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Executive Summary 

The study reported here was aimed at determining the factors that caused the cracking of 
concrete ties on the Northeast Corridor (NEC).  The mode of cracking we investigated is a 
horizontal crack that passes through the top row of prestressed steel reinforcing strands generally 
near one or both ends of a tie.  It is widespread in ties manufactured and installed circa 1994–
1998, which we refer to as the pre-2003 ties.   

 

Our work involved several tasks.  We examined sets of ties we divided into five case studies, 
each with some distinguishing feature.  The case studies included pre-2003 NEC ties with minor 
cracking or no externally visible cracking; pre-2003 NEC ties with clear visible cracking; post-
2003 NEC ties made to the 2003 specification with a very different prestressing tendon 
configuration and modified concrete material requirements; MBTA ties from the Old Colony 
Line that have a design essentially identical to the pre-2003 NEC ties and which showed the 
same type of horizontal cracking; and San-Vel NEC ties from 1978 that have shown virtually no 
signs of cracking.  We examined individual ties in the field and sent some to our laboratories for 
more detailed analysis that included petrographic evaluations and mechanical testing.  We also 
reviewed production test reports and petrographic reports on the cracking problem generated by 
third parties for Amtrak.  We carried out finite element analysis to investigate the effects of 
various tie and external loading parameters.  This analysis was validated to some degree by 
results from a field test we conducted on a section of the NEC in Rhode Island during which we 
measured loads into the track as well as the loads, strains, and accelerations of the concrete ties 
themselves. 

 

We found that the tie cracking was caused by a combination of factors, none of which would 
have caused the distress independently.  The primary factors contributing to the distress were: 

• A high concentration of tensile stress in the ties at the level of the prestressing steel due 
to the forces associated with the transfer of load from the steel to the concrete during de-
tensioning of the strands during manufacturing.  These stresses are greatest at the top row 
of tendons.   

• Stresses within the concrete from the pressures caused by alkali-silica reaction (ASR) that 
were additive to those from the prestressing forces.   

 

High stresses with the potential for splitting are present in all prestressed concrete members.  
This failure mode is addressed specifically in prestressed concrete design guides (e.g., American 
Society for Testing and Materials Standards) for structures and bridges, but it is not addressed by 
the current concrete railroad tie specifications and tie industry standards.  As a result, as-built ties 
have little margin of safety against this splitting mode of failure at the tie end. 

 

ASR is a recognized deterioration mechanism in concrete, and we found evidence of reactive 
aggregates and ASR in all ties that showed significant cracking.  However, the products of the 
ASR were generally confined to the regions at which the cracks occurred and were not evident in 
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other parts of the ties.  This indicates that pressures caused by ASR were additive to the 
pressures from the prestressing forces and caused the observed cracking to occur before the ASR 
progressed sufficiently to cause typical ASR pattern cracking elsewhere in the ties. 

 

After the cracking occurred at the zone of highest stress where the ASR and prestressing stresses 
combined at the upper prestressing tendon level, it was easier for the cracking to propagate there 
rather than to form at new locations.  Our work shows that this propagation was assisted by the 
following secondary factors, which were not initial causes of the distress: 

• The deposition and swelling of ASR gel in the cracks, creating additional pressures. 

• A likely shorter length over which stresses are transferred from the prestressing strands to 
the concrete because of more distinct strand indentations when compared, for example, 
with the San-Vel ties.  This caused higher bursting stresses. 

• External, cyclic loading from passing trains.   

 

The performance of the San-Vel ties is notable.  These ties have been in service longer than the 
pre-2003 ties, but have shown virtually no cracking.  Our study indicates that the stresses from 
prestressing are lower in the San-Vel ties and the aggregate was not reactive.  The factors leading 
to reduced stress include lower initial prestressing forces and a tapered tie end geometry.  We 
also found evidence that:  (a) the shallower and more widely spaced indentations in the San-Vel 
prestressing wire led to longer transfer lengths and, therefore, lower prestressing stresses; and 
(b) the wire used for the San-Vel ties likely experienced greater relaxation and, therefore, lower 
prestressing forces. 

 

We found that the tie distress was not caused by the following factors: 

• Cyclic freezing and thawing 

• Delayed ettringite formation (DEF) 

• Stresses from other mechanical effects, such as from fastener inserts or unusual tie 
vibrations 

 

Our assessment of the post-2003 ties, with their different prestressing tendon configuration and 
alternate material requirements, suggests that they will not develop horizontal cracks.  Although 
the stresses appear to be comparable adjacent to the strands and higher on the surface (bursting 
stresses) than for the pre-2003 ties, the concrete materials specifications had been improved to 
reduce or eliminate ASR. This was achieved by better screening tests and improved ASR 
mitigation measures. In addition, the aggregate used in the post-2003 ties that we examined is a 
carbonate aggregate, not susceptible to ASR. 

 

This investigation into the complex mechanism responsible for the cracking of concrete ties 
along the NEC was initiated to help ensure that all potential causes were adequately addressed by 
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Amtrak specification changes as part of the Federal Railroad Administration’s (FRA) oversight 
of Amtrak’s operations.  As stated, several significant changes were made to the Amtrak 
specification in 2003.  These included updated provisions to protect against ASR in recognition 
of the fact that the material qualification tests used for the pre-2003 ties are now known to 
provide inadequate protection against ASR.  The new specification also required higher 
prestressing forces to achieve the required higher flexural strengths.  We do not know whether 
this approach was intended to mitigate the horizontal cracking problem, but our findings indicate 
that the higher prestressing forces reduce the (mechanical) margin against splitting. 

 

We believe that the industry’s specifications and design guidelines for concrete railroad ties 
should be modified to explicitly address the splitting failure mode.  This would likely result in 
the need for stirrups (U-shaped transverse reinforcement wires) and higher cost, but we feel the 
reliability of long-life ties would be greatly increased.  We also believe that more careful study is 
needed of the flexural strength requirements for different types of railroad operation and, 
particularly, for the NEC. 
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1. Introduction 

In the last several years, Amtrak’s inspections have detected an unexpectedly high number of 
concrete ties on the NEC that either have cracked along the level of the upper prestressing 
strands or are showing initial signs of distress, long before reaching the end of their design 
service life.  With major concrete tie installations on the NEC dating from the late 1970s, these 
failing ties are neither the oldest nor the newest on the NEC. 

  

The study reported here was aimed at identifying any manufacturing, design, or maintenance 
practices, or other specifications that might warrant change to help ensure that all concrete ties 
installed on the NEC in the future serve for their expected design life.  This study supplements 
Amtrak’s own investigations and is intended to provide an independent evaluation of Amtrak’s 
findings. 

 

Prestressed concrete railroad ties are supposed to provide long-term service without the problems 
of deterioration, splitting, maintenance, and relatively short life of timber ties.  Concrete ties are 
marketed and presented as having service lives approaching 50 years with relatively low 
maintenance.  Unfortunately, past and present experience has shown that this is not always the 
case.   

 

In the past, premature failures due to materials-related problems have occurred early in the ties’ 
lives.  In the late 1980s and early 1990s, a well-publicized problem occurred with Amtrak’s Lone 
Star ties up and down the eastern seaboard [1.1].  The failures manifested themselves as linear 
and map-pattern visible cracking of the ties that progressed into loss of prestressing force and 
failure of the ties.  There was consensus among all investigators that the problem was due to a 
materials deterioration issue, although there were differences of opinion regarding the roles of 
ASR, freezing and thawing, and DEF in that deterioration.   

 

In response to the Lone Star problems, precasters adjusted their fabrication procedures to avoid 
DEF, began to screen aggregates more closely to avoid ASR, and increased production control to 
ensure that freezing and thawing did not become a problem. It seemed like concrete ties could 
once again be used with confidence.  Unfortunately, it now appears that this additional work was 
insufficient as new concrete tie cracking has been reported on the NEC and other locations.  
More than 1 million ties were supplied to Amtrak between 1990 and 2000 using the specification 
and manufacturing techniques developed following the Lone Star tie problems.  Amtrak is now 
in the process of replacing essentially all of these ties because a large enough percentage has 
cracked to make spot replacement uneconomical.  It is largely the investigation of the circa 
1990–2000 ties that forms the subject of this report.  The replacement ties are made to a 
specification written in 2003 that included significant materials and design changes to prevent 
cracking.  Our investigation has the objective, in part, of determining whether these changes are 
likely to eliminate the cracking problem. 
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Due to the variety of potential causes, the complexity of the failure mechanisms, and the nearly 
complete failure of an entire generation of concrete ties, this study was conducted as part of 
FRA’s oversight of Amtrak’s operations to verify the results of Amtrak’s investigation and to 
help ensure that modified manufacturing specifications would result in improved tie 
performance.  During the investigation, we reviewed much of the information Amtrak obtained 
through its investigation of the tie cracking problem.  This included reports by third parties on 
the characteristics of the materials used to make the ties.  We then conducted work to 
characterize the cracking problem by collecting ties from Amtrak that had been removed from 
the track.  We carried out our own detailed materials analysis of the ties as well as of ties made 
to the 2003 specification and the 1978 vintage San-Vel ties that apparently had not cracked.  We 
also conducted mechanical tests of the concrete, the reinforcing tendons, and the ties themselves.  
We conducted stress analyses for various load cases and for different tie and component 
parameters to investigate the extent to which these parameters could contribute to the cracking 
problem.  This effort was supported by a field test we carried out to measure loads in the ties on 
the NEC and to measure some tie parameters, including strains and vibration characteristics. 
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2. Description of the Problem 

This section provides a description of the cracking problem that was the focus of our 
investigation.  The tie design in question conforms to a set of Amtrak specifications dating back 
to around 1989 up to 2003 [2.1].  Figure 2.1 shows views from the specification drawing for the 
tie.  It is a prestressed concrete member with eight 7-wire prestressing strands each prestressed to 
a nominal load of 17.2 kips.  No stirrups or other transverse reinforcements are included in the 
specification or the ties themselves. 

 
Figure 2.1.  Views from the Amtrak 1989 concrete tie specification drawing corresponding 

to the primary tie design investigated in this study. 
 

The predominant mode of cracking we observed in these ties from the NEC had a horizontal 
orientation intersecting the top row of strands, generally near the end or ends of the tie.  An 
example of this cracking mode is shown in two different ties in Figure 2.2.  Most of the ties we 
have examined had a crack on one or both sides.  This crack is generally not visible in track 
because it is covered by ballast.  The crack must progress substantially and turn vertically before 
large pieces of concrete separate from the tie.  We rarely observed such severe damage.  These 
cracks required substantial time, approximately 10 years, to become evident. 
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Figure 2.2.  Photographs of the predominant mode of concrete tie cracking we investigated 

in this study; the crack on the left is revealed by alcohol. 
 

The widespread nature of this cracking mode in our investigation is difficult to overstate.  We 
examined a large number of concrete ties that had been removed from a 12-mile section of the 
NEC (MP 178-190).  Approximately 70–80 percent of the ties we examined closely had a 
horizontal crack of the type described above.  We examined another section of track as part of 
our field test (see Section 6).  In the case of MP 168, we had great difficulty finding a tie that had 
no horizontal crack near at least one of its ends.  Amtrak reported to us that this mode of 
cracking is the predominant mode of cracking associated with the ties being replaced on the 
entire NEC.  We also conducted another investigation of the MBTA Old Colony Line consisting 
of 250,000 concrete ties.  Part of our work in the MBTA study was to examine a subset of 
concrete ties as they were being removed for replacement.  Approximately 50–70 percent of 
these ties had the same type of horizontal crack and this was by far the predominant cracking 
mode. 

 

Such horizontal cracking has evidently not occurred in the newer Amtrak concrete ties (post-
2003 ties) or in the older (circa 1978) San-Vel ties, although we found one report [2.2] of a 
horizontal crack in a San-Vel tie. 

 

This mode of horizontal cracking, particularly when it occurs near the end of a prestressed 
concrete member, is generally referred to as a splitting or bursting crack and is believed to be due 
to the loads imparted to the concrete from the strands.  We investigate this effect in detail in the 
sections that follow. 
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3. Case Studies 

3.1 Overview 
One of the approaches we used in investigating the causes of cracking in the NEC ties was to 
study ties from groups with different characteristics, including ties from other systems and ties 
that did not crack.  We refer to these groupings as case studies.  Most of the ties we examined 
were of the 1993–2003 vintage from the NEC, and we selected subgroups of these to form two of 
the case studies.  We also investigated San-Vel ties, named after the company that made them 
(no longer in operation), which had been produced for the NEC in the late 1970s and early 
1980s.  Finally, we considered a set of ties used on the Old Colony Line of the Massachusetts 
Bay Transportation Authority (MBTA) that had a cracking problem very similar to the primary 
cracking problem on the NEC. 

 

This chapter describes the general characteristics of the ties corresponding to the case studies, 
including their design and the form of cracking (if any).  Table 3.1 lists the different case study 
ties. 

Table 3.1.  Case study ties summary. 

Case Study 
No. 

Designation Level of 
Damage Source Year of Origin Likely Tie 

Specification 

1 Pre-2003; 
NEC Uncracked* MP 168, 178-

190 
1993, 1994, 

1998 
1992 CT-10 

1995 CT-10 

2 Pre-2003; 
NEC Cracked MP 168, 178-

190 
1993, 1994, 

1998 
1992 CT-10 

1995 CT-10 

3 Post-2003; 
NEC Uncracked MP 178-190 2003 2003 CT-10 

4 MBTA Cracked Old Colony 
Line circa 1995 MBTA     

spec 

5 San-Vel Uncracked MP 166 circa 1978 AM-023 

∗ No obvious cracking or minor cracking. 

 

We considered three different tie designs from the NEC.  We refer to the ties from the period 
1993–1998 as pre-2003 ties.  These ties had similar specifications [2.1] and had the geometric 
design shown earlier in Figure 2.1.  We also investigated ties manufactured according to the 
2003 specification for which several changes were made to address evidence of ASR and DEF 
problems.  The geometry of these ties is shown in Figure 3.1.  This tie has 24 single wire strands 
in contrast to the eight 7-wire strands of the pre-2003, MBTA, and San-Vel ties.  The ties from 
the MBTA Old Colony Line have the same design as the pre-2003 NEC ties shown in Figure 2.1. 
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Figure 3.1.  Views from the Amtrak 2003 concrete tie specification drawing. 

 

The ties we investigated from the late 1970s and early 1980s, known as the San-Vel ties, 
evidently have a very good performance history with no significant signs of cracking.  Figure 3.2 
shows the geometric design for these ties.  The San-Vel tie design is tapered at its ends and has 
vertical reinforcement in the form of No. 3 (0.375 in diameter) stirrups just outboard of the rail 
seat area.  (However, these stirrups were not present in the four ties we examined in our 
laboratory.)  Table 3.2 compares different parameters for the various ties. 
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Figure 3.2.  Views from the San-Vel concrete tie specification drawing. 

 

Table 3.2.  Some characteristics of the different tie designs we investigated. 

Tie design Strand type 
Strand 
preload 
(kips) 

Total 
prestress 

load (kips) 

Cross sectional 
dimensions at rail 

seat (inches) 

Minimum 
concrete 

cover to tie 
side (inches) 

Pre-2003 (and 
MBTA tie) 

7 wire; 0.375 
in diameter 17.21 137.7 10.375 x 9.625 1.59 

Post-2003 
Single wire; 

0.2 in 
diameter 

6.55 157.2 10.375 x 9.625 1.39 

San-Vel 7 wire; 0.375 
in diameter 16.68 133.4 11 x 9.5 1.61 

 

3.2 Examination of Ties in Track 
We obtained some information about the tie cracking problem by examining ties in track.  This 
included examination of a section of pre-2003 ties on the NEC and sections on the MBTA Old 
Colony Line.   
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3.2.1 Inspection of the Ties at the NEC Field Test Site 
We carried out a detailed inspection of the section of track at which our field tests were 
conducted: MP 168, Track 2 (see Section 6 for the non-inspection data collected during those 
tests.)  This inspection included visual as well as some non-destructive inspection (impact echo, 
described in greater detail in the next section).  About one-half of the ties we examined were 
located under an adjacent bridge (see Figure 3.3) that had been constructed over the track 
approximately 5 years prior to the test.  That is, the ties under the bridge had been exposed to the 
environment for about half of their lives.  We wanted to determine whether this exposure 
difference led to a difference in cracking frequency and severity. 

 

 
 

Figure 3.3.  A bridge structure near the field test site at which we nondestructively 
examined ties. 

 

We assessed the condition of each end of approximately 110 concrete ties using the impact echo 
method.  Approximately half of the ties were under the bridge and half were exposed directly to 
the environment.  All of the concrete ties appeared to be manufactured around 1994.  We have 
established through previous programs a correlation between impact echo results and the 
likelihood of horizontal cracking.  Using this correlation, the impact echo results indicated that 
96 percent of the concrete ties not sheltered by the bridge structure had horizontal cracks and 58 
percent of concrete ties sheltered by the bridge structure had horizontal cracks.  We also 
excavated the tie-end regions at forty-one locations (approximately 20 percent of the ties tested 
with impact echo) to confirm the impact-echo test results and found that 92 percent of the 
exposed ties and 53 percent of the under-bridge ties were cracked, agreeing closely with the 
impact-echo test results.  The impact echo data and our excavation observations suggest that at 
this location (Amtrak MP 168, Track 2), most of the ties are cracked and the condition of the 
concrete ties sheltered by the bridge structure is better than the unsheltered concrete ties.  These 
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latter observations suggest that weathering, in the form of moisture variation, temperature 
fluctuation, freeze-thaw exposure, etc., is a factor that contributes to crack severity.   

 

Six of the ties from this site, three of the exposed ties, and three from under the bridge were 
shipped by Amtrak to the SGH laboratory for more detailed examination. 

3.2.2 Inspection of the Ties on the MBTA Old Colony Line 
SGH inspected ties on several sections of track on the MBTA Old Colony Line as part of another 
program and some of the results are summarized here.  This section of track carries commuter 
trains from South Station in Boston, MA, to either Plymouth or Middleboro, MA.  We conducted 
visual examinations and some impact echo tests on ties from some of the sections on this line. 

 

The type of cracking observed is essentially identical to what we observed on the NEC: 
horizontal cracks that are located at the top row of strands generally near the tie ends.  Figure 3.4 
shows an example of a tie removed from the line that had very severe such cracking and Figure 
3.5 shows an example in which the crack is clearly visible on the side of the tie. 

 

 
Figure 3.4.  An example of a severely cracked tie from the MBTA Old Colony Line. 
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Figure 3.5.  An example of a tie with a typical crack from the MBTA Old Colony Line. 

 

We did not conduct a statistical analysis of the tie conditions, but our general observations are as 
follows: 

• Approximately 50 percent of the concrete ties we examined had cracks. 

• A horizontal crack at the level of the top row of strands was present in essentially all 
cracked ties we examined. 

• Cracked concrete ties were found in essentially all sections of track, including exposed, 
under bridges, mainline track, and sidings. 

3.3 Sources of Ties for Case Study Laboratory Analysis 
We obtained ties for our NEC case studies from Amtrak’s tie yard in Davisville, RI, and from 
areas in this neighborhood.  The Davisville ties had been removed from the section of track 
between mileposts 178 and190 near Providence as part of Amtrak’s tie replacement program.  
These ties had been stacked in large piles and our team examined accessible ties from the entire 
lot.  Figure 3.6 shows photographs from this examination.  It was easy to inspect the sides of 
these ties, unlike those in track, and we found that more than 70–80 percent had cracks on one or 
both sides at the ends. 

 

We also obtained ties from the section of track we instrumented to measure loads (MP168; see 
Section 6.)  Three of these were the ties we instrumented, which were exposed directly to the 
environment.  We obtained three additional ties from underneath a nearby bridge, which we were 
told by Amtrak had been constructed over the track around 2007; that is, the ties were fully 
exposed to the environment for about half of their lives.  As stated previously, these ties 
appeared to show less cracking than their neighbors. 

 

The San-Vel ties had been removed from Track 1 at milepost 166 as part of separate track work. 
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Figure 3.6.  Photographs from the Amtrak yard in Davisville, RI, from which some of the 

case study ties were obtained. 

3.4 General Approach for Examining Ties 
We used the same general approach to examine all ties that were sent to us from the field.  We 
first examined the ties in either a storage area or in track in all cases except for the San-Vel ties; 
the San-Vel ties were selected by Amtrak and sent to us.  Amtrak or the MBTA shipped ties to 
SGH by truck for detailed examination.  We inspected the ties to obtain or confirm, to the extent 
possible, the date code.  In some cases, the date code was worn away because the seal had come 
off or faded from weathering.  We confirmed that the dimensions of the ties conformed to the 
applicable specifications and then we examined the ties for cracking.  We used both visual 
examination and nondestructive testing.  Cracking was revealed in part by spraying the surfaces 
of the ties with isopropyl alcohol.  The alcohol evaporates readily from the surface but takes 
longer to evaporate from a crack, allowing the cracks to be viewed and photographed more 
distinctly.  Figure 3.7 shows an example of this form of crack detection. 
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Figure 3.7.  Photograph of one of the case study ties showing how the crack is revealed with 

the use of isopropyl alcohol. 
 

We mapped the cracks in each of the ties and recorded crack lengths and widths (the opening of 
the crack).  Figure 3.8 shows an example of the mapped cracks that are typical of the ties that 
contained cracks.   
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Figure 3.8.  The crack map for Tie 9. 

 

We also characterized the case study ties using the impact echo nondestructive inspection 
method.  In the impact echo method, one introduces a transient stress pulse into a test object by 
mechanical impact and then monitors the surface displacements caused by the arrival of 
reflection of the pulse from internal defects and external boundaries (c.f. [3.1]).  Figure 3.9 
shows the instrument in use on a tie in the lab.  The results of the test are typically displayed in 
terms of calculated inches of depth, rather than in the predominant signal frequency (in Hz) 
actually measured, because the technique is usually used to determine depth to delaminations and 
voids.  Our past experience on concrete ties indicates that the presence of significant internal 
defects or cracking results in a downshift in the frequency (corresponding to an increase in the 
apparent thickness.)   

 

This same impact echo technique was applied to the ties at the field test site (see Section 3.2.1). 
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Figure 3.9.  The impact echo device and a sample reading. 

3.5 Case Study Tie Conditions 
Table 3.3 lists the tie conditions obtained from visual examination.  We measured crack width by 
using a transparent plastic crack card (on which are lines of varying thicknesses).  Our crack 
severity rating is based on a combination of the measured crack width and lengths.  The rating is 
assigned as follows: 

Rating 1: no visible crack at all 

Rating 2: visible cracks with width <0.005 in and the crack length is typically short 
(within 12 in) 

Rating 3: visible cracks with width between 0.005 and 0.016 in and the crack length is 
variable  
Rating 4:  crack width greater than 0.016 and the crack length is extensive, typically 
extending from the end of tie to the shoulder of the tie 
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Table 3.3.  Case study tie conditions from visual examination in the lab. 

Case Study Tie Number 

Crack Length and Width (inches) SGH crack 
severity 
rating 

End 1 - Side 1 End 1 - Side 2 End 2 - Side 1 End 2 - Side 2 

Length Width Length Width Length Width Length Width  

1 

Pre-2003 
NEC; 

uncracked 
or minor 
cracking 

1 18-1/2 0.005 - - - - - - 2 

2 - - - - - - - - 1 

19 - - 7-1/2 0.003 5-1/2 0.003 - - 2 

20 - - - - - - 11 <0.003 2 

22 6 <0.003 33-1/2 <0.003 - - 10 <0.003 2 

2 
Pre-2003 

NEC; 
cracked 

3 Note 1 Note 1 Note 1 Note 1 - - 36 0.060 4 

4 9-1/2 0.005 35 0.025 35-1/2 0.020 - - 4 

5 35-1/2 0.013 24 0.005 38-1/2 0.011 24-3/4 0.003 3 

6 24-1/2 0.003 Note 2 0.05 - - Note 2 0.035 4 

7 5-1/2 0.003 33-1/2 0.016 - - 33-1/4 0.013 3 

8 33 0.011 34 0.020 12 0.003 33-1/2 0.013 4 

9 37-1/2 0.009 39-1/2 0.025 34 0.013 39 0.030 4 

10 - - - - 10 0.003 27 0.009 3 

11 - - 31 0.003 10 0.003 17-1/2 0.003 3 

12 24 0.003 29-1/2 0.013 25-1/2 0.013 30 0.025 4 

13 34-1/2 0.016 - - 40 0.016 - - 3 

14 32-1/2 0.005 35-1/2 0.009 36 0.025 31 0.005 4 

17 10 <0.003 34 0.011 29 0.005 49 0.003 3 

18 16 0.003 3-1/2 0.007 32 0.007 34 0.003 3 
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Case Study Tie Number 

Crack Length and Width (inches) SGH crack 
severity 
rating 

End 1 - Side 1 End 1 - Side 2 End 2 - Side 1 End 2 - Side 2 

Length Width Length Width Length Width Length Width  

25 30 0.005 34 0.003 35 0.005 36 0.005 3 

3 Post-2003 
NEC 

15 - - - - - - - - 1 

16 - - - - - - - - 1 

21 - - - - - - - - 1 

23 - - - - - - - - 1 

24 - - - - - - - - 1 

4 MBTA 
X 4 <0.003 40 0.016 4 <0.003 9 0.003 3 

Y 39 0.030 19 0.003 34 0.016 16 <0.003 4 

5 San-Vel 

S1 - - - - - - - - 1 

S2 (Note 3) - - - - - - - - 1 

S3 - - - - - - - - 1 

S4 - - - - - - - - 1 

 

Notes:  1. Concrete spalled above the upper tendon at End 1 of Tie No. 3. 

 2. Crack penetrated through the entire length of the tie. 

 3. Concrete S3 shows transverse cracks on the top of tie in the middle region.  

 

 

 

 



 

 20 

 

Figure 3.10 shows a correlation between the cracking severity of the case study ties inspected in 
our laboratory and the impact echo reading.  We note a general relationship although with 
significant scatter. 

 
Figure 3.10.  The impact echo results vs. our crack rating for the case study ties. 

 

The impact echo tests, which measure the conditions of the interior of the ties, indicate that 
cracking is internal to the tie as well as evident at the surfaces. 

 

The lab and field examinations allow us to make the following observations about the tie 
conditions: 

 

Pre-2003 NEC ties 

a) The majority of these ties have some level of cracking. 

b) The cracks are nearly all horizontal, passing through the top row of strands. 

c) The cracks are present on the interior of the ties.  

d) These cracks nearly always extend to the very end of the tie. 

e) In general, the cracks do not extend to the central, tapered part of the tie, although there 
are a few examples in which this is the case.  

f) We found no cracks at the second row (the bottom row) of strands. 

g) Occasionally, there are vertical cracks oriented parallel to the reinforcing strands.  These 
cracks intersect the top surface of the tie and are at the tie ends. 
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h) We found no cracks that could be classified as flexural cracks (perpendicular to the 
reinforcing strands). 

i) There does not seem to be a correlation between cracking severity and date code for the 
dates to which this category applies. 

j) The ties removed from under the bridge near the field test site showed less severe 
cracking than those adjacent to the bridge, which were exposed to the environment for 
their entire life. 

 

Post-2003, NEC ties 

k) We found no cracking in these ties—neither visually nor with impact echo. 

 

San-Vel, NEC ties 

l) We found no cracking in these ties—neither visually nor with impact echo. 

 

MBTA Old Colony Line ties 

m) The cracking in these ties is essentially identical to that observed in the pre-2003 NEC 
ties. 
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4. Materials Analysis 

The purpose of this section is to determine the extent to which material characteristics may have 
contributed to the observed cracking.  We first review the prestressing tendons.  We then review 
the manner in which the ties are produced and concerns related to their production.  This review 
is followed by a description of various potential concrete degradation mechanisms and their 
dependence on material and production parameters.  This provides the context for evaluating 
Amtrak’s materials and production specifications for the ties and the results of our own and 
others’ petrographic analyses, descriptions of which are included in this section.    

 

We find that the ASR degradation mechanism is a contributing factor to the tie cracking and that 
the other degradation mechanisms are not.  We also find evidence that one of the reasons for the 
good performance of the San-Vel ties is the relatively shallow tendon indentation geometry and 
the likelihood that the steel used for the tendons experienced stress relaxation.     

4.1 Prestressing Tendons 

4.1.1 Characterization of Prestressing Tendons 
Prestressing tendons are high-strength steel strands or wires used to strengthen the railroad tie by 
transferring a compressive force to the concrete and thereby reducing the risk of concrete failure 
under tensile loading.  The prestressing tendons for the concrete ties are seven-wire strands or 
single wires.  The concrete is cast around tendons that are under a predetermined tensile load and 
stress (the prestress).  After the concrete cures to a specified strength, 4,250 psi in the case of the 
pre-2003 railroad ties, the load on the tendons is released and force is transferred to the concrete 
through a ‘bond’ mechanism that occurs over a transfer length at each end of the tendons.  The 
bond occurs through a variety of mechanisms, including friction, adhesion, and mechanical 
interlock.  The interlock is assisted by indentations that are rolled into the individual wires of the 
tendon.  The stress in the tendons is high, on the order of 75 percent of the ultimate tensile 
strength of the tendon steel, which is typically 270 ksi.  Some relaxation occurs in the tendons 
over time and this tends to reduce the final prestressing force and initial compressive stress in the 
concrete, but the degree of relaxation has been controlled with low relaxation wire since the 
1980s.    

 

We examined tendons from three of the case study ties: pre-2003, post-2003, and San-Vel.  We 
removed the tendons from the ties by breaking the concrete with an air hammer and cutting the 
tendon with a cut-off wheel.  We measured the wire and strand diameters and the indentation 
lengths, pitch, and depth using digital analysis software.  The indentations of the seven-wire 
strands exhibit the appropriate length, pitch, and depth per ASTM A886 (Standard Specification 
for Steel Strand, Indented, Seven-Wire Stress-Relieved for Prestressed Concrete).  The 
dimensional analysis results for the single wire are consistent with ASTM A881 (Standard 
Specification for Steel Wire, Deformed, Stress-Relieved or Low-Relaxation for Prestressed 
Concrete Railroad Ties).  
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We performed Vickers microhardness measurements on some of the wire cross-sections to 
estimate the tensile strength (using conversion tables).  The converted tensile strengths for the 
single wire and for wires in the seven-wire strand exceed minimum requirements set forth in the 
applicable standards. 

 

Table 4.1 compares the various measurements we made on the wires of these tendons.  

 

Table 4.1.  Dimension and hardness measurement results on the case study tie strands. 

 Strand Source Tie 

Parameter Pre-2003 Post-2003 San-Vel 

Wire diameter 
(in) 0.129 0.207 0.130 

Indentation 
length (in) 0.100 0.148 0.056 

Indentation pitch 
(in) 0.225 0.228 0.246 

Indentation depth 
(in) 0.0035 0.0030 0.0016 

Wire hardness 
(kg/mm2) 534 547 556 

Tensile strength 
(converted) ksi 267 275 280 

 

Figures 4.1-4.3 show examples of the indentations in the wires from the three tie types.  There 
are four lines of longitudinally oriented elliptical indentations around the circumference of the 
wires for the pre-2003 and San-Vel strands, and there are three lines of indentations oriented at 
an angle to the longitudinal direction for the post-2003 ties. 

We note that the indentations in the San-Vel tie wires are shorter, more widely spaced, and 
shallower than for the pre-2003 ties. 
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Figure 4.1.  Example of elliptical deformations on seven-wire strands from a pre-2003 tie. 

 

 
Figure 4.2.  Example of elongated elliptical deformations on a single-wire strand from a 

post-2003 tie. 
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Figure 4.3.  Example of elliptical deformations on seven-wire strands from a San-Vel tie. 

 

We also investigated the extent to which there are differences in the relaxation properties of the 
different strands.  We found no practical method to test for this, but our review of standards 
indicates that the use of low-relaxation wires in the prestressed concrete industry occurred in the 
late 1970s and early 1980s.  This suggests the strands in the San-Vel ties, which were produced 
in the mid-to-late 1970s, were not made from low relaxation wires. 

4.1.2 Surface Residue Testing 
We conducted one type of analysis multiple times to determine whether there was any unusual 
contamination on the strands of the subject ties that could affect their bond to the concrete.  We 
conducted Fourier transform infrared spectrometry (FTIR) on residues present on the strand 
wires from four ties: three from the pre-2003 ties (Nos. 1, 2, and 7) and one from a post-2003 tie 
(No. 16).  The strand sections were submerged in solvent and allowed to sit for 5 minutes with 
stirring.  We conducted these tests together with a control (solvent only).  The result showed that 
there was no organic material. 

4.2 Concrete Tie Manufacturing and Potential Concerns 
We reviewed the concrete tie manufacturing process to identify potential production-related 
aspects that may affect the quality of the ties.  
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The Amtrak concrete crosstie is a pretensioned, prestressed concrete member.  The tendons are 
stressed before the concrete is placed into the casting molds, and the stressing force is transferred 
to the concrete after the concrete has cured to a specified strength.  The North American 
manufacturers of the Amtrak crosstie use the long line method, with fixed pretensioning beds 
and sliding molds.  A more detailed review on the concrete tie manufacture method and typical 
sequence of production cycle are shown in Appendix A.1.  As described in Appendix A.1., we 
identified the following items that may affect the quality of the crossties: 

4.2.1 End Bars 
The end bars (often called “end gate bars”) are a set of vertically stacked flat bars that provide 
for the vertical location of the tendons and close off the ends of the molds.  If there are two rows 
of tendons, there are three bars—the bottom bar locates the first tendon row and closes off the 
bottom of the mold, the second bar sets on top of the first row of tendons and locates the second 
row of tendons, and the third bars sets on top of the second row of tendons and extends to the top 
of the mold.  

 

Besides supporting the tendons at the correct vertical position, when extracted, the gap left 
between the forms provides a space for the tendon cutting saw to pass without touching the ends 
of the molds.  The bars are usually 3/4 in wide and provide a 3/4 in nominal gap.  The bars are 
the full width of the mold, forming the entire tie end.  The small space between the bars (the 
diameter of the tendons) at the outside ends of the molds can be plugged to prevent grout 
leakage.   

Potential problems associated with the end bars include: 

• The bars put the tendons in rows thereby putting the tendon force in concentrated planes. 

• The removal of the bars potentially disturbs the tendons at the tie ends.  The bars need to 
be extracted before the concrete fully sets, but after the concrete solidifies enough to 
prevent end slumping after the bars are removed.  The bars need to be pulled out 
perfectly level otherwise the tendons would be pried upward, potentially compromising 
the integrity of the bond between tendon and concrete.  The bars also need to be smooth 
without any surface nicks or distortions.  Surface imperfections could disturb the strand 
as the bars are removed.   

• Even though the molds are held tight against the bars, concrete buildup and bar 
imperfection may prevent a grout-tight joint.  Grout does sometimes leak out, which may 
affect the tendon bond locally.  

4.2.2 Transfer Strength 
The transfer strength is the minimum concrete strength required before the strands can be cut 
free of the tensioning beds.  For the pre-2003 ties, the specified transfer strength was 4,250 psi.  
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The concrete mix and the accelerated curing cycle should be designed to achieve the transfer 
strength in the production cycle time with a reasonable factor of safety.   

 

Because the specifications require only a minimum transfer strength, the actual transfer strength 
is frequently higher (such as when ties cure over a weekend or when the concrete is designed 
with too high a strength).  This can create a higher risk of cracking for the following reasons: 

• High strengths result in shorter transfer lengths (the length of embedded prestressing 
needed to transfer their prestressing loads into the concrete), which concentrates the 
prestressing loads in the ends of the ties rather than distributing them. 

• High strength also corresponds to lower creep, providing less redistribution of the loads 
within the tie over time.  

4.3 Concrete Material Degradation Mechanisms 
Precast concrete railroad ties manufactured in plants using heat-curing and then exposed to cold 
temperature and water (in the form of rain and snow or ground water) while in service are 
vulnerable to several degradation mechanisms: cyclic freezing and thawing, DEF, external 
sulfate attack, and ASR.  Some of these types of material deterioration have been reported to be 
potential causes of the cracking of concrete ties cast before 2003.   

 

We first review the potential degradation mechanisms to identify likely mechanisms explaining 
the observed distress.  This review also provides context for evaluating the tie specifications and 
for reviewing and interpreting our test results and those of others. 

4.3.1 Cyclic Freezing and Thawing  
The mechanism of freeze-thaw damage in concrete is quite complex, but can be summarized as 
follows:  as the water in moist concrete freezes, it produces osmotic and hydraulic pressures in 
the capillaries and pores of the cement paste and aggregate.  If these pressures exceed the tensile 
strength of the surrounding paste or aggregate, a crack will form.  The cumulative effect of 
successive freeze-thaw cycles is the disruption of paste and aggregate, eventually causing 
significant expansion and deterioration of the concrete.  Freeze-thaw action typically begins at 
the exposed surface and progresses into the concrete structure.  Deterioration is typically visible 
in the form of scaling, cracking that is subparallel (a petrographic term meaning roughly or 
nearly parallel) to the exposed surfaces, and disintegration.  

 

Resistance to freezing and thawing is improved by including air-entraining admixtures in the 
fresh concrete to create a system of small, closely spaced air bubbles or voids in the fresh 
concrete.  After the concrete sets, the air voids provide free space into which the ice and water 
can expand during freezing, thus providing pressure relief from the bursting forces and 
preventing damage to the concrete.  The ability of the air voids to protect the concrete depends 
on the distance the water must travel to the nearest air void for relief, the size of the voids, and, 
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to a lesser extent, the total amount of void volume.  Therefore, according to ACI 201.2 – Guide 
to Durable Concrete, the air void system should meet the following requirements to provide 
sufficient protection against freezing and thawing, as determined by evaluation in accordance 
with ASTM C457 (Standard Test Method for Microscopical Determination of Parameters of the 
Air-Void System in Hardened Concrete): 

• The voids must be spaced closely enough; the spacing factor (indicating the typical 
distance water or ice must travel to reach a void) should be no more than 0.008 in. 

• The voids must be small enough; the specific surface area (the surface area of the voids 
relative to their volume) should be 600 in2/in3 or greater.   

• The total air volume must be large enough: the total air content should be between 4.5 
and 7.5 percent (for a typical 3/4 in nominal size coarse aggregate per ACI 318); 
however, with the advent of modern air-entraining admixtures capable of entraining very 
small and closely spaced air voids, this requirement can be relaxed for concretes with air 
void systems with sufficiently small and closely spaced voids. 

 

In addition to an adequate entrained air system, concrete must also be sufficiently impermeable 
to prevent or reduce the amount of water or other deleterious materials (such as deicing salts) 
that can enter the concrete through the exposed surface.  Recommended qualities for sufficient 
resistance to cyclic freezing and thawing include using a water-to-cementitious material ratio 
(w/cm) of 0.45 or less and replacing a portion of the portland cement with a pozzolan such as fly 
ash, slag, or silica fume.  The general quality of the hardened concrete (including w/cm or 
cementitious replacement) can be evaluated by petrographic analysis.  

4.3.2 Delayed-ettringite formation (DEF) 
Ettringite (a form of calcium sulfoaluminate hydrate) is a normally occurring hydration product 
in portland cement concretes that is created by the reaction of the aluminate phases of the cement 
and gypsum (calcium sulfate) in the cement.  The ettringite typically forms almost immediately 
after water is added to the cement and its formation helps to control the setting time of the 
cement.  The formation of the ettringite is expansive, as the calcium sulfoaluminate combines 
with 32 water molecules to form the ettringite crystal, but this expansion is innocuous when it 
occurs in the plastic concrete because there is no rigid hydration structure to resist the expansion. 

 
DEF refers to a damaging reaction in which the normal early formation of ettringite that occurs 
in plastic concrete is delayed or altered, leading to later ettringite formation in the hardened 
paste.  Current research indicates that ettringite becomes unstable at approximately 158 °F (70 
°C), above which it becomes unstable and breaks down into calcium monosulfate.  If this occurs 
in concrete, the ettringite that reforms after the concrete cools creates expansive pressure during 
its reformation.  Due to its large volume in comparison with the monosulfate, this “delayed” 
formation of ettringite leads to internal expansion of paste volume and damage to the hardened 
concrete.  Microscopically, DEF is characterized by cracks within the paste, gaps at the paste-
aggregate interface that are filled with larger opportunistic ettringite crystals, and accumulations 
of ettringite within the paste that look like bird’s nests when viewed at high magnifications under 
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the scanning electron microscope.  Macroscopically, DEF is characterized by a map cracking 
pattern with no associated deposits of gel.    

 
The precast concrete industry is especially concerned about DEF because of its use of 
accelerated heat curing.  Because of those concerns, the precast concrete industry incorporated 
heat controls into its Precast/Prestressed Concrete Institute (PCI) MNL 116 – Manual for Quality 
Control for Plants and Productions of Precast and Prestressed Concrete Products [4.1].  The 
manual provides temperature control requirements for accelerated curing: maximum concrete 
curing temperature shall not exceed 180 °F in the concrete.  In the commentary, it also states that 
if a known potential for ASR or DEF exists, the maximum permitted temperature is reduced to 
158 °F (70 °C).  For comparison, Germany and Canada limit maximum concrete temperatures to 
140 °F (60 °C) [4.2]. 

4.3.3 External Sulfate Attack 
External sulfate attack is an expansive chemical alteration of concrete paste involving the ingress 
of sulfate ions from external sources such as ground water, seawater, or industrial or residential 
wastewater.  In external sulfate attack, the sulfates to which the concrete is exposed migrate into 
the concrete over time and react with the calcium aluminate components of the cement.  This 
reaction causes distress in the concrete through two mechanisms.  The first is the formation of 
expansive ettringite and gypsum in the concrete.  The second is a chemical attack of the hydrated 
cement paste that causes it to soften and deteriorate.   

 

In practice, the most severe deterioration occurs just above ground or exposed water level and is 
characterized by a loss of surface paste and extensive cracking with associated deposits of 
gypsum and calcium hydroxide.  Below the ground or water levels, a softening of the paste 
structure occurs and progresses inwards, which is the most frequently observed form of 
deterioration.  The softening of the paste structure is due to the chemical alteration and 
replacement of existing hydration products within the paste structure that disrupt the paste-to-
aggregate bond strength of the concrete, resulting in reduced compressive strength, aggregate 
loss, and bulk loss of the concrete. 

 

Depending on the level of exposure to sulfates in service, using sulfate-resistant cements (only 
available by special order or in certain areas of the country), reducing the permeability of the 
concrete (by using low water-to-cementitious material ratio and good curing), or a combination 
of both are practical measures to resist sulfate attack.  

4.3.4 Alkali-Silica Reaction (ASR) 
Concrete can also be damaged if reactive aggregate is used.  The most-common form of this 
material-related deterioration is ASR.  ASR occurs when susceptible aggregates (typically those 
that contain unstable noncrystalline or mechanically strained semi-crystalline silica 
morphologies) react with the alkalis present in the concrete.  Although the very early-age 
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mechanics of the reaction are not well understood, the literature [4.3] describes the pressures 
associated with ASR formation as occurring in three phases: an “induction” phase where stresses 
increase prior to fracturing; a “main expansion” phase representing a period of crack 
development and rapid expansion of concrete; and a “late expansion” phase describing the end of 
propagation and the end of expansion.  In the first phase of this process, some of the silica 
present in the aggregate reacts with alkalis and hydroxides in the concrete to dissolve the silica 
and to create pressures within the concrete that crack the aggregates and surrounding paste.  The 
second phase then occurs as the reaction forms a highly absorptive alkali-silica gel within cracks 
and voids in the aggregate and the surrounding cement paste.  The gel absorbs water and swells, 
creating additional pressures and expansion, further fracturing the aggregates and the 
surrounding cement paste.  In the final phase, the available reactants are consumed or the 
chemistry becomes unfavorable for further gel formation or swelling and the reaction ceases or 
slows.   

 

As the ASR progresses, the concrete deteriorates as the internal cracking progresses and 
interconnects.  Extreme ASR can result in complete disintegration of the concrete.  ASR will 
continue as long as the concrete contains a sufficient supply of alkalis and has a relative humidity 
above approximately 85 percent.  Moisture fluctuation and freeze-thaw cycling exacerbate the 
disintegration.   

 

Since ASR will occur only with the presence of three conditions (reactive forms of silica in the 
aggregate, high-alkali (pH) pore solution, and sufficient moisture), practical measures to avoid 
and control ASR include the following, which can be used singly or in combination:  

• Limiting the alkali content of the concrete by using cement with very low alkali.  ASTM 
C150 (Standard Specification for Portland Cement) recommends the optional use of a 
low-alkali with a cement alkali content of less than 0.60 percent; however, cases have 
been reported that ASR distress occurred in the concrete with cement having this range of 
alkali content [4.4]. 

• Using supplemental cementitious material to replace portions of the cement.  
• Use of nonreactive aggregates.  The current industry-accepted test methods to screen for 

alkali-silica reactive aggregate include: 
• Petrographic analysis:  

• ASTM C295 - Standard Guide for Petrographic Examination of Aggregates for 
Concrete.  This method determines the physical and chemical characteristics of 
the aggregate particles to identify characteristics (e.g., crystal structure or type of 
material) that indicate that the material is potentially reactive. 

• ASTM C856 - Standard Practice for Petrographic Examination of Hardened 
Concrete.  This method is used to observe hardened concrete for the general 
quality of the concrete and for evidence that is characteristic of DEF, ASR, cyclic 
freezing-thawing, etc. 

• Expansion tests: ASTM C1260 - Standard Test Method for Potential Alkali 
Reactivity of Aggregates (Mortar-Bar Method), ASTM C1293 (Standard Test Method 
for Determination of Length Change of Concrete Due to Alkali-Silica Reaction), and 
ASTM C1567 - Standard Test Method for Determining the Potential Alkali-Silica 
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Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated 
Mortar-Bar Method), etc.  These tests subject samples of concrete or mortar made 
with the aggregates in question to accelerated exposure conditions to induce a rapid 
reaction, the effects of which are typically measured by expansion of the sample.  
They are used to relatively rapidly screen aggregates. 

 

Past test methods that are no longer in use, but that were used to evaluate the reactivity of the 
aggregate in the pre-2003 ties include: 

• ASTM C227 - Standard Test Method for Potential Alkali Reactivity of Cement-
Aggregate Combinations (Mortar-Bar Method).  This expansion test used mortar bars 
mixed with a high-alkali cement and exposed to 100 °F (38 °C) and high humidity to test 
for reactivity.  Experience [4.4] has shown that the results of the C227 test can be 
misleading, with slowly reacting aggregates frequently passing the test despite poor field 
performance.  

• ASTM C289 - Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates 
(Chemical Method).  This test immerses crushed samples of the aggregate in a sodium 
hydroxide solution and analyzes the resulting dissolved material for comparison with 
interpretation charts.  The test has been found to be limited in applicability because it 
fails to properly identify slowly reactive aggregates and is considered useful only if used 
in combination with other more reliable tests.  

 

Mixing water is not considered a significant source of alkalis in concrete, as mixing water is 
either potable or contains no more than 600 ppm (0.06 percent) alkali.  Regardless of 
specification requirements, these are also practical limits, as water with alkali contents sufficient 
to contribute to aggregate reactions will cause problems with admixture performance, setting, 
and strength such that they will not be practicably usable in concrete production.  

4.4 Review of Amtrak Material Specifications 
In light of the discussion on concrete degradation mechanisms, we reviewed the Amtrak material 
specifications for concrete ties, which provide general requirements for the concrete materials, 
concrete mixture proportions, and quality control/assurance tests.  In contrast to the abrupt 
change in the tie configuration from eight seven-wire strands to multiple single wires in 2003, 
the evolution of the tie specifications has been more gradual and incremental.  In order to 
understand how these requirements changed over time, we reviewed the Amtrak specifications 
from 1983 to 2003 that are available to us. We summarize the evolution of the specifications in 
Table 4.2.  Additional information is provided in Appendix A.2. 

 

The effects of the evolution of the specification are summarized below: 

• Cement:  The specifications changed to decrease the alkali content of the concrete, with 
low alkali (defined by ASTM C150 as less than 0.60 percent) required in 1992, and low 
sulfate required in 2003.  The use of low alkali cement reduces the risk of ASR, but as 
previously mentioned, it is not a guarantee of nonreactivity [4.4].  
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• Aggregate Reactivity:  The specifications evolved significantly over time.  In 1989 there 
was no specific requirement for aggregate reactivity (ASTM C33 does not include default 
reactivity requirements).  In 1992, the specifications expanded to include chemical testing 
and petrographic examination of aggregates to identify potential reactivity.  However, as 
discussed in Section 4.3.4, these tests have been subsequently found to be unreliable as a 
screening and evaluation tool.  In 2003, the present-day expansion tests were added, 
providing a more revealing evaluation of the aggregates, as discussed in Section 4.3.4.  

• Curing:  the curing changes in the specification have been relatively unchanged since the 
maximum temperature requirement was introduced in 1992, presumably after the 
widespread Lone Star tie failures on the NEC. 

• Transfer of Pretensioning Force:  The minimum concrete strength at transfer remained 
vague in the specifications until 2003 when a 4,000 psi minimum strength was 
implemented.  It is unclear how the “manner which prevents damage to the concrete tie” 
prior to this point was evaluated.  However, tie production drawings prior to 2003 all 
show required transfer strengths of 4,000 or 4,250 psi, suggesting that the effect of the 
specification change had no effect on production practice. 

• Air Entrainment:  The air entrainment requirements are relatively unchanged, aside from 
an increase in the required durability factor.   
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Table 4.2.  Comparison of key components of the Amtrak specifications for pre- and post-2003 ties. 

Category 1989 Specification  1992 Specification 1995 Specification Post-2003 Specification 

Cement  ASTM C150 ASTM C150- Low alkali ASTM C150- Low alkali ASTM C150, Type II or 
Type III, low alkali, 
having the lowest possible 
alkali content, but no 
more than 0.60% alkali 
content of Na2O 
equivalent; 

ASTM C265 – maximum 
SO3 as 0.5g/l; maximum 
SO3: Al2O3 as 1.0. 

Require mill certificates 

Aggregate 
Reactivity 

ASTM C33 ASTM C33 

ASTM C289 or 

ASTM C1105 (6 months) 

ASTM C227 (12 months) 

ASTM C33 

ASTM C289 or 

ASTM C1105 (6 months) 

ASTM C227 (12 months) 

ASTM C295 (3 months) 

ASTM C1260 (6 months)  

ASTM C856 (3 months) 

ASTM C1293(6 months) 

ASTM C1105 (6 months) 

“Duggan” (6 months) 
(Note 1) 

Curing Pressure steam or steam 
vapor accelerated—No 
temperature requirement  

Radiant heat with a 
maximum bed 
temperature of 140 °F. 

Low pressure steam or 
radiant heat with a 
maximum bed 
temperature of 140 °F. 

PCI MNL 116 

Maximum temperature 
within the concrete shall 
not exceed 140 °F. 
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Category 1989 Specification  1992 Specification 1995 Specification Post-2003 Specification 

Transfer of 
Pretensioning 
Force 2 

Accomplished in a 
manner which prevents 
damage to the concrete 
tie. (Note 2)  

Accomplished in a 
manner which prevents 
damage to the concrete 
tie. 

Accomplished in a 
manner which prevents 
damage to the concrete 
tie.  

Concrete strength at 
transfer should be in 
accordance with ACI 318, 
but in no case shall be less 
than 4000 psi. 

Freeze-thaw 
Resistance  

Air entrainment  

2% to 5%  

ASTM C666 Durability 
factor: 75% at 300 cycles 

Air entrainment  

4% to 6%  

ASTM C457 (6 months) 

ASTM C666 (6 months) 
Durability factor: 90% at 
300 cycles 

Air entrainment  

4% to 6%  

ASTM C457 (6 months) 

ASTM C666 (6 months) 
Durability factor: 90% at 
300 cycles 

Air entrainment  

4% to 7%  

ASTM C457 (6 months) 

ASTM C666 (6 months) 
Durability factor: 90% at 
300 cycles 

Notation:  ASTM C150 – Standard Specification for Portland Cement. 
 ASTM C33 – Standard Specification for Concrete Aggregates. 
 ASTM C265 – Standard Test Method for Water-Extractable Sulfate in Hydrated Hydraulic Cement Mortar. 
 ASTM C289 – Chemical method for potential ASR of aggregate. 
 ASTM C227 – Potential ASR of cement-aggregate combination. 
 ASTM C295 – Petrographic examination of aggregate for concrete. 
 ASTM C457– Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete. 
 ASTM C666 – Resistance of Concrete to Rapid Freezing and Thawing. 
 ASTM C1260 – Potential ASR of aggregate, mortar bar method. 
 ASTM C1293 – Length change of concrete due to ASR. 
 ASTM C1105 – Length change of concrete due to ACR.  
 ASTM C856 – Petrographic examination of hardened concrete. 
 ACI 318 – Building Code Requirements for Structural Concrete and Commentary. 
 PCI MNL 116 – Quality Control for Plants and Production of Structural Precast Concrete Products.   
 

Note 1: The “Duggan” test was developed in 1986 and used small 1 in diameter cylinders subjected to heating and subsequent 
immersion in water.  It was intended to test for ASR, but was later found not to be a reliable indicator of ASR vulnerability.  
It never became an ASTM standard.  
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Note 2:   The 1988 Concrete Tie drawing shows a concrete strength of 4000 psi at transfer;  

 The 1990 Concrete Tie drawing shows a concrete strength of 4250 psi at transfer; 

 The 2006 Concrete Tie drawing shows a concrete strength of 4000 psi at transfer; 

The 2010 Concrete Tie drawing shows a concrete strength of 4000 psi at transfer. 
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4.5 Review of Studies of the Ties by Others 
We reviewed several reports related to the concrete tie problem prepared by other organizations 
to supplement our own studies.  These included investigations of cracked pre-2003 ties and 
uncracked post-2003 ties, as well as materials tests conducted during production of the pre- and 
post-2003 ties. 

4.5.1 Investigation of Pre-2003 Tie Cracking 
We reviewed a total of four reports from CTLGroup (CTL) [4.5-4.8], two reports from Lankard 
Materials Laboratory (LML) [4.9, 4.10], and two reports from Valley Forge Laboratories (VFL) 
[4.11, 4.12].  These reports describe testing performed on samples removed after pre-2003 ties 
began exhibiting cracking in service.  The laboratory tests, including petrographic analysis, 
scanning electronic microscope and energy dispersive X-ray spectroscopy unit (SEM/EDS) 
analysis, physical tests (compression), chemical tests (chloride tests), and Duggan tests for ASR 
and DEF, were performed on the concrete core samples extracted from cracked concrete ties as 
well as from some concrete ties that showed no visible cracking. 
 

The test results and the findings from petrographic analysis, physical tests, chemical tests, and 
Duggan tests, etc. are described in Appendix A.3.   
 

The studies conducted by CTL, LML, and VFL agree that the observed cracking is not 
associated with chloride-induced corrosion, cyclic freezing and thawing, or lower-than-desired 
compressive strength.  The petrographic studies (conducted by CTL and LML) both agree that 
the observed horizontal splitting of the concrete ties is associated with ASR, although they do not 
agree on the magnitude of the effect of ASR, with LML attributing to the ASR a greater role in 
the observed cracking.  Neither CTL nor LML associated the observed horizontal cracking with 
DEF-related distress, except in tie samples identified as having an atypical failure mode which 
exhibited widespread map cracking unlike the typical failure mode observed on the other ties. 

4.5.2 Manufacturing Quality Control Testing Related to Pre-2003 Ties 
We reviewed numerous concrete test reports written by CTL from 1990 to 1997, in which tests 
were performed on concrete specimens made during production.  These tests appear to be part of 
a test schedule, as required by the Amtrak 1992 to 1995 specification.  The testing found the 
following: 

• ASTM C227 (Potential Alkali Reactivity of Cement-Aggregate Combinations): 
expansion below the 0.1 percent expansion criteria, indicating that the aggregates were 
non-reactive,  

• ASTM C289 (Potential Alkali-Silica Reactivity of Aggregates): aggregates found to be 
“innocuous,”  

• ASTM C457 (Microscopical Determination of Parameters of the Air-Void System in 
Hardened Concrete): concrete found to have a variable (from marginal to sufficient) air 
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content, but sufficiently low spacing factor and sufficiently high specific surface to be 
durable,  

• ASTM C666 (Resistance of Concrete to Rapid Freezing and Thawing): concrete found to 
meet the specified requirements,  

• ASTM C295 (Petrographic examination of aggregate for concrete): CTL tested one 
sample of coarse and two samples of fine aggregates.  They concluded that the materials 
were not highly reactive.  They did, however, note the presence of a small amount of 
chert particles, but no potentially deleterious constituents.  

While the ASTM C227 and ASTM C289 test reports conducted during concrete tie 
manufacturing in the 1990s indicate that both the fine and coarse aggregates were nonreactive 
and considered innocuous, the petrographic studies conducted by CTL and LML on those ties 
after they had been in service (as discussed in Section 4.5.1) revealed the presence of reactive 
aggregate particles and evidence of ASR distress in the concrete.  As discussed in Section 4.3.4, 
the ASTM C227 and C289 tests in use at the time of manufacture were not sensitive enough to 
detect a slowly reactive aggregate and they may have provided an incorrect prediction.  In 
addition, use of the low-alkali cement may not guarantee elimination of ASR distress that may be 
associated with the inherent reactivity of aggregate as previously discussed.  This is further 
discussed in Section 8.1.1 on contributing factors. 

4.5.3 Information Related to Post-2003 Ties 
We also reviewed a total of five reports from CTL Thompson [4.13-4.17], four reports from DRP 
[4.18 to 4.20, 4.21], one report from CTLGroup [4.22], one report from Hanson Aggregate 
[4.23], one document from Rocla [4.24], and one report from University of Illinois at Urbana-
Champaign (UIUC) [4.25] associated with the post-2003 ties, after significant changes were 
made in the concrete materials, concrete mix design, and prestressing design.  These documents 
are primarily laboratory test reports on the cement and aggregates used in post-2003 ties, as well 
as on core samples retrieved from post-2003 concrete ties, which are likely part of the test 
schedule required by the 2003 specification.  The test results and the findings from petrographic 
analysis, expansion tests, Duggan tests, cyclic freezing-thawing test, and UIUC’s evaluation of 
post-2003 specification and concrete tie production are summarized in Appendix A.3.   

 

In summary, our review of the UIUC reports and other studies conducted by CTL and DRP 
indicates that concrete ties manufactured after 2003 were generally in good condition at the time 
of testing, with no indications of ASR or DEF distress.  Furthermore, the production and 
materials testing information indicates that the materials used in the post-2003 ties were in 
compliance with the more stringent (as discussed in Section 4.3) ASR-related specifications in 
place at the time, including the aggressive ASTM C1260 ASR screening test; our review further 
shows that the as-produced concrete was resistant to damage from cyclic freezing and thawing.  
This is not surprising, as the petrographic testing also indicates that the post-2003 ties used a 
nonsilica-based dolomitic marble and a nonreactive metamorphic quartz that does not contain 
chert. 
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4.6 SGH Petrographic Examinations 
We conducted petrographic examinations on samples removed from the case study ties to 
determine the conditions and properties of the existing concrete and to provide data and evidence 
of the extent to which materials-related parameters may be contributing to the cracking problem.   

 
Table 4.3 below identifies the examined cores.  For clarity, it also identifies the other mechanical 
tests we performed on selected concrete ties, as further described in Section 5 of this report.  We 
do not have results from the MBTA ties to report here.  

 

Table 4.3.  Summary of SGH laboratory tests on selected concrete ties. 

Tie 
No. 

Crack 
Rating 

Test Performed 

Vertical Core 
for General 

Petrographic 
Examination  

Horizontal 
Core for 

Petrographic 
examination – 

at crack 

SEM 

/EDX 

Air- 
void 

system 
analysis 

Compression 
and modulus 

test 

Splitting 
tensile test 

Characteristic 
of 

prestressing 
tendons 

Pre-2003 NEC; uncracked or minor cracking 
1 2 √    √ √ √ 

2 1 √   √ √ √ √ 

19 2 √    √   

20 2 √    √   

Pre-2003 NEC; cracked 
6 4 √   √ √   

7 3       √ 

8 4 √ √ √ √ √ √  

10 3 √    √   

11 3 √    √   

14 4 √    √   

17 3 √ √   √   

18 3 √ √   √   

Post-2003 NEC 
16 1 √   √ √ √ √ 

21 1 √    √   

San-Vel NEC 

S1 1 √ 
√  (no 

apparent 
crack) 

  √ √  

S2 1 √ 
√  (no 

apparent 
crack) 

  √  √ 
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4.6.1 Sample Preparation 
We extracted 3 in diameter cores from the case study ties.  The purpose of the cores was to 
evaluate the general composition and condition of the hardened concrete, geology of the 
aggregate, and the presence of any ongoing expansive reactions, such as ASR, DEF, or cyclic 
freezing and thawing, that may be associated with the cracked ties.  We extracted two types of 
cores: vertical and horizontal.  The vertical cores were taken through the full thickness of the ties 
approximately 4 in from the end of the ties and centered at one of the two middle tendons (Figure 
4.4).  The horizontal cores were taken as partial or full-width horizontal core samples at locations 
at which cracks were visible on the sides, generally about 8 to 9 in from the tie end.  The 
horizontal core included the top row of tendons and the visible crack itself (except for the San-
Vel ties, which had no crack).  We used these samples to conduct petrography at the site of likely 
crack initiation and propagation, even though these were more difficult to prepare. 

 

 
Figure 4.4.  SGH retrieving a full-depth vertical core sample from a tie. 

 

We then cut nominal 3/4 to 1 inch-thick longitudinal sections from or near the centers of each of 
the core samples.  In the case of the vertical cores, these sections were oriented so that the 
observed surface was perpendicular to the tie transverse direction and parallel to the tendons.  
The exception was the vertical core for Tie 8 for which the cut plane was perpendicular to the 
tendons.  The cut plane for the horizontal cores was made perpendicular to the tendons.  We then 
lapped and ground each of the sawed sections to obtain a smooth, flat cross section for our 
microscopic examination. 
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In addition, we prepared blue-dye-epoxy-impregnated ultrathin (20 to 25 µm) sections from each 
of the corresponding remnant core pieces in order to conduct a more detailed petrographic 
examination on the hardened concrete.  For vertical full-depth core samples, we prepared one 
thin section from each core sample at the locations not including prestressing tendons.  For 
horizontal core samples retrieved at visible cracks, we were able to prepare the thin sections 
perpendicular to the prestressing tendon to include the prestressing tendons, and we made three 
thin sections across the entire width of these concrete ties.  
 

We examined the polished sections with the aid of a stereomicroscope at magnifications of 4 to 
40X and examined the prepared ultrathin sections using a transmitted-light polarizing 
microscope at magnifications of 25 to 200X.  Our examinations were conducted in accordance 
with ASTM C856 (Petrographic Examination of Hardened Concrete).   

4.6.2 Petrographic Findings from Vertical Core Samples  
The following is a description of our petrographic findings from these samples, classified by 
three categories:  pre-2003 ties, post-2003 ties, San-Vel ties. 

4.6.2.1 Concrete in Pre-2003 Ties  
Our specific observations are described in Appendix A.4 and summarized in Table 4.4.  In 
general, we noted the following: 

• The quality of the concrete appears to be fair-to-good, with none-to-minor indications of 
aggregate segregation near the top surface;  

• The concrete exhibits a normal-to-advanced degree of cement hydration and a very low to 
moderate-low water-to-cementitious materials ratio;  

• The concrete contains no fly ash or slag;  
• A minor component of the coarse aggregate particles (namely the diabase or dirorite 

metamorphic rock) and of the fine aggregate (namely the chert) contain unstable or strained 
silica that is reactive or potentially reactive;   

• We observe no indications of cyclic freeze-thaw damage, DEF, or external sulfate attack.   
 

We found that the cracking and distress in the concrete is primarily associated with ASR, as 
summarized below.  

• We observe very minor evidence of ASR and no evidence of ASR-related distress in 
core samples from Ties 2, 10, 17, and 19.  This finding is based on observing only 
occasional dark rims around coarse aggregate particles with no aggregate fractures 
extending into the surrounding paste and no evidence of ASR gel formation.  We did 
not observe lateral cracking at the top tendon elevations on both sides of Tie 2 and on 
the one side of Tie 10 where the core sample was retrieved; however, there is visible 
lateral cracking at the top tendon elevation on both sides of Ties 17 and 19.  We 
observe that crack widths in Ties 17 and 19 are typically no more than 0.003 in.  



 

 41 

• We observe evidence of minor ASR-related distress in the core samples from Ties 1, 
11, 18, and 20, as indicated by the occasional formation of dark rims around fine and 
coarse aggregate particles, fractures that originate in chert particles and extend into 
and disrupt the surrounding paste structure, and/or the presence of ASR gel lining or 
completely filling air voids located adjacent to reactive aggregate particles.  Note that 
we typically observe hairline lateral cracking (with crack widths typically no more 
than 0.003 in) at the top tendon elevation on both sides of these ties.   

• We observe evidence of minor-to-moderate ASR-related distress in the core samples 
from Ties 6, 8, and 14, as indicated by the occasional to frequent formation of dark 
reaction rims around the perimeters of aggregate particles, occasional fractures in fine 
and coarse aggregate particles that extend outward from the aggregate and disrupt the 
surrounding paste (Figures 4.5 and 4.6), as well as fractures that are partially to 
completely filled with ASR gel.  In particular, we note ASR gel that forms along 
multiple horizontal fractures at the top tendon elevation in core samples from Ties 6 
and 14.  The three concrete ties (6, 8, and 14) exhibit lateral cracking on both sides, 
with crack widths up to 0.050 in at the top tendon elevations.  In each case, the cracks 
extend from the ends to the shoulder of each tie. 

• The vertical crack on top of Tie 8 is associated with ASR-related distress. 
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Table 4.4.  Petrographic examination summary of concrete ties from Case Studies 1 and 2: pre-2003 NEC. 

Feature Tie 1 Tie 2 Tie 19 Tie 20 Tie 6 Tie 8 Tie 10 Tie 11 Tie 14 Tie 17 Tie 18 

 Case Study 1: uncracked or minor cracking Case Study 2: cracked 

General 
condition 

Good: no 
evidence of 
excessive 

bleeding or 
aggregate 

segregation. 

Fair to good: no 
evidence of 
excessive 

bleeding or 
aggregate 

segregation. 

Good: no 
evidence of 
aggregate 

segregation 

Good: minor 
evidence of 
aggregate 

segregation 

Fair to good: no 
evidence of 
excessive 

bleeding or 
aggregate 

segregation. 

Fair to good: 
with minor 

indication of 
aggregate 

segregation 
near the top 

surface 

Good: no 
evidence of 
excessive 

bleeding or 
aggregate 

segregation. 

Fair to good: 
with localized 

aggregate 
segregation 
related to 

placement and 
consolidation 

Good no 
evidence of 
excessive 

bleeding or 
aggregate 

segregation 

Fair to good: 
with localized 

aggregate 
segregation 

Good: minor 
evidence of 
aggregate 

segregation 

Air content 3½% to 4½% 2½% to 3½% 2½% to 3½% 3% to 4% 1½% to 2½%. 3½% to 4½%. 
   

2½% to 3½% 1½% to 2½%   2% to 3% 2½% to 3½% 2½% to 3½% 

Quality and 
distribution 
of air-void 

system 

Uniformly 
distributed 

Not well 
developed; non 

uniform 
distribution  

Uniformly  
distributed 

Uniformly 
distributed 

Uniformly  
distributed  

Variable  
within the core 

sample 

Uniformly  
distributed 

Uniformly  
distributed 

Uniformly  
distributed 

Uniformly  
distributed 

Uniformly  
distributed 

Estimated 
w/cm 

0.37 to 0.43 0.40 to 0.46 0.37 to 0.43 0.37 to 0.43 0.37 to 0.43  0.33 to 0.39 0.34 to 0.41 0.37 to 0.43 0.34 to 0.40 0.40 to 0.46 0.37 to 0.43 

Cement 
hydration 

Normal to 
advanced  

Normal to 
advanced 

Normal to 
advanced 

Normal to 
advanced  

Normal to 
advanced  

Normal to 
advanced  

Normal to 
advanced 

Normal to 
advanced 

Normal to 
advanced  

Normal to 
advanced 

Normal to 
advanced 

Supplemental 
cementitious 

material? 

None observed None observed None observed None observed None observed  None observed None observed None observed None observed None observed None observed 

ASR distress 
level 

Slight  None observed  None observed Slight  Slight-to-
moderate  

Slight-to-
moderate  

None observed  Slight  Slight-to-
Moderate  

None observed  Slight  

DEF distress 
level 

None observed None observed None observed None observed None observed None observed None observed None observed None observed None observed None observed 

Cyclic freeze 
and thaw 
damage? 

None observed None observed None observed None observed None observed None observed None observed None observed None observed None observed None observed 
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Figure 4.5.  A magnified view of the polished cross section in Core C8-1.  Note the 

intersecting fractures that originate in a reactive coarse aggregate particle, extend outward 
into the surrounding paste structure, and are partially filled with gray, subtranslucent to 

opaque ASR gel (yellow arrows). 

 

 
Figure 4.6.  A magnified view of the polished cross section in Core C8-1.  Note the 

intersecting fractures that originate in a reactive chert particle, extend outward into the 
surrounding paste structure, and are partially filled with gray, subtranslucent to opaque 

(white) ASR gel (yellow arrows). 
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4.6.2.2 Concrete in Post-2003 Ties  
Our specific findings are described in Appendix A.4 and summarized below:  
 
• In general, the quality of the concrete appears to be good with low water-to-cementitious 

ratio ranging from 0.32 to 0.40.  
• The paste structure consists of hydrated grains of portland cement with supplemental fly ash 

replacement.  We did not observe any evidence of retarded hydration or inadequate cement 
contents in the hardened concrete.   

• We did not note any evidence of ASR distress, DEF distress, cyclic freeze-thaw damage, or 
chemical alternation of paste structure.  

• The aggregate is a dolomitic limestone which does not contain silica-based materials.  The 
aggregate therefore is not susceptible to ASR. 

• The concrete mix proportions are comparable to those presented in the Amtrak concrete tie 
2003 specification.  

4.6.2.3 Concrete San-Vel Ties 
Our findings are described in Appendix A.4 and summarized below:  
 
• In general, the quality of the concrete appears to be good.  The paste structure consists of 

hydrated grains of portland cement with no supplemental materials such as fly ash or slag.   
• The number and frequency of air voids in the hardened concrete are very low and not 

indicative of intentional air entrainment (Figure 4.7).  The concrete in Core S1-3 (horizontal 
core sample from Tie S1) appears to have suffered cyclic freeze-thaw damage near one of 
the two exposed lateral surfaces of the tie, as evidenced by the formation of near-horizontal 
cracks that are oriented subparallel to the exterior (lateral) surface of concrete tie S1  (Figure 
4.8).  However, we did not observe evidence of cyclic freeze-thaw damage in any of the 
other core samples.   

• We observe evidence of a tight bond between the prestressing tendons and the surrounding 
paste in each of the examined core samples (Figure 4.9). 

• We did not note any evidence of ASR distress, DEF distress, external sulfate attack, or other 
chemical alternation of the paste structure.  

 
Specifications or pertinent documents for the production of San-Vel ties are not available to us; 
therefore, we do not know if air entrainment was required at the time of manufacture of these 
ties.       
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Figure 4.7.  A magnified view of the polished cross-section in Core S1-3 showing very few 

air voids in the paste structure. 

 

 
Figure 4.8.  A magnified view of the polished cross-section in Core S1-3 showing 

subparallel fractures in the near surface concrete (yellow arrows). 
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Figure 4.9.  A magnified view of the polished cross-section in Core S1-3 showing a tight 

intimate bond between the tendon strands and the surrounding paste.  
  

4.6.3 Petrographic Findings from Horizontal Core Samples at Externally Visible 
Cracks 

To supplement the vertical cores and to provide additional information about the concrete 
performance in the very-near-strand zone (which could not be clearly observed in the vertical 
cores because the sample preparation avoided the near strand zone), we extracted and studied 
partial or full depth horizontal concrete cores at externally visible cracks from Case Study 2 (pre-
2003 NEC, cracked) ties 8, 17, and 18 (Figure 4.10). 
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Figure 4.10.  Core sample extracted horizontally from Tie 18 at a lateral crack.  Red arrow 
points to the location where the core example was extracted; yellow arrows point to lateral 

crack.   

We examined the three core samples after coring and noted that the visual lateral cracks at the 
surface typically extended to the first tendon (outermost tendon) and sometimes extended further 
and stopped at the second tendon ( middle tendon), as shown in Figure 4.11.  In addition, cracks 
were present on the circumference of the core sample at tendon levels, as shown in Figure 4.12.  
The circumferential cracks on the core are vertical cracks in the tie. 
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Figure 4.11.  Core C17-3- sprayed with alcohol showing the lateral crack on the exterior 

surface extending into the concrete body and stopping at the second tendon. 
 

 
Figure 4.12.  Core C8-4 showing the cracks on the circumference of the core sample at 

tendons (red and yellow arrows).  Note:  That core fractured at one of the tendons during 
coring at one of the cracks, thus exaggerating its width (yellow arrows). 
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Our petrographic findings of cracking in these horizontally oriented core samples are shown in 
Table 4.5 and summarized below:  

• There are multiple cracks visible in the polished sections, primarily within the same 
horizontal plane (with respect to the tie) at the upper level of tendons and within a plane that 
is roughly vertical within the tie.  Figure 4.13 shows an example from Tie 8.  

• The cracks are primarily associated with ASR-related distress, as evidenced by the presence 
of reactive coarse and fine aggregate particles and ASR gel partially filling paste and 
aggregate fractures.  Figure 4.14 and Figure 4.15 show examples from Tie 8 and Tie 17, 
respectively.  

• We did not note any corrosion deposits on the prestressing tendons, with the exception of 
Tie 17. 

• We noted that there are occasional gaps between the prestressing tendon and the 
surrounding paste (Figure 4.16).  We observe cement hydration product along the edge of 
the gap, indicating that the gap formed at an early age of the concrete and was not caused by 
the coring process.  

 

Table 4.5.  Petrographic examination summary of horizontally oriented concrete ties from 
Case Study 2: pre-2003 NEC. 

Feature Tie 8 Tie 17 Tie 18 

Cracking 

Multiple cracks, 
primarily within the 

plane of the upper level 
of tendons and other 
planes radial to the 
length of the upper 

tendons (Figure 4.13) 

Multiple cracks, primarily 
in the plane of the upper 

level tendons but also 
occurring along other 

planes radial to the length 
of the upper tendons 

(Figure 4.17).  Portions of 
the cracks show tearing 

features, indicating early-
age formation (Figure 

4.19) 

Multiple cracks, primarily 
in the plane of the upper 
level tendons and within 
other planes radial to the 
length of the upper level 
tendons.  The majority of 
the cracks extend around 
aggregate particles rather 

than fracturing them 
(Figure 4.20). 

ASR 
Distress 

Level 

ASR gel partially fills 
cracks in coarse and 

fine aggregate and paste 
(Figures 4.14 through 

Figure 4.15). 

ASR gel partially fills 
cracks in coarse and fine 

aggregate and paste. 

Occasionally, ASR gel 
partially fills the cracks.  
The cracks occasionally 
split reactive aggregate 

particles. 
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Feature Tie 8 Tie 17 Tie 18 

Corrosion None 

Minor corrosion deposits 
on the first tendons where 

the crack stops (Figure 
4.18).  Since the corrosion 
product does not extend 
into the crack, and we 
found the evidence of 

corrosion product in an 
adjacent location (not 
connected to the large 

crack) that runs into a void, 
we believe that the 

corrosion predated the 
surface crack.  However, 
we cannot determine if 
there is any relationship 
between the corrosion of 
the tendon and the crack. 

None 

Other 

Occasional gaps 
between the 

prestressing tendon and 
the surrounding paste 

(Figure 4.14).  Cement 
hydration product along 

the edge of the gap, 
indicating the gap 

formed at an early age. 

Intermittent gap between 
the prestressing tendon and 

the surrounding paste.  
Surface crack extends to 
first tendon appears to 

have formed at a later age, 
as evidenced by a greater 

depth of the carbonation at 
the exterior surface than 

crack interface.  The crack 
fractures multiple coarse 
aggregate particles along 

its path (Figure 4.17). 

Intermittent gap between 
the prestressing tendon and 

the surrounding paste.  
Occasionally, the fine 

cracks show evidence of 
autogenous healing based 

on observations of 
secondary calcite.  This 
indicates that the cracks 
occurred at a very early 

age. 
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Figure 4.13.  Overview of polished section from Core C8-4 showing alignment of cracks.  

Red arrows point to cracks (too narrow to be visible at this scale) and outline the 
orientation of the cracks; yellow arrows point to reactive aggregate particles.  Photograph 

shown in as-cored orientation, side of tie to the left, top of core to top of photograph. 
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Figure 4.14.  Magnified view of the microstructure in the body of Core C8-4 showing a 
reactive chert aggregate particle with ASR gel.  Yellow arrows outline the reaction rim 

around the perimeter of the aggregate as well as the locations of ASR gel that partially fills 
cracks that extend outward from the aggregate and partially fills fractures in the 

surrounding paste structure. 
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Figure 4.15.  Magnified view of the microstructure in the body of Core C17-3 showing a 
reactive coarse aggregate particle and ASR gel that is partially filling the crack in the 

aggregate, as well as portions of aggregate cracks that extend outward and partially fill 
fractures in the surrounding paste structure. 

  
Figure 4.16.  Magnified view of the microstructure in the body of Core C8-4 showing 

intermittent gap (yellow arrows) around one of the prestressing strands (pink). 
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Figure 4.17.  Crack condition on the polished section from Core C17-3.  Red arrows point 

to direction and extent of cracks; yellow arrows point to the reactive aggregates. 
 

 
Figure 4.18.  A magnified view of the polished cross-section in Core C17-3 at the tendon 

near the exterior surface.  Red arrows point to the minor brown corrosion staining at the 
tendon. 
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Figure 4.19.  A magnified view of the polished cross-section in Core C17-3 showing the 
fracture surface just above the tendon.  Red arrows point to the tear fractures in the 

fracture surface. 

 

 
Figure 4.20.  Cracking in the polished section from Core C18-3 (only the surface crack to 
the first tendon is illustrated).  Yellow arrows point to the crack and point in the direction 
of the exterior surface and the first tendon. The crack goes around the aggregate particles 

rather than fracturing the aggregates as shown highlighted in the inset.  

 

 

 



 

 56 

4.6.4 SEM/EDS Examinations – DEF Potential 
Although we did not observe any characteristic symptoms of DEF distress (such as gaps at the 
paste-aggregate interface that are filled with larger opportunistic ettringite crystals, or frequent 
internal fractures in the paste structure) during our optical petrography, we conducted scanning 
electron microscope (SEM)-based petrography to confirm that DEF was not occurring.  This was 
required to confirm the lack of even early-stage DEF because the ettringite formations that cause 
expansion within the paste frequently begin at very small scales that are distributed throughout 
the paste and are only visible at magnifications above 1,000X. 

 
We examined the top portion of the polished section of core sample from Tie 8, a severely 
cracked tie, using our JEOL JSM-6490LV SEM equipped with an EDAX Apollo 40 Silicon Drift 
Detector energy dispersive X-ray spectroscopy unit (EDS).  The EDS unit provides 
compositional information regarding the characteristic elemental constituents that cannot be 
discerned optically. 
 

Our SEM/EDS examinations did not reveal any evidence of ongoing DEF distress such as 
ettringite (a hydrous calcium aluminum sulfate mineral) in the small fractures within the paste 
structure or in localized “nests” within the cement paste.  This indicates that there is no DEF-
related deterioration within the concrete.  We did find normally occurring primary ettringite in 
the air voids.  We did not note any other abnormal material reactions.  This finding is consistent 
with the findings of others concerning the majority of ties studied previously, as was discussed in 
Section 4.5. 
 

We did not examine concrete core samples from the remaining seven concrete ties selected for 
the case studies because their optical petrographic analyses did not reveal any larger-scale 
evidence of internal sulfate attack due to DEF or external sulfate attack that would have 
suggested they were any different from the concrete in Tie 8. 

4.6.5 Air-Void System Analysis and Freezing-Thaw Resistance of Concrete Ties  
To better understand the air void system parameters and their possible effect on tie performance, 
we supplemented the petrographic estimates of air content in the concrete with a quantitative 
assessment of the air-void system parameters on four of the vertical core samples.  We made 
these assessments in accordance with ASTM C457 (Microscopical Determination of Parameters 
of the Air-Void System in Hardened Concrete), using the modified point-count method.  The 
results of the testing are shown in Table 4.6, along with the visual observations and petrographic 
analyses from Table 4.4 for comparison.    
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Table 4.6.  Summary of core observations and testing related to freeze-thaw evaluation. 

 Tie 2 Tie 6 Tie 8 Tie 16 Test Method 

Case Study 
Pre-2003 NEC, 
uncracked or 

minor cracking 

Pre-2003 NEC, 
cracked 

Pre-2003 NEC, 
cracked Post-2003 NEC - 

Tie 
Cracking 
Rating* 

1 4 4 1 Visual 

Surface 
Scaling No No No No Visual 

Pozzolonic 
Material? None None None Fly ash Petrographic 

Air Content 2.0% 2.3% 2.3% 3.8% Lab Test ASTM 
C457 

Spacing 
Factor (in) 0.0049 0.0084 0.0064 0.0056 Lab Test ASTM 

C457 

Specific 
Surface 

Area 
(in2/in3) 

1713 859 1275 1103 Lab Test ASTM 
C457 

Quality of 
Air-Void 
System 

Non-uniformly 
distributed 

Well-
distributed Some variation Well-

distributed Petrographic 

Sub-Parallel 
Cracking No No No No Petrographic 

 ∗ See Section 3. 

As further discussed in Section 4.7 below, the information from the separate analyses are 
generally similar and in agreement with the previous testing by others. 

4.7 Discussions and Findings Relative to Petrographic, SEM/EDS, and Air-Void 
System Testing 

The purpose of the petrographic, SEM/EDS, and air-void analyses work was to investigate and 
identify any evidence supporting or discounting potential materials-related phenomena that may 
be the cause of the observed cracking.  In general, these types of phenomena include: low 
general overall quality which may lower the strength of the concrete, poor inherent resistance to 
aggressive freeze-thaw environments, external sulfate attack, or internal deleterious reactions 
such as DEF and ASR.  Our discussion and findings related to these phenomena are given below.   

4.7.1 General Concrete Quality  
In general, we observe no evidence of significant manufacturing-related deficiencies such as 
aggregate segregation, late-age water additions, or incomplete consolidation.  Similarly, there are 
no indications of concrete proportioning or batching errors, such as a shortage of cement or over-
watering, and the overall hydration reactions are normal.  The concrete exhibits a very low to 
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moderate water-to-cementitious ratio that we estimate to be in the range of 0.33 to 0.46, which is 
appropriate for high design compressive strength.   

Our examinations of the core samples from ties manufactured in 2008 (Ties 16 and 21) indicate 
that the concrete proportions and quality are comparable to those described in the Amtrak 
concrete tie specification for post-2003 ties and are consistent with the mix design provided in 
the Amtrak UIUC Phase Report dated 4 December 2009, in terms of cement and fly ash content, 
cement type, mineral type of the coarse and fine aggregate particles, concrete air content, and 
water-to-cementitious ratio. 

Based on these observations, we do not believe that manufacturing-related material deficiencies, 
proportioning or batching errors, or deficient hydration reactions are responsible for the observed 
cracking.  This is consistent with the previous findings of CTL and LML. 

4.7.2 Resistance to Cyclic Freezing and Thawing  
Our overall observations and detailed air content measurements on pre-2003 concrete ties show 
that they are not undergoing damage caused by cyclic freezing and thawing, and they are not 
generally vulnerable to this type of distress, based on the following: 

• The pre-2003 concrete ties do not exhibit symptoms of freeze-thaw damage, such as 
scaling or subparallel cracking. 

• Although they contain low air contents and minor variations in the air-void systems, our 
tests indicate that the concrete has sufficient freeze-thaw resistance, with marginal to 
well-distributed air void systems, spacing factors at or less than 0.008 in, and specific 
surface areas larger than 600 in2/in3. 

• Our petrographic analysis on the thin sections indicates that the water-to-cementitious 
material ratio (w/cm) in the concrete is generally lower than the 0.45 (maximum) 
typically specified for resistance to damage due to cyclic freezing and thawing.    

 
Our studies on the post-2003 concrete ties find that they exhibit similar freeze-thaw performance 
as the pre-2003 ties and have improved inherent freeze-thaw resistance due to their higher air 
content. 
 

Our limited study on the San-Vel ties indicates that they can be vulnerable to surface damage due 
to cyclic freezing and thawing, as shown by the near-surface subparallel cracking of a single one 
of the examined San-Vel ties.  This damage is consistent with the low quality of their low air 
void system, which will make the San-Vel ties susceptible to cyclic freezing and thawing where 
they are exposed to sufficient water to become saturated.  It is important to note that this minor 
damage is purely a surface phenomenon and has had no effect on the concrete in the region of 
the prestressing strands.  Furthermore, despite the potential vulnerability to cyclic freezing and 
thawing of the San-Vel ties, it does not appear to have affected their overall performance, as 
shown by the reported lack of the characteristic horizontal cracking in the San-Vel tie 
population.  This further reinforces our assessment that the observed horizontal cracking of the 
other ties in the NEC is not related to cyclic freezing and thawing, as the San-Vel ties have the 
lowest resistance to cyclic freezing and thawing, yet have very good observed performance in 
place. 
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Based on these observations, we believe that cyclic freezing and thawing is not responsible for 
the observed cracking in the pre-2003 ties.  This is consistent with the previous findings of CTL 
and LML. 

4.7.3 Delayed-Ettringite Formation (DEF) 
We do not observe any signs of DEF in the San-Vel, pre-2003 ties, or post-2003 ties.  There are 
no deposits of ettringite within the paste and no significant deposits of ettringite in the cracks and 
void spaces.  Therefore, we conclude that DEF is not a cause or contributor to the observed 
cracking in the pre-2003 ties. 
 

This finding is consistent with those of CTL and LML in their investigation of ties that did not 
exhibit widespread map cracking on the tie surfaces, indicating that all of the petrographic 
assessments of the typical damage condition were consistent.  CTL and LML did examine a 
limited number of ties (we believe they have examined the same ties based on the tie designation 
used in their reports) that exhibited an abnormal cracking pattern over the entire tie surface, and 
they concluded that DEF may have been a contributor to the unusual cracking in those particular 
ties.  We did not observe any ties meeting the CTL and LML description and did not encounter 
any heavily map-cracked ties in the field, so we conclude that while DEF may have occurred in 
those ties, it is not widespread, not a cause of the predominant horizontal cracking mode, and 
was likely due to isolated problems with curing temperatures or unusual material reaction. 

4.7.4 External Sulfate Attack 
We do not observe any signs of external sulfate attack in any of the ties examined.  There are no 
deposits of ettringite within the paste, no softening of the cement paste, no cracking with 
associated deposits of gypsum or calcium hydroxide, and no significant deposits of ettringite in 
the cracks and void spaces.  Therefore, we conclude that external sulfate attack is not a cause or 
contributor to the observed cracking in the pre-2003 ties. 

4.7.5 Alkali-Silica Reaction  
We observe that ASR is present in the pre-2003 ties and that it appears to be associated with the 
crack locations.  In particular, we note the following regarding ASR within the ties: 

• The post-2003 and the San-Vel ties (which reportedly have not experienced splitting-type 
failures in the field) show no indications of ASR-related distress.  In the San-Vel ties, the 
aggregates do not appear to be ASR-susceptible, and the use of fly ash and an entirely 
different type of aggregate in the post-2003 ties appears to have mitigated or prevented 
any reaction. 

• The pre-2003 ties show evidence of ongoing ASR.  Specifically, we note the following: 

o There is slight-to-moderate ASR distress within the concrete (cracking that contains 
ASR gel deposits, aggregates with reaction rims, and deposits of ASR gel in air voids 
and cracks within the concrete paste).  These results are consistent with the CTL and 
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LML reports that also find that ASR is present in the pre-2003 ties.  The failure of the 
ASTM C227 and C289 screening tests in use during manufacture of the pre-2003 ties 
is not surprising, as the tests are now recognized by industry as not sensitive enough 
to detect a slowly reactive aggregate and may thus have provided an incorrect 
prediction.   

o There is an apparent relationship between the degree of ASR distress in the core 
samples and the horizontal cracking condition on the exterior surface of the concrete 
ties, with both increasing concurrently as indicated in Table 4.7 and Figure 4.21. Note 
that the higher variability at the petrographic ASR severity rating of 0 is likely an 
artifact of the way the petrographic sections were prepared from the vertical cores, as 
previously discussed.    

o The ASR distress occurs only in the immediate vicinity of the plane of the upper layer 
of prestressing strands, with little to no ASR observed elsewhere in the ties.  In 
addition, the cores taken horizontally through the horizontal cracks in the ties, which 
provide more information around the near-tendon area, show more ASR-related 
features than the vertical cores, especially as related to the primary horizontal 
splitting cracks in the ties and the other cracks oriented radially to the tendons, as 
shown in Table 4.8.  This indicates that the occurrence of the ASR is associated with 
the locations of prestressing tendons because we only observe minor evidence of ASR 
distress away from the tendon locations. 

Section 8 provides additional analysis and discussion of this relationship between distress and tie 
performance in relation to other work performed as part of this investigation. 

Table 4.7.  Data used to correlate crack severity to various measures of ASR. 

Tie ID 
Crack Severity Rating at Each End* 

(End 1-End 2) 
Petrographic ASR Severity Rating 
(Based on Vertical Core Samples) 

1 2-1 1-Slight 
2 1-1 0-None 
6 4-4 2-Slight-to-Moderate 
8 4-3 2-Slight-to-Moderate 
11 3-2 1-Slight 
10 1-3 0-None 
14 3-4 2-Slight-to-Moderate 
16 1-1 0-No evidence 
17 3-3 0-No evidence 
18 3-3 1-Slight 
19 2-2 0-No evidence 
20 1-2 1-Slight 
21 1-1 0-No evidence 
S1 1-1 0-No evidence 
S2 1-1 0-No evidence 

∗ See Section 3 for a description of the crack severity rating; for example, 2-1 means End 1 has severity = 2 and 
End 2 has severity = 1. 
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Figure 4.21.  Relationship between the severity of ASR distress and the crack rating.  

The visual rating is assigned as follows:  
Rating 1: no visible crack at all 
Rating 2: visible cracks with width <0.005 in and the crack length is typically short (within 12 in) 
Rating 3: visible cracks with width between 0.005 and 0.016 in and the crack length is variable  
Rating 4: crack width greater than 0.016 in and the crack length is extensive, typically extending 

from the end of tie to the shoulder of the tie 
 

The petrographic ASR severity rating is assigned as follows:  
Rating 0: No cracking detected - No features or characteristics associated with alkali-silica reaction 

(ASR) detected  
Rating 1: Very slight cracking (No evidence of deleterious ASR) - A condition usually described as 

“microcracking.”  Cracks typically up to 20 to 30 µm in width, the majority of which are 
visible only on interior concrete surfaces, confined mainly to the cement paste matrix, 
sometimes at cement/aggregate interfaces such as adhesion cracks.  Cracks are short, 
isolated, and usually empty.  No significant internal aggregate cracking, and if present, 
aggregate fractures are nonpropagating. 

Rating 2: Slight cracking (minor or trace evidence of deleterious ASR) - Cracks 30–40 µm in 
width, usually isolated, not forming a network.  Cracks may originate from aggregates, 
but do not generally propagate very far into surrounding cement matrix.  Reaction rims 
are frequently also evident around the perimeters of the “reacting” and distressed 
aggregate particles.  Extensive crack networks are not observed.  Some internal and 
peripheral cracking of aggregates may be present.  Cracks may also be present on the 
boundaries of aggregate particles as adhesion cracks.  Visible ASR gel deposits in voids 
and cracks may be observed, but not necessarily.  The cracks are generally open.  The 
cracks and air voids within the concrete are occasionally partially filled primary and/or 
secondary deposits of sulfate, portlandite, or carbonate minerals. 
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Table 4.8 – Summary of ASR-related observations in the pre-2003 ties. 

Tie 
ID 

Core 
Direction 

ASR 
Classification 

Distress Features 

Notes Rims around 
Aggregates Cracking ASR Gel 

Lateral Crack at 
Upper Tendon Level 
(& Associated Crack 

Widths) 

Vertical 
Cracking 

Cracking on 
the top 

surface of 
Tie 

1 Vertical Slight Occasional Occasional fracture primarily within coarse aggregates; a single 
fracture in paste near top tendon 

Partially filled in short cracks originated with 
chert particles 

0.003 to 0.005 at one 
side No No  

2 Vertical None-to- 
Slight Occasional Occasional fracture primarily within coarse aggregates None observed None observed No No  

6 Vertical Slight-to-
Moderate 

Occasional-
to-Frequent 

Occasional aggregate fractures in coarse aggregate and fine  
aggregate extending into the surrounding paste 

Multiple fractures in the paste just above the 
tendon; ASR gel partially fills fractures. 

0.003 to 0.050 both 
sides No No  

8 

Vertical Slight-to-
Moderate Frequent Micro and macro fractures/cracking throughout the sample: in 

the paste structure and within the aggregate particles 
ASR gel in the fractures throughout the full 

depth of the core sample 
0.003 to 0.013 both 

sides Yes Yes Vertical and topside crack 
associated with ASR 

Horizontal Slight-to-
Moderate Frequent 

Multiple cracks, primarily in the plane of the upper level tendons 
and in the plane perpendicular to the upper level of tendons –

cracks associated with reactive coarse aggregates 

Majority of cracks partially filled with ASR 
gel. - 

Within 
concrete 

body 
No 

Occasional gaps between 
prestressing tendons and 

surrounding paste 

10 Vertical None-to- 
Slight Occasional Occasional fracture primarily within coarse aggregates None observed None observed No No  

11 Vertical Slight Occasional Occasional fracture primarily within coarse aggregates None observed <0.003 in both sides No No  

14 Vertical Slight-to-
Moderate Frequent Occasional aggregate fractures in coarse aggregate and fine 

aggregate extending into the surrounding paste 

Multiple fractures and one prominent fracture 
in the paste structure just above the tendon 
elevation. Fractures filled with ASR gel. 

0.003 to 0.025 in both 
sides No No  

17 

Vertical None-to-
Slight Occasional Occasional fracture primarily within aggregate None observed 0.003 to 0.011 in both 

sides No No Sections made above tendon- 
upper tendon level 

Horizontal Slight-to-
Moderate 

Occasional-
to-Frequent 

Multiple cracks, primarily in the plane of the upper level tendons 
and perpendicular to the upper level of tendons – majority are 

associated with reactive coarse aggregates; portions of the cracks 
show tearing features, indicating early-age formation 

Majority cracks partially filled with ASR gel. - 
Within 

concrete 
body 

No 

Corrosion deposits on one 
tendon at intersection with 

surface crack; intermittent gap 
between the tendon and paste 

18 

Vertical Slight Occasional Occasional fracture primarily within aggregate; two reactive 
cherts within the section None observed 0.003 to 0.007 in both 

sides No No 
Sections made above tendon- 

they do not include the 
concrete at upper tendon level 

Horizontal Slight-to-
Moderate 

Occasional-
to-Frequent 

Multiple cracks, primarily in the plane of the upper level tendons 
and in the plane perpendicular to the tendons; cracks extend 

around aggregate particles rather than fracturing them. 

Occasionally, cracks partially filled with ASR 
gel - 

Within 
concrete 

body 
No 

Intermittent gap between 
prestressing tendon and the 

sounding paste 

19 Vertical None-to-
Slight Occasional Occasional fracture primarily within aggregate None observed No more than 0.003 in 

one side No No Sections made above tendon 

20 Vertical Slight Occasional Occasional fracture primarily within aggregate In air void None observed No No Sections made above upper 
tendon- level 
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5. Mechanical Testing 

We conducted several mechanical tests to characterize the case study ties.  Our goal was to 
determine whether there are significant differences in certain properties between ties with 
different levels of performance and to obtain information useful for modeling and strength 
evaluations.  The properties we measured included elastic modulus, compression strength, 
tension (splitting) strength, and flexural strength of the ties themselves.   

5.1 Modulus and Compressive Strength 
We conducted modulus of elasticity testing to determine if the stiffness of the concrete had been 
affected by any type of concrete deterioration, and we tested the compressive strength to see if 
the compressive strength was significantly different between ties.  The elastic modulus and the 
compressive strength of the concrete tie materials were measured from the same sample.  We 
took this sample from the horizontal core removed from a region above the tendons.  Figure 5.1 
shows a photograph of one of the test samples in the test machine (in this case to measure elastic 
modulus).  The dimensions of the samples were nominally 3 in in diameter and 5 in long.  
However, we used a shorter sample in those cases in which the core piece cracked from the 
coring operation. 

 
Figure 5.1.  Set-up testing for the modulus of elasticity tests. 

 
We measured the modulus of elasticity of the concrete core samples in accordance with ASTM 
C469 (Standard Test Method for Static Modulus of Elasticity and Poisson Ratio of Concrete in 
Compression) using a universal testing machine.  We then tested this same core in accordance 
with ASTM C39 (Standard Test Method for Compressive Strength of Cylindrical Concrete 
Specimens) using a higher capacity universal testing machine.  The test results of both tests are 
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shown in Table 5.1 below.  The ID refers to the tie number and core sample: C1-2 is from Tie 1 
and is core sample 2. 



 

 65 

Table 5.1.  Modulus of elasticity and compressive strength test results. 

Core ID 
Compressive 
Strength (psi, 
L/D factored) 

Modulus of Elasticity (106 psi) Gage length: 2 in 

Test Run 1 Test Run 2 Average of 
Two Runs 

Predicted Using 
ACI Equation 

Pre-2003 NEC, uncracked or minor cracking 

C1-2 9,900 4.66 4.90 4.78 5.67 

C2-2 9,560 6.00 5.76 5.88 5.57 

C19-2 10,200 4.63 4.63 4.63 5.76 

C20-2 9,400 4.64 4.63 4.64 5.53 

Pre-2003 NEC, cracked 

C6-2 9,710 3.59 3.86 3.72 5.62 

C8-2 8,740 3.51 3.69 3.60 5.33 

C10-2 9,750 4.59 4.38 4.49 5.63 

C11-2 10,580 4.79 4.57 4.68 5.86 

C14-2 9,610 4.16 4.44 4.30 5.59 

C17-2 10,000 4.05 4.05 4.05 5.70 

C18-2 7,850 3.98 3.96 3.97 5.05 

Post-2003 NEC 

C16-2 9,070 6.59 6.47 6.53 5.43 

C21-2 10,130 5.57 5.56 5.57 5.74 

San-Vel 

S1-1 12,850 4.85 4.86 4.85 6.46 

S2-1 12,190 4.67 4.63 4.65 6.29 

 

The compression test results range from 7,850 psi to 12,850 psi, all of which are above the 
specified 28-day compressive strength of 7,000 psi.  This level of strength is considered to be 
high strength.   

 

The measured compressive strength is more than 7,000 psi, indicating that the 28-day 
compressive strength of the concrete most likely met the specification requirement of 7,000 psi.  
It is not surprising that the concrete strength is only slightly higher than 7,000 psi even after 7–14 
years of aging, because although  the compression strength of conventional concrete increases 
with time, heat-cured concrete behaves somewhat differently.  The early age heating leads to 
significantly higher early-age strengths, but limits the maximum strength and long-term strength 
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gain.  Nilson [5.1] provides equations to estimate the strength of similar concretes cured under 
moist or early-age steam curing in precasting operations; the application of the equations to a 
nominal 7,000 psi concrete (Figure 5.2) shows the effect of the steam curing.  A similar effect is 
shown in Figure 5.3 from Gerwick [5.2].  Examination of these curves indicates that a minimal 
increase in strength over time is to be expected for heat-cured concrete.  

 

Table 5.1 shows that the measured modulus of elasticity of the core samples varies significantly, 
ranging from 3.5 x 106 psi to 6.6 x 106 psi.  To aid in interpreting the results of the testing, we 
also calculated the predicted elastic modulus based on its compressive strength, using the 
E=57,000 √(f’c) equation given in ACI [5.3], “Building Code and Commentary.”  We note that 
most of the elastic modulus numbers are lower than those predicted by the ACI equation.  This is 
consistent with our finding of indications of ASR in the concrete, because low-level ASR causes 
microcracking that lowers the elastic modulus (causing “softening” of the concrete) without 
significantly affecting strength [5.4].  However, the low measured elastic modulus values for the 
San-Vel ties are surprising, given their lack of observed ASR.  The reason for this is not clear. 

 

 
Figure 5.2.  Effect of time on compressive strength of concrete for moist-cured and steam-

cured concrete (from Nilson [5.1]). 
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Figure 5.3.  Effect of time on compressive strength of concrete (from Gerwick [5.2]). 

 

5.2 Tensile (Splitting) Strength 
We conducted a few tests to measure the tensile strength of the concrete in the ties perpendicular 
to the plane corresponding to the primary crack orientation we observed in the ties.  We wanted 
to determine whether significant differences in tensile strength could explain the difference in 
performance.  We removed 2.3–3 in diameter, 3–4 in long test samples by coring the ties above 
the strands at the end opposite the one from which we removed samples for compression and 
modulus testing.  We conducted the tests according to ASTM C496 (Standard Test Method for 
Splitting Tensile Strength of Cylindrical Concrete Specimens).  Figure 5.4 shows a photograph 
of the test configuration.  The direction of maximum tensile stress in this test is perpendicular to 
the line connecting the loading points.  We oriented the test specimen so that the crack plane 
corresponded to a horizontal plane in the tie, although this plane is above the plane of the top 
row of tendons.  Table 5.2 lists the results of the tests.  These tensile strengths are relatively high 
(see also Section 7) compared with the value obtained from the generally accepted formula: 

 
'' 5.7 ct ff =  

 

This formula gives a tensile strength of 750 psi for a 10,000 psi compression strength.  (See also 
[5.5] and [5.6] for tensile strength values.) 

 

The split tensile strengths are greater than expected, but there does not appear to be a significant 
difference between the values from the different case study ties. 
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Figure 5.4.  Tensile (splitting) test configuration. 

Table 5.2.  Tensile (splitting) test results on concrete from the case study ties. 

Specimen ID Tensile Strength (psi) 

Pre-2003 NEC, uncracked or minor 
cracking 

C1-3 910 

C2-3 1,005 

Pre-2003 NEC, cracked 

C8-3 965 

Post-2003 NEC 

C16-3 1,015 

San-Vel 

S2-2 925 

5.3 Tie Flexural Strength 
We performed positive rail seat moment tests on four ties in accordance with Amtrak’s concrete 
tie specifications.  The purpose of these tests was to determine the extent to which the ties 
possessed the desired flexural strength even in the presence of the type of cracking that has been 
observed and to obtain data for comparison with our finite element model.  Figure 5.5 shows the 
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test configuration from the 1989 Amtrak specification, and Figure 5.6 illustrates the 
configuration we used to conduct the tests. 

 
Figure 5.5.  Typical Amtrak specification setup for positive rail seat moment test.  

 
Figure 5.6.  Illustration of the SGH positive rail seat moment test configuration. 

 

Load was determined from the calibrated pressure transducer in the hydraulic actuator.  We 
measured strains with bondable foil strain gauges at the locations shown in Figure 5.7.  Strain 
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gauges G1 through G4 were used for Ties 2 and 16; strain gauges G1 and G2, only, were used 
for Ties 1 and 7.  We also had a displacement transducer but the signal proved to be erratic. 

 

Strain gauge 1 (G1) at top surface of 
tie, centered between loading blocks

Strain gauge 2 (G2) at bottom surface 
of tie, centered between supports

Strain gauges 3 and 4 (G3 and G4) rotated 
45° and located at midpoint of line between 
support and loading block (one on each side)

   
  

 

   
  

   

   
   

 
Figure 5.7.  Diagrams of instrumentation used in tie positive rail seat moment tests. 

 

Table 5.3 lists the ties we tested; ties were selected to reflect a range of cracked conditions.  
Three of these ties are the same ties from which core samples were removed for the petrography 
and other mechanical tests.  The first two, Ties 1 and 2, were relatively uncracked; that is, we 
were unable to detect any cracks.  Tie 7 showed a clear horizontal crack near the tested end of 
the tie.  These three ties were made according to the pre-2003 specifications.  Tie 16 was made to 
the post-2003 specifications and showed no signs of cracking. 

Table 5.3.  Ties for the positive rail seat moment test. 

Tie No. Date of 
Manufacture Fastener Type Notes 

Pre-2003 NEC, uncracked or minor cracking 

1 1999 Fast Clips Pre-2003 design; initially uncracked 

2 1993 E-Clips Pre-2003 design; initially uncracked 

Pre-2003 NEC, cracked 

7 1998 Fast Clips 
Pre-2003 design; horizontal crack running 

parallel to top strand from front face to 
rail seat 

Post-2003 NEC 

16 2008 Fast Clips Post-2003 design; initially uncracked 

 

All ties were loaded at a constant loading rate between 3 and 10 kips per minute.  Once the load 
reached 52 kips, we held the load constant for approximately 3 minutes while we performed an 
inspection to determine if structural cracking had occurred.  We sprayed isopropyl alcohol on the 
ties’ surfaces to aid in this process.  After the inspection, we continued loading the tie at a 
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constant rate between 3 and 10 kips per minute until the maximum load was reached, while 
noting the load and location when significant events (e.g., onset of structural cracking, 
prestressing strand slipping) occurred.  

 

Figure 5.8 is a plot of load versus time for the four tests.  (Time is used on the x-axis, because the 
displacement measurements were erratic and, therefore, do not provide a good means for making 
plots.  In addition, all plots were made to coincide in time at a load of 20 kips.)  The maximum 
loads and some other parameters are listed in Table 5.4. 

 

 
Figure 5.8.  The load plots for flexural strength testing of some of the case study ties. 

 

Table 5.4.  Results from the positive rail seat moment test. 

Tie Maximum 
Load (kips) 

Maximum Rail 
Seat Moment 

(in-kip) 

Top Strain – G1 
at 52 kips (μe) 

Bottom Strain – G2 
at 52 kips (μe) 

1 128.7 753 -240 +317 

2 130.2 765 -260 +257 

7 98.8 580 Strain gage 
failed +510 

16 153.6 902 -210 +346 
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The general response of all ties was similar.  Examination of the ties during the hold time at 
52 kips did not reveal any cracking; the exception was Tie 7, which was already cracked but did 
not show additional cracking at 52 kips.  With continued loading, the tie eventually developed a 
flexural crack, an example of which is shown in Figure 5.9.  This flexural crack preceded 
attainment of the maximum load, presumably as the reinforcing strands picked up load.  
Eventually the maximum load was reached, after which there was a sudden drop in load; the 
exception was Tie 7, the tie with the pre-existing crack, which showed a gradual drop in load 
after the maximum load.  Significant strand slip and a degree of vertical cracking occurred 
during the final stages of the test; Figure 5.10 shows an example.  The exception was the post-
2003 tie, Tie 16, which did not show strand slip, indicating a stronger bond capacity, at least in 
the tested condition, than the pre-2003 ties.  We did not observe the initiation or further 
propagation of the horizontal cracks of the predominant type observed in the field. 

 

The ultimate flexural strength of the nominally uncracked ties was about 760 in-kip, which 
exceeds the calculated strength value (from ACI 318) of 627 in-kip.  (There is not a required 
ultimate strength value in the AREMA manual or tie specifications.)  The ultimate flexural 
strength of the substantially cracked tie 7 was 580 in-kip. 

 

Shear Crack

Flexure-
Shear Crack

 
Figure 5.9.  An example of the type of flexural crack that occurred in each of the ties from 

the positive rail seat moment test. 
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Vertical Concrete 
Splitting CracksSlipping of 

Prestressing Strands

 
Figure 5.10.  An example of the type of strand slip and vertical cracking that occurred in 

the final stages in each of the pre-2003 ties from the positive rail seat moment test. 
 

All four ties met the Amtrak specification requirement that they show no (flexural) structural 
cracking when subjected to a positive rail seat moment test with an applied load of 52 kips.  
Most interesting is the observation that the horizontal cracking mode most prevalent among the 
ties of the NEC does not seem to prevent the tie from reaching the 52-kip load without flexural 
cracking. 

 

The measured strains in the concrete tie compare favorably with those predicted by finite 
element analysis, as discussed in Section 7.4.1 of this report.  
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6. Loads 

This section provides a description of the work we conducted in the project to assess the loads on 
the concrete ties.  The primary task was a field test, in which we measured the loads at which 
concrete ties had cracked on a section of track on the NEC.  We used this same test to also 
measure some other parameters, including concrete tie strains and accelerations.  All 
measurements were made for two sets of tie pads, one softer than the other.  The purpose of the 
field test was to investigate whether unusual wheel loads—vertical or lateral—or tie motions 
(e.g., vibrations) are associated with and possibly the cause of cracking.  However, the results do 
not reveal anything that could explain the cracks.  We also examined another source of 
information, wheel impact detector data, to determine the magnitude and form that loads could 
take on the system. 

 

We note that the nominal wheel loads for the types of vehicles that run on the NEC are as shown 
in Table 6.1.  We note that the AREMA Manual, with which the Amtrak tie specifications are 
consistent (see Section 7.1), uses a design wheel load of 100 kips, inclusive of dynamic effects.  

 

Table 6.1.  Rail vehicles that passed the test site during field test measurements. 

Vehicle Type 
Nominal 

Wheel Load 
(kips) 

Acela power car 25 

Acela coach car 15.8 

Amfleet coach 13.8 

AEM-7 locomotive 25.9 

Freight locomotive 35 

Freight car 26 

6.1 Field Test 

6.1.1 Overview 
The objective of the field test was to measure loads, strains, and accelerations in the ties for a 
section of concrete tie track on Amtrak’s NEC.  An additional objective was to determine the 
effect of using a different rail pad on the measured parameters. 

 
We conducted the test on a location of track selected with Amtrak that included high speed, 
tangent operation.  The test site was located on the NEC at MP 168.7 on Track 2 between the 
Davisville and Malcom interlockings, geographically located near Kingston, RI.  The site 
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contains concrete ties manufactured around 1994.  We instrumented three ties and the rails 
between them to measure the following parameters: 

• Vertical wheel-rail load 

• Lateral wheel-rail load 

• Vertical load on the tie 

• Tie strains 

• Tie accelerations   

 
Using a proven method in which the load is derived from calibrated strain gage bridges installed 
on the web and base of the rail, we measured the vertical and lateral wheel-rail loads and the 
loads on the ties [6.1].  We bonded strain gages to the side of the ties to measure strains under 
load.  Finally, we attached accelerometers to one of the ties to determine the primary modes of 
tie vibration under the action of the moving train wheel loads.   

 
Figure 6.1 shows the overall layout of the instrumentation, and Figure 6.2 shows a photograph of 
the installation.  We collected data for several weeks that included operation of different types of 
trains, including conventional electric trains, the Acela high-speed electric train, diesel trains, 
and freight trains.  We collected data for two track conditions: with existing components and 
after replacing the tie pads with softer units on the instrumented and adjacent ties.  Data were 
collected with an unattended data collection system. 

 

 
Figure 6.1.  Layout of the field test instrumentation. 
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Figure 6.2.  View of the test site from an overpass (Track 1 is at the bottom). 

6.1.2 Track Condition 
The section of track we instrumented had the following components: 

Concrete ties: date code 1994, indicating they were manufactured to the Amtrak 1992 
specification 

Rail: 132 RE 
Tie pads: Elvax 460/660 (measured hardness 89 Shore A)  
Clips: Pandrol e-clips 

Insulators: not determined 

 
All of the ties in the test section had some degree of cracking.  The cracks were always located 
on one side or both at the ends of the tie and with the same form as we have seen throughout the 
program.  We selected three consecutive ties with the smallest cracks we could find.  The 
condition of these ties and several in the vicinity were described in Section 3.2.1. 

 
As stated, we conducted the first set of data collection using the tie pads that were in place when 
we arrived at the site.  We changed the tie pads on several of the ties in the vicinity of the 
instrumented ties after approximately 1 week of data collection.  We installed new, softer pads 
on the three instrumented ties and on one tie on each side of these three ties.  We also replaced 
the pads on four ties beyond these five with new pads of the same material as the original pads.  
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The new pads had the characteristics shown in Table 6.2 together with estimated modulus.  We 
resumed collecting data for approximately 11 days after the tie pads were changed. 
 

Table 6.2.  Tie pad properties. 

Pad Material Measured Hardness 
(Shore A) 

Estimated Modulus 
(ksi) 

Elvax 460/660 
(existing pads) 89 6.3 

Santoprene 101-80 85 4.0 

 

6.1.3 Instrumentation and Data Acquisition 
Figure 6.3 shows the vertical and lateral wheel-rail load strain gages after they were welded to 
the rail and before the weatherproofing was applied.  The two strain gages on the web of the rail 
are for the vertical wheel-rail load, and the two strain gages on the base are for the lateral wheel-
rail load.  We applied this configuration at four locations: the two cribs between the three ties on 
each side of the track.  An identical configuration of strain gages for the tie vertical load was 
applied over each of the three ties on each side of the track. 

 
Figure 6.3.  Vertical and lateral wheel-rail load strain gages. 

 
We mounted three linear-axis strain gages on each of three ties; all gages were oriented along the 
axis of the tie.  One strain gage was mounted in the center of the tie on the top surface.  The other 
two strain gages were mounted underneath each rail on one side of the tie.  Figure 6.4 shows a 
sketch of the locations.  The strain gage at the top center was mounted slightly to the edge of the 
tie, but centered between the rails because of the stamp (indentation) on the top center of the tie.  
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We used a concrete epoxy filler to ensure a smooth surface for bonding of the strain gages.  
Figure 6.5 shows one of concrete strain gages bonded to the center of the tie. 

 
Strain gages

(oriented along the axis of the tie)

21.125 inches
(under the center of the 

rail base; 0.75 inches 
below the top bevel)

Centered from end to end 
and side to side

Symmetric with respect to 
gage at other end.

 
Figure 6.4.  Field test strain gage locations on the concrete ties (sketch) 

 
Figure 6.5.  Concrete strain gage mounted to the center of a tie 

 
We mounted nine single-axis accelerometers to the center tie only.  Acceleration was measured 
perpendicular to the mounting surface.  Figure 6.6 shows a sketch of the locations.  We used a 
concrete epoxy to bond the mounting blocks to the concrete.  Figure 6.7 shows three 
accelerometers mounted to one end of the tie. 
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Accelerometers
(orientation shown by color)

1 inch down and 1 inch in from 
the top corner; mount normal to 

the tie surface

Symmetric with respect to 
accelerometers at  the 

other end.

X orientation

2 inches down and centered along 
the tie (ensure that it is clear of 

the strain gage)

Y orientation

1 inch from the side and 1 inch 
from the end surface at each 

corner (each tie end)

Each 1 inch from the side, 
centered along the tie

 
Figure 6.6.  Field test accelerometer locations on the center tie (sketch). 

 

 
Figure 6.7.  Three accelerometers mounted to one end of the tie. 
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Data was gathered from strain gage triggers we installed on one rail approximately 200 feet in 
both directions from the three instrumented ties.  These triggers were half of the normal vertical 
strain gage bridges and were used to start and stop the data collection for the autonomous 
system.  Data were collected at a rate of 5 kHz whenever a train passed the wayside site on Track 
2.  Signal conditioning filters were applied to all data channels.  Strain gages were filtered at 1 
kHz (a low pass filter), string pots were filtered at 2 kHz, and accelerations were filtered at 2.5 
kHz. 

 

An Automated Equipment Identification (AEI) tag reader was used to identify the specific 
vehicles that passed the test site as the autonomous data were collected.  Constraints at the 
installation site resulted in having to place the tag reader at a distance from the track greater than 
the ideal in order to reliably read all vehicle tags; it was, fortunately, able to read many of them. 

 

The wayside signal conditioning and data acquisition equipment were mounted on three poles 
which were installed into concrete in the ground.  The system is run from a battery pack inside 
the enclosure.  Solar panels were used to charge the batteries during the day.  Additional power 
required for powered filters was provided by a nearby signaling shed. 

 

The collected data were saved to a binary data file with the AEI tag data in a separate text file.  
Post-processing was used to convert the binary data file to a text data file.  Due to the data file 
size, physical access to the computer enclosure was needed in order to retrieve all of the data.  
This was performed twice: when the tie pads were changed out and when the equipment was 
removed at the end of the testing. 

6.1.4 Results 

Vertical Wheel Loads 
An example of the vertical wheel-rail forces for the passing of an Acela train is shown in 
Figure 6.8.  We note that the peak load in this trace is consistent with the expected wheel load of 
a power car, which is 25 kips (Table 6.1). 
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Figure 6.8.  Vertical wheel-rail force on north rail between Ties 0 and 1 for an Acela train. 

 

An example of the measured vertical load over a tie is shown in Figure 6.9.  Recall that this is a 
load that essentially corresponds to the load carried by the rail over the tie.  We used the 
following procedure to calculate the load into a tie: the load in tie i = measured load at tie i minus 
the average of the measured loads in the two cribs on each side of the center tie (after accounting 
for offsets in time).  Figure 6.10 shows an example of the results of this calculation for the 
passing of two wheels, and Figure 6.11 shows an example for the passing of an entire Acela 
train. 

 
Figure 6.9.  Vertical tie measurements on the north rail over Tie 1 for an Acela train. 

 



 

 82 

 
Figure 6.10.  Calculation of the actual tie load for Tie 2. 

 
Figure 6.11.  Actual vertical tie load for Tie 1 under the north rail. 

We compiled the vertical wheel-rail load results for the data corresponding to both the original 
and new tie pads.  These data included 162 recorded train passes and a total tonnage of 91,740 T 
for the original tie pads.  Figure 6.12 shows the distributions of peak loads for every passing 
wheel as measured by each crib.  The peaks in the distribution correspond generally to the 
dynamic wheel-rail loads from the Amtrak conventional passenger car at around 15 to 17 kips, 
the Acela coach car at around 18 to 21 kips, and the Acela, AEM-7, and HHP locomotives at 
around 27 to 30 kips.  Of the 162 recorded train passes with the original pads installed, 77 were 
Acela trainsets (48%). 
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Figure 6.12.  Vertical wheel-rail force histogram with original tie pads. 

 

The distribution of vertical wheel-rail loads for the new pad installation included 190 recorded 
train passes and an approximate total tonnage of 115,470 T.  Figure 6.13 shows a comparison of 
the data for the two pad types in terms of the percentage distribution of vertical wheel-rail loads 
for every passing wheel over every crib.  Of the 190 recorded train passes with the new pads 
installed, 83 were Acela trainsets (44%).  
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Figure 6.13.  Vertical wheel-rail load histogram comparing old and new tie pads. 

 

We made a similar examination of the vertical loads experienced by each of the three test ties 
and a summary of these results is shown in Figure 6.14.  In general, the distribution of the actual 
vertical loads imparted to each tie is centered approximately at a value equal to 35 percent of the 
vertical wheel-rail load.  We note that the tie load distribution shifted to a lower value by about 
0.8 to 1 kips after the new tie pads were installed.      
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Figure 6.14.  Actual vertical tie load histogram comparing old and new tie pads. 

Lateral Wheel Loads 
Figure 6.15 shows an example of the measured lateral wheel-rail forces at one location for an 
Acela trainset; a positive load represents a load toward the field side.  As expected, the lateral 
forces are relatively small since the test site is located in a tangent section of track.  Figure 6.16 
shows the distribution of lateral peak loads with the original tie pads, and Figure 6.17 shows the 
percentage distribution of the lateral wheel-rail loads for two tie pad installations. 

 
Figure 6.15  Lateral wheel-rail force on the north rail between Ties 1 and 2. 
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Figure 6.16.  Lateral wheel-rail force histogram with old tie pads. 

 

 
Figure 6.17.  Lateral wheel-rail force histogram comparing original and new tie pads. 
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Concrete Tie Strains 
The measured concrete strains were relatively low, as expected.  Figure 6.18 shows an example 
for the center gage of one of the ties during the passage of an Acela trainset.  The overall strain 
data show greater scatter than the load data and it is difficult to select true maxima.  (Note: We 
do not know the reason for the negative peaks in Figure 6.18, but we suspect it is a noise issue.)   

 

Table 6.3 lists typical values of strain for the strain gages corresponding to the heavier Acela 
power car wheel loads.  The strains are small and, therefore, have a degree of uncertainty.  
Nevertheless, we can use them to check the consistency of some of the other measurements.  The 
stresses corresponding to these strains are also listed in Table 6.3 using a value for the modulus 
of 4.7x106 psi (the value measured in some of our mechanical tests (Section 5)).  The stress 
values can also be used with the section properties and locations of the gages to calculate the 
bending moment at the gage locations; these values are shown in Table 6.3.  These inferred 
moments are much lower than the values to which the ties were designed: the design moments 
are 337 in-kip for the rail seat and 208 in-kip for the center of the tie.  The inferred moments are 
consistent with the difference in measured and design tie loads: 5–10 kips versus 50 kips. 

 

 
Figure 6.18.  Tie strain on the top center of Tie 1. 

 

Table 6.3.  Typical concrete tie strains and inferred stresses and moments. 

Location Measured 
Strain (μe) 

Calculated 
Stress* (psi) 

Calculated Moment 
(inch-kip) 

Under rail seat -30 -141 24.3 

Top of tie at center +100 +470 38.7 

∗Using a modulus of 4.7x106 psi. 
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Tie Accelerations 
Examples of the measured accelerations for a vertical sensor and a longitudinal (with respect to 
the track) sensor are shown in Figures 6.19 and 6.20.  Figure 6.21 shows the accelerations from a 
vertical sensor overlaid with measured vertical wheel loads, indicating that peaks occur together.  
We analyzed the acceleration-time histories for the passage of a set of wheels to extract natural 
frequencies and mode shapes. The results for the primary modes about the longitudinal axis with 
respect to the track are provided in Table 6.4; we only include those modes for which the mode 
shapes were clear from the results.  We note that the first four modes have a rigid body character 
and are associated with the frequency of wheel passage; for example, at 125 to 150 mph, the 
frequency of wheel passage for the end trucks of two coupled cars is approximately 20 Hz.  We 
note that the first mode of true deformation, mode 7, is the mode corresponding to bending about 
an axis along the track.  As shown in the stress analysis section (Section 7), this is the first mode 
determined using finite element analysis for which the natural frequency is about 100 Hz, close 
to the measured 110 Hz value.  We acknowledge that the use of nine accelerometers limits the 
number of modes that can be detected.  Nevertheless, these results do not suggest any unusual 
vibration in the ties for this location and the loading to which they were subjected during the test. 

 

 
Figure 6.19.  Vertical acceleration on the northeast end of Tie 1. 
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Figure 6.20.  Longitudinal acceleration on the north end of Tie 1. 

 
Figure 6.21.  An overlay of vertical accelerations and wheel loads on the north end of Tie 1. 
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Table 6.4.  The natural frequencies and corresponding mode shapes determined from the 
field test data. 

Mode Number Frequency (Hz) Mode Shape 

1 16.5 Vertical displacement (a rigid body mode) 

2 38.2 Rocking about a longitudinal axis with respect to the 
track (a rigid body mode) 

3 45.2 Vertical displacement (a rigid body mode) 

4 66.3 Rocking about a longitudinal axis with respect to the 
track (a rigid body mode) 

7 110 Bending about a longitudinal axis with respect to the 
track 

8 126 A combination of bending about a longitudinal axis with 
respect to the track and vertical displacement 

6.1.5 Discussion of Field Test Results 
We conducted the field test to obtain information about the load environment and response of 
concrete ties that have cracked on the NEC.  If loading is an important factor determining (poor) 
performance, then our measurements in this test should be relevant. 

 
We did not observe any extreme vertical loads.  Rather, the peak wheel load was only about 40 
kips and this likely corresponds to a locomotive.  The peak load on an individual tie (one side) 
was about 20 kips.  This is substantially less than the load for which the tie is designed: about 50 
kips.  This implies that the design basis used by AREMA is conservative for the NEC section we 
evaluated.  We also did not measure any unusual lateral loads.  It is, of course, possible that loads 
from wheel flats occur only occasionally, and we did not detect any during our approximately 4 
weeks of testing.   
 

We also did not measure unusual tie vibration modes.  We discuss in Section 7.4.3 the stresses 
induced by the modes we did detect in the field test and these do not appear to induce substantial 
stresses that could explain the common mode of cracking. 

6.2 Other Load Data 
Amtrak has conducted measurements for some time on the peak loads experienced by their track 
on the NEC.  Figure 6.22 shows an example from Staplin [6.2].  We note that the loads that 
occur with the highest frequency are similar to those we measured.  However, the highest loads 
for the trains relevant to the section we examined, the Acela and Amfleet trains, are higher 
(though not as frequent) than what we measured in our study.  For example, the highest load 
corresponding to the Amfleet equipment is more than 70 kips, and this is likely due to a wheel 
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anomaly which would give rise to an impact load.  Thus, we cannot rule out that each of the ties 
has experienced a wheel defect impact in its life.  
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Figure 6.22.  Peak loads measured by Amtrak on the NEC (from Staplin [6.2]). 
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7. Stresses in Concrete Ties 

This section provides the results of various analyses we conducted to determine the stresses in 
the case study concrete ties and to better understand the conditions under which the observed 
horizontal cracks may have initiated.  We are particularly interested in the parameters that can 
cause significant tensile stresses perpendicular to a horizontal plane because these are the types 
of stresses that can cause the type of cracking most commonly observed in the failed concrete 
ties.  We first review the design basis for the ties and then consider stresses from several sources, 
particularly for the pre-2003 tie design.  Our analysis focuses on the factors that could contribute 
to the observed horizontal cracking.  We also examine the stress state in the post-2003 ties to 
determine whether the driving force for cracking is different than in the pre-2003 ties. 

7.1 Concrete Tie Design 
The concrete tie has the function of supporting the rails under a variety of loadings.  The tie is 
essentially designed against flexural loading; loads are applied to it at the rail seats, and it is 
supported at its base by the track ballast.  The region under most tension is generally on the 
bottom surface under the rail seat.  However, depending on the support conditions provided by 
the ballast and the location and stress level in prestressing strands, the surface of greatest tension 
can also be on the top surface in the center of the tie, or even the bottom surface of the center of 
the tie.  (See also [7.1].)  Our evaluation of the Amtrak ties, which includes analysis and strength 
testing, indicates that the ties are properly designed against flexural failure. 

 

Table 7.1 lists the required flexural strengths from the specifications for the case study concrete 
ties.  The failure criterion for these loads, with the exception of the repeated load test, is that no 
structural cracking shall occur (i.e., it is not an ultimate strength criterion).  The requirements are 
identical for the pre-2003 and San-Vel ties (as well as the MBTA tie).  The requirements for rail 
seat positive moment and tie center negative moment are the same for the pre- and post-2003 
ties.  On the other hand, the post-2003 tie specification requires substantially greater negative rail 
seat and center positive flexural strengths, which is achieved, we believe, by higher prestressing 
forces. 
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Table 7.1.  The flexural strength (to initial cracking) requirements for the Amtrak ties from 
the various specifications. 

Parameter Moment (in-kips) 

 Pre-2003 Post-2003 San-Vel 

Rail seat positive moment 306 306 306 

Rail seat negative moment 118 162 118 

Tie center negative moment 208 208 208 

Tie center positive moment 111 144 111 

Rail seat repeated load 
235 (positive moment)  

to -88 (negative moment) 

336 

to 24* 

235 

to -88 

∗ The post-2003 repeated load requirement is a test carried out after a crack is created in 
the rail seat positive moment test.  Note that the moment is always positive in this 
test. 

 

The AREMA manual [7.2], which is used for design purposes, provides a design vertical wheel 
load of 100 kips on track with concrete ties.  (It also provides lateral and longitudinal design 
loads.)  Only a portion of the wheel load is carried by an individual tie, and that percentage is 
given in the AREMA manual as 0.50 for a 24 in tie-to-tie spacing, the predominant value of the 
NEC.  This results in a design tie load of 50 kips (0.5x100).  Our own load measurements on a 
section of the NEC, Section 6, provided a maximum wheel load of slightly more than 40 kips 
and a maximum tie load of a little more than 20 kips.   

 

The AREMA manual also states (Section 4.4.1.2 of the manual) that the following factored 
moment should be used for the rail seat positive moment: 

M = BVT 

where: 

B = 300 in-kips (8 ft 6 in long ties; 24 in spacing) (from Figure 30-4-3 of the AREMA 
manual) 

V = 1.2 (speeds of 120 mph and above, from Figure 30-4-4 of the manual) 

T = 0.94 (for 50 MGT, from an Amtrak design document, and also from Figure 30-4-4 of 
the manual.) 

 

This equation provides a value of M = 338 in-kips, which is close to but 10 percent higher than 
the value required in the Amtrak specification (Table 7.1).  The AREMA manual also requires 
the following:  

• The maximum pre-compression, from pre-stress alone, should be less than 2,500 psi;  
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• The minimum pre-compression under the rail seat should be 500 psi. 
 

The concrete ties of the case studies are designed as prestressed concrete members to resist the 
moments just listed and, as we will show, they appear to be designed with substantial margin of 
safety against flexural cracking for the NEC.  We described the characteristics of the ties in 
Section 3.1.  The pre-2003, San-Vel, and MBTA ties utilize eight seven-wire strands and a total 
preload of about 135 kips to achieve the desired prestress.  The post-2003 ties use 24 single-wire 
strands and a total preload of about 155 kips for this purpose.  The prestress, when combined 
with flexural stress from wheel loads, prevents the concrete from experiencing significant 
tension and cracking.  The concrete stresses resulting from transfer of the prestress force to the 
ties, calculated according to the PCI Design Handbook [7.3], and using values from the tie 
drawings are listed in Table 7.2.  We have assumed in these calculations that initial prestressing 
losses due to elastic shortening and strand end slippage are 15, 7, and 15 percent for the pre-2003 
tie, the post-2003 tie, and the San-Vel tie, respectively.  (End slip from our finite element 
analysis of these ties is less for the post-2003 ties.)  The table shows that the post-2003 tie is 
designed to have higher initial compressive stresses than the other ties. 

 

Table 7.2.  The stresses due to prestress transfer in ties calculated using PCI methods [7.2]. 

Location 
Outer fiber stress* (psi) 

Pre-2003 Post-2003 San-Vel 

Bottom, below the rails seat -1730 -2320 -1770 

Top, at rail seat -772 -797 -648 

Bottom, tie center -815 -1310 -973 

Top, tie center -2570 -2900** -2300 
* Negative stresses are compressive;  

∗∗ If a 15% prestress loss is used, this value is -2500 psi. 

 

We can estimate the loads (moments) required to cause cracking and ultimate failure using 
American Concrete Institute (ACI) calculation methods [5.3].  Table 7.3 shows the results.  
Measured values of ultimate moment (Section 5) exceed the calculated values.  The results in 
Table 7.3 show that the ties are designed against the required moments with significant margin, 
especially in the case of the post-2003 tie.  The margin of safety against actual moments 
measured in track (Section 6) is substantial. 
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Table 7.3.  The initial flexural cracking and ultimate moments for the case study ties 
calculated using PCI methods [5.3]. 

Parameter Pre-2003 Post-2003 San-Vel 

Calculated initial cracking 
moment 

359 449 356 

Design moment (no cracking) 306 306 306 

Calculated ultimate moment 627 725 656 

Measured ultimate moment 759 902 NA 

 

We note that the Amtrak specifications do not require the use of vertical stirrups anywhere in the 
tie.  The San-Vel tie drawings did include stirrups just outboard of the rail seat, but it does not 
appear these were required.  (In fact, we did not find stirrups in the San-Vel ties we sectioned.)  
Modern design guidelines (e.g., AASHTO [7.4]) require the use of transverse reinforcement at 
the ends of prestressed concrete members to protect against bursting (splitting) cracks.  This 
point is discussed further below.  

7.2 Finite Element Analysis of Prestressing Loads 
The first step in the analysis of the ties is to determine the state of stress induced by the 
prestressing wires/strands.  This is the state to which stresses from other sources, such as flexural 
loading, loads from inserts, and impact loads, are added.  The state of stress from prestressing is 
also very important because, as mentioned in the previous section, prestressed concrete structures 
are at risk of horizontal cracking (splitting) from the prestresses that develop at the ends of post-
tensioned or pre-tensioned members at prestress transfer.  There is substantial literature on this 
subject (e.g., [7.5-7.7]) and, as described earlier, recommendations are provided in industry 
standards (e.g., AASHTO [7.4] and the PCI Design Handbook [7.3]) to prevent such horizontal 
cracking.  The terms “bursting” and “splitting” are frequently used interchangeably; however, in 
this section bursting stresses will refer to the vertical stresses that develop at the surface of 
prestressed member ends, and splitting stresses will refer to the vertical stresses that develop 
adjacent to the surface of the prestressing strands.   

7.2.1 General Analysis Approach 
We developed a finite element model to determine the state of stress in the ties with particular 
attention to the region observed to crack in the pre-2003 tie designs.  The model was set up for a 
variety of loads, including prestressing, which is described in this section of the report.  We used 
the computer program Abaqus Standard for this purpose.  Some of the conditions of the model 
are as follows: 

• One-quarter of the tie is modeled because of symmetry.  The exception to this is for some 
dynamic simulations, for which asymmetric modes of deformation must be captured. 
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• The strands are modeled as cylindrical with a constant cross section, the diameter of 
which is selected to give the same cross-sectional area of the actual strand.  Thus, a 
diameter of 0.328 in is used to simulate a nominal 0.375 in diameter seven-wire strand. 

• Solid, eight-node elements are used for all components except for vertical stirrups, which 
are simulated using beam elements. 

• The analysis is with uniform, isotropic, elastic properties.  For concrete: elastic modulus, 
4.77x106 lb/in2; Poisson’s ratio, 0.17.  For steel: elastic modulus, 29x106 lb/in2; Poisson’s 
ratio, 0.3.  We conducted some calculations using a lower concrete modulus. 

• We did not simulate the effects of concrete creep or strand stress relaxation.  (The 
implications of these idealizations are discussed below.) 

 

The simulation of prestressing consists of the following steps, as illustrated in Figure 7.1 for the 
pre-2003 ties: 

a) Prestress the steel strands to the desired prestress level by applying a load to their ends. 
b) Model the tie with longitudinal holes of circular cross section in the locations of the 

prestressing strands.  Make the diameter of the holes equal to the effective diameter of the 
steel strands in their prestressed condition.  (Note that the prestressed strands reduce in 
diameter because of Poisson’s contraction.)  Include the steel strands, modeled as solid, 
also with a circular cross section even for seven-wire strands, in the holes in the tie.  In 
this state, there is no stress transfer, neither radial nor longitudinal, between the strands 
and the ties. 

c) Unload the strands and allow contact and longitudinal slip to occur between the outer 
surfaces of the strands and the inner surfaces of the holes in the concrete tie.  Utilize 
Coulomb friction with the desired coefficient of friction, generally 0.5. 
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a.) Prestress the strands b.) Model the tie – no stress transfer 
between the strands and the tie

c.) Unload the strands and allow contact 
between the tie and the strands.

 
Figure 7.1.  An illustration of the analysis steps used to simulate concrete tie prestressing. 

 

This set of steps is similar to the steps in the actual tie production process in which strands are 
prestressed, concrete is poured around the strands and allowed to cure to some strength level, and 
then the strands are unloaded, releasing the original prestress load.  Our simulation approach, as 
in actual production, results in a transfer of load from the strands to the concrete through friction 
over a certain length, referred to as the transfer length, at the strand ends.   

 

We selected this simulation approach and 0.5 as the value for coefficient of friction by using 
results from a technical paper in which transfer length was accurately measured [7.8].  Figure 7.2 
shows a comparison between the strand stress calculated using the methodology just described 
with measured values for the test sample geometry of that paper—a 2x2x72 in member with a 
0.197 in diameter strand located at the center of the cross section. 
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Figure 7.2.  Comparison between the calculated and measured distributions of stress along 

the prestressing strand for a test beam [7.8]. 
 

We note that the mechanism of transfer in the model can only be through friction on a smooth 
surface, while in an actual concrete member it can be a combination of friction, adhesion, and 
mechanical interlocking.  There is a very large volume of work on the mechanisms of bond 
transfer which we will not cover in this report.  The transfer mechanisms for multiwire strands 
are more complex than for individual wires.  Interlocking of cement paste with “cusps” between 
adjacent wires, shortening of pitch between wires at prestress release, and “unwinding torque” of 
strands at prestress release may all contribute to increased friction between strands and concrete 
[7.9].  Our use of a simple, Coulomb friction model is intended to capture frictional sliding, 
adhesion, and mechanical interlocking in a single parameter. 

7.2.2 Prestresses in Pre-2003 Ties 
Figure 7.3 shows the stress along a simulated seven-wire strand for the pre-2003 tie geometry, an 
initial prestress of 210 ksi (78% of the nominal, 270 ksi tensile strength of the strands), and a 
coefficient of friction equal to 0.5.  The results indicate a transfer length, defined here as the 
distance from the free end of the strand to the point at which the stress reaches 95 percent of the 
center, plateau level, equal to approximately 14 in.  (The total tie length is 102 in and the 
distance from the end of the tie to the center of the rail seat is approximately 21 in.) 
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Figure 7.3.  The calculated stress along the top, center prestressing strand in the pre-2003 
concrete tie. 

 

The calculated longitudinal stresses in the tie induced from prestressing are shown as a contour 
plot in Figure 7.4.  The maximum precompression stress is about 2800 psi (but only at a very 
small region at the transition between the center horizontal surface and the sloping surface at the 
top of the tie.)  The compressive stress below the rail seat is between 600 and 950 psi. 
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Figure 7.4.  The longitudinal stresses calculated by finite element analysis for prestressing-

only in the pre-2003 ties. 
 

The calculated stresses induced around the strands in the concrete for the pre-2003 tie design at a 
few longitudinal sections are shown as contour plots in Figure 7.5.  Vertical tensile stresses, the 
type of stresses that would explain the form of cracking observed in the Amtrak ties, are 
significant near the ends of the tie.  (Note that these vertical stresses also coincide with the 
maximum principal stresses in the tie from prestressing.)  Figure 7.6 shows a plot of the vertical 
tensile stress along a line that passes laterally through the top row of strands and which is 4.3 in 
from the tie end; this is the location at which these vertical stresses from prestressing are highest 
for this configuration.   
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1 inch 4.3 inch 21 inch
 

Figure 7.5.  The calculated vertical stresses, due to prestress-only, in the pre-2003 tie at 
longitudinal sections 1 in, 4.3 in, and 21 in from the tie end.  (Regions that are black are in 

compression.  Regions that are gray have tensile stresses greater than 500 psi.) 
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Figure 7.6.  The calculated vertical stresses along a path through the top row of strands due 

to prestress-only in the pre-2003 ties at a section 4.3 in from the tie end. 
 

The large vertical tensile stresses adjacent to the prestressing strands (i.e., splitting stresses) 
result from a mechanism known as the Hoyer Effect.  As the prestressing force is transferred 
from the bed to the strands during the cutting operation, the diameter of the strand increases and 
the strand exerts a radial pressure on the surrounding concrete; this pressure is what allows 
longitudinal friction forces to be generated between strand and concrete in the model.  This 
pressure causes tensile splitting stresses to develop in the concrete adjacent to the strand.  While 
designers, prestressing manufacturers, and practitioners have developed ways to account for 
these forces in practice, the internal mechanisms through which they occur are not well 
understood and are thought to be highly nonlinear.   

 

For example, note that the tensile strength of the concrete after complete hydration is less than or 
equal to 1000 psi (see Section 5).  At prestress transfer, we would expect the tensile strength of 
the concrete to be less than 1000 psi.  Therefore, it is unlikely that the concrete could sustain the 
very high splitting stresses adjacent to the strands indicated by modeling; rather it seems likely 
that the concrete experiences localized nonlinear deformation due to a mechanism such as 
microcracking [7.9].  This belief is reinforced by the general lack of observed cracking in our 
detailed examinations, up to 10x magnification, of sections of nominally uncracked ties (note 
that microcracks would not be visible at this level of magnification) and our observations at thin 
sections near the prestressing strands, as described in Section 4.5.   
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The vertical tensile stresses that occur at the outer face of the tie (i.e., bursting stresses) result 
from the redistribution of longitudinal stresses.  To visualize this, it is helpful to use the strut-
and-tie model (in this case a “tie” is a tension-only element and is not related to a railroad tie) 
illustrated in Figure 7.7.  Prestressing forces are applied to member ends as concentrated loads; 
these concentrated loads tend to become uniformly distributed along the depth of the member 
(i.e., they will tend to spread out).  Bursting forces (represented by the “tie” in Figure 7.7) 
develop to balance the vertical redistribution of longitudinal forces. 

 
Figure 7.7.  The strut-and-tie model for visualizing stresses near the transfer point of 

prestressing strands in the pre-2003 tie design. 
 

The vertical tensile force (the bursting force) that occurs near the end of the prestressing or post-
tensioned strands is given approximately by the formula [7.4]: 

t

o

l
hP

T α=  

where: 

α = proportionality factor 

Po = total prestressing force 

h = member height  

lt = transfer length. 

 

This equation indicates that the vertical bursting force is greater for higher prestressing loads, 
shorter transfer lengths, and deeper members.  Our finite element analyses support these 
relationships as will be shown below. 
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There are some phenomena occurring in the prestressed concrete tie that we are not explicitly 
simulating, but which could have an effect on the resulting stress state.  The actual strand induces 
an additional, effective pressure to the hole in the concrete by virtue of its nonuniform shape 
moving along the concrete hole.  This is not captured in the model because the strands are 
modeled as having a constant cross section.  The wire includes indents or deformations (see 
Section 4) so that as the nonindented part of the wire slides into the concrete ‘key’ corresponding 
to the original wire indentation, it causes the concrete to either be sheared or pushed outward.  
This action is illustrated in Figure 7.8.  The effect of such strand features in promoting splitting 
is the subject of many papers (e.g., [7.6]).  It becomes more important near the point of flexural 
failure of a beam when the strands begin to slip substantially.  Under normal operational loads 
and in the absence of significant cracking, the slip is evidently limited to what occurs just after 
release of prestress in the manufacturing process.  In this case, the greatest slip is at the very end, 
approximately 0.080 to 0.100 in [7.10], suggesting an average slip of 0.040 to 0.050 in over the 
transfer length.  The spacing between indents on the strands in the pre-2003 Amtrak ties is 
approximately 0.22 in, and the length of the indent is approximately 0.1 in for the pre-2003 tie 
design.  Thus, there is probably some wedging action in the ties.  The geometry of the wire 
indentations differs for the various case study ties (see Section 4) and this could lead to different 
effective friction values and transfer lengths.  For example, the strands in the San-Vel ties have 
shallower, smaller, and more widely spaced indentations than in the pre-2003 and post-2003 ties. 

b.)

 
Figure 7.8.  Illustration of the outward pressure exerted by an indented strand during 

slippage. 
 

The strands also experience some stress relaxation after the prestressing operation.  It became 
common in the early 1980s to use low-relaxation prestressing strands, the properties of which are 
achieved by selection of the steel and processing conditions.  The difference in final prestress 
load between regular and low-relaxation strands can be substantial.  For example, the PCI Design 
Handbook methodology provides an estimated decrease in prestressing stress of 19 ksi with 
regular strands and only 3 ksi for low-relaxation strands.  We suspect, but have not 
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demonstrated, that the prestressing strands used for the San-Vel ties, which were produced in the 
late 1970s, were regular strands and therefore had lower prestressing forces.  This would result in 
lower vertical bursting stresses. 

 

Creep also occurs in concrete and has the effect of reducing the prestressing loads.  Again, we 
have not accounted for this phenomenon, but we believe it is not a substantial effect. 

 

We note that there are also significant prestress-induced tensile stresses in the horizontal 
direction resulting from both the Hoyer and the strut-and-tie effects.  These stresses could 
potentially induce vertical cracks.  However, these stresses are lower magnitude than the vertical 
stresses, as shown in Figure 7.9 (compare with Figure 7.6.). 
 

 
Figure 7.9.  The calculated horizontal stresses along a path through the outermost two 

strands due to prestress-only in the pre-2003 ties at a section 4.3 in from the tie end. 

7.2.3 Prestresses in Post-2003 Ties 
We conducted finite element calculations for the prestresses induced in the post-2003 ties using 
the same methodology described above.  The configuration of reinforcement for these ties was 
shown in Figure 3.1.  There are 24 single wire strands (compared with the eight seven-wire 
strands of the pre-2003 ties), each with a diameter of 0.21 in.  The prestressing force for these 
strands is, according to the drawing, 6,550 lb, for a total prestressing force of 157.2 kips.  This 
force is approximately 14 percent greater than the prestressing force for the pre-2003 ties: 137.7 
kips.  Figure 7.10 shows contours of vertical stress around the strands at a cross section 4.2 in 
from the tie end, the location at which these stresses are highest.  Figure 7.11 shows the vertical 
stresses along a transverse path through the row of strands second from the top in comparison 
with the stresses for the top row of strands in the pre-2003 ties; the highest stresses in the post-
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2003 ties occur in the second row.  (Note that we have changed the vertical scale on this and 
subsequent similar figures to better show the variation of stress near the surface of the tie; the 
very high calculated stresses adjacent to the strand are less accurate.)  We note that the calculated 
vertical stresses from prestressing in the post-2003 ties are generally comparable to the stresses 
in the pre-2003 ties, but are higher at the outer face of the tie, consistent with the strut and tie 
model (higher prestress load). 

Pre-2003 Post-2003
 

Figure 7.10.  The calculated vertical stresses due to prestress-only in the pre- and post-2003 
ties at a longitudinal section 4.2 in from the tie end.  (Regions that are black are in 

compression.  Regions that are gray have tensile stresses greater than 500 psi.) 
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Figure 7.11.  The calculated vertical stresses along a path through a row of strands (top 

row for pre-2003 and second row for post-2003) due to prestress-only in the pre- and post-
2003 ties at a section 4.2 in from the tie end. 

 

7.2.4 Prestresses in San-Vel Ties 
We conducted similar finite element analyses for the San-Vel ties.  We also used a quarter-model 
for this tie simulation with the following conditions (see also Figure 3.2): 

• The individual strand preload was 16.68 kips (per the drawing; no relaxation is assumed). 

• The friction coefficient was 0.5. 

• The stirrup was simulated using beam elements with assigned cross-sectional area 
corresponding to a No. 3 bar: 0.11 in2.  

• The fastener insert was also included.  (Results on the effects of the fastener on tie 
stresses are discussed in a later section.) 

 

Figure 7.12 shows a plot of vertical stress through the top row of strands for the San-Vel and pre-
2003 tie designs.  We note that the vertical stress is lower by about 25 percent on the outer 
surface of the San-Vel tie, consistent with the strut-and-tie model (smaller depth and lower 
prestress load).  The distribution of vertical stress along the path through the strands does not 
otherwise differ appreciably between the two tie configurations. 
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Figure 7.12.  Comparison of vertical stress along a path through the top strands at the 

location of maximum vertical stress for the pre-2003 and San-Vel ties for prestress loading 
only. 

 

The stress in the vertical stirrup is relatively low at only 300 psi.  This is consistent with the 
location of the stirrup, which is just outboard of the rail seat, approximately 19 in from the tie 
end compared with the location of maximum calculated vertical stress, which is approximately 4 
in from the end.  (Note that stirrups were not present in the San-Vel ties we examined in our lab, 
even though they were indicated on the drawing.) 

7.3 Some Parametric Analyses for the Prestress Condition 
We carried out some calculations to assess the effects of various parameters on stress from 
prestressing, paying particular attention to the vertical stress in the vicinity of the reinforcing 
strands.  We first examined the effect of increasing the coefficient of friction between the strand 
and the concrete for the pre-2003 tie.  Higher friction is meant to represent a better bond between 
strand and concrete, which could result, for example, from larger, deeper dimples in the strands.  
Higher friction has the effect of decreasing the transfer length and increasing the vertical bursting 
stress, as shown in Figures 7.13 and 7.14, respectively. 
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Figure 7.13.  The calculated stress along a prestressing strand in a pre-2003 tie for two 

values of coefficient of friction between strand and concrete. 

a.) b.)

 
Figure 7.14.  The vertical stress contours (prestress-only) in a pre-2003 tie for two values of 

coefficient of friction between strand and concrete: (a) μ = 0.5; (b) μ = 0.75. 
 

We also conducted some calculations in which we simulated a variation in transfer length by 
applying different distributions of strand shear forces to the concrete holes of the pre-2003 tie 
model.  These analyses do not include the effects of the strand expansion (Hoyer effect).  The 
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distributions were selected to give different transfer lengths while maintaining a constant 
prestressing force.  Figure 7.15 shows the resulting strand force for the different transfer lengths 
compared with the curve for a strand in the pre-2003 tie.  The resulting plot of maximum vertical 
bursting stress, in this case at the tie outer surface at the top row of strands, is shown in 
Figure 7.16, and a plot of the location at which this maximum surface stress occurs is shown in 
Figure 7.17. 

 

 
Figure 7.15.  The prestress force variation along the strand used in the transfer length (TL) 

study. 
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Figure 7.16.  The calculated variation in vertical bursting stress vs. transfer length. 

 
Figure 7.17.  The location of calculated vertical bursting stress vs. transfer length. 
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A condition of shorter transfer length is of interest because it can cause the bursting stresses to 
increase substantially.  One hypothesis put forward to explain horizontal cracking in the ties is 
that the transfer of prestressing force in the manufacturing process occurs after the concrete has 
reached a relatively high strength, substantially more than the specified minimum 4,250 psi, 
thereby increasing bond strength between strand and concrete and decreasing the transfer length.  
It has been reported that delayed cracking sometimes occurs in prestressed members if too much 
time is allowed to elapse before cutting the prestressing strands [7.11] and this may be related to 
a decrease in transfer length.  We have no direct evidence that this is the case for the Amtrak pre-
2003 ties.  We also note that the indentations in the pre-2003 tie strands are deeper and more 
closely spaced than in the San-Vel ties, indicating that the transfer length is shorter in the former 
ties.  We did not have the opportunity to measure actual transfer lengths in the ties to test these 
hypotheses.   

 

Figures 7.18 and 7.19 show results of an analysis on the post-2003 tie in which the elastic 
modulus of the concrete was reduced by 25 percent; the effect is the same for the pre-2003 tie.  
We note that the transfer length is greater and the vertical stress at the outer surface of the tie is 
lower for the lower modulus, but these effects are not large.       
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Figure 7.18.  The calculated stress along a prestressing strand in a post-2003 tie for two 

values of concrete modulus. 
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a.) b.)

 

Figure 7.19.  Calculated vertical stress contours from prestressing only in a post-2003 tie 
for two values of concrete modulus: (a) E = 3,600 ksi; (b) E = 4,770 ksi. 

 

7.4 Stresses from Other Loads 
We next examined the stresses induced from some operational loads in the ties: 

• Vertical wheel load, 

• Vertical load applied to the shoulder insert, and 

• Impact and vibration loads. 

We conducted these calculations with the pre-2003 tie model.   

7.4.1 Nominal Stresses from Vertical Wheel Loads 
As stated earlier, the tie is primarily designed to carry the flexural loads from the nominal and 
extreme vertical wheel loads.  Here we focused our calculations on the 52 kip positive rail seat 
moment qualification load of the specification for comparison with tests conducted in this 
program (Section 5.3) and as a basis from which to estimate stresses from actual vertical service 
loads.  These calculations included the prestress condition.   

 

Figure 7.20 shows the longitudinal stresses in the tie with the addition of the 52 kip vertical load 
at the rail seat applied at two points separated by 4.5 in.  The tie is supported at two points at its 
base corresponding to the 28-inch separation in the specification test.  The maximum tensile 
stress, which occurs immediately below the rail seat on the bottom of the tie, is about 100 psi, 
which is below the tensile strength of the concrete (see Section 7.5 below).  Figure 7.21 shows 
the shear stress distribution in the tie.  We note that the highest shear stresses occur in the 
vicinity of the top row of strands, but closer to the rail seat than the location of maximum vertical 
stress from prestress alone. 
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Figure 7.20.  Longitudinal stresses in the pre-2003 tie from a 52 kip positive rail seat 

moment test, including prestress. 

 
Figure 7.21.  Shear stresses in the pre-2003 tie from a 52 kip positive rail seat moment test, 

including the prestress.  The S13 stress acts along horizontal planes through the tie. 
 

The calculated strain increment (due to the addition of the 52 kip load) below the rail seat 
adjacent to the bottom of the tie is 362 μe, which is about 25 percent greater than the average 
value of 287 μe measured in our own laboratory tests (see Section 5). 
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Figure 7.22 shows the change in calculated stress along one of the top, center strands for the 
addition of the positive rail seat moment.  Figure 7.23 shows the change in vertical stress along a 
transverse path through the top row of strands 4.3 in from the tie end; the same location at which 
the vertical stresses are at a maximum for the prestressing load only.  Both Figures 7.22 and 7.23 
show little change in stress with the addition of the substantial vertical load, indicating that the 
bursting stresses are not significantly affected.  In fact, the vertical bursting stress decreases.  The 
actual magnitude of vertical load on the ties is typically between 10 and 20 kips (Section 6), so 
that the vertical stress change in a tie in track is even less than that shown in Figures 7.22 and 
7.23. 
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Figure 7.22.  Longitudinal stresses in a top, center strand for both the prestress and the 

prestress plus positive rail seat moment loading. 
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Figure 7.23.  Vertical stresses along a transverse path through the top strands of a pre-2003 

tie for both the prestress and prestress plus positive rail seat moment loading. 
 

There is a substantial change in shear stress with applied vertical load depending on the location 
along the tie.  Figure 7.24 shows a plot of shear stress acting on the plane corresponding to the 
top row of strands in the direction of the strands at a location 4.3 in from the tie end and at the 
location at which the shear stresses in the top row of strands is at maximum—15 in from the tie 
end.  We see that the cyclic component of this shear stress is substantial, but only in the vicinity 
of the rail seat.  Again, the actual shear stress magnitude will be less in track. 
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Figure 7.24.  The calculated shear stress distribution along a path through the top row of 

strands for the application of a 52 kip vertical load at the rail seat: (top plot) at 4.3 in from 
the tie end; (bottom plot) at 15 in from the tie end. 

7.4.2 Stresses from the Shoulder Inserts 
We also calculated the stresses induced by a load through the rail clip shoulder insert.  Such 
loads arise from the as-installed load, lateral load on the rail, or, under extreme dynamic 
conditions, from inertia if the tie is moving downward relative to the rail.  The shoulder insert is 
relatively close to the strands inside the tie and there was concern that stress concentrations from 
the insert could promote cracking near the strands.  Figure 7.25 shows the finite element model 
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we used for this study.  We used a symmetric model that was derived from the model used to 
calculate prestress and flexural stresses.  The model for the insert and the concrete surrounding it 
had a finer mesh and we used constraints to join the two meshes.  The geometry of the insert is 
idealized from the pre-2003 drawing that fits an e-clip fastener.  The insert was assigned the 
elastic properties of steel and was assumed to be bonded to the concrete at all points at which the 
two make contact.  We modeled only the shoulder insert closest to the tie end for simplicity.  The 
distance from the tie end to the center of this insert is approximately 17 in. 

 

Figure 7.26 shows a transverse cross section through the insert and the reinforcing strands to 
highlight the proximity of the insert to the strands for the pre-2003 tie design.  The nominal, 
minimum distance between the insert and a strand—the upper, central strand—is 0.66 in. 

 
Figure 7.25.  The finite element mesh for the pre-2003 concrete tie-shoulder insert analysis. 
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Figure 7.26.  A cross-section through the pre-2003 concrete tie model showing the 

proximity of the shoulder insert to the reinforcing strands. 
 

We present results for two cases: 
 

1. Pre-stress with a 2,750 rail clip load, meant to represent the preload of the clip, and a 
52 kip positive rail seat moment load. 

2. The same as case 1, but with the addition of a 5 kip, upward vertical load on the insert 
meant to represent the load from a lateral rail force. 

 

The stresses around the strands are not changed substantially by the presence of the insert.  
Figure 7.27 shows the distribution of shear stresses in the pre-2003 tie for load case 1.  The cross 
section in the figure shows some slight stress concentrations in the concrete adjacent to the top 
row of strands; note this cross section is 12 in from the location of the maximum vertical tensile 
bursting stresses.  Figure 7.28 shows the distribution of vertical tensile stresses with the addition 
of a 5 kip upward load (case 2).  The cross section in the figure shows that vertical tensile 
stresses are transferred from the bottom of the shoulder insert to the top row of prestressing 
strands.  The maximum vertical tensile stress in line with the strands is 250 psi.  We simulated 
the bottom of the insert as being bonded to the concrete.  In reality this interface could probably 
not carry significant tension and so the details of the stress distribution would change, but the 
overall stress field would be similar.  These latter results suggest that under the action of a 
substantial lateral load the vertical tensile stresses near the strands can be elevated, but only 
locally. 
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Region of interest

Cross section perpendicular to 
strands in region of interest:

 
Figure 7.27.  Shear stress distribution in the pre-2003 tie with shoulder insert subjected to a 

52 kip downward load at rail seat and supported on ballast. 
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Region of interest

Cross section perpendicular to 
strands in region of interest:

 
Figure 7.28.  Vertical tensile stress distribution in the pre-2003 tie with shoulder insert 

subjected to a 5 kip upward load at rail seat and supported on ballast. 

7.4.3 Vibration and Dynamic Loading Analyses 
Another possible source of stress, one that is cyclic and, therefore, could cause fatigue, is 
vibration of the ties.  Our field tests (Section 6) show that the tie does vibrate in service and 
predominantly in the bending modes.  We conducted finite element calculations to determine the 
first ten vibration modes and the type of stresses induced by these modes.  We also conducted 
some calculations to simulate impact loads. 
 

We first modeled the tie as completely unrestrained to calculate natural frequencies.  We 
included the reinforcing strands in this model (bonded to the concrete along their entire length in 
this case for simplicity) and the elastic properties of the concrete were: E = 4.77x106 lb/in2; 
Poisson’s ratio = 0.17.  Table 7.4 lists the first ten natural frequencies and corresponding modes. 
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Table 7.4.  Calculated natural frequencies for the concrete tie. 

Mode Frequency 
(Hz) Mode Shape 

1 100 
Simple bending about a 

transverse axis in the center 
of the tie 

 

2 131 
Simple bending about a 

vertical axis in the center of 
the tie  

3 309 Asymmetric bending (S 
shape) 

 

4 346 Torsion 

 

5 357 Torsion 

 

6 598 Double vertical bending 

 

7 658 Double lateral bending 
 

8 678 Combined bending and axial 
 

9 897 Double torsion 

 

10 925 Asymmetric, double vertical 
bending 
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The addition of track components will change these natural frequencies, but not substantially.  
The weight of the tie is approximately 800 lb and that of the pad, insulators, and clips is less than 
10 lb together.  The rail weighs 136 lb/yd or 180 lb per tie when both rails and the tie spacing are 
considered.  The modes and natural frequencies of the ties as determined by our field test were 
described in Section 6.  We note that there is good agreement between the natural frequency of 
the first mode of true deformation in the field test and the model from the finite element analysis: 
110 versus 100 Hz. 

 

We also examined the type of stresses associated with the calculated modes of vibration and 
none of these modes induce significant vertical tensile stresses in the region at which cracks have 
been observed in the Amtrak ties.   

 

We conducted finite element analysis to simulate a drop weight test of the type used to study pad 
attenuation properties.  We used this as a surrogate to investigate the extent to which vertical 
tensile stresses are generated from an impact load.  Figure 7.29 shows the geometric model used 
for this purpose; it has one plane of symmetry.  We conducted our analysis using the same pre-
2003 tie described earlier with the properties of a 136 lb/yd rail and a 0.25 inch-thick EVA pad 
(E = 9300 psi; nu = 0.48).  A 115-pound weight is dropped from a height of 12 in onto the short 
section of rail that is fastened to a concrete tie with simulated clips.  The peak impact load we 
calculated from these analyses is 5,200 lb.  This corresponds to a dynamic factor of about 1.2 for 
a wheel load of 25 kips, the nominal wheel load for the Acela power car.  Figure 7.30 shows 
contours of vertical stress at a time at which they are close to maximum and Figure 7.31 shows a 
time-history plot of vertical stresses adjacent to one of the upper strands at the end of the tie.  
The maximum additional vertical tensile stress in vicinity of the strand is about 200 psi.  This is 
not an insignificant stress.  It will be greater for higher impact forces and could explain the 
occurrence of horizontal cracks in locations at which such impact forces occur.  Comparable 
calculated stresses occur both for the bottom row of strands below the impactor and for both 
rows at the nonimpacted end.  The occurrence of such stresses at the nonimpacted end is 
consistent with test observations [7.12] which showed that a horizontal crack was generated in 
such an impact test. 
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Figure 7.29.  The finite element model used for dynamic impact analysis. 

 

 
Figure 7.30.  Vertical stress distribution at the center of the tie shortly after impact 

(t = 3 ms). 
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Figure 7.31.  Time history of vertical stress in the concrete tie adjacent to a top strand and 

at the outer surface; tension is positive. 

7.5 Strength Considerations 
The finite element analysis results just described suggest that substantial vertical tensile stresses 
are generated adjacent to the strands immediately after release of the prestressing force.  This is 
the direction of stress that would promote the type of cracking observed in the pre-2003 Amtrak 
ties.  We have pointed out how horizontal (and vertical) cracks are sometimes observed at the 
ends of prestressed concrete members from splitting and bursting stresses (c.f. [7.5]).  We now 
examine whether these stresses are sufficient to initiate a crack from material strength 
considerations.   
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While we have measured splitting tensile strength of concrete removed from the case study ties, 
we do not know what the tensile strength of the concrete was at the time of prestress transfer.  
We can estimate it by making assumptions about the compressive strength at prestress transfer 
and using the following relationship: 

'
ct faf =  (Eq. 7.1) 

where: 

a = a factor that depends on the type of tension loading and the purpose of the tensile 
strength being used, and 

fc
’ = the compression strength. 

 

A value of a = 7.5 is used in the ACI 318 design standard.  We note that the value of the 
parameter ‘a’ from our own compression and tension splitting tests is as high as 10.3 (Table 
7.5.).  The required compression strength at the time of prestress transfer is 4,250 psi for the pre-
2003 ties.  The tensile strength from equation 7.1 is 489 psi, for a = 7.5, and 650 psi, for a = 10.  

 

Table 7.5.  Calculated and measured tensile strengths for the concrete of the Amtrak ties 
for different times after production. 

Case study 
Measured 

compression 
strength (psi) 

Measured 
splitting tension 

strength (psi) 

Effective parameter ‘a’ 
(equation 7.1) 

Pre-2003 (ties 1 
and 2) 9730 958 9.7 

Post-2003  
(tie 8) 8740 965 10.3 

San-Vel 12190 925 8.4 

 

Ignoring for the moment multiaxial stress effects, comparison of the calculated stresses in the 
vicinity of the strands in Figure 7.6 with these tensile strength values suggests a chance of 
cracking adjacent to the strands, but not necessarily across the entire width of the tie. 

 

Multiaxial stresses can significantly reduce the tensile stress at which cracking occurs.  There are 
many theories of concrete fracture, but a consideration of biaxial stresses provides some 
indication of the magnitude by which the tensile strength can be reduced.  Figure 7.32 shows that 
the tensile stress required to cause failure is reduced as the compressive stress in the transverse 
direction increases in magnitude relative to the compressive strength of the concrete; σc is the 
uniaxial compressive strength in this plot [7.13]. 
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Figure 7.32.  Biaxial strength results for an 8,500 psi compression strength concrete (from 

[7.13]). 
 

At the outer face of the tie where maximum vertical (bursting) tensile stresses occur, the 
principal stresses at prestress transfer for the pre-2003 tie from our model results are as follows: 

• Maximum principal = 260 psi, 

• Median principal = -10 psi, and 

• Minimum principal = -780 psi. 
This point approximates a two-dimensional stress state because the median principal stress is 
negligible, so that Figure 7.32 is applicable.  The ratio of σ2/σc depends on the value used for σc.  
The compression strength at prestress transfer, from Table 7.4, is at least 4,250 psi.  With this 
value, the ordinate σ2/σc is 0.18 indicating a reduction in the tensile strength of around 20 
percent.  As the strength of the concrete increases, the predicted reduction in tensile strength will 
be less.  A 20 percent reduction in strength is not enough to indicate that bursting cracks will 
occur immediately, consistent with the observation that cracks in the ties appear after some time.  
However, the minimum principal stress is approximately the same in the interior of the tie at the 
top row of strands, and a reduction in tensile strength suggests that internal cracking (splitting) 
would be more likely. 

 

There is a potential for cyclic stresses to affect the propensity for cracking.  The primary cyclic 
stresses arise from wheel loads.  We showed in Figure 7.24 that there can be a relatively high 
cyclic shear stress, but this is only in the vicinity of the rail seat.  There is also a cyclic vertical 
stress (compressive) arising from the vertical wheel load, but this too is in the vicinity of the rail 
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seat.  It seems likely that if these cyclic stresses play a role, it is in propagating a crack rather 
than initiating one. 

 

We note that the strength of the tie, at least with respect to the horizontal cracking, changes once 
cracking initiates.  There are two effects to consider.  If cracking occurs adjacent to the strands 
(splitting), then there will be a loss in ability to generate friction or mechanical locking because 
the force associated with the Poisson expansion will be lower.  This should cause the strand to 
slip, which will affect the transfer length.  In effect, the part of the strand over which force 
transfer occurs will move toward the rail seat, potentially propagating the crack in that direction, 
but the magnitude of prestressing force will decrease as the overall strand shortens.  We expect 
the prestressing force in the top row to be lost entirely with substantial cracking.  It is interesting 
to note that the calculated initial flexural cracking strength and the ultimate flexural strength of a 
tie in which only the bottom strands have prestress are only 16 and 18 percent lower than those 
for which the top row is also prestressed. 

 

Even though we expect the prestressing force to decrease with cracking, we also expect the 
stresses required to propagate the crack to be lower.  Perhaps the initial cracking is driven by the 
splitting and bursting stresses and subsequent cracking is driven by cyclic stresses from wheel 
loads as the crack reaches the rail seat area.  The field of concrete fracture mechanics is not well 
developed and we have not pursued its application in this project. 

7.6 Discussion on the Vertical Location at which Cracks Occur 
We are now in a position to consider possible reasons for why cracks are observed at the top row 
of strands in the pre-2003 tie design (which also includes the MBTA ties) rather than the bottom 
row.  We discuss three factors here:  

1) magnitude of the vertical stress, 

2) amount of concrete cover, and 

3) magnitude of cyclic stresses.   

 

The vertical tensile (bursting) stresses due to the longitudinal strand loads in the pre-2003 tie are 
greatest at the outer tie face adjacent to the top row of strands.  Figure 7.33 shows the 
distribution of vertical tensile stresses at a cross section of the pre-2003 tie taken perpendicular 
to the strands at the location of maximum bursting stresses (about 4 in from the tie end); the 
maximum bursting stress is 35 percent greater adjacent to the top row than at the bottom row.  
Figure 7.33 also shows the distribution of splitting stresses in concrete adjacent to the strands due 
to the Hoyer effect.  Recall from Section 7.2.2 that we expect the magnitude of splitting stresses 
in the actual tie to increase due to mechanical interlock between the concrete and the deformed 
surface of the strands.  There is also evidence that resistance to splitting is related to the concrete 
cover provided to prestressing strands, as demonstrated in [7.6], although no quantitative 
relationship was given in that reference.  Table 7.6 lists the nominal minimum concrete cover for 
different rows of strands in the case study ties.  The amount of concrete cover in the pre-2003 
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ties (and the other ties) is less for the top row of strands than for the bottom row: 1.59 versus 
1.79 in.  Therefore, the potential for splitting is greater at the top row of strands. 

 

Stresses causing splitting

Stresses causing member end 
bursting

 
 

Figure 7.33.  Vertical tensile stress distribution at a section of the pre-2003 tie taken 
perpendicular to the strands at the location of maximum bursting stress. 

 

Table 7.6.  Comparison of maximum bursting stresses and clear concrete cover to the tie 
side for different tie designs. 

Tie design Strand row 
Outer surface 
vertical stress 

(psi) 

Concrete 
cover to tie 

side (inches) 
Pre-2003 (and 

MBTA tie) 
Top 258 1.59 

Bottom 191 1.79 

Post-2003 Row 1 (top)  289 1.39 
Row 2 351 1.49 

San-Vel Top 205 1.61 
Bottom 173 2.01 

 

If horizontal cracking occurred at the top row of strands for the pre-2003 tie because bursting 
stresses were greater adjacent to the top row and concrete cover to the side surface was less at the 
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top row, then this has implications for the post-2003 tie design.  Figure 7.34 shows the 
distribution of vertical tensile stresses at a cross section of the post-2003 tie taken perpendicular 
to the strands at the location of maximum bursting stresses (about 4 in from the tie end).  
Calculated maximum vertical tensile stress due to member end bursting is 40 percent higher in 
the post-2003 tie model than in the pre-2003 tie model; splitting stresses captured by the model 
are similar.  Note that maximum bursting stress at the outer tie face does not occur adjacent to 
the top row of strands; it occurs adjacent to the row of strands second from the top.  Maximum 
bursting stress adjacent to the row second from top is 21 percent greater than the maximum 
bursting stress adjacent to the top row.  Additionally, clear concrete cover provided to the top 
row is only 7 percent less than the clear cover provided to the row second from top.  Based on 
this, it seems likely that if horizontal cracking were to occur in the post-2003 tie, it would initiate 
at the row second from top.   

 

Stresses causing splitting

Stresses causing member end 
bursting

 
 

Figure 7.34.  Vertical tensile stress distribution at a section of the post-2003 tie taken 
perpendicular to the strands at the location of maximum bursting stress. 
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8. Evaluation of Contributing Factors 

In this section, we consider the work that we and others have conducted in various technical 
areas to determine which factors contribute to the performance of the concrete ties in the NEC.  
By performance, we mean the resistance against cracking and, in particular, against the type of 
cracking that seems to be most prevalent along the NEC.  Although cracking of some form or 
another can be caused by just about any factor being taken to extreme, for this study we focus on 
a relatively narrow range of factors pertaining to the nominal pre-2003 tie design.  At the end of 
the section, we incorporate our findings regarding the changes made to the post-2003 ties and 
assess the effects of the changes on future performance. 

8.1 Cracking of pre-2003 Ties 
Recall the predominant form of cracking observed in concrete ties on the NEC.  It consists of a 
horizontally oriented crack that intersects some or all of the tendons in the top row.  In some 
cases, this crack extends to the very end of the tie, and in others it extends to the sloping section 
near the center of the tie.  Sometimes it is observed on only one side of the tie and sometimes it 
appears to extend across the entire width.  In its most severe form, the top section of the tie on 
one end fractures away, as shown in Figure 8.1. 

 

 
Figure 8.1.  A severe example of a tie with the predominant mode of cracking investigated 

in this study. 
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The various factors we considered in this project, some in more detail than others, include: 

• Material parameters: cement, aggregate, water content, admixtures, air content, 
reinforcing steel; 

• Manufacturing parameters: curing temperature, time, prestress release approach; 

• Tie design: reinforcing steel dimensions, number, pattern and pre-stress level; 

• Component properties: pad stiffness, clip insert position; 

• Loading: vertical, lateral, impact, cyclic; and 

• Environmental conditions: temperature, moisture. 

 

As is the case for many failures or incidents, we find that the tie distress was caused by a 
combination of interacting factors.  Based on our investigation, we divide these factors into 
primary, secondary, and noncontributory factors below. 

8.1.1 Primary Factors 
We find that the observed cracking is caused primarily by the combination of ASR and the 
mechanical vulnerability (splitting and bursting stresses in the concrete from the prestressed 
tendons) of the as-designed and as-manufactured ties to the splitting mode failure.  Ties 
experiencing both of these conditions show the characteristic horizontal splitting, and ties 
without both of these conditions appear to be performing satisfactorily.    

The ASR is implicated by: 

• The presence of ASR in the vicinity of the top strands of ties experiencing horizontal 
cracking, with ties with higher levels of petrographic evidence of ASR exhibiting a 
higher degree of visible distress.    

• The presence of ASR only in the pre-2003 ties and not in the well-performing San-Vel or 
post-2003 ties. 

 

As discussed previously, we cannot classify the ASR as the sole cause of the cracking because 
the lack of ASR damage and visible deposits away from the cracked area indicates that the ASR 
has not progressed to a level at which it would cause cracking on its own.   

 

Discussion of the ability of ASR to contribute to the observed tie failures without causing typical 
ASR map cracking can be found in the limited available literature describing the mechanism and 
expansion process of ASR.  As previously stated in Section 4.3.4, ASR first causes initial 
pressures to develop in the concrete; the pressures build to a point where they fracture the 
concrete and the second stage of ASR (deposition of gel and rapid swelling) occurs.  In the pre-
2003 ties, we believe that the initial ASR pressures have not yet generated concrete cracking 
pressures by themselves (as indicated by the lack of widespread characteristic map-pattern 
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cracking throughout the tie), but have reached a level sufficient to contribute to cracking at the 
level of the tendons where they are additive to the stresses due to the prestressing.   

 

The mechanical vulnerability of the as-designed and as-manufactured pre-2003 ties to splitting-
mode failure is shown by: 

• The occurrence of the crack at the same location where our modeling work indicates 
elevated vertical splitting and bursting stresses occur; 

• Evidence that the prestressing forces are relatively high, which promotes higher splitting 
and bursting stresses; and  

• The absence of protection against splitting in concrete tie design, even though such a 
failure mode is recognized and designed against in the general prestressed concrete 
member industry. 

We cannot classify the mechanical vulnerability of the as-designed and as-manufactured ties as 
the sole cause of the cracking because the San-Vel and post-2003 ties have similar vulnerabilities 
but do not exhibit horizontal splitting failures and because our analysis indicates that the splitting 
stresses are not enough to cause failure by themselves. 

 

We find that the ASR and mechanical vulnerability of the ties combine in the pre-2003 ties in the 
following manner: 

1. The ties were designed for flexure evidently without consideration for splitting and bursting 
forces, resulting in an emphasis on high prestressing forces and short development lengths.  
Without a design check or criteria for splitting type failure modes, this led to a tie without 
stirrups or without a significant safety factor against splitting and bursting, leaving little 
reserve capacity for this failure mode. 

 
2. Release of the strand forces into the ties during manufacture created a plane of vertical 

tensile stresses at the level of the prestressing strands through a combination of pressure from 
the strand expansion (the Hoyer effect) and the relatively concentrated longitudinal forces in 
the transfer zone.  

  
3. The aggregates thought to be nonreactive due to passing the specified ASTM C227 and C289 

during manufacture (tests that are now known to not always detect slowly-reacting 
aggregates) were in fact reactive, as shown by the observed ASR in all of the petrographic 
reports on the pre-2003 ties.  The initial phase ASR in the ties created additional forces in the 
concrete that were additive to the existing (mechanical) stresses.  Although initial-phase ASR 
can, in general, develop stresses sufficient to crack concrete on its own (as shown by the 
formation of cracks in other ASR affected concretes), the stresses in the pre-2003 ties were 
somewhat less than the full cracking pressures as shown by the lack of ASR-related map 
cracking elsewhere in the ties. 
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4. The stresses from the prestressing and the ASR combine to crack the concrete in the vicinity 
of the strands, where the existing stresses are highest.  This is supported by our petrographic 
observations of cracking only in the vicinity of the strands.    

8.1.2 Secondary Factors 
Our results indicate that there are secondary factors that contributed to the cracking process.  
These factors include: 

• Continuing ASR.  Once cracking initiates, it can then propagate through a combination 
of continued ASR gel formation and expansion within the cracks (as observed in our 
petrographic observations) and mechanical stresses.     

• Transfer length.  The bond between tendon and concrete is an important secondary 
factor affecting concrete tie performance because it relates to the degree and distribution 
of the stresses induced by the prestressing, with higher bond strength leading to shorter 
transfer lengths which in turn result in greater vertical (bursting) tensile stresses.  The 
bond strength is affected by the deformation features on the prestressing wires, by 
chemical characteristics of the concrete, and by concrete strength.  We did not investigate 
the effect of wire indentation feature on bond strength directly in this study, but others 
have (c.f. [7.5]) and find that deeper indentations reduce transfer length.  There is a 
significant difference between the indentations in the pre-2003 ties and in the San-Vel 
ties: the latter are smaller and should therefore create longer transfer lengths and lower 
stresses.  This is consistent with the observed better performance of the San-Vel ties in 
service.   

• Tie manufacturing processes.  Our assessment of the factors related to the 
manufacturing process has been qualitative.  The ties are cured by an accelerated process 
and so the time-temperature history is an important parameter.  We suggested in the 
materials section of this report that the rapid curing of the concrete afforded by this 
process, though highly desirable from a manufacturing point of view, could lead to 
higher-than-necessary concrete strengths at the time the prestressing tendons are cut, and 
this would result in shorter transfer lengths and higher bursting stresses.  Similarly, other 
unquantifiable items could contribute; for example, disturbances due to removal of the 
end bars and the method of detensioning and cutting the strands. 

• External loading.  The contribution that external loading makes to the driving force for 
the horizontal cracking varies by loading type.  The most frequent type of loading, 
flexure, actually decreases the vertical stress by approximately 20 percent near the outer 
surfaces of the pre-2003 tie at its ends, where the vertical prestress stresses are highest.  
However, flexural loads induce a relatively high cyclic shear stress at the top row of 
tendons near the rail seat and are likely a source of crack propagation.   

• Time effects.  While it cannot be classified as a cause of the observed distress, time is an 
important factor in the performance of the ties.  The ties currently being replaced in the 
NEC are of an approximately 1994-1998 vintage.  The widespread cracking problem did 
not reveal itself until approximately 10 years after the ties were installed.  While this is 
partly due to the sensitivity of inspection techniques employed, it also points to the 
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importance of time-based mechanisms.  For example, the occurrence and significant 
propagation of cracking could be related to the time required for a severe impact loading 
to occur at that particular location.  However, we believe that it is more likely that time is 
required for the progression of ASR damage and that this damage initiates and 
contributes to some propagation of cracks.   

8.1.3 Non-Contributory Factors 
As described in Section 4.5, we did not find evidence of DEF or cyclic freezing and thawing as 
contributing mechanisms to the most predominant type of cracking.  The lack of contribution is 
confirmed by the work of CTL and LML, which did not find DEF in the ties exhibiting the 
predominant damage mode and their conclusions that it was a potential cause only in the atypical 
ties that showed widespread map pattern cracking throughout the tie.  Our conclusion regarding 
the lack of effect of cyclic freezing and thawing is supported by our petrographic observations 
(which do not reveal any indications of widespread damage characteristic of cyclic freezing and 
thawing), the results of the ASTM C666 (Resistance of Concrete to Rapid Freezing and 
Thawing) test data from the original production runs of the pre-2003 ties, which showed 
acceptable durability factors, and by the findings of CTL and LML in their work.   

 

We also do not find that dynamic loading is a contributing factor.  The modes of vibration that 
occur in track do not appear to raise the stress significantly.  On the other hand, vertical impact 
loading of the type that could be caused by a defective wheel increases the tensile stress 
significantly, and we expect it could be an important factor in determining where cracking occurs 
in track.  However, we do not have evidence that this type of impact loading has been present at 
all locations at which ties have cracked (for example, sidings) and, therefore, classify impact and 
vibration as noncontributing.   

 

Our detailed analysis of the stress state in the vicinity of the clip insert, which at one point is 
within approximately 0.6 in of a top tendon, indicates that such stresses are also not contributing 
to the horizontal cracking. 

8.2 Expectation of Future Performance of the Post-2003 Ties 
The post-2003 revisions to the portions of the concrete specifications related to the 
manufacturing processes are consistent with good current practice.  The specifications have been 
changed to include new tests that better identify potential ASR and are more conservative in 
avoiding use of vulnerable aggregates.  ASR was a primary contributor to the horizontal cracking 
in the pre-2003 ties, in combination with the high stresses due to the strand stresses and 
configuration.  The specific measures taken to avoid ASR in the post-2003 tie specification 
(including improved ASTM standard ASR screening tests to identify reactive aggregate, 
continued use of low-alkali cement, and inclusion of fly ash to mitigate the reaction) will reduce 
the likelihood of tie cracking.  In addition, the specifications have been updated throughout the 
1990s and in 2003 to better avoid other problems that could occur or have occurred in the past, 
such as DEF and freezing and thawing. 
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Our investigation shows that while high stresses exist in both the seven-wire configuration used 
in the pre-2003 and San-Vel ties and in the post-2003 single wire tendon configurations, the 
calculated vertical stresses in the post-2003 tie 24-wire configuration are actually greater than in 
the seven-wire strand pre-2003 tie configuration, assuming comparable transfer lengths.  This is 
primarily because the prestressing force is greater in the post-2003 ties.  While the stresses due to 
this prestressing appear insufficient to cause cracking on their own because of the improved 
concrete ASR resistance, we caution that the revisions to the specifications made in 2003 did not 
address the tendency for splitting or bursting stresses to develop.  The prestressed concrete 
industry outside of tie manufacturing recognizes this potential problem and includes specific 
measures, such as vertical stirrups and associated quantitative procedures for stirrup design, to 
ensure that cracking from this effect does not significantly degrade the condition of the member.   
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9. Summary and Conclusions 

The study reported here was aimed at determining the factors that caused the cracking of 
concrete ties on the NEC.  We investigated several factors including concrete composition, 
reinforcement characteristics, manufacturing methods, tie design parameters, and types of 
loading. 

 

The cracking of greatest concern occurred in ties manufactured and installed in the circa 1994–
1998 period, which we refer to as the pre-2003 ties because they were made to a set of very 
similar specifications generated before 2003.  The predominant mode of cracking is a horizontal 
crack that passes through the top row of steel reinforcing strands, generally near one or both ends 
of a tie.  In its most severe condition, the crack eventually turns and intersects the top surface, 
rendering the tie incapable of fulfilling its function in track. 

 

Our work included several tasks.  We examined sets of ties we divided into case studies, each 
with some distinguishing feature.  The case studies were: 

• Pre-2003 NEC ties with no externally visible cracking or minor cracking. 

• Pre-2003 NEC ties with clear visible cracking. 

• Post-2003 NEC ties.  These are ties made to the 2003 specification with a very different 
prestressing tendon configuration and modified concrete material requirements. 

• MBTA ties from the Old Colony Line that have a design essentially identical to the pre-
2003 NEC ties and which showed the same type of horizontal cracking. 

• San-Vel NEC ties from approximately 1978 that have shown virtually no signs of 
cracking.  

 

We examined these ties in the field and had some sent to our laboratories for more detailed 
analysis.  This analysis included detailed petrographic evaluations of the condition of the ties, the 
material composition and condition, and mechanical properties of the tie material.  We also 
reviewed petrographic reports on the cracking problem generated by third parties for Amtrak and 
production test records from pre-2003 and post-2003 ties.   

 

We carried out finite element analysis to investigate the effects of various tie and external 
loading parameters on the types of stresses potentially influencing the initiation of the 
predominant mode of cracking observed in the field.  This analysis was validated to some degree 
by results from a field test we conducted on a section of the NEC in Rhode Island.  We measured 
loads into the track as well as the loads, strains, and accelerations of the concrete ties themselves. 

 

We found that that the tie cracking was caused by a combination of factors, none of which would 
have caused the distress on its own.  The primary factors contributing to the distress are: 
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• A high concentration of tensile stress in the ties at the level of the prestressing steel due 
to forces associated with the transfer of load from the steel to the concrete during the 
strand detensioning process.  These stresses are greatest at the top row of tendons.   

• Stresses within the concrete from the pressure caused by ASR.  Although ASR pressures 
start to build once the reaction has begun and can eventually cause widespread general 
map cracking solely due to ASR, in the ties, the pressures were additive to the stresses at 
the level of the tendons due to the prestressing, causing the failure to occur at the level of 
the strands before the ASR progressed sufficiently to cause typical ASR pattern cracking 
elsewhere in the ties where forces from the prestressing were not present. 

 

After the cracking occurred at the zone of highest stress where the ASR and prestressing stresses 
combined at the upper prestressing tendon level, it was then easier for it to propagate there rather 
than form at new locations.  Our work shows that this propagation was assisted by the following 
secondary factors, which were not initial causes of the distress: 

• Continued ASR, with additional pressures created by the rapid swelling of gel deposited 
within the cracks formed by the combination of ASR pressures and the stresses due to the 
prestressing forces. 

• A likely shorter length over which stresses are transferred from the prestressing strands to 
the concrete because of more distinct strand indentations in the pre-2003 ties, as 
compared with the strand indentations used in the San-Vel ties.  This caused higher 
bursting stresses in the pre-2003 ties. 

• External, repeated loading from passing trains.   

 

Lastly, we found that that the tie distress was not caused by the following factors: 

• Cyclic freezing and thawing, 

• DEF, or 

• Stresses from other mechanical effects, such as from fastener inserts or unusual tie 
vibrations. 

 

Our assessment of the post-2003 ties, with their different prestressing tendon configuration and 
alternate material requirements, suggests they will not develop horizontal cracks.  Although the 
stresses appear to be comparable adjacent to the strands and higher on the surface (bursting 
stresses) than for the pre-2003 ties, the specifications had been improved to reduce or eliminate 
ASR. This was achieved by better screening tests and improved ASR mitigation measures. In 
addition, the aggregate used in the post-2003 ties we examined is a carbonate aggregate not 
susceptible to ASR. 

 

We note that the splitting and bursting failure mode that represents the dominant form of 
cracking in the NEC ties is known in the general prestressed concrete industry.  However, 
specifications and designs of concrete ties do not explicitly address it.  In fact, the changes made 
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to the mechanical specifications in 2003 increase resistance to flexural failure, perhaps 
unnecessarily, and increase splitting and bursting stresses without corresponding protection.  We 
believe that the specifications should be changed to protect against this failure mode. 
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Appendix A.1. 
Concrete Tie Manufacturing  
 

The Amtrak concrete crosstie is a pretensioned, prestressed concrete member.  The tendons are 
stressed before the concrete is placed into the casting molds and the stressing force is transferred 
to the concrete after the concrete has cured to a specified strength, called the transfer length.  The 
North American manufacturers of the Amtrak crosstie use the long line method, with fixed 
pretensioning beds and sliding molds.   

 

The molds are usually gang molds one tie in length and several ties wide.  The molds provide the 
geometry of the tie, the fixtures for securing the rail seat hardware cast into the tie, and end 
"bars" to separate the molds and to locate and hold in position the stressing tendons.  The 
crossties are cast upside down in the molds.  The molds are placed end-to-end in the 
pretensioning beds, held level, but allowed to slide longitudinally.  The tendons run continuous 
through the molds to the ends of the pretensioning bed, which holds the stressing force.  The 
length of the beds varies, but is usually several hundred feet long, hence, the name long line.  
The tendons are jacked (stressed) from one end, which is called the jacking end and anchored at 
the other end, which is called the dead end.  

 

In the fixed bed technology, the beds and molds remain in the same place during the entire 
production and curing cycle.  During production, equipment is brought to the line and moved 
down the line performing the various production operations.  The beds also contain the curing 
heat piping, which along with an enclosure placed over the casting molds after the concrete has 
been poured, forms the curing system for accelerated curing.  

 

The production cycle is usually daily, a 24-hour cycle.  The following is a typical sequence of 
operation beginning after the concrete has reached the transfer strength at the conclusion of the 
accelerated curing cycle: 

 

1. Remove the curing enclosure. 
The enclosure is generally an insulated tarp held above and away from the concrete and 
molds for circulation of heat/steam.  It is removed by rolling up and storing at the end of the 
bed. 

2. De-tension the bed and transfer the prestress force to the concrete ties in the molds. 
The tendons are all simultaneously released from one end.  The release is gradual to prevent 
any shock loading on the crossties ends.  Since the release is from one end (jacking end) the 
molds will slide slightly longitudinally to the other end (dead end).  There is also a slight 
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narrowing of the gap between the forms due to the tendon shortening as the tendons bond to 
the concrete. 

3. Cut the tendons between the molds. 
A diamond/abrasive blade saw is used to cut the tendons in the gap formed by the removal of 
the end bars.  As the tendons are cut, the prestress force is fully transferred to the crossties.  
The crosstie shortens - about 1/16 in., and provisions are made in the mold fixtures, which 
secure the hardware, to allow for this movement.  This prevents the crossties from locking 
themselves into the molds and damaging the hardware and concrete. 

4. Remove the ties from the molds. 
There are several methods of removing the crossties.  The crossties can be secured on the top 
or ends and lifted from the molds, or the molds can be flipped over to dislodge the crossties.  
In any case the crossties will be turned right side up, inspected, and stored.  This is also the 
step where the loose rail seat hardware will be installed on the crossties, which is the last 
operation before shipment. 

5. Clean and oil the molds. 
This is also the time when the molds are inspected for damage and repaired or replaced 
before the next pour. 

6. Place and secure rail seat hardware in the molds 
7. Place tendons continuous thru the molds and secure at the stressing apparatus at the bed ends. 
8. Place the mold end bars in horizontal rows to locate the tendons in the proper vertical 

position.  Place other fixtures to hold the tendons in horizontal alignment; these fixtures are 
generally removed just ahead of the concrete placement. 

9. Stress the tendons and secure for the duration of the concrete pouring and accelerated curing. 
The tendons are usually seven-wire stress-relieved strands or individual wires.  The tendons 
are also indented for better bond control, which is important for the limited bond transfer 
length available from the rail seat to the end of the tie. 

10. Pour the concrete, vibrate, and finish. 
The concrete is usually placed with automated pouring machines, but can be placed directly 
from delivery vehicles.  The vibration is external with attachments on the molds or internal 
via the pouring machine.  Often, a combination of both is used. 

11. Extract the end bars. 
12. Cover the bed with curing enclosure. 
13. Begin the accelerated curing cycle. 
 
A good reference for a general discussion on the various methods of manufacturing pretensioned 
concrete members is [A.1].
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Appendix A.2. 
Review of Amtrak Specifications 
 

Amtrak’s specifications for the pre-2003 Northeast Corridor concrete railroad ties followed 
standard practice for the period (mid to late 1980s) in which they were generated.  Substantial 
changes were made in 2003 in response to the perceived source of the cracking problem 
(concerns of ASR distress) that is the subject of the present study.  A complete comparison of 
specification for the concrete material between the pre-2003 and post-2003 are described below:  

 

• Cement/cementitious material: ordinary Type I cement was specified in the early 
requirements; a change was made in 2003 to Type II or III cement.  In addition, the 2003 
specification required that the cement be “low alkali”, with no more than 0.60% sodium-
equivalent alkali.   

• Aggregate: While the 1992 specification required that aggregates be innocuous when 
tested in accordance with ASTM C289 (Standard Test Method for Potential Alkali-Silica 
Reactivity of Aggregates (Chemical Method)) and C1105 (Standard Test Method for 
Length Change of Concrete Due to Alkali-Carbonate Rock Reaction) for potential ASR 
reactivity, the 2003 specification supplemented it by adding the requirements that 
aggregates shall be hard, strong and durable, clean and free of deleterious material.  It 
specifically stated that the aggregate shall not contain reactive material such as chert, etc. 

• Water: The 2003 specification expands this section to protect against chloride-induced 
corrosion by including a requirement that if at any time the water-soluble chloride 
content of the concrete approaches the 0.06% limit, the water-soluble chloride content of 
the individual ingredients used to make the concrete shall be checked as often as 
necessary until the source of the higher water-soluble chloride content has been identified 
and corrective action to lower the chloride content has been accomplished.   

• Admixtures: The 2003 specification adds that the admixtures shall conform to either 
ASTM C494 (Standard Specification for Chemical Admixtures for Concrete) or ASTM 
C1017 (Standard Specification for Chemical Admixtures for Use in Producing Flowing 
Concrete). 

• Curing:  While the 1992 specification required low pressure steam or radiant heat with a 
maximum bed temperature of 140°F, the 2003 Specification significantly expanded the 
curing temperature criteria by adding requirements that the temperature of the forms 
before placement shall be no less than 40°F; concrete temperature between casting and 
transfer of the prestress shall be no less than 50°F; maximum temperature shall not 
exceed 140°F, and heating rate shall not exceed 35°F/hr. 

• Air entrainment: the air entrainment requirement has been evolving over time.  The 2003 
specification changed the air content to 4% to 7%, increasing the high boundary by 1% as 
compared to the 1992 specification.  
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• Strength: The 2003 specification did not revise the design strength of 7000 psi, but it did 
add a requirement that the strength at the time pre-stress is transferred to the concrete 
shall be calculated in accordance with ACI 318 but in no case shall be less than 4000 psi 
vs. 4,250 psi for the pre-2003 specification. 

• Concrete material test schedule:  The 2003 specification made significant changes to the 
concrete material test schedule as compared to the 1992 specification, as shown below in 
Table A.2.1. 

 

Table A.2.1. Comparison of the material test schedule for pre- and post-2003 ties. 

Category 1992 Specification 2003 Specification 

Aggregate Prescreening ASTM C289 (Chemical method 
for potential ASR of aggregate) 

ASTM C295 – Petrographic 
examination of aggregate for 
concrete, every 3 months. 

Aggregate 
Qualification and 
Testing 

ASTM C1105 (Length change of 
concrete due to alkali-carbonation 
reaction, ACR), every 6 months.  

ASTM C227 – Potential ASR of 
cement-aggregate combination, 
min. 12 months duration 

ASTM C1260 – Potential ASR of 
aggregate, mortar bar method, 
every 6 months.  Expansion limit – 
0.08% at 16 days after casting  

ASTM C1293 – Length change of 
concrete Due to ASR, every 6 
months.  Expansion limit – 0.04% 
at one year. 

ASTM C1105 – Length change of 
concrete due to ACR, every 6 
months. 

Concrete Quality 
Control and 
Performance Testing 

ASTM C457 – Microscopical 
determination of air content of 
hardened concrete, every 6 
months. 

ASTM C666 – Resistance of 
concrete to freeze-thaw, every 6 
months. 

ASTM C856 – Petrographic 
examination of hardened concrete, 
every 3 months. 

ASTM C457 – Microscopical 
determination of air content of 
hardened concrete, every 6 months. 

ASTM C666 – Resistance of 
concrete to rapid freezing and 
thawing, every 6 months.  Relative 
dynamic modulus of not less than 
90% at 300 cycles. 

Duggan concrete expansion test, 
every 6 months.  Expansion limit, 
0.15% at 20 days. 
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Appendix A.3. 
Review of Material Testing by Others 
Information Related to Pre-2003 Ties 
 
Petrographic Analyses 

• Based on petrographic examination and SEM/EDS on twelve core samples, Lankard 
Materials Laboratory (LML) identified fractured chert aggregate particles with dark 
reactive rims, fractures passing from the aggregate particles into the matrix phase of the 
concrete, and ASR gel in all core samples that came from a facility in Bear, Delaware.  
LML concluded the following: 

o Eleven core samples showed evidence of ASR.  The ASR occurred in chert aggregate 
particles which were a minor constituent (2 to 3%) of the fine aggregate in the 
concrete represented by all of the core samples. 

o The cracking that was of concern in the present case was not characteristic of 
cracking typically associated with ASR activity. 

o ASR was the principal factor involved in both initiation of cracking and the 
subsequent propagation of these cracks.  With continued ASR activity due to the 
ingress of moisture and service-imposed static and cyclic stress conditions, the ASR-
initiated cracks propagated and connected and eventually formed a fracture plane 
through the concrete at one or both of the tendon elevations.  

o There was no major involvement of DEF in the formation of the lateral fractures. 

• Based on petrographic examinations of a total of fourteen core samples retrieved from 
concrete ties provided by Amtrak, LML concluded the following: 

o Evidence of ASR was observed in some of the core samples, but was primarily 
limited to the infrequent gel deposits in voids and dark rims around some chert, 
glauconite, and quartzite fine aggregate particles.  Cracks and microcracks associated 
with ASR were not observed.  Out of fourteen core samples, the concrete in two core 
samples showed ASR distress, indicated by dark reactive rims on some of coarse 
aggregate particles, microcracks extending out of aggregate particles and ASR-gel; 
and deposits in some microcracks.  

o The causes of the observed lateral cracking were not fully revealed from petrographic 
examination.  Expansive ASR within the body of the concrete may have partially 
contributed to the occurrences of these cracks; however, ASR did not appear to play a 
major role in the cracking and did not initiate the cracking.  

o No evidence of DEF was found in the majority of the core samples. 

• In addition to the typical observed horizontal cracking, a few questionable concrete ties 
under the study exhibited significant map cracking on the exterior exposed surface of the 
ties.  Both CTLGroup (CTL) and LML had the opinion that delayed-ettringite-formation 



 

 149 

(DEF) may have contributed to the extensive cracking at these ties.  CTL commented that 
the severity of the cracking on the exterior surfaces and within those two concrete ties 
was primarily related to DEF, with minor contribution from ASR.  LML’s SEM/EDS 
analysis, however, primarily identified ettringite in the microfracture planes of the core 
samples, and they then concluded that the extensive cracking was primarily due to ASR, 
and was further propagated by DEF.   

• Although CTL and LML both noted marginal air content of the concrete in multiple core 
samples, neither stated that freeze-thaw cycling played a major role in the cracking 
distress.  

 
Physical Tests – Compression  
 

CTL and Valley Forge Laboratories (VFL) tested a total of seventeen core samples in 
compression.  The compressive strengths ranged from 4,550 psi to 9,020 psi, with an average of 
7,840 psi.  There is no apparent relationship between the observed cracking and the compressive 
strength.  

 
Chemical Tests – Chloride Analyses 
 

The total acid-soluble chloride analyses on fourteen concrete samples by CTL and VFL indicate 
that the chloride concentration ranges from less than 0.001% to 0.007%, which is below the 
chloride-ion content considered for initiation of corrosion of embedded reinforcing steel.  Both 
CTL and VFL concluded that ingress of chloride ions does not appear to have played a role in 
the performance of the concrete rail ties.  

 
Duggan Tests – Potential DEF/ASR 
 

CTL conducted Duggan tests (described as a method to test for deleterious expansion in 
concrete) on two core samples.  The method is described in Reference [4.11].  The average 
expansions of both concrete tie samples in the test were above the 0.1% at 20 days criterion for 
potentially deleterious reactivity given by the article.  

 
Concrete Test Results from the Manufacturing Period 
 
CTL tested more than twenty concrete specimens in accordance with ASTM C666 (Resistance of 
Concrete to Rapid Freezing and Thawing) periodically from 1990 and 2000 as part of the 
production quality control.  The test results show that the concrete had sufficient freezing and 
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thawing resistance, with a durability factor ranging from 92 to 100.  CTL tested more than fifteen 
concrete specimens in accordance with ASTM C457 (Microscopical Determination of Parameter 
of the Air-Void System in Hardened Concrete) periodically from 1990 and 2000.  The test results 
show that the concrete has a variable (from marginal to sufficient) air content (ranging from 
3.1% to 7.6%), a variable but sufficient spacing factor (ranging from 0.003 to 0.008 in.) and a 
specific surface area of more than 600 in.2/in.3 in all the tests.   

 

CTL tested the potential reactivity of fine and coarse aggregates periodically using the chemical 
method (ASTM C289, Potential Alkali-Silica Reactivity of Aggregates), with the test results 
showing that the aggregate were considered as “innocuous.”  CTL also periodically tested the 
potential reactivity of fine and coarse aggregates tested using the mortar-bar method (ASTM 
C227, Potential Alkali Reactivity of Cement-Aggregate Combinations).  All the test results 
indicate that the average expansions for the cement-aggregate combinations were well below the 
0.1% expansion criterion given in the test.  

 

Although not required by the specification, we noted two test reports indicating that the fine 
aggregate has been tested in accordance with ASTM C295 by two different companies (E.L 
Conwell in their report dated 14 September 1990, and Ambric in their report dated 11 March 
1991).  E.L Conwell acknowledged that small amount of chert particles are present in the fine 
aggregate but considered the fine aggregate composition not to be highly reactive, and Ambric 
concluded that the sand is sound and lacks any potentially deleterious constituents.  In addition, 
Conwell also tested the coarse aggregate in accordance with ASTM C295 and found it to be 
nonreactive.  

 
Information Related to Post-2003 Ties 
Petrographic Analyses 
 

A report from DRP Consulting, Inc. (DRP) [4.12] revealed that the coarse and fine aggregate 
were a manufactured (crushed) material from Hanson materials, and consisted primarily of gray 
dolomitic marble; the aggregate was clean, dense, and hard.  The quartz in the aggregates is 
metamorphic quartz and do not contain chert.  They concluded that the aggregates were sound 
and suitable for use as an aggregate in portland cement concrete.  Petrographic examinations on 
the core samples from a total of eight concrete ties conducted by DRP [4.13, 4.14] and CTL 
[4.15] indicated that the concrete was proportioned with portland cement, fly ash, dolomitic 
limestone coarse and fine aggregate; the concrete was air-entrained; and the concrete was well 
consolidated with no significant segregation and bleeding.  Neither DRP nor CTL found any 
evidence of distress associated with alkali-aggregate reaction (ASR or ACR) or cyclic freeze-
thaw damage.  During petrographic examination on six core samples, CTL estimated the air 
content of the concrete to be from 3 to 5% to 4 to 6%.  Using the modified point count method 
outlined in ASTM C457 (Microscopical Determination of Parameters of the Air-Void System in 
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Hardened Concrete), DRP determined the air content of a concrete sample from a concrete tie 
manufactured in 2007 to be 5.9%.  

 

Expansion Tests  
 

CTL tested the potential for alkali-silica reaction (ASR) and alkali-carbonation reaction (ACR) 
of the coarse and fine aggregate.  Three reports from CTL noted that they conducted expansion 
tests in accordance with ASTM C1293 (Determination of Length Change of Concrete Due to 
Alkali-Silica Reaction), ASTM C227 (Potential Alkali Reactivity of Cement-Aggregate 
Combinations), and ASTM C1105 (Length Change of Concrete Due to Alkali-Carbonate Rock 
Reaction).  The test results indicated that the potential for deleterious ASR or ACR was 
considered to be low for the coarse and fine aggregates from the Hanson Aggregate Pit in use for 
the manufacture of the ties. 

 

Duggan Tests – Potential DEF/ASR 
 

CTL’s 7 August 2007 report indicates that the Duggan Test performance of laboratory-cast 
samples made using the manufacturer’s materials and proportions was acceptable.  

 
Cyclic Freezing and Thawing   
 

CTL’s 6 March 2007 report noted that they cast three prisms using Hanson aggregates and 
conducted rapid freeze-thaw tests in accordance with ASTM C666 (Resistance of Concrete to 
Rapid Freezing and Thawing), Procedure A.  They reported that the durability factor of these 
concrete samples was 93%.  This value exceeded the minimum requirement by 2003 
specification (90%) and is generally considered to be acceptable.  

 

University of Illinois at Urbana-Champaign (UIUC) Report [4.16]  
 

This report described a study evaluating the adequacy of ties (including the concrete material 
performance and concrete tie manufacturing process) currently being produced by Rocla at its 
Bear, Delaware, plant using the 2003 Amtrak Engineering Concrete Cross Tie and Fastening 
Assembly specification.  The consulting team analyzed the 2003 Amtrak plans and 
specifications, and conducted two site visits (25 April 2008 and 25 November 2008) to the Rocla 
tie manufacturing plant in Bear, Delaware.  The report addressed three areas of focus: evaluation 
of all processes and procedures in use by Rocla in the manufacture of the concrete ties supplied 
to Amtrak; evaluation of the internal QA/QC processes that Amtrak uses to ensure the concrete 
ties received from Rocla meet or exceed the 2003 Amtrak Plans and Specifications; and 
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arrangement for petrographic analysis of a selection of ties manufactured by Rocla for Amtrak 
since 2003 and commenting on the petrographic reports.  The report concluded the following: the 
manufacturing process complied with the 2003 Amtrak Plans and Specifications as well as 
industry recommended practices for the manufacture of precast concrete products; Rocla’s 
QA/QC procedures aligned with Precast/Prestressed Concrete Institute’s (PCI) MNL-116; the 
concrete mixture used by Rocla was an appropriate material for this application; and the raw 
materials and production methods were consistent with current industry best practices.  
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Appendix A.4. 
SGH Petrographic Examination 
Petrographic Findings – From Vertical Core Samples  
 
Concrete in Pre-2003 Tie – General Quality of Concrete:  

• In general, the quality of the concrete appears to be fair-to-good, with none-to-minor 
indications of aggregate segregation near the top surface.  The areas of minor aggregate 
segregation are likely caused by concrete placement deficiencies such as incomplete 
consolidation or over-consolidation during placement.   

• The coarse aggregate is primarily composed of particles of igneous and meta-igneous 
rock, with minor amounts of diabase or dirorite metamorphic rock that are potentially 
reactive due to the presence of strained quartz.  Our studies of the petrology and 
composition (mineralogy) of the coarse aggregate indicate that the coarse aggregate in all 
concrete ties in this category appears to be from the same quarry, but may be from 
different ledges or different parts of the quarry.  The latter conclusion is based on the 
variability and relative amounts of potentially reactive particles that we observe in each 
core sample.  

• The fine aggregate is primarily composed of quartz, with lesser amounts of feldspars, 
chert, micaceous minerals, quartzite, and igneous rock particles.    

• Our examination of prepared ultrathin sections reveals a normal-to-advanced degree of 
cement hydration.  The paste structure consists of hydrated grains of portland cement 
with no supplemental pozzolanic or alternative cementitious materials such as fly ash or 
ground granulated blast furnace slag (ggbfs).  We do not observe any evidence of 
retarded hydration or inadequate cement contents in any of the core samples.  

• Based on the color, texture, and overall composition of the paste structures, the concrete 
in water-to-cementitious material (w/cm) ratio varies from very low (0.34 to 0.41) to 
moderately low (0.40 to 0.46).  The estimated w/cm ratio values for each of the core 
samples are summarized in Table 4.3. 

• Based upon a comparison with known laboratory standards, we estimate that the total air 
content of the hardened concrete varies from 1-1/2% to 4-1/2% and that the overall 
quality of the air-void systems is marginal-to-well distributed. 

• We observe no significant difference with respect to these characteristics between the 
uncracked and cracked pre-2003 case study ties. 

• We observe no indications of cyclic freeze-thaw damage, such as surface scaling and/or 
the formation of sub-parallel cracking. 

• We observe no indications of external or internal sulfate attack, or other chemical 
alterations of the cement paste.   
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• There are no indications of delayed-ettringite formation (such as paste cracks, separation 
gaps around aggregate particles, or alteration of the paste structure with the formation of 
secondary ettringite deposits) within the paste structure. 

 

Concrete in Post-2003 Ties – Petrographic Findings: 
Table A.4.1 provides the summary of our findings for these ties. 

• In general, the quality of the concrete appears to be good with low water-to-cementitious 
material ratio ranging from 0.32 to 0.40.  

• The paste structure consists of hydrated grains of portland cement with supplemental fly 
ash replacement.  We did not observe any evidence of retarded hydration or inadequate 
cement contents in the hardened concrete.   

• We did not note any evidence of ASR distress, DEF distress, cyclic freeze-thaw damage, 
or chemical alternation of paste structure.  

• The concrete mix proportions are comparable to those presented in the Amtrak concrete 
tie 2003 Specification.  

 

Table A.4.1.  Petrographic examination summary of concrete ties from Case Study 3: post-
2003 NEC. 

Feature Tie 16 Tie 21 

General condition 
Good: no evidence of 
excessive bleeding or 
aggregate segregation 

Good: uniform aggregate 
distribution 

Air content 4% to 5% 3% to 4% 
Quality and distribution of air-
void system Uniformly  distributed Uniformly  distributed 

Estimated w/cm 0.34 to 0.40 0.32 to 0.38 
Cement hydration Normal to advanced Normal to advanced 
Supplemental Cementitious 
material? Fly ash Fly ash 

10 to 15% 
ASR Distress Level None observed None observed 
DEF Distress Level None observed None observed 
Cyclic Freezing and Thawing 
Damage? None observed None observed 
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Concrete in San-Vel Tie – Petrographic Findings:  
 

• In general, the quality of the concrete appears to be good.  The concrete is well 
consolidated and does not exhibit evidence of excessive bleeding or aggregate 
segregation 

• The number and frequency of air voids in the hardened concrete are very low and not 
indicative of intentional air entrainment (Figure A.4.1).  

• Based on the color, texture, and overall composition of the paste structure, the concrete in 
the examined core samples exhibits variable water/cement ratio values that we estimate to 
be in the range of 0.34 to 0.42.  The paste structure exhibits a normal to advanced degree 
of cement hydration.  We did not observe any gross differences in the constituents or 
proportions of materials in the core samples from two different ties.   

• The concrete in Core S1-3 (horizontal core sample from Tie S1) appears to have suffered 
cyclic freeze-thaw damage near one of the two exposed lateral surfaces of the tie, as 
evidenced by the formation of near-horizontal cracks that are oriented subparallel to the 
exterior (lateral) surface of concrete tie S1  (Figure A.4.2).  However, we did not observe 
evidence of cyclic freeze-thaw damage in any of the other core samples.  We attribute 
this phenomenon to the localized conditions resulting in moisture being trapped against 
the lateral surface of the concrete tie below the level of the stone ballast.    

• Except for the cracking near the exterior surface on one end of Core S1-3, we did not 
observe any significant cracking within this or the other concrete core samples.  
Occasionally, we observe indications of early-age shrinkage cracking that disrupts only 
the paste portions of the core samples.  In each case, early shrinkage cracks exhibit 
autogenous healing1, as evidenced by the presence of well-formed crystals of calcium 
hydroxide that completely fill the cracks.   

• We observe evidence of a tight bond between the prestressing tendons and the 
surrounding paste in each of the examined core samples (Figure A.4.3).  We observe no 
gaps along the paste-to-tendon bond interface in any of the core samples.   

• Frequently, we observe that the paste surrounding the prestressing tendons is slightly 
darker than the surrounding paste structure.  This observation suggests that the paste 
immediately surrounding the tendons was dewatered during placement.   

• We observe no evidence of DEF (such as paste cracks, separation gaps around aggregate 
particles, or alteration of the paste structure and formation of secondary ettringite) within 
the paste structure. 

• We observe no evidence of ASR (such as gel-filled fractures extending from aggregate 
particles into the surrounding paste) in any of the examined core samples.     

                                                 
1 Autogenous healing is the self-healing of fine (less than 0.008 in. wide) cracks due to the continued hydration of 
nearby cement grains and due to the deposition of calcium carbonate.  It is commonly observed in concrete exposed 
to moisture. 
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Table A.4.2 provides our observations on the San-Vel ties.   

 

Table A.4.2.  Petrographic examination summary of concrete ties from Case Study 5: San-
Vel. 

Feature Tie S1 Tie S2 

General condition Good 
Well consolidated 
no evidence of excessive bleeding or 
aggregate segregation 

Good 
Well consolidated 
no evidence of 
excessive bleeding or 
aggregate segregation 

Air content <1% 
(not air-entrained) 

<1% 
(not air-entrained) 

Quality and distribution of 
air-void system 

N/A N/A 

Estimated w/cm 0.34 to 0.42 0.34 to 0.42 
Cement hydration Advanced Advanced 
Supplemental Cementitious 
material? 

None observed None observed 

ASR Distress Level None observed None observed 
DEF Distress Level None observed None observed 
Cyclic Freezing and 
Thawing Damage? 

Yes – only at one side face about 3/4 in. 
from surface into the concrete body. 

None observed 
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Figure A.4.1.  A magnified view of the polished cross-section in Core S1-3 showing very few 

air voids in the paste structure. 
 

 
Figure A.4.2.  A magnified view of the polished cross-section in Core S1-3 showing very few 

air voids in the paste structure. 
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Figure A.4.3.  A magnified view of the polished cross-section in Core S1-3 showing a tight 

intimate bond between the tendon strands and the surrounding paste. 
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