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Executive Summary 

FRA analysis of variability in employee on duty start times from one shift to another shows the 
order to be: 

1. Shifts in which accidents happened—highest 
2. Shifts prior to accidents happening 
3. Freight Train and Engine shifts 
4. Passenger Train and Engine shifts—lowest 

High variability in shift start times is found to contribute to human fatigue, which, from previous 
studies, is known to increase the probability of accidents.  Thus, a potential way of increasing 
safety is to reduce shift start time variability. 

This report uses data from three databases:  the Fatigue Accident Validation database, the Work 
Schedules and Sleep Patterns of Train and Engine Service Workers database, and the Work 
Schedules and Sleep Patterns of Passenger Train and Engine Service Workers database.  The 
Fatigue Accident Validation database has start times for freight train and engine crews on days 
on which accidents occurred (Accidents) and for days preceding accidents (Pre-accident).  The 
Work Schedules and Sleep Patterns of Train and Engine Service Workers database has start 
times for train and engine crews on days without accidents (T&E).  The Work Schedules and 
Sleep Patterns of Passenger Train and Engine Service Workers database has start times for 
passenger train and engine crews on days without accidents (Passenger T&E).   

Distributions were calculated from differences in start times between successive shifts, 
regardless of intervening non-work days.  The variances of the distributions indicate that start 
time unpredictability is related to accidents.  Fatigue, as measured by the Fatigue Avoidance 
Scheduling Tool (FAST), was significantly correlated with start time difference unpredictability.  
Fatigue is known to increase the probability of certain types of accidents and is the critical 
intervening variable that mediates the relationship between start time variability and accidents.   

The start time difference variance is a useful statistical measure for determining start time 
variability and predicting fatigue in work schedules without the use of a fatigue model when 
schedules do not involve a majority of night work.  This statistical tool can be used to make 
model-free comparisons between work locations, types of jobs, and changes in policies and 
procedures, etc., with regard to fatigue. 
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1. Introduction 

FRA has been conducting research on worker fatigue in the U.S. railroad industry for more than 
20 years.  Two critical areas were identified early as essential to understanding and managing 
fatigue (Pilcher and Coplen, 2000).  First, data on work and rest schedules was needed to 
determine the duration and timing of sleep for railroad employees.  Second, a fatigue model was 
needed to allow the estimation of fatigue from data on the duration and timing of employee 
sleep.  A model is necessary because of the complex interaction of circadian, homeostatic, and 
other non-linear physiological processes in the regulation of sleep and fatigue (Hursh, et al., 
2004).  Both of these needs have now been satisfied.  Data on work and rest schedules has been 
collected for signalmen (Gertler and Viale, 2006a), maintenance of way employees (Gertler and 
Viale, 2006b), dispatchers, (Gertler and Viale, 2007), train and engine service employees 
(Gertler and DiFiore, 2009), and train and engine service employees in passenger operations 
(Gertler and DiFiore, 2011).  A fatigue model has been validated and calibrated for use in the 
railroad industry (Hursh, Raslear, Kaye and Fanzone, 2008).  The data and fatigue model have 
been used to successfully characterize work and sleep patterns and to accurately estimate fatigue 
for railroad employees (Gertler, DiFiore and Raslear, 2013, Raslear, Gertler and DiFiore, 2013).  
Data collected to validate and calibrate the fatigue model has been used to more precisely 
quantify the relationship between fatigue levels and accident probability (Raslear, Hursh and 
Van Dongen, 2011).  Despite this progress, there has, to date, been no research documenting the 
contribution of work schedule predictability to fatigue, even though this issue was highlighted by 
Pilcher and Coplen in 2000. 

Discussions about employee fatigue in the U.S. railroad industry often focus on the predictability 
of work start times for employees engaged in train and engine (T&E) freight and passenger 
service.  Labor union representatives often argue that unpredictable work start times heavily 
prevent employees from planning sleep and personal activities, which then results in fatigue.  
The types of work performed by T&E employees and typical schedules are described in detail in 
Gertler, DiFiore and Raslear (2013) and Pilcher and Coplen (2000).  In summary, T&E 
employees who work in yards, local freight service, and passenger and commuter operations 
have jobs with regular start times and high work start time predictability.  However, employees 
on the extra board, which sometimes offers employees additional compensation for volunteering 
to work additional hours within the statutory limit, have work schedules that may vary from day 
to day because they fill in for employees with regular assignments.  These jobs have lower work 
start time predictability.  Jobs in passenger service often have a split assignment in which the 
employee works the morning rush, has time off in the middle of the day (referred to as “interim 
release”), and returns to work for the evening rush.  Interim release is usually 4 hours or more.  
These jobs often have high work start time predictability.  T&E employees who work in road 
freight service often do not have a regular work schedule as far as the days that they work or the 
time that their work starts.  These jobs have low start time predictability.  This report describes 
two measures of start time variability or predictability and relates start time predictability to 
fatigue and accidents. 

1.1 Logic of Approach 
In what follows, the notation y = f(x) means that y is a function of x, and the notation p(y)= f(x) 
means that the probability of y is a function of x.   
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 Work schedules determine when and how much employees sleep (Gertler et al., 2013; 
Raslear, Hursh and Van Dongen, 2011): 

 

 sleep schedules = f(work schedules).       (1) 

 

 Sleep schedules determine employee fatigue levels (Gertler et al., 2013; Raslear et al., 
2011):  

 

 fatigue = f(sleep schedules).        (2) 

 

 Increased fatigue levels have been demonstrated to increase the risk and probability of 
human factor accidents (Hursh, Raslear, Kaye and Fanzone, 2008; Raslear et al., 2011): 

  

 p(accident) = f(fatigue),         (3) 

 

 from which it follows that  

 

 p(accident) = f(work schedules).         (4) 

 

 One aspect of any work schedule is its start time variability.  It is hypothesized that  
 

 p(accident) = f(start time variability).      (5) 

 

 FRA has data on the fatigue level of freight T&E service employees involved in human 
factor accidents (fatigueAccident; Hursh et al., 2008) and on the fatigue level of T&E freight 
(fatigueT&E) and passenger (fatiguePass T&E) service employees who were not involved in 
human factor accidents (Gertler et al., 2013).  From these reports we know that 

 

 fatigueAccident >fatigueT&E>fatiguePass T&E.      (6) 

 

 These fatigue levels were estimated with the Fatigue Avoidance Scheduling Tool (FAST) 
which requires 3 days of work schedules to produce an accurate estimate.  Below, we 
examine start time variability on days with accidents and days preceding accidents from 
the same database.  Because the same data is used, fatigue estimates for days with 
accidents and for days preceding accidents are confounded.  It is possible that the fatigue 
on days with accidents is greater than or equal to the fatigue on days preceding accidents.  
Therefore, we conservatively state that 
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 fatigueAccident ≥  fatiguePreceding Accident > fatigueT&E > fatiguePass T&E   (7) 

 

 It is well known that accident rates are higher in freight service than in passenger service 
(mean train accident rate for Class I railroads (excluding Amtrak) = 3.25 accidents per 
million train miles (MTM); for Amtrak and commuter railroads = 2.06 accidents per 
MTM; t = 4.63, df = 18, p <0.01; see Fig. 1).  This is consistent with the fatigue data for 
freight and passenger T&E employees as expressed in equation (7) and with the 
conclusions about fatigue and accidents in equations (3) and (4).  Therefore, if the 
hypothesis in equation (5) is correct, we predict that start time variability will be ordered 

 

 Accident Day ≥ Preceding Accident > T&E > Passenger T&E.   (8) 

 

 
Figure 1.  Train accidents per million train miles from the FRA accident database 

(http://safetydata.fra.dot.gov/OfficeofSafety/Default.aspx). 
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2.   Methods 

Start time differences for T&E employees were obtained from three previously published FRA 
databases.  The Fatigue Accident Validation database (FAV, 
http://www.fra.dot.gov/eLib/details/L03039, FRA, 2011) was used to obtain start times for 
freight T&E employees on days with human factors (HF) accidents and to obtain start times on 
days preceding HF accidents.  The Work Schedules and Sleep Patterns of Train and Engine 
Service Workers database (http://www.fra.dot.gov/Page/P0604, FRA 2008) was used to obtain 
start times for T&E employees who were not involved in an accident during the data collection 
period.1  Likewise, the Work Schedules and Sleep Patterns of Passenger Train and Engine 
Service Workers database (http://www.fra.dot.gov/Page/P0604, FRA 2008) was used to obtain 
start times for passenger service T&E employees who were not involved in an accident during 
the data collection period.  Details about the data collection processes for these databases can be 
found in three FRA reports (for FAV see Hursh, Raslear, Kaye and Fanzone, 2008; for the Work 
Schedules and Sleep Patterns of Train and Engine Service Workers database see Gertler and 
DiFiore, 2009; for the Work Schedules and Sleep Patterns of Passenger Train and Engine 
Service Workers database see Gertler and DiFiore, 2011).  Table 1 shows the sample sizes from 
which start time distributions were generated. 
 

Table 1. Start Time Difference Distributions, Sample Sizes, and Databases Used in This Report. 

Distribution Sample Size Database 

Freight T&E, Day of Accidents 704 Fatigue Accident Validation  

Freight T&E, Days Preceding 
Accidents 

11,876 Fatigue Accident Validation  

T&E (93% Freight), Days without 
Accidents 2,412 Work Schedules and Sleep Patterns of 

Train and Engine Service Workers 

Passenger T&E, Days without 
Accidents 3,347 

Work Schedules and Sleep Patterns of 
Passenger Train and Engine Service 
Workers 

 

Start time difference distributions were generated by calculating the difference in start times 
between successive shifts, regardless of intervening non-work days.  For example, if an 
employee starts work on Tuesday at 0800 and at 1000 on Thursday (the next work start), the start 
time difference is +2 hours.  If an employee starts on Tuesday at 0800 and the next work start is 
at 0600, the start time difference is -2 hours.  Multiple starts in the same day are treated the same 
way.  Higher level patterns of work (e.g., split shifts in passenger service or yard assignments in 
freight service) were not examined, which allows for a comparison across the data sets, but may 
underestimate predictability for some types of service.   

 
                                                 
1 A small number of passenger service employees (7% of cases) are included in this database.   Ninety-three percent 
of the cases are employees in freight service. 

http://www.fra.dot.gov/eLib/details/L03039
http://www.fra.dot.gov/Page/P0604
http://www.fra.dot.gov/Page/P0604
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Each distribution was plotted as an empirical probability density function (pdf), and the mean 
(μ), variance (σ2), standard deviation (σ), and hazard function were calculated (Evans, Hastings 
and Peacock, 2000).  The pdf plots were used to visually determine whether the distributions 
conformed to any of the distributions that have been mathematically described in the statistics 
and probability literature (Evans et al., 2000; Johnson and Kotz, 1969, 1970a, b).  μ provides a 
measure of the consistency of start times from day to day because it is the expected value of the 
distribution.  σ2, on the other hand, provides a measure of the inconsistency or unpredictability of 
start times from day to day relative to μ.  σ2 would be zero only if every start time difference was 
exactly the same as the mean.  σ is the square root of σ2 and is used to express the variability of a 
data set in the original measurement units.  In a normal distribution, 68 percent of all cases fall 
within one standard deviation of the mean.  Finally, the hazard function was calculated for each 
distribution.  The hazard function is defined as the pdf divided by the survival function.  The 
survival function is 1 minus the cumulative distribution function (cdf), which is the integral of 
the pdf.  The hazard function indicates the likelihood that the next start time will increase, 
decrease, or remain constant with time since the last start.  In engineering, it is known as the 
failure rate function.   

In addition to providing a statistical description of start time differences for Freight T&E on days 
with accidents (Accidents), Freight T&E on days preceding accidents (Pre-accident), T&E on 
days without accidents (T&E), and Passenger T&E on days without accidents (Passenger T&E), 
we hypothesized that start time difference unpredictability (σ2) would be ordered as follows: 

 

σAccidents 
2 ≥  σPre−accident 2 >  σT&𝐸 

2 >  σPassenger T&𝐸 
2      (9)  

 
This ordering of the variance of start time differences was based on the logic and evidence 
outlined in Section 1.1.  In equation (9), the variability of start times is formally specified as the 
variance of the start time distribution. 
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3. Results 

3.1 The Distributions 
Figure 2 shows the start time difference distributions for freight T&E on days with accidents 
(Accidents), Freight T&E on days preceding accidents (Pre-accident), T&E on days without 
accidents (T&E), and Passenger T&E on days without accidents (Passenger T&E).   

 

 
Figure 2.  Start time difference distributions.  See text for details. 

The distributions for Accidents, Pre-accident, and T&E all have a mode at -1 to 1 hours start 
time difference, but Passenger T&E has a mode at 4 to 8 hours.  In addition, the Passenger T&E 
distribution is not as symmetric as the other distributions.  This difference is more obvious in 
Figures 3 and 4, which show the Passenger T&E distribution separate from the other 
distributions.  The Passenger T&E distribution is highly positively skewed.  The Accidents, Pre-
accident, and T&E distributions are different from one another in that the Accidents distribution 
has a lower mode and broader tails than the Pre-accident distribution, which in turn has a lower 
mode and broader tails than the T&E distribution.  χ2 tests confirm that these three distributions 
are statistically different (Accidents versus Pre-accident, χ2 = 25.71, df = 12, p<0.05; Accidents 
versus T&E, χ2 = 50.92, df = 12, p<0.05; T&E versus Pre-accident, χ2 = 107.76, df = 12, 
p<0.05). The Accidents, Pre-accident, and T&E distributions resemble the Laplace or double-
exponential distribution (Evans et al., 2000), but the former are negatively skewed, which is not 
characteristic of Laplace distributions.  It could be the case that each half of these distributions is 
an exponential distribution.  This possibility will be examined in more detail later.  The 
distribution for Passenger T&E does not resemble the other three distributions or any common 
statistical distribution. 
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Figure 3.  Start time difference distribution for Passenger T&E. 

 

 
Figure 4.  Start time difference distributions for Accidents, Pre-accident, and T&E. 
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3.2 Statistical Characterization 
  
Figure 5 shows the means and 99 percent confidence intervals for the four distributions.  It is 
clear that the means for Accidents, Pre-accident, and T&E are not statistically different, and the 
99 percent confidence intervals include 0 hours start time difference for each distribution.  The 
mean for Passenger T&E is statistically different from the other distributions.  The modal start 
time difference for Passenger T&E was 4–8 hours (see Figure 3), but the mean is 2.75 hours.  
This finding is consistent with the observation by Gertler and DiFiore (2011) that some 
passenger T&E employees worked a mix of straight through (fixed start times) and split shifts.  
Gertler and DiFiore categorized individual passenger T&E employees’ work schedules as 
straight through, split shift, or extra board on the basis of the most frequent type of schedule.  
Consequently, the distribution of work start time differences for this group reflects a mix of 
schedules with fixed start times, split shifts with a typical interim release time of 4 hours, and 
extra board assignments with variable start times and split shifts.   
 

 
Figure 5.  Means and 99% confidence intervals for the distributions. 

 
Figure 6 shows the variances for the four distributions.  As was hypothesized, 

 σAccidents 
2 >  σPre−accident 2 >  σT&𝐸 

2 >  σPassenger T&𝐸 
2 .  Statistically, σAccidents 

2 >
 σPre−accident 2  (F703, 11875 = 1.09, p < 0.05); σPre−accident 2 >  σT&𝐸 

2 (F11876, 2411 = 1.08, p < 0.05); 

and σT&𝐸 
2 >  σPassenger T&𝐸 

2 (F2411, 3347 = 1.74, p < 0.05).  The largest difference in variances was 
between T&E and Passenger T&E distributions.  This is consistent with the picture presented by 
the whole distributions, as seen in Figures 2–4.   
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Table 2 presents a statistical summary of the four distributions, including sample sizes (N), 
means (μ), 99 percent confidence intervals for the means (CI), variances (σ2), standard deviations 
(σ), and coefficients of variation (CV). 
 

 
Figure 6.  Start time variances. 

 

Table 2. Statistical summary of the Accident, Pre-accident, T&E, and Passenger T&E 
distributions. 

Distribution N μ (h) 99% CI (h) σ2 (h2) σ (h) CV 

Freight T&E, Day of 
Accidents 704 -0.27 -1.09 ≤ μ≤  0.55 71.52 8.46 -31.32 

Freight T&E, Days 
Preceding Accidents 11,876 -0.15 -0.34  ≤ μ≤  0.04 65.74 8.11 -54.05 

T&E (93% Freight), Days 
without Accidents 2,412 -0.19 -0.6  ≤ μ≤  0.22 60.85 7.80 -41.06 

Passenger T&E, Days 
without Accidents 3,347 2.75 2.49  ≤ μ≤  3.01 34.89 5.91 2.15 

 

3.3 Hazard Functions 
It was noted above that it might be possible to characterize each of the Accident, Pre-accident, 
and T&E distributions as two exponential distributions.  One exponential would model the 
negative side of the distribution, and another exponential would model the positive side.  
Exponentials are very interesting in this application because the hazard (failure rate) function of 
an exponential distribution is constant.  The hazard function indicates the predictability of future 
events (the next start time in this case) as a function of elapsed time.  If start time differences are 
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distributed exponentially, then knowing the last work start does not reduce uncertainty about the 
next work start.  The time of the next work start would be random.  Predictability in an 
exponential is zero. 

Six exponential equations were fit to the Accident, Pre-accident, and T&E distributions.  Figure 
7 shows the modeled data as a function of the observed data.  The red diagonal line shows the 
outcome if the modeled data is a perfect fit to the observed data.  It is clear that the exponential 
models over-estimate and under-estimate some of the data.  The mean r2 for the six models was 
0.9186 (a range of 0.8620 to 0.9569).   
 

 
Figure 7.  Plot of exponentially modeled data vs. observed data. 

 
Figure 8 shows the residuals for the six models.  The residual analysis indicates that there is 
over-estimation in the -1 to -4 (-2 midpoint) and 1 to 4 (2 midpoint) hour bins and under-
estimation in the -1 to 1 hour bin (0 midpoint).  χ2 analyses indicate poor fits in every case to 
exponential distributions.  Table 3 shows the results of these analyses. 
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Figure 8.  Residuals for the exponential models. 

 

Table 3. χ2 Analyses of Goodness of Fit to Exponential Distributions†. 

 χ2 
Accident + 24.9 

Accident - 37.83 

Pre-accident + 654.88 

Pre-accident - 534.74 

T&E + 368.71 

T&E - 284.32 
 †  For all tests, df =12, critical value = 21.06, p<0.05 
 

3.3.1 Mathematics of hazard functions 
Hazard (failure rate) functions were determined for each of the empirical distributions.  Hazard is 
the tendency for an event to occur (this discussion of hazard is based on Luce, 1986, and 
Kumamoto and Henley, 1996).  Suppose an event must occur at one of four times,  

t0 < t1 < t2 < t3, and the probability of an event at each time is p0 = p1 = p2 = p3 = ¼.  This 
represents the pdf and is a rectangular distribution.  Prior to t0 the tendency is ¼.  If the event 
fails to occur at t0, the tendency increases to ⅓ because t1, t2, and t3 are equally likely to occur.  If 
the event fails to occur at t1, the tendency is ½.  If the event fails to occur at t2, the tendency = 1.  
Mathematically, the hazard function is  
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𝑝𝑑𝑓

1 − 𝑐𝑑𝑓
  

 
In the case of a rectangular distribution, the pdf = 1/(n+1) = ¼ and the cdf = (x+1)/(n+1).  Table 
4 shows the calculations. 
 

Table 4. Hazard calculation for a rectangular distribution. 

 pdf cdf 1-cdf (survival) hazard 

t0 ¼ ¼ ¾ ⅓ 

t1 ¼ ½ ½ ½ 

t2 ¼ ¾ ¼ 1 

t3 ¼ 1 0  

 

Death provides a good, concrete illustration of hazard because the tendency to die increases with 
age after a certain age and has other characteristics that are typical of hazard functions.  Figure 9 
shows the pdf for death as a function of age in years.  The mean of this distribution is 58.36 
years.   

 

 
Figure 9.  The probability density function for death as a function of age. 

 

Figure 10 shows the survival function (1 – cdf). 
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Figure 10.  Survival function for death. 

 

Figure 11 shows the hazard function, which is the pdf/(1-cdf) or Figure 9 divided by Figure 10. 

 

 
Figure 11.  The hazard function for death based on Figures 9 and 10. 

 
Figure 11 has three distinct sections which are often found in hazard functions:  early failures, 
random failures, and wear-out failures.  In the case of death, early failures constitute early deaths 
due to congenital conditions and other risks associated with infancy.  Random failures constitute 
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a prime-of-life period in which deaths occur randomly at a low level.  Wear-out failures are the 
result of aging taking an increasing toll on health. 
 

3.3.2 Empirical hazard functions 
Figure 12 shows the empirical hazard functions for the Accident, Pre-accident, T&E, and 
Passenger T&E distributions.  All functions have a mode in the -1 to 1 hour bin.  This indicates a 
high tendency for the next work start to occur at the same time of day as the previous work start.  
That tendency is greatest for T&E, followed by Passenger T&E, Pre-accident, and then 
Accidents.  All functions increase from 0 in the -8 to -12 hour bin, but the Passenger T&E 
function is higher at this point and remains so through to the -1 to -4 hour bin.  In bins above the 
mode, all functions have an increasing trend, with the exception of the Passenger T&E function.  
For the Passenger T&E function, there is a drop in the 1 to 4 hour bin, perhaps because interim 
release is usually 4 or more hours, followed by four bins in which the function looks flat.  
Overall, the hazard functions indicate more predictability for the Passenger T&E start times 
relative to the other groups.  The reversal in the ordering of the groups at the mode (Passenger 
T&E is below T&E) is probably due to the higher hazard (predictability) generally seen before 
and after the -1 to 1 hour bin.   

 

 
Figure 12.  Hazard functions. 
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3.4 Fatigue and Start Time Variability 
One of the assumptions made in predicting the variances of the start time distributions was that 
fatigue was a function of start time variability.  The Work Schedules and Sleep Patterns of Train 
and Engine Service Workers, the Work Schedules and Sleep Patterns of Passenger Train and 
Engine Service Workers, and the FAV databases were previously analyzed with FAST to 
determine the fatigue levels of the involved employees.   

Gertler et al. (2013) summarize the results of those analyses in Table 22 of their report.  FAST 
estimates fatigue from a minimum of 3 days of work schedules, so it is not possible to estimate 
fatigue for Accidents and for Pre-accident separately.  The same estimate of fatigue was 
therefore used for Accidents and Pre-accident.  Figure 13 shows the relationship between σ and 
fatigue (% of work time at a FAST score ≤ 90).  A FAST score > 90 indicates that individuals 
are well-rested.  A FAST score ≤ 90 indicates the presence of fatigue. 
 

 

 
Figure 13.  Percent fatigued as a function of the standard deviation of the start time 

difference.     Accident,     Pre-accident,    T&E,     Passenger T&E. 
 

Figure 13 shows that fatigue for Passenger T&E < T&E < Pre-accident = Accidents.  The 
correlation is 0.9857 (p < 0.05).  It is clear that fatigue increases as start time variability 
increases.  Fatigue is known to increase the probability of accidents (Raslear et al., 2011) and is 
the intervening variable that mediates the relationship between start time variability and 
accidents. 
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4. Discussion and Conclusions 

This report describes two measures of variability or predictability of work start times:  the 
variance (σ2) and the hazard function.  Each can play a role in the analysis of start time 
predictability.  σ2 is an excellent measure for assessing the overall start time variability of a 
group of work schedules and for comparing different groups of work schedules2.  For instance, 
in the case of freight T&E and passenger T&E, σ2 indicated that passenger T&E schedules had 
significantly greater predictability relative to freight T&E schedules.  The hazard function is 
useful for specifying the location of such predictability.  Again, looking at freight versus 
passenger T&E, freight T&E has the highest predictability in the -1 to 1 hour bin.  Passenger 
T&E has less predictability in the -1 to 1 hour bin, but has a higher likelihood of a start time 8 to 
1 hour(s) before the previous work start.  This type of information, combined with knowledge of 
the operational circumstances, can support evidence-based decisions about schedule changes that 
effectively reduce fatigue without adversely affecting operations.   

The variance data supported the hypothesis that the probability of a human factors accident is a 
function of start time variability (equation 5).  Fatigue, as measured by the FAST score, was also 
shown to be a function of start time variability.  While it was previously demonstrated that 
fatigue was a general function of sleep and work schedules (Raslear et al., 2011), this report 
extends that finding to specify start time variability as a critical aspect of work schedules when 
considering fatigue and the probability of an accident. 

4.1 Conclusions   
1.  The variance and hazard functions are useful measures of work start time predictability.  Each 
has a different role in start time analysis.  The variance is useful for comparing the overall start 
time variability of several groups of schedules.  The hazard function is useful for specifying the 
location of predictability in a group of schedules. 

2.  As predicted, σAccidents 
2 ≥  σPre−accident 2 >  σT&𝐸 

2 >  σPassenger T&𝐸 
2 .  This ordering of 

variances supports the hypothesis that the probability of a human factors accident is a function of 
start time variability. 

 

 

  

                                                 
2  It should be noted that the variance should not be used as a predictor of fatigue in work schedules that consist 
primarily of night work.  For instance, dispatchers who work third shift have highly predictable schedules but are 
also highly fatigued (Gertler et al., 2013).  This is because normal circadian rhythms interfere with sleep during the 
daytime.   
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