(<1)		э г	1.002+00	1.00E+00	1.00E+00	1.002+00	1.00E+00	1.000+00
electrical resistivity								
rail @20°C	ohm-m	rr	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07
*Temp. coefficient of rail	ohm-m/°C	rr_tc						
*coil @140 deg C	ohm-m	rc_	4.06E-08	4.06E-08	4.06E-08	4.06E-08	4.06E-08	4.06E-08
*Temp. coefficient of coil	ohm-m/°C	rc_tc						
Thermal								
*magnet heat transfer coef.	W/C-m^2	k l	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01
*Coil Specific heat	J/(kg°C)	cp	1.19E+02	1.19E+02	1.19E+02	1.19E+02	1.19E+02	1.19E+02
Maximum wire insulation temp	°C	maxTins	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02
	-							
Linear Induction Motor								
Construction materials								
*rail								
1.011			lata al	etool	stool 1	letool	stool	atool I
troil conductor(=)			steel	steel	steel	steel	steel	steel

ElectroMagnetic Suspension I Optimized for operation at 89 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab Linear Induction Motor Analysis program.

			89	<u>m/s Optimiz</u>	ation	_89 m/s O	ptimization (@ 59 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small oan	haseline	slim pole	small gap
			(b/l)	(3/A N/)		Justinie	(2/A b/b)	
Motoriala proportion			(0/1)				(3/4 0/1)	
materials properties								1
Mass density								
*rail	kg/m^3	rom.g	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03
*rail conductor(s)	ka/m^3	roc.a	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03
*magnet	ko/m^3	rom v	7 65 E+03	7 655403	7.655+03	7 665.02	7655.02	7 655.02
*eoil	ke/mA3	10111.1	0.705.00	0.705.400	0.705.00	7.000000	0.705-00	7.032+03
COIL	Kg/m ¹ .0	100.4	2.705+43	2./02+03	2.702+03	2.702+03	2./00+03	2./00+03
			•					
maximum flux densities								
*rail	Т	bsat.g	1.60E+00	1.60E+00	1.60E+00	1.60E+00	1.60E+00	1.60E+00
*magnet	т	bsat.v	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00
Magnetic permeability	-							
roll			0.505.00	0.505.00	0.505.00	0.005.00	0.505.00	0.505.00
Federal - Frank - Fran	•-•	mu.g	3.500+03	3.50E+03	3.50E+03	3.500+03	3.50E+03	3.50E+03
Vehicle (short) stator		mu.v			1			
Core Loss @ 1.0T, 100 Hz	W/kg	refc.loss	2.87E+00	2.87E+00	2.87E+00	2.87E+00	2.87E+00	2.87E+00
Core loss frequency exponent		freg exp	1 50E+00	1.50E+00	1 50E+00	1 50E+00	1 50 5+00	1 50E+00
Core loss Induction exponent	_	Born	2 10 5.00	2 105.00	2 105.00	2 105.00	2 105.00	2 10E - 00
		D.exp	2.102+00	2.102+00	2.100+00	2.100+00	2.100+00	2.102+00
Core loss @ isync & Bcore	W/Kg	C.IOSS	1.05E+01	1.05E+01	1.36E+01	5.68E+00	5.68E+00	7.34E+00
electrical resistivity								
*Magnet laminations @ 140°C	ohm-m	rm.v	7.00E-07	7.00E-07	7.00E-07	7.00F-07	7.00F-07	7.00F-07
trail @20 deg C	ohm-m	rm o	4.065-07	4.065-07	4.065-07	4.065.07	4.065-07	4.065-07
			4.002-07	4.002-07	4.002-07	4.002-07	4.002-07	4.082-07
venicie coli @20 deg C	onm-m	ICHI.V	2.78E-08	2.782-08	2.78E-08	2.785-08	2./8E-08	2.78E-08
vehicle coil temperature coefficie	1/°C	alpha.v	4.10E-03	4.10E-03	4.10E-03	4.10E-03	4.10E-03	4.10E-03
vehicle coil @operating temperatu	ohm-m	rc.v	4.73E-08	4.73E-08	4.75E-08	4.73E-08	4.73E-08	4.75E-08
'Guideway conductor @20 deg c	ohm-m	rc.a	2.80E-08	2.80E-08	2.80E-08	2.80E-08	2.80E-08	2.80E-08
Hoot transfor coefficients								
	W/O		4405 34					
magnet neat transfer coer.	W/C-m ²	K.V	4.19E+01	4.19E+01	4.19E+01	4.19E+01	4.19E+01	4.19E+01
"rail heat transfer coef.	W/C-m^2	k.g	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01
COMPONENT DESIGN & ANALYSIS								
Vertical suspension								
Comptrie dimensione								
Geometric_ofmensions								
"pole width	m	ip	3.14E-02	2.35E-02	2.79E-02	3.14E-02	2.35E-02	2.79E-02
*air gap	m i	H1x	1.00E-02	1.00E-02	8.00E-03	1.00E-02	1.00E-02	8.00E-03
*window width	m	w	9.43E-02	8.51E-02	8.50E-02	9.43E-02	8.51E-02	8.50E-02
*window height	m	h 1	4 72E-02	4 255-02	4 25E-02	4 72E-02	4 25E-02	4 25E-02
Mindow width/baight			4.722-02	9.202-02	9.202-02	4.726-02	4.232-02	9.200-02
window width/height			2.00E+00	2.000+00	2.000+00	2.000+00	2.00E+00	2.00E+00
			, OK	ak	ak	OK	CK	OK j
*coil packing factor		f	7.00E-01	7.00E-01	7.00E-01	7.00E-01	7.00E-01	7.00E-01
*pole-coil clearance	m	z	5.08E-03	5.08E-03	5.08E-03	5.08E-03	5.08E-03	5.08E-03
Number magnets required		nmag	4 00F+00	4.00F+00	4 00F+00	4.00E+00	4 00E+00	4 00F+00
magnet length	~	1	5.00E.00	0.525.00	5.00E.00	5.00E.00	0.525.00	5.00E.00
		L	5.00E+00	9.52E+00	5.00E+00	5.002+00	9.522+00	5.00E+00
Magnet length/venicle length ratio			OK.	OK	UK	<u>ak</u>	CK	OK I
<u>Magnet design</u>								
leakage/fringing flux ratios								
√ fringing (across air cap)		nuf	6.12E-01	8.16E-01	5.51F-01	6.12F-01	8.16F-01	5.51E-01
V leakage (between poles)		nul	1 265-01	1 635-01	1 165-01	1 265-01	1 635-01	1 165-01
tatal			4 745 00	1.000.00	1.105-01	1.202-01	1.000-01	1.102-01
		nut	1./42+00	1.98E+00	1.0/E+00	1.74E+00	1.985+00	1.0/E+00
vnominal field in air gap(@2*H1x)	ľ	B0	9.29E-01	7.78E-01	9.85E-01	9.29E-01	7.78E-01	9.85E-01
√Max. Force per magnet(@2*H1x)	Ν	Fpm	1.08E+05	1.08E+05	1.08E+05	1.08E+05	1.08E+05	1.08E+05
√Max. vertical g's @ twice nom. cap	g		aĸ	CK	OK I	ax	ak	ak
Max amp turns per coil@ 2H1x)	Ă	NI	1.48F+04	1.24F+04	1.25F+04	1.48F+04	1.24F+04	1.25F+04
Max steady state NI (1 coil@10)		NI ee	7.05E+03	5.90F+03	5 98E+03	7 05E+03	5 90F+03	5 98E+03
I A A A A A A A A A A A A A A A		. VI QQ		J. JVLTVV	J.JULTUU		J.JULTUU	J.JULTUJ

ElectroMagnetic Suspension I

Optimized for operation at 89 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input. 2 Asterisks (**) after description indicates output from MatLab Linear Induction Motor Analysis program.

			89 (m/s Optimiz	ation	89 m/s O	otimization (@ 59 m/s l	1
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3	ł.
		••••=•=	haseline	slim pole	small gap	baseline		small gap	
			(b/l)		Inal gap	Daseillie		annau yap	
dance man (1 mar)	1			(3/4 D/I)	(0.8 D/I)	0.075.00		(0.8 0/1)	
vcore mass (1 mag)	Kg	Mcore	3.07E+02	3.79E+02	2.45E+02	3.07E+02	3.79E+02	2.45E+02	
vmass core + coil (4 mag)	kg	Mmag	1.54E+03	1.99E+03	1.23E+03	1.54E+03	1.99E+03	1.23E+03	
√Total magnet weight/vehicle wt.		%	3.86%	4.98%	3.08%	3.86%	4.98%	3.08%	
Coil Desian									
vresist (1 coil, of 2 on magnet)	ohm	1880	2 98E-04	6 99E-04	3 72E-04	2 98E-04	6 00E-04	3 72E-04	
Max St st ohmic power/N mags)	w	000 00	1 105-05	1 055-05	1.065.05	1 105.05	1 055.05	1.065.05	l l
Max coil obmin nowor (N monoto)		4m_33	5.005.05	1.952405	1.002+05	1.19E+05	1.952+05	1.002+05	
What con onnic power (iv magnets)	AA.	qc	5.22E+05	8.586+05	4.086+05	5.22E+05	8.58E+05	4.68E+05	i i
vmaximum coll power(1 coll)	W	qc_max	6.52E+04	1.07E+05	5.85E+04	6.52E+04	1.07E+05	5.85E+04	
VMax. steady state coil power(1 co	oi W	qc_ss	1.48E+04	2.44E+04	1.33E+04	1.48E+04	2.44E+04	1.33E+04	İ.
√Steady state temperature rise	°C	Tm_ss	1.50E+02	1.50E+02	1.50E+02	1.50E+02	1.50E+02	1.50E+02	
√Short term temperature rise	°C	Tm_st	5.57E+02	6.06E+02	6.24E+02	5.57E+02	6.06E+02	6.24E+02	
Maximum coil temperature	°C	Tc max	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02	
√mass(one coil)	ka	Mc	3.95E+01	5 96E+01	3 15E+01	3 95E+01	5 96E+01	3 15E+01	
			0.002101	0.000	0.102.101	0.002101	0.002101	0.102701	S.,
Pail design									ўг.
	_								<i></i>
vrail inickness	ш	tr	4.05E-02	3.01E-02	3.61E-02	4.05E-02	3.01E-02	23.61E-02	
vrail pole tip width	m	Ir	4.05E-02	3.01E-02	3.61E-02	4.05E-02	3.01E-02	3.61E-02	
rail mass/length(2 rails)	kg/m	mr	1.13E+02	7.17E+01	8.94E+01	1.13E+02	7.17E+01	8.94E+01	
nominal rail flux density	т	Br	1.16E+00	1.10E+00	1.18E+00	1.16E+00	1.10E+00	1.18E+00	
eff. freg. for eddy anal.	Hz	Fe	8.90E+00	4.68E+00	8.90E+00	5 90F+00	3 10E+00	5 90E+00	
dB/dt amp first harmonic	 T/e	Biv	4 13E+01	2 07E+01	4 20 E+01	2 74 5.01	1 375,01	2 705.01	
eddy current nower	NA/	D.	2.025.04	4.04 E . 02	1.025.04	1.005.04	0.175.00	8.475.09	ł i
	**	F 1	2.936+04	4.940+03	1.930+04	1.290+04	2.17 2+03	0.4/E+U3	Í Í
mis eddy amp turn									í í
(upper bound, 1 magnet)	Α .	NIO	1.866+03	4.42E+02	1.35E+03	1.23E+03	2.93E+02	8.92E+02	
√Total continuous power	W	P.v	1.48E+05	2.00E+05	1.26E+05	1.31E+05	1.97E+05	1.15E+05	
		-							
ateral Suspension				· · ·					- 24 - 44 - 14
Geometric dimensions									
*pole width	m	la I	2 27E-02	1 70E-02	2 005-02	2 275.02	1 705-02	2 00 E.02	
window width		197.1	1 21 5 01	1.000-02	1.000-01	1 01 5 01	1.005.01	1.000-01	
window widin	~	W.I	1.212-01	1.092-01	1.092-01	1.212-01	1.092-01	1.092-01	
window neight	m	n.i	6.04E-02	5.45E-02	5.45E-02	6.04E-02	5.45E-02	5.45E-02	
Window width/height ratio			2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	
•	• • •		ak	CK	ak	OK	ak	ak	
*coil packing factor		f.I	7.00E-01	7.00E-01	7.00E-01	7.00E-01	7.00E-01	7.00E-01	1
*air gap	m	H1x.l	1.00E-02	1.00E-02	8.00E-03	1.00E-02	1.00E-02	8.00E-03	
*pole-coil clearance	m	z.1	5.08E-03	5.08E-03	5.08E-03	5.08E-03	5.08E-03	5.08E-03	ł
*Number magnets required		nman I	4 00E+00	4 00E+00	4 00 E+00	4 00E+00	4.00E+00	4 00 E+00	
magnet length		1 1	5.00E.00	0.04E.00	5.005.00	5.00E+00	9.00E+00	5.00E+00	
	111	L.I	5.002+00	9.945+00	5.00E+00	5.002+00	9.942+00	5.00E+00	
Magnet length/venicle length			ů.	ŬK.	OK	OK .	ŬK.	OK .	
<u>Magnet design</u>									
flux leakage coefficients									
fringing (across air gap)		nuf.l	8.46E-01	1.13E+00	7.67E-01	8.46E-01	1.13E+00	7.67E-01	
leakage (between poles)		nul.i	1.84E-01	2.40E-01	1.70E-01	1.84E-01	2.40E-01	1.70E-01	
total		nut	2.03E+00	2.37E+00	1.94E+00	2 03E+00	2 37E+00	1 94E+00	
nominal field in air can	т	BOI	7 51 5-01	6 155-01	8 005-01	7 51 5-01	6 155-01	8 00E-01	
May Earon por Topport Office	, NI		7.01E-01	6.13E-01	5.00E-01	5.512-01	5.152-01	5.002-01	
viviax. Force per magnet(@2"H1X.I)	14	rpm.i	3.102+04	5. IVE+04	5.10E+04	5.10E+04	5.10=+04	5.1UE+04	
Max. lateral g's @ twice nom. gap	9		CK	CK	ax	ak	CK	ak	
Max. amp turns per coil(@2H1x.l)	A	NI.I	1.20E+04	9.79E+03	1.02E+04	1.20E+04	9.79E+03	1.02E+04	
√Max. steady state NI (one coil)		NI_ss.l	4.98E+03	4.07E+03	4.24E+03	4.98E+03	4.07E+03	4.24E+03	
core mass (1 mag)	kg	Mcore.I	2.53E+02	3.32E+02	2.01E+02	2.53E+02	3.32E+02	2.01E+02	
√mass core + coil (4 mag)	ka	Mmag.I	1.55E+03	2.17E+03	1.23E+03	1.55E+03	2.17E+03	1.23E+03	
Total magnet weight/vehicle wt		%	3.87%	5 43%	3.08%	3 87%	5 43%	3 0.8%	
Coil design				0,.070	0.0070			9.0070	

F-3

ElectroMagnetic Suspension I

Optimized for operation at 89 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab Linear Induction Motor Analysis program.

			89	m/s Optimiz	ation	_89 m/s O	ptimization (@ 59 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	smail gap	baseline	slim pole	small gap
			(b/l)	(3/4 b/l)	(0.8 b/l)		(3/4 b/l)	(0.8 b/l)
vresist(1 coil, of 2 on magnet)	ohm	resc.l	1.77E-04	4.32E-04	2.20E-04	1.77E-04	4.32E-04	2.20E-04
√Max. St. st. ohmic power(N/2 mag	٤W	qm ss.l	1.76E+04	3.97E+04	2.18E+04	1.76E+04	3.97E+04	2.18E+04
Max. ohmic power (N/2 magnets)	W	ac.l	1.02E+05	8.29E+04	4.56E+04	1.02E+05	8.29E+04	4 56E+04
Maximum coil power(1 coil)	W	dc max	2 54E+04	4 14E+04	2 28E+04	2 54E+04	4 14E+04	2 285.04
Max steady state coil nower/1 co	iW		4 30E+03	7 17	3.04 5+03	A 30E-03	7 175.09	2.202+04
VSteady state temperature rise	°C.		1 505+00	1 41 5.02	1.50 - 02	1 505.02	1 415.02	1 505.02
Short term temperature rise	ŝ		6 A1E 01	2 21 5.01	2 595.01	6 41E-01	2.01E-02	1.506+02
Maximum cell temperature	š	To more	0.412+01	3.312+01	3.302+01	0.412+01	3.31E+01	3.302+01
Maximum con temperature	-0	ic_max.	2.00E+02	1.912+02	2.00E+02	2.00E+02	1.916+02	2.002+02
	кg	MIC.I	0.000401	1.05E+02	5.36E+01	6.66E+01	1.05E+02	5.36E+01
<u>Hall design</u>								
vrall thickness	m	tr.l	2.87E-02	2.13E-02	2.54E-02	2.87E-02	2.13E-02	2.54E-02
vrail pole tip width (=tr)	m	Ir.I	2.87E-02	2.13E-02	2.54E-02	2.87E-02	2.13E-02	2.54E-02
rail mass/length(two rails)	kg/m	mr.l	8.28E+01	5.36E+01	6.49E+01	8.28E+01	5.36E+01	6.49E+01
nominal rail flux density(centered?)Т	Br.l	9.13E-01	8.70E-01	9.28E-01	9.13E-01	8.70E-01	9.28E-01
eff. freq. for eddy anal.	Hz	Fe.I	8.90E+00	4.48E+00	8.90E+00	5.90E+00	2.97E+00	5.90E+00
dB/dt amp. first harmonic	T/s	B1x.I	3.25E+01	1.56E+01	3.30E+01	2.15E+01	1.03E+01	2.19E+01
eddy current power	W	Pr.I	7.34E+03	1.21E+03	4.72E+03	3.23E+03	5.31E+02	2.07E+03
rms eddy amp turn								
(upper bound, 1 magnet)	Α	NIe.	8.36E+02	1.94E+02	5.97E+02	5 54E+02	1 29E+02	3 96E+02
Maximum continuous Power	w	PI	2 49E+04	2 99E+04	2 05E+04	2 08E+04	2 92F+04	1 785+04
	••	• •	2.432104	2.332404	. 2.002704	2.006704	2.322704	1.702404
inear Induction Motor	,							
Design maximum thrust	a í	max.q	1.50E-01	1.50E-01	1.50E-01	1.50E-01	1.50E-01	1.50E-01
Design maximum thrust	Ň	max.thr	5.88F+04	5.88E+04	5.88E+04	5.88E+04	5 88E+04	5 88E+04
Nominal excitation frequency	Hz	fsync	1 35E+02	1 35E+02	1.60E+02	8 94 E+01	8 94E+01	1.06E+02
Synchronous speed	m/e	VSVDC	8 00 E+02	8 00 5.01	8 00 E+01	5 06E+01	5.065.01	5 06E .01
Nominal slip	111/9	nom slin	1.005-02	1 005 02	1.005.02	1.00E 02	5.90E+01	1.00E 02
General		nom.anp	1.002-02	1.002-02	1.002-02	1.002-02	1.00E-02	1.002-02
thumber of motors		Nasa	4 4 4 7 4 4	4 445 44	4 005 00			
		NMOTOR	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00
Number of poles		Np.v	1.20E+01	1.20E+01	1.40E+01	1.20E+01	1.20E+01	1.40E+01
<u>Geometric_dimensions</u>								
*Air gap (mechanical clearance)	m	ci.v	1.00E-02	1.00E-02	8.00E-03	1.00E-02	1.00E-02	8.00E-03
*Pole pitch	m .	tau.v	3.33E-01	3.33E-01	2.81E-01	3.33E-01	3.33E-01	2.81E-01
*Slots/pole/phase		Nslots	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00
*Core width	m	d.v	1.80E-01	1.80E-01	1.92E-01	1.80E-01	1.80E-01	1.92E-01
*Tooth width/slot width ratio		tsr.v	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00
*Slot depth	m	h.v	5.00E-02	5.00E-02	5.00E-02	5.00E-02	5.00E-02	5.00E-02
*Lamination thickness	m	tlam.v	3.56E-04	3.56E-04	3.56E-04	3.56E-04	3.56E-04	3.56E-04
Magnetic gap (entrefer)	m	а.таа	1.50E-02	1.50E-02	1.30E-02	1.50E-02	1.50E-02	1.30E-02
Carter factor		Kcarter	1 19E+00	1 19E+00	1 18E+00	1 19E+00	1 195+00	1 185+00
Effective magnetic gap	m	ae lim	1 785-02	1 785-02	1 545-02	1 785-02	1 785-02	1 54 5-02
Back iron thickness vehicle	(1) (1)	tvv	5 74E-02	5 74E-02	A 60E-02	5 74E-02	6 74E-02	4 60 5 02
Tooth width	-	14 14	0.74L-02	0.695.00	4.092-02	3.745-02	3.742-02	4.092-02
Slot width	-	11.4	2.532-02	2.535-02	2.132-02	2.535-02	2.532-02	2.132-02
	m	w.v	3.03E-02	3.03E-02	2.556-02	3.03E-02	3.03E-02	2.55E-02
Siot pitch (=tooth pitch)	m	sp.v	5.56E-U2	5.562-02	4.68E-02	5.56E-02	5.56E-02	4.68E-02
Number of laminations		Niams.v	5.05E+02	5.05E+02	5.39E+02	5.05E+02	5.05E+02	5.39E+02
Motor effective length	m	Lett	4.00E+00	4.00E+00	3.93E+00	4.00E+00	4.00E+00	3.93E+00
Motor physical length	m i	Lphys	4.56E+00	4.56E+00	4.40E+00	4.56E+00	4.56E+00	4.40E+00
Effective air gap area	m^2	Aface	7.20E-01	7.20E-01	7.55E-01	7.20E-01	7.20E-01	7.55E-01
Core exposed surface area	m^2	Acore	2.44E+00	2.44E+00	2.37E+00	2.44E+00	2.44E+00	2.37E+00
Winding parameters								
*Number of phases		Nphase.v	3.00E+00	3.00E+00	3.00E+00	3.00E+00	3.00E+00	3.00E+00
*Coil pitch/pole pitch ratio(fractio	n)	cp_tau	6.67E-01	6.67E-01	6.67E-01	6.67E-01	6.67E-01	6.67E-01
*Number of winding layers	-	Nlayers.	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00

ElectroMagnetic Suspension I

Optimized for operation at 89 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab Linear Induction Motor Analysis program.

			89 n	n/s_Optimiz	ation	89 m/s O	ptimization (@ 59 m/s	
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3	
			baseline	slim pole	small gap	baseline	slim pole	small gap	
			(b/l)	(3/4 b/l)	(0.8 b/l)		(3/4 b/l)	(0.8 b/l)	
*Number of coils/pole/phase		ncoils.v	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	
*Coil packing factor		f.v	7.85E-01	7.85E-01	7.85E-01	7.85E-01	7.85E-01	7.85E-01	
*Pole/coil clearance	m .	z.v	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	
*Turns/coil		Npc.v	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	
*End turn angle	degrees	alpha	3.00E+01	3.00E+01	3.00E+01	3.00E+01	3.00E+01	3.00E+01	
*End turn projection	m	b	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	
Distribution factor(distributed wind	ding)	Kd i	8.66E-01	8.66E-01	8.66E-01	8.66E-01	8.66E-01	8.66E-01	
Pitch factor(fractional pitch coils)		Kp	8.66E-01	8.66E-01	8.66E-01	8.66E-01	8.66E-01	8.66E-01	
Winding factor(for distributed wind	lings)	Kw	7.50E-01	7.50E-01	7.50E-01	7.50E-01	7.50E-01	7.50E-01	
Coil pitch	m	tau_c.v	2.22E-01	2.22E-01	1.87E-01	2.22E-01	2.22E-01	1.87E-01	
Mean conductor length	m/coil	lcoil.v	9.13E-01	9.13E-01	8.57E-01	9.13E-01	9.13E-01	8.57E-01	
Coil thickness	m	tcoil.v	2.25E-02	2.25E-02	2.25E-02	2.25E-02	2.25E-02	2.25E-02	
Conductor x-section area/slot/laye	1 m^2	Acoil.v	5.35E-04	5.35E-04	4.51E-04	5.35E-04	5.35E-04	4.51E-04	
Coil Resistance	ohm	Rcoil.v	8.08E-05	8.08E-05	9.02E-05	8.08E-05	8.08E-05	9.02E-05	12
Heat transfer area (1 coil)	m^2	Aht.v	7.74E-02	7.74E-02	6.39E-02	7.74E-02	7.74E-02	6.39E-02	prog. a. Status
Peak MMF per coil RMS amp-turns	-	MMFperN	4.05E+00	4.05E+00	4.05E+00	4.05E+00	4.05E+00	4.05E+00	- 19 %
Core operating flux density	т	Bcore.v	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00	
Coil RMS amp-turns @ Bsat of tooth	Amp-turn	Nicoil.v	2.38E+03	2.38E+03	2.06F+03	2.38F+03	2.38E+03	2.06E+03	
Total flux per pole @ Bsat of tooth	Webers	Fop	3.10E-02	3.10E-02	2.70E-02	3.10E-02	3.10E-02	2.70E-02	
RMS phase current @ Bsat of tooth	A	lohase.v	2.38E+03	2.38E+03	2.06E+03	2.38E+03	2.38E+03	2.06E+03	
Total RMS slot current @ Bsat of to	(Å	Islot v	4.77E+03	4.77E+03	4.12E+03	4.77E+03	4.77E+03	4.12E+03	
Coil power (1coil)	w	Pcoil.v	4.59E+02	4.59E+02	3.82E+02	4.59E+02	4.59E+02	3.82E+02	
Coil surface temperature rise	°C	delTavg.v	1.41E+02	1.41E+02	1.43E+02	1.41E+02	1.41E+02	1.43E+02	
Maximum coil surface temperature	°C	Tw.lim	1.91E+02	1.91E+02	1.93E+02	1.91E+02	1.91E+02	1.93E+02	
Slot current	A-conduct	.I.slot	4.77E+03	4.77E+03	4.12E+03	4.77E+03	4.77E+03	4.12E+03	
Linear current loading	A/m	Lload	8.58E+04	8.58E+04	8.79E+04	8.58E+04	8.58E+04	~8.79E+04	
									<i></i>
Stator Leakage Reactance Calculation	ons								180
Slot Leakage	ohm	Xslot	1.21E-02	1.21E-02	2.13E-02	8.05E-03	8.05E-03	1.41E-02	
End turn leakage	ohm	Xec	3.60F-08	3.60E-08	2 64E-08	2 39E-08	2 39E-08	1 75E-08	
Total Primary Leakage Reactance	ohm	Xleak	1.21E-02	1 21E-02	2 13E-02	8 05E-03	8 05E-03	1 41 E-02	
	•••••	, and an			2.102 02	0.002.00	0.002.00	1.412-02	
Stator Leakage Reactance @ 50 Hz.									
Leakage Reactance @ 50 Hz.	ohm/phase	X50	4.50E-03	4.50E-03	6.65F-03	4.50E-03	4.50E-03	6.65E-03	
Coil Resistance	ohm/phase	Bone	3.88E-03	3.88E-03	5.05E-03	3.88E-03	3 88E-03	5.05E-03	
Reactance/Resistance ratio @ 50 Hz	-	alpha50	1.16E+00	1 16E+00	1.32E+00	1 16E+00	1 16E+00	1.32E+00	
Series turns/phase		stp.lim	2.40E+01	2.40E+01	2.80E+01	2.40E+01	2.40E+01	2.80E+01	
Resistance, Primary	ohm/phase	ro.lim	3.88E-03	3.88E-03	5.05E-03	3.88E-03	3.88E-03	5.05E-03	
······································			0.000 00			0.002.00	0.002.00	0.002 00	
Motor iron weight, single stator	ka	mi.v	5.31E+02	5.31E+02	4.80E+02	5.31E+02	5.31E+02	4.80E+02	
Motor conductor weight, single stat	ka	mc.v	9.78E+01	9.78E+01	9.03E+01	9.78E+01	9.78F+01	9.03F+01	
Total motor weight(Nmotor motors)	ka	mmotor	2.52E+03	2.52E+03	2.28E+03	2.52E+03	2.52E+03	2.28E+03	
Core loss power, single stator	w	Pcore	5.59E+03	5.59E+03	6.53E+03	3.02E+03	3.02E+03	3.52E+03	
Core temperature rise	°C	delTcore	5.47E+01	5.47E+01	6.58E+01	2.95E+01	2.95E+01	3.55E+01	
Core surface temperature	°C	Tcore	1.05E+02	1.05E+02	1.16E+02	7.95E+01	7.95E+01	8.55E+01	
	-							0.002.001	
Motor Secondary (guideway) Design Iron	Parameters								
Back iron thickness, guideway	m	ty.g	4.61E-02	4.61E-02	3.87E-02	4.61E-02	4.61E-02	3.87E-02	
Back iron width	m	d.g	2.10E-01	2.10E-01	2.18E-01	2.10E-01	2.10E-01	2.18E-01	
Guideway iron specific weight	kg/m	mi.g	7.27E+01	7.27E+01	6.34E+01	7.27E+01	7.27E+01	6.34E+01	
Conductor	-	-							
*Conductor overlap factor		colf.g	4.00E-01	4.00E-01	4.00E-01	4.00E-01	4.00E-01	4.00E-01	
*Conductor thickness	m	tc.g	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	

F-5

ElectroMagnetic Suspension I Optimized for operation at 89 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input. 2 Asterisks (**) after description indicates output from MatLab Linear Induction Motor Analysis program.

			89 n	n/s Optimiz	ation	89 m/s O	ptimization (@ 59 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	smail gap
• 1			<u>(b/l)</u>	(3/4 b/l)	(0.8 b/l)		(3/4 b/l)	(0.8 b/l)
Conductor width	m	dc.g	4.77E-01	4.77E-01	4.43E-01	4.77E-01	4.77E-01	4.43E-01
Guideway conductor specific weigh	tkg/m	mc.g	6.63E+00	6.63E+00	6.16E+00	6.63E+00	6.63E+00	6.16E+00
lotal guideway added weight	Kg/m	m.gw	1.59E+02	1.59E+02	1.39E+02	1.59E+02	1.59E+02	1.39E+02
Performance Posults from Matlah An	alveie							
Individual Motor Parameters at Max	<u>aursis</u> imum Pro	oulsive Ford	:e					
Thrust**	N	Thrust	1.47F+04	1.47F+04	1.46E+04	6 47E+03	6.47E+03	6 43E+03
Slip**	-	slip	1.50E-02	1.50E-02	1.50E-02	2.20E-02	2.20E-02	2.20E-02
Traction Power**	W	P.tract	1.31E+06	1.31E+06	1.29E+06	3.77E+05	3.77E+05	3.74E+05
Real input Power**	W	Pin.real	1.37E+06	1.37E+06	1.35E+06	4.03E+05	4.03E+05	3.98E+05
Reactive input Power**	V-A	Pin.react	1.57E+06	1.57E+06	1.53E+06	4.68E+05	4.68E+05	4.57E+05
Efficiency**	%	eff.v	9.56E+01	9.56E+01	9.58E+01	9.36E+01	9.36E+01	9.41E+01
Power Factor		PwrFac	6.57E-01	6.57E-01	6.57E-01	6.57E-01	6.57E-01	6.57E-01
AUXILIARY CALCULATIONS								
LIFT MAGNETS								
permeances		D (4 007 0-	4.007.4-			
VAIr gap tringing permeance/length	1	Pt Di	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00
videal all gap permeance/length		ru	3.14E+00	2.352+00	3.49E+00	3.14E+00	2.355+00	3.49E+00
niter-pole leakage perm.hengin		P1	3.942-01	3.822-01	4.062-01	3.94E-01	3.822-01	4.065-01
Mean turn length	m	10	1.025.01	1 025.01	1.025.01	1 025.01	1.025.01	1.025.01
VCoil crossectional area(one coil)	m^2	ac	1.020+01	1.920-01	1.115-03	1 305.02	1.520+01	1.020+01
Vooil Surface area/for 1 coil)	m^2	adis	1.775+00	2 91 5-00	1.595+00	1.775+00	2 91 E+00	1 595+00
GUIDANCE MAGNETS		4413	1.77 2400	2.310,400	1.532400	1.772+00	2.312400	1.382400
bermeances								
VAir gap fringing permeance/length	1	Pf.I	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00
√Ideal air gap permeance/length		Pu.l	2.27E+00	1.70E+00	2.50E+00	2.27E+00	1.70E+00	2.50E+00
?Inter-pole leakage perm./length		PI.I	4.17E-01	4.08E-01	4.27E-01	4.17E-01	4.08E-01	4.27E-01
coil dimensions								
√ Mean turn length(one coil)	m	lc.l	1.02E+01	2.01E+01	1.02E+01	1.02E+01	2.01E+01	1.02E+01
√Coil crossectional area(one coil)	m^2	ac.i	2.34E-03	1.89E-03	1.89E-03	2.34E-03	1.89E-03	1.89E-03
√Coil Surface area(for one coil)	m^2	adis.l	2.10E+00	3.63E+00	1.88E+00	2.10E+00	3.63E+00	1.88E+00
LINEAR INDUCTION MOTOR						0.00E+00	0.00E+00	0.00E+00
permeances						0.00E+00	0.00E+00	0.00E+00
Ideal air gap permeance/length		Pu.lim	1.01E+01	1.01E+01	1.25E+01	1.01E+01	1.01E+01	1.25E+01
Air gap fringing permeance/length		Pf.lim	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00
Fringing permeance ratio		nuf.lim	1.90E-01	1.90E-01	1.54E-01	1.90E-01	1.90E-01	1.54E-01
EMS I Summary								
Weight on Vehicle								
Lift Magnets	kg		1.54E+03	1.99E+03	1.23E+03	1.54E+03	1.99E+03	1.23E+03
Guidance Magnets	kg		1.55E+03	2.17E+03	1.23E+03	1.55E+03	2.17E+03	1.23E+03
Linear Induction Motor	kg		2.52E+03	2.52E+03	2.28E+03	2.52E+03	2.52E+03	2.28E+03
Total	kg		5.61E+03	6.68E+03	4.75E+03	5.61E+03	6.68E+03	4.75E+03
Weight on Guideway								
Lift Magnets	kg/m		1.13E+02	7.17E+01	8.94E+01	1.13E+02	7.17E+01	8.94E+01
Guidance Magnets	kg/m		8.28E+01	5.36E+01	6.49E+01	8.28E+01	5.36E+01	6.49E+01
Linear Induction Motor	kg/m		1.59E+02	1.59E+02	1.39E+02	1.59E+02	1.59E+02	1.39E+02
Total	kg/m		3.55E+02	2.84E+02	2.93E+02	3.55E+02	2.84E+02	2.93E+02
<u>Heal_Input_Power_Dissipation</u> Ohmic_Power_Dissipation								
· · · · · · · · · · · · · · · · · · ·			-			•		

F-6

ElectroMagnetic Suspension I

Optimized for operation at 89 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab Linear Induction Motor Analysis program.

			<u>. 89</u> л	<u>n/s Optimiz</u>	ation	89 m/s O	@ 59 m/s	
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
			(b/l)	(3/4 b/l)	(0.8 <u>b/i)</u>		(3/4 b/l)	(0.8 b/l)
Lift Magnets	W		1.19E+05	1.95E+05	1.06E+05	1.19E+05	1.95E+05	1.06E+05
Guidance Magnets	W		1.76E+04	3.97E+04	2.18E+04	1.76E+04	3.97E+04	2.18E+04
Linear Induction Motor	W		6. <u>00E+04</u>	6.00E+04	5.62E+04	2.56E+04	2.56E+04	2.35E+04
Total Ohmic Power	W		1.96E+05	2.95E+05	1.84E+05	1.62E+05	2.60E+05	1.52E+05
Eddy current Power								
Lift Magnets	W		2.93E+04	4.94E+03	1.93E+04	1.29E+04	2.17E+03	8.47E+03
Guidance Magnets	W		7.34E+03	1.21E+03	4.72E+03	3.23E+03	5.31E+0 <u>2</u>	2.07E+03
Total eddy current Power	W		3.66E+04	6.14E+03	2.40E+04	1.61E+04	2.70E+03	1.05E+04
Total Real Power Dissipation	W		2.33E+05	3.01E+05	2.08E+05	1.78E+05	2.63E+05	1.62E+05
Reactive Input Power								
Linear Induction Motor	V-A		1. <u>57E+06</u>	1.57E+06	1.53E+06	4.68E+05	4.68E+05	4.57E+05
Total	V-A		1.57E+06	1.57E+06	1.53E+06	4.68E+05	4.68E+05	4.57E+05

Table F-2. Complete EMS I Spreadsheet; Design optimized for operation at 134 m/s Separate Lift and guidance magnets and Linear Induction Motor

ElectroMagnetic Suspension I Optimized for operation at 134 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab LIM program.

			134	m/s Optimiz	tation	134 m/s C	Optimization	@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
				(3/4 b/l)	(0.8 b/l)		(3/4 b/l)	(0.8 b/i)
VEHICLE PARAMETERS				-				
<u>Design Parameters</u>								
*Vehicle mass	kg	m	4.00E+04	4.00E+04	4.00E+04	4.00E+04	4.00E+04	4.00E+04
*Vehicle length	m	I_vehicle	3.00E+01	3.00E+01	3.00E+01	3.00E+01	3.00E+01	3.00E+01
*Design speed	m/s	v	1.34E+02	1.34E+02	1.34E+02	8.90E+01	8.90E+01	8.90E+01
*frontal area	m^2	Âf	1.20E+01	1.20E+01	1.20E+01	1.20E+01	1.20E+01	1.20E+01
*air density	ka/m^3	roair	1.20E+00	1.20E+00	1.20F+00	1.20E+00	1 20E+00	1 20E+00
*drag coefficient		Cd	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3 00E-01	3.00E-01
wind drag force	N	Fa	3 88E+04	3 885+04	3 88E+04	1 71E+04	1 71E+04	1 71 E+04
wind drag power	Ŵ	PH 1	5 20E+06	5 20 5+06	5 20E+06	1.525+06	1 525.06	1.525+05
*Max Lift Force(@Max disp.)		may Ez	1 10 5+00	1 105.00	1 105.00	1 105.00	1 105.00	1.105.00
Max. Lateral Earce//(cont.)	8	max El	2 605-01	2 605-01	2 605 01	2 605 01	2 605 01	2.605.01
Max. Lateral Force/)(short torm)	8	max_Fil	4 20E-01	4 205 01	4.205.01	2.000-01	2.002-01	2.00E-01
*Time of Max (short) stored E	9	111dA_SF.1	4.202-01	4.202-01	4.202-01	4.202-01	4.202-01	4.202-01
*Max prepulaive faces	sec	L_max	5.00E+00	5.00E+00	5.00E+00	5.00E+00	5.00E+00	5.00E+00
	9	max_rp	2.10E-01	2.102-01	2.10E-01	2.10E-01	2.10E-01	2.10E-01
Maximum ambient temperature	ч с	maxiam	5.00E+01	5.00E+01	5.00E+01	5.00E+01	5.00E+01	5.00E+01
Bastana								
Performance Parameters								
Power, (onmic+eddy)/aero. drag	%		2.07E-01	2.51E-01	1.75E-01	5.41E-01	7.24E-01	4.43E-01
weight, (magnet+coil)/vehicle	%		1.80E-01	2.07E-01	6.93E-02	1.80E-01	2.07E-01	6.93E-02
eddy/lift amp-T (up, bound)	%		1.89E-01	5.38E-02	1.62E-01	1.25E-01	3.57E-02	1.07E-01
Aerodynamic drag/lift force	%		9.89E-02	9.89E-02	9.89E-02	4.36E-02	4.36E-02	4.36E-02
001074170								
CONSTANTS			4 445 44	4 995 99	4 995 99			
air permeability	N/A^2	mu	1.266-06	1.26E-06	1.26E-06	1.26E-06	1.26E-06	1.26E-06
Successions								
<u>Suspensions</u>								
-fail			Steel	Steel	steel	steel	steel	steel
-magnet			2V Perm.	2V Perm.	2V Perm.	2V Perm.	2V Perm.	2V Perm.
-COII			alum.	alum.	alum.	alum.	alum.	alum.
Materials properties								
mass density			·			_		
rail	kg/m^3	ror	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03
*magnet	kg/m^3	rom	7.78E+03	7.78E+03	7.78E+03	7.78E+03	7.78E+03	7.78E+03
*coil	kg/m^3	roc	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03
maximum flux density								
*rail	т	Bsatr	1.60E+00	1.60E+00	1.60E+00	1.60E+00	1.60E+00	1.60E+00
*magnet	т	Bsatm	2.30E+00	2.30E+00	2.30E+00	2.30E+00	2.30E+00	2.30E+00
*Saturation Safety Factor(<1)		SF	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00
electrical resistivity								
*rail @20°C	ohm-m	rr	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07
*Temp. coefficient of rail	ohm-m/°C	rr_tc						
*coil @140 deg C	ohm-m	rc	4.06E-08	4.06E-08	4.06E-08	4.06E-08	4.06E-08	4.06E-08
*Temp, coefficient of coil	ohm-m/°C	rcitc						
Thermal								
*magnet heat transfer coef.	W/C-m^2	ĸ	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01
*Coil Specific heat	J/(ka°C)	CD	1.19E+02	1.19E+02	1.19E+02	1.19E+02	1.19E+02	1.19E+02
*Maximum wire insulation temp	°C	maxTins	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02
F				·				
Linear Induction Motor								
Construction materials								
*rail			steel	steel	steel	steel	steel	steel
^e rail conductor(a)			aluminum	aluminum	aluminum	aluminum	aluminum	aluminum

F-8

ElectroMagnetic Suspension I Optimized for (Separate vertical & lateral suspensions & linear induction motor) Optimized for operation at 134 m/s maximum speed

.

Asterisk (*) before description indicates input. 2 Asterisks (**) after description indicates output from MatLab LIM program.

			134	m/s Optimiz	zation	134 m/s C	optimization	@ 89 m/s	
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3	
			baseline	slim pole	small nan	haseline	slim nole	small can	
			Jasenne	19/4 L/D	(0 0 L/I)	Daseiine		anan yap	
Matariala proportion			···	(3/4 0/1)			(3/4 0/1)		
Materials properties	·								
Mass density			_						
rail	kg/m^3	rom.g	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03	
<pre>*rail conductor(s)</pre>	kg/m^3	roc.g	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03	
*magnet	kg/m^3	rom.v	7.65E+03	7.65E+03	7.65E+03	7.65E+03	7.65E+03	7.65E+03	
*coil	ko/m^3	roc.v	2.78E+03	2.78E+03	2.78E+03	2 78F+03	2 78E+03	2 78E+03	
					2	2.702700	2.702100	202+00	
maximum flux densities									
	-		4 605 00	4 495 44	4.005.00	4 005 00	4 995 99	1 005 00	
(d))	<u>+</u> ·	osal.g	1.60E+00	1.602+00	1.60E+00	1.602+00	1.60E+00	1.60E+00	
magnet	1	bsat.v	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00	
Magnetic permeability									
rail		mu.g	3.50E+03	3.50E+03	3.50E+03	3.50E+03	3.50E+03	3.50E+03	
Vehicle (short) stator		mu.v							
Core Loss @ 1.0T 100 Hz	W/ko	rafe loss	2 875.00	2 875.00	2 875.00	2 975.00	2 975.00	2 975.00	
	WING	1010.1035	2.87 2+00	2.8/E+00	2.07 E+00	2.07E+00	2.8/ E+00	2.07E+00	"لانتم
Core loss frequency exponent	•	ireq.exp	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50++00	1.50E+00	1.11
Core loss induction exponent	-	B.exp	2.10E+00	2.10E+00	2.10E+00	2.10E+00	2.10E+00	_2.10E+00	
Core loss @ fsync & Bcore	W/kg	c.loss	1.95E+01	1.95E+01	2.51E+01	1.05E+01	1.05E+01	1.36E+01	
electrical resistivity									
*Magnet laminations @ 140°C	ohm-m	rm v	7 00F-07	7 00E-07	7 00F-07	7 00E-07	7 00E-07	7.005-07	
trail @20 doe C			1.002-07	1.002-07	1.000-07	1.002-07	1.002-07	1.000-07	
	onm-m	rm.g	4.062-07	4.06E-07	4.06E-07	4.06E-07	4.062-07	4.06E-07	
venicie coil @20 deg C	ohm-m	rcHT.v	2.78E-08	2.78E-08	2.78E-08	2.78E-08	2.78E-08	2.78E-08	
 *vehicle coil temperature coefficie 	1/°C	alpha.v	4.10E-03	4.10E-03	4.10E-03	4.10E-03	4.10E-03	4.10E-03	
vehicle coil @operating temperatu	iohm-m	rc.v	4.79E-08	4.79E-08	4.80E-08	4.79E-08	4.79E-08	4.80E-08	
'Guideway conductor @20 deg c	ohm-m	rc.a	2.80E-08	2.80E-08	2.80F-08	2 80F-08	2 80F-08	~2 80E-08	
	•		2.002.00	2,002.00	2.002 00	2.002.00	2.002.00		
Heat transfor coefficients									
magnet neat transfer coer.	W/C-m^2	K.V	4.19E+01	4.19E+01	4.19E+01	4.19E+01	4.19E+01	4.19E+01	
rail heat transfer coef.	W/C-m^2	k.g	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01	
		:							
COMPONENT DESIGN & ANALYSIS									
Vertical suspension									
Geometric dimensions		1							
*polo_width	-	1	2 145 00	0.055.00		0 145 00	0.055.00	0.705.00	
	m	1P	3.14E-02	2.35E-02	2.79E-02	3.14E-02	2.35E-02	2.79E-02	
"air gap	m	H1x	1.00E-02	1.00E-02	8.00E-03	1.00E-02	1.00E-02	8.00E-03	
*window width	m	w	9.43E-02	8.51E-02	8.50E-02	9.43E-02	8.51E-02	8.50E-02	
*window height	m	h l	4.72E-02	4.25E-02	4.25E-02	4.72E-02	4.25E-02	4.25E-02	
Window width/height			2.00F+00	2 00E+00	2 00 E+00	2 00E+00	2 00 E+00	2 00 E+00	
trindom widthilloight			2.002+00	2.002+00	2.002+00	2.002400	2.002+00	2.002+00	
A					un i	UK .	<u></u>	UK	
Coll packing factor		t I	7.00E-01	7.00E-01	7.00E-01	7.00E-01	7.00E-01	7.00E-01	
*pole-coil clearance	m	z	5.08E-03	5.08E-03	5.08E-03	5.08E-03	5.08E-03	5.08E-03	
*Number magnets required		nmag	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00	
magnet length	m	1	5.00F+00	9.52E+00	5.00E+00	5.00E+00	9 52E+00	5 00 E+00	
Magnet length/vehicle length ratio		-	^o x	OK .	CK.	a	CY .	ar l	
Magnet lengusvenicie lengus lauo			Ŭ,	UN	ů.	5	ů.	ů.	
Manage daylar									
<u>Magnet design</u>									
ieakage/fringing flux ratios									
√ fringing (across air gap)		nuf	6.12E-01	8.16E-01	5.51E-01	6.12E-01	8.16E-01	5.51E-01	
√ leakage (between poles)		nui	1.26E-01	1.63E-01	1.16E-01	1.26E-01	1.63E-01	1.16E-01	
Vtotal		nut	1 74F±00	1 98E+00	1.67E+00	1 74E+00	1 98E-00	1 67E+00	
voominal field in air can(@2*Liter)	т	PA	0.205.01	7 705 04	0.855 01	0.205.04	7 705 04	0.055.01	
And Contract of the second sec		50	9.295.01	1.700-01	9.032-01	9.292-01	1.100-01	9.03C-U1	
vmax. Force per magnet(@2"H1x)	N	⊦pm	1.08++05	1.08E+05	1.08E+05	1.08E+05	1.08E+05	1.08E+05	
vmax. vertical g's @ twice nom. gap	9		ak	ak	ak	ak	QK	ak	
√Max amp turns per coil(@ 2H1x)	Α	NI	1.48E+04	1.24E+04	1.25E+04	1.48E+04	1.24E+04	1.25E+04	
Max. steady state NI (1 coil@1c)		NI_ss	7.05E+03	5.90E+03	5.98E+03	7.05E+03	5.90E+03	5.98E+03	

F-9

ElectroMagnetic Suspension I Optimized for (Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab LIM program.

			134	m/s Optimiz	zation	134 m/s C	ptimization	@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim nole	small dan	haseline	slim nole	small gap
			Decomic	13/4 5/1)		baseline	1214 H/D	Inal gap
Jana mara (1 mar)	k	110000	0.075.00			0.075.00		
voore mass (1 mag)	ĸg	Mcore	3.07E+02	3.79E+02	2.45E+U2	3.07E+02	3./96+02	2.45E+02
vmass core + coil (4 mag)	кg	Mmag	1.54E+03	1.99E+03	1.23E+03	1.54E+03	1.99E+03	1.23E+03
√Total magnet weight/vehicle wt.		%	3.86%	4.98%	3.08%	3.86%	4.98%	3,08%
<u> Coil Design</u>								
Vresist (1 coil, of 2 on magnet)	ohm	resc	2.98E-04	6.99E-04	3.72E-04	2.98E-04	6.99E-04	3.72E-04
Max. St. st. ohmic power(N maos)	w	am ss	1.19E+05	1.95E+05	1.06E+05	1.19F+05	1.95E+05	1.06F+05
Max coil ohmic power (N magnets)	w	ac	5 22E+05	8 58E+05	4 68E+05	5 22E+05	8 58E+05	4 68E+05
Maximum coil power(1 coil)	w		6 52E+04	1.075+05	5 955-04	6 52E+04	1.075.05	5.95E+04
Max stock state call power(1 conj	.: 14/		1 485.04	0.445.04	1.000.04	0.522404	1.07E+03	1.00E+04
What steady state con power(1 c	100	qc_ss T_	1.400+04	2.440+04	1.332+04	1.402+04	2.445+04	1.332+04
voteady state temperature rise	°C	Im_ss	1.50E+02	1.50E+02	1.50E+02	1.50E+02	1.50E+02	1.50E+02
vShort term temperature rise	°C	Tm_st	5.57E+02	6.06E+02	6.24E+02	5.57E+02	6.06E+02	6.24E+02
Maximum coil temperature	°C	Tc_max	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02
√mass(one coil)	kg	Mc	3.95E+01	5.96E+01	3.15E+01	3.95E+01	5.96E+01	3.15E+01
Rail desian								
Vrail thickness	m	tr	4.05F-02	3.01F-02	3.61F-02	4.05F-02	3.01E-02	3.61 F-02
Vrail pole tip width	m	lr l	4 05E-02	3 015-02	3 61 5-02	4 055.02	3 01 5-02	3.615.02
roil moss/longth/2 roils)	ke/m		4.032-02	7 175.01	0.045.01	4.032-02	3.01E-02	3.01E-02
ran masshengun(z rans)	Kg/m	mi	1.136+02	7.176+01	0,945+01	1.132+02	1.17E+U1	0.942+01
	-							
nominal rall flux density	1	Br	1.16E+00	1.10E+00	1.18E+00	1.16E+00	1.10E+00	1.18E+00
eff. freq. for eddy anal.	Hz	Fe	1.34E+01	7.04E+00	1.34E+01	8.90E+00	4.68E+00	8.90E+00
dB/dt amp. first harmonic	T/s	81x	6.22E+01	3.11E+01	6.33E+01	4.13E+01	°2.07E+01	4.20E+01
eddy current power	W	Pr	6.63E+04	1.12E+04	4.37E+04	2.93E+04	4.94E+03	1.93E+04
rms eddy amp turn								
(upper bound, 1 magnet)	Α	Nle	2.79E+03	6.66E+02	2.03E+03	1.86E+03	4.42E+02	1.35E+03
VTotal continuous power	w	Pv	1 85E+05	2 06E+05	1.50E+05	1 48E+05	2 00E+05	1 26E+05
		•••		2.002.00		11402100	2.002.00	1.202700
I storal Succession			·					
Geometric_ormensions								
pole width	m	Ip.I	2.80E-02	2.10E-02	2.48E-02	2.80E-02	2.10E-02	2.48E-02
"window width	m	w.I	1.26E-01	1.13E-01	1.14E-01	1.26E-01	1.13E-01	1.14E-01
*window height	m	h.l	6.32E-02	5.64E-02	5.69E-02	6.32E-02	5.64E-02	5.69E-02
Window width/height ratio			2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00
			ax	QK	ax	ak	CK	ak
*coil packing factor		f.I	7.00E-01	7.00E-01	7.00E-01	7.00E-01	7.00E-01	7.00E-01
*air gan	m	144.4	1 005-02	1.005-02	8 005-03	1.005-02	1.005-02	8 00E-03
*nalo seil elegranes	-	-	F.00E-02	5 00C-02	5.00E-03	5.000-02	F.00C-02	5.002-03
		2.1	5.082-03	5.002-03	5.08E-03	5.082-03	5.00E-03	5.082-03
Number magnets required		nmag.i	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00
magnet length	m	L.I	5.00E+00	9.68E+00	5.00E+00	5.00E+00	9.68E+00	5.00E+00
Magnet length/vehicle length			ak	ak	ak	ak	ak	ak
<u>Magnet design</u>								
flux leakage coefficients								
fringing (across air gap)		nuf.i	6.87E-01	9.15E-01	6.20E-01	6.87E-01	9.15E-01	6.20E-01
leakage (between poles)		nul.l	1.51E-01	1.96E-01	1.39E-01	1.51E-01	1.96E-01	1.39E-01
total		nut	1.84E+00	2.11E+00	1.76F_00	1 84F+00	2.11E+00	1.76E+00
nominal field in air can	т	BOI	8 60 -01	7 145-01	9 14 -01	8 60 5-01	7 145-01	9 145-01
May Force per magnet/@2*U4+1	N	Enmi	8 23 - 04	8 22	8 22 5.04	8 23 5.04	8 23 5-04	8 23 5.04
Max lateral eta C tuica and		churt	0.230+04	0.200+04	0.23E+04	0.200+04	0.232+04	0.200+04
Max. lateral g's @ twice nom. gap	9		UK .	UK	UK		- UK	UK .
Max. amp turns per coil(@2H1x.i)	A	NI.I	1.37E+04	1.14E+04	1.16E+04	1.37E+04	1.14E+04	1.16E+04
√Max. steady state NI (one coil)		NI_ss.l	5.39E+03	4.47E+03	4.58E+03	5.39E+03	4.47E+03	4.58E+03
core mass (1 mag)	kg	Mcore.I	3.36E+02	4.23E+02	2.67E+02	3.36E+02	4.23E+02	2.67E+02
√mass core + coil (4 mag)	kg	Mmag.i	1.93E+03	2.58E+03	1.54E+03	1.93E+03	2.58E+03	1.54E+03
Total magnet weight/vehicle wt.	-	%	4.83%	6.44%	3.85%	4.83%	6.44%	3.85%
			-			-		

Optimized for operation at 134 m/s maximum speed

ElectroMagnetic Suspension I

Optimized for operation at 134 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input. 2 Asterisks (**) after description indicates output from MatLab LIM program.

			134	m/s Optimiz	zation	134 m/s C	optimization	@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
		-		(3/4 b/l)	(0.8 b/l)		(3/4 b/i)	(0.8 b/l)
Coil desian								1
vresist(1 coil of 2 on magnet)	ohm	resc 1	1 62E-04	3 92E-04	2 01 E-04	1 625-04	3 925-04	2 01 E-04
Max St et obmic nowor/N/2 mag	14/	am as I	1.000.04	2 005.04	2.012-04	1.022-04	0.026-04	2.012-04
Max. St. St. Chine power(14/2 mays	1 W V	diii_2921	1.000 +04	3.00E+04	2.000+04	1.002+04	3.000+04	2.082+04
vmax. onmic power (N/2 magnets)	VV	dc'i	1.21E+05	1.01E+05	5.44E+04	1.21E+05	1.01E+05	5.44E+04
vMaximum coil power(1 coil)	w	qc_max.	3.03E+04	5.06E+04	2.72E+04	3.03E+04	5.06E+04	2.72E+04
Max. steady state coil power(1 coil)	iW	qc_ss.l	4.69E+03	7.83E+03	4.21E+03	4.69E+03	7.83E+03	4.21E+03
√Steady state temperature rise	°C	Tm_ss.l	1.50E+02	1.50E+02	1.50E+02	1.50E+02	1.50E+02	1.50E+02
√Short term temperature rise	°C	Tm st.l	6.96E+01	3.85E+01	3.89E+01	6.96E+01	3.85E+01	3.89E+01
Maximum coil temperature	°C	Tc max.	2.00F+02	2 00F+02	2 00F+02	2 00F+02	2 00 E+02	2 00F+02
	ka	Mc I	7 335.01	1 105.02	5.995.01	7 995.01	1 105.02	5 99E 01
	~8	1110.1	7.002+01	1.106702	3.00L+01	7.552401	1.102702	3.00.401
Dell desien								
<u>Hall design</u>								
Vrail Inickness	m	tr.I	3.57E-02	2.65E-02	3.17E-02	3.57E-02	2.65E-02	3.17E-02
√rail pole tip width (=tr)	m	r.	3.57E-02	2.65E-02	3.17E-02	3.57E-02	2.65E-02	3.17E-02
rail mass/length(two rails)	kg/m	mr.l	1.13E+02	7.17E+01	8.87E+01	1.13E+02	7.17E+01	8.87E+01
- • •	-	1						
nominal rail flux density(centered?)	т	Br.I	8.95E-01	8.52E-01	9.10E-01	8.95E-01	8.52F-01	9.10F-01
eff. freg. for eddy anal.	Hz	Fel	1.34E+01	6 92E+00	1.34F+01	8 90 F+00	4 59E+00	8 ONELOO
dB/dt amo first barmonic	T/e	B1v1	A 80E -01	2 365 .04	A 89 E . A4	3 105-01	1 575.01	3 24E.04
addy autorst proves	1/3		4.002+01	2.302+01	4.00 E+01	3.192+01	1.572+01	3.240+01
eddy current power	44	Pr.I	3.31E+04	5.49E+03	2.162+04	1.46E+04	2.420+03	9.52E+03
rms eddy amp turn				•				
(upper bound, 1 magnet)	Α	NIe.I	2.05E+03	4.82E+02	1.48E+03	1.36E+03	3.20E+02	9.83E+02
Maximum continuous Power	W	P.I	5.19E+04	3.68E+04	3.84E+04	3.34E+04	3.37E+04	2.63E+04
Peak Power(@ V, max F & displ.)	W							
Linear Induction Motor								t.
Design maximum thrust	0	maxo	2 10E-01	2 10E-01	2 10E-01	2 10E-01	2 105-01	2 10F-01
Design maximum thrust	9 N	max the	9.225-04	0.000-01	2.102-01	2.102-01	2.10E-01	2.10E-01
Neminal excitation fractioners		1114X.UII	0.232+04	0.232+04	0.236+04	0.23E+04	0.23E+04	0.23E+04
Nominal excitation frequency	riz .	rsync	2.03E+02	2.03E+02	2.41E+02	1.35E+02	1.35E+02	1.60E+02
Synchronous speed	m/s	vsync	1.35E+02	1.35E+02	1.35E+02	8.99E+01	8.99E+01	8.99E+01
Nominal slip		nom.slip	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02
<u>General</u>								
*Number of motors		Nmotor	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00
*Number of poles		No.v	1.60E+01	1.60E+01	1.60E+01	1.60E+01	1.60E+01	1.60E+01
Geometric dimensions								
*Air can (mechanical clearance)	~	ot v	1 005.02	1 005 02	9 005 02	1 005 02	1 005 02	0 00E 02
*Dele siteb			1.002-02	1.002-02	8.00E-03	1.002-02	1.002-02	0.00E-03
		เสม.ง	3.33E-01	3.33E-01	2.81E-01	3.33E-01	3.33E-01	2.81E-01
Siots/pole/pnase		NSIOTS	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00
Core width	m	d.v	2.10E-01	2.10E-01	2.20E-01	2.10E-01	2.10E-01	2.20E-01
*Tooth width/slot width ratio		tsr.v	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00
*Slot depth	m	h.v	5.00E-02	5.00E-02	5.00E-02	5.00E-02	5.00E-02	5.00E-02
*Lamination thickness	m	tlam.v	3.56E-04	3.56E-04	3.56E-04	3.56E-04	3.56E-04	3.56E-04
Magnetic gap (entrefer)	m	а.тао	1.50E-02	1.50F-02	1.30F-02	1.50F-02	1.50F-02	1.30F-02
Carter factor		Kcarter	1 19F+00	1 195-00	1 18E+00	1 19E+00	1 195-00	1 18E+00
Effective magnetic con	m	ao lim	1 70 - 00	1 795 00	1 645 00	1 795 00	1 705 00	1 EAE AO
Deak ine thickness which		9e.iiiii	1.70E-UZ	1./02-02	1.546-02	1.70E-U2	1.702-02	1.54E-02
Dack Iron Inickness, Venicle	m	ι γ .ν	5.01E-U2	5.01E-02	4.01E-02	5.61E-02	5.61E-02	4.01E-02
	m	IT.V	2.53E-02	2.53E-02	2.13E-02	2.53E-02	2.53E-02	2.13E-02
Slot width	m	w.v	3.03E-02	3.03E-02	2.55E-02	3.03E-02	3.03E-02	2.55E-02
Slot pitch (=tooth pitch)	m	sp.v	5.56E-02	5.56E-02	4.68E-02	5.56E-02	5.56E-02	4.68E-02
Number of laminations		Nlams.v	5.89E+02	5.89E+02	6.17E+02	5.89E+02	5.89E+02	6.17E+02
Motor effective length	m	Leff	5.33E+00	5.33E+00	4.50E+00	5.33E+00	5.33E+00	4.50E+00
Motor physical length	m	lohvs	5.89F+00	5.89F+00	4.96F+00	5.89F+00	5.89F+00	4.96F+00
Effective air cap area	 m^2	Aface	1.12F+00	1 125-00	9 895-01	1 125-00	1 12 5+00	9 80 - 01
Core exposed surface area	mA2	Acore	3 485.00	3 4800	2045.00	3 485.00	3 495.00	2045.00
one exposed suided gigg	111° 2	ACOLA	J.40E+00	J.40E+VU	2.345+00	J.40E+UU	9.40E+UU	2.340+00

ElectroMagnetic Suspension I

Optimized for operation at 134 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input. 2 Asterisks (**) after description indicates output from MatLab LIM program.

			134	n/e Ontimia	ration	134 m/a 0	ntimization	A 90 m/s
DESCRIPTION	LINITS	SMPG	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	
	UNITS	STINDUL	baseline		small cap	baseline		DESIGN S
			DESENILE		A O LIN	Dasanna		smail gap
Winding paramotors			I	(3/4 0/1)		<u> </u>	(3/4 0/1)	(0.8 0/1)
Winging barameters		N			0.005.00			
Number of phases	- •	Npnase.v	3.00E+00	3.00E+00	3.00E+00	3.00E+00	3.00E+00	3.00E+00
Coll pitch/pole pitch ratio(fractio)	י)	cp_tau	6.67E-01	6.67E-01	6.67E-01	6.6/E-01	6.67E-01	6.67E-01
Number of winding layers		Nlayers.	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00
Number of coils/pole/phase		ncoils.v	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00
Coil packing factor		f.v	7.85E-01	7.85E-01	7.85E-01	7.85E-01	7.85E-01	7.85E-01
*Pole/coil clearance	m	z.v	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03
*Turns/coil		Npc.v	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00
*End turn angle	degrees	alpha	3.00E+01	3.00E+01	3.00E+01	3.00E+01	3.00E+01	3.00E+01
*End turn projection	m	b	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02
Distribution factor(distributed wind	ding)	Kd	8.66E-01	8.66E-01	8.66E-01	8.66E-01	8.66E-01	8.66E-01
Pitch factor(fractional pitch coils)		Кр	8.66E-01	8.66E-01	8.66E-01	8.66E-01	8.66E-01	8.66E-01
Winding factor(for distributed wind	ings)	Кw	7.50E-01	7.50E-01	7.50E-01	7.50E-01	7.50E-01	7.50E-01
Coil pitch	m	tau c.v	2.22E-01	2.22E-01	1.87E-01	2.22E-01	2.22E-01	1.87E-01
Mean conductor length	m/coil	lcoil.v	9.73E-01	9.73E-01	9.13E-01	9.73E-01	9 73E-01	9 13E-01
Coil thickness	m	tooil v	2 25E-02	2 25E-02	2 25E-02	2 25E-02	2 25E-02	2 25E-02
Conductor x-section area/slot/lave		Acoil v	5 35E-04	5 355-04	4 51E-02	5 355-02	5 35E-02	4 51 5-04
Coil Desistance	ohm 2	Regil v	9.725.05	9.33E-04	4.51E-04	9.33E-04	9.352-04	4.512-04
		Acon.v	8.722-05	8./2E-05	9.722-05	8.72E-05	8.72E-05	9.72E-05
Real transfer area (4 coll)	m z	Ant.v	8.062-02	8.06E-02	6.86E-02	8.06E-02	8.06E-02	6.66E-02
Peak MMF per coll HMS amp-turns	- -	MMEpern	4.05E+00	4.05E+00	4.05E+00	4.05E+00	4.05E+00	4.05E+00
Core operating flux density	1	Bcore.v	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00
Coll RMS amp-turns @ Bsat of tooth	Amp-turn	NICOIL.V	2.38E+03	2.38E+03	2.06E+03	2.38E+03	2.38E+03	2.06E+03
Total flux per pole @ Bsat of tooth	Webers	Fpp	3.53E-02	3.53E-02	3.04E-02	3.53E-02	3.53E-02	3.04E-02
RMS phase current @ Bsat of tooth	Α	lphase.v	2.38E+03	2.38E+03	2.06E+03	2.38E+03	2.38E+03	2.06E+03
Total RMS slot current @ Bsat of to	A	lslot .v	4.77E+03	4.77E+03	4.12E+03	4.77E+03	4.77E+03	4.12E+03
Coil power (1coil)	W .	Pcoil.v	4.95E+02	4.95E+02	4.11E+02	4.95E+02	4.95E+02	4.11E+02
Coil surface temperature rise	°C	delTavg.	1.46E+02	1.46E+02	1.48E+02	1.46E+02	1.46E+02	1.48E+02
Maximum coil surface temperature	°C	Tw.lim	1.96E+02	1.96E+02	1.98E+02	1.96E+02	1.96E+02	1.98E+02
Slot current	A-conduct	.I.slot	4.77E+03	4.77E+03	4.12E+03	4.77E+03	4.77E+03	4.12E+03
Linear current loading	A'/m	Lload	8.58E+04	8.58E+04	8.79E+04	8.58E+04	8.58E+04	8.79E+04
	••••							
Stator Leakage Reactance Calculation	ons							
Slot Leakage	ohm	Xslot	2.84E-02	2.84E-02	4.19E-02	1.89E-02	1.89E-02	2.78E-02
End turn leakage	ohm	Xec	3.05E-08	3.05E-08	3.05E-08	2.02E-08	2.02E-08	2.02E-08
Total Primary Leakage Reactance	ohm	Xleak	2.84E-02	2.84E-02	4.19E-02	1.89E-02	1.89E-02	2.78E-02
Stator Leakage Reactance @ 50 Hz.								
Leakage Reactance @ 50 Hz.	ohm/phase	X50_	7.00E-03	7.00E-03	8.70E-03	7.00E-03	7.00E-03	8.70E-03
Coil Resistance	ohm/phase	Rone	5.58E-03	5.58E-03	6.22E-03	5.58E-03	5.58E-03	6.22E-03
Reactance/Resistance ratio @ 50 Hz	-	alpha50	1.26E+00	1.26E+00	1.40E+00	1.26E+00	1.26E+00	1.40E+00
Series turns/phase		stp.lim	3.20E+01	3.20E+01	3.20E+01	3.20E+01	3.20E+01	3.20E+01
Resistance, Primary	ohm/phase	rp.lim	5.58E-03	5.58E-03	6.22E-03	5.58E-03	5.58E-03	6.22E-03
Weight	•					,		
Motor iron weight, single stator	ka	miv	7 89E+02	7 89F+02	6 13E+02	7 89E±02	7 89E+02	6 13E+02
Motor conductor weight single stat	ka	mc v	1 30E+02	1 395+02	1 10E+02	1 30E+02	1 30 5+02	1 105+02
Total motor weight/Nmotor motors)	ka	mmotor	2 71 5.02	2 71 5 .02	2 00 5.02	2 71E.02	3 71 5.02	2 405 .02
Power	NY	mnotor	3.712+03	3.712+03	2.096+03	3.712+03	3.712+03	2.095+03
Core loss nower single stator	w	Peore	1 535.04	1 535.04	1 545.04	8 305.03	9 205.02	9 245.02
Core temperature rise	°C	dolTeoro	1.055-02	1.055.02	1.346+04	5.30E+03	5.30E+03	6.34E+03
Core temperature rise	-C	Teere	1.03E+02	1.050+02	1.250+02	5.70E+01	5./02+01	1.105.00
Cole sunace temperature	v	COLA	1.332+02	1.550+02	1.752+02	1.07 2+02	1.07 E+U2	1.100+02
Motor Secondary (guideway) Design	Parameters	3		-				
Back iron thickness guideway	m	tvo	4 60F-02	4 605-02	3 87E-02	4 605-02	4 605-02	3 875-02
Back iron width	 m	40	2 405-04	2 405-01	2 465-04	2 405 04	2 405 02	2 ACE A4
Guideway iron specific weight	ko/m	w.y	8 20E-01	8 20E .04	7 14 2.01	2.40E-01	2.4UE-UI	7 145.04
appoint worght			U.LULTVI	JILULTVI		0.406401	0.202701	7.176701

ElectroMagnetic Suspension I Optimized for operation at 134 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input. 2 Asterisks (**) after description indicates output from MatLab LIM program.

			134 1	π/s Optimia	ation	134 m/s C	optimization	@ 89 m/s	
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3	
			baseline	slim pole	small gap	baseline	siim pole	small gap	
				(3/4 b/l)	(0.8 b/l)		(3/4 b/l)	(0.8 b/l)	
Conductor									
*Conductor overlap factor		colf.g	4.00E-01	4.00E-01	4.00E-01	4.00E-01	4.00E-01	4.00E-01	
Conductor thickness	m	tc.a	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	
Conductor width	m	dc.a	5.07E-01	5.07E-01	4.71E-01	5.07E-01	5.07E-01	4.71E-01	
Guideway conductor specific weigh	tka/m	mc.a	7.04E+00	7.04E+00	6.54E+00	7.04E+00	7.04F+00	6.54E+00	
Total guideway added weight	ko/m	m.ow	1.80E+02	1 80E+02	1 56E+02	1 80E+02	1.80E+02	1.56E+02	
·····					1.002102			1.002 +02	
Performance Results from Matl ab Ar	nalvsis								
Individual Motor Parameters at Max	imum Prop	ı Nof evielu						1	
Thrust**	N	Thrust	2 04 5+04	2 04E+04	2.055+04	0 025-03	0 02E+03	9.055.03	
Slin**		elin	1 00E-02	1.005.02	0.00E-02	1 505-02	1 505-02	1.405-02	
Traction Rower**	w	Dtract	2745.06	2 74 5.06	3.00E-03	7.095.05	7.095.05	9.025.05	
Real input Power**	W	Din roal	2.740+00	2.742+00	2.752+00	0.300+05	7.905+05	8.03E+05	
Boactive input Rewort*	V A	Din tona	2.020+00	2.025+00	2.03 E+00	0.320+05	0.320+05	0.332+05	
Efficiency**	¥-A	FIN.Feac	3.222+00	3.22E+00	3.27 E+00	9.472+05	9.47 E+03	9.322+05	j.
Dewes Forder	70	err.v DuurEarr	9.052+01	9.050-01	9.69E+01	9.050-01	9.652+01	9.69E+01	
Power Factor		PwrFac	6.59E-01	6.59E-01	6.54E-01	6.592-01	6.59E-01	6.54E-01	
								-	
AUXILIARY CALCULATIONS									
LIFT MAGNETS									
permeances									
VAir gap fringing permeance/length	1	Pf	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	
√ldeal air gap permeance/length		Pu	3.14E+00	2.35E+00	3.49E+00	3.14E+00	2.35E+00	3.49E+00	
?Inter-pole leakage perm./length		PI	3.94E-01	3.82E-01	4.06E-01	3.94E-01	3.82E-01	4.06E-01	
coil dimensions									
√Mean turn length	m	lc	1.02E+01	1.92E+01	1.02E+01	1.02E+01	1.92E+01	1.02E+01	
√Coil crossectional area(one coil)	m^2	ac	1.39E-03	1.12E-03	1.11E-03	1.39E-03	1.12E-03	1.11E-03	
VCoil Surface area(for 1 coil)	m^2	adis	1.77E+00	2.91E+00	1.59E+00	1.77E+00	2.91E+00	1.59E+00	κ.
GUIDANCE MAGNETS									- 194 - 194
permeances									
Air gap fringing permeance/length	1	Pf.I	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	
√ldeal air gap permeance/length		Pu.I	2.80E+00	2.10E+00	3.10E+00	2.80F+00	2.10F+00	3 10E+00	
2inter-oole leakage perm /length		PLI	4 21E-01	4 11E-01	4 30E-01	4 21 E-01	4 11E-01	4 30E-01	
coll dimensions		1 1.1	4.212.01	4.112 01	4.002 01	4.212 01	4.112 01	4.002-01	
√ Mean turn length(one coil)	-	le 1	1.035+01	1 965+01	1.025.01	1.03E+01	1.065+01	1.025.01	
	m^2	201	2.67E-03	2.035-02	2.075-02	2 575-02	2 02 - 02	2.075.02	
	mA2	au.i	2.572-05	2.032-03	2.07 2-03	2.37 E-03	2.032-03	2.07 E-03	
	111-2	auis.i	2.24E+00	3./32+00	2.01E+00	2.240+00	3.732+00	2.012+00	
LINEAR INDUCTION MOTOR						0.000000	0.002+00	0.00E+00	
permeances		D	4 405 04	4 405 44		0.00E+00	0.00E+00	0.00E+00	
ideal air gap permeance/length		Pu.IIm	1.18E+01	1.18E+01	1.43E+01	1.18E+01	1.18E+01	1.43E+01	
Air gap fringing permeance/length		Pf.lim	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	
Fringing permeance ratio		nuf.lim	1.63E-01	1.63E-01	1.34E-01	1.63E-01	1.63E-01	1.34E-01	
EMS I Summary									
<u>Weight on Vehicle</u>			_					1	
Lift Magnets	kg		1.54E+03	1.99E+03	1.23E+03	1.54E+03	1.99E+03	1.23E+03	
Guidance Magnets	kg		1.93E+03	2.58E+03	1.54E+03	1.93E+03	2.58E+03	1.54E+03	
Linear Induction Motor	kg		3.71E+03	3.71E+03	2.89E+03	3.71E+03	3.71E+03	2.89E+03	
Total	kg		7.18E+03	8.28E+03	5.67E+03	7.18E+03	8.28E+03	5.67E+03	
Weight on Guideway								ł	
Lift Magnets	kg/m		1.13E+02	7.17E+01	8.94E+01	1.13E+02	7.17E+01	8.94E+01	
Guidance Magnets	kg/m		1.13E+02	7.17E+01	8.87E+01	1.13E+02	7.17E+01	8.87E+01	
Linear Induction Motor	kg/m		1.80E+02	1.80E+02	1.56E+02	1.80E+02	1.80E+02	1.56E+02	
Total	kg/m		4.06E+02	3.23E+02	3.34E+02	4.06E+02	3.23E+02	3.34E+02	
Real Input Power Dissipation	-								
Ohmic Power Dissipation									

 \sim

ElectroMagnetic Suspension I

Optimized for operation at 134 m/s maximum speed (Separate vertical & lateral suspensions & linear induction motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab LIM program.

			134 .	<u>m/s Optimia</u>	zation	<u>134 m/s C</u>	<u>ptimization</u>	@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	smail gap	baseline	slim pole	small gap
				(3/4 b/l)	(0.8 b/l)	<u> </u>	(3/4 b/l)	(0.8 b/l)
Lift Magnets	W		1.19E+05	1.95E+05	1.06E+05	1.19E+05	1.95E+05	1.06E+05
Guidance Magnets	W		1.88E+04	3.88E+04	2.08E+04	1.88E+04	3.88E+04	2.08E+04
Linear Induction Motor	W		8.28E+04	8.28E+04	8.00E+04	3.40E+04	3.40E+04	3.08E+04
Total Ohmic Power	W		2.20E+05	3.16E+05	2.07E+05	1.71E+05	2.68E+05	1.58E+05
Eddy current Power		•	Į –		1	١		
Lift Magnets	W		6.63E+04	1.12E+04	4.37E+04	2.93E+04	4.94E+03	1.93E+04
Guidance Magnets	W	l. l	3.31E+04	5.49E+03	2.16E+04	1.46E+04	2.42E+03	9.52E+03
Total eddy current Power	W		9.94E+04	1.67E+04	6.52E+04	4.39E+04	7.36E+03	2.88E+04
Total Real Power Dissipation	. W		3.20E+05	3.33E+05	2.72E+05	2.15E+05	2.75E+05	1.87E+05
Peactive Input Power		l l	١			1		
Linear Induction Motor	V-A		3.22E+06	3.22E+06	3.27E+06	9.47E+05	9.47E+05	9.32E+05
Total	V-A		3.22E+06	3.22E+06	3.27E+06	9.47E+05	9.47E+05	9.32E+05

Complete EMS II Spreadsheet; Design optimized for operation at 89 m/s Table F-3. Combined Lift and guidance magnets (staggered) and Linear Induction Motor

ElectroMagnetic Suspension II

Optimized for operation at 89 m/s maximum speed (Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab LIM program.

			89 n	n/s Optimiz	ation	89 m/s C	ptimization @) 59 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
•			baseline	slim pole	small gap	baseline	slim pole	smali gap
VEHICLE PARAMETERS			<u>(b/i)</u>	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
<u>Design_Parameters</u>								
 Vehicle mass 	kg	m	4.00E+04	4.00E+04	4.00E+04	4.00E+04	4.00E+04	4.00E+04
 Vehicle length 	m	l_vehicle	3.00E+01	3.00E+01	3.00E+01	3.00E+01	3.00E+01	3.00E+01
* Design speed	m/s	v	8.90E+01	8.90E+01	8.90E+01	5.90E+01	5.90E+01	5.90E+01
 frontal area 	m^2	Af	1.20E+01	1.20E+01	1.20E+01	1.20E+01	1.20E+01	1.20E+01
* air density	kg/m^3	roair	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00
 drag coefficient 	• • •	Cd	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01
wind drag force	N	Fd .	1.71E+04	1.71E+04	1.71E+04	7.52E+03	7.52E+03	7.52E+03
wind drag power	W	Pd	1.52E+06	1.52E+06	1.52E+06	4.44E+05	4.44E+05	4.44E+05
 Max. Lift Force(@Max disp.) 	g -	max_Fz	1.10E+00	1.10E+00	1.10E+00	1.10E+00	1.10E+00	1.10E+00
 Max. Lateral Force(")(cont.) 	9	max_F.I	1.80E-01	1.80E-01	1.80E-01	1.80E-01	1.80E-01	1.80E-01
* Max. Lateral Force(")(short term)	g	max_sF.1	2.60E-01	2.60E-01	2.60E-01	2.60E-01	2.60E-01	2.60E-01
 Time of Max. (short)Lateral F 	sec	t_max	5.00E+00	5.00E+00	5.00E+00	5.00E+00	5.00E+00	5.00E+00
 Max propulsive force 	9	max_Fp	1.50E-01	1.50E-01	1.50E-01	1.50E-01	1.50E-01	1.50E-01
 Maximum ambient temperature 	°C	maxTamb	5.00E+01	5.00E+01	5.00E+01	5.00E+01	5.00E+01	5.00E+01
		1						
Performance_Parameters								
Power, (ohmic+eddy)/aero. drag	%		1.53E-02	1.14E-02	1.26E-02	3.49E-02	3.43E-02	2.86E-02
Weight, (magnet+coil)/vehicle	%		1.19E-01	1.40E-01	9.00E-02	1.19E-01	1.40E-01	9.00E-02
eddy/lift amp-T (up. bound)	%		1.46E-01	5.80E-02	1.51E-01	9.68E-02	3.85E-02	9.99E-02
Aerodynamic drag/weight	%		4.36E-02	4.36E-02	4.36E-02	1.92E-02	1.92E-02	1.92E-02
								1
CONSTANTS								1
General	•							
*air permeability	N/A^2	mu	1.26E-06	1.26E-06	1.26E-06	1.26E-06	1.26E-06	1.26E-06
Suspensions Construction materials *rail *magnet *coil			steel 2V Perm. alum.	steel 2V Perm. alum. '	steel 2V Perm. alum.	steei 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.
Materials properties						•		
trail	ka/m49		7 055.00	7 955 .02	7 955.00	7 055 02	7 955.09	7 955.00
*magnet	kg/m*3	rom	7.052+03	7.032+03	7.052+03	7.032+03	7.052+03	7.05E+03
tagilet	kg/m^3	rom	7.052+03	7.050+03	7.052+03	7.052+03	7.03E+03	7.05E+03
Saturation flux density	кулп-э	roc	2.332+03	2.555+03	2.552+03	2.556+03	2.556+03	2.556+03
trail	Ŧ	Beat	1 405.00	1 405-00	1 405.00	1 405.00	1 405.00	1 405.00
*magnet	Ť	Doath	1.402+00	1.402+00	1.400+00	1.402+00	1.400+00	1.402+00
*Saturation Solaty Easter(1)		DSalmi CC	1.402+00	1.402+00	1.402+00	1.402+00	1.402+00	1.40E+00
Electrical resistivity		эг	1.002+00	1.002+00	1.002+00	1.002+00	1.002+00	1.002+00
Trail @20 deg C	ohm-m	rr	2.00E-07	2.00E-07	2.00E-07	2.00E-07	2.00E-07	2.00E-07
Coil @190 deg C	ohm-m	rc_	4.72E-08	4.72E-08	4.72E-08	4.72E-08	4.72E-08	4.72E-08
Thermal								
*magnet heat transfer coef.	W/°C-m	h_s	2.00E+01	2.00E+01	2.00E+01	2.00E+01	2.00E+01	2.00E+01
*Conductor thermal conductivity	₩/(°С п	*k_c	2.20E+02	2.20E+02	2.20E+02	2.20E+02	2.20E+02	2.20E+02
Insulation thermal conductivity	W/°C-m	k_ins	1.73E-01	1.73E-01	1.73E-01	1.73E-01	1.73E-01	1.73E-01
coil packing factor		f	7.85E-01	7.85E-01	7.85E-01	7.85E-01	7.85E-01	7.85E-01
*Coil Width packing factor		f_y	8.86E-01	8.86E-01	8.86E-01	8.86E-01	8.86E-01	8.86E-01
Coil thickness packing factor		r_z	8.86E-01	8.86E-01	8.86E-01	8.86E-01	8.86E-01	8.86E-01
Maximum ambient temperature	°C	т	5.50E+01	5.50E+01	5.50E+01	5.50E+01	5.50E+01	5.50E+01
Coll Specific heat	J/(kg°C	cp	1.19E+02	1.19E+02	1.19E+02	1.19E+02	1.19E+02	1.19E+02
-maximum wire insulation temp	°C	maxfins	2.20E+02	2.20E+02	2.20E+02	2.20E+02	2.20E+02	2.20E+02
Linear Induction Motor								

ElectroMagnetic Suspension II

Optimized for operation at 89 m/s maximum speed

(Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab LiM program.

			89 r	<u>n/s_Optimiz</u>	ation	<u> </u>	ptimization (⊅ 59 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
VEHICLE PARAMETERS			(b/i)	(3/4 b/i)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
*rail			steel	steel	steel	steel	steel	steel
<pre>*rail conductor(s)</pre>			aluminum	aluminum	aluminum	aluminum	aluminum	aluminum
*magnet			M-19	M-19	M-19	M-19	M-19	M-19
*magnet coil			aluminum	aluminum	aluminum	aluminum	aluminum	aluminum
Materials properties								_
Mass density								
*rail	kg/m^3	rom.g	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03
<pre>*rail conductor(s)</pre>	kg/m^3	roc.g	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03
*magnet	kg/m^3	rom.v	7.65E+03	7.65E+03	7.65E+03	7.65E+03	7.65E+03	7.65E+03
*coil	kg/m^3	roc.v	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03
maximum flux densities	•							
*rail	т	bsat.g	1.60E+00	1.60E+00	1.60E+00	1.60E+00	1.60E+00	1.60E+00
*magnet	т	bsat.v	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00
Magnetic permeability								
rail		mu.g	3.50E+03	3.50E+03	3.50E+03	3.50E+03	3.50E+03	3.50E+03
Vehicle (short) stator		mu.v						·
Core loss		,						
Core Loss @ 1.0T. 100 Hz	W/ka	refc.loss	2.87E+00	2.87E+00	2.87E+00	2.87E+00	2.87E+00	2.87E+00
Core loss frequency exponent	-	freq.exp	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00
Core loss Induction exponent	• ·	B.exp	2.10E+00	2.10E+00	2.10E+00	2.10E+00	2.10E+00	2.10E+00
Core loss @ fsync & Bcore	W/ka	c.loss	1.05E+01	1.05E+01	1.36E+01	5.68E+00	5.68E+00	7.34E+00
4, -								
Electrical resistivity								
*Magnet laminations @ 140°C	ohm-m	rm.v	7.00E-07	7.00E-07	7.00E-07	7.00E-07	7.00E-07	7.00E-07
*rail @20 deg C	ohm-m	rm.a	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07
*vehicle coil @20 deg C	ohm-m	rcRT.v	2.78E-08	2.78E-08	2.78E-08	2.78E-08	2.78E-08	2.78E-08
*vehicle coil temperature coefficie	1/°C	alpha.v	4.10E-03	4.10E-03	4.10E-03	4.10E-03	4.10E-03	4.10E-03
vehicle coil @operating temperati	ohm-m	rc.v	4.73E-08	4.73E-08	4.75E-08	4.73E-08	4.73E-08	4.75E-08
*Guideway conductor @20 deg c	ohm-m	rc.a	2.80E-08	2.80E-08	2.80F-08	2.80F-08	2.80E-08	2.80E-08
	•••••			2.000 00	2.002.00		2.002.00	2.002.00
Heat transfer coefficients								
*magnet heat transfer coef	W/C-m^	k v	4 19F+01	4 19E+01	4 19E±01	4 195-01	4 19E+01	4 19E+01
*rail heat transfer coef	W/C-m^	ka	1 40 5+01	1 40E+01	1 40E+01	1 40E+01	1 40E+01	1.40E+01
			1.402401	1.402401	1.402401	1.402401	1.402401	1.40,2101
COMPONENT DESIGN & ANALYSIS								
Vertical/lateral suspension						-		
Geometric dimensions								
*Lateral stagger	m	dei	5.00E-03	1 50E-03	2.50E-03	1%	0%	0%
*pole width	m	l'n	2 00 E-02	1 50E-02	2 00F-02	2 00 E-02	1 50E-02	2 00F-02
*window width	m	w	1 30E-01	1 10E-01	1 16E-01	1 30E-01	1 195-01	1 165-01
*window height	m. '	h (or d)	6.52E-02	5 97E-02	5 80E-02	6 52E-02	5 97E-02	5 80F-02
*air gap	m	H1x	1.00E-02	1 00E-02	8 00E-03	1.00E-02	1 00F-02	8 00 E-03
*nole-coil clearance	m	7	5 08E-03	5 08E-03	5 08E-03	5.08E-03	5 08E-03	5 08E-03
*Number magnet sets required			0.00L-00	J.UUL-UU	3.00L-00	0.00L-00	J.00L-00	3.002-00
*Number individual magnete/set		N mane	· ،		- -			2
Number manioual magnetasset		ra.mayo	-	2	2	ے _	E E	-
Performance parameters								
Individual magnet total weight	ka	W mag c	5 93 F+02	7 00F+02	4 50E+02	593 11891	700 30406	450 01616
Lift-to-weight ratio		LTWR	8.43E+00	7.14F+00	1.11E+01	8.43E+00	7.14F+00	1.11E+01
Power-to-lift ratio	kW/ton	PTLR	1.86E+00	2.71E+00	1.52E+00	1.86E+00	2.71E+00	1.52E+00
Total weight of magnet assemblies	ka	M magnet	4.74E+03	5.60E+03	3.60E+03	4.74E+03	5.60E+03	3.60E+03
Magnet-to-Vehicle weight ratio		MWR	11.86%	14.01%	9.00%	1.19E-01	1.40E-01	9.00E-02
Max. lateral force @v*(1 set)	ka	F v star	6.50E+04	9.03E+04	5.21E+04	6.50E+04	9.03E+04	5.21E+04
Required max lateral force(1 set)	ka	F ymax	2.55E+04	2.55E+04	2.55E+04	2.55E+04	2,55E+04	2,55E+04
Max. lift force @v*/1 set)	ka	Fz v star	1.08E+05	1.08E+05	1.08E+05	1.08E+05	1.08E+05	1.08E+05
Required max lift force(1 set)	ka	F zmax	1.08E+05	1.08E+05	1.08E+05	1.08E+05	1.08E+05	1.08E+05
(continued) Table F-3.

ElectroMagnetic Suspension II

Optimized for operation at 89 m/s maximum speed

(Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

Asterisk (*) before description indicates input. 2 Asterisks (**) after description indicates output from MatLab LIM program.

		1	89 7	v/s Ontimiz	ation	89 m/s C	otimization 6) 59 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
		UNIDOL	haseline	slim nole	small gap	haseline	slim pole	small dap
VEHICLE PARAMETERS			(h/l)	(3/4 b/l)	(0.8 b/l)	(b/1)	(3/4 b/l)	
Classical lift force (1 mag v~0)	ka	F class	4 11 E+04	3 77E+04	4 16E+04	4 11 E+04	3 77E+04	4 16E+04
Lateral stiffness (4 sets)	N/m	K lateral	1 75 - 107	2 40 5+07	1 38 - 07	1 75 - 07	2 40E+07	1 385+07
		N_INIOIAI	1.752407	2.402.407	1.002+07	1./32+0/	2.402407	1.002407
Maonet desian		FFF	9.50E-01	9.90E-01	9.50E-01	9.50E-01	9.90E-01	9.50E-01
Decoupling displacement limit	m	v star	1.49F-02	1.50E-02	1.51E-02	1 49E-02	1 50E-02	1 51E-02
magnet length	m	L L	5.63E+00	8.88E+00	5.11E+00	5.63E+00	8.88E+00	5.11E+00
width of pole base	m	a w	2.78E-02	2.21E-02	2.64E-02	2.78E-02	2.21E-02	2.64E-02
Magnet voke length	កា	L V	5.50E+00	8.76E+00	4.99E+00	5.50E+00	8.76E+00	4.99E+00
Magnet voke height	m	d v	3.36E-02	2.69E-02	3.12E-02	3.36E-02	2.69E-02	3.12E-02
Yoke area	m^2	A voke	1.85E-01	2.36E-01	1.56E-01	1.85E-01	2.36E-01	1.56E-01
fringing (across air gap)		nuf	9.60E-01	1.28E+00	7.68E-01	9.60E-01	1.28E+00	7.68E-01
leakage (between poles)		nui	2.12E-01	2.78E-01	1.72E-01	2.12E-01	2.78E-01	1.72E-01
total		nut	2.17E+00	2.56E+00	1.94E+00	2.17E+00	2.56E+00	1.94E+00
Nominal air gap flux density	Т	B0	6.78E-01	5.96E-01	7.15E-01	6.78E-01	5.96E-01	7.15E-01
Nominal pole tip flux density	Т		8.68E-01	8.47E-01	8.89E-01			-
Nominal pole base flux density	т		1.21E+00	1.25E+00	1.18E+00			
Nominal yoke flux density	т		1.42E+00	1.50E+00	1.36E+00			
Force per magnet	N	Fpm	4.11E+04	3.77E+04	4.16E+04	4.11E+04	3.77E+04	4.16E+04
amp turns per magnet	Α	NI	1.08E+04	9.49E+03	9.11E+03	1.08E+04	9.49E+03	9.11E+03
core mass (1 mag)	kg	Mcore	4.02E+02	4.48E+02	3.12E+02	4.02E+02	4.48E+02	3.12E+02
mass core + coil (4 mag)	kg	Mmag	4.74E+03	5.60E+03	3.60E+03	4.74E+03	5.60E+03	3.60E+03
<u>Coil design</u>		_						
resistance (1 magnet, 1 turn)	ohm	resc	7.99E-05	1.50E-04	9.14E-05	7.99E-05	1.50E-04	9.14E-05
coil ohmic power (1 magnet)	W	qc	9.30E+03	1.35E+04	7.58E+03	9.30E+03	1.35E+04	7.58E+03
Surface temperature rise	°C	deltaT_su	1.58E+02	1.60E+02	1.60E+02	1.58E+02	1.60E+02	1.60E+02
Surface temperature	°C	T_s	2.08E+02	2.10E+02	2.10E+02	2.08E+02	2.10E+02	2.10E+02
Internal temperature rise	°C	deltaT_int	6.05E+00	4.71E+00	4.33E+00	6.05E+00	4.71E+00	4.33E+00
Maximum internal temperature	°C	T_int	2.19E+02	2.20E+02	2.19E+02	2.19E+02	2.20E+02	2.19E+02
mass(one coil)	kg	Mcoil	1.91E+02	2.53E+02	1.38E+02	1.91E+02	2.53E+02	1.38E+02
Total ohmic power, Nmag*n_mags	Ŵ	P_total	7.44E+04	1.08E+05	6.07E+04	7.44E+04	1.08E+05	6.07E+04
<u>Rail design</u>								
rail thickness	m	tr	2.83E-02	2.27E-02	2.59E-02	2.83E-02	2.27E-02	2.59E-02
rail mass/length	kg/m	mr	4.88E+01	3.54E+01	4.07E+01	4.88E+01	3.54E+01	4.07E+01
nominal rail flux density	Т	Br	9.40E-01	8.97E-01	9.76E-01	9.40E-01	8.97E-01	9.76E-01
eff. freq. for eddy anal.	Hz	Fe	7.91E+00	5.01E+00	8.71E+00	5.24E+00	3.32E+00	5.78E+00
dB/dt amp. first harmonic	T/s	B1x	2.97E+01	1.80E+01	3.40E+01	1.97E+01	1.19E+01	2.25E+01
eddy current power	W	Pr	1.40E+04	3.77E+03	1.17E+04	6.17E+03	1.66E+03	5.12E+03
rms eddy amp turn								
(upper bound, 1 magnet)	Α	Nle	1.58E+03	5.51E+02	1.37E+03	1.04E+03	3.65E+02	9.10E+02
Total continuous power	W	P.v	8.84E+04	1.12E+05	7.23E+04	8.05E+04	1.10E+05	6.58E+04
Linear Induction Motor								
Design maximum thrust	g	max.g	1.50E-01	1.50E-01	1.50E-01	1.50E-01	1.50E-01	1.50E-01
Design maximum thrust	Ň	max.thr	5.88E+04	5.88E+04	5.88E+04	5.88E+04	5.88E+04	5.88E+04
Nominal excitation frequency	Hz	fsync	1.35E+02	1.35E+02	1.60E+02	8.94E+01	8.94E+01	1.06E+02
Synchronous speed	m/s	vsync	8.99E+01	8.99E+01	8.99E+01	5.96E+01	5.96E+01	5.96E+01
Nominal slip		nom.slip	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02
General								
*Number of motors		Nmotor	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00
*Number of poles		Np.v	1.20E+01	1.20E+01	1.40E+01	1.20E+01	1.20E+01	1.40E+01
<u>Geometric_dimensions</u>								
Air gap (mechanical clearance)	m	cl.v	1.00E-02	1.00E-02	8.00E-03	1.00E-02	1.00E-02	8.00E-03
Pole pitch	m	tau.v	3.33E-01	3.33E-01	2.81E-01	3.33E-01	3.33E-01	2.81E-01
Slots/pole/phase		NSIOTS	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00

ElectroMagnetic Suspension II

Optimized for operation at 89 m/s maximum speed (Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

Asterisk (*) before description indicates input. 2 Asterisks (**) after description indicates output from MatLab LIM program.

			89 r	n/s Optimiz	ation	89 m/s C	optimization @	_59 m/s _
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
VEHICLE PARAMETERS	•		(b/l)	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 6/1)
*Core width	m	d.v	1.80E-01	1.80E-01	1.92E-01	1.80E-01	1.80E-01	1.92E-01
*Tooth width/slot width ratio		tsr.v	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00
*Slot depth	m	h.v	5.00E-02	5.00E-02	5.00E-02	5.00E-02	5.00E-02	5.00E-02
*Lamination thickness	m	tlam.v	3.56E-04	3.56E-04	3.56E-04	3.56E-04	3.56E-04	3.56E-04
Magnetic gap (entrefer)	m	a.maa	1.50E-02	1.50E-02	1.30E-02	1.50E-02	1.50E-02	1.30E-02
Carter factor		Kcarter	1.19E+00	1.19E+00	1.18E+00	1.19E+00	1.19E+00	1.18E+00
Effective magnetic gap	m	ae.lim	1.78E-02	1.78E-02	1.54E-02	1.78E-02	1.78E-02	1.54E-02
Back iron thickness, vehicle	m	tv.v	5.74E-02	5.74E-02	4.69E-02	5.74E-02	5.74E-02	4.69E-02
Tooth width	m	lt.v	2.53E-02	2.53E-02	2.13E-02	2.53E-02	2.53E-02	2.13E-02
Slot width	m	W.V	3.03E-02	3.03E-02	2.55E-02	3.03E-02	3 03E-02	2 55E-02
Slot pitch (=tooth pitch)	m	SD V	5 56E-02	5 56E-02	4 68E-02	5 56E-02	5 56E-02	4 68E-02
Number of laminations		Niamsv	5.05E+02	5 05E+02	5 30F+02	5.05E+02	5 05E+02	5 30E-02
Motor effective length	m	Loff	4 00 E+00	4 00 E+02	3.03 E+02	4.00E+02	4 00E+02	3.035.00
Motor physical length	m	Lohve	4.56E+00	4.565+00	4.40E+00	4.56E+00	4.565.00	4 40E 00
Effective air gan area	m^2	Aface	7 20F-01	7 205.01	7.555-01	7 20E-01	7 205-01	7 555-01
Core exposed surface area	m^2	Acore	2 44E+00	2 44 5+00	2 375.00	2445.00	2 44 5.00	2 275.00
Core exposed surface area			2.742700	2.776700	2.57 L700	2.446700	2.446700	2.37 2+00
Winding parameters								
*Number of phases		Nobago v	2.005.00	3.005.00	3 005.00	3.005.00	3.005.00	2 005.00
*Coil nitch/nole nitch ratio/fractio	נטר)	cp tau	6.67F-01	6.67E-01	6.67E-01	5.00E+00	5.00E+00	5.00E+00
*Number of winding lavers		Niavore v	2.00E+00	2 00 5+00	2.00 E.00	2.00 E+00	2 00 5.00	2.005.00
*Number of coils/pole/pbase		ncoile v	2.00E+00	2.002+00	2.000-00	2.000,00	2.002+00	2.002+00
*Coil packing factor		f v	7 965-01	7 955-01	7 95 5.01	7 955-01	7 965.01	7 955 01
*Pole/coil clearance	-	7.4	5.00E-01	F 00E-02	5 00E 02	F 00E-02	7.03E-01	F 00E 02
*Turne/coil		Noc y	1.005.00	1.00E-03	3.00E-03	1.005.00	1.000-00	1.005.00
	dogroop		2.00E+00	2.005.01	2.005.01	1.00E+00	2.000-01	2.005.01
*End turn projection	m	h	3.00E+01	1.005-02	3.00E+01	3.00E+01	1 00E 02	1.000 02
Distribution factor/distributed wir	ili Mina)	6	1.00E-02	1.00E-02	1.00E-02	1.002-02	1.00E-02	0.002-02
Distribution factor (distributed with	ianig)	Ka	0.00E-01	0.000-01	0.00E-01	0.002-01	0.005-01	8.002-01
Winding foster/fee distributed win) dinan)	кр Кш	8.000-01	0.00E-UI	8.00E-UI	8.002-01	8.00E-UI	8.66E-01
Anitholig lactor(lor distributed with	amgs)	NW .	7.50E-01	7.50E-01	7.50E-01	7.50E-01	7.502-01	7.50E-01
		tau_c.v	2.22E-01	2.22E-01	1.8/E-01	2.22E-01	2.22E-01	1.8/E-01
Mean conductor length	m/coll	ICOILV	9.132-01	9.13E-01	8.57E-01	9.13E-01	9.13E-01	8.57E-01
	m	ICOIL.V	2.25E-02	2.25E-02	2.25E-02	2.25E-02	2.25E-02	2.25E-02
Conductor x-section area/slot/lay	Emrz	Acoil.v	5.35E-04	5.35E-04	4.51E-04	5.35E-04	5.35E-04	4.51E-04
Coll Hesistance	onm	HCOILV	8.081-05	8.08E-05	9.02E-05	8.08E-05	8.08E-05	9.02E-05
Heat transfer area (1 coil)	m^2	Aht.v	7.74E-02	7.74E-02	6.39E-02	7.74E-02	7.74E-02	6.39E-02
Peak MMF per coil RMS amp-turns	•	MMFperNI	4.05E+00	4.05E+00	4.05E+00	4.05E+00	4.05E+00	4.05E+00
Core operating flux density	T	Bcore.v	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00
Coil RMS amp-turns @ Bsat of toot	Amp-tu	NIcoil.v	2.38E+03	2.38E+03	2.06E+03	2.38E+03	2.38E+03	2.06E+03
Total flux per pole @ Bsat of tooth	Webers	Fpp	3.10E-02	3.10E-02	2.70E-02	3.10E-02	3.10E-02	2.70E-02
RMS phase current @ Bsat of tooth	A	lphase.v	2.38E+03	2.38E+03	2.06E+03	2.38E+03	2.38E+03	2.06E+03
Total RMS slot current @ Bsat of t	(A	lslot .v	4.77E+03	4.77E+03	4.12E+03	4.77E+03	4.77E+03	4.12E+03
Coil power (1coil)	W	Pcoil.v	4.59E+02	4.59E+02	3.82E+02	4.59E+02	4.59E+02	3.82E+02
Coil surface temperature rise	°C	delTavg.v	1.41E+02	1.41E+02	1.43E+02	1.41E+02	1.41E+02	1.43E+02
Maximum coil surface temperature	°C	Tw.lim	1.91E+02	1.91E+02	1.93E+02	1.91E+02	1.91E+02	1.93E+02
Slot current	A-cond	.i.slot	4.77E+03	4.77E+03	4.12E+03	4.77E+03	4.77E+03	4.12E+03
Linear current loading	A/m	I.load	8.58E+04	8.58E+04	8.79E+04	8.58E+04	8.58E+04	8.79E+04
.								
Stator Leakage Reactance Calcula	tions							
SIOT LEAKAGE	ohm	Xslot	1.21E-02	1.21E-02	2.13E-02	8.05E-03	8.05E-03	1.41E-02
End turn leakage	ohm	Xec	3.60E-08	3.60E-08	2.64E-08	2.39E-08	2.39E-08	1.75E-08
Iotal Primary Leakage Reactance	ohm	Xleak	1.21E-02	1.21E-02	2.13E-02	8.05E-03	8.05E-03	1.41E-02
Stator Leakage Heactance @ 50 Hz.	<u>.</u>							[
Leakage Reactance @ 50 Hz.	onm/ph	£X50_	4.50E-03	4.50E-03	6.65E-03	4.50E-03	4.50E-03	6.65E-03
Coll Resistance	ohm/ph	Rone	3.88E-03	3.88E-03	5.05E-03	3.88E-03	3.88E-03	5.05E-03
Heactance/Hesistance ratio @ 50 H	L -	aipha50	1,16E+00	1.16E+00	1.32E+00	1.16E+00	1.16E+00	1.32E+00

Ø

ElectroMagnetic Suspension II

Optimized for operation at 89 m/s maximum speed

....

(Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab LIM program.

			89 n	n/s Optimiz	ation	<u>89 m/s C</u>	Optimization @) 59 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
VEHICLE PARAMETERS			(b/l)	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
Series turns/phase		stp.lim	2.40E+01	2.40E+01	2.80E+01	2.40E+01	2.40E+01	2.80E+01
Resistance, Primary	ohm/ph	erp.lim	3.88E-03	3.88E-03	5.05E-03	3.88E-03	3.88E-03	5.05E-03
Weight								
Motor iron weight, single stator	kg	mi.v	5.31E+02	5.31E+02	4.80E+02	5.31E+02	5.31E+02	4.80E+02
Motor conductor weight, single sta	i Kg	mc.v	9.78E+01	9.78E+01	9.03E+01	9.782+01	9.78E+01	9.03E+01
Power	ĸg	mmotor	2.52E+03	2.52E+03	2.28E+03	2.52E+03	2.522+03	2.28E+03
<u>Fower</u> Core loss power single stater	w	Peero	5 50E .02	5 505.02	6 625.02	3 035.03	2 025.02	2 525 .02
Core temperature rise	•C	delTcore	5.39E+03	5.592+03	6.53E+03	2.022+03	3.020+03	3.520+03
Core surface temperature	ŝ	Tcore	1 055-02	1.055.02	1 16E-02	2.952+01	7 055,01	9.55E+01
	v	10010	1,032702	1.000,702	1.106402	7.332401	7.332+01	0.332401
<u>Motor Secondary (guideway) Desigr</u> Iron	Param	eters						
Back iron thickness, guideway	m	ty.g	4.61E-02	4.61E-02	3.87E-02	4.61E-02	4.61E-02	3.87E-02
Back iron width	m	d.g	2.10E-01	2.10E-01	2.18E-01	2.10E-01	2.10E-01	2.18E-01
Guideway iron specific weight Conductor	kg/m	mi.g	7.27E+01	7.27E+01	6.34E+01	7.27E+01	7.27E+01	6.34E+01
*Conductor overlap factor		colf.g	4.00E-01	4.00E-01	4.00E-01	4.00E-01	4.00E-01	4.00E-01
*Conductor thickness	m	tc.g	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03
Conductor width	m	dc.g	4.77E-01	4.77E-01	4.43E-01	4.77E-01	4.77E-01	4.43E-01
Guideway conductor specific weigh	kg/m	mc.g	6.63E+00	6.63E+00	6.16E+00	6.63E+00	6.63E+00	6.16E+00
Total guideway added weight	kg/m	m.gw	1.59E+02	1.59E+02	1.39E+02	1.59E+02	1.59E+02	1.39E+02
Performance Results from MatLab Ar	alvsis							
Individual Motor Parameters at Max	imum P	ropulsive Fo	orce	==			==	
	N	Inrust	1.4/E+04	1.4/E+04	1.46E+04	6.4/E+03	6.47E+03	6.43E+03
Slip	-	slip	1.50E-02	1.50E-02	1.50E-02	2.20E-02	2.20E-02	2.20E-02
Pool input Remost	VV M	P.Iraci	1.312+06	1.31E+06	1.29E+06	3.77E+05	3.//E+05	3.74E+05
Real input Power Reactive input Rewer**	VV A	Pin.real	1.372+00	1.372+00	1.350+00	4.032+05	4.03E+05	3.900+00
Efficiency**	v-n ∞	off w	0.57 2+00	0.505.01	0.545.01	4.002+05	4.082+05	4.57 E+05
Power Factor	70	PwrFac	6.57E-01	9.50E+01	6 61 F-01	9.27 E+01	9.27 E+01	9.30E+01
		T WIT QU	0.57 2-01	0.372-03	0.012-01	0.522-01	0.322-01	0.57 2-01
Lillouidance madnets								
VAir and fringing permeaned/enst	1	D4	1.025.00	1.025.00	1.025.00	1.025.00	1.025.00	1.025.00
√ideal air gap narmeance/lengti		гі Du	2005.00	1.922+00	2 50 - 00	2 005.00	1.920+00	2 505.00
Pinter-nole leakage perm /length		PU DI	4 25 E-01	4 185-01	4.31 5-01	2.00E+00	1.50E+00	2.50E+00
alpha(a delta)		alnba o dell	1 24 F+00	4.18E-01	1.23E+00	4.23E-01	4.18E-01	1 23 5+00
alpha(g,delta+v*)	'aloha o	deiv star	1.24E+00	1 41E+00	1 23E+00	1 24E+00	1 41 5+00	1.23E+00
example using function "alpha(y.g.)	o)"	0.001.y_0101	0		0	1.242700	1.412400	1.202400
Coil dimensions		J		Ū	Ŭ			
Average turn length		lc	1.13E+01	1.78E+01	1.02E+01	1.13E+01	1.78E+01	1.02E+01
Coil conductor crossectional area		ac	6.66E-03	5.58E-03	5.28E-03	6.66E-03	5.58E-03	5.28E-03
Effective surface area/heat trans.		adis	4.97E+00	6.98E+00	4.06E+00	4.97E+00	6.98E+00	4.06E+00
Coil volume	m^3	V_coil	9.55E-02	1.26E-01	6.88E-02	9.55E-02	1.26E-01	6.88E-02
Magnet_parameters								
Magnet volume	m^3	V_mag	5.12E-02	5.70E-02	3.98E-02	5.12E-02	5.70E-02	3.98E-02
tlux leakage coefficients								
Gap tringing flux coefficient	•••	nu_g	1.28E+00	1.42E+00	1.24E+00	1.28E+00	1.42E+00	1.24E+00
Fole leakage flux coefficient		nu_1.p	5.022-01	0.09E-01	4.00E-01	5.022-01	6.69E-01	4.00E-01
Total loakage flux coefficient		nu_i.y	3.182-01	4.24E-01	2.55E-01	3.182-01	4.24E-01	2.55E-01
I ULAI IBARAYE & ITINGING INX COBT.		ារ ្	2.100+00	2.310+00	1.30⊏+00	2.102+00	2.316+00	1.906+00

ElectroMagnetic Suspension II

Optimized for operation at 89 m/s maximum speed

(Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

Asterisk (*) before description indicates input. 2 Asterisks (**) after description indicates output from MatLab LIM program.

		and a straight of	89 n	n/s Optimiz	ation	89 m/s (optimization (9 59 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
VEHICLE PARAMETERS			(b/l)	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
Total leakage flux coefficient		nu_l	8.20E-01	1.09E+00	6.55E-01	8.20E-01	1.09E+00	6.55E-01
Total leakage flux/gap flux	•••	Lambda	6.40E-01	7.70E-01	5.27E-01	6.40E-01	7.70E-01	5.27E-01
nu_t @ g=2ge, y=0		nu_t.max1	3.28E+00	4.04E+00	2.82E+00	3.28E+00	4.04E+00	2.82E+00
nu_t @ g=ge, y=y_star		nu_t.max2	3.39E+00	4.15E+00	2.99E+00	3.39E+00	4.15E+00	2.99E+00
<u>Linear induction motor</u> permeances						a an		
Ideal air gap permeance/length		Pu.lim	1.01E+01	1.01E+01	1.25E+01	1.01E+01	1.01E+01	1.25E+01
Air gap fringing permeance/length		Pf.lim	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00
Fringing permeance ratio		nuf.lim	1.90E-01	1.90E-01	1.54E-01	1.90E-01	1.90E-01	1.54E-01
EMS II Summary								
Weight on Vehicle						and the state of the		
Lift/Guidance Magnets	kg		4.74E+03	5.60E+03	3.60E+03	4.74E+03	5.60E+03	3.60E+03
Linear Induction Motor	kg		2.52E+03	2.52E+03	2.28E+03	2.52E+03	2.52E+03	2.28E+03
Total	kg		7.26E+03	8.12E+03	5.88E+03	7.26E+03	8.12E+03	5.88E+03
Weight on Guideway				· · · · ·				
Lift/Guidance Magnets	kg/m		4.88E+01	3.54E+01	4.07E+01	4.88E+01	3.54E+01	4.07E+01
Linear Induction Motor	kg/m		1.59E+02	1.59E+02	1.39E+02	1.59E+02	1.59E+02	1.39E+02
Total	kg/m	· · · ·	2.07E+02	1.94E+02	1.80E+02	2.07E+02	1.94E+02	1.80E+02
Ohmic Power Dissipation						21 20 Car		
Lift/Guidance Magnets	W		7.44E+04	1.08E+05	6.07E+04	7.44E+04	1.08E+05	6.07E+04
Linear Induction Motor	W		6.00E+04	6.00E+04	5.62E+04	2.56E+04	2.56E+04	2.35E+04
Total Ohmic Power	W		1.34E+05	1.68E+05	1.17E+05	1.00E+05	1.34E+05	8.41E+04
Eddy current Power					1.1.1			Sec. 1
Lift/Guidance Magnets	W		1.40E+04	3.77E+03	1.17E+04	6.17E+03	1.66E+03	5.12E+03
Total eddy current Power	w		1.40E+04	3.77E+03	1.17E+04	6.17E+03	1.66E+03	5.12E+03
Total Real Power Dissipation	W		1.48E+05	1.72E+05	1.29E+05	1.06E+05	1.36E+05	8.92E+04
Reactive Input Power								
Linear Induction Motor	V-A		1.57E+06	1.57E+06	1.53E+06	4.68E+05	4.68E+05	4.57E+05
Total	V-A		1.57E+06	1.57E+06	1.53E+06	4.68E+05	4.68E+05	4.57E+05

Table F-4.Complete EMS II Spreadsheet; Design optimized for operation at 134 m/sCombined Lift and guidance magnets (staggered) and Linear Induction Motor

ElectroMagnetic Suspension II

Optimized for operation at 134 m/s maximum speed

(Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab LIM program.

			134 (m/s Optimiz	ation	134 m/s (Optimization (⊉89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	smail gap
VEHICLE PARAMETERS			(b/l)	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
<u>Design Parameters</u>								
*Vehicle mass	kg	m	4.00E+04	4.00E+04	4.00E+04	4.00E+04	4.00E+04	4.00E+04
*Vehicle length	m	l_vehicle	3.00E+01	3.00E+01	3.00E+01	3.00E+01	3.00E+01	3.00E+01
*Design speed	m/s	v	1.34E+02	1.34E+02	1.34E+02	8.90E+01	8.90E+01	8.90E+01
*frontal area	m^2	Af	1.20E+01	1.20E+01	1.20E+01	1.20E+01	1.20E+01	1.20E+01
*air density	kg/m^3	roair	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00
*drag coefficient		Cd	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01
wind drag force	Ν	Fd	3.88E+04	3.88E+04	3.88E+04	1.71E+04	1.71E+04	1.71E+04
wind drag power	W	Pd	5.20E+06	5.20E+06	5.20E+06	1.52E+06	1.52E+06	1.52E+06
*Max. Lift Force(@Max disp.)	g	max Fz	1.10E+00	1.10E+00	1.10E+00	1.10E+00	1.10E+00	1.10E+00
Max. Lateral Force()(cont.)	g	max F.I	2.60E-01	2.60E-01	2.60E-01	2.60E-01	2.60E-01	2.60E-01
*Max. Lateral Force(")(short term)	q	max_sF.I	4.20E-01	4.20E-01	4.20E-01	4.20E-01	4.20E-01	4.20E-01
*Time of Max. (short)Lateral F	sec	tmax	5.00E+00	5.00E+00	5.00E+00	5.00E+00	5.00E+00	5.00E+00
*Max propulsive force	a	max Fo	2.10E-01	2.10E-01	2.10E-01	2.10E-01	2.10E-01	2.10E-01
*Maximum ambient temperature	ັດ	maxTamb	5 00E+01	5 00E+01	5.00E+01	5.00E+01	5 00E+01	5.00E+01
	•	maxramo	0.002701	0.002401	3.002401	3.002401	3.00L+01	5.002701
Performance Parameters								
Power (obmic+eddy)/aero drag	%		7 805-03	4 25 F-03	6 56E-03	1 535-02	1 145-02	1 275-02
Weight (magnet+coil)/vehicle	% %		1 20E-01	1 405-01	8 00E-00	1.30E-02	1.405-01	9.005-02
eddy/lift amp.T (up bound)	~0 9/.		2 195-01	9.745-02	2 27E-02	1.200-01	5 90E 02	1 51 5.01
Aorodunamio droghusiaht	~	1	2.102-01	0.740-02	2.27 2-01	1.450-01	J.00E-02	4.965.00
Aerodynamic drag/weight	70		9.690-02	9.09E-02	9.89E-02	4.300-02	4.366-02	4.300-02
CONSTANTS								-
Constants								
			4 005 00	4 005 00	4 995 99			
an permeability	N/A^2	mu	1.202-00	1.202-00	1.202-06	1.200-00	1.262-06	1.26E-06
Successions								
Suspensions								
<u>Suspensions</u> Construction materials				1				a T T
<u>Suspensions</u> Construction materials *rail			steel	steel	steel	steel	steel	steel
<u>Suspensions</u> Construction materials [•] rail [•] magnet •cail			steel 2V Perm.	steel 2V Perm.	steel 2V Perm.	steel 2V Perm.	steel 2V Perm.	steel 2V Perm.
<u>Suspensions</u> Construction materials *rail *magnet *coil			steel 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.
Suspensions Construction materials *rail *magnet *coil Materials properties			steel 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.
Suspensions Construction materials *rail *magnet *coil Materials properties mass density			steel 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.	steel 2V Perm. alum.
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail	kg/m^3	ror	steel 2V Perm. alum. 7.85E+03	steel 2V Perm. alum. 7.85E+03	steel 2V Perm. alum. 7.85E+03	steel 2V Perm. alum. 7.85E+03	steel 2V Perm. alum. 7.85E+03	steel 2V Perm. alum. 7.85E+03
<u>Suspensions</u> Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet	kg/m^3 kg/m^3	ror rom	steel 2V Perm. alum. 7.85E+03 7.85E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil	kg/m^3 kg/m^3 kg/m^3	ror rom troc	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density	kg/m^3 kg/m^3 kg/m^3	ror rom roc	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail	kg/m^3 kg/m^3 kg/m^3 T	ror rom roc BsatR	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet	kg/m^3 kg/m^3 kg/m^3 T T	Bror From Broc BsatR BsatM	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00	steei 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *ail *magnet *Saturation Safety Factor(<1)	kg/m^3 kg/m^3 kg/m^3 T T 	eror From Broc BsatR BsatM SF	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity	kg/m^3 kg/m^3 kg/m^3 T T 	ror rom roc BsatR BsatM SF	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C	kg/m^3 kg/m^3 kg/m^3 T T ohm-m	Bror From BsatR BsatM SF Fr	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E-07	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E-07
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C *coil @190 deg C	kg/m^3 kg/m^3 kg/m^3 T T ohm-m	BsatR BsatM SF rr rc_	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C *coil @190 deg C	kg/m^3 kg/m^3 kg/m^3 T T ohm-m ohm-m	BsatR BsatR BsatM SF rr rc_	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C *coil @190 deg C Thermal *magnet heat transfer coef.	kg/m^3 kg/m^3 kg/m^3 T T ohm-m ohm-m W/°C-n	ror BsatR BsatM SF rr rc_	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+000 2.00E-07 4.72E-08 2.00E+01
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C *coil @190 deg C Thermal *magnet heat transfer coef. *Conductor thermal conductivity	kg/m^3 kg/m^3 kg/m^3 T T ohm-m ohm-m W/°C-n W/(°C	ror BsatR BsatM SF rr rc_ rh_s	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+01 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+01 2.20E+02
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C *coil @190 deg C Thermal *magnet heat transfer coef. *Conductor thermal conductivity *Insulation thermal conductivity	kg/m^3 kg/m^3 kg/m^3 T T ohm-m ohm-m W/°C-n W/(°C i W/°C-n	ror BsatR BsatM SF rr rc_ rh_s rk_c rk_ins	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C *coil @190 deg C Thermal *magnet heat transfer coef. *Conductor thermal conductivity *Insulation thermal conductivity	kg/m^3 kg/m^3 kg/m^3 T T ohm-m ohm-m W/°C-n W/°C o W/°C o	ror from broc BsatR BsatM SF rr rc rh_s rk_c rk_ins f	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E+01 2.20E+02 1.73E-01 7.85E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E+01 2.20E+02 1.73E-01 7.85E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+000 2.00E-07 4.72E-08 2.00E+01 2.00E+02 1.73E-01 7.85E-01
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C *coil @190 deg C Thermal *magnet heat transfer coef. *Conductor thermal conductivity *Insulation thermal conductivity *coil packing factor	kg/m^3 kg/m^3 kg/m^3 T T ohm-m ohm-m W/°C-n W/°C-n W/°C-n 	ror BsatR BsatM SF rr rc rk_ins f	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.66E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C *coil @190 deg C Thermal *magnet heat transfer coef. *Conductor thermal conductivity *Insulation thermal conductivity *coil packing factor *Coil Width packing factor	kg/m^3 kg/m^3 kg/m^3 T T ohm-m ohm-m W/°C-n W/°C-n W/°C-n 	bror brom broc BsatM SF rr rc_ rk_ins f_y f_z	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01	steel 2V Perm. alum. 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+000 2.00E-07 4.72E-08 2.00E+01 2.20E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C *coil @190 deg C Thermal *magnet heat transfer coef. *Conductor thermal conductivity *Insulation thermal conductivity *coil packing factor *Coil thickness packing factor	kg/m^3 kg/m^3 kg/m^3 kg/m^3 T T ohm-m w/.°C-n W/.°C-n W/.°C-n W/.°C-n °C	bror BsatR BsatM SF rr rc_ rk_c f f_y f_z T	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01 5.50E+01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01 5.50E+01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01 5.50E+01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01 8.86E-01 5.50E+01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01 8.86E-01 5.50F+01	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01 5.50E+01
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C *coil @190 deg C Thermal *magnet heat transfer coef. *Conductor thermal conductivity *Insulation thermal conductivity *coil packing factor *Coil Width packing factor *Coil Width packing factor *Coil Width packing factor	kg/m^3 kg/m^3 kg/m^3 kg/m^3 T T T ohm-m ohm-m W/°C-n W/°C-n W/°C-n W/°C-n U/(ka°C	ror BsatR BsatM SF rr rc_ rk_c rk_ins f f_y f_z T	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01 5.50E+01 1.19E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E+00 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C *coil @190 deg C Thermal *magnet heat transfer coef. *Conductor thermal conductivity *Insulation thermal conductivity *coil packing factor *Coil Width packing factor *Coil Width packing factor *Coil Specific heat *Maximum wire insulation temp	kg/m^3 kg/m^3 kg/m^3 T T ohm-m ohm-m W/°C-n W/°C-n W/(°C r U/°C-n U/(kg°C °C	ror BsatR BsatM SF rr rc_ rk_c rk_ins f f_y f_z T ccp maxTins	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E+01 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+00 2.00E+01 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01 8.86E-01 8.86E-01 8.86E-01 8.86E-01 8.86E-01 8.86E-01 8.86E-01 8.86E-01 8.86E-01 8.86E-01 8.86E-01
Suspensions Construction materials *rail *magnet *coil Materials properties mass density *rail *magnet *coil Saturation flux density *rail *magnet *Saturation Safety Factor(<1) Electrical resistivity *rail @20 deg C *coil @190 deg C Thermal *magnet heat transfer coef. *Conductor thermal conductivity *Insulation thermal conductivity *coil packing factor *Coil Width packing factor *Coil Width packing factor *Maximum ambient temperature *Coil Specific heat	kg/m^3 kg/m^3 kg/m^3 T T ohm-m ohm-m W/°C-n W/°C-n W/(°C r U/°C-n J/(kg°C °C	ror BsatR BsatM SF rr rc_ rk_ins f f_y f_z T ccp maxTins	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01 8.86E-01 8.86E-01 8.86E-01 1.19E+02 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01 8.86E-01 8.86E-01 5.50E+01 1.19E+02 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 1.40E+00 1.40E+00 1.00E+00 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 7.85E-01 8.86E-01 8.86E-01 8.86E-01 1.19E+02 2.20E+02	steel 2V Perm. alum. 7.85E+03 7.85E+03 2.55E+03 2.55E+03 1.40E+00 1.40E+00 1.40E+00 1.00E+000 2.00E-07 4.72E-08 2.00E+01 2.20E+02 1.73E-01 8.86E-01

ElectroMagnetic Suspension II (Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

Optimized for operation at 134 m/s maximum speed

7

Asterisk (*) before description indicates input. 2.Asterisks (**) after description indicates output from MatLab LIM program.

,			134	m/s Optimi:	zation	134 m/s	Optimization	@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
VEHICLE PARAMETERS			(b/i)	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
*rail			steel	steel	steel	steel	steel	steel
<pre>*rail conductor(s)</pre>			aluminum	aluminum	aluminum	aluminum	aluminum	aluminum
*magnet			M-19	M-19	M-19	M-19	M-19	M-19
*magnet coil			aluminum	aluminum	aluminum	aluminum	aluminum	aluminum
Materials properties								
Mass density								
*rail	ko/m^3	/0 m a	7 51 5403	7 51 E+03	7515.02	7 51 5.03	7 51 5.09	7 51 5.02
*rail - conductor(=)	ko/mA9	1011.g	2 785.02	2 79 5 .02	2 70E . 02	2 705.02	2 705.02	2 705.02
*magnet	kg/mA9	roc.y	7 655.02	2.702+03	2.765403	2.705+03	2.700+03	2.702+03
*aoil	kg/m*3	rom.v	7.05E+03	0.705+03	7.052+03	7.052+03	7.05E+03	7.052+03
GON Huy densities	Kg/m~3	TOC.V	2.780+03	2./82+03	2.782+03	2.786+03	2./8E+03	2.782+03
maximum nux densities	-		4 005 00)	
rail	1	bsat.g	1.60E+00	1.60++00	1.60E+00	1.60E+00	1.60E+00	1.60E+00
magnet	T	bsat.v	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00
Magnetic permeability			-					
rail		mu.g	3.50E+03	3.50E+03	3.50E+03	3.50E+03	3.50E+03	3.50E+03
Vehicle (short) stator <i>Core loss</i>		mu.v	,					
Core Loss @ 1.0T. 100 Hz	W/ka	refc.loss	2.87E+00	2.87E+00	2.87E+00	2.87E+00	2.87F+00	2.87F+00
Core loss frequency exponent	-	freq.exp	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1 50E+00	1.50E+00
Core loss Induction exponent	-	Bexp	2.10F+00	2.10F+00	2.10F+00	2.10F+00	2.10F+00	2.10F+00
Core loss @ fsync & Bcore	W/ko	c lose	1 95E+01	1 955-01	2.51 E+00	1.05E+01	1 055-01	1 365+01
	11/118		1.552+01	1.332 +01	2.012401	1.032401	1.036401	1.002701
Electrical resistivity		•						
*Magnet laminations @ 140°C	ohm-m	rm.v	7.00E-07	7.00E-07	7.00E-07	7.00E-07	7.00E-07	7.00E-07
*rail @20 deg C	ohm-m	rm.g	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07
*vehicle coil @20 deg C	ohm-m	rcRT.v	2.78E-08	2.78E-08	2.78E-08	2.78E-08	2.78E-08	2.78E-08
*vehicle coil temperature coeffici	i1/°C	alpha.v	4.10E-03	4.10E-03	4.10E-03	4.10E-03	4.10E-03	4.10E-03
vehicle coil @operating temperat	uohm-m	rc.v	4.79E-08	4.79E-08	4.80E-08	4.79E-08	4.79E-08	4.80E-08
*Guideway conductor @20 deg c	ohm-m	rc.g	2.80E-08	2.80E-08	2.80E-08	2.80E-08	2.80E-08	2.80E-08
Heat transfer coeffieients								
*magnet heat transfer coef.	W/C-m	k.v	4.19E+01	4.19E+01	4.19E+01	4.19E+01	4.19E+01	4.19E+01
*rail heat transfer coef.	W/C-m	'k.g	1.40E+01	1.40E+01	1.40E+01	1,40E+01	1.40E+01	1.40E+01
COMPONENT DESIGN & ANALYSIS								
Vertical/lateral suspension								
Geometric dimensions					•			
*Lateral stagger	m	del	5.00E-03	1.50E-03	2.50E-03	5.00E-03	1.50E-03	2.50E-03
*pole width	m	lp.	2.00E-02	1.50F-02	2.00F-02	2.00F-02	1.50E-02	2.00F-02
*window width	m	w	1.30E-01	1 195-01	1.16F-01	1 30F-01	1 105-01	1 165-01
*window height	m	h (or d)	6.52E-02	5 97F-02	5 80E-02	6.52E-02	5 97E-02	5 805-02
*air aan		11 (01 0) 11 1 v	1.00E-02	1 005-02	8 00E-02	1.005-02	1.005.02	9.00E-02
*nole-cnil clearance		7	5 09E 02	5 00E-02	5 DEC 00	5 00E-02	E 09E 00	5.00E-03
*Number meanet sets required	111		5.08E-03	5.002-03	5.00E-03	5,002-03	5.002-03	5.00E-03
thumber individual magnet	•••	nmag,N.S	4	4	4	4	4	4
-Number Individual magnets/set	•••	N.mags	2	. 2	2	2	2	2
Performance parameters								1
Individual magnet total weight	kg	W_mag_c	5.98E+02	7.00E+02	4.49E+02	598.45475	700.33698	449.41394
Lift-to-weight ratio		LTWR	8.35E+00	7.14E+00	1.11E+01	8.35E+00	7.14E+00	1.11E+01
Power-to-lift ratio	kW/ton	PILR	1.88E+00	2.71E+00	1.52E+00	1.88E+00	2.71E+00	1.52E+00
Total weight of magnet assemblies	skg	M_magne	4.79E+03	5.60E+03	3.60E+03	4.79E+03	5.60E+03	3.60E+03
Magnet-to-Vehicle weight ratio		MWR	11.97%	14.01%	8.99%	1.20E-01	1.40E-01	8.99E-02
Max. lateral force @y*(1 set)	kg	F_y_star	6.55E+04	9.03E+04	5.20E+04	6.55E+04	9.03E+04	5.20E+04
Required max lateral force(1 set)	kg	F_ymax	4.12E+04	4.12E+04	4.12E+04	4.12E+04	4.12E+04	4.12E+04
Max. lift force @y*(1 set)	kg	Fz_y sta	1.08E+05	1.08E+05	1.08E+05	1.08E+05	1.08E+05	1.08E+05
Required max. lift force(1 set)	kg	F_zmax	1.08E+05	1.08E+05	1.08E+05	1.08E+05	1.08E+05	1.08E+05

ElectroMagnetic Suspension II

Optimized for operation at 134 m/s maximum speed

(Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab LIM program.

		i	134	m/s Optimiz	zation	134 m/s	Optimization (@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
		_	baseline	slim pole	small dap	baseline	slim pole	small cap
VEHICLE PARAMETERS			(b/l)	(3/4 b/l)	(0.8 h/l)	(6/1)	(3/4 b/b	(0.8 b/l)
Classical lift force (1 mag v=0)	ka	F close	4.16E+04	3 77F±04	4 16E-04	4 16F±04	3 775+04	4 165-04
ateral stiffness (A solo)	∾⊎ N/m	K Istoral	1 765.07	2 ADE . 07	1 200.07	1 765.07	3.77 E+04	4 20E+04
Laidiai Suimess (4 5815)	N/ M	n_iateral	1./02+0/	2.4VE+V/	1.300+07	1./62+0/	2.40E+0/	1.38E+07
44								
<u>Magnet design</u>		HFF	9.60E-01	9.90E-01	9.50E-01	9.60E-01	9.90E-01	9.50E-01
Decoupling displacement limit	m	y_star	1.49E-02	1.50E-02	1.51E-02	1.49E-02	1.50E-02	1.51E-02
magnet length	m	L	5.68E+00	8.88E+00	5.10E+00	5.68E+00	8.88E+00	5.10E+00
width of pole base	m	w_p	2.78E-02	2.21 E-02	2.64E-02	2.78E-02	2.21E-02	2.64E-02
Magnet voke length	m	LV	5.55E+00	8.76E+00	4.99E+00	5.55E+00	8.76E+00	4.99E+00
Magnet voke height	m		3.36E-02	2 69 F-02	3 12E-02	3 36E-02	2 69E-02	3 125-02
Yoke area	m^2	A voko	1.965-01	2.365-01	1 665.01	1 965 01	2.030-02	1 565 01
TONG GIVE			1.000-01	2.002-01	1.502-01	1.002-01	2.502-01	1.502-01
			0.005.04					
tringing (across air gap)		nur	9.60E-01	1.28E+00	7.68E-01	9.60E-01	1.28E+00	7.68E-01
leakage (between poles)		nul	2.12E-01	2.78E-01	1.72E-01	2.12E-01	2.78E-01	1.72E-01
total		nut	2.17E+00	2.56E+00	1.94E+00	2.17E+00	2.56E+00	1.94E+00
Nominal air gap flux density	T -	BO	6.78E-01	5.96E-01	7.16E-01	6.78E-01	5.96E-01	7.16E-01
Nominal pole tip flux density	т		8.68E-01	8.47E-01	8.89E-01		,	
Nominal pole base flux density	т		1.21E+00	1.25E+00	1.18E+00			
Nominal voke flux density	т		1.42F+00	1.50F+00	1.36F+00		50	
Force per magnet	Ň	Form	A 165+04	3 775-04	A 16E+04	4 165.04	3 775.04	4 165.04
amp turns per magnet		T PILL	1.000-04	0.400.00	4.10E+04	4.102+04	3.//E+04	4.100+04
amp ums per magnet		NI	1.08E+04	9.49E+03	9.12E+03	1.08E+04	9.492+03	9.12E+03
core mass (1 mag)	кg	Mcore	4.05+02	4.48E+02	3.12E+02	4.05E+02	4.48E+02	3.12E+02
mass core + coil (4 mag)	kg	Mmag	4.79E+03	5.60E+03	3.60E+03	4.79E+03	5.60E+03	3.60E+03
<u>Coil desian</u>								
resistance (1 magnet, 1 turn)	ohm	resc	8.06E-05	1.50E-04	9.12E-05	8.06E-05	1.50E-04	9.12E-05
coil ohmic power (1 magnet)	w	ac	9.39E+03	1.35E+04	7.58E+03	9.39E+03	1.35E+04	7.58E+03
Surface temperature rise	°C	deltaT si	1.59E+02	1 60E+02	1 60E+02	1 59E+02	1 60 5+02	1 60 E+02
Surface temperature	Č	т.	2.005+02	2 105+02	2 10E+02	2 00 5.02	2 105+02	2 105-02
	ŝ			2.100+02	2.100+02	2.092+02	2.100+02	2.100+02
Marian lemperature rise	-0		6.08E+00	4.71E+00	4.33E+00	0.00E+00	4./IE+00	4.332+00
Maximum internal temperature	°C		2.20E+02	2.20E+02	2.19E+02	2.20E+02	2.20E+02	2.19E+02
mass(one coil)	kg	Mcoil,	1.93E+02	2.53E+02	1.38E+02	1.93E+02	2.53E+02	1.38E+02
Total ohmic power, Nmag*n_mags	W	P_total	7.51E+04	1.08E+05	6.07E+04	7.51E+04	1.08E+05	6.07E+04
Rail desion								
rail thickness	m	tr	2 83E-02	2 27 E-02	2 59E-02	2.83E-02	2 27E-02	2 59E.02
rail mass/length	ko/m	mr	4 905.01	2 545.01	4.075.01	4 90 - 01	2.27 2-02	4.075.01
naminal sail flus density	λθ/!!! Τ	D.	4.032+01	0.075 01	4.07E+01	4.092+01	3.342+01	4.0/E+UI
nominal rall flux censity		Br	9.40E-01	8.9/E-01	9.762-01	9.40E-01	8.97E-01	9.76E-01
ent. treq. for eddy anal.	Hz	Fe	1.18E+01	7.54E+00	1.31E+01	7.84E+00	5.01E+00	8.72E+00
dB/dt amp. first harmonic	T/s	B1x	4.44E+01	2.71E+01	5.13E+01	2.95E+01	1.80E+01	3.41E+01
eddy current power	W	Pr	3.16E+04	8.55E+03	2.65E+04	1.40E+04	3.77E+03	1.17E+04
rms eddy amp turn								· '
(upper bound, 1 magnet)	Α	Nle	2.35E+03	8.29E+02	2.07E+03	1.56F+03	5.51 F+02	1.38F+03
Total continuous power	w	P.v.	4.10F+04	2.21F+04	3 41 E+04	2 33F+04	1 73E+04	1 935-04
	••		4.102704		0.412+04	2.002704	1.702704	1.500704
Linear Induction Motor								
Lingar Induction Motor								1
							= -	
Design maximum thrust	9	max.g	2.10E-01	2.10E-01	2.10E-01	2.10E-01	2.10E-01	2.10E-01
Design maximum thrust	N	max.thr	8.23E+04	8.23E+04	8.23E+04	8.23E+04	8.23E+04	8.23E+04
Nominal excitation frequency	Hz	fsync	2.03E+02	2.03E+02	2.41E+02	1.35E+02	1.35E+02	1.60E+02
Synchronous speed	m/s	vsvnc	1.35E+02	1.35E+02	1.35E+02	8.99E+01	8.99E+01	8.99E+01
Nominal slip		nom slip	1.00F-02	1.00F-02	1.00F-02	1.00F-02	1.00F-02	1 00F-02
General			1.000-02	1.0VL-VZ	1.002-02	1.002-02	1.000-02	1.002-02
*Number of meters			4.005.00	4.005.00	4 005 000	4.005.00	4 005 00	1005 0-
		NINOTOF	4.002+00	4.002+00	4.000+00	4.002+00	4.002+00	4.002+00
		Np.v	1.60E+01	1.60E+01	1.60E+01	1.60E+01	1.60E+01	1.60E+01
<u>Geometric_dimensions</u>								
"Air gap (mechanical clearance)	m	cl.v	1.00E-02	1.00E-02	8.00E-03	1.00E-02	1.00E-02	8.00E-03

(continued) Table F-4.

ElectroMagnetic Suspension II

Optimized for operation at 134 m/s maximum speed

(Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

Asterisk (*) before description indicates input. 2 Asterisks (**) after description indicates output from MatLab LIM program.

			134 r	n/s Optimiz	ation	1 <u>34 m/s (</u>	Optimization	@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
	-		Daseline	slim pole	small gap	baseline	sim pole	small gap
*Dele pitch	_			(3/4 D/I)	(U.8 D/I)			
*Slots(pole/phose	ш	lau.v	3.332-01	3.332-01	2.812-01	3.33E-01	3.332-01	2.812-01
*Core width	m	dv	2.000+00	2.000+00	2.000+00	2.002+00	2.000+00	2.002+00
*Tooth width/slot width ratio		ter v	1 20 5+00	1 20 5+00	2.20E-01	1 205+00	1 20 5.00	1 205-00
*Siot depth	m	hv	5.005.02	5 00F-02	5 00F-02	5.005-02	5 00E-02	5 00E-02
*Lamination thickness	111	tlamy	3.56E-04	3 56 F-04	3.56E-04	3.565-04	3.565-04	3.565-04
Magnetic gap (entrefer)	m	a.maa	1.50E-02	1.50E-02	1.30E-02	1.50E-02	1.50E-02	1.30E-02
Carter factor		Kcarter	1.19E+00	1.19E+00	1.18E+00	1.19E+00	1.19E+00	1.18E+00
Effective magnetic gap	m	ae.lim	1.78E-02	1.78E-02	1.54E-02	1.78E-02	1.78E-02	1.54E-02
Back iron thickness, vehicle	m	tv.v	5.61E-02	5.61E-02	4.61E-02	5.61E-02	5.61E-02	4.61E-02
Tooth width	m	lt.v	2.53E-02	2.53E-02	2.13E-02	2.53E-02	2.53E-02	2.13E-02
Slot width	m	W.V	3.03E-02	3.03E-02	2.55E-02	3.03E-02	3.03E-02	2.55E-02
Slot pitch (=tooth pitch)	m	Sp.V	5.56E-02	5.56E-02	4.68E-02	5.56E-02	5.56E-02	4.68E-02
Number of laminations		Nlams.v	5.89E+02	5.89E+02	5.89E+02	5.89E+02	5.89E+02	5.89E+02
Motor effective length	m	Leff	5.33E+00	5.33E+00	4.50E+00	5.33E+00	5.33E+00	4.50E+00
Motor physical length	m	Lphys	5.89E+00	5.89E+00	4.96E+00	5.89E+00	5.89E+00	4.96E+00
Effective air gap area	m^2	Aface	1.12E+00	1.12E+00	9.89E-01	1.12E+00	1.12E+00	9.89E-01
Core exposed surface area	m^2	Acore	3.48E+00	3.48E+00	2.94E+00	3.48E+00	3.48E+00	2.94E+00
								1
<u>Winding parameters</u>								
Number of phases		Nphase.v	3.00E+00	3.00E+00	3.00E+00	3.00E+00	3.00E+00	3.00E+00
Coll pitch/pole pitch ratio(fraction	on)	cp_tau	6.67E-01	6.67E-01	6.67E-01	6.67E-01	6.67E-01	6.67E-01
"Number of winding layers		Niayers.v	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00
Number of colls/pole/pnase		ncolis.v	2.000+00	2.000+00	2.000+00	2.00E+00	2.00E+00	2.000+00
*Delo/aeii electronee	-	r.v	7.852-01	7.850-01	7.850-01	7.052-01	7.85E-U1	7.852-01
*Turne/coil	m	Z.V	1.005.00	1.000-03	1.005.00	1005-03	1.00E-03	1.000-00
*End turn angle	dograa	NPG.V	1.002+00	2.00E+00	2.000+00	2.002+00	2.00E+00	3.000+00
*End turn projection	m	h	1 00E-02	1 00 - 02	1.00E-02	1 00E-02	1.005-02	1.00E-02
Distribution factor/distributed with	ndina)	K4	8.66E-02	8.66E-02	8 66E-01	8.66F-01	8 66E-01	8 66F-01
Pitch factor/fractional pitch coils)	Ko	8.66E-01	8 66E-01	8.66E-01	8.66E-01	8.66E-01	8.66E-01
Winding factor/for distributed win	, ndinas)	Kw	7.50E-01	7.50E-01	7.50E-01	7.50E-01	7.50E-01	7.50E-01
Coil pitch	m	tau c.v	2.22E-01	2.22E-01	1.87E-01	2.22E-01	2.22E-01	1.87E-01
Mean conductor length	m/coil	lcoil.v	9.73E-01	9.73E-01	9.13E-01	9.73E-01	9.73E-01	9.13E-01
Coil thickness	m	tcoil.v	2.25E-02	2.25E-02	2.25E-02	2.25E-02	2.25E-02	2.25E-02
Conductor x-section area/slot/lay	(m^2	Acoil.v	5.35E-04	5.35E-04	4.51E-04	5.35E-04	5.35E-04	4.51E-04
Coil Resistance	ohm	Rcoil.v	8.72E-05	8.72E-05	9.72E-05	8.72E-05	8.72E-05	9.72E-05
Heat transfer area (1 coil)	m^2	Aht.v	8.06E-02	8.06E-02	6.66E-02	8.06E-02	8.06E-02	6.66E-02
Peak MMF per coil RMS amp-turns	-	MMFperNI	4.05E+00	4.05E+00	4.05E+00	4.05E+00	4.05E+00	4.05E+00
Core operating flux density	Т	Bcore.v	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00	1.50E+00
Coil RMS amp-turns @ Bsat of tool	dAmp-ti	LNIcoil.v	2.38E+03	2.38E+03	2.06E+03	2.38E+03	2.38E+03	2.06E+03
Total flux per pole @ Bsat of toot	hWeber:	s Fpp	3.53E-02	3.53E-02	3.04E-02	3.53E-02	3.53E-02	3.04E-02
RMS phase current @ Bsat of tooth	Α	lphase.v	2.38E+03	2.38E+03	2.06E+03	2.38E+03	2.38E+03	2.06E+03
Total RMS slot current @ Bsat of t	kA	lslot .v	4.77E+03	4.77E+03	4.12E+03	4.77E+03	4.77E+03	4.12E+03
Coil power (1coil)	W	Pcoil.v	4.95E+02	4.95E+02	4.11E+02	4.95E+02	4.95E+02	4.11E+02
Coil surface temperature rise	°C	delTavg.v	1.46E+02	1.46E+02	1.48E+02	1.46E+02	1.46E+02	1.48E+02
Maximum coil surface temperature	°C	iw.lim	1.96E+02	1.96E+02	1.98E+02	1.96E+02	1.96E+02	1.98E+02
Slot current	A-conc	II.SIQI	4.77E+03	4.//E+03	4.12E+03	4.77E+03	4.//E+03	4.12E+03
Linear current loading	A/m	1.10ad	8.58E+04	8.582+04	8.790+04	8.586+04	8.585+04	8.79E+04
Stator Leakane Reactance Calcula	tione							
Slot Leakage	ohm	Xslot	2.84E-02	2.84E-02	4.19E-02	1.89E-02	1.89E-02	2.78E-02
End turn leakage	ohm	Xec	3.05E-08	3.05E-08	3.05E-08	2.02E-08	2.02E-08	2.02E-08
Total Primary Leakage Reactance	ohm	Xleak	2.84E-02	2.84E-02	4.19E-02	1.89E-02	1.89E-02	2.78E-02
States Laskage Beastance & 50 11-							1	1 1 1
UNDER CONTRACTOR CONTRACT	•		*					

ElectroMagnetic Suspension II

Optimized for operation at 134 m/s maximum speed

10 10 13 . ų

11

:E 2 2 ž 5 周

(Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

Asterisk (*) before description indicates input. 2 Asterisks (**) after description indicates output from MatLab LIM program.

			134		cation	134 m/s (pumization (9 09 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
······································			baseline	slim pole	small gap	baseline	slim pole	smail gap
VEHICLE PARAMETERS	_		(b/l)	<u>(3/4 b/l)</u>	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
Leakage Reactance @ 50 Hz.	ohm/pt	1 X50_	7.00E-03	7.00E-03	8.70E-03	7.00E-03	7.00E-03	8.70E-03
Coll Hesistance	onm/pr	Rone	5.58E-03	5.58E-03	6.22E-03	5.58E-03	5.58E-03	6.22E-03
Heactance/Resistance ratio @ 50 H	i -	alpha50	1.26E+00	1.26E+00	1.40E+00	1.26E+00	1.26E+00	_ 1.40E+00
Series turns/phase		stp.lim	3.20E+01	3.20E+01	3.20E+01	3.20E+01	3.20E+01	3.20E+01
Resistance, Primary	ohm/ph	nrp.lim	5.58E-03	5.58E-03	6.22E-03	5.58E-03	5.58E-03	6.22E-03
Weight			1_	_				
Motor iron weight, single stator	kg	mi.v	7.89E+02	7.89E+02	6.13E+02	7.89E+02	7.89E+02	6.13E+02
Motor conductor weight, single sta	ikg	mc.v	1.39E+02	1.39E+02	1.10E+02	1.39E+02	1.39E+02	1.10E+02
Total motor weight(Nmotor motors	skg	mmotor	3.71E+03	3.71E+03	2.89E+03	3.71E+03	3.71E+03	2.89E+03
Power		_	Į					
Core loss power, single stator	W	Pcore	1.53E+04	1.53E+04	1.54E+04	8.30E+03	8.30E+03	8.34E+03
Core temperature rise	°C	delTcore	1.05E+02	1.05E+02	1.25E+02	5.70E+01	5.70E+01	6.78E+01
Core surface temperature	°C	Tcore	1.55E+02	1.55E+02	1.75E+02	1.07E+02	1.07E+02	1.18E+02
			1		1			
<u>Motor Secondary (quideway) Design</u> Iron	n Paran	neters					يې فير	-7 %a.
Back iron thickness, guideway	m	ty.a	4.60F-02	4.60F-02	3.87F-02	4.60F-02	4.60F-02	3.87F-02
Back iron width	m	d.n	2.40F-01	2.40F-01	2.46F-01	2.40F-01	* 2 40F-01	2 465-01
Guideway iron specific weight	ka/m		8.29F_01	8.29F_01	7.14F+01	8.29F_01	8.20F_01	7.14F+01
Conductor	3 1/11	·······	JIJUTUT	J.COLTVI		J.47ETU	J.28ETV I	7.17CTVI
Conductor overlap factor		colf.g	4.00E-01	4.00E-01	4.00E-01	4.00E-01	4.00E-01	4.00E-01
Conductor thickness	m	tc.g	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03
Conductor width	m	dc.g	5.07E-01	5.07E-01	4.71E-01	5.07E-01	5.07E-01	4.71E-01
Guideway conductor specific weigh	kg/m	mc.g	7.04E+00	7.04E+00	6.54E+00	7.04E+00	7.04E+00	6.54E+00
Total guideway added weight	kg/m	m.gw	1.80E+02	1.80E+02	1.56E+02	1.80E+02	1.80E+02	1.56E+02
Performance Results from MatLab Ar	<u>alysis</u>							
Individual Motor Parameters at Max	dmum A	Propulsive	Force					4
Thrust**	N	Thrust	2.04E+04	2.04E+04	2.05E+04	9.02E+03	9.02E+03	🤄 9.05E+03
Slip**	-	stip	1.00E-02	1.00E-02	9.00E-03	1.50E-02	1.50E-02	1.40E-02
Traction Power**	w	P.tract	2.74E+06	2.74E+06	2.75E+06	7.98E+05	7.98E+05	8.03E+05
Real input Power**	W	Pin.real	2.82E+06	2.82E+06	2.83E+06	8.32E+05	8.32E+05	8.33E+05
Reactive input Power**	V-A	Pin.react	3.22E+06	3.22E+06	3.27E+06	9.47E+05	9.47E+05	9.32E+05
Efficiency**	%	eff.v	9.65E+01	9.65E+01	9.69E+01	9.59E+01	9.59E+01	9.59E+01
Power Factor		PwrFac	6.59E-01	6.59E-01	6.54E-01	6.59E-01	6.59E-01	6.59E-01
				•				
Lift/ouidance_maonets			1					
permeances			1					
VAir gap fringing permeance/lengt		Pf	1.92E+00	1.92E₊00	1,92E+00	1.92F+00	1.92F₊00	1.92F+00
Videal air gap permeance/length		Pu	2.00E+00	1.50E+00	2.50E+00	2.00E+00	1.50E+00	2.50F+00
?Inter-pole leakage perm /length		PI	4.25E-01	4.18E-01	4.31E-01	4.25E-01	4.18E-01	4.31F-01
alpha(g.delta)	2	pha a del	1.24E+00	1.41E+00	1.23E+00			
alpha(g.delta+v*)	ipha n	del.v star	1.24E+00	1.41E+00	1.23E+00			
example using function "alpha/v of	U. 	a.a.			0_+00			3
<u>Coil dimensions</u>		J.			l			- st. <u>(</u>
Average turn length		lc l	1.14E+01	1.78E+01	1.02E+01	1.14E+01	1.78E+01	1.02E+01
Coil conductor crossectional area		ac	6.66E-03	5.58E-03	5.28E-03	6.66E-03	5.58E-03	5.28E-03
Effective surface area/heat trans.		adis	5.01E+00	6.98E+00	4.06E+00	5.01E+00	6.98E+00	4.06E+00
Coil volume	m^3	V_coil	9.64E-02	1.26E-01	6.87E-02			
<u>Maonet parameters</u>						0.00E+00	0.00E+00	0.00E+00
Magnet volume	m^3	V man	5.17E-02	5.70E-02	3.97E-02	5.17E-02	5.70F-02	3.97F-02
flux leakage coefficients						2 L-V2	J., VL-VZ	3.37 L-UZ
Gap fringing flux coefficient		nu o	1.28E+00	1.42E+00	1.24E+00	1.28E+00	1.42F+00	1.24F+00
Pole leakage flux coefficient		nu_l.p	5.02E-01	6.69E-01	4.00E-01	5.02E-01	6.69E-01	4.00E-01
		··		·····	· · · · · · · · · · · · · · · · · · ·			

ElectroMagnetic Suspension II

Optimized for operation at 134 m/s maximum speed (Combined vertical & lateral suspensions(staggered), Linear Induction Motor)

Asterisk (*) before description indicates input.

2 Asterisks (**) after description indicates output from MatLab LIM program.

			134	<u>m/s Optimiz</u>	zation	134 m/s (Optimization (@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	smail gap	baseline	slim pole	small gap
VEHICLE PARAMETERS			(b/l)	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
Yoke leakage flux coefficient		nu_l.y	3.18E-01	4.24E-01	2.55E-01	3.18E-01	4.24E-01	2.55E-01
Total leakage & fringing flux coef.		nu_t	2.10E+00	2.51E+00	1.90E+00	2,10E+00	2.51E+00	1.90E+00
Total leakage flux coefficient	• • •	.nu_l	8.20E-01	1.09E+00	6.55E-01	8.20E-01	1.09E+00	6.55E-01
Total leakage flux/gap flux		Lambda	6.40E-01	7.70E-01	5.27E-01	6.40E-01	7.70E-01	5.27E-01
nu_t @ g=2ge, y=0		nu_t.max	3.28E+00	4.04E+00	2.82E+00	3.28E+00	4.04E+00	2.82E+00
nu_t @ g=ge, y=y_star		nu_t.max	3.39E+00	4.16E+00	2.99E+00	3.39E+00	4.16E+00	2.99E+00
<u>Linear induction motor</u> permeances		:						
Ideal air gap permeance/length		Pu.lim	1.18E+01	1.18E+01	1.43E+01	1.18E+01	1.18E+01	1.43E+01
Air gap fringing permeance/length	1	Pf.lim	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00
Fringing permeance ratio		nuf.lim	1.63E-01	1.63E-01	1.34E-01	1.63E-01	1.63E-01	1.34E-01
EMS II Summary Weight on Vehicle		:			٨			
Lift/Guidance Magnets	ka		4.79E+03	5.60E+03	3.60E+03	4.79E+03	5.60E+03	3.60E+03
Linear Induction Motor	ka		3.71E+03	3.71E+03	2.89E+03	3.71E+03	3.71E+03	2.89E+03
Total	ka		8.50E+03	9.31E+03	6.49E+03	8.50E+03	9.31E+03	6.49E+03
Weight on Guideway								
Lift/Guidance Magnets	kg/m		4.89E+01	3.54E+01	4.07E+01	4.89E+01	3.54E+01	4.07E+01
Linear Induction Motor	kg/m		1.80E+02	1.80E+02	1.56E+02	1.80E+02	1.80E+02	1.56E+02
Total	kg/m		2.29E+02	2.15E+02	1.97E+02	2.29E+02	2.15E+02	1.97E+02
<u>Real_Input_Power_Dissipation</u> Ohmic_Power_Dissipation								
Lift/Guidance Magnets	W		7.51E+04	1.08E+05	6.07E+04	7.51E+04	1.08E+05	6.07E+04
Linear Induction Motor	W .		8.28E+04	8.28E+04	8.00E+04	3.40E+04	3.40E+04	3.08E+04
Total Ohmic Power	W		1.58E+05	1.91E+05	1.41E+05	1.09E+05	1.42E+05	9.14E+04
Lift/Guidenee Meanets	14/		2 165.04	9 555 .03	2 665 . 04	1 405-04	2 775 .02	1 175.04
Total oddy surront Rewor	W W		3.165.04	9.552+03	2.05E+04	1.400+04	3.77E+03	1.17 =+04
Total Bask Bawas Dissistering			3.10E+04	0.005.05	2.032+04	1,4004	5.11 E+03	1.17 E+04
Total Heal Power Dissipation	VV		1.902+05	2.000+05	1.672+05	1.23E+05	1.402+05	1.03E+05
Heacuve Input Power	V/ A		0 00E.00	9 99E .00	9 97E.00	0.475.05	0 475 .05	0.005.05
Linear Induction Motor	V-A		3,222+06	3.222+06	3.2/E+06	9.4/2+05	9.4/ 2+05	9.32E+05
(Olai	v-A		3.222+06	3.222+06	3.2/2+06	9,4/6+05	9.4/ 2+05	9.32E+05

Table F-5Complete EMS III Spreadsheet; Design optimized for operation at 89 m/sSeparate guidance magnet,Combined lift magnet and Linear Synchronous Motor

ElectroMagnetic Suspension III

Optimized for operation at 89 m/s maximum speed

ī.

(Separate vertical suspension & synchronous motor, lateral suspension)

12/09/92

			89 r	n/s Optimiz	ation	89 m/s O	ptimization (@ 59 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small cap
				(3/4 b/l)	(0.8 b/l)		(3/4 5/1)	(0 8 b/h
VEHICI E PARAMETERS					10.0 0.1			
Design Baramators								
	1		1.005.04			1		4.005.04
venicie mass	кg	m	4.00E+04	4.00E+04	4.00E+04	4.00E+04	4.00E+04	4.00E+04
"Design speed	m/s	V	8.90E+01	8.90E+01	8.90E+01	5.90E+01	5.90E+01	5.90E+01
*frontal area	m^2	Af	1.20E+01	1.20E+01	1.20E+01	1.20E+01	1.20E+01	1.20E+01
*air density	kg/m^3	roair	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00
*drag coefficient		Cd	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01
wind drag force	Ň	Fd	1.71E+04	1.71E+04	1.71E+04	7.52E+03	7.52E+03	7.52E+03
wind drag nower	w	Pd	1.52E+06	1 52E+06	1.52E+06	4 44E+05	4 44E+05	4 44E+05
*Max Lift Force(@Max disn.)		max Ez	1.105.00	1.10E+00	1.105.00	1 105.00	1 105+00	1 105+00
*Max. Lateral Farme(")(anat.)	9		1.102400	1.102+00	1.005.01	1.000-01	1.102+00	1.005.01
Max. Lateral Porce()(cont.)	g	max_F.	1.80E-01	1.802-01	1.80E-01	1.80E-01	1.80E-01	1.802-01
Max. Lateral Force(")(short)	9 .	max_sr.i	2.60E-01	2.60E-01	2.60E-01	2.60E-01	2.60E-01	2.60E-01
Time of Max. (short)Lateral F	sec	t_max	5.00E+00	5.00E+00	5.00E+00	5.00E+00	5.00E+00	5.00E+00
*Maximum ambient temp.	°C	maxTamb	5.00E+01	5.00E+01	5.00E+01	5.00E+01	5.00E+01	5.00E+01
CONSTANTS								
<u>General</u>								
*air permeability	N/A^2	สาน	1 26E-06	1 26 E-06	1 26E-06	1 26 E-06	1 26E-06	1.26F-06
Lateral Suspension								
Construction materials		`						1
troil	,							
raii -			steel	steel	steel	steel	steer	steel
magnet			2V Perm.	2V Perm.	2V Perm.	2V Perm.	2V Perm.	2V Perm.
*coil			alum.	alum.	alum.	alum.	alum.	alum.
<u>Materials_properties</u>								
mass density			1	•				
*rail	kg/m^3	ror	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03
*magnet	ka/m^3	rom	7.78E+03	7.78E+03	7.78E+03	7.78E+03	7.78E+03	7.78E+03
*coil	kg/m^3	roc	2 78E+03	2 78E+03	2 78E+03	2 78F+03	2 78E+03	2 78E+03
maximum flux density								
*roil	т	Beatr	1 605.00	1 605.00	1 605.00	1 605.00	1.605.00	
1aii .	÷	Death	1.002+00	1.002+00	1.002+00	1.802+00	1.002+00	1.002+00
Returning Outers France (4)	1	Bsatm	2.30E+00	2.30E+00	2.30E+00	2.300+00	2.30E+00	2.30E+00
Saturation Safety Factor(<1)		SF	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00
Electrical resistivity								l.
*rail @20 deg C	ohm-m	rr	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07
*coil @140 deg C	ohm-m	rc_	4.06E-08	4.06E-08	4.06E-08	4.06E-08	4.06E-08	4.06E-08
*coil @220 deg C	ohm-m	rc 220						1
Thermal		~			-			
*mannet heat transfer coef	W/C-m^2	k	1 405+01	1 40E±01	1 40E+01	1 40E±01	1 40E±01	1 40E+01
*Coil Specific heat	Wka°C)	~	1 105,02	1 10 5 02	1 105 02	1 105.02	1 105 02	1 105 02
*Nevimum wire inevietien ter	57(kg C)		1.192+02	1.192+02	1.1907-02	1.192+02	1.192+02	0.005.00
Maximum wire insulation terr		maxiins	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02
Lift Magnet & Linear Synchronous	<u>Motor</u>							
<u>Construction materials</u>								ŀ
*rail			steel	steel	steel	steel	steel	steel
*rail windings			copper	copper	copper	copper	copper	copper
*magnet			2V Perm	2V Perm.	2V Perm	2V Perm	2V Perm	2V Perm
*magnet coil			aluminum	aluminum	aluminum	aluminum	aluminum	aluminum
Densities				Lightingth				
*roil	ka/m^2	(00m	7515.02	7 515.02	7 51 5.00	7 515.02	7 515.02	7 51 5.02
taii troit windingg	ng/111''0 ka/ac^0	iogiii 1960	1.51E+03	0 00 C 02	9.00E.00	0.000-000	0.01E+03	7.51E+03
raii windings	kg/m^3	roge	0.90E+03	0.902+03	8.90E+03	0.90E+03	0.900+03	0.900+03
magner	кg/m^3	rovm	1.78E+03	1.78E+03	1.78E+03	1./8E+03	7.78E+03	7.78E+03
TCOIL	kg/m^3	rovc	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03
Maximum flux densities								1
*rail	Т	bsatg	1.60E+00	1.60E+00	1.60E+00	1.60E+00	1.60E+00	1.60E+00
*magnet	Т	bsatv	2.30E+00	2.30E+00	2.30E+00	2.30E+00	2.30E+00	2.30E+00
Magnetic permeabilities								

ElectroMagnetic Suspension III

Optimized for operation at 89 m/s maximum speed

(Separate vertical suspension & synchronous motor, lateral suspension)

12/09/92

•			<u>89</u> n	<u>n/s O</u> ptimiza	ation	89 m/s Or	otimization (@_59_m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small oan	paseline	slim pole	small cap
				(3/4 b/0	(0.8 b/l)		(3/4 6/0	(0.8 b/l)
Electrical Resistivity			<u> </u>			·I		<u>(0.0 0/1)</u>
*rail @20 dec C	ohm-m	rmo	4.065-07	4 065 07	4 065 07	4 065 07	4 065 07	4 065 07
*vehicle coil @140 dec C	ohm-m	roy	4.000-07	4.002-07	4.000-07	4.000-07	4.002-07	4.000-07
troit poil \$140 deg C	onm-m	ICV	4.062-08	4.06E-08	4.062-08	4.06E-08	4.062-08	4.06E-08
rail coll -140 deg C	onm-m	rcg	2.46E-08	2.46E-08	2.46E-08	2.46E-08	2.46E-08	2.46E-08
inermai						I		
magnet neat transfer coeffic	W/C-m^2	kv	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01
rail heat transfer coef.	W/C-m^2	kg	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01
COMPONENT DESIGN & ANALYSIS								
Lateral Suspension								
<u>Geometric_dimensions</u>								
*pole width	m	lp.l	2.27E-02	1.70E-02	2.00E-02	2.27E-02	1.70E-02	2.00E-02
*window width	m	w.t	1.21E-01	1.09E-01	1.09E-01	1.21E-01	1.09E-01	1.09E-01
*window height	m	h.l	6.04E-02	5.45F-02	5.45F-02	6.04F-02	5.45F-02	5.45E-02
window width/height ratio			2.00F+00	2.00F±00	2.00F+00	2 00F±00	2.00F+00	2.00F+00
*coil packing factor		f	7 00 -01	7 00 -01	7 005-01		7 00 -01	7.005-01
*air aan	 m	1.1 Li1v1		1.005.00	7.00E-01	1.005.00	1 005 00	7.00E-01
an yay *polo.goù glearanan			1.002-02	1.00E-02	8.00E-03	1.00E-02	1.00E-02	5.00E-03
	m ·	Z.1	5.08E-03	5.08E-03	5.08E-03	5.08E-03	5.08E-03	5.08E-03
number magnets required		nmag.i	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00
magnet length	m	L.I	5.00E+00	9.94E+00	5.00E+00	5.00E+00	9.94E+00	5.00E+00
<u>Magnet Design</u>								i
flux leakage coefficients								l
fringing (across air gap)		nuf.l	8.46E-01	1.13E+00	7.67E-01	8.46E-01	1.13E+00	7.67E-01
leakage (between poles)		nul.l	1.84E-01	2.40E-01	1.70E-01	1.84E-01	2.40E-01	1.70E-01
total		nut.l	2.03E+00	2.37E+00	1.94E+00	2.03E+00	2.37E+00	1.94E+00
nominal field in air cao	т	BO.I	7.51E-01	6.15E-01	8.00E-01	7.51E-01	6.15E-01	8.00E-01
Force per magnet	Ň	Form.	5.10F+04	5.10F+04	5.10F+04	5.10F+04	5.10F+04	5.10F+04
amp turns per magnet	Δ	NII	1 205.04	0 705.02	1.025.04	1 205-04	0 70 F±03	1 025+04
Core mass (1 man)	ko	Mcorel	2 52	3 32	2015.00	2 535.02	3 325.03	2 01 - 02
mass core + coil (4 mos)	ny	Mmon I	1.555+02	0.020+02	1.000 - 02	1 665.00	0.020+02	1 22
mass core + con (4 mag)	лy	wimag.i	1.552+03	2.172+03	1.23E+03	1.550+03	2.175+03	1.230+03
Cail Desian			•					
<u>Coll Design</u>		.						
resist (1 magnet, 1 turn)	ohm	resc.l	1.77E-04	4.32E-04	2.20E-04	1.77E-04	4.32E-04	2.20E-04
St. state coil power(N/2 mags	W	qc_ss.l	1.76E+04	2.87E+04	1.58E+04	1.76E+04	2.87E+04	1.58E+04
Max. coil power (N/2 magnets)	W	qc.l	1.02E+05	1.66E+05	9.11E+04	1.02E+05	1.66E+05	9.11E+04
Steady state temperature rise	°C	Tm_ss.l	1.50E+02	1.41E+02	1.50E+02	1.50E+02	1.41E+02	1.50E+02
Short term temperature rise	°C	Tm_st.I	3.20E+01	3.31E+01	3.58E+01	3.20E+01	3.31E+01	3.58E+01
Maximum coil temperature	°C	Tc max.)	2.00E+02	1.91E+02	2.00E+02	2.00E+02	1.91E+02	2.00E+02
mass(one coil)	ka	Mc.	6.66F+01	1.05F+02	5.36F+01	6.66F+01	1.05F+02	5.36F+01
					2.000 101	2.002701		2.000
Rail Design								
rail thickness	m	•r 1	2 975 02	2 12 5 02	2 54 5 02	2 875 02	2 135.02	2 54 5-02
rail note the width (th)		U.I	2.0/ 2.02	2.132-02	2.540-02	2.0/ E-U2	2.135-02	2.545-02
rail pole lip wight (=(r)	III Isa lar	17.1 	2.87E-02	2.13E-02	2.54E-02	2.87E-02	2.132-02	2.54E-02
rali mass/ienĝth(two rails)	кg/m	mr.i	8.28E+01	5.36E+01	6.49E+01	8.28E+01	5.36E+01	6.49E+01
exercised with the distribution	-	_				• • • • • •		
nominal rail flux density	T.	Br.I	9.13E-01	8.70E-01	9.28E-01	9.13E-01	8.70E-01	9.28E-01
eff. freq. for eddy anal.	Hz	Fe.I	8.90E+00	4.48E+00	8.90E+00	5.90E+00	2.97E+00	5.90E+00
dB/dt amp. first harmonic	T/s	B1x.I	3.25E+01	1.56E+01	3.30E+01	2.15E+01	1.03E+01	2.19E+01
eddy current power	W	Pr.I	7.34E+03	1.21E+03	4.72E+03	3.23E+03	5.31E+02	2.07E+03
rms eddy amp turn]			
(upper bound, 1 magnet)	Α	NIe.	8.36E+02	1.94E+02	5.97E+02	5.54E+02	1.29E+02	3.96E+02
Total power	W	P.I	2.49E+04	2.99E+04	2.05E+04	2.08E+04	2.92E+04	1.78E+04
Lift Magnet & Synchronous Motor -	2 auidewa	av poles pe	pr_vehicle_po	le				
Geometric Dimensions-on board	d maonet							
*Xpole thickness	m	tov	2.00E-01	2.00E-01	2.00E-01	2.00E-01	2.00E-01	2.00E-01

ElectroMagnetic Suspension III

Optimized for operation at 89 m/s maximum speed

マ. 、シ

. .

(Separate vertical suspension & synchronous motor, lateral suspension) 12/09/92

		i	89 п	n/s Optimiz	ation	89 m/s O	ptimization (@ 59 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
		L.	baseline	slim pole	small gap	baseline	slim pole	small gap
1				(3/4 b/l)	(0.8 b/l)		(3/4 b/l)	(0.8 b/l)
Xpole to pole distance	m	wcv	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01
pole face width	m	IDV	2.00E-01	2.00E-01	2.00E-01	2.00E-01	2.00E-01	2.00E-01
Xface to face dist.	m	ŵv	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01
*window height	m	hv	8.00F-02	8.00F-02	8.00F-02	8.00F-02	8.00F-02	8.00E-02
*magnet depth	m	dv	1.00E-01	1 00E-01	1.00E-01	1 00E-01	1 00E-01	1 00E-01
*voke thickness	m	tvv	8 50E-02	8 50 E-02	8 50E-02	8 50 E-02	8 50E-02	8 50 F-02
*coil packing factor		ffv	7 00E-01	7 00E-01	7.00E-01	7 00E-01	7 00E-01	7 00 E-01
*air cap	m	H1v	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1 00E-02	1.00E-02
*pole-coil clearance	m	71	5.08E-03	5 085-03	5.085-03	5 08E-03	5 08E-03	5.08E-03
*number laminations		nlammy	5.00E+00	5.00E+00	5.002-00	5.00 -00	5.00E+00	5.00E+00
lamination thickness	m	tmy	2.00E-02	2 00E-02	2.00E-02	2.005-02	2.00 - 02	2 00 E-02
*Number magnets required		omaay	1.00E-02	1.00E-02	1.005.01	1.005.01	1.005-02	1.00E-02
*number magnets required		nnayv	1.000001	1.000+01	0.0000	1.002+01	1.002+01	0.005.00
magnet length	 m	nsegv	1.500+01	1.400+01	9.00E+00	1.502+01	4 205-00	9.00E+00
inagner lengti	m	LV	4.50E+00	4.20E+00	2.702+00	4.502+00	4.20E+00	2.702+00
Cosmetrie Dimensione suideu	-							
*pole width	च <u>र</u>		8.005.00	a 005 00	9 005 00	9 005 00	9 00E 00	م م الم
tole width	.m 	ipg	8.000-02	0.00E-02	8.00E-02	0.00E-02	0.00E-02	8.00E-02
Siot width Mosses B suidsway asla 6 al	m •• -*	wg	2.00E-02	2.00E-02	2.00E-02	2.00E-02	2.002-02	2.002-02
Aiviagnet a guideway pole & sil	ucamensi	ons?		° UK	UK	UK CK	UK Gr	
Asiots and phases?								
Guideway poles per mag, pole		NG	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00
window neight	m	ng	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02
magnet depth	m	dg	1.40E-01	1.40E-01	1.40E-01	1.40E-01	1.40E-01	1.40E-01
coil packing factor		ffg	8.00E-01	8.00E-01	8.00E-01	8.00E-01	8.00E-01	8.00E-01
number electrical phases		Np	3.00E+00	3.00E+00	3.00E+00	3.00E+00	3.00E+00	3.00E+00
*pole-coil clearance	m	zg	5.00E-03	5.00E-03	5.00E-03	5,00E-03	5.00E-03	5.00E-03
*number laminations		nlammg	4.00E+02	4.00E+02	4.00E+02	4.00E+02	4.00E+02	4.00E+02
lamination thickness	m	tmg	3.50E-04	3.50E-04	3.50E-04	3.50E-04	3.50E-04	3.50E-04
skin depth	m	delg	4.45E-04	4.45E-04	4.45E-04	5.47E-04	5.47E-04	5.47E-04
<u>Magnet_Design</u>					t i i			
*amp turns/pole (mag seg)	A	Niv	5.40E+03	5.40E+03	5.29E+03	5.40E+03	5.40E+03	5.29E+03
flux leakage coefficients								
fringing (across air gap)		nufv	4.73E-01	4.73E-01	4.73E-01	4.73E-01	4.73E-01	4.73E-01
leakage (between poles)		nulv	1.94E-01	1.94E-01	1.94E-01	1.94E-01	1.94E-01	1.94E-01
total		nutv	1.67E+00	1.67E+00	1.67E+00	1.67E+00	1.67E+00	1.67E+00
Xnom. lift field in air gap	т	B0v	6.79E-01	6.79E-01	6.65E-01	6.79E-01	6.79E-01	6.65E-01
Xmax B in yoke @2 h1v, lift on	IT	Byv	1.86E+00	1.86E+00	1.83E+00	1.86E+00	1.86E+00	1.83E+00
check field in yoke			ak	ak	OK	OK N	ak	ok 📗
total lift force-Nmag magnets	N	Fv	4.40E+05	4.10E+05	2.53E+05	4.40E+05	4.10E+05	2.53E+05
• •								
Xcore mass (1 mag)	ka	Mcorev	4.85E+02	4.52E+02	2.91E+02	4.85E+02	4.52E+02	2.91E+02
mass core + coil (Nmagy mag)	ka	Mmagy	5.67E+03	5.30E+03	3.40E+03	5.67E+03	5.30E+03	3.40E+03
(-,				
Vehicle Coil Desian								
resist (1 magnet, 1 turn)	ohm	resv	1 17E-05	1 17E-05	1 17E-05	1.17E-05	1.17E-05	1.17E-05
coil ohmic power (N mag)	W	av	5.13F+04	4.79F+04	2.95F+04	5.13F+04	4.79F+04	2.95E+04
temp. rise	dea C	Tv I	1.55E+02	1.55E+02	1.48E+02	1.55E+02	1.55E+02	1.48E+02
mass (1 magnet)	kg	Mcoilv	8.28E+01	7.73E+01	4.97E+01	8.28E+01	7.73E+01	4.97E+01
	5				= .			
<u>Rail Coil Design</u>		ł						ļ
rail yoke thickness	m	tyg	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01
*amp turns per phase (0-P)	А	NIg	1.20E+03	1.20E+03	1.20E+03	1.20E+03	1.20E+03	1.20E+03
flux leakage coefficients		-						
fringing (across air gap)		nufg	4.73E-01	4.73E-01	4.73E-01	4.73E-01	4.73E-01	4.73E-01
leakage (between poles)		nulg	5.57E-01	5.57E-01	5.57E-01	5.57E-01	5.57E-01	5.57E-01
total		nuto	2 03E+00	2 03E+00	2 03E+00	2 03E+00	2 03E+00	2:03E+00

ElectroMagnetic Suspension III

Optimized for operation at 89 m/s maximum speed

(Separate vertical suspension & synchronous motor, lateral suspension)

12/09/92

			89 n	n/s Optimiz	ation	89 m/s O	otimization (@_59_m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
				(3/4 b/l)	(0.8 b/l)		(3/4 b/l)	(0.8 b/l)
B in air gap-1 phase	Т	B0g	1.51E-01	1.51E-01	1.51E-01	1.51E-01	1.51E-01	1.51E-01
max. field in poles		Ū	t					1
from 1 phase & h1v	т	Bo1a	3.06E-01	3.06E-01	3.06E-01	3.06E-01	3.06E-01	3.06E-01
from lift @ 2*h1v	т	Bp2g	9 43E-01	9.43F-01	9 24E-01	9 43 E-01	9.43E-01	9 24 E-01
check B in pole	•		a	a	ск.	OK OK	OK .	a
max field in voke			ŭ.	u.	<u> </u>	<u> </u>		ŭ,
from 1 phase & h1v	т	Byte	4 22E-01	4 23 5-01	4 235 01	4 22 5 01	4 23E-01	4 225-01
X from lift @ 2*b1v	Ť	Byla	7 555 01	7 555 01	4.23E-01	7 555 01	7.555.01	7 20 5 01
A troin int @ 2 htv	1	by∠g	7.55E-01	7.55E-01	7.392-01	1.552-01	7.552-01	7.39E-01
check held in yoke				<u>CK</u>	UK	uk	ŬK.	~ 1
	1							
core mass (2 rails)	kg/m	Mcoreg	.2.35E+02	2.35E+02	2.35E+02	2.35E+02	2.35E+02	2.35E+02
mass core + coil (2 rails)	kg/m	Mmagg	2.71E+02	2.71E+02	2.71E+02	2.71E+02	2.71E+02	2.71E+02
								lf .
<u>Rail Winding Design-1 segmen</u>	<u>t is 3 pole</u>	pieces						
segments/km	1/km	nsegg	3.33E+03	3.33E+03	3.33E+03	3.33E+03	3.33E+03	3.33E+03
resist (1 phase)	ohm/km	resg	3.40E-01	3.40E-01	3.40E-01	3.40E-01	3.40E-01	3.40E-01
ohmic power (3 phase, 2rail)	W/km	Pohm	1.47E+06	1.47E+06	1.47E+06	1.47E+06	1.47E+06	1.47E+06
temp. rise	deg C	Tg	9.51E+01	9.51E+01	9.51E+01	9.51E+01	9.51E+01	9.51E+01
Xmass	kg/km	Mcoilg	3.57E+04	3.57E+04	3.57E+04	3.57E+04	3.57E+04	3.57E+04
freq. at nom speed	Hz	fs	1.48E+02	1.48E+02	1.48E+02	9.83E+01	9.83E+01	9.83E+01
track without vehicle								
Xtrack self L (1 rail)	H/km	Laax	4.12E-03	4.12E-03	4.12E-03	4.12E-03	4.12E-03	4.12E-03
rail reactive impedance	ohms/km	Zit	3.84E+00	3.84E+00	3.84E+00	2 54E+00	2.54E+00	2 54E+00
mutual inductance	H/km	Maht	0.005+00	0.00 E+00	0.005+00	0.005+00	0.00 E+00	0.00E+00
voltage/phase/turn	V/km	Vt	4 62E+03	4 62E+03	4 62E 03	3.085.03	3.08E+03	3.085+03
Ymacnetic field in voko	T		4.02C+00	5 20 E 01	4.02E+03	5.002+00	5.00E+00	5.00 - 01
dB/dt amp first harmonia	T/a		3.20L-01	3.202-01	3.092-01	3.20E-01	3.20E-01	3.092-01
auidowou oddu lasson	1/5		3.082+02	3.000+02	3.02E+02	2.040+02	2.042+02	2.002+02
guideway eddy losses	VV/KIII	Pleady	3.34E+04	3.34E+04	3.21E+04	1.47E+04	1.47E+04	1.410+04
Areact. power (3pn-2 rails)	VA/KM	νzg	1.562+07	1.665+07	1.66E+07	1.11E+07	1.11E+07	1.11E+0/
PROPULSIVE FORCE CALCULATIO	NS							l I
Inductances								
Xinductance-self L field	H/(2 seg)	Lbasic	5.92E-06	5.92E-06	5.92E-06	5.92E-06	5.92E-06	5.92E-06
X stator self L-mean value	H/(2 seg)	Laa	7.04E-06	7.04E-06	7.04E-06	7.04E-06	7.04E-06	7.04E-06
stator self L-second harm.	H/(2 seg)	Laa2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
mutual-first harmonic	H/(2 seg)	Mvg	6.22E-06	6.22E-06	6.22E-06	6.22E-06	6.22E-06	6.22E-06
stator mutual-mean	H/(2 seg)	Mab	1.24E-06	1.24E-06	1.24E-06	1.24E-06	1.24E-06	1.24E-06
stator mutual-second harm.	H/(2 seg)	Mab2	3.64E-06	3.64E-06	3.64E-06	3.64E-06	3.64E-06	3.64E-06
			1					
<u>Propulsive forces-maximum v</u>	alues		1					
design force (Mvg calc)	N	FI	4.75E+04	4.43E+04	2.79E+04	4.75E+04	4.43E+04	2.79E+04
reluctance force (Mab2)	N		3.08E+03	2.88E+03	1.85E+03	3.08E+03	2.88E+03	1.85E+03
rail self induct (Laa2)	N		0.00E+00	0.00E+00	0.00F+00	0.00E+00	0.00E+00	0.00E+00
					0.002.00	0.002,00		
hunting stiffness	N/m	Khupt	4 97F±05	4 64F±05	2 92	4 97 5-05	4 64E±05	2 925-05
hunting freg	Hz	fhunt	5.61 -01	5 42 5-01	4 30 -01	5.615-01	5 42E-01	4 30 5-01
Xmax propel (P field)	N	munt	5.012-01	4 72 - 04	2 075,04	5.065.04	4 72 04	2 975+04
Allax. proper (D lield)			5.00=+04	4./20+04	2.31 0+04	J.00E+04	4.120+04	2.37 2+04
losses from addy ourrants								
nom rait B from vohiolo	т	D.	2005.00	2.005.00	1.065.00	2.005.00	2.005.00	1.065.00
off from for other and	1 Ll-	5	2.000+00	1 405 00	1.900+00			0.000-04
dR/dt amp first barrant's	112 Tila	re Ditu	1.480+02	1.400+02	1.480+02	9.835+01	9.032+01	9.03E+U1
ud/di amp. first narmonic	1/S	FI 4.75E+04 4.43E+04 2.79E+04 4.75E+04 4.43E+04 2.79E+04 3.08E+03 2.88E+03 1.85E+03 3.08E+03 2.88E+03 1.85E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Khunt 4.97E+05 4.64E+05 2.92E+05 4.97E+05 4.64E+05 2.92E+05 fhunt 5.61E-01 5.42E-01 4.30E-01 5.61E-01 5.42E-01 4.30E-01 5.06E+04 4.72E+04 2.97E+04 2.97E+04 2.02E+00 2.97E+04 2.97E+04 Br 2.00E+00 2.00E+00 1.96E+00 9.83E+01 9.83E+01 9.83E+01 9.83E+01 B1x 1.19E+03 1.19E+03 1.16E+03 7.86E+02 7.86E+02 7.70E+02 Pr 111E+04 1.04E+04 6.41E+03 4.97E+03 4.97E+03 2.87E+03						
eaay current power	W	۲r	1.11E+04	1.04E+04	6.41E+03	4.90E+03	4.57E+03	2.82E+03
rms eddy amp turn								· · · · · · · · · · · · · · · · · · ·
(upper bound, 1 magnet)	A	NIe	3.80E+00	3.80E+00	3.72E+00	2.52E+00	2.52E+00	2.47E+00
			l					l

ElectroMagnetic Suspension III

Optimized for operation at 89 m/s maximum speed

4 24 ;

میں کی ا

(Separate vertical suspension & synchronous motor, lateral suspension) 12/09/92

			89 п	n/s Optimiza	ation	89 m/s O	otimization (@ 59 m/s_
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
				(3/4 b/l)	(0.8 b/l)		(3/4 b/l)	(0.8 b/l)
(ohmic+eddy)/wind power	%		4,10%	3.83%	2.36%	12.66%	11.82%	7.29%
(magnet+coil)/vehicle_wt.	%		14.18%	13.24%	8.51%	14.18%	13.24%	8.51%
eddy/lift amp-T (up bound)	%		0.04%	0.04%	0.04%	0.02%	0.02%	0.02%
wind drag/woight	9/		4 260/	4 2 5 9/	1 26%	1 0 2 %	1 02%	1 02%
wind drag/weight	70		4.30%	4,30%	4.30%	1.92%	1.9270	1.9276
and a second Education					7 4004			7 4 9 5 9 9
ratio proper F/weight	%		12.11%	11.30%	7.12%	1.21E-01	1.13E-01	7.12E-02
ratio propei/lift	%		10.80%	10.80%	11.02%	1.08E-01	1.08E-01	1.10E-01
ratio lift/weight	%		112.17%	104.70%	64.59%	1.12E+00	1.05E+00	6.46E-01
ratio mag. weight/lift	%		12.64%	12.64%	13.18%	1.26E-01	1.26E-01	1.32E-01
track losses/wind drag	%/km		98.54%	98.54%	98.46%	334.03%	334.03%	333.90%
-								
AUXILIARY CALCULATIONS			-					
Combined lift magnets & synchron	nous motor							
								l
Permeances			Į					
permeances-vehicle magnet		Pfv	7.57E-01	7.57E-01	7.57E-01	7.57E-01	7.57E-01	7.57E-01
useful 1 air cap		Puv	1.60E+00	1.60E+00	1.60E+00	1.60E+00	1.60E+00	1.60E+00
Χ		Plv	3.11F-01	3.11E-01	3.11F-01	3.11F-01	3.11E-01	3-11E-01
nole useful area	m^2	A	1.605-02	1 60 5-02	1 60E-02	1 60 E-02	1.605-02	1 60 E-02
Ycoil dimensions-1 coil on 1 i			7 575 01	7.575.01	7.575.01	7.675.01	7 575.01	7.57E-01
X 1 apil an 1 pala	Joie		7.572-01	2.02	7.572-01	2.572-01	2.572-01	2.625.02
		acv	2.62E-03	2.626-03	2.62E-03	2.62E-03	2.62E-03	2.62E-03
X 1 segments-1 pole		adisv	1.58E-01	1.58E-01	1.586-01	1.58E-01	1.58E-01	1.58E-01
permeances-guideway winding	qs	Pfg	7.57E-01	7.57E-01	7.57E-01	7.57E-01	7.57E-01	7.57E-01
vehicle in place	5	Pua	1.60F+00	1.60E+00	1.60E+00	1.60E+00	1.60E+00	1.60E+00
		Plo	8.92E-01	8 92F-01	8 92E-01	8 92 F-01	8 92E-01	8.92E-01
X no vehicle magnets		Pl2a	5 37E-01	5.37E-01	5 37E-01	5.37E-01	5 37E-01	5:37E-01
Coil dimonsions		1.59	0.072-01	0.07 2.01	0.072 01	0.00 - 00	0.00 - 00	0.005.00
coil dimon 1 phono 1 turo 2			0.115.01	0.115.01	0.115.01	0.002+00	0.002+00	0.115.01
con dimen1 phase-1 turn-3	pole pieces	icg	9.11E-01	9.11E-01	9.11E-01	9.11E-01	9.11E-01	9.112-01
1 -coll but 2 colls per slot		acg	2.20E-04	2.20E-04	2.20E-04	2.20E-04	2.20E-04	2.20E-04
1 seg. 3 pole pieces		adisg	1.66E-01	1.66E-01	1.66E-01	1.66E-01	1.66E-01	1.66E-01
		1						
Guidance_Magnets		1						
Permeances								
Air gap fringing permeance/le	ength	Pf.I	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00
Ideal air gap permeance/lengt	h	Pu.I	2.27E+00	1.70E+00	2.50E+00	2.27E+00	1.70E+00	2.50E+00
Inter-pole leakage perm./leng	th	PI.I	4.17E-01	4.08E-01	4.27E-01	4.17E-01	4.08E-01	4.27E-01
Coil dimensions								2
Mean turn length	m	ic.I	1.02E+01	2.01E+01	1.02E+01	1.02E+01	2.01E+01	1.02E+01
Coil crossectional area	m^2	aci	2.34E-03	1.89E-03	1.89F-03	2.34E-03	1.89F-03	1.89F-03
Coil Surface area	m^2	adis I	4 19E+00	7 27E±00	3 76E+00	4 19F+00	7 27E+00	3 76E+00
		au10.1		7.27 L+00	3.7 02700	4.10L700	,.L,L+VV	5.7 CL+00
EMS III Summary								-
Weight on Vehicle								
Lift Magnate/I SNA	ka		5 675.00	5 20E .02	2 405.00	E 67E .00	5 30E · 03	3 40 00
Cuidence Martat	ĸg		5.67E+03	5.30E+03	3.40E+03	5.67E+03	5.30E+03	3.40E+03
Guidance Magnets	кg		1.55E+03	2.17E+03	1.23E+03	1.551:+03	2.172+03	1.238+03
	кд		7.22E+03	1.4/E+03	4.64E+03	7.22E+03	1.4/E+03	4.64E+03
magnet Weight/Vehicle Weigh	t %		18.05%	18.67%	11.59%	18.05%	18.67%	11.59%
weight on Guideway								
Lift Magnets/LSM	kg/m		2.71E+02	2.71E+02	2.71E+02	2.71E+02	2.71E+02	2.71E+02
Guidance Magnets	kg/m		8.28E+01	5.36E+01	6.49E+01	8.28E+01	5.36E+01	6.49E+01
Total	kg/m		3.54E+02	3.25E+02	3.36E+02	3.54E+02	3.25E+02	3.36E+02
Vehicle Real Power								
Ohmic Power Dissipation								
Lift Magnets/LSM	W		5.13E+04	4.79E+04	2.95E+04	5.13E+04	4.79E+04	2.95E+04
Guidance Maonets	Ŵ		1.76E+04	2.87E+04	1.58E+04	1.76E+04	2.87E+04	1.58E+04
J								

ElectroMagnetic Suspension III

Optimized for operation at 89 m/s maximum speed (Separate vertical suspension & synchronous motor, lateral suspension)

12/09/92 Asterisk (*) before description indicates input.

			89 n	n/s Optimiz	ation	89 m/s O	ptimization	@ 59 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
				(3/4 b/l)	(0.8 b/l)		(3/4 b/l)	(0.8 b/l)
Total Ohmic Power	w		6.88E+04	7.65E+04	4.53E+04	6.88E+04	7.65E+04	4.53E+04
Eddy current Power Dissipa	tion							
Lift Magnets/LSM	w		1.11E+04	1.04E+04	6.41E+03	4.90E+03	4.57E+03	2.82E+03
Guidance Magnets	W		7.34E+03	1.21E+03	4.72E+03	3.23E+03	5.31E+02	2.07E+03
Total eddy current Power	W		1.85E+04	1.16E+04	1.11E+04	8.12E+03	5.10E+03	4.89E+03
Total Vehicle Power Dissip	atic W		8.73E+04	8.81E+04	5.64E+04	7.70E+04	8.16E+04	5.02E+04
Electrical Power/Aero Drag Po	wei %		5.73%	5.79%	3.71%	17.35%	18.40%	11.31%
<u>Guideway Power</u>								
Real Power Dissipation			Ĭ					
Guideway LSM Winding	kW/m		1.47E+00	1.47E+00	1.47E+00	1.47E+00	1.47E+00	1.47E+00
Total	kW/m		1.47E+00	1.47E+00	1.47E+00	1.47E+00	1.47E+00	1.47E+00
Reactive Input Power			1					
Linear Synchronous Motor	kVA/m		1.66E+01	1.66E+01	1.66E+01	1.11E+01	1.11E+01	1.11E+01
Total	kVA/m		1.66E+01	1.66E+01	1.66E+01	1.11E+01	1.11E+01	1.11E+01

.

Table F-6Complete EMS III Spreadsheet; Design optimized for operation at 134 m/sSeparate guidance magnet, Combined lift magnet and LSM

ElectroMagnetic Suspension III

Optimized for operation at 134 m/s maximum speed

(Separate vertical suspension & synchronous motor, lateral suspension)

			134	m/s Optimiz	ation	134 m/s C	ptimization	@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
			(b/I)	(3/4 b/l)	(0.8 b/l)	(6/1)	(3/4 b/l)	(0.8 b/l)
VEHICLE PARAMETERS								
Design Parameters								1
*Vehicle mass	ka	_	4 00 5+04	4 00E+04	4 00E+04	4 00 5+04	4 00E+04	4 00E+04
*Vohiele longth	~9		2.00000	9.00E+04	2.000	2.000.01	3.005.01	3.005.01
venicie length	m	-venicie	3.00E+01	3.00E+01	3.00E+01	3.00E+01	3.00E+01	3.00E+01
Design speed	m/s	V.	1.34E+02	1.34E+02	1.34E+02	8.90E+01	8.90E+01	8.90E+01
"trontal area	m^2	AT	1.20E+01	1.20E+01	1.20E+01	1.20E+01	1.20E+01	1.20E+01
*air density	kg/m^3	roair	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00	1.20E+00
*drag coefficient	•••	Cd	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01	3.00E-01
wind drag force	N	Fd	3.88E+04	3.88E+04	3.88E+04	1.71E+04	1.71E+04	1.71E+04
wind drag power	w	Pd	5.20E+06	5.20E+06	5.20E+06	1.52E+06	1.52E+06	1.52E+06
*Max. Lift Force(@Max disp.)	a	max Fz	1.10E+00	1.10E+00	1.10E+00	1.10E+00	1.10E+00	1.10E+00
*Max Lateral Force(")(cont.)	9	max El	2.60E-01	2 60E-01	2.60E-01	2 60 E-01	2.60E-01	2.60E-01
*Max Lateral Force(")(short)	9	max_F1	4 205-01	4 20E-01	4 20 5-01	4 20E-01	4 20E-01	4 20 E-01
Time of Mon (short) short	9	max_sr.i	4.202-01	4.202-01	4.20L-01	4.20L-01	4.20E-01	5.005.00
Time of Max. (short)Lateral F	sec	max	5.00E+00	5.00E+00	5.00E+00	5.002+00	5.00E+00	5.00E+00
Maximum ambient temp.	°C	maxTamb	5.00E+01	5.00E+01	5.00E+01	5.00E+01	5.00E+01	5.00E+01
							4	
CONSTANTS								
air permeability	N/A^2	mu	1.26E-06	1.26E-06	1.26E-06	1.26E-06	1.26E-06	1.26E-06
General								
Construction materials								
Lateral Suspension								
trail						ataal	ataal	at a a l
ran			steel	steer	steel	Sleer	Slee	Steel
magnet			2V Perm.	2V Perm.	2V Perm.	2V Perm.	2v Perm.	2v Perm.
Coil			alum.	alum.	alum.	alum.	alum.	alum.
<u>Materials_properties</u>								
mass density								
*rail	kg/m^3	ror	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03
*magnet	ka/m^3	rom	7.78E+03	7.78E+03	7.78E+03	7.78E+03	7.78E+03	7.78E+03
*coil	ko/m^3	roc	2 78E+03	2 78E±03	2 78E+03	2 78E+03	2 78E+03	2 78E+03
maximum flux density	kg/m o	100	2.702700	2.702400	2.702+00	2.702+00	2.702700	2.102100
	-				1 005 00	1 205 00	4 605 00	1.005.00
	<u> </u>	Bsatr	1.602+00	1.602+00	1.60E+00	1.502+00	1.602+00	1.602+00
magnet	T	Bsatm	2.30E+00	2.30E+00	2.30E+00	2.30E+00	2.30E+00	2.30E+00
*Saturation Safety Factor(<1)		SF	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00
Electrical resistivity								
rail @20 deg C	'ohm-m	rr	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07
*coil @140 deg C	ohm-m	rc	4.06E-08	4 06E-08	4 06E-08	4 06E-08	4.06F-08	4.06E-08
*coil @220 deg C	ohm-m	10_220	4.002-00	4.002.00	4.002.00	4.002.00	4.002.00	
Thermal	Uniti-in	10_220						
			1 105	4 405	4.405.04	4 405 04	4.405.01	1.405.04
magnet neat transfer coef.	W/C-m^2	ĸ	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01
*Coil Specific heat	J/(kg°C)	ср ,	1.19E+02	1.19E+02	1.19E+02	1.19E+02	1.19E+02	1.19E+02
*Maximum wire insulation terr	l ℃	maxTins	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02
Construction_materials				•				
Lift Magnet & Linear Synchronous	Motor							
*rail			steel	steel	steel	steel	steel	stéel
tail windings			31001	31001	00000	conner	conner	conner
ran winungs				copper	ov p		on De	av pare
magnet			∠v Perm.	∠v ⊢erm.	Zv Perm.	∠v Perm.	∠v Perm.	∠v rem.
magnet coil			aluminum	aluminum	atuminum	aluminum	aluminum	aluminum
Densities								
*rail	kg/m^3	rogm	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03	7.51E+03
*rail windings	kg/m^3	rogc	8.90E+03	8.90E+03	8.90E+03	8.90E+03	8.90E+03	8.90E+03
*magnet	ka/m^3	rovm	7.78E+03	7.78E+03	7.78E+03	7.78E+03	7.78E+03	7.78E+03
*coil	ka/m^3	rovc	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03	2.78E+03
Maximum flux densities								
*rail	т	heata	1 60 5.00	1 605+00	1 60 - 00	1.605+00	1 60F±00	1 605+00
iali *maanot	- -	beaty	2 20 5.00	2 20 - 00	2 20 - 00	2 20 - 00	2 30 - 00	2 20 - 00
magnet	1	usaiv	2.302+00	2.302+00	2.300+00	2.305+00	2.300+00	2.300+00

ElectroMagnetic Suspension III

Optimized for operation at 134 m/s maximum speed

(Separate vertical suspension & synchronous motor, lateral suspension)

Asterisk (*) before description indicates input.

			134 1	m/s Optimiz	ation	134 m/s O	ptimization	@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
			(b/l)	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 5/1)
Rail	• • •	mug	3.50E+03	3.50E+03	3.50E+03	3.50E+03	3.50E+03	3.50E+03
Electrical Resistivity		-						
*rail @20 deg C	ohm-m	rmg	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07	4.06E-07
*vehicle coil @140 deg C	ohm-m	rcv	4.06E-08	4.06E-08	4.06E-08	4.06E-08	4.06E-08	4.06E-08
*rail coil *140 deg c	ohm-m	rca	2.46E-08	2.46E-08	2.46E-08	2 46E-08	2 46E-08	2 46 E-08
Thermal		- J						
*magnet heat transfer coeffic	W/C-m^2	kv	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1.40E+01	1 40F+01
*rail heat transfer coef.	W/C-m^2	ka	1 40 E+01	1 40E+01	1 40E+01	1 40E+01	1.40E+01	1 40E+01
			1.402701	1.402401	1.402401	1.402401	1.402401	1.402401
COMPONENT DESIGN & ANALYSIS								
Lateral Suspension								
Geometric dimensions								
*pole_width	-	1	2 205 22	2 105 00	0.405.00	0.005.00	0.105.00	0.405.00
*window width		1P.1	2.802-02	2.10E-02	2.486-02	2.802-02	2.10E-02	2.48E-02
*window would	m	W.I	1.20E-01	1.13E-01	1.14E-01	1.26E-01	1.13E-01	1.14E-01
window neight	m	п.і	6.32E-02	5.64E-02	5.69E-02	6.32E-02	5.64E-02	5.69E-02
window width/height ratio		<i>,</i> ,	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00
COII packing factor		1.I	7.00E-01	7.00E-01	7.00E-01	7.00E-01	7.00E-01	7.00E-01
air gap	m	H1x.	1.00E-02	1.00E-02	8.00E-03	1.00E-02	1.00E-02	8.00E-03
pole-coil clearance	m	z.	5.08E-03	5,08E-03	5.08E-03	5.08E-03	5.08E-03	5.08E-03
Number magnets required		nmag.l	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00	4.00E+00
magnet length	m	L.I	5.00E+00	9.68E+00	5.00E+00	5.00E+00	9.68E+00	5.00E+00
Magnet length/vehicle length			ak	· OK	OK	QK	QK	OK
<u>Magnet Design</u>]			1
flux leakage coefficients								
fringing (across air gap)		nuf.l	6.87E-01	9.15E-01	6.20E-01	6.87E-01	9.15E-01	6.20E-01
leakage (between poles)		nul.l	1.51E-01	1.96E-01	1.39E-01	1.51E-01	1.96E-01	1.39E-01
total		nut.l	1.84E+00	2.11E+00	1.76E+00	1.84E+00	2.11E+00	1.76E+00
nominal field in air gap	т	B0.I	8.60E-01	7.14E-01	9.14E-01	8.60E-01	7.14E-01	9.14E-01
Force per magnet	Ň	Fom.I	8.23F+04	8 23E+04	8 23E+04	8 23E+04	8 23E+04	8 23E+04
amp turns per magnet	A	NU	1.37E+04	1 14E+04	1 16E+04	1.37E+04	1 14E+04	1 16E+04
core mass (1 mag)	ko	Mcore I	3.36E+02	4 23 5+02	2.67E+02	3 36 5+02	4 23E+02	2.675.02
mass core + coil (4 mag)	ka	Mmag I	1.035.02	2 595.02	1 545,02	1.025.02	9.202702	1 545.02
mass core + con (+ mag)	NY	winay.	1.932+03	2.302+03	1.54E+03	1.932+03	2.502+03	1.542+03
Coil Design								1
<u>con Design</u>			1 605 04	0.005.04	0.015.04		0.005.04	0.015.04
Pesisi (1 magnet, 1 turn)	onm	resc.i	1.62E-04	3.92E-04	2.01E-04	1.62E-04	3.92E-04	2.01E-04
St. state con power(N/2 mags		qc_ss.i	1.88E+04	3.13E+04	1.68E+04	1.88E+04	3.13E+04	1.68E+04
Max. coll power (N/2 magnets)	W	qc.i	1.93E+03 2.58E+03 1.54E+03 1.93E+03 2.58E+03 1.54E+03 1.62E-04 3.92E-04 2.01E-04 1.62E-04 3.92E-04 2.01E-04 1.88E+04 3.13E+04 1.68E+04 1.88E+04 3.13E+04 1.68E+04 1.21E+05 2.02E+05 1.09E+05 1.21E+05 2.02E+05 1.09E+05 1.50E+02 1.50E+02 1.50E+02 1.50E+02 1.50E+02 1.50E+02 3.48E+01 3.85E+01 3.48E+01 3.48E+01 3.89E+01 3.48E+01 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 7.33E+01 1.10E+02 5.88E+01 7.33E+01 1.10E+02 5.88E+01 3.57E-02 2.65E-02 3.17E-02 3.57E-02 2.65E-02 3.17E-02 3.57E-02 2.65E-02 3.17E-02 3.57E-02 2.65E-02 3.17E-02 3.57E-02 2.65E-01 9.10E-01 8.95E-01 8.52E-01 9.10E-01 8.95E-01 8.52E-01 9.10E-01 8.90E+00 4.59E+00 8.90E+00 4.80E+01 2.36E+01 4.88E+01					
Steady state temperature rise	чU 20	Im_ss.l	1.50E+02	1.50E+02	1.50E+02	1.50E+02	1.50E+02	1.50E+02
Snort term temperature rise	°C	_im_st.i	3.48E+01	3.85E+01	3.89E+01	3.48E+01	3.85E+01	3.89E+01
Maximum coil temperature	°C	Tc_max.l	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02
mass(one coil)	kg	Mc.i	7.33E+01	1.10E+02	5.88E+01	7.33E+01	1.10E+02	5.88E+01
					4			
<u>Rail Design</u>					1			
rail thickness	m	tr.l	3.57E-02	2.65E-02	3.17E-02	3.57E-02	2.65E-02	3.17E-02
rail pole tip width (=tr)	m	lr.l	3.57E-02	2.65E-02	3.17E-02	3.57E-02	2.65E-02	3.17E-02
rail mass/length(two rails)	kg/m	mr.l	1.13E+02	7.17E+01	8.87E+01	1.13E+02	7.17E+01	8.87E+01
,	-							
nominal rail flux density	т	Br.I	8.95E-01	8.52E-01	9.10E-01	8.95E-01	8.52E-01	9.10E-01
eff. freq. for eddy anal.	Hz	Fe.I	1.34E+01	6.92E+00	1.34E+01	8.90E+00	4.59E+00	8.90E+00
dB/dt amp. first harmonic	T/s	B1x.I	4.80E+01	2.36E+01	4.88E+01	3.19E+01	1.57E+01	3.24E+01
eddy current power	W	Pr.I	3.31F+04	5.49F+03	2.16F+04	1 46F±04	2.42E+03	9.52E+03
rms eddy amp turn			0.012704	0.402400	2.102+04		5.726700	5,522+50
(upper bound, 1 magnet)	A	NIel	2.05E±03	4 82F±02	1 48F+03	1 36F±03	3 20F±02	9 83 - 102
Total power	w	PI	5 19 5+04	3 68F±04	3.845+04	3.34 =+04	3.37E±04	2 63 = 10/
	••	• • •	5.13LT04	5.002+04	0.076704	3.076704	5.57 2704	2.002+04
Lift Magnet & Synchropous Motor	2 auidow	av noles of	er vehicle po	6				
<u>Geometric Dimensions-on board</u>	d maanet		a venicie po	<u>14</u>				

ElectroMagnetic Suspension III

Optimized for operation at 134 m/s maximum speed (Separate vertical suspension & synchronous motor, lateral suspension)

Asterisk	(*)	before	description	indicates	input.
----------	-----	--------	-------------	-----------	--------

			134	m/s Optimiz	zation	134 m/s C	ptimization	@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
			(b/l)	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
*Xpole thickness	m	tov	2.00E-01	2.00E-01	2.00E-01	2.00E-01	2.00E-01	2.00E-01
Xpole to pole distance	m	wev	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01
*pole face width	m	Inv	2.00E-01	2.00E-01	2 00E-01	2 00 E-01	2 00E-01	2 00F-01
Xface to face dist	m		1.00E-01	1.005-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01
*window beight	m	hy	8.00E-07	8.005.02	B 00E-02	9.00 - 02	8.005-02	8.00E-07
*mosset denth		11V	8.00E-02	3.00E-02	8.00E-02	1.00E-02	7.505.02	1.00E-02
tucke thicknose	m ,	av		7.502-02	1.002-01	1.002-01	7.502-02	1.00E-01
yoke inickness	rii	lyv	8.50E-02	8.50E-02	8.50E-02	8.50E-02	8.502-02	8.50E-02
Coll packing factor		TTV	7.00E-01	7.00E-01	7.00E-01	7.00E-01	7.00E-01	7.00E-01
air gap	m	H1V	1.00E-02	1.00E-02	8.00E-03	1.00E-02	1.00E-02	8.00E-03
"pole-coli clearance	m	zv	5.08E-03	5.08E-03	5.08E-03	5.08E-03	5.08E-03	5.08E-03
*number laminations		nlammv	5.00E+00	5.00E+00	5.00E+00	5.00E+00	5.00E+00	5.00E+00
lamination thickness	m	tm v	2.00E-02	1.50E-02	2.00E-02	2.00E-02	1.50E-02	2.00E-02
*Number magnets required		nmagv	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01
*number of poles per mag		nsegv	1.40E+01	1.90E+01	1.00E+01	1.40E+01	1.90E+01	1.00E+01
magnet length	m ·	Lv	4.20E+00	5.70E+00	3.00E+00	4.20E+00	5.70E+00	3.00E+00
								ar.
Geometric Dimensions-ouidew	av							× 1
*nole width	<u>~t</u>	Inc	8 005 00	8 005 02	8 00 - 00	8 005 02	8 005 02	8 005-02
*clot width		'Pg	0.00E-02	0.00E-02	0.00E-02	0.00E-02	0.002-02	2.00 - 02
	الم • مالي م	wg	2.00E-02	2.00E-02	2.00E-02	2.00E-02	2.002-02	2.00E-02
Amagnet & guideway pole & si	ot dimensio	ons?	UK .	OK	OK I	OK	OK .	UK
XSlots and phases?		. 1	ak	OK	OK	ak	· OK .	OK
Guideway poles per mag. pole		Ng	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00	2.00E+00
*window height	m	hg	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02
*magnet depth	m	dg	1.40E-01	1.15E-01	1.32E-01	1.40E-01	1.15E-01	1.32E-01
*coil packing factor	• • •	ffg	8.00E-01	8.00E-01	8.00E-01	8.00E-01	8.00E-01	8.00E-01
*number electrical phases	1.5.1	Np	3.00E+00	3.00E+00	3.00E+00	3.00E+00	3.00E+00	3.00E+00
*pole-coil clearance	m	zg	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03
*number laminations		nlamma	4.00E+02	4.00E+02	4.00E+02	4.00E+02	4.00E+02	4.00E+02
lamination thickness	m	tma	3 50F-04	2 88F-04	3 30E-04	3 50F-04	2 88F-04	3.30F-04
skin denth	m	dela	3.63E-04	3.635-04	3.635-04	4 45E-04	4 45E-04	4 45E-04
		ucig	0.002-04	0.002-04	0.002-04	4.402-04	4.452.04	4.402.04
Magnat Dagian								
		NP	5 405 00	5 405 00	5 005 00	5 405 00	C 405 00	5 005 00
amp rums/pole (mag seg)	А	INIV	5.40E+03	5.40E+03	5.29E+03	5.40E+03	5.40E+03	5.290+03
tiux leakage coefficients								
tringing (across air gap)		nutv	4.73E-01	5.51E-01	3.72E-01	4.73E-01	5.51E-01	3.72E-01
leakage (between poles)		กนไข	1.94E-01	2.30E-01	1.60E-01	1.94E-01	2.30E-01	1.60E-01
total		nutv	1.67E+00	1.78E+00	1.53E+00	1.67E+00	1.78E+00	1.53E+00
Xnom. lift field in air gap	т	B0v	6.79E-01	6.79E-01	8.31E-01	6.79E-01	6.79E-01	8.31E-01
Xmax B in yoke @2 h1v, lift on	IT	Byv	1.86E+00	2.04E+00	2.02E+00	1.86E+00	2.04E+00	2.02E+00
check field in voke		_,	ax	СK	ак	ax	ak	ax
total lift force-Nmag magnets	N	Fv	4 10E+05	4 18E+05	4 40E+05	4 10E+05	4 18E+05	4 40E+05
iotal int loree thing inagricio			4.102100	4.102100	4.402100	4.102100		
Ycoro mass (1 mag)	ka	Maarov	4 525.02	4 605.02	2 22	4 525 .02	4 605.02	3 335 .03
	kg lea	Manager	4.522+02	4.000+02	0.705-00	4.520+02	4.002+02	3.232+02
mass core + con (wmagv mag)	кg	wimagv -	5.30E+03	5.58E+03	3.78E+03	5.30E+03	5.58E+03	3.78E+03
				•	1			
<u>Vehicle Coil Desian</u>								
resist (1 magnet, 1 turn)	ohm	resv	1.17E-05	1.09E-05	1.17E-05	1.17E-05	1.09E-05	1.17E-05
coil ohmic power (N mag)	w	qv	4.79E+04	6.07E+04	3.28E+04	4.79E+04	6.07E+04	3.28E+04
temp. rise	deg C	Tv	1.55E+02	1.53E+02	1.48E+02	1.55E+02	1.53E+02	1.48E+02
mass (1 magnet)	kg	Mcoilv	7.73E+01	9.79E+01	5.52E+01	7.73E+01	9.79E+01	5.52E+01
	-		l.					. 1
<u>Rail Coil Design</u>			ļ ·		l			
rail voke thickness	m		1.00F-01	1.00F-01	1.00F-01	1.00E-01	1.00E-01	1.00F-01
*amp turns per phase (0_P)	Δ	Nio	1 20 F±03	1 20F±03	1 20F+03	1 20F±03	1 20F+03	1 20 5+03
flux leakage coefficients	••		1.202700		1.202700	,		
fringing (across sir cas)		pufa	4 725 01	5 515 A4	3 725 01	1 73 - 01	5 515 01	3 725 01
lookago (bobycon solar)	· · ·	nuig	4./3E-01	5.51E-01	3.720-01	4.732-01	5.51E-01	3.720-01
ieanaye (verween poles)		nuig [5.57E-01	0.39E-01	4.43E-01	3.5/E-01	0.395-01	4.43E-01

ElectroMagnetic Suspension III

Optimized for operation at 134 m/s maximum speed

(Separate vertical suspension & synchronous motor, lateral suspension)

			134	m/s Optimi:	zation	134 m/s O	ptimization	@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
			(b/l)	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
total		nutg	2.03E+00	2.19E+00	1.81E+00	2.03E+00	2.19E+00	1.81E+00
B in air gap-1 phase	т	B0g	1.51E-01	1.51E-01	1.88E-01	1.51E-01	1.51E-01	1.88E-01
max, field in poles							-	
from 1 phase & h1v	т	Bo1o	3.06E-01	3.30E-01	3 42F-01	3.06E-01	3.30E-01	3.42E-01
from lift @ 2*h1v	Ť	Bn2g	9.43E-01	9 30 E-01	1 10E+00	9 43 E-01	9 30E-01	1 10E+00
check B in nole	•	Dp2g		0.00E 01	SATIDATE	3.40L 01	0K	SATUDATE
max field in voke			, un		SATURATE		ů.	SATOMAL
from 1 phase 8 h1v	т	By1e	4 225 01	4 51 5 01	4 91 5 01	4 335 01	4 515 01	4 91 5 01
Y from lift @ 0*bitu	T	Bulle	4.232-01	4.512-01	4.012-01	4.232-01	4.516-01	4.01 E-01
	1	By∠g	7.55E-01	7.44E-01	8.78E-01	7.55E-01	7.44E-01	8.78E-01
check held in yoke			UK	OK .	OK	OK	ÛK.	OK I
core mass (2 rails)	kg/m	Mcoreg	2.35E+02	1.93E+02	2.22E+02	2.35E+02	1.93E+02	2.22E+02
mass core + coil (2 rails)	kg/m	Mmagg	2.71E+02	2.27E+02	2.57E+02	2.71E+02	2.27E+02	2.57E+02
								ļ
<u> Rail Winding Design-1 segmen</u>	<u>t is 3 pole</u>	pieces						1
segments/km	1/km	nsegg	3.33E+03	3.33E+03	3.33E+03	3.33E+03	3.33E+03	3.33E+03
resist (1 phase)	ohm/km	resg	3.40E-01	3.21E-01	3.34E-01	3.40E-01	3.21E-01	3.34E-01
ohmic power (3 phase, 2rail)	W/km	Pohm	1.47E+06	1.39E+06	1.44E+06	1.47E+06	1.39E+06	1.44E+06
temp. rise	deg C	Tg	9.51E+01	9.46E+01	9.50E+01	9.51E+01	9.46E+01	9.50E+01
Xmass	kg/km	Mcoilg	3.57E+04	3.37E+04	3.51E+04	3.57E+04	3.37E+04	3.51E+04
freq. at nom speed	Hž	fs	2.23E+02	2.23E+02	2.23E+02	1.48E+02	1.48E+02	1.48E+02
track without vehicle								Į.
Xtrack self I (1 rail)	H/km	Laax	4 12E-03	3 45 E-03	3 98E-03	4 12E-03	3 45E-03	3 98E-03
rail reactive impedance	ohms/km	711	5 78 E+00	4 855.00	5.500-00	3.84 E+00	3 225+00	3 71 E+00
mutual industance		Maht	0.005.00	4.000	0.00E+00	0.00 - 00	0.005.00	0.005.00
Noltaco/phaso/turn	V/km	Wabi	0.002+00	0.00E+00	0.00E+00	0.002+00	0.002+00	4.475.02
Voltage/pliase/tu/li	V/KIII T	V1	6.952+03	5.032+03	6.7 (E+03	4.620+03	3.882+03	4.472+03
Amagnetic field in yoke	1 T (BL	5.20E-01	5.35E-01	5.26E-01	5.20E-01	5.35E-01	5.262-01
ob/dt amp. first narmonic	1/5	BIX	4.641+02	4.78E+02	4.70E+02	3.08E+02	3.17E+02	3.12E+02
guideway eddy losses	w/km	Pteddy -	7.58E+04	4.45+04	6.51E+04	3.34E+04	1.96E+04	2.87E+04
Xreact. power (3ph-2 rails)	VA/km	Pzg	2.50E+07	2.10E+07	2.42E+07	1.66E+07	1.40E+07	1.61E+07
PROPULSIVE FORCE CALCULATIC	DNS							
Inductances								
Xinductance-self L field	H/(2 seg)	Lbasic	5.92E-06	4.68E-06	6.90E-06	5.92E-06	4.68E-06	6.90E-06
X stator self L-mean value	H/(2 seg)	Laa	7.04E-06	5.64E-06	8.01E-06	7.04E-06	5.64E-06	8.01E-06
stator self L-second harm.	H/(2 seg)	Laa2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
mutual-first harmonic	H/(2 seg)	Mvg	6.22E-06	4.91E-06	7.24E-06	6.22E-06	4.91E-06	7.24E-06
stator mutual-mean	H/(2 seg)	Mab	1.24E-06	9.82E-07	1.45E-06	1.24E-06	9.82E-07	1.45E-06
stator mutual-second harm.	H/(2 sea)	Mab2	3.64E-06	2.87E-06	4.23E-06	3.64E-06	2.87E-06	4.23E-06
Propulsive forces-maximum v	alues							
design force (Mvg calc)	N	FI	4.43E+04	4.75F+04	3.61F+04	4.43E+04	4.75E+04	3.61E+04
reluctance force (Mab2)	N		2 88 5+03	3.08F±03	2 39F±03	2 88F+03	3.08F+03	2.39F+03
rail self induct (Las2)	N		0.005+00	0.000	0.005.00	0.005+00	0.00E+00	0.00E+00
fan Sen moder (Laaz)			0.002400	0.002400	0.002+00	0.002700	0.002+00	0.002+00
hunting stiffness	N/m	Khunt	4 64 5+05	4 97E±05	3 785+05	4 64 5+05	4 97F±05	3 785-05
hunting freq	H7	fhunt	5 425 01	4.5/E+05	4 80 - 01	5 42 -01	5.615-01	A 80E-01
Ymay propal (R field)	N	munt	4 705.04	5.012-01	3 595.04	3.42E-01	5.012-01	3 595 04
Amax. proper (D held)	IN .		4./20+04	3.33E+04	3.30E+U4	4./20+04	J.JJE+04	3,300+04
Lossos from addy average								1
Losses from eady currents	т	n.	0.005.00	0.105 00	0.005 00	0.005.00	0.105 00	0.005.00
nom, rait is from venicle	1	BL I	2.002+00	2.10E+00	2.28E+00	2.00E+00	2.10E+00	2.282+00
en. rreg. for eddy anal.	HZ	re	2.23E+02	2.23E+02	2.23E+02	1.48E+02	1.48E+02	1.482+02
ob/ot amp. first harmonic	1/\$	B1X	1.79E+03	1.88E+03	2.04E+03	1.19E+03	1.25E+03	1.35E+03
eddy current power	W	۲r	2.36E+04	1.96E+04	1.84E+04	1.04E+04	8.67E+03	8.10E+03
rms eddy amp turn								
(upper bound, 1 magnet)	А	Nle	5.72E+00	4.07E+00	5.80E+00	3.80E+00	2.70E+00	3.85E+00

ElectroMagnetic Suspension III

Optimized for operation at 134 m/s maximum speed

糸口内

(Separate vertical suspension & synchronous motor, lateral suspension)

			134	m/s Optimiz	ation	134 m/s C	ptimization	@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	smail gap
			(b/i)	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
(ohmic+eddy)/wind power	%		1.37%	1.55%	0.98%	3.83%	4.55%	2.69%
(magnet+coil)/vehicle wt.	%		13.24%	13.96%	9.46%	13.24%	13.96%	9.46%
eddy/lift amp-T (up, bound)	%		0.05%	0.04%	0.05%	0.04%	0.03%	0.04%
wind drag/weight	%		9,89%	9.89%	9.89%	4 36%	4.36%	4.36%
				4.0070	0.00 /0			
ratio propel F/weight	%		11.30%	12,11%	9.21%	1.13E-01	1.21E-01	9.21E-02
ratio propel/lift	%		10.80%	11 37%	8 21%	1 085-01	1 14E-01	8 21 E-02
ratio lift/weight	%		104 70%	106 67%	112 14%	1.055.00	1.07E+00	1 125:00
ratio mag weight/lift	9/.		12 6 4 9/	12 100/	0 120/	1.050-01	1 21 5 01	9 42 5 02
ratio mag. weighbint	70		12.04%	13.10%	0.43 %	1.202-01	1.312-01	0.432-02
track losses/wind drag	%/km	(29.69%	27.54%	28.99%	98.54%	92.35%	96.54%
AUXILIARY CALCULATIONS								
Combined lift magnets & synchro	onous motor							
Permeances								3
permeances-vehicle magnet		Pfv	7 576-01	6 61 E-01	7 44E-01	7 575-01	6 61 5-01	7 44 -01
useful 1 air con			1.605.00	1 205 00	2 005.00	1 60 5 .00	1 20 - 00	2 00 - 00
Y			211501	2 765 01	2.000 +00	2 11 - 01	2.765.01	2.000-00
nolo unoful oron	~~~~	FIV August	1.00E 00	2.702-07	3.20E-01	3.112-01	2:762-01	3.202-07
Yooli dimonsiona 1 opil op 1	til"Z	Auv	7.575.01	7.206-02	1.60E-02	1.60E-02	7.075.01	7.575.01
	pole	(CV	7.57E-01	7.07E-01	7.57E-01	7.57E-01	7.07E-01	7.57E-01
		acv	2.62E-03	2.62E-03	2.62E-03	2.62E-03	2.62E-03	2.62E-03
X i segments-i pole		adisv	1.58E-01	1.49E-01	1.58E-01	1.58E-01	1.49E-01	1.58E-01
permeances-guideway windin	gs	Pfg	7.57E-01	6.61E-01	7.44E-01	7.57E-01	6.61E-01	7.44E-01
vehicle in place	-	Pug	1.60E+00	1.20E+00	2.00E+00	1.60E+00	1.20E+00	2.00E+00
•		Pla	8.92E-01	7.67E-01	8.86E-01	8.92E-01	7.67E-01	8.86E-01
X no vehicle magnets		Pl2o	5.37E-01	4 41 F-01	5 07E-01	5 37 F-01	4"41E-01	5.07E-01
Coil dimensions		,g			0.012 0.	0.00E+00	0.0000	0.00E+00
coil dimen -1 phase-1 turn-3	nole nieces		9 11E-01	8 61 E-01	8 955-01	9 11 5-01	8615-01	8:95 F-01
1 -coil but 2 coils por slot	hole hieces	109	9.11E-01	2.20E.04	2.350-04	3.112-01	2 205 04	0.95L-01
		acy	2.202-04	2.200-04	2.20E-04	2.202-04	2.202-04	2.20 - 04
r seg. s pole pieces		adisg	1.002-01	1.57 E-01	1.632-01	1.002-01	1.372-01	1.03E-01
Guidance Magnets								
		n / /			1 0 0 0 0 0			
Air gap tringing permeance/li	ength	Pr.	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00	1.92E+00
ideal air gap permeance/leng	th _.	Pu.i	2.80E+00	2.10E+00	3.10E+00	2.80E+00	2.10E+00	3.10E+00
Coil dimensions	gin	PI.I	4.21E-01	4.11E-01	4.30E-01	4.21E-01	4.11E-01	4.30E-01
Mean turn length	m	Ic.I	1.03E+01	1.96E+01	1.02E+01	1.03E+01	1.96E+01	1.02E+01
Coil crossectional area	m^2	ac.I	2.57E-03	2.03E-03	2.07E-03	2.57E-03	2.03E-03	2.07E-03
Coil Surface area	m^2	adis.I	4.48E+00	7.47E+00	4.02E+00	4.48E+00	7.47E+00	4.02E+00
EMS III Summary					4			
Weight on Vehicle								1
Lift Magnets/LSM	kg		5.30E+03	5.58E+03	3.78E+03	2.22E+03	2.22E+03	2.22E+03
Guidance Magnets	ka		1.93E+03	2.58E+03	1.54E+03	1.93E+03	2.58E+03	1.54E+03
Total			7.23E+03	8.16E+03	5.32E+03	4.15E+03	4.80E+03	3.76E+03
Magnet Weight/Vehicle Weight	nt %		18.07%	20.40%	13.31%	10.38%	12.00%	9.41%
Weight on Guideway								
Lift Magnets/LSM	ka/m		271 -02	2 27F±rio	2 57 5+02	2 71 F±02	2 27 ₽±02	2 575-02
Guidance Magnete	kg/m		1 135.02	7 175.01	8 875.01	1 135.02	7 175.04	8 87E . 04
Total	kg/m		2 9/5-02	2005.02	3 465 .02	3 845 02	2 005.02	3.465.00
Vehicle Real Power	Kg/III		3.040+02	2.390+02	3.40E+U2	3.040+02	2.330+02	3.400+02
Obmic Power Dissipation								
Lift Magnote/ CM	14/		4 705 04	6.075.04	المعرف مرا	4 705 01	6.075.04	0.005 0.
Guidanaa Magnata	VV NA/		4./90-04	0.07E+04	3.200+04	4./9E+04	0.070+04	3.282+04
Guidance magnets	w	1	1.88E+04	3.13E+04	1.68E+04	1.88E+04	3.13E+04	1.58E+04

ElectroMagnetic Suspension III

Optimized for operation at 134 m/s maximum speed (Separate vertical suspension & synchronous motor, lateral suspension)

			134	m/s Optimiz	zation	134 m/s C	optimization	@ 89 m/s
DESCRIPTION	UNITS	SYMBOL	DESIGN 1	DESIGN 2	DESIGN 3	DESIGN 1	DESIGN 2	DESIGN 3
			baseline	slim pole	small gap	baseline	slim pole	small gap
			(b/l)	(3/4 b/l)	(0.8 b/l)	(b/l)	(3/4 b/l)	(0.8 b/l)
Total Ohmic Power	w		6.66E+04	9.20E+04	4.96E+04	6.66E+04	9.20E+04	4.96E+04
Eddy current Power						in a straight		
Lift Magnets/LSM	W		2.36E+04	1.96E+04	1.84E+04	1.04E+04	8.67E+03	8.10E+03
Guidance Magnets	W		3.31E+04	5.49E+03	2.16E+04	1.46E+04	2.42E+03	9.52E+03
Total eddy current Power	W		5.67E+04	2.51E+04	3.99E+04	2.50E+04	1.11E+04	1.76E+04
Total Real Power Dissipation	W		1.23E+05	1.17E+05	8.96E+04	9.16E+04	1.03E+05	6.72E+04
Guideway Power					1.00			
Real Power Dissipation								
Guideway LSM Winding	kW/m		1.47E+00	1.39E+00	1.44E+00	1.47E+00	1.39E+00	1.44E+00
Total	kW/m		1.47E+00	1.39E+00	1.44E+00	1.47E+00	1.39E+00	1.44E+00
Reactive Input Power								
Linear Synchronous Motor	kVA/m		2.50E+01	2.10E+01	2.42E+01	1.66E+01	1.40E+01	1.61E+01
Total	kVA/m		2.50E+01	2.10E+01	2.42E+01	1.66E+01	1.40E+01	1.61E+01

APPENDIX G

SPREADSHEETS FOR ELECTRODYNAMIC SYSTEMS WITH FORMULAS

.

Table G-1. Hybrid null flux spreadsheet.

Operating Parameters			
*Velocity *Vehicle Vertical Position	m√s m	v delh	134 0.01503
*Differential Vertical Position (produces	in.	difh	0
*Lateral Force Required	m g	dely latg	0
*Lateral Force Arm above Levitation St	iem N	LFarr	
l'orque from Lateral Force	Nm		+LAIG"9.8"MV"(LFA%M+A/2)
Vehicle Description			12.7
*Vehicle Length	m	LV	12.7
*Drag Coefficient	ka	Cd	0.3
*Mechanical Clearance, Vehicle to Gui	den .	mci	0.08
Vahicle Magnets			
*Magnet Length	m	L	1.7
*Pole Pitch *"Width"	Ē	Р. А	2
*Main Conductor Current	Ä	i.	
Radius of "Shield" Superconductor	m m	Rs	@/F(4.000000E ~14*JM*F@PIPD>BD^2,0.0000002*I/BD,()/(@PI*JM*PD))^0.5) @/F(4.0000000E ~14*I/4*JM*PD>BD^2,0.0000002*I/BD,()/4/@PI/JM/PD)^0.5)
*Number of Magnet Units per Bogie		nu	3
*Superconducting Current Density	A/m 1	ຳມ ນາກ	20000000
*Superconducting Wire Density *Technology* Factor	kg/m	^dm T	8000
*Max B Field Seen by Superconductors	; Vs/m	γBd	4
*Superconductor Wite Packing Density *Spacing, SC Surface to Vehicle Surface		pd cins	0.5
	~		
Guideway *Levitation Sheet Thickness	m	di.	0.006
*Guidance Sheet Thickness	m	dg	0.006
*Levitation Sheet Width *Guidance Sheet Width	m	Wa	2*A~0.3~RM*2
*Guideway Conductivity	A∿m	cg	37000000
*Guideway.Density	kg/m	^dng	2700
Motor			
Winding to Superconducting Magnet Sj *Winding Width	nn m	S Am	+MCL+CINS+RM+R+2^0.5*(0.015-DELH) +A/@SORT(2)
*Number of Magnet Units (per Vehicle)		n	+NB*NU
*Number of Phases	m ·	н noh	3
*Turns per Phase	_	tú	5
*Insulation Spacing between Turns	m m	Si	0.014
Current Density	A/m^	Jmm	+AMOT/@PI/R ^2
B and C (winding goomery)		ope	
Calculated parameters	•		
Cryosystem weight	ĸg	MSS	
Pirst Harmonic, Open Circuit Motor V	V	V100	
Motor Resistance per Phase-Block	V V/A	Rph	2*\$LB*\$TU*(\$A*0.707+\$P))\$P/(3.14159*\$R ^ 2*\$CG) _1 P.P.TU _ 2*290.000028(
Motor Resistance per Phase-Block Motor Phase Inductance Motor Phase Reactance	V V/A H .V/A	Rph Lmw X	4'STU*(1'SA*0.707+\$F)(\$F)(3.14159*\$R^2*\$CG) +LB/P*TU*2*2*0.0000002*(1−2*0.0018+AM*@UN(AM*2/BPC)+1.2*P*@LN(1.2*P*2/BPC)) @PI*V*LMW/P
Motor Phase Inductance Motor Phase Inductance Motor Phase Inductance Motor Phase Reactance Guideway Levitation Mass per Meter Guideway Guidance Mass per Meter	V V/A H .V/A kg/m	Mgi	TV T 0 * T
Motor Resistance per Phase –Block Motor Phase Inductance Motor Phase Inductance Guideway Levitation Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter	V V/A H .V/A kg/m kg/m	NGC Rph Lmw X Mgi Mgg Mgm	TUT (0 * 1 0 * 10 / 2000/2010 / 2 = 000 / 2 =
Motor Resistance per Phase-Block Motor Phase Inductance Motor Phase Inductance Guideway Levitation Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Max Passenger Compartment Magnetic Lift	V V/A V/A kg/m kg/m G N	Vioc Rph Lmw X Mgi Mgg Mgm Bp Fi	TTSLE*STU*(SA*0.707+SF)(SF)(3.14159*SR ^ 2*SCG) +LB/P*TU ^ 2*2*0.0000002*(1-2*0.0018+AM*@UN(AM*2/BPC)+1.2*P*@UN(1.2*P*2/BPC)) @PI*V*LMW/P +M*T0L*ONG +DNG*WG*DG 2*TU*@PI*R ^ 2*(AM+P)*DNG/P +P*A*NU*NB*VMUU_2/0.0000004/@PI*(BUN ^ 2-BLN ^ 2)
Motor Resistance per Circult Motor V Motor Resistance per Circult Motor V Motor Phase Inductance Guideway Levitation Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Max Passenger Compartment Magnetic Lift Magnetic Drag, No Lateral Force	V V/A H V/A kg/m kg/m G N N	Vioc Rph Lmw X Mgi Mgg Mgm Bp Fi Fi	TT 10 * 1 · 0 * 10 * 000002 * (0 / 1/2 - 200 0/m 2000)/ 2*5LB*STU*(\$A*0.707 + \$P)(\$P)(3.14159*8A ^ 2*5CG) +LB/P*TU ^ 2*2*0.0000002*(1 - 2*0.0018+AM*@UN(AM*2/BPC) + 1.2*P*@UN(1.2*P*2/BPC)) @PI*V*LMW/P +W.*DL*DNG +DNG*WG*DG 2*TU*@PI*R ^ 2*(AM+P)*DNG/P +P*A*NU*NB*VMUL/2/0.0000004/@PI*(BUN ^ 2-BLN ^ 2) +P*A*NU*NB*VMUL/2/0.0000004/@PI*(BUN ^ 2-BLN ^ 2) +P*A*NU*NB/2/0.0000004/@PI*V/VA*((BUN - BLN) ^ 2/(1+(V/VA) ^ 2)+(K3D*(DL+DG/2)*(BUN+BLN)) ^ 2/12)
Motor Resistance per Phase-Block Motor Phase Inductance Motor Phase Inductance Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Max Passenger Compartment Magnetic Lift Magnetic Drag, No Lateral Force Magnetic Drag Ratio, No Lateral F Required Propulsive Force	V V/A H V/A kg/m kg/m G N N Sorce n	Rph Lmw X Mgi Mgg Mgm Bp Fi Fd Fp	THILD ** 1.00000000 (0)(7) 2-000 (AM*2/BPC) +LB/P*TU *(\$A*0.707+\$F)(\$F)(1.14159*8F ^2*5CG) @PI*V*LMW/P #W.*DL*DNG +DNG*WG*DG 2*TU*@PI*R ^2*(AM+P)*DNG/P +P*A*NU*NB*VMUL/20.0000004/@PI*(BUN ^2-BLN ^2) +P*A*NU*NB*2/0.0000004/@PI*(BUN ^2-BLN ^2) +P*A*NU*NB?2/0.0000004/@PI*(BUN ^2-BLN ^2) +F/AFNU*NB?2/0.0000004/@PI*(BUN ^2-BLN ^2) +F/AFNU*NB?2/0.0000004/@PI*(BUN ^2-BLN ^2) +F/AFD +PWD*1000000V+FD+FLD+FTD
Motor Resistance per Phase –Block Motor Phase Inductance Motor Phase Inductance Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Compartment Magnetic Lift Magnetic Drag, No Lateral Force Magnetic Drag Ratio, No Lateral F Required Propulsive Force Required Motor Output Benuired Ina-Phase Motor Current	V V/A H .V/A kg/m kg/m kg/m S orce n w Arms	Rph Lmw X Mgi Mgg Mgm Bp Fi Fd Fp Pmo	THILD * 1 : 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0
Motor Resistance per Phase-Block Motor Phase Inductance Motor Phase Inductance Motor Phase Reectance Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Max Passenger Compartment Magnetic Lift Magnetic Drag, No Lateral Force Magnetic Drag, No Lateral Force Required Propulsive Force Required Motor Output Required In-Phase Motor Current Reactive Voltage	V V/A H V/A kg/m kg/m G N orce n Arms V	Rph Lmw X Mgi Mgg Mgm Bp Fl Fd Fp Pmo Amot Vrea	TT T [0 * 1 · 0.200002/(0,D7) * 5P)(SP)(1,0,14159*8F ^ 2*5CG) +LB,P*TU ^ 2*2*0,0000002*(1 - 2*0.0018+AM*@UN(AM*2/BPC) + 1.2*P*@UN(1.2*P*2/BPC)) @PI*V*LMW/P +WI.*DL*DNG +DNG*WG*DG 2*TU*@PI*R ^ 2*(AM+P) *DNG/P +P*A*NU*NB*Z0.0000004/@PI*(BUN ^ 2BLN ^ 2) +P*A*NU*NB/20.0000004/@PI*(BUN ^ 2BLN ^ 2) +P*A*NU*NB/20.000004/@PI*(BUN ^ 2) +P*A*NU*NB/20.0000004/@PI*(BUN ^ 2) +P*A*NU*NB/20.0000004/@PI*(BUN ^ 2) +P*A*NU*NB/20.0000004/@PI*(BUN ^ 2) +P*A*NU*NB/20.0000004/@PI*(BUN ^ 2) +P*A*NU*NB/20.000004/@PI*(BUN ^ 2) +P*
Motor Resistance per Phase-Block Motor Phase Inductance Motor Phase Inductance Motor Phase Reectance Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Max Passenger Compartment Magnetic Lift Magnetic Drag, No Lateral Force Magnetic Drag, No Lateral Force Required Dropulsive Force Required Motor Output Required In-Phase Motor Current Reactive Voltage Motor Constant per Phase Motor Constant per Phase	V V/A H V/A kg/m kg/m G N S orce n Arms V N/A A	Rph Lmw X Mgi Mgg Mgm Bp Fl Fd Fp Pmo Amot Vrea kmot L 15a	THI TO * 1 : 0:000002(0)(0)() 2:000(0)() +UB(P*TU*(\$A*0.707+\$F)(\$F)(1.14159*8F ^2*5CG) +UB(P*TU*(2*2*0.0000002*(1-2*0.0018+AM*@UN(AM*2/BFC)+1.2*P*@UN(1.2*P*2/BFC)) @PI*V*LMW/P +WI.*DL*DNG +DNG*WG*DG 2*TU*@PI*R ^2*(AM+P)*DNG/P +P*A*NU*NB*2/NUU/2/0.0000004/@PI*(BUN ^2-BLN ^2) +P*A*NU*NB*2/NUU/2/0.0000004/@PI*(BUN ^2-BLN ^2) +P*A*NU*NB/2/0.0000004/@PI*(BUN ^2-BLN ^2) +P*A*NU*NB/2/0.000004/@PI*(BUN ^2-BLN ^2) +P*A*NU*NB/2/0.00004/@PI*(BUN ^2-BLN ^2) +P*A*NU*NB/2/0.000004/@PI*(BUN ^2-BLN ^2) +P*A*NU*NB/2/0.000004/@PI*(BUN ^2-BLN ^2) +P*A*NU*NB/2/0.000004/@PI*(BUN ^2-BLN ^2) +P*A*NU*NB/2/0.000004/@PI*(BUN ^2-BLN ^2) +P*A*NU*NB/2/0.00004/@PI*(BUN ^2-BLN ^2) +D/2/0.000004/@PI*(BUN ^2-BLN ^2) +D/2/0.00004/@PI*(BUN ^2-BLN ^2) +D/2/0.00004/@PI*(BUN ^2-BLN ^2) +D/2/0.00004/@PI*(BUN ^2-BLN ^2) +D/2/0.00004/@PI*(BUN ^2-BLN ^2) +D/2/0.00004/@PI*(BUN ^2) +D/2/0.00004/@PI*(BUN ^2-BLN ^2) +D/2/0.00004/@PI*(BUN ^2) +D/2/0.00004/@PI*(BUN ^2) +D/2/0.00004/@PI*(BUN ^2) +D/2/0.00004/@PI*(BUN ^2) +D/2/0.00004/@PI*(BUN ^2) +D/2/0.00004/@PI*(BUN ^2) +D/2/0.00004/@PI*(BUN ^2) +D/2/0.00004/@PI*(BUN ^2) +D/2/0.00004/@PI*(BUN ^2) +D/2/0.00004/@PI*(BU
Motor Resistance per Phase-Block Motor Phase Inductance Motor Phase Reactance Guideway Levitation Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Max Pessenger Compartment Magnetic Lift Magnetic Drag, No Lateral Force Magnetic Lift to Drag Ratio, No Lateral F Required Propulsive Force Required Motor Output Required In-Phase Motor Current Reactive Voltage Motor Constant per Phase Motor Current per .13g per Phase Motor Current per .21g per Phase	V V/A H V/A kg/m kg/m G N N G N N Arms V N/A A A	Vioc Rph Lmw X Mgi Mgg Mgm Bp Fi Fd Fp Pmo Amot Vrea kmot I.15g I.21g	THILD * I : 0.00000000 (0,D) 2=000 (AM*2/BPC) +LB/P*TU~2*2*0.0000002*(1-2*0.0018+AM*@UN(AM*2/BPC)+1.2*P*@UN(1.2*P*2/BPC)) #PI*V*LMW/P #PI*V*LMW/P +PNTU*DNG +DNG*WG*DG 2*TU*@PI*R ^ 2*(AM+P)*DNG/P +P*A*NU*NB*VMUL/2/0.0000004/@PI*(BUN ^ 2-BLN ^ 2) +P*A*NU*NB*Z0.0000004/@PI*(BUN ^ 2-BLN ^ 2) +P*A*NU*NB/2/0.0000004/@PI*(BUN ^ 2-BLN ^ 2) +P*A*NU*NB/2/0.000004/@PI*(BUN ^ 2) +P*A*NU*NB/2/0.000004/@PI*(BUN ^ 2) +P*A*NU*NB/2/0.000004/@PI*(BUN ^ 2) +D*A*NU*NB/2/0.000004/@PI*(BUN ^ 2) +D*A*NU*NB/2/0.000004/@PI*(BUN ^ 2) +D*A*NU*NB/2/0.000004/@PI*(BUN ^ 2) +D*A*NU*NB/2/0.000004/@PI*(BUN ^ 2) +D*A*NU*NB/2/0.000004/@PI*(BUN ^ 2) +D*A*NU*NB/2/0.00004/@PI*(BUN ^ 2) +D*A*NU*NB/2/0.00004/@PI*(BUN ^ 2) +D*A*NU*ND/2/0.00004/@PI*(BUN ^ 2) +D*A*NU*ND/2/0.00
Motor Resistance per Phase-Block Motor Resistance per Phase-Block Motor Phase Reectance Guideway Levitation Mass per Meter Guideway Motor Mass per Meter Magnetic Drag, No Lateral F Required Propulsive Force Required Propulsive Force Required Motor Output Required In-Phase Motor Current Reactive Voltage Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive WA	V V/A kg/m kg/m G N N orce n Arms V A A A g kVA	Vioc Rph Lmw X Mgi Mgg Mgm Bp Fi Fd Fd Fd Fd Vrea kmot 1.15g 1.21g Ddbo	THILD ** 1.0 **
Motor Resistance per Phase-Block Motor Resistance per Phase-Block Motor Phase Inductance Motor Phase Reectance Guideway Levitation Mass per Meter Guideway Levitation Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Guideway Levitation Mass per Meter Magnetic Drag, No Lateral F Required In-Phase Motor Current Reactive Voltage Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive KVA Lateral Force	V V/A kg/m kg/m G N N con W Arms V/A A A S XVA N :	Vioc Rph Lmw X Mgi Mgg Mgg Mgg Fi Fd Fp Pmo Amot Vrea kmot 1.21g Ddbo Fiat	The form isonobally (0,F), 2=00 S/MV00000 +LB,P*TU~2*2*0.0000002*(1-2*0.0018+AM*@UN(AM*2/BPC)+1.2*P*@UN(1.2*P*2/BPC)) #P*V*U/W/P #W.*DL*DNG +DNG*WG*DG 2*TU*@PI*R ^2*(AM+P)*DNG/P +P*A*NU*NB*VMUU/2/0.0000004/@PI*(BUN ^2-BLN ^2) +P*A*NU*NB*VMUU/2/0.0000004/@PI*(V/A*((BUN - BLN) ^ 2)(1+(V/VA) ^ 2)+(K3D*(DL+DG/2)*(BUN+BLN)) ^ 2/12) +P*A*NU*NB/2/0.0000004/@PI*V/VA*((BUN - BLN) ^ 2)(1+(V/VA) ^ 2)+(K3D*(DL+DG/2)*(BUN+BLN)) ^ 2/12) +P*A*NU*NB/2/0.0000004/@PI*V/VA*((BUN - BLN) ^ 2)(1+(V/VA) ^ 2)+(K3D*(DL+DG/2)*(BUN+BLN)) ^ 2/12) +P*A*NU*NB/2/0.0000004/@PI*V/VA*((BUN - BLN) ^ 2)(1+(V/VA) ^ 2)+(K3D*(DL+DG/2)*(BUN+BLN)) ^ 2/12) +P*0*100000QV+FD+FLD+FTD +FP*V +PMO/V10C/NPH +V*0PI*LMW*AMOT +V10C/V 0.15*9.8*MV/KMOT/NPH +KMOT ^ 2*P/2/@PI/LMW/MV*NPH/9.8 +V7EA*AMOT*NPH/1000 0.5*(BLL ^2-BBL ^2)*P*A*NU*NB*VMUL/2/0.0000004/@PI
Pirst Parmonic, Open Circuit indoor V Motor Resistance per Phase –Block Motor Phase Inductance Motor Phase Reectance Guideway Levitation Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Max Passenger Compartment Magnetic Lift Magnetic Drag, No Lateral Force Magnetic Lift to Drag Ratio, No Lateral F Required Propulsive Force Required In-Phase Motor Current Required In-Phase Motor Current Required In-Phase Motor Current Required In-Phase Motor Current Rective Voltage Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive kVA Lateral Force. Lateral Force Lateral Drag	VVA HV/Akg/m GNN Cornw Arms V/AA SkVN N M	Noc Rph Lmw X Mgi Mgg Mgg Fi Fd Fp Pmo Amot Vrea kmot I.15g Ddbo Flat Fid Tiat	The form isonood (OR) 2=000 (IIII) +LB/PTU *(\$A*0.707 + \$P)(\$P)(10.14159*\$R ^ 2*\$CG) +LB/PTU ^ 2*2*0.0000002*(1-2*0.0018+AM*@UN(AM*2/BPC)+1.2*P*@UN(1.2*P*2/BPC)) @PI*V*LMW/P +WL*DL*DNG +DNG*WG*DG 2*TU*@PI*R ^ 2*(AM+P)*DNG/P +P*A*NU*NB*VMUU/2/0.0000004/@PI*(BUN ^ 2-BLN ^ 2) +P*A*NU*NB*VMUU/2/0.0000004/@PI*(V/VA*((BUN - BLN) ^ 2)(1+(V/VA) ^ 2)+(K3D*(DL+DG/2)*(BUN+BLN)) ^ 2/12) +FL/P +PW0*100000QV+FD+FLD+FTD +FP*V +PM0/10C/NPH +V*@PI/P*LMW*AMOT +V10C/V 0.15*9/8*MV/KMOT/NPH +KMOT ^ 2*P/2/@PI/LMW/MV*NPH/9.8 +V7EA*AMOT*NPH/1000 0.5*(BLL ^ 2-BEL ^ 2)*P*A ^ 2*NU*NB*VMUL/2/0.0000004/@PI 4*P*A*NU*NB/2/0.0000004/@PI*V/VA*(BLL-BEL) ^ 2/(1+(V/VA) ^ 2) 0.5*(BLL ^ 2-BEL ^ 2)*P*A ^ 2*NU*NB*VMUL/2/0.0000004/@PI
Pirst Harmonic, Open Circuit Notor V Motor Resistance per Phase –Block Motor Phase Inductance Motor Phase Reectance Guideway Levitation Mass per Meter Guideway Levitation Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Magnetic Drag, No Lateral F Required Drop Lateral Force Magnetic Lift to Drag Ratio, No Lateral F Required In-Phase Motor Current Required In-Phase Motor Current Required In-Phase Motor Current Required In-Phase Motor Current Required In-Phase Motor Current Reactive Voltage Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive kVA Lateral Force Lateral Drag Torque for Lateral Force Drag for Lateral Force	VVA HAkg/m kg/m NNC CC NNC A A SVA A A SVA A A SVA NNT NC A	Noc Rph Lmw X Mgg Bp Fi Fd Fp Pmo Amot Vrea kmot L15g Ddbo Flat Fid Tiat	The form of the second of the
Pirst Parmonic, Open Circuit Motor V Motor Resistance per Phase –Block Motor Phase Inductance Motor Phase Reectance Guideway Levitation Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Max Passenger Compartment Magnetic Lift Magnetic Drag, No Lateral Force Magnetic Lift to Drag Ratio, No Lateral F Required Incol No Lateral Force Required Incol Notor Output Required Incol Notor Output Required Incol Phase Motor Current per .15g per Phase Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive kVA Lateral Force Lateral Force Lateral Force Drag for Lateral Force Drag for Lateral Force Drag for Lateral Torque Lift Loss Loss from Lateral Drag	VVA HVA kg/m kg/m NN corr w Arms VAA A S KVA NN NN NN NM W	Vioc Rph Lmw X Mggi Mggm Bp Fi Fd Fp Pmo Amot Vrea kmot Vrea kmot Vrea kmot Flat Fild Tiat Fild Fild Fild Fild Fild Fild Fild Fild	The form of the second of the form of the second of the se
Pirst Parmonic, Open Circuit Notor V Motor Resistance per Phase-Block Motor Phase Inductance Motor Phase Reactance Guideway Levitation Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Magnetic Drag, No Lateral Force Magnetic Lift to Drag Ratio, No Lateral F Required In-Phase Motor Current Required In-Phase Motor Current Required In-Phase Motor Current Required In-Phase Motor Current Required In-Phase Motor Current Reactive Voltage Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive kVA Lateral Force Lateral Drag Torque for Lateral Force Drag for Lateral Torque Lift Loss Loss from Lateral Torque Total Magnetic Losses	VVA HV/Amkg/m kg/m KGNN V/AAkg/m KGNN V/AA A SVAA V/AA A SVA N N N N W W W W W W W W	Ninoc Rph Amph X Mggi Mggm Bp Fi Fd Fr Prmo Amot Vrea kmot Vrea kmot Vrea kmot Fi L15g L15g Ddbo Fiat Fid Fid Fid Fid Pid Pid Pid Pid Pid Pid Pid Salari Sal	The form isonood (D) is a construction of the isonood (D) isonood
Prist Parmonic, Open Circult Notor V Motor Resistance per Phase –Block Motor Phase Inductance Motor Phase Inductance Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Max Passenger Compartment Magnetic Lift Magnetic Drag, No Lateral Force Magnetic Drag, No Lateral Force Magnetic Drag, No Lateral Force Required Propulsive Force Required Motor Output Reactive Voltage Motor Current per .15g per Phase Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive kVA Lateral Force Lateral Drag Torque for Lateral Force Drag for Lateral Torque Lift Loss Loss from Lateral Torque Total Magnetic Losses Total Motor Winding Losses	V VA H V/A kg/m kg/m G N N Corr w A M V N/A A S V N/A A S V N/A M W M W W M W W M W W M W W M W W M W W M W W M M W M M W M M N S O S N N N S O S N N S O S N N N S O S N N N S S S N N N S S S N N N S S S N N N S S S N N N S S S S N N S	Mgg Mgg Mgg Mgg Mgg Mgg Mgg Mgg Mgg Mgg	The form is a subsection (D,F) 2=000 (ALT Set S), TUP (SA*0, 707 + SP), (SP) (1, 141 Set SR ^ 2*SCG) +LB,P*TU ^ 2*2*0.0000002*(1-2*0.0018 + AM*@UN(AM*2/BPC) + 1.2*P*@UN(1.2*P*2/BPC)) @PI*V*U_MW/P +W.*DL*DNG +DNG*WG*DG 2*TU*@PI*R ^ 2*(AM+P)*DNG/P +P*A*NU*NB/20.0000004/@PI*V/VA*((BUN ^ 2-BUN ^ 2) +P*A*NU*NB/20.0000004/@PI*V/VA*((BUN ^ 2-BUN ^ 2) +FL/FD +PWD*10000004/#PD+FLD+FTD +FP*V +PMO/V10C/NPH +V*@PI/P*LMW*AMOT +V*0C/V 0.15*9:8*MV/KMOT/NPH 0.2*99.8*MV/KMOT/NPH +KMOT ^ 2*PZ/@PI/U/MW*NPH/9.8 +VREA*AMOT*NPH/1000 0.5*(BUD ^ 2-BLD ^ 2)*P*A*NU*NB*VMUL/20.0000004/@PI 4*P*A*NU*NB/20.0000004/@PI*V/VA*(BLD - BLD) ^ 2/(1+(V/VA) ^ 2) .5*(BUD ^ 2-BLD ^ 2)*P*A ^ 2*NU*NB*VMUL/20.0000004/@PI 4*P*A*NU*NB/20.0000004/@PI*V/VA*(BLD - BLD) ^ 2/(1+(V/VA) ^ 2) .5*(BUD ^ 2-BLD ^ 2)*P*A ^ 2*NU*NB*VMUL/20.0000004/@PI 4*P*A*NU*NB/20.0000004/@PI*V/VA*(BLD - BLD) ^ 2/(1+(V/VA) ^ 2) .5*(BUD ^ 2-BLD ^ 2)*P*A ^ 2*NU*NB*VMUL/20.0000004/@PI 4*P*A*NU*NB/20.0000004/@PI*V/VA*(BLD - BLD) ^ 2/(1+(V/VA) ^ 2) .5*(BUD ^ 2*BPI*NPH/100000 +FTD*V/100000 +FTD*V/1000000 +FTD*V/1000000
Prist Parmonic, Open Circuit Notor V Motor Resistance per Phase –Block Motor Phase Inductance Motor Phase Inductance Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Magnetic Drag, No Lateral Force Required Propulsive Force Required Motor Output Reactive Voltage Motor Current per .15g per Phase Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive kVA Lateral Force Lateral Torque Torque for Lateral Force Drag for Lateral Force Drag for Lateral Torque Uift Loss Ioss from Lateral Torque Total Magnetic Losses Total Motor Winding Losses Wind Drag Loss Primary Suspension Natural Frequency	VVAH.V/kg/m/m kg/m/m KGNNOCnwm VAAGWNNN VAAGWNNN WWWWW WWWWWWW	Nince Riph Limw X Mgg Mgm Bp Fi Fd Fp Pmoo Amot Vrea kmot L15g Ddbo Filat Fild Fild Fild Fild Pild Psd Pdw Pwd	The form is a subsection (D,F) 2=000 (ALT (C,F) (2, 1415)*8A - 2*8CG) +LB,P*TU - 2*2*0.0000002*(1-2*0.0018+AM*@UN(AM*2/BPC)+1.2*P*@UN(1.2*P*2/BPC)) @PI*V*U_MW/P +W.*DL*DNG +DNG*WG*DG 2*TU*@PI*R ^ 2*(AM+P)*DNG/P +P*A*NU*NB/20.0000004/@PI*V/VA*((BUN ~ 2-BUN ^ 2) +P*A*NU*NB/20.0000004/@PI*V/VA*((BUN ~ 2-BUN ^ 2) +P*A*NU*NB/20.0000004/@PI*V/VA*((BUN ~ 2-BUN ^ 2) +FL/FD +PWD*10000004/#CD+FLD+FLD +FP*V +PMO/V10C/NPH +V*@PI/P*LMW*AMOT +V*0C/V 0.15*9:8*MV/KMOT/NPH 0.2*92.8*MV/KMOT/NPH 4.WG*1*2*PZ/@PI/LMW/M*NPH/9.8 +VREA*AMOT*NPH/1000 0.5*(BUD ^ 2-BLD ^ 2)*P*A*NU*NB*VMUL/20.0000004/@PI 4*P*A*NU*NB/20.0000004/@PI*V/VA*(BLD - BLD) ^ 2/(1+(V/VA) ^ 2) 0.5*(BUD ^ 2-BLD ^ 2)*P*A ^ 2*NU*NB*VMUL/20.0000004/@PI 4*P*A*NU*NB/20.0000004/@PI*V/VA*(BLD - BLD) ^ 2/(1+(V/VA) ^ 2) +FD*V1000000 +FD*V1000000 +FD*V1000000 +FD*V1000000 +FD*V1000000 +FD*V1000000 +FD*V1000000 123*V 3*CD*AF/2/1000000 1.23*V 3*CD*AF/2/1000000 1.23*V 3*CD*AF/2/1000000 1.23*V 3*CD*AF/2/1000000
Pirst Parmonic, Open Circuit Notor V Motor Resistance per Phase –Block Motor Phase Inductance Motor Phase Inductance Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Guideway Gudance Mass per Meter Hagnetic Drag, No Lateral Force Required Propulsive Force Required Motor Output Required Motor Output Required Motor Output Reactive Voltage Motor Current per .15g per Phase Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive kVA Lateral Force Lateral Drag Torque for Lateral Force Drag for Lateral Force Drag for Lateral Torque Utit Loss form Lateral Torque Total Magnetic Losses Total Motor Winding Losses Wind Drag Loss Primary Suspension Natural Frequency	VVA H.V/A kg/m kg/m GN NCC N VA A SVA N N N N W W W W W W W W W W W W W W W	Mgg Mgg Mgg Mgg Fd Ff Fd Fp Pmo Amot Vrea kmot L15g Ddbo Flat Fid Tiat Fid Fid Ptd Ptd Ptd Ptd	THI TO 'T I USA'D. 27 * 2*N/KNOT/NET #LB/P*TU 'SA'D. 27 * 20000002*(1-2*0.0018+AM*@LN(AM*2/BPC)+1.2*P*@LN(1.2*P*2/BPC)) @PI*V*LWW/P +UX-DI*DNG #DNG*WG*DG 2*TU*@PI*R ^ 2*(AM+P)*DNG/P +P*A*NU*NB/2/0.0000004/@PI*(JUN ^ 2-BLN ^ 2) +P*A*NU*NB/2/0.0000004/@PI*(JUN * ((BUN - BLN) ^ 2/(1+(V/VA) ^ 2) + (K3D*(DL+DG/2)*(BUN + BLN)) ^ 2/12) +FL/FD +P*A*NU*NB/2/0.0000004/@PI*(JUN * ((BUN - BLN) ^ 2/(1+(V/VA) ^ 2) + (K3D*(DL+DG/2)*(BUN + BLN)) ^ 2/12) +FL/FD +PWD*1000000V+FD+FLD+FTD +FP*V +PMO/V10C/NPH +V*@PI/P*LMW*AMOT +V10C/N 0.15*9:8*MV/KMOT/NPH 0.21*9.9*MV/KMOT/NPH 0.21*9.9*MV/KMOT/NPH 0.25*(BLD ^ 2)*P*A*NU*NB*VMUL/2/0.0000004/@PI 4*P*A*NU*NB/2/0.0000004/@PI*V/VA*(BLL - BRL) ^ 2/(1+(V/VA) ^ 2) 0.5*(BLD ^ 2 - BLD ^ 2)*P*A ^ 2*NU*NB*VMUL/2/0.0000004/@PI 4*P*A*NU*NB/2/0.0000004/@PI*V/VA*(BLD - BLD) ^ 2/(1+(V/VA) ^ 2) +FD*V1000000 +FTD*V1000000 1/2/@PI*(FLDELH/MV) ^ 0.5
Pirst Parmonic, Open Circuit Notor V Motor Resistance per Phase–Block Motor Phase Inductance Motor Phase Inductance Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Guideway Compartment Magnetic Lift Magnetic Drag, No Lateral Force Magnetic Drag, No Lateral Force Required Propulsive Force Required Propulsive Force Required Motor Output Required In–Phase Motor Current Reactive Voltage Motor Constant per 15g per Phase Motor Current per .15g per Phase Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive kVA Lateral Force Lateral Force Lateral Drag Torque for Lateral Force Drag for Lateral Torque Total Magnetic Losses Total Motor Winding Losses Wind Drag Loss Primary Suspension Natural Frequency Intermediate results, levitation Richards and Tinkham Interpreted by M	V V/A H V/A kg/m kg/m G N N Corn w ms V N/A A G N N Corn w ms V N/A V/A V/M V/M V/M V/M V/M V/M V/M V/M V/M V/M	And	The form of the second of the
Pirst Parmonic, Open Circuit Notor V Motor Resistance per Phase –Block Motor Phase Inductance Motor Phase Inductance Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Magnetic Drag, No Lateral Force Required Propulsive Force Required Motor Output Required Motor Output Required Motor Output Required Motor Output Required Motor Output Reactive Votage Motor Current per .15g per Phase Motor Current per .15g per Phase Lateral Force Lateral Drag Torque for Lateral Force Drag for Lateral Force Drag for Lateral Force Total Magnetic Losses Total Motor Winding Losses Wind Drag Loss Primary Suspension Natural Frequency Intermediate results, levitation Richards and Tinkham Interpreted by Mi wave number	V V/A H V/A kg/m kg/m kg/m G N N Corn w MS V N/A A A 9 kVA N N MW MW MW MW MW MW Hz the	And	The form of the second of the
Pirst Parmonic, Open Circuit Notor V Motor Resistance per Phase–Block Motor Phase Inductance Motor Phase Inductance Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Max Passenger Compartment Magnetic Lift Magnetic Drag, No Lateral Force Magnetic Drag, No Lateral Force Required Propulsive Force Required Motor Output Required In–Phase Motor Current Required Motor Output Required In–Phase Motor Current Required Motor Output Required In–Phase Motor Current Required Motor Current Passet Voltage Motor Constant per Phase Motor Current per .15g per Phase Motor Current per .21g per Phase Best Dynamic Breaking Deceleration Reactive KVA Lateral Force Lateral Force Lateral Force Lateral Force Total Magnetic Losses Total Motor Winding Losses Vind Drag Loss Primary Suspension Natural Frequency Intermediate results, levitation Richards and Tinkham interpreted by M wave number speed for gway L*omega/R=1 speed and thickness factor	V V/A kg/m kg/m N orce w M Arms N/A A g kV N/A A g kV N/A A g kV N/M MW MW MW Hz the tr/m rr/s	And the second s	The Total Total Constance (Total Section 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
Pirst Parmonic, Open Circuit Notor V Motor Resistance per Phase–Block Motor Phase Inductance Motor Phase Inductance Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Max Passenger Compartment Magnetic Lift Magnetic Drag, No Lateral Force Magnetic Drag, No Lateral Force Required Propulsive Force Required Motor Output Required In–Phase Motor Current Required Motor Output Required Motor Output Required Motor Output Required Motor Constant per Phase Motor Constant per 15g per Phase Motor Current per .15g per Phase Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive KVA Lateral Force- Lateral Force Lateral Force Lateral Force Uit Loss Loss from Lateral Torque Total Motor Winding Losses Wind Drag Loss Primary Suspension Natural Frequency Interme diate results, levitation Richards and Tinkham Interpreted by M. wave number speed for gway L*omega/R=1 speed and thickness factor upper B scalar, ms	V V/A H V/A kg/m kg/m kg/m G N N Corn w Arms V N/A A g kVA N N M W M W M W Hz the tr t f T	And	The Tot Y is 0.0000000000000000000000000000000000
Pirst Parmonic, Open Cheat Notor V Motor Resistance per Phase –Block Motor Phase Inductance Motor Phase Inductance Motor Phase Reectance Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Max Passenger Compartment Magnetic Lift Magnetic Drag, No Lateral Force Magnetic Lift to Drag Ratio, No Lateral F Required Propulsive Force Required Motor Output Required In–Phase Motor Current Required Motor Output Required Motor Output Required Motor Output Required In–Phase Motor Current Reactive Voltage Motor Constant per Phase Motor Current per .15g per Phase Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive kVA Lateral Force Lateral Force Lateral Force Lateral Force Lateral Force Lateral Torque Total Motor Winding Losses Total Motor Winding Losses Wind Drag Loss Primary Suspension Natural Frequency Inter mediate results, levitation Richards and Tinkham Interpreted by M wave number speed for g way L*omega/R=1 speed and thickness factor upper B scalar, rms for debugging, spacing, normally A/2	V V/A H.V/A kg/m kg/m kg/m G N N Corn w Arms V N/A A g kVA N N MW MW MW MW Hz the the the the the the the the the the	And Anter An	111 103
Pirst Parmonic, Open Circult Notor V Motor Resistance per Phase –Block Motor Phase Inductance Motor Phase Reectance Guideway Gudance Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Magnetic Drag, No Lateral Force Magnetic Lift to Drag Ratio, No Lateral F Required Propulsive Force Required Motor Output Required In–Phase Motor Current Required Motor Output Required In–Phase Motor Current Reactive Voltage Motor Current per 15g per Phase Motor Current per 15g per Phase Motor Current per 15g per Phase Best Dynamic Breaking Deceleration Reactive kVA Lateral Force Lateral Force Lateral Force Lateral Force Core for Lateral Force Drag for Lateral Torque Total Motor Winding Losses Vind Drag Loss Primary Suspension Natural Frequency Intermediate results, levitation Richards and Tinkham Interpreted by M wave number speed for giway L*omega/R=1 speed and thickness factor upper B scalar, rms for debugging, spacing, normally A/2 left B scalar, rms	V V/A H.V/A kg/m kg/m kg/m N Corn w ArWS N/A A g kVA N N MW MW MW MW MW MW Hz the trm T T T m T T	And Anter An	11 The Tot
Pirst Parmonic, Open Circult Notor V Motor Resistance per Phase –Block Motor Phase Inductance Motor Phase Reectance Guideway Levitation Mass per Meter Guideway Gudance Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Guideway Motor Mass per Meter Magnetic Drag, No Lateral Force Magnetic Lift to Drag Ratio, No Lateral F Required Propulsive Force Required Motor Output Required In–Phase Motor Current Reactive Voltage Motor Constant per Phase Motor Current per .15g per Phase Motor Current per .15g per Phase Motor Current per .15g per Phase Best Dynamic Breaking Deceleration Reactive KVA Lateral Force Lateral Force Lateral Torque Torque for Lateral Force Drag for Lateral Torque Total Motor Winding Losses Vind Drag Loss Primary Suspension Natural Frequency Intermediate results, levitation Richards and Tinkham Interpreted by M wave number Speed for g'way L*omega/R=1 speed and thickness factor upper B scalar, rms for debugging, spacing, normally A/2 left B scalar, rms upper differential B scalar, rms	V V/A V/A kg/m kg/m Kg/m N Corn w ArV N/A A g kVN N N MWW MWW MWW MWW MWW Hz the the the the the the the the	Alph Argh Mgg Mgg Mgg Mgg Mgg Mgg Mgg Mgg Fi Fd Fp Proo Vrea kmoti U.219 Ddbo Flat Fid Prid Prid Prid Bln hnot Bln Bri Bor Fi Sol Prid Bor Fi Sol Prid Sol Sol Sol Sol Sol Sol Sol Sol Sol Sol	1*5U*1 (USANDAUG) (USANDAUG) (USANDAUG) 2*5U*5U*U (SANDAUG) (USANDAUG) (USANDAUG) +UB/*TU*2*2*0.0000004@PI*(BUN*2*BUN*2/BPC)+1.2*P*@UN(1.2*P*2/BPC)) @PI*V*UWWF +UCD*DNG +DNG*VGTOG 2*TU*@PI*R*2*(AM+P)*DNG/P +P*A*NU*NB*VMUZ/0.000004/@PI*(BUN*2*BUN*2) +P*A*NU*NB*VMUZ/0.000004/@PI*V/NA*(BUN*BLN)*2/1+(V/NA)*2+(K3D*(DL+DG/2)*(BUN+BLN))*2/12 +FUFO +P*A*NU*NB*VMUZ/0.000004/@PI*V/NA*(BUN*BLN)*2/1+(V/NA)*2+(K3D*(DL+DG/2)*(BUN+BLN))*2/12 +FUFO +PY*A*NU*NB*VMUZ/0.000004/@PI*V/NA*(BUN*BLN)*2/1+(V/NA)*2+(K3D*(DL+DG/2)*(BUN+BLN))*2/12 +FUFO +TP*V*NU*NB*VMUZ/0.000004/@PI*V/NA*(BUN*BLN)*2/1+(V/NA)*2+(K3D*(DL+DG/2)*(BUN+BLN))*2/12 +FUFO +V*GPI/F*UM*AMOT +C*GPI/F*UM*AMOT +V*GPI/F*UM*AMOT +C*GPI/F*UM*AMOT +C*GPI/F*UM*AMOT +U*GPI/F*UM*AMOT +C*GPI/F*UM*AMOT

Table G-2. Image flux spreadsheet.

Uperaung Parametera Nelociy Tablai force Nehicle vertical position, +=up,0=non	, 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	. 7 1	98 0 0 0
Vehicle Description *assumed formal axes -chag comparation Track boyeneting mass Theight above arc (theodroom)	×ov ×ov ×ov ×ov ×ov	₽ ₽ ₽	03 6000 187
Vahicie Magnat Paramatera poeticul imegrationopi contra andre contra andre contra contra interaction contra cola por cluster () cutter col poir por eluster br>victor col poir por eluster cutter col poir por eluster suppreconductir to subi distance suppreconductir to subi distance		85>E_9-4EE. 839	⁵ ⁵ ⁵ ⁶ <td< td=""></td<>
Guideway Levitation Param radue, upper guideway aufaca "contraingle "broka angle "broka angle concursity" "guideway denaity	Avm Avm Avm Avm Avm Avm Avm Avm Avm Avm	2 6 + -	0.6 10 10 001 2000 2000
Guideway Motor Perameters *motor via radua *motor via radua *uranber of phase *uran be turn specing subschig, windings to grwy watton winding with suge winding constrative winding density			
Calculated Parameters weeks tonoil area weeks tonoil area tristharmook. open circuit motor V motor inductance parameter motor inductance parameter motor resistence op primese - block motor mass per meter didway benden foro. motor resistence of primese - block motor resistence of pr	⋵₽⋳⋟⊥⋟⋩⋧∽∠⋟⋴⋠⋞⋎⋒⋒⊀ ⋵₽⋳⋟⋎⋼⋟⋩⋳∊⋗∊	**************************************	2*(iji + PVT:xou – Gislu (PVT:GPT:xou)) + 2*GEN(PVT:GPT:xou) + PV+HT - 0.75 ^ 2*C - GPT2) WFD*(SCL + SCM1 + SCM1) WFD*(SCL + SCM1 + SC
Not included in summary spesa hetelotation supercontactor radius motor ac radius, honoverse motor ac radius, longituden vertaal distance, landiaon to g- way whitation hora, thick guidewey magnetic drag torca, thick guidewey	-EE_EE	- 1 F - # 5	1000000E - W*LIM*1F1で@PFPD、\$80~2,0000002*81し88D, BHL/@PfKJIMFD) ^0.5J 1000000E - M*LIM*2HM*@PFPD、\$80~2,0000002*81M188D, GHV/@PfKJIMFD) ^0.5J 1000000E - M*LIM*CIM - HJ*@F1 > 2,0000002*(M - HJ/BD, (HM - HJ/@F1LM/FD) ^0.5J 1911(11/000002/GS/MPf ^0.5J VOR(11+(10.000002*GSYMPf ^0.5J
Intermediate Fasults, UN Force avriation current, lornt and lack cots, avriation current, lornt and lack cots, active transmissiants coti angin "geometical" curveuse corrention, iter "geometical" curveuse corrention, lorn "geometical" curveuse correction, ter transmission of the second limit whiten force total, high speed limit whiten force total, high speed limit normal force speed for skin depth = given thich speed for skin depth = given thich speed for skin depth = given thich	5 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	= = = = = = = = = = = = = = = = = = =	ự - I JOIJ ທຣະ ສູນ [භ۲7- PGO] ເອ PROD SI PTT ອີດສາວ 21 [CETTE FILW [MILL 7: 2: 21] B. 2) - PRANTUNIB - STEMATUNIB - STEMATUNIB - STEMATUN'B - STEMATUN'B - STEMATUN'B 21 [CETTE FILW [MILL 7: 2: 21] B. 2) - PRANTUNIB - FRANTUNIB - STEMATUNIB - STEMATUN'B - STEMATUN'B - STEMATUN'B 21 [CETTE FILW [MILL 7: 2: 21] B. 2) - PRANTUNIB - FRANTUNIB - STEMATUN'B - STEMATUN'B - STEMATUN'B - STEMATUN'2 21 [CETTE FILW [MILL 7: 2: 21] B. 2) - PRANTUNIB - FRANTUNIB - STEMATUN'B - STEMATUN'B - STEMATUN'B - STEMATUN'B 21 [CETTE FILW [MILL 7: 2: 21] B. 2) - PRANTUN'B - FRANTUNIB - STEMATUN'B - STEMATUN'B - STEMATUN'B - STEMATUN'B 21 [CETTE FILW [MILL 7: 2: 21] B. 2) - PRANTUN'B - FRANTUN'B - STEMATUN'B - STEMATUN'B - STEMATUN'B - STEMATUN'B 21 [SETTE - STEMATUN'B - STEMATUN'B - FRANTUN'B - STEMATUN'B - STEMATUN'B - STEMATUN'B - STEMATUN'B - STEMATUN'B 2000 [SETTE - STEMATUN'B - STEMATUN'B - FRANTUN'B - STEMATUN'B - STEMATUN'B - STEMATUN'B - STEMATUN'S - STEMATUN'S - STEMATUN'S 2000 [SETTE - STEMATUN'B - STEMATUN'B - FRANFILL'B - STEMATUN'B - STEMATUN'B - STEMATUN'B - STEMATUN'S - STEMATUN'S - STEMATUN'S - STEMATUN'S 2000 [SETTE - STEMATUN'B - STEMATUN'B - FRANFILL - STEMATUN'B - STEMATUN'S - STEMATUN'S - STEMATUN'S - STEMATUN'S 2000 [SETTE - STEMATUN'S - STEMATUN'B - STEMATUN'B - STEMATUN'S - STEMATUN'S - STEMATUN'S - STEMATUN'S - STEMATUN'S - STEMATUN'S

Table G-2. Image flux spreadsheet. (Cont.)

ł

		(4"H ^ 2 + E123 ^ 2) ^ 0.5	0
•		F11e '	(0 00000004*E122*H/D 123)*((- E122/D 123 ^ 2 - E122 ^ 2/(D 123 ^ 3*(1 + (E122/D 123) ^ 2) ^ 0.5))/(E122/D 123 + (1 + (E122/D 123) ^ 2) ^ 0.5) - D 123/(E122 ^ 2*(1 + (D 123/E122) ^ 2) ^ 0.5) + 1/E122) + L
		(4*\$H ^ 2 + E126 ^ 2) ^ 0.5	0
4		F22a	(0 0000004*E122*H/D 126)*((~E122/D 126^2 - E122^2/(D 126^3*(1+(E122/D 126)^2)^0.5))/(E122/D 126+(1+(E122/D 126)^2)^0.5) - D 124/(E122^2(1+(D 126/E122)^2)^0.5) + 1/(E122) + LA
		(4*H ^ 2 + E 129 ^ 2) ^ 0.5	+P-L
		F34a	(0 0000004*E128*H/D129)*((-E128/D129^2 ~ E128^2/(D129^3*(1+(E128/D129)^2)^0.5))/(E128/D129+(1+(E128/D129)^2)^0.5) - D129/(E128^2(1+(D129/E128)^2)^0.5) + 1/(E128) + 1/(E128/D129)^2)^0.5) + 1/(E128/D129)^0.5) + 1
		(4*H ^ 2 + E132 ^ 2) ^ 0.5	+L
		F 13a	(0.00000004*E131*H/D132)*((- E131/D132^2 - E131^2/(D132^3*(1 + (E131/D132)^2)^0.5))/(E131/D132 + (1 + (E131/D132)^2)^0.5) - D132/(E131^2*(1 + (D132/E131)^2)^0.5) + 1/(E131) + LA
		(4 °H ^ 2 + E135 ^ 2) ^ 0.5	+P
		F14a	(0.0000004*E134*H/D135)*((- E134/D135 ^ 2 - E134 ^ 2/(D135 ^ 3*(1 + (E134/D135) ^ 2) ^ 0.5))/(E134/D135 + (1 + (E134/D135) ^ 2) ^ 0.5) - D135/(E134 ^ 2*(1 + (D135/E134) ^ 2) ^ 0.5) + 1/E134) + LA
		(4*H ^ 2 + E138 ^ 2) ^ 0.5	2°P-L
		F37e	(0.00000004*E137*H/D138)*((-E137/D138^2-E137^2/(D138^3*(1+(E137/D138)^2)^0.5))/(E137/D138+(1+(E137/D138)^2)^0.5)-D138/(E137^2*(1+(D138/E137)^2)^0.5)+1/E137) + LA
		(4°H ^ 2 + E141 ^ 2) ^ 0.5	+P+L
		F108	(0.00000004*E140*H/D141)*((-E140/D141^2-E140^2/(D141^3*(1+(E140/D141)^2)^0.5))/(E140/D141+(1+(E140/D141)^2)^0.5) - D14 ((E140^2*(1+(D141/E140)^2)^0.5) + ((E140) + LA
		(4°H ^ 2 + E144 ^ 2) ^ 0.5	
		F 178	(U,UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
		(4 H 2 + E H47 2) 0.5	2 * 7 × 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5
		(4-H * 2 + E 150 * 2) * 0.5	
		(4°H ^ 2 + E153 C 2) ^ 0.5	
			(0.000000 ° (122 ° () ~ (152 ° () ~ 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° 2 ° (152 ° 2 ° 2 ° 2 ° (152 ° 2 ° 2 ° 2 ° (152 ° 2 ° 2 ° 2 ° (152 ° 2 ° 2 ° 2 ° (152 ° 2 ° 2 ° 2 ° 2 ° (152 ° 2 ° 2 ° 2 ° 2 ° 2 ° (152 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 °
		(4"H ~ 2 + E156 ~ 2) ~ 0.5	
		F58a	(0.0000000+2135*H/0156)*((-2153/D156**2-2155**2(0156**3*(1+(2155/0156**2)*0.5))/(2155/0156+(1+(2155/0156)*2)*0.5)-D150((2155**2*(1+(0156/2155)*2)*0.5)+(/2155) (F588+F580-2*F580)*0.5 2*P+L
		(4"H ^ 2 + E 160 ^ 2) ^ 0.5	а. С
		F26b	(0.0000004*E159*H/D 160}*((-E15WD 160 ^2-E159 ^2/(D 160 ^3*(1+(E159/D 160) ^2) ^0.5))/(E159/D 160 + (1+(E15WD 160) ^2) ^0.5) - D 160/(E159 ^2*(1+(D 160/E159) ^2) ^0.5) + 1/E159) 2*P - L
		(4*H ^ 2 + E 163 ^ 2) ^ 0.5	0
. J		F28c	(0.0000004*E182*H/D 183)*((- E182/D 183 ^2 - E182 ^2/(D 183 ^3*(1 + (E182/D 183) ^2) ^0.5))/(E182/D 183 + (1 + (E182/D 183) ^2) ^0.5) - D 183/(E182 ^2*(1 + (D 183/E182) ^2) ^0.5) + 1/E182) 2*P
		(4"H ^ 2 + E166 ^ 2) ^ 0.5	0
		F28d F28a	(0.0000004*E185*H/D186)*((-E185/D186 ^2 - E185 ^2/(D186 ^3*(1 + (E185/D186) ^2) ^0.5))/(E185/D186 + (1 + (E185/D186) ^2) ^0.5) - D184/(E185 ^2*(1 + (D186/E185) ^2) ^0.5) + 1/E185) (F288 + F28C ~ 2*F28D)*0.5
			+ LT* 1000000 + LLE* 1000000 + LLO* 1000000
Intermediate results, motor i	nductar	109	+ LPP*1000000
transverse inductance per pole pirtch	н	u	+ TU ^ 2*0 0000002*(RG + IGM + RGM)*PGW*@PY I80*(@LN((RG + IGM + RGM)*PGW*@PY I80/RGM/(1 + TU)) + 0.5)
longitudinal inductance per P, even	н	Lie .	· + TU ^ 2*0.000000 1*P*(@UN(F/RGM/(1 + TU/2)) + 0.5)
Iongitudinal Inductance per P, odd	н	Llo	(TU + 1) ^ 2*0.00000005*P*(@LN(P/RGM/(1.5 + TU/2)) + 0.5) + (TU - 1) ^ 2*0.00000005*P*(@LN(P/RGM/(0.5 + TU/2)) + 0.5)
inductance per pole pitch	н	LpP	@IF(@ROUND(TU/2,0) =TU/2,LT + LLE,LT + LLO)
Intermediate Results Super	conduc	tina Weight	
levitation SC volume	m^3	SCI	@PI*RL^2*2*(L+ (RY - INS)*(PVT - PVC)*@PI/180)*NL*NB
motor transverse volume	m ^ 3	SCmt	@PI*RMT^2*6*(RV-NS)*PVC*@PV180*NB
motor longitudinal volume	m ^ 3	SCml	@PI°L"NB*@IF(NL=3,RML^2*8,RML^2*2+RMT^2*4)

4

*

Table G-3. Sidewall null flux spreadsheet.

This spreadsheet assumes two magnet colls per bogie per side.

Operating Parameters	l Inite		Puin soor 11* to get food levitation force velve
*Velocity	m/s	v	134.00
*Vehicle Vertical Position	m	delh	0.02710
*Vehicle Lateral Position	m	delv	+ < <c:\123work\maglev\swnf-g.wk1>>D13 ULLINKED FROM SWNF-G.WK1.</c:\123work\maglev\swnf-g.wk1>
*Lateral Force	N	flat	101920 .26 g's for 134, .18 g's for 89, for worst case comparisons.
		DELY(CALC)	0.00000 This value is used to calculate lift forces. Either use DELY(CALC)=0 or average
			results with + and - some non-zero value.
Vehicle Description			
*Vehicle Weight	kg	Mv	40000
*Vehicle Frontal Area	m^2	Afr	12.164184
*Coefficient of Drag	-	Cd	0.3
-Mechanical Clearance, Vehicle to	Gm	Cmec	0.08
Vahiola Manada			
venicie Magnets		-	
*Magnet Pitch	m ·	۲	1.35
-Magnet Longth	m	н	0.5
Magnet Specing Side to Side	m m		
*Magnet Opacing, Side to Side	Δ	W lec	
*Maximum SC Curent Density	A/m ^ 2	leom	2000000
*Maximum SC B Field	T	Bsom	A
*Superconductor Wire Packing Der	, nsitv	SCPD	
*Superconductor Wire Density	ka/m^3	SCD	8000
*Spacing SC Surface to Vehicle St		ins	0.06
*Technology" Factor		T	5
*Number of Bogies		nb	4
Number of SC Coils per Bogie, eac	h side	nsc	2
Radius of superconductor cable		Rsc	@IF(4.000000E-14*JSCM*ISC*@PI*SCPD>BSCM^2.0.0000002*ISC/BSCM.(ISC/@PI/JSCM/SCPD)^0.5)
			·
Sidewall Levitation Coil	S		
*Coil Pitch	m	С	0.9
Coil Length	m	B	+ C-2*RLC-0.02
*Half Height	m	Α ·	0.4
*Half Inner Spacing	m	D	0.1
*side-to-side spacing	m	E	3.2
*Coil Conductor Radius	m	Ric	0.028
*Coil Conductivity	A/V/m	cic	3700000
*Coil Density	kg/m ^ 3	dlc	2700
*winding efficiency (lev. & guid.)		gcwe	0.75
Sidewall Guidance Coil	S		
*Coil Pitch	m	CG	+C
*Coil Length	m	BG	+CG-2*RGC-0.02 ,
*Half Height	m	AG	+ H/2
*Coil Conductor Radius	m	Rgc	0.02
*Coil Conductivity	A/V/m^2	cgc	3700000
Coil Density	kg/m ^ 3	dgc	2700
**Lateral Spacing	m	Eg	+EP+RPW+RGC+0.01
Motor		•	
Winding Pitch (same as vehicle ma	gnet pitch)		+P
Winding Half Height	កា	Ap	0.35
"Number of Turns per Phase		nt	6
"Number of Phases		np	3
*Radius of Conductor	m	15	0.015
	m	LD	1000
Lateral Spacing	m m	ch ch	TETRLOTRFWTU.UI
ansulation spacing between turns	m	51 0-	
Aconductivity	m A/0/#mm)	38	
*density	rv(v = m) ka/m ≏ 2	dow	37000000 3700
density	kg/m 3	apw	2700
Calculated Barameters			
	14/	Baare	
Melodynamic Urag Power	vv ka	Paero	
Meter Constant		Kmat	
Motor Besistance per Block	V/A	Bmot '	T < < C./I23WORNMAGLEV/SWNF − F.WRIZZDIZ IIIIIIKU IIOII SWNF − F.WRI DisNT*/DisADISDIA DISE ID/SDIADDW/ > 2/CPW
Motor Inductance per Block	H H	Lblock	
Motor Open Circuit Voltage per Pha	wms	LDIOOK	+ KMOT*V
Motor Losses	W		+IMOT^2*RMOT*NP
Motor Reactive VA	VA		+NP*LBLOCK*V*@PI/P*IMOT^2
Lift Force	N		@SUM(E234.E1234)*2*NB*DELT*V/C
Drag Force	N	FD	@SUM(F234F734)*2*NB*DELT*V/C
Lift/Drag (no guidance forces)			+ D76/FD
Lift Losses	w		+FD*V
Lateral guidance force	N		+ < < C:\123WORK\MAGLEV\SWNF-G.WK1>>D187!!! linked from SWNF-G.WK1
Lateral Losses	w	Plat	+ < < C:\123WORK\MAGLEV\SWNF~G.WK1>>D189!!! linked from SWNF-G.WK1
Passenger Compartment 8 Field	Gauss		
Guideway Levitation Aluminum	kg/m		4*(A+B-D)*@PI*RLC^2*DLC/C*2*GCWE
Guideway Guidance Aluminum	kg/m		4*(BG+2*AG)*@PI*RGC^2*DGC*GCWE/C
Guideway Propulsion Alumnium	kg/m		2*NP*NT*(P+2*AP*1.3)*@PI*RPW^2*DPW/P
Motor Current	A	Imot	((PAERO+PLAT)/V+FD)/KMOT/NP
Venicle width	m		+ W+2*HSC+2*INS
Maximum Uynamic Breaking	g u		+ KMU **2 * Y/2/@PT/LBLUUK/MV/9.8
r milary Natural Prequency	mz –		(\$.0/UELN) V.3/2/@F1

Motor inductance per block formula: 0.0000002*(2*\$AP*(@LN(4*\$AP/(2*(\$NT+1)*\$RPW+(\$NT-1)*\$SI))+0.4978)+(\$P+0.3)/2*(@LN(2*(\$P+0.3)/((\$NT+2)*\$RPW+(\$NT/2-1)*\$SI))+0.4978))*\$NT^2*\$LB/\$P

Table G-3. Sidewall null flux spreadsheet. (Cont.)

Sidewall Levitation Coil In- L11 + L33 + L55 + L77	ductance	Lec	@SUM(2102_2113) 6.0000032* A~231(@UM 6.0000032*3*1@UM5/9	(2° (A-3) (A, 5) - 0, 75)					
2* (M15 + M37) 2* (M13 + M57)	i a		-0 00000 02" (A-E) * (@1	·A;+0*@LN(2*D) - (A+D)*@LN _N((A→D)/B+(1+((A→D)/B) ^ 2;	(A+O)) ^C5)-(1+(B/(A−D))^2) ^Q	5+B/(A-D))			
2 * (M17 + M35)	н	2*A*(@L*(0 10 - 10 - 10 - 10 - 2 - 10 - 2 - 10 - 2 - 10	+ C109) 5) - (1 + (B/2/A) ^ 2) ^ 0 5 + B/2/A	<u>a</u>				
		-2"(A+D)	(@LN((A+D) 9+(*+(A+C) (@LN((A+D) 9+(*+(A+C)	15) - (1 + (5/20) ^ 2) ^ 0 5 + B/2/L))/B) ^ 2) ^ 0 5) - (1 + (B/(A + D)) ^)/B - 0) + (1 + 29/(A - D)) ^ 2 0 0 5	D) (2) ^ 0 5 + B/(A + D)) (- (1 + ((A - D) P) ^ 3 ^ 0 5 + ((-0.9			•
2* (M2E + M46) 2* (M2E + M46) 2* M26	L I I		-0 000000P*8*(@LN(8/2) 0 000000**9*(@LN(8/2)	(A+D)+(1+(B/(A+D))^2)^0.5) (A+(1+(B/2/A)^2)^0.5)-(1+2)	-(1-((A+D)/B) ^2 ^0.5+(/ *A/B) ^2) ^0.5+2*A/B)	+D]/8)			
2 * M46	н		0 000000-**9*(@LN(9/2	10 + (1 + (8/2/0) ^ 2) ^ 0.5) - (1 + Ø	?*0/8) ^ 2) ^ C 5 + 2*0/8)				
Sidewall Levitation Coll Relations adewall time constant L/R	• V/A		+UCRSL	ACTCACAGE					
Sidewall - Vehicle Mutual I Vertical Pairs	nductance	•			Horizontal	Paint		n d	
Mitta b	Дv Дv	- \$142 + \$142	+ SUG-Z.V + (32/2-5W) + ZUV-Z.G-+01	2 +LE*@UN(LE0.00000001*(F12) +D121*@UN(D121/E121+(14)	0+F121-R422 stv D121-2/E121-20 twv	+ \$P/2+5 + \$P/2-5	1/2 + XPIG + EP	49 -{(\$€/2+\$C 19-+ 14120	E+L120*@U% 0000001*(N120+N121-N122-N123) +L121*@U%L121/M121+(1+L121 ^2/M121 ^2) ^0.5)-(L121 ^2+M121 ^2) ^0.5+M121
c đ	XV 20	500 + 50/2	+SUG-ZUV-+E121 +ZLG-ZUV++E122	+D122*@LN(D122/E122+(1+ +D123*@LN(D123/E123+(1+	D122^2/E122^2/2/20	+\$4/2 +\$8/2	+XAG+ER +XLG+ER	¥A-+ ¥121 A-+¥122	+L122*@L+&122/M122+(1+L122*2/M122*2)*0.5)=(L122*2+M122*2)*0.5+M122 +L123*@L+&123/M123+(1+L123*2/M123*2)*0.5)=(L123*2+M123*2)*0.5+M123
M13	2003 · 2003 ·	+\$8/2 -\$11/2	+C130-C128/95/2-9W	2 +D125*@UN0.0000001*/F126	20 29 3+F127-RM24 x7v	+ SA + XLV	+L120	(GE/2+\$0	E + L126*@L+C 0000001*(N126 + N127 - N128 - N129)* - 1
	AIV EV	+ 5H/2 (\$P+ 5L)/2	+C127-C12+E126 +C130-C12:+E127	+D127*@LN(D127/E127+(1+ +D128*@LN(D126/E128+(1+	D127 2/E127 2 10V	+XRV +ZV	+L121 +L122	+ M126 + M127	+L127~@_W(_127M127+(1+L127^2/M127^2)^0)-(L127^2+M127^2)^05+M127 +L128~@LW(_128M128+(1+L128^2/M128^2)^0.5)-(L128^2+M128^2)^0.5+M128
	ಶರ್ ಶುರ	+\$D +\$A	+C129C121-E128	+D123*@LN(D123/E123+(1+	D129*2/E129*2/*10g	- \$8/2	+1123	+ 14128	+L123*@/L%(L123MV129+(1+L129^2/M129^2)^0.5)-(L129^2+M129^2)^0.5+M129
M15	RG ZV DIV	- \$51/2 - \$11/2	+C135-C134(3E/2-\$W/ +C133-C134+F132	2 - D132*@UN0.0000001*(F134 + D133*@UN0D133/E133+01+	2+F133-FM25 x/v D133^2/E133^2/hwv	+K126 +K127	+L120 +L121	((\$12.4 \$2) + 14132	€+L132*@L*C2000001*(N132+N133-N134-N135)*-1 +L133*@L%L133M133+(1+L133*2M133*2}∩0.5)-(L133*2+M133*2)*0.5+M133
	xv zo	(SP+ SL)/2 -SA	+C136-C13+E133 +C136-C13+E134	+D134"@LN(D134/E134+(1+ +D135"@LN(D135/E135+(1+	D134^2/E134^2/12V D135^2/E135^2/140	+K128 +\$8/2	+L122 +L123	+ M133 + M134	+L134*@L%L134W134+(1+L134^2/M134^2)^0.5-(L134^2+M134^2)^0.5+M134 +L135*@L%L135M135+(1+L135^2/M135^2)^0.5-(L135^2+M135^2)^0.5+M135
	2.g xg	-\$0 •\$8/2			2 3 24	- \$8/2 - \$0			
¥17	ZIV ZUV	-\$H/2 +\$H/2	+C142-C13((\$E/2-\$W) +C139-C14+E139	2 + D139*@LN0.0000001*(F138 + D139*@LN(D139/E139+(1+	9+F139-RM28 XV D139^2/E139^2/****	+K132 +K133	+L120 +L121	((\$E/2+\$E) + M138 + M129	E+L138*@2,℃30000001*(M139+A139-A1140-M141) +L139*@1.∿C:39M139+(1+L139*2/M139-2)^0.05-(L139*2+M139*2)^0.05+M139 -L140*∞5-41400440-(4+L10+224(4+23+0)5-(140+22+4140+23+0)5+M140
	zig Aug	-5A -50	+0141-013+6140	+D141*@LN(D141/E141+(1+	D141 *2/E141 *2)*140	+\$8/2	+L123	+ M1 40	+L141*@L\[14]/M141+(1+L141 ^2/M141 ^2)^L3-L3-L141 ^2+M141 ^2)^L3+M141
r M31	xg zv	- \$8/2	+0148-014(192/2-54)	2 +D144*@LN0 0000001*(F144	2g 1+F145-RM42 XV	~ SA +K139	+L120	((\$E/2+\$D	€+L144°@_*C 2000001*(N144+N145-N146-N147)*-1
	ZUV RV	+\$H/2 +\$P/2-\$L/	+C145-C14-E144 2 +C148-C14+E145	+D145*@LN(D145/E145+(1+ +D146*@LN(D146/E146+(1+	D145^2/E145^2/149	+K139 -\$H/2	+L121 +L122	+ M144 + M145	+L145*@L%L145M145+(1+L145*2M145*2)*0.5)=(L145*2+M145*2)*0.5+M145 +L146*@L%L146M146+(1+L146*2M146*2)*0.5)=(L146*2+M146*2)*0.5+M146
	20g Zug	• 5D • 54	+C147-C14+E146	+0147*@LN(0147/E147+(1+	D147^2E147^2)^149	+XLG +XPG	+L123	+ 14146	+L147*@C4C;47/M147+(1+L147~2/M147~2)~05)-(L147~2+M147~2)~05+M147
M30	2V ZV	-\$HV2	+C154-C154(SE/2-SW)	2 +0150*@LN0.0000001*(F150 +0151*@LN0.151/F151+(1+)+F151-R444 21V D151-2/F151-22-11/24	+K144 +K145	+L120 +L121	((\$E/2+\$D + M150	E+L150*@U% 0000001*(N150+N151-N152-N153) +L151*@U%_151/M151+(1+L151^2/M151^20_0.5)-/L151^2+M151^20_0.5+M151
	av do	+\$P/2-\$L/2 +\$D	2 +C154-C15 +E151 +C153-C154-E152	+D152*@LN(D152/E152+(1+ +D153*@LN(D153/E153+(1+	0152^2/E152^2/tw 0153^2/E153^2/1/wg	+K146 +K129	+L122 +L123	+ M151 + M152	+L152*QL4(L152/M152+(1+L152*2/M152*2)*0.5)+(L152*2+M152*2)*0.5+M152 +L153*QL4(L153/M153+(1+L153*2/M153*2)*0.5)+(L153*2+M153*2)*0.5+M153
	209 X9	•\$A -\$8/2			10 20	+K130 +K131			·
M35	ztv zuv	- \$HV2 + \$H/2	+C160-C154(SE/2-SW) +C157-C154+E156	2 +D156*@LN0 0000001*(F156 +D157*@LN(D157/E157+(1+	0157 - 2/E157 - 2/ 16V	+K150 +K151	+L120 +L121	((SE/2+SD + M156	E+L156*@↓\$_3000001*{N155+N157+N159=N159 +L157*@↓\$L1577M157+(1+L157 ^ 2M157 ^ 2 ^ 0.5)=(L157 ^ 2+M157 ^ 2) ^ 0.5+M157 -L150*G+A1550M157+(1+L157 ^ 2M157 ^ 2 ^ 0.5)=(L157 ^ 2+M157 ^ 2) ^ 0.5+M157
	zg	- 54 - 54 - 57	+C159C15(+E159	+D159*@LN(D159/E159+(1+	D159*2/E159*2]*kdg	+K135 +K135	+L123	+ 14158	+L159*@LN(L159)M159+(1+L159*2/M159*2)*0.5)-(L159*2+M159*2)*0.5+M159
M37	xg tv	+ \$8/2 - \$4/2	+C166-C164(5E/2-SW/	2 + D152*@LN0.0000001*F162	20) 2+F163-FM-49 x/v	+K137 +K156	+L120	((SE/2+SO	E+L162*@L10 0000001*(N162+N163-N164-N165)*-1
	ZJIV KV	+\$H/2 +\$P/2-\$L/2	+C163-C16+E162 +C166-C16+E163	+D163*@LN(D163/E163+(1+ +D164*@LN(D164/E164+(1+	D16912/E16912/1169 D16412/E16412/1169	+K157 +K158	+L121 +L122	+ M162 + M163	+L163*@L4(L163/M163+(1+L163*2/M163*2)*0.5)=(L163*2+M163*2)*0.5+M163 +L164*@L4(L164/M164+(1+L164*2/M164*2)*0.5)=(L164*2+M164*2)*0.5+M164
	ಶಂದ ಶುರ	-5A -5D	+C155-C155+E184	+D155*@LN(D165/E165+(1+	D165^2/E165^2)^Wg	+K141 +K142	+L123	+ M164	+(165°@~4/L165/M166+(1+L165^2/M166°2)^05)-(L165^2+M166°2)^05+M166
M51 ⁴	xg zv	- 8H/S	+C172-C16((SE/2-SW)	2 +D168*@LN0.0000001*(F166	ag 3+F169−RM62 xtv D169=251695235tev	-SP/2+S	/2 +K172+EP	R+14120	+L166*@_*\$0000001*(N168+N169-N170-N171)*-1 ↓155*@_N150000001*(N168+N169-20170-N171)*-1
	xv xv	-\$P/2+\$L/2	+C172-C10+E109	+D170*@LN(D170/E170+(1+	0170-2/E170-22-0W	+\$H/2 +X0G	+K172+EF	R + M122	+L170*@L4(C17004170+(1+L170*204170*2)*C5)-(C170*2+M170*2)*C5+M170 +L171*@L4C17104171+(1+L171*2)/M171*2]*C5)-(C171*2+M171*2)*C5+M171
	20.9 Rg	+ 5A + 58/2			279 20	+ X9G + 2G			
M53	£v ∆v	- \$H/2 + \$H/2	+C178-C174(195/2-\$W/ +C175-C17.+E174	2 +D174*@LN0.0000001*(F174 +D175*@LN(D175/E175+(1+	0175-2/E175-23 117V	+K189 +K189	+L168 +L169	+ M126 + M127	+L174*@L*20000001*(N174+N175-N176-N177) +L175*@L*(L175M175+(1+L175*2M175*2)*0.5)-(L175*2+M175*2)*0.5+M175
	50 50	-\$P/2+\$L/2 +\$D	+C178-C17+E175 +C177-C17+E176	+D175"@LN(D175/E175+(1+ +D177"@LN(D177/E177+(1+	0176~2/E176~2)~6W 0177~2/E177~2)~16g	+K170 +K129	+L170 +L171	+ M128 + M129	+L175*@L4L176M176+(1+L176*2M176*2)*U3)=(L176*2+M176*2)*U3+ +L177*@L4L177/M177+(1+L177*2/M177*2)*05)=(L177*2+M177*2)*05+M177
M55	xg Av	-\$8/2	+C194-C18((SE/2-SW)	2 +D160*@LN0.0000001*(F160	20 20 0+F181R486 x/v	+K131 +K168	+L168	+ M132	+L180"@"."0.000000" "(N180+N181-N182-N183)
	ъrv xv	+ \$H/2 - \$P/2+ \$L/2	+C181-C164-E180 2 +C184-C18 +E181	+D181*@LN(D181/E181+(1+ +D182*@LN(D182/E182+(1+	D161 ^2/E161 ^2) ^1ev D162 ^2/E162 ^2) ^ tev	+K169 +K170	+L169 +L170	+ M180 + M181	+L191*@L4(L191/M191+(1+L191^2/M191^2)^0.5)-(L191^2+M191^2)^0.5+M191 +L192*@L4(L182/M192+(1+L192^2/M192^2)^0.5)-(L192^2+M192^2)^0.5+M192
	ಸಂ ಶುರ	-5A -5D	+C163-C181+E162	+D163*@LN(D163/E163+(1+	D160^2/E160^2/1409	+K135 +K135	+L171	+ 14162	+L180*@c4(c183/M183+(1+L180*2/M180*2)*05)-(c183*2+M183*2)*05+M183
M57	xg zv	+30/2 -\$HV2 +\$H/2	+C190-C188(SE/2-SW/	2 + D186*@LN0.0000001*(F186 + D187*@LN0.0000001*(F186	202 + F187 - FM68 x7V - 0187 ^ 2/F187 ^ 2/ ^ 167V	+K169 +K169	+L168 +L169	+ M108 + M186	+L186*@L*0.0000001*(N185+N187=N188=N189)*=1 +L187*@L*CL187/M187+(1+L187*2/M187*2)*0.5\=(L187*2+M187*2)*0.5+M187
	xv zo	-\$P/2+8./	+C190-C18-E187 +C189-C18+E188	+D188*@LN(D188/E188+(1+ +D189*@LN(D189/E189+(1+	D166^2/E166^2) *2v D166^2/E169^2) *2v	+#(170	+L170 +L171	+ M187 + M188	+L188*@4(1887A188+(1+L186*2/M188*2)^0.5)-(L189*2+M188*2)^0.5+M188 +L189*@4(189/M189+(1+L189*2/M188*2)^0.5)-(L189*2+M188*2)^0.5+M188
	20.g xg	-90 -98/2			#13 Ag	+K142 +K149			
M71	đv Zvv	-942 +94/2	+C195-C194((3E/2-SW/ +C193-C197+E192	2 +D192*@LN0.0000001*(F192 +D193*@LN(D193/E193+(1+	0193-2/E193-2) 1wv	+K169 +K169	+L168 +L169	+ M144 + M192	+L192*@.v0.00000001;*(N192+N193-N194-N195) +L193*@.v.(193/W193+(1+L193 * 2/M193 * 2) * 0.5) - ((193 * 2+M193 * 2) * 0.5+M193 -L193*@.v.(193 * 2) * 0.5+M193 * 2/M193 * 2) * 0.5) - ((193 * 2+M193 * 2) * 0.5+M193
	xv Xg	-972-9./2 +9D	+C195-C194-E194	+D196*@LN(D196/E195+(1+	D195*2/E195*2)*Wg	- 341/2 + XLG	+L171	+ M194	+L195*@L4(L195/W195+(1+L195^2/M195*2)^0.5)-(L195*2+M195*2)^0.5+M195
1170	20g X9	+\$8/2 -\$9/2	. CORO - C1 ON NEL 10 - KM/	2 • F198*@LND 0000001*/F198	20 20 14F100-Bañal 21v	+ZG	+1169	+ M150	▲1.198* 54 YC 0000001*(N199 + N199 - N200 - N201)* - 1
	2UV TV	+\$H/2 -\$P/2-\$L/2	+C199-C20 +E198 +C202-C192+E199	+D199*@LN(D199/E199+(1+ +D200*@LN(D200/E200+(1+	D199 2/E199 21 1km D200 2/E200 2 1km	+K193 +K194	+L169 +L170	+ M198 + M199	+L199*©LNL199W199+(1+L199*2W199*2)*05)-(L199*2+W199*2)*05+W199 +L200*©LNL200W200+(1+L200*2W200*2)*05)-(L200*2+W200*2)*05+W200
	ಸಂ ಸುಂ	• 5D • 5A	+C201-C19+E200	+D201*@LN(D201/E201+(1+	D201 ^2/E201 ^2) ^bdg 179	+K129 +K130	+L171	+ M200	+L201+@_4(_201/M201+(1+L201^2/M201^2;^0.5)-(L201^2+M201^2;^0.5+M201
M75	xg ziv	-\$8/2	+ C208 C20((SE/2-SW/	2 +020**@LN0.0000001*(F204	20 +F205-R486 x7v	+K(13) +K(192	+L168	+ M155	+L204*@_% 00000001*(N204+N205=N206=N207)*=1
	20V XV X0	- \$P/2 - \$L/2	+C205-C20+E204 +C206-C20+E205 +C207-C20+E205	+0205*@LN(0205/E205+(1+ +0206*@LN(0205/E205+(1+ +0207*@LN(0205/E207+(1+	0205 2/E205 2) 104 0205 2/E205 2) 124 0207 2/E207 23 144	+K194 +K125	+L170 +L171	+ M205	+L205*@L*(L205/k205+(1+L205*2/M205*2);0.5)-(L205*2+M205*2);0.5+M205 +L205*@L*(L205/k205+(1+L205*2/M205*2);0.5)-(L205*2+M205*2);0.5+M205 +L207*@L*(L207/k207+(1+L205*2/M207*2);0.5)-(L205*2+M205*2);0.5+M205
	20g 10g	- 50			20 20 20 20 20 20 20 20 20 20 20 20 20 2	+K138 +K137			
M77	2V ENV	-\$HV2 +\$H/2	+C214-C214(9E/2-5W/ +C211-C21:+E210	2"+D210*@LN0.0000001*(F210 +D213*@LN(D211/E211+(1+	+F211-R486 xV D211^2/E211^2)^kvv	+K192 +K193	+L169 +L169	+ M162 + M210	+L210*@L*C 0000001*(N210+N211-N212-N213) +L211*@L*(L211/N211+(1+L211-2/N211-23-0.5)-(L211-2+M211-23-0.5+M211
	RV ZQ	-92/2-91/2 -94	+C214-C21+E211 +C213-C211+E212	+D212*@LN(D212/E212+(1+ +D213*@LN(D213/E213+(1+	D212^2/E212^2/ 04 D213^2/E213^2/ 149	+K194 +K141	+L170 +L171	+ M211 + M212	+L212*@L%(L212)W212+(1+L212*2)M212*2;*05)=(L212*2+M212*2;*05+M212 +L213*@L%(L212)W213+(1+L213*2)M213*2;*05)=(L213*2+M213*2;*05+M213
	20 G	-\$8/2		• •	20 20	+K149			
Parameters for Levitation (Siculation							Levitatio	n Macro (named 11)
* step size initial position (< 0)	m m	xatep xstert	0.02 -XSTEP*ENDSTEP			Initial con	10 One		{iet (gp.0) {iet mygp.0}
 increment for calculating dM/dz arep counter 	m	dz step	0.001 251	+XSTEPN		lor, do lo	xp		{ dit_t_xxxxx==xxxxxx}? { dit_xxxxx==xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
time for a step		endstep delt	250 +XSTEP/V	check.		calculate calculate	oslike Vag column		{}iei minit e +=enitgifen asiap +1}*(@var(az.9+ a1z50) +@avg(az34, d1z50) * 22] ⁻² /d235 =1236, 1733 * /w1236, 1733 * 1236 **
bleakions GricewsA-repicte M Reinsaat - Aeucle W tot cruset at	H	www.j Wwgpo ka	330E-13 (MVGP-MVGt+C-DC	xaanni a rroost+.5Lfri2 +Rt≏2*D⊟,1+0 L'sum drad*v*nt=	734 ^ 2/2"LLC	increment	8	loop	{iet x, x → xs/eD} ~~
		lgp dMvg/gz	-696.8982 (MVG-WVGP)/DZ	@SUM(F234.F7	34)*V*DELT	put mutua put guide	l inductance in vay current in t	tuble able	(put lev_table.0,step + endstep.Mvg) (put lev_table.2,step + endstep.tg)
lift to drag rateo		RI^2	2398698.0 @SUM(E234			Store Curr	ent Mvg as prev ent Ig as preveo		(ist Mage Mag) (ist galig)
intermediate results table	Mv	dMvg/da	t kg Fill	t drag	time	put dWdz	wight a simali d In table I table		(as contrastin + G2) = (put les jacols), siec + endsteb, diwgrd2) (put les jacols), siec + endsteb, diwgrd2)
lev-tabi The table continues for 500 room	 -3.30E-10 -3.41E-10 -3.51E-10 	9 -123E-11 3 -126E-11 3 -127E **	0.1603216 0.0000011 0.1636121 0.0000011	5 5 - (8235 - 823 1.0000138 7 0.0000000 0.0000149	-0.0499 -0.0498	retum heij	the second		(lot.commax-raid, 2009) + Britizalopi, = ແລະ ເຊີຍະ ເດຍອຍູເດຂີ) { ot.com, =
the state former	-3.60E~10	3 -1 30E-11 9 -1 30E-11	0.1705374 0.0000011 0.1741905 0.0000011	a 0000000 0 00000152 a 00000000 0.0000175	-0.0494				
	-3.60E-10	3 -1.40E-11 3 -1.44E-11	01779502 0000011 01616508 0000002	a 0000000 0.0000190 a 0000000 0.0000207	~0.049 ~0.0498				
	-4.11E-13 -4.23E-13	9 -1.482-11 3 -1.522-11 9 -1.568-11	0.1900653 0.000002 0.1900653 0.000002	4 0.0000000 0.0000245	-0.0462				

25 - 12 - 1

, ¢

Table G-3. Sidewall null flux spreadsheet. (Cont.)

Miscelleneous Calculatio Guidance Coil Inductance Vs/A (inductance of a connected pair)	Lgc L1 L2 M 13 M24	(D89 + D90 - D91 - D92)*4 0.0000002*8G*(@LN2* 0.000004*AG*(@LN(4* 0.0000002*(2*AG*@LN(0.0000002*(8G*@LN(6)	4 BG;RGC) – 0.75) AG;RGC) – 0.75) ⁷ AG;BG (1 + (2*AG/BG) ^ 2) [^] 0 5) – (4*AG ^ 2 + B 3 2*AG;H (1 + (BG/2/AG) ^ 2) ^ 0 5) – (4*AG ^ 2 + BG ^	G ^ 2) ^ 0 5 + BG) `2) ^ 0.5 + 2*AG)
Guidance Coil Resistance V/A (resistance of a connected pair)	Rg	4*(2*AG+BG)/@PI/RGC	^ 2/CLC/GCWE	
guidance coil time constans		+ LGC/RG		
Mutual Inductance Calcu Vertical pairs	lations		ha Da	
venical pairs	Yv - (P+1)/2	Yo - BG/2	Le DX - 7GU + SDEL(((SEG - SW) + LE) ⊙LN/(0.000000.01)	(1101+1102-1103-1104)
	Zvu + H/2	Zgu + AG	+ ZVU - ZGL-+ DX + F 102*@LN(F 102/G 10	2 + (1 + (F102/G102) ^2) ^0.5) - (F102 ^2 + G102 ^2) ^0.5 + G102
	Zvi - H/2	Zgi – AG	+ ZVL - ZGL -+ G 102 + F 103*@LN(F 103/G 10. + ZGU + \$DEL+ G 103 + F 104*@LN(F 104/G 10.	3 + (1 + (F 103/G 103) ^2) ^ 0.5) - (F 105 ^ 2 + G 103 ^ 2) ^ 0.5 + G 103 4 + (1 + (F 104/G 104) ^ 2) ^ 0.5) - (F 104 ^ 2 + G 104 ^ 2) ^ 0.5 + G 104
M 13	.Xv + XV	Xg – XG	+ E106 + \$DEK((\$EG - \$W)+ F105*@L10.0000001*	(H105 + H106 - H107 - H108)* - 1
	Zvu + ZVU Zvi + ZVL	Zgu + ZGU Zgi + ZGL	+ C108 - E107+G105 + F108*@LN(F106/G10 + C107 - E107+G108 + F107*@LN(F107/G10	6+ (1+ (F105/G106) ^2) ^0.5) - (F105 ^2+ G106 ^2) ^0.5+ G106 7+ (1+ (F107/G107) ^2) ^0.5) - (F107 ^2+ G107 ^2) ^0.5+ G107
1121	YH - /B - 11/2	Ya - 5105	• E106 + \$DEI + G107 + F108*@LN(F108/G10) • E110 + \$DEV/(\$EG = \$V0 + E108*@LD 0000001*)	8 + (1 + (F108/G106) ^ 2) ^ 0.5) - (F108 ^ 2 + G108 ^ 2) ^ 0.5 + G108 - (H108 + H110 - H111 - H112) + - 1
mol	Zvu + C 106	Zau + E106	+ C110 - E11'+ G109 + F110*@LN(F110/G11	0 + (1 + (F1 10/G1 10) ^2) ^0.5) - (F1 10 ^ 2 + G1 10 ^ 2) ^ 0.5 + G1 10
	Zvl + C 107	Zgl + E107	+ C111-E11+G110 + F111*@LN(F111/G11 + E110+\$DEI+G111 + F112*@LN(F112/G11	1+ (1+ (F111/G111) ^2) ^0.5) - (F111 ^2+ G111 ^2) ^0.5+ G111 2+ (1+ (F112/G112) ^2) ^0.5) - (F112 ^2+ G112 ^2) ^0.5+ G112
M33	Xv + C 109	Xg - E109	+ E114+\$DEK((\$EG-\$W)+F113*@L0.0000001*	(H113+H114-H115-H116)
	Zvu + C 1 10	Zou + E110	+ C114-E111+G113 + F114*@LN(F114/G11	4 + (1 + (F114/G114) ^2) ^0.5) - (F114 ^2 + G114 ^2) ^0.5 + G114
	241 + 6111	ZGI + E111	+ G115 - E112+ G114 + F115*@LN(F115/G112 + E114+ SDEI+ G115 + F116*@LN(F116/G112	5 + (1 + (F115/G115) *2) *0.5) + (F115 *2 + G115 * 2) *0.5 + G115 6 + (1 + (F116/G116) *2) *0.5) - (F116 *2 + G116 * 2) *0.5 + G116
M51	Xv (P - L)/2	Xg - £113	+ E118+ \$DET((\$EG - \$W)+ F117*@LI0.0000001*	(H117+H118-H119-H120)*-1
	Zvu + C 1 14	Zgu + E114	+ C118-E115+G117 + F118*@LN(F118/G11	8+(1+(F118/G118)^2)^0.5)-(F118^2+G118^2)^0.5+G118
	Zvl + C 1 15	Zgl + E115	+ C119-E115+G118 + F119*@LN(F119/G11	9+(1+(F119/G119)^2)^0.5)-(F119^2+G119^2)^0.5+G119
		N. 5443	+ E118+\$DEI+G119 + F120*@LN(F120/G120	0 + (1 + (F120/G120) ^2) ^0.5) - (F120 ^2 + G120 ^2) ^0.5 + G120
M53	XV + C117	Ag - E11/ Zou - E118	+ E122+ SUEI((SEG - SW)+ F121*@C0.0000001*)	(m 12 1 + m 122 - m 123 - m 124) 2 + (1 + (E 122/G 122) ^ 2) ^ 2 (0 5) - (E 122 ^ 2 + G 122 ^ 2) ^ 0 (5 + G 122 -
	Zvi + C119	Zol + E119	+ C123 - E122+ G122 + F123*@LN(F123/G12	3 + (1 + (F 123/G 123) ^2) ^0.5) - (F 123 ^ 2 + G 123 ^ 2) ^ 0.5 + G 123
		-•	+ E122+\$DEI+ G123 + F124*@LN(F124/G124	4 + (1 + (F 124/G 124) ^2) ^0.5) - (F 124 ^2 + G 124 ^2) ^0.5 + G 124
M71	Xv (P+L)/2	Xg - E121	+ E126+\$DEK((\$EG-\$W)+F125*@L10.0000001*)	(H125 + H126 - H127 - H128)
	Zvu + C 122	Zgu + E122 Zol - E123	• C 126 - E 127+ G 125 + F 125*@LN(F 126/G 12) • C 127 - E 127+ G 126 + E 1273@LN(E 127/G 12)	5 + (1 + (F 125/G 125) ^2) ^0.5) - (F 125 ^ 2 + G 125 ^ 2) ^ 0.5 + G 125 7 + (1 + (F 127/G 127) ^2) ^0.5 = (F 125 ^ 2 + G 127 ^ 2) ^ 0.5 + G 127
	241 + 0 123	291 + 6123	+ E126 + SDEI+ G127 + F128*@LN(F128/G12)	8 + (1 + (F 128/G 128) ^2) ^0.5) - (F 128 ^ 2 + G 128 ^ 2) ^0.5 + G 128
M73	Xv + C 125	Xg - E125	+ E130 + \$DEI((\$EG - \$W)+ F129*@L10.0000001*	(H129 + H130 - H131 - H132)* - 1
•	Zvu + C 126	Zgu + E 126	+ C130 - E13'+ G129 + F130*@LN(F130/G130	0 + (1 + (F 130/G 130) ^2) ^0.5) - (F 130 ^2 + G 130 ^2) ^0.5 + G 130
	ZVI + C 127	Zgi + E 127	+ C131 - E13'+ C130 + F131"@LN(F131/C13	1 + (1 + (F 13 1/G 13 1) *2) *0.5) - (F 13 1 * 2 + G 13 1 * 2) * 0.5 + G 13 1 2 + (1 + /F 13 2/G 13 2) *2) *0.5) - (F 13 2 * 2 + G 13 2 * 2) * 0.5 + G 13 2
Horizontal pairs				
M22	Xvi - (P + L)/2	Xgl - BG/2	+ \$X + XGR ~ X(\$DELH + Z+ F 134*@L10.0000001*((H134 + H135 - H136 - H137)
	Xvr - (P-L)/2	Xgr + BG/2	- \$X + XGL - X+ G134 + F135*@LN(F135/G13	5 + (1 + (F135/G135) ^2) ^0.5) - (F135 ^2 + G135 ^2) ^0.5 + G135
	Zv + H/2	Zg + AG	+ \$X + XGL - X+ G135 + F136*@LN(F136/G130	8 + (1 + (F136/G136) ^2) ^0.5) - (F136 ^2 + G136 ^2) ^0.5 + G136
N24	V (1 + V)(1		+ \$X + XGH - 2 + G136 + F137*@LN(F137/G13;	7 + (1 + (F 137/G 137) ~ 2) ~ 0.5) - (F 137 ~ 2 + G 137 ~ 2) ~ 0.5 + G 137 (H 138 + H 199 - H 140 - H 14 1) = 1
m24	Xvr + XVR	Xar + XGR	+\$X+E138-+G138 +F139*@LN(F139/G13)	P + (1 + (F139/G139) ^2) ^0.5) - (F139 ^ 2 + G139 ^ 2) ^ 0.5 + G139
	Zv + ZV	Zg – ZG	+ \$X+ E138 - + G139 + F140*@LN(F140/G140	0 + (1 + (F 140/G 140) ^2) ^0.5) - (F 140 ^2 + G 140 ^2) ^0.5 + G 140
		_	+ \$X+ E139-+G140 + F141*@LN(F141/G14	1+(1+(F141/G141)^2)^0.5)-(F141^2+G141^2)^0.5+G141
M42	Xvi + C138	Xgi + E138	+ \$X + E143 - ((\$DELH + E + F142*@L10.00000001*)	(H142 + H143 - H144 - H145)* - 1 2 - (1 - (E142)(C142) (C2) (C2) (C142 (C2) (C142 (C2)) (C2) (C142 (C2))
	ZV = C 140	Agr + E139 Zn - E140	+ \$X + E142 - + G142 + F143*@LN(F143/G14	$3 + (1 + (F 143/G 143)^{-2}) = (0.5) - (F 143^{-2} + G 143^{-2}) = (0.5 + G 143^{-1})$ $4 + (1 + (F 144/G 144)^{-2}) = (0.5) - (F 144^{-2} + G 144^{-2}) = (0.5 + G 144^{-1})$
	21 0140		+\$X+E143-+G144 +F145*@LN(F145/G14	5+ (1+ (F145/G145) ^2) ^0.5) - (F145 ^2+G145 ^2) ^0.5+G145
M44	Xvi + C 142	Xgl + E142	+ \$X+ E147 - ((\$DELH+E+F146*@L10.0000001*)	(H146 + H147 H148 H149)
	Xvr + C 143	Xgr + E143	+\$X+E146-+G146 +F147*@LN(F147/G14	7 + (1 + (F147/G147) ^2) ^0.5) - (F147 ^2 + G147 ^2) ^0.5 + G147
	2V + C 144	2g - E 144	+ \$X + E140 - + G147 + F140*@(LN(F140/G14)	6+(1+(F148/G148) 2) 0.5) -(F148 2+G148 2) 0.5+G148
M62	Xvi (P - L)/2	Xgi + E146	+ \$X + E151 - ((\$DELH + E + F150"@L0.0000001"	(H150 + H151 - H152 - H153)* - 1
	Xvr (P+L)/2	Xgr + E147	+ \$X+ E150 - + G150 + F151*@LN(F151/G15	1 + (1 + (F 15 1/G 15 1) ^2) ^0.5) - (F 15 1 ^2 + G 15 1 ^2) ^0.5 + G 15 1
	Zv - C 148	Zg - E 148	+\$X+E150-+G151 +F152*@LN(F152/G152	2 + (1 + (F 152/G 152) ^2) ^0.5) - (F 152 ^ 2 + G 152 ^ 2) ^0.5 + G 152
Maá	XvI + C 150	Xal + E150	+ \$X + E 151 - + G 152 + F 153 - @LN(F 153/G 153 + \$X + E 155 - ((\$DELH + E + E 154*@L10.00000001*)	(H 154 + H 155 - H 156 + H 157)
	Xvr + C 151	Xgr + E151	+ \$X + E154 - + G154 + F155*@LN(F155/G15	5 + (1 + (F 155/G 155) ^2) ^0.5) - (F 155 ^2 + G 155 ^2) ^0.5 + G 155
	Zv + C 152	Zg - E152	+ \$X+ E154 - + G155 + F156*@LN(F156/G156	5 + (1 + (F 156/G 156) ^2) ^ 0.5) - (F 156 ^ 2 + G 156 ^ 2) ^ 0.5 + G 156
1400	V		+ \$X + E155 - + G156 + F157*@LN(F157/G15)	7 + (1 + (F 157/G 157) ^2) ^0.5) - (F 157 ^ 2 + G 157 ^ 2) ^0.5 + G 157
MOZ	XVI + C 154 Xvr + C 154	AGI + E 134 Xar + E 155	+ 3A+ CIOV - ((3U CLR + E + F 155"@LD.0000001"(+ \$X + E158 - + G158 + F150*@LN/F150/G150	(m 190 + m 199 - m 100 - m 10 1) 9 + (1 + (F 159/G 159) ^ 2) ^ 0.5) = (F 159 ^ 2 + G 159 ^ 2) ^ 0.5 + G 159 ^ 1
	Zv - C 156	Zg - E156	+\$X+E158-+G159 +F160*@LN(F160/G160	0+ (1+ (F160/G160) ^2) ^0.5) - (F160 ^2+ G160 ^2) ^0.5+ G160
	• -	•	+\$X+E159-+G160 +F161*@LN(F161/G16	1 + (1 + (F 161/G 161) ^2) ^0.5) - (F 161 ^2 + G 161 ^2) ^0.5 + G 161
M84	Xvl + C 158	Xgi + E158	+ \$X+ E163 - ((\$DELH+E+F162*@LD.0000001*((H162 + H163 - H164 - H165)* - 1
	AV7 + C 159 Zv + C 160	Xgr + E159 Za _ F160	+ #A+ E102 - + G102 + F163*@LN(F163/G16) + \$X+ E162 - + G163 + F164*@EN/F164/G16/	3 + (1 + (F164/G164) ^2) ^0.5) + (F163 ∩2 + G163 ∩2) ^0.5 + G163 4 + (1 + (F164/G164) ^2) ^0.5) + (F164 ^2 + G164 ^2) ^0.5 + G164
	21 - 0100		+\$X+E163-+G164 +F165*@LN(F165/G16	5 + (1 + (F165/G165) ^2) ^0.5) - (F165 ^2 + G165 ^2) ^0.5 + G165
Macro Variables:				
*(number of steps - 1)/2	endstep	250		
°step size m	deix	0.02	Guidance Macro	
°increment for cal. dM/dy	dy	0.001	Macro 1: Turn offscreen.	(FRAMEOFF) (WINDOWSOFF)
	сел Ма	+ UELX/V 1.82E - 10	Set initial conditions. Do a subroutine 2°endstep + 1 times.	{for step
	Mb	1.82E - 10	Calculate drag at time.	/ce201~e201e599~
	Mc	1.83E - 10	Calculate average guidance drag.	{let d 186,@sum(e201e699)/20*delt*v/c*nb}
	N-	-0.365 19	Calculate average guidance force.	{let d 187,@sum(d200d700)*delt*v/c*nb} {let d 189 d 186*v}
	Mn	+ MA - MC	Set drag table to values.	/ve202e699 ~ e202 ~
	lp	206.7	The end	{ñup}
	In	205.4		the state of the state of the state of the
	X	5.0	icop: Calculate M with y=yo. Calculate M with y=yot de	{let dely delyot} ~ {let M8,M} {let dely delyot+dy} ~ {let Mb,M}
	Fa	0.5	Calculate M with y = - yo.	{let dely, - delyo} ~ {let Mc, M}
	step	251.0	Calculate M with y = - yo - dy	{let dely, delya dy} ~
	M	@SUM(I101I162)	Put Mtotal in table.	{put mactab,0,step - endstep,Mn}
Macro Outputs			Put I in table.	{put mactab, I,step - endstep,in}
average guidance dra-	N	4510	Put guidanced force in table. Put now values in past positions	{put mactab,2,step + endstep,rg} {let io.in}{let Mp.Mn}{let x x+ deix}
average guidance force	N	- 10 1939	· ·····	(return)
guidance force/guidance drag		225.59		
guidance losses	w	60552		

•--

Table G-3. Sidewall null flux spreadsheet. (Cont.)

Calculated Parameters		K										
Motor Constant Motor Resistance per Block	VS/m, N/A V/A	N/THOX	- (g/SUM((/51,.1650), +\$NT*(\$AP+\$P+4	0.3)*\$LB/\$P/@P	2%g/SCIHT(2)*CTM /\$RPW^2/\$CPW							
Motor Inductance per Block	н		0.0000002*(2*\$AF	(@UN(4*\$AP)(2	*\$NT+1)*\$RPW+(\$NT	- 1)*\$50)+0,4978) + (\$P+0	0.3)/2° (@UN(2°\$	\$P+0.3)/(\$NT+2))*\$RPW+(\$NT/2-	1)*\$\$i)+0.4978))*\$h	IT^2*\$LB/\$P
Motor Constant Calculations (minor) (ture multipliers, phase incursoy degredation)	ina dia mat	dp 22 फ़ा 33 फ़ा 34 फ़ा 35 फ़ 35 फ़ 36 फ़ा 37 फ़ा 37 फ़ा	@P1*\$\$X/\$P 2*@CO\$ \$DP2) 1+2*@CO\$ \$DP +\$C2TM+2*@CO +\$C3TM+2*@CO +\$C4TM+2*@CO @IF(NT=1,1,@IF(6\$50₽°1.5) 6\$50₽°2) 6\$50₽°2.5) VT=2,\$C2TM,@i	F(NT=3\$C3TM@IF(NT	[=4, 9 C4T	₩.@ ᡏ*{₩1=5,\$C5	5TM@IF(NT=61	BC6TM,0)))))			
Mutual inductance between vertical segments		Ľ	v Dv									
	M11	+\$H/2+\$A +\$H/2+\$A -\$H/2+\$A -\$H/2+\$A -\$H/2+\$A	P-(((\$EP-\$W)/2+L/* P++DV +C10 P-+D103 +C10 P++D104 +C10	@UN(U/ 4.35E x3*@UN(C103/D x4*@UN(C104/D x5*@UN(C105/D	-09 103 + (1 + (C 103/D 103) ^ 104 + (1 + (C 104/D 104) ^ 105 + (1 + (C 105/D 105) ^	2)^05)- 2)^05)- 2)^05)-	- (C 103 ^ 2 + D 103 - (C 104 ^ 2 + D 104 - (C 105 ^ 2 + D 105	^2) ^0.5 +D 103 ^2) ^0.5 +D 104 ^2) ^0.5 +D 105				
	M31	+LV +C103 +C104 +C105	(((\$EP-\$W)/2+C10 +D107 +C10 +D108 +C10 +D108 +C10	17*@LN -5.11E 18*@LN(C108/D 19*@LN(C109/D 10*@LN(C110/D	-09 108 + (1 + (C 108/D 108) ^ 109 + (1 + (C 109/D 109) ^ 110 + (1 + (C 1 10/D 110) ^	2)^0.5)- 2)^0.5)- 2)^0.5)-	- (C 108 ^ 2 + D 108 - (C 109 ^ 2 + D 109 - (C 110 ^ 2 + D 110	^2) ^0.5 +D 108 ^2) ^0.5 +D 109 ^2) ^0.5 +D 110		,		
	MS1	+C 107 +C 108 +C 109 +C 110	(((SEP-SW)/2+C1) +D112 +C1) +D113 +C1 +D113 +C1 +D114 +C1	2°@LN -5,23E 3°@LN(C1 13/D 4°@LN(C1 14/D 5°@LN(C1 15/D	−09 113+(1+(C113/D113)↑ 114+(1+(C114/D114)↑ 115+(1+(C115/D115)↑	2)^0.5)- 2)^0.5)- 2)^0.5)-	-(C113 ^2+D113 -(C114 ^2+D114 -(C115 ^2+D115	^2) ^ 0.5 + D 1 13 ^2) ^ 0.5 + D 1 14 ^2) ^ 0.5 + D 1 15				
	M71	+C112 +C113 +C114 +C115	(((\$EP-\$W)/2+C1* +D117 +C1* +D118 +C1* +D119 +C12	7*@LN 6.36E 18*@LN(C118/D 19*@LN(C119/D 10*@LN(C120/D	09 118+(1+(C118/D118) ^ 119+(1+(C119/D119) ^ 120+(1+(C120/D120) ^	2)^05)- 2)^05)- 2)^05)-	-(C118 ^2+D118 -(C119 ^2+D119 -(C120 ^2+D120	^2) ^0.5+D 1 18 ^2) ^0.5+D 1 19 ^2) ^0.5+D 1 20				
Mutual Inductance, upper norizontal w	M22	Xi Xi Z	M - (\$P+\$L)/2 # - (\$P-\$L)/2 V +\$H/2	Xgi -\$P Xgr Zg +\$AP	+\$X+XGR-X((\$EF 0 +\$X+XGL-X+H12 +\$X+XGL-X+H12 +\$X+XGL-X+H12 +\$X+XGR->+H12	P-\$₩)£+ 4 - 5 - 15 -	G 124*@UN2.4 G 125*@UN(G125 G 125*@UN(G126 G 127*@UN(G127	1E-08 0/H125+(1+(G12 0/H125+(1+(G12 1/H127+(1+(G12	25/H125) ^ 2) ^ 0.1 26/H126) ^ 2) ^ 0.1 27/H127) ^ 2) ^ 0.1	5)~(G125^2+H1 5)~(G126^2+H1 5)~(G127^2+H1	25 ^ 2) ^ 0.5 + H 125 25 ^ 2) ^ 0.5 + H 126 27 ^ 2) ^ 0.5 + H 127	
	M42	Xi Xi Z	M -(\$P+\$L)/2 # -(\$P-\$L)/2 \/ -\$H/2	Xgi-\$P Xgr Zg +\$AP	+\$X + F130 - (((\$EF 0 +\$X + F129 - I + H12 +\$X + F129 - I + H13 +\$X + F130 - I + H13	°-\$₩)2- 9 - 10 -	G 129*@UN 2.4 G 130*@UN(G 130 G 131*@UN(G 131 G 132*@UN(G 132	0E-0 8)/H130+(1+(G10)/H131+(1+(G10)/H132+(1+(G10	30/H130) ^ 2) ^ 0 # 31/H131) ^ 2) ^ 0 # 32/H132) ^ 2) ^ 0 #	5)~(G130^2+H1; 5)~(G131^2+H1; 5)~(G132^2+H1;	10 ^ 2) ^ 0.5 + H 130 31 ^ 2) ^ 0.5 + H 131 12 ^ 2) ^ 0.5 + H 132	
	M82	Xi Xi Z	4 (\$P-\$L)/2 # (\$P+\$L)/2 V +\$H/2	Xgi-SP Xgr Zg +SAP	+\$X+F135-(((18EF 0 +\$X+F134-I+H13 +\$X+F134-I+H13 +\$X+F135-I+H13	°-\$₩),‰- 4 + 5 + 6 +	G 134 °@LN 5.00 G 135 °@LN(G135 G 135 °@LN(G135 G 137 °@LN(G137	2 E-08 //H135+(1+/G13 //H136+(1+/G13 //H137+(1+/G13	35/H 135) ^ 2) ^ 0 5 36/H 135) ^ 2) ^ 0 5 37/H 137) ^ 2) ^ 0 5)) ~ (G 135 ^2 + H 1: 5) ~ (G 136 ^2 + H 1: 5) ~ (G 137 ^2 + H 1: 5) ~ (G 137 ^2 + H 1:	15 ^ 2) ^ 0.5 + H 135 16 ^ 2) ^ 0.5 + H 136 17 ^ 2) ^ 0.5 + H 137	
	MB2	Xv Xv Z	4 (\$P-\$L)/2 r (\$P+\$L)/2 v ~\$H/2	Xgl -\$P Xgr Zg +\$AP	+\$X+F140-1((\$EF 0 +\$X+F139-1+H13 +\$X+F139-1+H14 +\$X+F140-1+H14	9-\$W)%+ 9 - 0 -	G 139*@LN -3.0 G 140*@LN(G 140 G 14 1*@LN(G 141 G 142*@LN(G 142	0E-08 1/H140+(1+(G14 1/H141+(1+(G14 1/H142+(1+(G14	10/H 140) ^ 2) ^0 5 1 1/H 141) ^ 2) ^0 5 12/H 142) ^ 2) ^0 5	i)~(G 140 ^2+H 14 i)~(G 141 ^2+H 14 i)~(G 142 ^2+H 14	0022)	
	in din e											
Mutual inductance, lower norizontal w	M24	X	A - (\$P+\$L)/2	Xgi	0 +\$X+F147-(((\$EP	°−\$₩)&+	G146*@LN -2.00	0E-08				
х.		Ž	r ~(\$P-\$L)/2 v +\$H/2	Xgr+SP Zg-SAP	+\$X+F145-i+H14 +\$X+F145-i+H14 +\$X+F147-i+H14	8 7 8	G 147*@LN(G147 G 148*@LN(G148 G 149*@LN(G148	/H147+(1+(G14 /H148+(1+(G14 /H149+(1+(G14	17/H147) ^ 2) ^05 18/H148) ^ 2) ^05 19/H149) ^ 2) ^05	i)~(G147^2+H14 i)~(G148^2+H14 i)~(G149^2+H14	17 ^2)^05+H147 18 ^2)^05+H148 19 ^2)^05+H149	
	M44	Xv Xv Z	4 - (\$P+\$L)/2 r - (\$P-\$L)/2 v -\$H/2	Xgi Xgr +SP Zg ~SAP	0 +\$X+F152-K((ŠEP +\$X+F151-I+H15 +\$X+F151-I+H15 +\$X+F152-I+H15	°-\$₩),2 1 2 +- 3	G 15 1*@LN 2.00 G 152*@LN(G152 G 153*@LN(G153 G 154*@LN(G154	0E-08 /H152+(1+(G15 /H153+(1+(G15 /H154+(1+(G15	52/H 152) ^ 2) ^ 0.5 53/H 153) ^ 2) ^ 0.5 54/H 154) ^ 2) ^ 0.5	i) ~ (G 152 ^ 2 + H 15 i) ~ (G 153 ^ 2 + H 15 i) ~ (G 154 ^ 2 + H 15	2^2)^0.5+H152 8^2)^0.5+H153 4^2)^0.5+H154	
	M84	Xi Xv 2	4 (\$P-\$L)/2 r (\$P+\$L)/2 v +\$H/2	Xgi Xgi +\$P Zg –\$AP	0 +\$X+F157-[((\$EP +\$X+F156-[+H15 +\$X+F156-[+H15] +\$X+F156-[+H15]	P−\$₩)£+ 6 + 7 + 6 +	G 156*@LN 2.40 G 157*@LN(G157, G 156*@LN(G158, G 159*@LN(G159,	0E-08 /H157 + (1+ (G 15 /H158 + (1+ (G 15 /H159 + (1+ (G 15	57/H 157) ^ 2) ^0.5 58/H 158) ^ 2) ^0.5 59/H 159) ^ 2) ^0.5	i)~(G 157 ^2+H 15 i)~(G 158 ^2+H 15 i)~(G 159 ^2+H 15	7^2)^05+H157 8^2)^05+H158 9^2)^05+H159	
	MD4	Xv Xv 2	A (\$P-\$U/2 7 (\$P+\$U/2 v -\$H/2	Xgi Xgr +SP Zg -SAP	0 +\$X+F162-U((\$EP +\$X+F161-I+H16 +\$X+F161-I+H16 +\$X+F162-I+H16	-\$W)& 1 2 3	G 16 1*@LN -2.4 G 162*@LN(G162 G 163*@LN(G163 G 164*@LN(G164	1E-08 /H162+(1+(G16 /H163+(1+(G16 /H164+(1+(G16	12/H 162) ^ 2) ^ 0.5 13/H 163) ^ 2) ^ 0.5 14/H 164) ^ 2) ^ 0.5	i) ~ (G 162 ^2 +H 16 i) ~ (G 163 ^2 +H 16 i) ~ (G 164 ^2 +H 16	参 2字2)^05+H162 3^2)^05+H163 H^2)^05+H164	
Parameters for propulsion macro												
*(number of steps - 1)/2	_	endsta	p 500									
-x sacµ sazar starting x for table	m	x510) x512/	t-ENDSTEP*XSTE	•								
macro for loop counter	_	510	p 501									
yuuuaway - vanica position vertical mutual inductance	н	Mpv	3.77E-10									
horizontal mutual inductance, upper horizontal mutual inductance, lower	H	Mphu Mphi	9.95E-11 -3.70E-11									
seed for expanding secondary table			2*(B1	75-ERI+\$E\$800	0*@(-@PI*\$E\$80(E 197	-E174)g	SN(A 175"@PV5	P)*H175				
	Macro	that fills th The macro's	e mutual inducts name is "tablefil.	ince table.								

西南部 四 三部部

ine macro's name s "babell". The table name is matable, at b300...d 130 !. erase old table //reb300..h1300 infeli condition {bt t, vstart}? for..do..loop {for step.-endate, and table, 1} erase a starting problem //reb300...d300 ~

verkal inductances: loop verkal (put mtable.0.andstep + step.mpv) horizontal upper (put mtable.0.andstep + step.mpvh) horizontal lower (put mtable.2.andstep + step.mphi) zement position (let x + step)~ (return)

Table G-4. B field spreadsheet.

Three Dimensional B Field Calculation for fields generated by air core conducting filaments.

Each line of the bulk spreadsheet body represents a straight filament segment and calculates the field from this segment.

Point A is the beginning, current in, end of the segment. Point A is the other end of the segment. The field is calculated at point P.

The bulk of the calculations consist of transforming various points into a special coordinate system in which the B field is easy to calculate for that segment. The x axis of the transformed coordinates is parallel to line A-B.

The field for each segment is calculated for the transformed coordinates and then transformed back to the normal coordinate system.

Finally the B field components from each segment are summed.

For setting up the spreadsheet, each segment normally begins where the previous segment ended, and the current of each segment is normally the current of the previous segment.

Dimensions are meters and teslas.

хр	2
ур	0
zp	2.5
Bx	@SUM(C63Sum Bx
Ву	@SUM(C64 Sum By
Bz	@SUM(C65Sum Bz @SUM(Y91.@SUM(Y141Y189)
Bmag	(C35^2+C+C38*1000gauss
	이 성능 같은 것이라. 그는 것이 가지 않는 것은 것이 있는 것이 가지 않는 것이 같이 하는 것이 같이 했다.
The c	ore, repeated once for each straight filament, begins below.
xb	0.85
yb	0.5
zb	0.5
ха	-0.85
ya	0.5
za	0.5
1	600000
phi	@IF(XA=XB,@PI/2,@ATAN((YB-YA)/(XB-XA)))
test	@COS(PHI)*(XA-XB)+@SIN(PHI)*(YA-YB)
the	@IF(TEST=0,@PI/2,@ATAN((ZA-ZB)/(@COS(PHI)*(XA-XB)+@SIN(PHI)*(YA-YB))))
xta	@COS(THE)*@COS(PHI)*XA+@COS(THE)*@SIN(PHI)*YA+@SIN(THE)*ZA
yta	-@SIN(PHI)*XA+@COS(PHI)*YA
zta	-@COS(PHI)*@SIN(THE)*XA-@SIN(PHI)*@SIN(THE)*YA+@COS(THE)*ZA
xtb	@COS(THE)*@COS(PHI)*XB+@COS(THE)*@SIN(PHI)*YB+@SIN(THE)*ZB
xtp	@COS(THE)*@COS(PHI)*\$XP+@COS(THE)*@SIN(PHI)*\$YP+@SIN(THE)*\$ZP
ytp	-@SIN(PHI)*\$XP+@COS(PHI)*\$YP
ztp	-@COS(PHI)*@SIN(THE)*\$XP - @SIN(PHI)*@SIN(THE)*\$YP + @COS(THE)*\$ZP
rr	$(YTP-YTA)^{2}+(ZTP-ZTA)^{2}$
A	+XTA-XTP
В	+XTB-XTP
Byt	@IF(RR=0,0,0.0000001*I*(ZTA-ZTP)/RR*(B/(B^2+RR)^0.5-A/(A^2+RR)^0.5))
Bzt	@IF(RR=0,0,0.0000001*I*(YTP-YTA)/RR*(B/(B^2+RR)^0.5-A/(A^2+RR)^0.5))
Bx	-@SIN(PHI)*BYT-@COS(PHI)*@SIN(THE)*BZT
Ву	@COS(PHI)*BYT – @SIN(PHI)*@SIN(THE)*BZT
BZ	@COS(IHE)*BZI

APPENDIX H

COMPLETE SPREADSHEETS FOR ELECTRODYNAMIC SYSTEMS

ġ.

Table H-1. Summary of sidewall null flux calculations (134 m/s).

Operating Parameters	Units	baseline	J-single	J-10 car	BL-aero	5cm clear	600 kA	RIc <bl< th=""><th>Rpw<bl< th=""></bl<></th></bl<>	Rpw <bl< th=""></bl<>
*Velocity	m/s	134	134	134	134	134	134	134	134
*Vehicle Vertical Position	m	0.0271	0.0292	0.0292	0.0271	0.0181	0.0459	0.0284	0.0271
*Vehicle Lateral Position	m	0.0136	0.0000	0.0000	0.0136	0.0000	0.0224	0.0000	0.0000
*Lateral Force	N	101920	0	0	101920	0	101920	0	0
Vahiala Description									
*Vehicle Weight	ka	40.000	40.000	400.000	40.000	40.000	40.000	40.000	40.000
*Vehicle Frontal Area	m^2	40,000	12 16	12 16	40,000	40,000	40,000	40,000	40,000
*Coefficient of Drag		12.10	12.10	12.10	0.10	12.10	12.10	12.10	12.10
*Mechanical Clearance Vehicle to G'way	m	0.0	0.0	0.08	0.3	0.5	0.3	0.3	0.3
Mechanical Clearance, Venicle to G way	111	0.08	0.08	0.08	0.08	0.05	0.08	0.08	0.08
Vehicle Magnets									
*Magnet Pitch	m	1.35	2.7	2.7	1.35	1.35	1.35	1.35	1.35
*Magnet Height	m	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
*Magnet Length	m	1.2	2.2	2.2	1.2	1.2	1.2	1.2	1.2
Magnet Spacing, Side to Side	m [.]	2.76	2.76	2.76	2.76	2.82	2.78	2.77	2.76
*Magnet Current	Α	8E+05	8E+05	8E+05	8E+05	8E+05	6E+05	8E+05	8E+05
*Maximum SC Curent Density	A/m ^ 2	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08
*Maximum SC B Field	Т	4	· 4	4	4	4	4	4	4
*Superconductor Wire Packing Density		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
*Superconductor Wire Density	kg/m ^ 3	8000	8000	8000	8000	8000	8000	8000	8000
*Spacing, SC Surface to Vehicle Surface	m	0,06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
*"Technology" Factor		5_	5	5	5	5	5	5	5
*Number of Bogies		4	2	20	4	4	4	4	4
*Number of SC Coils per Bogie, each side		· 2	2	2	2	2	2	2	2
Radius of superconductor cable		0.0505	0.0505	0.0505	0.0505	0.0505	0.0437	0.0505	0.0505
Sidowall Louitation Caile	· .								
	m	0.0	1 0	4.0		0.0		0.0	
Coil Longth		0.9	1.0	1.0	0.9	0.9	0.9	0.9	0.9
tualf Unight	ini m	0.624	1.724	1.724	0.824	0.824	0.824	0.832	0.824
*Holf Inner Specing	(1) m	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
tan inter opacing *side_to_side spacing	m	U. I	U. I	0.1	0.1	0.1	0.1	0.1	0.1
*Coil Conductor Redius	m	0.2 0.000	ے.د م ممو	0.2 0.000	0.2	0.2	3.2	3,2	3.2
*Coil Conductivity	111 A/\//m	0.020 9.75±07	0.020 9.75±07	0.020 9.75±07	0.020	0.028	0.028	0,024	975107
*Coil Density	rv v/III ka/m ^ ?	3.15401	3.7 5 7 07	3.1 - + 01	3.12401	3.15401	J./E+U/	3.75407	3.1 = + 01
*winding efficiency (lev & guid)	kg/in S	- 07E	2700 07E	2700	2700	2700	2700	2700	2700
winding endericy (lev. & guid.)		0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75

H-1

.

<u>., 1,</u>

ł

Table H-1. Summary of sidewall null flux calculations (134 m/s). (Con	nt.)
---	------

•

					• .				page 2
Sidewall Guidance Coils	Units	baseline	J-single	J-10 car	BL-aero	5cm clear	600 kA	RIc <bl< th=""><th>Rpw<bl< th=""></bl<></th></bl<>	Rpw <bl< th=""></bl<>
*Coil Pitch	m	0.9	1.8	1.8	0.9	0.9	0.9	0.9	0.9
*Coil Length	m	0.84	1.74	1.74	0.84	0.84	0.84	0.84	0.84
*Half Height	m	0,25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
*Coil Conductor Radius	m	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
*Coil Conductivity	A/V/m ^2	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07
*Coil Density	kg/m ^ 3	2700	2700	2700	2700	2700	2700	2700	2700
Lateral Spacing	m	3.298	3.298	3.298	3.298	3.298	3.298	3.294	3.294
Motor									
Winding Pitch (same as vehicle magent pitch)		1.35	2.7	2.7	1.35	1.35	1.35	1.35	1.35
*Winding Half Height	m	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
*Number of Turns per Phase		6	6	6	6	6	6	6	6
*Number of Phases		З	3	3	3	3	3	3_	3
*Radius of Conductor	m	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.013
*Block Length	m	1000	1000	1000	1000	1000	1000	1000	1000
Lateral Spacing	m	3,253	3.253	3.253	3.253	3.253	3.253	3.249	3.251
*Insulation spacing between turns	m	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
center-to-center turn spacing	m	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.036
*conductivity	A/(V*m)	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07
*density	kg/m ^ 3	2700	2700	2700	2700	2700	2700	2700	2700
Calculated Parameters									
Aerodynamic Drag Power	w	5,400,000	5,400.000	18.000.000	3,622,438	5,400,000	5,400,000	5,400,000	5,400,000
Weight of Cryogenic System	ka	8,704	6,912	69,120	8,704	8,704	6,528	8,704	8,704
Motor Constant	Vs/m, N/A	30.2	13.4	133.8	30.2	34.0	23.1	30.9	30.4
Motor Resistance per Block	V/A	0.799	0.629	0.629	0.799	0.799	0.799	0.799	1.063
Motor Inductance per Block	H	0.024	0.021	0.021	0.024	0.024	0.024	0.024	0.025
Motor Open Circuit Voltage per Phase	Vrms	4,050	1,794	17,935	4,050	4,550	3,093	4,141	4,075
Motor Losses	W	562,560	2,212,851	323,345	274,116	415,357	1,082,383	551,777	724,598
Motor Reactive VA	VA	5,323,637	11,575,184	1,691,384	2,594,022	3,930,623	10,242,845	5,221,590	5,354,257
Lift Force	N	392,000	392,000	3,920,000	392,000	392,000	392,000	392,000	392,000
Drag Force	N	3,181	3,192	31,916	3,181	2,112	5,507	4,192	3,181
Lift/Drag (no guidance forces)		123.23	122.82	122.82	123.23	185.59	71.19	93.50	123.23
Lift Losses	W	426,258	427,680	4,276,799	426,258	283,027	737,899	561,793	426,258
Lateral guidance force	N	(101,920)	0	0	(101,920)	0	(101,920)	0	0
Lateral Losses	W	60,561	0	0	60,561	0	98,922	0	0
Guideway Levitation Aluminum	kg/m	49.8	44.9	44.9	49.8	49.8	49.8	36.9	49.8
Guideway Guidance Aluminum	kg/m	15.2	12.7	12.7	15.2	15.2	15.2	15.2	15.2
Guideway Propulsion Alumnium	kg/m	115.0	91.9	91.9	115.0	115.0	115.0	115.0	86.4
Motor Current	Α	485	1083	414	338	416	672	480	477
Maximum Dynamic Breaking	g	0.021	0.009	0.093	0.021	0.026	0.012	0.022	0.020
Primary Natural Frequency	Hz	3.03	2.92	2.92	3.03	3.70	2.32	2.96	3.03

H-2

۴.

Table H-1.	Summary of	sidewall nu	I flux calculations ((89 m/s).	(Cont.)
------------	------------	-------------	-----------------------	-----------	---------

5

.

۲

Operating Parameters	Unite	hasolino	l_single	l=10 car	Bi —aero	5cm clear	600 kA	Bic - Bi	
*Velocity	m/s	89	RQ	89	89	80	80	80	80
*Vehicle Vertical Position	m	0.0285	0.0332	0.0332	0.0285	0.0190	0.0487	0.0306	0.0285
*Vehicle Lateral Position	m	0.0099	0.0000	0.0000	0.0099	0.0000	0.0164	0,0000	0.0000
*I ateral Force	N	70560	0	0	70560	0.0000	70560	0.0000	0,0000
			•	0	10000	Ŭ		Ũ	
	·								
Vehicle Description	°,								
*Vehicle Weight	ka	40.000	40.000	400,000	40.000	40 000	40 000	40.000	40 000
*Vehicle Frontal Area	m^2	12.16	12.16	12.16	8.16	12.16	12.16	12 16	12 16
*Coefficient of Drag		. 0.3	0.3	1	0.3	0.3	0.3	0.3	0.3
*Mechanical Clearance. Vehicle to G'way	m	0.08	0.08	0.08	0.08	0.05	0.08	0.08	0.08
······································	4						0100	0.00	
Venicle Magnets		1.05	0.7	0.7	1.05	4.05	4.05		1.05
*Magnet Height	m	1.35	2.7	2.7	1.35	1.35	1.35	1.35	1,35
*Magnet Length	m	1.3	0.0	0.5	0.3	0.5	0.5	0.5	1.0
Magnet Spacing Side to Side	m	2.76	2.2	2.2	2.76	2.82	278	, I.2 2.77	2.76
*Magnet Current	Δ	85+05	85+05	8E±05	85+05	85+05	65+05	85105	85±05
*Maximum SC Curent Density	A/m ^ 2	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08
*Maximum SC B Field	T	4	4	4	4	4	4	4	4
*Superconductor Wire Packing Density	•	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
*Superconductor Wire Density	ka/m ^ 3	8000	8000	8000	8000	8000	8000	8000	8000
*Spacing, SC Surface to Vehicle Surface	m	0.06	0.06	0.06	0.06	0.06	0,06	0.06	0,06
*"Technology" Factor		5	5	5	5	5	5	5	5
*Number of Bogies		4	2	20	4	4	4	4	4
*Number of SC Coils per Bogie, each side		2	2	2	2	2	2	2	2
Radius of superconductor cable		0.0505	0.0505	0.0505	0.0505	0.0505	0.0437	0.0505	0.0505
· ·									
Sidewall Levitation Coils		_							
*Coil Pitch	m	0.9	1.8	1.8	0.9	0.9	0.9	0.9	0.9
Coil Length	m	0.824	1.724	1.724	0.824	0.824	0.824	0.832	0.824
*Half Height	m	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
*Half Inner Spacing	m	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
*sidetoside spacing	m	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
*Coil Conductor Radius	m	0.028	0.028	0.028	0.028	0.028	0.028	0.024	0.028
*Coil Conductivity	A/V/m	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07
*Coil Density	kg/m ^ 3	2700	2700	2700	2700	2700	2700	2700	2700
*winding efficiency (lev. & guid.)		0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75

ŧ

H-3

Table H-1. Summary of sidewall null flux calculations (89 m/s). (Cont.)

									page 4
Sidewall Guidance Coils	Units	baseline	J-single	J-10 car	BL-aero	5cm clear	600 kA	RIc <bl< td=""><td>Rpw<bl< td=""></bl<></td></bl<>	Rpw <bl< td=""></bl<>
*Coil Pitch	m j	0.9	1.8	1.8	0.9	0.9	0.9	0.9	0.9
*Coil Length	m	0.84	1.74	1.74	0.84	0.84	0.84	0.84	0.84
*Half Height	m	0.25	0.25	0.25	0.25	0.25	0.25	, 0.25	0.25
*Coil Conductor Radius	m	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
*Coil Conductivity	A/V/m ^ 2	3.7E+07	3.7E+07						
*Coil Density	kg/m ^ 3	2700	2700	2700	2700	2700	2700	2700	2700
Lateral Spacing	m	3.298	3.298	3.298	3.298	3.298	3.298	3.294	3.294
Motor									
Winding Pitch (same as vehicle magent pitch)		1.35	2.7	2.7	1.35	1.35	1.35	1.35	1.35
*Winding Half Height	m	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
*Number of Turns per Phase		6	. 6	. 6	6	6	6	6	6
*Number of Phases	÷	3	3	3	3	3	3	3_	3
*Radius of Conductor	m	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.013
*Block Length	m	1000	1000	1000	1000	1000	1000	1000	1000
Lateral Spacing	m	3.253	3.253	3.253	3.253	3.253	3.253	3.249	3.251
*Insulation spacing between turns	m j	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
center-to-center turn spacing	m -	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.036
*conductivity	A/(V*m)	3.7E+07	3.7E+07						
*density	kg/m ^ 3	2700	2700	2700	2700	2700	2700	2700	2700
Calculated Parameters			_						
Aerodynamic Drag Power	W	1,582,156	1,582,156	5,273,854	1,061,345	1,582,156	1,582,156	1,582,156	1,582,156
Weight of Cryogenic System	kg	8,704 _	6,912	69,120	8,704	8,704	6,528	8,704	8,704
Motor Constant	Vs/m, N/A	30.2	13.4	133.6	30.2	33.9	23.1	30.9 _	30.4
Motor Resistance per Block	V/A	0.799	0.629	0.629	0.799	0.799	0.799	0.799	1.063
Motor Inductance per Block	Н	0.024	0.021	0.021	0.024	0.024	0.024	0.024	0.025
Motor Open Circuit Voltage per Phase	Vrms	2,689	1,189	11,895	2,689	3,021	2,052	2,749 _	2,705
Motor Losses	W	156,685	634,869	152,739	87,548	103,091	369,637	168,858	199,967
Motor Reactive VA	VA	984,811	2,205,694	530,654	550,261	647,953	2,323,271	1,061,320	981,398
Lift Force	Ν	392,000	392,000	3,920,000	392,000 _	392,000	392,000	392,000	392,000
Drag Force	N	5,054	5,483	54,834	5,054	3,348	8,819	6,818	5,054
Lift/Drag (no guidance forces)	- ²⁹	77.56	71.49	71.49	77.56	117.10	44.45	57.50	77.56
Lift Losses	W	449,813	488,024	4,880,245	449,813	297,944	784,915	606,799	449,813
Lateral guidance force	N	(70,560)	0	0	(70,560)	0	(70,560)	0	0
Lateral Losses	W	30,606	0	0	30,606	0	50,278	0	0
Guideway Levitation Aluminum	kg/m	49.8	44.9	44.9	49.8	49.8	49.8	36.9	49.8
Guideway Guidance Aluminum	kg/m	15.2	12.7	12.7	15.2	15.2	15.2	15.2 _	15.2
Guideway Propulsion Alumnium	kg/m	115.0	91.9	91.9	115.0	115.0	115.0	115.0	86.4
Motor Current	Α	256	580	285	191	207	393	265	250
Maximum Dynamic Breaking	9	0.021	0.009	0.093	0.021	0.026	0.012	0.022	0.020
Primary Natural Frequency	Hz	2.95	2.74	2.74	2.95	3.61	2.26	2.85	2.95

H-4

8
Table H-2. Summary of hybrid null flux calculations. (Cont.)

4

H-7

5

٠

£

													page 2
Motor	Units	134 m/s	134, no T	89 m/s	89, no T	134 Aero	5 cm clear	600 kA	d=.004 4	lmm, 89m/s	P=1m	P&d <bl< td=""><td>P,d,89</td></bl<>	P,d,89
Winding to Superconducting Magnet Spacing	m	0.210	0.210	0.210	0.210	0.210	0.180	0.187	0.210	0.210	0.224	0.224	0.224
*Winding Width	m	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707
*Number of Magnet Units (per Vehicle)		6	6	6	6	6	6	6	6	6	6	6	6
*Radius of Conductor	m	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
*Number of Phases		3	3	3	3	3	3	3	3	3	3	З	з
*Turns per Phase		5	5	5	5	5	5	5	5	5	5	5	5
*Block Length	m	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
*Insulation Spacing between Turns	m	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
Current Density	A/m ^ 2	7.42E+05	6.58E+05	3.84E+05	3.22E+05	6.82E+05	6.52E+05	9.39E+05	7.31E+05	3.84E+05	8.29E+05	6.99E+05	3.38E+05
Calculated parameters	,												
Cryosystem Weight	ka	14.045	14.045	14.045	14.045	14.045	14.045	10.534	14.045	14.045	9,245	9,245	9,245
First Harmonic, Open Circuit Motor V	v	2560	2560	1701	1701	2560	2916	2124	2561	1702	2408	2408	1600
Motor Resistance per Phase – Block	V/A	0.291	0.291	0.291	0.291	0.291	0.291	0.291	0.291	0.291	0.367	0.367	0.367
Motor Phase Inductance	н	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.046	0.046	0.046
Motor Phase Reactance	V/A	9.25	9.25	6.14	6.14	9.25	9.25	9.25	9.25	6.14	19.42	19.42	12.90
Guideway Levitation Mass per Meter	kg/m	25.9	25.9	25.9	25.9	25.9	25.9	26.1	17.3	17.3	25.9	17.3	17.3
Guideway Gudance Mass per Meter	kg/m	13.0	13.0	13.0	13.0	13.0	13.0	13.1	8.6	8.6	13.0	8.6	8.6
Guideway Motor Mass per Meter	kg/m	45.9	45.9	45,9	45.9	45.9	45.9	45.9	45.9	45.9	57.9	57.9	57.9
Magnetic Drag, No Lateral Force	N	7068	7067	5444	5443	7067	7068	5056	3164	3239	14150	4490	3298
Magnetic Lift to Drag Ratio, No Lateral Force		55.5	55.5	72.0	72.0	55.5	55.5	77.5	123.9	121.0	27.7	87.3	118.8
Required Propulsive Force	n	53,463	47,365	27,643	23,220	49,141	53,463	56,124	52,640	27,703	56,145	47,343	22,934
Required Motor Output	W	7,164,039	6,346,974	2,460,218	2,066,621	6,584,836	7,164,039	7,520,656	7,053,788	2,465,5 27	7,523,447	6,343,969	2,041,131
Required In-Phase Motor Current	Arms	933	826	482	405	857	819	1180	918	483	1042	878	425
Reactive Voltage	v	8629	7645	2962	2488	7931	7575	10915	8493	2966	20232	17058	5487
Motor Constant per Phase	N/A	19.1	19.1	19.1	19.1	19.1	21.8	15.9	19.1	19.1	18.0	18.0	18.0
Motor Current per .15g per Phase	A	1026	1026	1026	1026	1026	901	1236	1026	1025	1091	1091	1091
Motor Current per .21g per Phase	А	1436	1436	1436	1436	1436	1261	1731	1436	1435	1527	1527	1527
Best Dynamic Breaking Deceleration	g	0,020	0.020	0.020	0.020	0.020	0.026	0.014	0.020	0.020	0.009	0.009	0.009
Reactive kVA	kVA	24,149	18,954	4,285	3,024	20,402	18,612	38,640	23,395	4,297	63,228	44,946	7,002
Lateral Drag	N	120	0	87	0	0	120	213	180	131	33	50	36
Torque for Lateral Force	Nm	3E+05	0E+00	2E+05	0E+00	0E+00	3E+05	3E+05	3E+05	2E+05	3E+05	3E+05	2E+05
Drag for Lateral Torque	N	5977	0	4335	0	0	5977	10557	8997	6555	1664	2504	1822
Lift Loss	MW	0.947	0.947	0.484	0.484	0.947	0.947	0.677	0.424	0.288	1.896	0.602	0.294
Loss from Lateral Drag	MW	0.016	0.000	0.008	0.000	0.000	0.016	0.029	0.024	0.012	0.004	0.007	0.003
Loss from Lateral Torque	MW	0.801	0.000	0.386	0.000	0.000	0.801	1.415	1.206	0.583	0.223	0.336	0.162
Total Magnetic Losses	MW	1.764	0.947	0.878	0.484	0.947	1.764	2.121	1.654	0.883	2.123	0.944	0.459
Total Motor Winding Losses	MW	0,760	0.597	0.203	0.143	0.642	0.586	1.216	0.736	0.204	1.195	0.850	0.199
Wind Drag Loss	MW	5.400	5.400	1.582	1.582	5.638	5.400	5.400	5.400	1.582	5.400	5.400	1.582
Primary Suspension Natural Frequency	Hz	4.06	4.06	4.06	4.06	4.06	4.06	3.05	4.06	4.04	6.85	6.84	6.81

- 137

÷

·) ! . !

Table H-2. Summary of hybrid null flux calculations.

Operating Parameters	Units	134 m/s	134, no T	89 m/s	89, no T	134 Aero	5 cm clear	600 kA	d=.004 4r	mm, 89m/s	P=1m	P&d <bl< th=""><th>P,d,89</th></bl<>	P,d,89
*Velocity	m/s	134	134	89	89	134	134	134	134	89	134	134	89
*Vehicle Vertical Position	m	0.0150	0.0150	0.0151	0.0151	0.0150	0.0150	0.0267	0.0151	0.0152	0.0053	0.0053	0.0053
*Differential Vertical Position (produces torque	e) m	0.0195	0.0000	0.0136	0.0000	0.0000	0.0195	0.0346	0.0196	0.0137	0.0069	0.0069	0.0048
*Vehicle Lateral Position	m	0.0078	0.0000	0.0054	0.0000	0.0000	0.0078	0.0139	0.0079	0.0055	0.0027	0.0028	0.0019
*Lateral Force Required	9	0.26	0	. 0.18	0	0	0.26	0.26	0.26	0.18	0.26	0.26	0.18
*Lateral Force Arm above Levitation Sheet	m	2	2	2	2	2	2	2	. 2	2	2	2	2
Torque from Lateral Force	Nm	254,800	0	176,400	0	0	254,800	254,800	254,800	176,400	254,800	254,800	176,400
Vehicle Description													
*Vehicle Frontal Area	m^2	12.16	12.16	12.16	12.16	12.70	12.16	12.16	12.16	12.16	12.16	12.16	12.16
*Drag Coefficient		0.3	0.3	0.3	່ 0.3 ີ	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
*Vehicle Weight	kg	40,000	40,000	40,000	40,000	40,000	40,000	40,000	40,000	40,000	40,000	40,000	40,000
*Mechanical Clearance, Vehicle to Guideway	m	0.08	0.08	0.08	0.08	0.08	0.05	0.08	0.08	0.08	0.08	0.08	0.08
Vehicle Magnets													
*Magnet Length	m	1.7	1.7	1.7	1.7.	1.7	1.7	1.7	1.7	1.7	0.7	0.7	0.7
*Pole Pitch	m	2	2	2	2	2	2	2	2	2	1	1	1
*"Width"	m	1	1	1	1	1	1	1	1	1	1	1	1
*Main Conductor Current	Α	8E+05	8E+05	8E+05	8E+05	°8E+05	8E+05	6E+05	8E+05	8E+05	8E+05	8E+05	8E+05
Radius of Main Superconductor	m	0.0505	0.0505	0.0505	0.0505	0.0505	0.0505	0.0437	0.0505	0.0505	0.0505	0.0505	0.0505
Radius of "Shield" Superconductor	m	0.0252	0.0252	0.0252	0.0252	0.0252	0.0252	0.0219	0.0252	0.0252	0.0252	0.0252	0.0252
*Number of Magnet Units per Bogie		3	3	3	3	3	3	3	3	3	3	3	3
Number of Bogles		2	2	2	2	2	. 2	2	2	2	2	2	2
*Superconducting Current Density	A/m ^ 2	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08	2E+08
*Superconducting wire Density	кg/m ^ З	86+03	8E+03	8E+03	86+03	86+03	8E+03	8E+03	8E+03	8E+03	8E+03	86+03	8E+03
*Nev B Field Seen by Superson dustries		5	5	5	5	5	5	5	5	5	5	5	5
*Nax B Field Seen by Superconductors	vs/m ⁺⁺ 2	4	4	4	4	4	4	4	4	4	4	4	4
*Superconductor wife Packing Density		0.5	0.5	0.5	0.5	0.5	0.5	0.5	• 0.5	0.5	0.5	0.5	0.5
"Spacing, SC Sunace to Venicle Sunace	m	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Guideway		i.											
*Levitation Sheet Thickness	m	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.004	0.004	0.006	0.004	0.004
*Guidance Sheet Thickness	m	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.004	0.004	0.006	0.004	0.004
*Levitation Sheet Width	m	1.60	1.60	1.60	1.60	1.60	1.60	1.61	1.60	1.60	1.60	1.60	1.60
*Guidance Sheet Width	m ·	0.80	0.80	0.80	0.80	0.80	0.80	0.81	0.80	0.80	0.80	0.80	0.80
*Guideway Conductivity	A/Vm	4E+07	4E+07	4E+07	4E+07	4E+07	4E+07	4E+07	4E+07	4E+07	4E+07	4E+07	4E+07
*Guideway Density	kg/m ^ 3	3E+03	3E+03	3E+03	3E+03	3E+03	3E+03	3E+03	3E+03	3E+03	3E+03	3E+03	3E+03

. '9

Χ,

16

Table H-2.1. Hybrid null flux optimizations.

ç.,

Operating Parameters	Units	op1@.26	op1@.09	op2@.09	op2@.26	op3@.18	op3@.06	op4@.06	op4@.18
*Velocity	m/s [134	134	134	134	89	89	89	89
*Vehicle Vertical Position	m	0.0150	0.0150	0.0151	0.0151	0.0151	0.0151	0.0152	0.0152
*Differential Vertical Position (produces torque	e)m	0.0195	0.0068	0.0068	0.0196	0.0136	0.0045	0.0046	0.0137
*Vehicle Lateral Position	m	0.0080	0.0028	0.0028	0.0082	0.0056	0.0019	0.0020	0.0060
*Lateral Force Required	g	0.26	0.09	0.09	0.26	0.18	0.06	0.06	0.18
*Lateral Force Arm above Levitation Sheet	m	2	2	2	2	2	2	2	2
Torque from Lateral Force	Nm	254,800	88,200	88,200	254,800	176,400	58,800	58,800	176,400
Vehicle Description									
*Vehicle Frontal Area	m^2	12.16	12.16	12.16	12.16	12.16	12.16	12.16	12.16
*Drag Coefficient		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
*Vehicle Weight	kg	40,000	40,000	40,000	40,000	40,000	40,000	40,000	40,000
*Mechanical Clearance, Vehicle to Guideway	m	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Vehicle Magnets									
*Magnet Length	m	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
*Pole Pitch	m	2	2	2	2	2	2	2	2
*"Width"	m	1	1	1	1	1	1	1	1
*Main Conductor Current	Α	8E+05							
Radius of Main Superconductor	m	0.0505	0.0505	0.0505	0.0505	0.0505	0.0505	0.0505	0.0505
Radius of "Shield" Superconductor	m	0.0252	0.0252	0.0252	0.0252	0.0252	0.0252	0.0252	0.0252
*Number of Magnet Units per Bogie		3	3	3	3	3	3	3	3
*Number of Bogies		2	2	. 2	2	2	2	2	2
*Superconducting Current Density	A/m^2	2E+08							
*Superconducting Wire Density	kg/m^3	8E+03							
*"Technology" Factor		5	5	5	5	5	5	5	5
*Max B Field Seen by Superconductors	Vs/m ^ 2	4	4	4	4	4	4	4	4
*Superconductor Wire Packing Density		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
*Spacing, SC Surface to Vehicle Surface	m	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Guideway									
*Levitation Sheet Thickness	m	0.0052	0.0052	0.0036	0.0036	0.0055	0.0055	0.0042	0.0042
*Guidance Sheet Thickness	m	0.0023	0.0023	0.0014	0.0014	0.0024	0.0024	0.0014	0.0014
*Levitation Sheet Width	m	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60
*Guidance Sheet Width	m	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
*Guideway Conductivity	A/Vm	4E+07							
*Guideway Density	kg/m^3	3E+03							

s.4° .9

ł

H-9

.

3

*

Table H-2.1. Hybrid null flux optimizations. (Cont.)

									page 2
Motor	Units	op1@.26	op1@.09	op2@.09	op2@.26	op3@.18	op3@.06	op4@.06	op4@.18
Winding to Superconducting Magnet Spacing	m	0.210	0.210	0.210	0.210	0.210	0.210	0.210	0.210
*Winding Width	m	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707
*Number of Magnet Units (per Vehicle)		6	6	. 6	6	6	6	6	6
*Radius of Conductor	m	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
*Number of Phases		3	3	· 3	3	3	3	3	3
*Turns per Phase		5	5	5	5	5	5	5	5
*Block Length	m	1000	1000	1000	1000	1000	1000	1000	1000
*Insulation Spacing between Turns	m	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
Current Density	<u>A/m^2</u>	7.13E+05	6.25E+05	6.10E+05	7.39E+05	3.66E+05	3.05E+05	2.97E+05	3.79E+05
Calculated parameters									
Cryosystem Weight	kg	14.045	14,045	14.045	14.045	14.045	14.045	14.045	14.045
First Harmonic, Open Circuit Motor V	v	2560	2560	2561	2561	1701	1701	1702	1702
Motor Resistance per Phase-Block	V/A	0.291	0.291	0.291	0.291	0.291	0.291	0.291	0.291
Motor Phase Inductance	Н	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044
Motor Phase Reactance	V/A	9.25	9.25	9.25	9.25	6.14	6.14	6.14	6.14
Guideway Levitation Mass per Meter	kg/m	22.5	22.5	15.5	15.5	23.7	23.7	18.1	18.1
Guideway Gudance Mass per Meter	kg/m	5.0	5.0	3.0	3.0	5.2	5.2	3.0	3.0
Guideway Motor Mass per Meter	kg/m	45.9	45.9	45.9	45.9	45.9	45.9	45.9	45.9
Magnetic Drag, No Lateral Force	N	3823	3823	2400	2400	3658	3658	2880	2880
Magnetic Lift to Drag Ratio, No Lateral Force		102.5	102.5	163.4	163.4	107.2	107.2	136.1	136.1
Required Propulsive Force	n	51,342	44,989	43,966	53,249	26,395	21,987	21,397	27,306
Required Motor Output	W .	6,879,779	6,028,462	5,891,391	7,135,314	2,349,125	1,956,831	1,904,341	2,430,218
Required In-Phase Motor Current	Arms	896	785	767	929	460	383	373	476
Reactive Voltage	V	8286	7260	7093	8590	2828	2356	2291	2924
Motor Constant per Phase	N/A	19.1	19.1	19.1	19.1	19.1	19.1	19.1	19.1
Motor Current per .15g per Phase	Α	1026	1026	1026	1026	1026	1026	1025	1025
Motor Current per .21g per Phase	Α	1436	1436	1436	1436	1436	1436	1435	1435
Best Dynamic Breaking Deceleration	g	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Reactive kVA	kVA	22,266	17,097	16,315	23,933	3,906	2,710	2,564	4,176
Lateral Drag	N	318	38	65	539	224	25	46	414
Torque for Lateral Force	Nm	3E+05	9E+04	9E+04	3E+05	2E+05	6E+04	6E+04	2E+05
Drag for Lateral Torque	N	6903	829	1203	10011	4735	527	694	6235
Lift Loss	MW	0.512	0.512	0.322	0.322	0.326	0.326	0.256	0.256
Loss from Lateral Drag	MW	0.043	0.005	0.009	0.072	0.020	0.002	0.004	0.037
Loss from Lateral Torque	MW	0.925	0.111	0.161	1.342	0.421	0.047	0.062	0.555
Total Magnetic Losses	MW [1.480	0.628	0.491	1.735	0.767	0.375	0.322	0.848
Total Motor Winding Losses	MW	0.701	0.538	0.513	0.753	0,185	0.128	0.122	0.198
Wind Drag Loss	MW	5.400	5.400	5,400	5.400	1.582	1.582	1.582	1.582
Primary Suspension Natural Frequency	Hz	4.06	4.06	4.05	4.05	4.05	4.05	4.04	4.04

:

يجرا.

3

H-10

Ł

Table H-3. Summary of image flux calculations.

·、

Operating Parameters	Units	134 m/s	134, no T	134 Aero	89 m/s	89,HSI	d=.01	10mm, 89	P=1 m
*velocity	m/s	134	134	134 [89	89	134	89	134
*lateral force	g	0.26	0	0.26	0.18	0.18	0.26	0.18	0.26
*vehicle vertical position, +=up, 0=no	orrm	ວ່	0	ວ້	0	-0.00005	0	0	0
Vahiela Deseriation									
venicle Description	• •				ie ve	· · - · -			
*assumed frontal area	m ^ 2	12.16	12.16	8.54	12.16	12.16	12.16	12.16	12.16
*drag coefficient	_	0.3	0.3	0.35	0.3	0.3	0.3	0.3	0.3
*total vehicle operating mass	kg	40,000	40,000	40,000	40,000	40,000	40,000	40,000	40,000
*height above arc (headroom)	m	1.87	1.87	1.87	1.87	1.87	1.87	1.87	1.87
Vehicle Magnet Parameters	5								
*pole pitch	m	1.5	1.5	1.5	1.5	1.5	1.5	1.5 [1
*magnet length	m	1.3	1.3	1.3	1.3	1.3	1.3	1.3	0.8
*center angle	degree	30	30	30	30	30	30	30 ັ	30
*total angle	degree	112	112	112	112	112	112	112	112
*vehicle skin outer bottom radius	m	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
*central current	А	582,528	582,528	582,528	582,632	582,528	582,636	583,032	620,540
*outer current	Α	145,632	145,632	145,632	145,658	145,632	145,659	145,758	155,135
*central coils per cluster (3)		3	3	3	3	. 3	ີ່	3	3
*outter coil pairs per cluster (1 or 3)		3	3	3	3	3	3	3	3
*clusters per vehicle		3	3	3	3	3	3	3	3
*superconducting current density	A/m ^ 2	2.0E+08	2.0E+08	2.0E+08	2.0E+08	2.0E+08	2.0E+08	2E+08	2.0E+08
*superconducting wire density	kg/m ^ 3	8E+03	8E+03	8E+03	8E+03	8E+03	8Ė+03	8E+03	8E+03
*"technology" factor		5	5	5	5	5	5	5	5
*superconductor to skin distance	m	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
*max B field in superconductor	Vs/m ^ 2	4	· 4	4	4	4	4	4	4
*superconductor wire packing density		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Guideway Levitation Parar	neters								
radius upper quideway surface	m	2 25	2 25	2 25	2 25	2 25	2 25	2 25	. 2.25
*central angle	degrees	<u>2.20</u> 40	<u>ک.</u> 20 ۵۸	<u>د.</u> رح ۵۸	2.25	2.25 40	<u>2.20</u>	40	40
*total angle	degrees	120 120	140	140	140	140	140	140	140
*levitation sheet thickness	m	0 02	0 02	0 02	. A NS	0 0 0	0.01	0.01	0 A A A
*levitation sheet conductivity	A/Vm	37F+07	37F+07	37E+07	$3.7E \pm 0.02$	37E+07	37E+07	37E+07	37E+07
*quideway density	ka/m ^ 3	27F±03	$2.7E \pm 0.9$	27F±02	27F±02	2 7F ±02	27F±02	27E±02	27E±02
*center angle *total angle *total angle *vehicle skin outer bottom radius *central current *outer current *central coils per cluster (3) *outer coil pairs per cluster (1 or 3) *clusters per vehicle *superconducting current density *superconducting wire density *superconductor to skin distance *max B field in superconductor *superconductor wire packing density Guideway Levitation Paran radius, upper guideway surface *central angle *total angle *levitation sheet thickness *levitation sheet conductivity *guideway density	degree degree m A A A A/m ^ 2 kg/m ^ 3 m Vs/m ^ 2 neters m degrees degrees m A/Vm kg/m ^ 3	30 112 2.1 582,528 145,632 3 3 2.0E +08 8E +03 5 0.06 4 0.5 2.25 40 140 0.02 3.7E +07 2.7E +03	30 112 2.1 582,528 145,632 3 3 3 2.0E +08 8E +03 5 0.06 4 0.5 2.25 40 140 0.02 3.7E +07 2.7E +03	30 112 2.1 582,528 145,632 3 3 2.0E +08 8E +03 5 0.06 4 0.5 2.25 40 140 0,02 3.7E +07 2.7E +03	30 112 2.1 582,632 145,658 3 3 3 2.0E+08 8E+03 5 0.06 4 0.5 2.25 40 140 0.02 3.7E+07 2.7E+03	30 112 2.1 582,528 145,632 3 3 2.0E+08 8E+03 5 0.06 4 0.5 2.25 40 140 0.02 3.7E+07 2.7E+03	30 112 2.1 582,636 145,659 3 3 3 2.0E +08 8E +03 5 0.06 4 0.5 2.25 40 140 0.01 3.7E +07 2.7E +03	30 112 2.1 583,032 145,758 3 3 3 2E+08 8E+03 5 0.06 4 0.5 2.25 40 140 0.01 3.7E+07 2.7E+03	3 11 2.0E+0 8E+0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

H-11

.

7

~

· init 1.2 2 4 4 - 1 2 1 . alatais . i.

ł

Table H-3.	Summary	of image	flux c	calculations.	(Cont.)
------------	---------	----------	--------	---------------	---------

Guideway Motor ParametersUnits 134 m/s 134, no T 134 Arc 89 m/s 89, HSI d=01 10mm, 89 P=1 n *motor wire radius m 0.02<										page 2
*motor wire radius m 0.02	Guideway Motor Paramete	rSUnits	134 m/s	134, no T	134 Aero	89 m/s	89,HSI	d=.01	10mm, 89	P=1 m
*number of phases 3	*motor wire radius	m	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
*turns per phase 5	*number of phases		3	3	3	3	3	3	3	3
*block length m 1000 1000 1000 1000 1000 1000 1000 1000 *spacing, windings to g'way surface m 0.01 0.	*turns per phase		5	5	5	5	5	5	5	5
*spacing, windings to g'way surface m 0.013 0.013 0.013	*block length	m	1000	1000	1000	1000	1000	1000	1000	1000
*winding width angle degrees 30	*spacing, windings to g'way surface	m :	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
*winding conductivity A/Vm 3.7E+07 3.7	*winding width angle	degrees	30	30	30	30	30	30	30	30
*winding density kg/m ^3 2.7E+03 2.7E+	*winding conductivity	A/Vm	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07	3.7E+07
Calculated Parameters vehicle frontal area m^2 8.54	*winding density	kg/m ^ 3	2.7E+03	2.7E+03	2.7E+03	2.7E+03	2.7E+03	2.7E+03	2.7E+03	2.7E+03
vehicle frontal area m ^ 2 8.54	Calculated Parameters	· ·			۰.					
cryosystem weight kg 6,497 6,497 6,497 6,497 6,498 6,497 6,498 6,503 5,804 first harmonic, open circuit motor V Vrms 4,144 4,144 4,144 2,753 2,753 4,145 2,755 4,491 motor resistance per phase – block V/A 0.193	vehicle frontal area	m ^ 2	8.54	8.54	8.54	8 54	8.54	8 54	8 54	8 54
first harmonic, open circuit motor V Vrms 4,144 4,144 4,144 2,753 2,753 4,145 2,755 4,447 motor resistance per phase - block V/A 0.193 0.236 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 </td <td>crvosvstem weight</td> <td>ka</td> <td>6.497</td> <td>6.497</td> <td>6.497</td> <td>6,498</td> <td>6.497</td> <td>6.498</td> <td>6.503</td> <td>5.804</td>	crvosvstem weight	ka	6.497	6.497	6.497	6,498	6.497	6.498	6.503	5.804
motor resistance per phase – block V/A 0.193 0.233 motor reactance per phase – block V/A 5.69 5.69 3.78 3.78 3.78 3.78 3.78 3.78 10.43 106.3 213.0 213.0 213.0 213.0 213.0 213.0 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5	first harmonic, open circuit motor V	Vrms	4,144	4.144	4.144	2,753	2,753	4,145	2,755	4,491
motor inductance per phase - block H 0.020 <	motor resistance per phase-block	V/A	0,193	0.193	0.193	0,193	0.193	0.193	0,193	0.236
motor reactance per phase - block V/A 5.69 5.69 3.78 3.78 5.69 3.78 10.44 guideway levitation mass per meter kg/m 213.0 213.0 213.0 213.0 213.0 213.0 106.3 106.3 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 106.3 106.3 213.0 2	motor inductance per phase-block	н	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.025
guideway levitation mass per meterkg/m213.0213.0213.0213.0213.0213.0213.0106.3106.3213.0213.0guideway motor mass per meterkg/m30.5<	motor reactance per phase-block	V/A	5.69	5.69	5.69	3.78	3.78	5.69	3.78	10.44
guideway motor mass per meterkg/m30.530.	guideway levitation mass per meter	kg/m	213.0	213.0	213.0	213.0	213.0	106.3	106.3	213.0
N391,998391,998391,998391,998391,999392,000391,998392,000392,000magnetic drag forceN10,16410,16410,16412,47212,47212,58318,94612,449motor constant per phaseN/A30.9	guideway motor mass per meter	kg/m	30.5	30.5	30.5	30.5	30.5	30.5	30.5	37.2
magnetic drag forceN10,16410,16410,16412,47212,47212,58318,94612,448motor constant per phaseN/A30.9 <t< td=""><td>levitation force</td><td>N</td><td>391,998</td><td>391,998</td><td>391,998</td><td>391,999</td><td>392,000</td><td>391,998</td><td>392,000</td><td>392,001</td></t<>	levitation force	N	391,998	391,998	391,998	391,999	392,000	391,998	392,000	392,001
motor constant per phaseN/A30.930.930.930.930.930.930.930.930.930.931.033.5maximum decelerationg0.0860.0	magnetic drag force	N	10,164	10,164	10,164	12,472	12,472	12,583	18,946	12,449
maximum deceleration g 0.086 0.091 0.195 0.016 0.0195 0.019 0.195 <td>motor constant per phase</td> <td>N/A</td> <td>30.9</td> <td>30.9</td> <td>30.9</td> <td>30.9</td> <td>30.9</td> <td>30.9</td> <td>31.0</td> <td>33.5</td>	motor constant per phase	N/A	30.9	30.9	30.9	30.9	30.9	30.9	31.0	33.5
motor current per phaseArms544544465326326570395525motor reactive power, totalkVA5,0525,0523,6951,2051,2055,5461,7748,619motor winding lossesMW0.1710.1710.1250.0620.0620.1880.0910.195lift lossMW1.3621.3621.3621.1101.1101.6861.6861.668lateral lossMW0.4270.0000.4270.2410.2410.5290.3660.523wind drag powerMW5.405.404.421.581.585.401.585.40primary suspension natural frequencyHz1.041.041.041.041.041.041.041.04134 m/s134, no T134 Aero89 m/s89,HSId=.0110mm, 89P=1 m	maximum deceleration	g	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.055
motor reactive power, totalkVA5,0525,0523,6951,2051,2055,5461,7748,619motor winding lossesMW0.1710.1710.1250.0620.0620.1880.0910.195lift lossMW1.3621.3621.3621.1101.1101.6861.6861.666lateral lossMW0.4270.0000.4270.2410.2410.5290.3660.523wind drag powerMW5.405.404.421.581.585.401.585.40primary suspension natural frequencyHz1.041.041.041.041.041.041.04134 m/s 134, no T134 Aero89 m/s89,HSId=.0110mm, 89P=1 m	motor current per phase	Arms	544	544	465	326	326	570	395	525
motor winding losses MW 0.171 0.171 0.125 0.062 0.062 0.188 0.091 0.195 lift loss MW 1.362 1.362 1.362 1.110 1.110 1.686 1.686 1.686 lateral loss MW 0.427 0.000 0.427 0.241 0.241 0.529 0.366 0.523 wind drag power MW 5.40 5.40 4.42 1.58 1.58 5.40 1.58 5.40 1.686 1.04 primary suspension natural frequency Hz 1.04	motor reactive power, total	kVA	5,052	5,052	3,695	1,205	1,205	5,546	1,774	8,619
MW 1.362 1.362 1.362 1.110 1.110 1.686 1.686 1.668 lateral loss MW 0.427 0.000 0.427 0.241 0.241 0.529 0.366 0.523 wind drag power MW 5.40 5.40 4.42 1.58 1.58 5.40 1.58 5.40 1.686 1.686 1.686 0.523 primary suspension natural frequency Hz 1.04	motor winding losses	MW	0.171	0.171	0.125	0.062	0.062	0.188	0.091	0.195
Iateral lossMW0.4270.0000.4270.2410.2410.5290.3660.523wind drag powerMW5.405.404.421.581.585.401.585.40primary suspension natural frequencyHz1.041.041.041.041.041.041.041.04134 m/s134, no T134 Aero89 m/s89,HSId=.0110mm, 89P=1 m	lift loss	MW	1.362	1.362	1.362	1.110	1.110	1.686	1.686	1.668
wind drag power MW 5.40 5.40 4.42 1.58 1.58 5.40	lateral loss	MW	0.427	0.000	0.427	0.241	0.241	0.529	0.366	0.523
primary suspension natural frequency Hz 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.03 134 m/s 134, no T 134 Aero 89 m/s 89,HSI d=.01 10mm, 89 P=1 m	wind drag power	MW	5.40	5.40	4.42	1.58	1.58	5.40	1.58	5.40
134 m/s 134, no T 134 Aero 89 m/s 89,HSI d=.01 10mm, 89 P=1 m	primary suspension natural frequency	Hz	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.03
			134 m/s	134, no T	134 Aero	89 m/s	89,HSI	d=.01	10mm, 89	P=1 m

. بو

ł

REFERENCES

EMS Vertical Magnets (or Lateral Magnets)

- 1. Weinberg, M.S., "Electromagnetic Suspensions for Ground Transportation", Ph.D. Thesis, M.I.T., Cambridge, MA, December, 1973.
- Wormley, D.N. et al, "Noncontacting Suspension and Propulsion for Ground Transportation," Final First Year Report, U.S.D.O.T. Report DOT/RSPA/DPB-50/79/34(NTIS PB 80-176274), December, 1979.
- Yamamura, S., and Ito, T., "Analysis of Speed Characteristics of Attracting Magnetic Levitation of Vehicles," <u>IEEE Transactions on Magnetics</u> Vol. Mag-ll, No. 5, September, 1975, pp. 1504-7.
- 4. Roters, H.C., "Electromagnetic Devices", J. Wiley and Sons, N.Y., 1941.
- Borcherts, R.H., Davis, L.C., Wan, C.C., Mahdulla, A.V., Reitz, J.R., "Parameter Optimizations Studies of Magnetic Suspensions for High Speed Ground Transportation," Ford Motor Co. and FRA, Report No. FRA/ORD-74/42(NTIS PB 238773), April, 1974.
- Sinha, P. K., "Design of a Magnetically Levitated Vehicle," <u>IEEE Transactions on</u> <u>Magnetics.</u> Vol. Mag-20, No. 5, September, 1984, pp 1672-2.
- Sabnis, A.V., "Analysis of Forces in Rectangular-Pole Geometries Using Numerical Integration Techniques," <u>IEEE Transactions on Magnetics</u>, Vol. MAG-12, No. 4, July 1976.
- 8. Heinrich, K., and Kretzschmar, R., Editors., "Transrapid MagLev System," Hestra-Verlag, Darmstadt, 1989.
- Bohn, G. and Steinmetz, G., "The Electromagnetic Levitation and Guidance Technology of the 'Transrapid' Test Facility Emsland," <u>IEEE Transactions on</u> <u>Magnetics.</u> Vol. Mag-20, No. 5, September, 1984, pp 1666-71.
- 10. Heger, F., Heger, W., Roth, R., "Three-Dimensional Finite Element Analysis of Radial Magnetic Bearing," Draper Laboratory report CSDL-P-3085, August, 1991.

EMS Staggered Vertical Magnets(with lateral Force capability)

11. Brzezina, W., Langerholc, J., "Lift and Side Forces on Rectangular Poles in Two Dimensions," J. Applied Physics, Vol. 45, No. 4,1974.

Wormley, D.N. et al, op. cit.

Yamamura, S., and Ito, T., op. cit.

Sabnis, A.V., op. cit.

EMS Vertical Lift Magnets /Synchronous Motor

 Mischler, W.R. and Nondahl, T.A., "Performance of a Linear Synchronous Motor with Laminated Track Poles and with Various Misalignments. Phase 1, Vol. 1," GE and FRA, Report No. RFA/ORD-80/52-1, SRD-78-102, September, 1980.

Roters, H.C., op. cit.

Weinberg, M.S., op. cit.

EMS Linear Induction Motor

13. Stickler, J. J., "Comparison of Theories for High-Speed Linear Induction Motors," IEEE Trans. Vehicular Technology, Vol. VT-29, No. 1, Feb., 1980, pp. 65-71.

early the the the many court

- 14. Nondahl, T. A. and Richter, E., "Comparison between Designs for Single-Sided Linear Electric Motors, Homopolar Synchronous and Induction, Phase III," GE and FRA, Report No, RFA/ORD-80/54 (NTIS PB 81 116188), September, 1980.
- 15. Elliot, D.G., "Marrix Analysis of Linear Induction Machines," Jet Propulsion Lab. and FRA, Report No JPL-SP-43-24, FRA/ORD-75/77 (NTIS PB 254574), September, 1975.

- Kliman, G.B. and Mischler, W.R., "Performance of a Single-Sided Linear Induction Motor with Solid Back Iron and with Various Misalignments, Phase II," Vol. 1, GE and FRA, Report No. RFA/ORD-80/53-1; SRD-78-069, September, 1980.
- Lipkis, R.S. and Wang, T.S., "Single Sided Linear Induction Motor (SLIM); A Study of Thrust and Lateral Forces," TRW and FRA, Report No. FRA/RT72125 (NTIS PB 205029), June, 1971.
- Nonaka, S. and Higuchi, T., "Design Strategy of Single-Sided Linear Induction Motors for Propulsion of Vehicles," <u>IEEE International Conference on Maglev and</u> <u>Linear Drives</u>, Las Vegas, 1987, pp 1-5.
- Yamamura, S., "Theory of Linear Induction Motors," 2d Ed., John Wiley & Sons, New York, 1978.

- Nasar, S.A. and Boldea, I., "Linear Motion Electromagnetic Systems," John Wiles & Sons, New York, 1985.
- 21. Gieras, J.F., "Linear Induction Motors," WNT, Warsaw, 1990.

С

- 22. Nonaka, S., and Furukawa, T., "Finite Element Analysis of Linear Induction Motors Taking into Account Discontinuity of Secondary Rails," <u>Proc. 11th</u> <u>International Conference on Magnetically Levitated Systems and Linear Drives</u> (Maglev'89), July 7-11, 1989, Yokohama, Japan, pp 339-344.
- 23. Tevan, G., and Toth, F., "A Clear Algorithm for the Calculation of the Linear Induction Motor Based on Field Theory," <u>Acta Technica, Academiae Scientiarum</u> <u>Hungaricae</u>, Tom 8b(3-4), 1978, pp.331-362.
- 24. Tevan, G., "Computation of a Double-Sided Linear Induction Motor by Undamped Travelling Waves," <u>Periodica Polytechnia-Electrical Engineering</u>, Vol. 23, No. 2, 1979, pp.113-135.
- 25. Tevan, G., "Optimizing Analyses of a Double-Sided Linear Induction Motor," <u>Periodica Polytechnia-Electrical Engineering</u>, Vol. 23, No. 2, pp.137-147.

- 26. Nonaka, S., Fujii, N., Watanabe, T., and Kojima, T., "Test Facility and Test Results of Single-Sided LIM for Urban Transit," <u>Proc. International Conference on</u> <u>Magnetically Levitated Systems and Linear Drives(Maglev'85)</u>, 1985, pp 111-120.
- Gieras, J. F., Dawson, G. E., and Eastham, A. R., "Performance Calculation for Single-Sided Linear Induction Motors with a Double-Layer Reaction Rail Under Constant Current Excitation," <u>IEEE Transactions on Magnetics</u>, Vol. Mag-22, No. 1, January, 1986, pp. 54-62.
- Gieras, J. F., Eastham, A. R. and Dawson, G. E., Performance Calculation for Single-Sided Linear Induction Motors with a Solid Steel Reaction Plate Under Constant Current Excitation," <u>IEE Proceedings</u>, Vol. 132, Pt. B, No. 4, July 1985, pp. 185-194.
- Gieras, J. F., Dawson, G. E., and Eastham, A. R., "A New Longitudinal End Effect Factor for Linear Induction Motors," <u>IEEE Trans. Energy Conversion</u>, Vol. EC-2, No. 1, March 1987, pp. 152-159.
- 30. Dawson, G. E., and Eastham, A. R., "Comparative Performance of Single-Sided Linear Induction Motors with Squirrel-Cage, Solid-Steel and Aluminum-Capped Reaction Rails," <u>Conference Record-IEEE Industry Applications Society Annual</u> <u>Meeting</u>, Oct. 8-9, 1981, pp. 323-329.
- 31. Heger; F.; "Electromagnetic/Processes in a Conducting Medium with Non Linear Parameters: (Application of Lie Groups to Maxwell's Equations)," Draper Laboratory Report CSDL-P-2968, July, 1990; (2010) (2010) (2010)
- 32. Ogarkov, E.M., Korotaey, A.D., "The Quadrature Effect of Linear Induction Motors with Account Taken of Secondary Element Anisotropy," <u>Elektrichestvo</u>, No. 4, 1991, pp 36-40.

ł

- 33. Epifanov, A.P., Lebedev, A.M., Method for Calculation of Characteristics of Linear Induction Motors, Elecktroteknika, Vol. 4, No. 5, 1991, pp 26-29, translated in <u>Soviet Electrical Engineering</u>, pp. 46-51, Allerton Press, New York, 1992.
- 34. Skobelev, V. E., "Influence of Longitudinal Fringe Effect on the Operation of High Speed Traction Induction Motors," <u>Rail International</u>, Dec. 1974, pp. 767-781.

R-4

- 35. Skobelev, V. E.,"The Problems of using the Asynchronous Linear Motor for High-Speed Ground Transport," <u>Rail International</u>, June 1977, pp. 297-308.
- 36. Skobelev, V. E., Solovyev, G. I. and Epifanov, A. P. "The Analysis of Means of Improving Characteristics of Linear Induction Traction Motors for High-Speed Ground Transport," <u>Rail International</u>, June, 1980, pp. 369-380.
- 37. Poloujadoff, M., "The Theory of Linear Induction Machinery," Clarendon Press, Oxford, 1980.

EDS Levitation/Guidance

С

 Richards, P.L. and Tinkham, M., "Magnetic Suspension and Propulsion Systems for High-Speed Transportation," <u>J. Appl. Phys.</u>, Vol. 43, No. 6, June 1972, pp. 2680-91.

1.24

12

Ŧ. ;

- 39. Heger, F. and Gorman, J., "Superconducting Materials for Magnetic Field Shaping and Shielding in Electrical Machinery," Draper Laboratory Memo EEF-5027-89.
- 40. Grover, F.W., "Inductance Calculations, Working Formulas and Tables," Dover Publications, New York, 1962.
- 41. Urankar, L. and Miericke, J. "Forces on ArbitraryoPland-Multiple Excitation Current Systems Used in Magnetic Levitation," Siemens/Forsche-an Entwickl.-Ber. Bd. 2, Nr. 3 (1974), pp.)442-1481, 86-80-9-1020 morphic electronic
- 42. Miericke, J. and Urankar, L. "Theory of Electrodynamic Levitation with a Continuous Sheet Track Part I," <u>Appl. Phys.</u> No. 2, 1973, pp. 201-211.
- 43. Urankar, L. and Miericke, J. "Forces on Null-Flux Magnetic Levitation Systems," J. Appl. Phys., Vol. 44, No. 4, April 1973, pp. 1907-1909.
- 44. Powell and Danby, "Magnetic Suspension for Levitated Tracked Vehicles", <u>Cryogenics</u>, June 1971

Ride Quality (both EMS & EDS)

45. Pepler, R.D., et al, "Development of Techniques and Data for Evaluating Ride Quality, Vol. II, U.S. Dept. of Trans. Report DOT-TSC-RSPD-77-1, II, February, 1978.

£

- 46. Hedrick, J.K. and Wormley, D.N., "Active Suspensions for Ground Transport Vehicled-A State of the Art Review", <u>Mechanics of Transportation Suspension</u> <u>Systems</u>, ASME Monograph AMD-V0115, 1975.
- 47. Wormley, D. N., et al, "Magnetic Levitation Vehicle-Suspension Guideway Interaction", Technical Memorandum, Center for Transportation Studies, Massachusetts Institute of Technology (Contract DTFR 53-91-C-00062, Federal Railroad Administration), January, 1992.
- 48. Wormley, D. N., et al, "Interactions Between Magnetically Levitated Vehicles and Elevated Guideway Structures", Center for Transportation Studies, Massachusetts Institute of Technology, contract DTFR 52-91-C-00062, July, 1992.

Weinberg, M.S., op. cit.

Wormley, D.N. et al. op. cit.

General

- Beltramo, M. N., D. L. Trapp, B. W. Kimoto, and D. P. Marsh, "Parametric Study of Transport Aircraft Systems Cost and Weight," NASA Report CR 151970 (NTIS N77-26106), April 1977
- 50. Baumeister, T., Avallone, E. A., and Baumeister III, T., eds., "Marks Standard Handbook for Mechanical Engineers", 8th Ed., McGraw-Hill, 1978

R-6

A C A A A A A A A A A A A A A A A A A A	rameters in ctromagnetic Levitation DOT, FRA, NMI, WE F Heger, MS Weinberg, istems
Manuel Parales Par Parales Parales Par	

PROPERTY OF FRA RESEARCH & DEVELOPMENT LIBRARY