2017 FRA Rail Program Delivery Meeting

Rail Project Delivery: Coordinating with Railroads and Utilities

Marian Rule, Rob Ball, Jonathan Seager, and French Thompson

Railroad and Utility Coordination – Top Ten List

Marian Rule

2017 FRA Rail Program Delivery Meeting

Identifying Interface with Third Parties

► For projects that:

- Cross over or under existing tracks/utilities
- Run adjacent to railroads/utilities
- Share use with railroads
- Require utility service
- Involve utility/track relocation, or cause other impacts

Top Ten areas of focus for successful project execution...

U.S. Department of Transportation Federal Railroad Administration

#1. Safety

- Safety during project planning and design
- Safety during construction
- Safety during operations
- Accomplished with:
 - Rights of Entry
 - Flagging
 - Complying with requirements and maintaining clearances
 - Safety training & certifications

Credit: FRA, R. Brown 11/19/14 U.S. Department of Transportation Federal Railroad Administration

#2. Agreements

- Master agreements and specific agreements
 - Right of Entry
 - Encroachment
 - Funding
 - Insurance & indemnification
 - Relocation
 - Construction and Maintenance
 - Operating / Use
 - Some with multiple third parties

#3. Facility Layout

Compliance with Railroad requirements

Track spacing

- Accommodations for future tracks within railroad right of way
- Access and maintenance roads
- Crash walls
- Trainman's walkways
- At-grade crossings

#4. Right of Way

Solution: Property Acquisition & Retaining Wall

8

#5. Drainage

Ditches and piped systems Detention and outfall

#6. Clearances - Structures

Horizontal

- Railroad and PUC requirements
- Clearance envelopes
- Curved and tangent track conditions

Vertical
Temporary
Permanent

#7. Clearances - Wireline

Railroad or utility requirements: the more stringent will govern

Higher voltage lines require greater clearances

	Existing Line Elev [1]	Existing Ground Elev [2]	Ht above Ex ground [1] - [2] = [3]	Prop Track Elev [4]	Ht above Prop Track Elev [1] - [4] = [5]	CPUC Vertical Clearance Required ¹	RUS (UP) Vertical Clearance Required ²	Conclusion
E	46.31	15.99	30.32	15.33	30.98	28.0	29.5	OK - no need to adjust line height
F	42.20	15.99	26.21	15.33	26.87	28.0	29.5	Need to raise line height
G	37.26	15.99	21.27	15.33	21.93	28.0	29.5	Need to raise line height
н	46.09	15.91	30.18	15.34	30.75	28.0	29.5	OK - no need to adjust line height
ſ	41.25	15.91	25.34	15.34	25.91	28.0	29.5	Need to raise line height
J	37.98	15.91	22.07	15.34	22.64	28.0	29.5	Need to raise line height

#8. Utility Under-crossings

- License Agreements, Fees, Timelines
- Undercrossings
 - ▶ Flammable
 - Non-flammable

#9. Utilities in Railroad ROW

Utility Location

Utility protection

- Casings, utility bridges, and slabs
- Railroad/utility company ube permitted within two (review and approval

Existing Utilities Matrix

	Utility Companies	Utility Type	Contacts	
	AT&T	Fiber Optic	Astrid Willard (
	Cal American Water Company	Water	Spencer Phillip:	
	City of Roseville	Water/Sewer	Roy Van Ness (
	City of Roseville	Electric	Tiffany McAvoy	
	City of Sacramento	Water/Sewer	Ron Fujioka (91	
	Comcast	Fiber Optic	Andrew Kotz (5	
	Golden State Water Company	Water	Ernest Rauback	
(D	Kinder Morgan	Fuel	Timothy Szto (7	
	Level 3	Fiber Optic	Matt Prink (720	
	MCI	Fiber Optic	Verizon Busine Investigations@	
	PG&E	Gas Transmission	Pete Miskovich Rick Adams (91	
	PG&E	Gas Distribution	Pete Miskovich Rick Adams (91	
	PG&E	Electric	Greg Hernande	
	Qwest	Fiber Optic	Brett Hankins (

#10. Submittals & Approvals

BNSF RAILWAY - UNION PACIFIC RAILROAD

GUIDELINES FOR RAILROAD GRADE SEPARATION PROJECTS

- Timing, components
- Responsibility: if delegated, less control of quality and timeliness
- Materials required for submittals

Design, calculations, geotechnical, drainage, construction submittals, as-built submittals, etc.

	Phase		Types of Submittals			
	Design A		Concept (Plans and Site Pictures)	1 month		
		В	30% (Applicant response, Design Plans, Specifications, Drainage, Shoofly,			
			Construction Phasing Plans			
		С	100% (Applicant response, Design Plans, Specifications, Drainage, Shoofly,	1 month		
			Construction Phasing Plans)			
COVER PAGE	PAGE Construction		Shoring, Falsework, Demolition, Erection, Erosion Control, Construction			
MR DATE 10417 A ABAN CIECTED EN IL JERMON			Phasing Plans			

California High-Speed Rail: Lessons Learned

Rob Ball, WSP / California High-Speed Rail Authority

2017 FRA Rail Program Delivery Meeting

U.S. Department of Transportation Federal Railroad Administration

14

High-Speed Rail: It's Happening!

Approximately 119 Miles Madera to North of Bakersfield Over \$3 Billion Investment

> U.S. Department of Transportation Federal Railroad Administration

15

2017 FRA Rail Program Delivery Meeting

High-Speed Rail: Connecting California

HIGH-SPEED RAIL: Helping Shape Cities

► Ties Economies Together

- San Jose to Fresno = 60 Min
- Bakersfield to Los Angeles = 60 Min
- San Francisco to Los Angeles = Capable of 2 Hrs. and 40 Min
- Connects With and Reinforces Local Mobility
- ► Foundation for Sustainable Growth
- Opportunities for Revitalization in Downtown Cores

Coordinating with Class Is, Short Lines, and Utility Companies

Experience from California High-Speed Rail Program

2017 FRA Rail Program Delivery Meeting

- Start early working with railroads is not a short process
- All Railroads are not the same
- UPRR and BNSF agreements were not in place for issuance of first Construction Packages
- Requirements were still being negotiated and continues today
- Standard UPRR/BNSF standards did not address uniqueness of High-Speed Rail
 - HSR test speeds at 242 mph
 - HSR operating speeds up to 220 mph
 - Need for intrusion protection measures for offset distances less than 102 ft. from RR ROW and operating speeds over 125 mph
- Talk to decision makers know who you are negotiating with

- HSR established benefits to railroads primarily through elimination of grade crossings
 - Provides Safety & Operational benefits
 - Provides for reduced maintenance
 - Provides for added security & access restrictive fencing

LA Union Station

Established Intrusion Protection requirements

- Provides a high standard for HSR
- Required extensive computer modeling and probabilistic analyses to evaluate risk of freight derailments
- May set a precedence for other rail systems
- Costly to implement as Change Orders

Trans Bay

PROTECTION MEASURES

CONCRETE BARRIER & INTRUSION DETECTION SEPARATION DISTANCE 48' < D < 60'

NOTES

- 1. DESIGN FORCE F=650 KIPS, APPLIED 6' ABOVE OG
- 2. MINIMUM DISTANCE BASED ON S=1, SUBJECT TO SLOPE STABILITY ANALYSIS
- 3. MINIMUM DISTANCE CONSIDERS A MINIMUM OF 3'6" HIGH TRACK EMBANKMENT, INCLUSIVE OF SUBBALLAST

23

Coordination with Class Is

EARTHEN BERM

- Reached agreement on physical mitigation measures
 - No intrusion protection required if separation from closest HSR track > 102 ft.
 - 10 ft. high earthen berm proposed as derailment protection for separation 60 to 102 ft. Berm height increased to 12 ft. Applied to BNSF only.
 - 10 ft. high reinforced barrier wall for separation 48 to 60 ft. Designed to 650 Kips lateral loading. Exceeds AASHTO and AREMA requirements
 - Intrusion detection fencing up to 250 ft. separation with advance signal of breach to HSR and freight trains

25

Coordination with Class Is

Primary Lessons Learned:

- Stay a set distance back from freight corridors
- Railroads hazards assessment established distance as 102 ft. from RR ROW
- Establish terms and scope of work early and include in bid documents
- Negotiate track outages upfront with railroads – do not leave up to bidders
- Budget for unknowns
- Count on uncertainties to come up

San Joaquin Viaduct

Coordination with Utilities

Start early on establishing agreements

Establish applicable technical standards

- New General Order 176 was not in place created new standard for 25 kv electrification systems for HSR
- HSR carries a higher standard than GO 176 and has created issues with interpretation of different standards

26

Coordination with Utilities

- Advance design for utility relocation in Preliminary Engineering phase
- Minimize use of provisional funds for utility relocation requires issuance of COs
- Have Design Builder competitively bid utility relocation work
- Consider early utility relocation contracts to clear in advance of main Design Build contract

27

Cedar Viaduct

Procurement Strategies

- Evaluate alternative delivery methods
- Select the delivery method for the right reason
- Design-Build does not transfer all risk to a contractor
- Understand the project risks and allocate risk to the party best able to deal with it

Procurement Process

Understand what Best Value is

- Score appropriately between technical and price
- Establish a Shortlist
- Proposers will shortlist if an agency does not

Fresno River Viaduct

Procurement Process

Alternative Technical Concepts

- Allows a bidder to propose alternative & more cost effective designs
- Encourages innovation
- Need adequate information to make informed decisions
- Be careful with ATCs that create environmental re-examinations and right-ofway impacts
- Contractor is solely responsible for the implementation of the ATC

Contract Administration

Robust Contract Management Enforce the Contract Aggressive Change Control Manage the change process Implement Lessons Learned Learn from past procurements Make and Keep Decisions Critical on Design-Build Improve communications across functional teams

Communication is key on large mega projects

Aesthetics Requirements

- Make requirements clear
- Establish programmatic requirements to identify the system
- Be clear on input from local jurisdictions

Fresno River Viaduct

Benefits from HSR to Third Parties

 Elimination of railroad grade crossings
Improved Safety

- ▶ Reduced maintenance
- Utilities
 - Extended service life with relocation and replacement
 - Upgrades to utility lines
 - Identify and negotiate betterments

Right-of-Way

Identify right-of-way requirements and critical parcels

- Avoid changes where possible
- Establish a reasonable and realistic schedule for acquisition
- Communicate with Property Owners in advance
- Understand the benefits and risk with administrative settlements
- Establish parcel acquisition priorities early with Design-Builders to support construction work zones
 Stay the course – refrain from making changes

Establish a condemnation process and implement when necessary

Utility Coordination Jonathan Seager, Pacific Gas & Electric

2017 FRA Rail Program Delivery Meeting

What is State Infrastructure?

A portfolio of some of the top infrastructure projects in North America - arguably some of the largest projects ever undertaken in California:

- California High-Speed Rail
- Caltrain Modernization
- BART Silicon Valley Extension
- California WaterFix & EcoRestore
- Downtown Transbay Terminal Extension
- Integration & Supporting Projects

These highly complex projects span nearly all aspects of PG&E's business, requiring innovative approaches, extraordinary collaboration, and broad stakeholder engagement to achieve project goals Safety

36

Utility Relocations

New Service / Interconnection

Regulatory & Compliance
Common Project Questions

How do we most efficiently and effectively engage with utilities?

What do utilities need in order to support our needs?

- Existing agreements do they apply or do we need new ones?
- What about my compliance requirements (i.e. Buy America)?

Why does it take so long and cost what it does?

Common Project Challenges

	 Stakeholder pressure(s)
Environment	Conflicting interests
	 Project culture (what are you creating?)
	 "Tunnel" vision Understaffing
Organization	 Experience on other projects Underestimating utility requirements Contractor / vendor management (who is running the project?)
	 Overly aggressive project scope and schedules

Project

Overly optimistic project budgeting

Potential Opportunities

Collaboration

►Creativity

Compromise

- Project culture is important
- Understand the utility operating environment
- The bigger it is, the longer it takes (start sooner)
- Be reasonable
- Focus on innovative solutions (not blame)
- Be accountable
- Tell the truth
- Thank your partners (publicly)

Railroad Coordination

French Thompson, BNSF Railway

2017 FRA Rail Program Delivery Meeting

U.S. Department of Transportation Federal Railroad Administration

Presentation Agenda

BNSF Passenger Principles
 Observations
 Lessons Learned
 Future Opportunities

BNSF Commuter Principles

- Any commuter operation cannot degrade BNSF's freight service, negatively affect BNSF's freight customers or BNSF's ability to provide them with service.
- BNSF must be compensated for any and all costs incurred in providing commuter service and make a reasonable return for providing the service.
- BNSF will not incur any liability for commuter operations that it would not have but for those operations. These operations are provided by BNSF primarily as a public service; the relatively modest compensation BNSF receives does not begin to justify assuming the significant liability associated with passenger service.

BNSF Commuter Principles

43

Studies of how commuter service might be provided must take into account not only the current freight traffic levels, but projected freight traffic growth.

Improvements must include grade crossing protection and intertrack fencing as required to minimize the risk of accidents, due to liability and service interruption concerns.

Observations

Differences On and Off BNSF Property On BNSF:

- Completely Follow BNSF Commuter Principles
- Realize the impacts of your project on BNSF's ability to move freight
- ► Off BNSF:
 - Assure separation of operations
 - Prevent conflicts for access and maintenance
 - Although parallel, avoid freight rail impacts as much as possible

Observations

Design-Build

 Design and Submittal approval timelines
 Non-Linear construction – difficult for railroad coordination

Electrification

Assure no conflicts with freight rail operation or maintenance

Safety of those working on or around ROW

Lessons Learned

Coordination: Early and Often

- Agreements: Railroad 1st, Contractor 2nd
- Property Access: Railroads still require access on both sides
- Utilities: Follow BNSF utility accommodation policy to ensure expedition approvals
- Approvals: Pre-negotiated grade separation agreements – expedite individual projects

Future Opportunities

- Coordination: Early and Often
- Agreements: Railroad 1st, Contractor 2nd
- Property Access: Railroads still require access on both sides
- Utilities: Follow BNSF utility accommodation policy to ensure expedition approvals
- Approvals: Pre-negotiated grade separation agreements – expedite individual projects
- Standard Plans: Assure the latest and greatest versions (grade separation, standard plans, etc.)

2017 FRA Rail Program Delivery Meeting

Thank you!

Marian Rule Senior Vice President mlrule@transystems.com 510-835-2761 www.transystems.com

Jonathan Seager Director, State Infrastructure Projects Jonathan.Seager@pge.com 415-973-6410 Robert Ball Technical Director Robert.ball@wsp.com 760-908-2265

French Thompson Director Public Projects, BNSF Railway French.thompson@bnsf.com 817-352-1549 WWW.bnsf.com

Open Discussion / Q&A

U.S. Department of Transportation Federal Railroad Administration