Federal Railroad Administration Research and Development Program Review

Alternative Equipment Crashworthiness Standards

Eloy Martinez, Program Manager Passenger Equipment Safety Research Program Office of Research and Development March 13, 2009

- Current FRA Crashworthiness Standards
- Definition of Problem
- Intent of Crashworthiness
- Types of Standards
- Framework for New Standard Development
- Summary/Next Steps

Current FRA Crashworthiness Standards

- Current standards based upon long history in north american railroad industry
- Prescriptive load cases defined for specific components
 - 800,000 buff load (static squeeze)
 - Anti-climbing
 - Coupling
 - End structures
 - Rollover
 - Side structure
 - Truck-to-carbody
 - Glazing
 - Fuel tanks
 - Interior fittings and surfaces
 - etc...
- Pass fail criteria simple testing and/or analysis

Current FRA Crashworthiness Standards

Common collision conditions of concern;
Current standards intended to address such conditions

Re-Thinking Current Standards

- Issue: current standards difficult to apply to new designs that implement <u>C</u>rash <u>E</u>nergy <u>M</u>anagement
- Industry is approaching FRA with waiver requests:
 - Caltrain Commuter Rail, CA
 - California High Speed Rail, CA
 - Desert Express, NV
 - Capital Metro Transit Austin, TX
 - Denton County Transportation Authority, TX
 - Dallas Area Rapid Transit, TX
- Waivers are an inefficient process and potentially inconsistent

Everyone wants an exception!

Other Issues

- Carbuilders are looking for guidance before making major investments
 - Siemens
 - Stadler
 - Alstom
 - Talgo
- Operating authorities are looking for new car procurements to replace older fleets for:
 - Greater efficiency (weight savings) versus other designs
 - Compatibility when mixing different equipment types
 - New operational requirements ADA, low floors, etc...
- Both passenger rail operators and carbuilders need guidance (early in the procurement process) to eliminate the risk of ordering equipment that will not be waived and/or accepted by FRA.

Purpose of Presentation

FRA (and the industry) needs clear direction to review use of new and innovative designs

- Define what is meant by equivalent safety
- Performance standards are a means of defining equivalency
- Develop demonstrable compliance values/protocols
- Apply hybrid approach using combination of prescriptive and performance standards

Objectives of Crashworthiness: Intent Behind Standards Development

- Preserve occupant volume
 - Maintain safe space; minimize local compartment penetration; and ensure occupant containment
- Limit forces and decelerations to survivable levels
 - Limit deceleration of occupant volume; restrict secondary impact forces; and maintain secure interior fittings

Note: survivability depends on many factors – goal is to preserve volume and limit forces for moderate and low

Types of Standards

- Current FRA crashworthiness standards (prescriptive)
 - Prescribe characteristics of components
 - e.g., Collision post static load cases
 - Pro: performance verified with accepted techniques
 - Con: assumes design approach includes particular components
- Performance standards (as alternative or hybrid standards)
 - Prescribe performance in defined conditions
 - e.g., No loss of occupant volume for XX mph collision of a cab car led train with a locomotive led train
 - Pro: no assumptions on design approach
 - Con: can be difficult to verify performance

Compliance with Design Standards

- Generally defined as static loads
- Classical engineering analysis approaches used to check:
 - Elastic shear and bending analyses
 - Elastic buckling analysis
 - Limit load analysis
- Criteria:
 - Structure must support load without permanent deformation or without failure

Note: Design Standards for Crashworthiness are Well Established in the Railroad Industries

Efficacy of the Traditional Buff Strength Requirement

Advantages

- Proxy for robust occupant volume
 - Dictates high compression strength
 - Provides variable bending strength
- Provides strong foundation for other crashworthiness features
- Non-destructive test

Drawbacks

- Load applied inboard of occupant volume
- Can only be applied to conventionally-coupled equipment

Ideal Occupant Volume Specification Provides

- Strong occupant volume
 - Equal protection throughout entire occupant volume
- Foundation for other features
- Demonstrable compliance
 - Straightforward criteria, preferably non-destructive test
- Compatibility
 - Different pieces of equipment to be operated together should provide equivalent occupant protection
- Applicability to range of equipment

Compliance with Performance Standards

Compliance with Performance Standards

- Train collision dynamics
 - Motions of the cars during collision
 - Distribution of damage
- Car crush
 - Force required to collapse structure
 - Geometry of collapsing structure
- Occupant dynamics
 - Motions of occupants
 - Forces imparted to occupants

Note: Performance Standards for Crashworthiness are a More Recent Development in the Transit and Railroad Industries

Framework for Comparison of Crashworthiness Standards

Note: Framework needs to be applied to specific corridor of interest and operational conditions

Steps for Alternative Standard Development

- Step 1. Develop scenarios
 - Based on heuristic review of past accidents
- Step 2. Decide standard framework
 - Using hybrid of existing design/performance approaches similar to FRA/APTA/metrolink and EN12663/EN15227
 - Borrow from existing standards and use relevant research results
- Step 3. Develop evaluation/compliance procedures
 - Evaluate options for tests and analyses
 - Select criteria for evaluating results of tests and analyses
- Step 4. Determine compliance criteria values
 - Based on reasonably achievable level of performance
- Step 5. Produce standard(s)

Collision Scenarios of Concern

Step 1. Develop Scenarios

- Scenarios address range of concerns
 - New equipment devastates old equipment
 - Locomotives devastates new equipment
 - Integrity of end frame
 - Integrity of side structure
 - Rollover
- Scenarios developed in sufficient detail to draft specification

Step 2. Decide Standard Framework

- Existing standards address most of the scenarios
- Pertinent research provides additional detail to complete specification

Summary/Next Steps Alternative Standard Development

- Step 1. Develop scenarios
 - Based on heuristic review of past accidents
- Step 2. Decide standard framework
 - Using hybrid of existing design/performance approaches similar to FRA/APTA/metrolink and EN12663/EN15227
 - Borrow from existing standards and use relevant research results
- Step 3. Develop evaluation/compliance procedures
 - Evaluate options for tests and analyses
 - Select criteria for evaluating results of tests and analyses
- Step 4. Determine compliance criteria values
 - Based on reasonably achievable level of performance
- Step 5. Produce standard

Federal Railroad Administration

Summary

- Hybrid design/performance standards
 - Address features currently lacking in existing standards
 - <u>Compatibility</u> between different types of equipment potentially operating on the same corridor
 - Applicable to wide range of equipment no assumption as to what structure looks like
 - Establish clear definition of equivalent safety
 - Provide clear guidance to car builders on allowable new/innovative designs
 - Application of CEM a potential means of achieving desired performance goals